Loading...
Plans (102) 0016-7 RECEIVED sV _)\, ,-wG'�11,C1 . J U L 1 1 2019 perlo CITY ,__., - RD SUBMITTAL BUILDING DIVISION IslUlxrOl 11 JAGUAR LAND ROVER OF Subcontractor: River City Glass & Window PORTLAND Submittal#: 51 Rev#: 1 Specification Section: 08 44 26 Perlo Job Number: 1368 G®Vst Date Submitted: 6/14/19 **C Submittal Item: Glass Fin Wall Calcs. - Rev. 1 Please Respond By: 6/25/19 5 PROJECT SITE: PERLO CONSTRUCTION HAS REVIEWED THIS SUBMITTAL DATE 6/14/19 SIGNED Jake Jensen Jaguar Land Rover ortland 10125 SW Washington Square Road REVIEW BY CONTRACTOR IS UNDERTAKEN SOLELY TO SATISFY ANY OBLIGATIONS OF CONTRACTOR TO OWNER Tigard, Oregon 97223 AND DOES NOT IN ANY WAY RELIEVE SUBCONTRACTOR FROM HIS OBLIGATION FULLY TO PERFORM ALL SUBCONTRACT REQUIREMENTS, NOR SHALL SUCH REVIEW APPROVER: GIVE RISE TO ANY RIGHT OF ACTION OR SUIT IN FAVOR OF SUBCONTRACTOR OR THIRD PERSONS AGAINST CONTRACTOR. REVIEW DOES NOT EXTEND TO Mildren Design Group CONSIDERATION FOR STRUCTURAL INTEGRITY,SAFETY, Attention: Curt Trolan DETAILED COMPLIANCE WITH CONTRACT REQUIREMENTS OR ANY OTHER OBLIGATION OF THE SUBCONTRACTOR. 7650 SW Beveland Street, Suite 120 SUBCONTRACTOR IS FULLY RESPONSIBLE FOR CONFIRMING AND CORRELATING ALL DIMENSIONS; Tigard, Oregon 97223 FABRICATING AND CONSTRUCTION TECHNIQUES; COORDINATING HIS WORK WITH THAT OF ALL OTHER TRADES;AND THE SATISFACTORY PERFORMANCE OF HIS GENERAL CONTRACTOR ENTIRE WORK IN STRICT ACCORDANCE WITH THE CONTRACT DOCUMENTS. Approver's Stamp: Perlo Construction Attention: Jake Jensen NO EXCEPTION NOTED 1 MAKE CORRECTIONS NOTED 0 11450 SW Amu Street REJECTED 0 REVISE AND RESUBMIT ❑ Tualatin, Oregon 97062 THIS REVIEW IS FOR GENERAL CONFORMANCE WITH DESIGN CONCEPT ONLY. ANY DEVIATION FROM PLANS OR SPECIFICATIONS NOT CLEARLY NOTED BY THE CONTRACTOR HAS NOT BEEN REVIEWED. REVIEW SHALL NOT CONSTITUTE A COMPLETE CHECK OF ALL DETAILED DIMENSIONS OR COUNT OR SERVE TO RELIEVE THE CONTRACTOR OF CONTRACTUAL RESPONSIBIUTY FOR ANY ERROR OR DEVIATION FROM CONTRACT REQUIREMENTS. TM RIPPEY CONSULTING ENGINEERS PORTLAND, OREGON DATE: 6-20-19eY. rnt 16 it`d INS O A �a ke��/' N OR CCB 189245 LICENSED THROUGHOUT THE WESTERN UNITED STATES I AZ ROC 293181 Sentech Architectural Systems LLC BUILDING ENVELOPE SOLUTIONS 4421 Supply Court,Austin, TX 78744. Tel: (512)266-7045 Engineering Calculations Structural Glass Wall JLR Portland Portland, OR <4v,okt0 PRO)* ty0 N Fq sio2 90802PE r - Record Submittal - Expires 1231-19 ~44, OREGON 4° 4G'��9Y 1z 2 'w/0 DUNNP Date: 6/7/2019 ✓" Prepared By: Sung Cho David Dunham David Dunham P.E. 2019.06.12 09:11:54-05'00' ' Project No: C-18023 Page 1 of 59 1 - Design Procedure Page 2 of 59 Design Methodology 1.Design Procedure: Design of all glass components was performed using Finite Element analysis . Glass components were checked for allowable deflections,Allowable stresses and critical buckling loads.The structural analysis software Strand7 was used to determine glass deflections,stress level and eigenvalues.A minimum safety factor of 2 was used for critical buckling loads;All glass panels and support components were checked for a maximum deflection criterion of L/100 at the center of IGU Allowable stresses outlined in ASTM E 1300-16 were used to check glass stress level. 2. Codes of Standard Practice: ASCE 7-10 Minimum Design Loads for Buildings and Other Structures AISC Manual of Steel Construction, Fourteenth Edition ASTM E-1300(Standard Practice for Determining Load Resistance of Glass Buildings) 2012 International Building Code 2014 Oregon Structural Specialty Code 3. Material Properties: Name E(psi) v p(Ib/ft3) ay(ib/i• nt) au (Ib/int) Glass 10,500,500 0.23 160 Steel 29,000,000 0.30 490 36,000 58,000 Stainless Steel 28,000,000 0.30 490 30,000 75,000 6005-T5 Aluminum Extrusion 10,100,000 0.33 170 35,000 38,000 Page 3 of 59 Allowable Stresses Based on ASTM E-1300 For a probability of failure of 8 in 1000: Glass Type Stress Location Allowable Stress for 3 s(ksi) Annealed Field 3.38 Edge 2.90 Heat-Strengthened Field 6.75 Edge 5.30 Fully Tempered Field 13.50 Edge 10.60 For a probability of failure of 1 in 1000: Glass Type Stress Location Allowable Stress for 3 s(ksi) Annealed Field 2.51 Edge 2.15 Heat-Strengthened Field 5.02 Edge 3.94 Fully Tempered Field 10.03 Edge 7.88 Glass Stress-Load Multiplier Typical Load Type Duration Annealed Heat-Strengthened Tempered Glass Wind Load 3 s 1.000 1.000 1.000 10 5 1.078 1.038 1.025 1 min 1.206 1.098 1.064 Live Load 10 min 1.393 1.180 1.117 60 min 1.558 1.248 1.159 12 h 1.819 1.349 1.221 24 h 1.900 1.378 1.239 1 week 2.146 1.465 1.290 Snow Load 1 month 2.255 1.502 1.311 1 year 2.747 1.657 1.401 Dead Load Beyond 1 year 3.172 1.781 1.469 Notes: All glass edges to be polished. Page 4 of 59 . Modeling Assumptions 1.Load Sharing-Relative Stiffness Method: Pout=Pktant3/(touts+tin3} 3 3 Pin=Pk tin/tout+tin3 Where; P=Pressure Load lb/in2 Pout=Outboard Pressure lb/in2 Pin=Inboard Pressure lb/in2 tout=Outboard Thickness in tin=Inboard Thickness in 2.Glass Composition: Thickness(mm) Glass Interlayer Air Total GL-1 Facade Glass: 6mm low iron Heat Strengthened+1.50mm trosifol clear interlayer+6mm low iron Heat Strengthened 18 1.5 12 31.5 +12mm Air+6mm low iron tempered FIN-2 Fin 12mm low iron tempered+1.50mm trosifol+12mm low iron tempered 24 1.5 25.5 3.Interlayer Properties: 1 Sec 13 Sec 30°C Trosifoh Clear/UltraClear 0:93 0,69 (86°F) Trosifot*SC Monotayer 0.47 0:43 Trosifote SC Multilayer 0.71 0.54 M pa psi Trosifote Extra Stiff 73 44 0.69 100 SentryGiase 151 141 SentryGtasa Xtra' 106 101 Page 5 of 59 _ t I2 - Design Loads Page 6 of 59 Design Load Combinations per ASCE 7-10 - Glass Wall 1. Loads on Glass Wall: Symbol Load Description a) D Deadweight b) E Earthquake c) L Live=250 lb(concentrated)or 50 lbs/ft(linear) at 42"above FF d) T Self Straining e) W Wind- Internal Wind Pressure 5 lb/ft2 2. Load combinations as per ASCE 7-10: Load Combination 1. D 2. D+L 3. D+0.6*W 4. D+0.7*E 5. D+0.75*0.6*W+0.75*L 6. D+0.75*0.7*E+0.75*L 7. 0.6*D+0.6*W 8. 0.6*D+0.7*E Analogous additional combinations including positive and negative temperature loads were analyzed. Page 7 of 59 Wind Load Calculations GROUND SNOW LOAD Pg:10 PSR Occupancy Category= II As per ASCE/SEI 7-10 Table 1.5-1 FLAT_POOF SNOW LOAD PF 25 REF SNOW EXPOSURE FACTOR Cep 1.0 SNOW IMPORTANCE FACTOR Iv 1.0 Basic wind speed= 120 per Structural Notes by EOR THEIR/I AL FACTOR CI 1.0 Wind exposure category= B As per ASCE/SEI 7-10 Section 26.7.3 BASIC WIND SPEED GE-SEC GUST.UL11MATEJ. 120 MPH Building Height(h)S 35 ft aOUILDG'IGCATEGOEFACTORrw I.o IG CATEGORY.:tl WIND(EXPOSURE:B High Point of Wall(z)<_ 15 ft SEISMI2 IMP ANCE FACTOR le: 1.0 Kh= 0.73 As per ASCE/SEI 7-10 Table 30.3-1 SITE C',.ASS Er. Kz= 0.70 As per ASCE/SEI 7-10 Table 30.3-1 sE SMI TDESIGN CATEGORY: II BASIC SEISMIC-FORCE-RESISTING SYSTEVI: Kzt= 1 As per ASCE/SEI 7-10 Section 26.8.2 1.N:NMOW ROOM-SCBF(R=6) 2 'AVILLION-SOCBF IR=3.251 Kd= 0.85 As per ASCE/SEI 7-10 Table 26.6-1 3 ERVICE.SRMSWCR=S} ANALYSIS PROCEDURE USED: EQUIVALENT LATERAL FORCE q= 0.00256 Kz Kd Kzt V2 per ASCE/SEI 7-10 Section 30.3.2 qh= 23 psf qz= 22 psf Roof angle<_ 5 ° Wind pressure p= gh[(GCp)-GCPi)] per ASCE/SEI 7-10 Section 30.4.2 Façade Glass Panel Fin Effective Area>_ 88 ft^2 Effective Area>_ 114 ft^2 GCp(positive)= 0.75 GCp(positive)= 0.73 GCp(negative,zone 4)= -0.84 GCp(negative,zone 4)= -0.82 GCp(negative,zone 5)= -0.96 GCp(negative,zone 5)_ -0.92 GCpi= 0.18 GCpi= 0.18 GCpi= -0.18 GCpi= -0.18 Positive wind pressure= 20.4 psf Positive wind pressure= 20.0 psf Negative wind pressure= -23.4 psf Negative wind pressure= -23.0 psf Negative wind pressure(at corner)= -26.1 psf Negative wind pressure(at corner)= -25.3 psf Note: Negative wind pressure controls. GCp values per ASCE/SEI 7-10 Figure 30.4-1 and GCpi values per ASCE/SEI 7-10 Table 26.11-1 Page 8 of 59 Seismic Load Calculations for Nonstructural Components Seismic loads are calculated using ASCE 7-10 Chapter 13:Seismic design requirements for nonstructural components. Site Class= E per Structural Notes by EOR Seismic Design Category= D Seismic Use Group= Seismic Importance Factor,1,= 1 per ASCE 7-10 Table 1.5-2 Building Height,h= 35.0 ft Wall Attachement Height,z= 15.0 ft Seismic Design Force: FP= 0.4*ap*SDs*Wp*(1+2*z/h)/(R,/Ip) per ASCE 7-10 Section 13.3-1 SDs= 2/3*SMs per ASCE 7-10 Section 11.4-3 SMS= F,*Ss per ASCE 7-10 Section 11.4-1 Where: Ss= 0.976 per ASCE 7-10 Figure 22-1(USGS Design Maps Summary Report) Si= 0.418 per ASCE 7-10 Figure 22-2(USGS Design Maps Summary Report) Fa= 0.93 per ASCE 7-10 Table 11.4-1 SDs= 0.604 Fv= 2.4 SDi= 0.6688 Fp,max=1.6*Sos*Ip*Wp= 0.97 Wp per ASCE 7-05 Section 13.3.1(Formula 13.3-2) Fp,min=0.3*SDs*Ip*Wp= 0.18 Wp per ASCE 7-05 Section 13.3.1(Formula 13.3-3) Body of Connection: Fasteners: Rp= 2.5 1 per ASCE 7-10 Table 13.5-1 ap= 1 1.25 per ASCE 7-10 Table 13.5-1 Fp= 0.18 0.56 W,per ASCE 7-10 Section 13.3.1(Formula 13.3-1) Use Fp= 0.18 0.56 W, Out of Plane Facade Check: Wp for glass Facade= 13.40 lb/ft2 Fp on Glass= 2.4 lb/ft2 Does not control over wind load for out of plane loads Fp on Fittings= 7.5 lb/ft2 Does not control over wind load for out of plane loads Note:Wind load controls over the out-of-plane seismic load.Only in-plane seismic load is analysed in this document. Page 9 of 59 Building Movement In-Plane Drifts(Elastic): Showroom: Shorz= 0.66 in Pavilion: Show= 0.03 in In-Plane Drifts(Inelastic): Showroom: 8horz x Cd= 3.32 in Pavilion: Show x Cd= 0.1 in Vertical: Showroom Delta LL Evert= 0.9 in Pavilion Delta SL Evert= 1.08 in Page 10 of 59 3 - Glass Panel Analysis Page 11 of 59 IAnalyzed Wall Glass Panels d 5.00 2 glik°PP. a I 5.00 4 —--) 5.00 "— 5.00 — 1 1 I GL-Ot 0.-01 ;: gi (epi 'I 1. 1 , 1 1 E f 5'-113i.. 7'-9 4" 7'-10" J. 7'-93 5'-113., 5 G.S. G.S. G.S. G.S. G.S. Il { I 5'-11Y" I T-10Y4" i 7-10) 7'-10Y" ' 5'-11)g „I,1 ( 26'-6i.. r, r. r. r 11 I I ` Panel GL-1: Thickness of Glass,tgiass= 0.709 in Height of Glass, hg;ass= 14.67 ft Width of Glass Panel,wg;ass= 7.833 ft Area,A= 114.9 ft2 Glass Dead Load, Dglass= 1085.6 lb Ultimate Exterior Wind Pressure,per,+= 20.4 lb/ft2 Exterior Wind Suction, pw= -23.4 lb/ft2 Exterior Wind Suction, IN;= -26.1 lb/ft2 (corner zone) Page 12 of 59 Y ' Glass Facade - Effective Thickness (GL-1) Reference:ASTM E-1300 Interlayer thickness(h„)= 1.50 mm Nominal Glass Ply 1 thickness= 6.00 mm Note: Nominal ply thicknesses are used for deflection Glass Ply 1 minimum thickness(h1)= 5.56 mm calculations only. Minimum thicknesses are used for Nominal Glass Ply 2 thickness= 6.00 mm all stress and buckling calculations Glass Ply 2 minimum thickness(h2)= 5.56 mm Young's modulus for glass(E)= 1.05E+07 psi Smallest in-plane dimension of bending(a)= 94 in Interlayer complex shear modulus(G*)= 100 psi *The value for G varies based on duration of load and temperature.For simplicity,the value of G that produced the most For calculations of laminate deflection: conservative effective thickness was used. h5= 0.295 in Il./?1 h h, h,= 0.51/ --1 ) -/ h = h , = hs,,. 0.1476in s:l hl+/i, h +h, 1, = hlic +h,h h5,2= 0.1476 in I Is= 0.0103 in F = Els/i s. Shear transfer coefficient:1= 0.5569 1 -- 6 Gha— Laminate effective thickness(hef.w)= 0.4566 in For calculations of maximum glass bending stress: h5= 0.278 in ho= 0.1390 in 115,2= 0.1390 in her-w --=3V/h31÷h + 12 'I, Is= 0.0085 in Shear transfer coefficient: f= 0.5756 _ j /ler:,+ h I'era /i --2 ch.., Laminate effective thickness(hef;W)= 0.4298 in Laminate effective thickness for ply 1(hi;ef;o)= 0.4577 in /ix. Laminate effective thickness for ply2(h2,0„„)= i'.er: ( z,e$o)= 0.4577 in /Z,-f-'?Fhs:I Page 13 of 59 Glass Panel GL-1 Load Sharing Outboard Load Scale Factor, LS1= (OT)3/(0T3+IT3) Inboard Load Scale Factor, LS2 = (IT)3/(0T3+IT3) Outboard Thickness= 0.472 in Inboard Thickness= 0.236 in Panel Height= 14.67 ft Panel Width= 7.83 ft Panel Area= 114.89 ft2 Allowable Stress Design Wind Pressure,-0.6*pw 15.7 lb/ft2 Stress: Outboard Effective Thickness= 0.4298 in Inboard Effective Thickness= 0.2189 in LS1= 0.8833 LS2= 0.1167 Outboard Pressure,1.1*0.6*pW*LS1= 15.2 lb/ft2 0.1059 lb/in2 Inboard Pressure,0.6*pW*LS2= 1.83 lb/ft2 0.0127 lb/in2 Outboard Dead Load= 1063 lbs Inboard Dead Load= 644 lbs Deflection: Outboard Effective Thickness= 0.4566 in Inboard Effective Thickness= 0.2189 in LS1= 0.9007 LS2= 0.0993 Outboard Pressure,0.6*pW*LS1= 14.1 Ib/ft2 0.0981 lb/in2 Inboard Pressure,0.6*pW*LS2= 1.56 lb/ft2 0.0108 lb/in2 Page 14 of 59 arY31 , .. ilucrr y., '•, )(n'' )P14l D4010O masra:2>3cls�7sixat[ae22;14iar ra o 4Ds�Nr• .icearwr Glass Facade - Controlling Loamd' rrrw r■■tr:aw :. . .. xrtrawww iiia :,.. : .. Rrr6= •rrra . i11 nf.k�•:�.-kr Hl*r^aar.d@s,aa+un.6.ni N■i , 4.80006000001x10-- k1744::r Pate Stres11z0=rxfeo 0tm4s,Nd221i9 r•rswr -i 4ki mwsm4.205251x1100''3�xim :irriNrrrx 2311x0'NNrr 1i iiiim"/:r2.10 ' r•rrri2*" :r,:!hillrtN3.60043011x1018101:1":**,-,a Y Mw i r■■■r . ]039323x10' rraRm''"6" kY" rrr :::1,1 ~in 3903001%30iiriimiiiiirrrRr■ r °m•!ns. iiiiii:111i L6728x01 :i4Si ,....AM. r01-2-0"a•■rrr■ ■lmr ir•■.2d2 rt N:Ye L4533033%0] fir ■■r■■rrr::: aMir L82250x31'ra■ ■ii■iii■■m:: ii■fg ` 173 {� ■ • :112 WaF � L20150Y0f• ■ iii:: rAn 6007502x10=m4FlIi■imaii3Iii hnl■UU• NM:. 9.713937,0: •rsmama • r ■ r.■rr• % r filliE i.• •*:f ■ ■`m:mN■■ ■ ■::■rr,, . 7.234x]100=` rrrrrs:: ■ : ■■B■c .4.0e OA112 Pt1N121 b41r■■rrr1 ■ rri• p■■i ibl1114:111111111141:21:101111442: aa1111r■■ i4rir■rer"li 9.87!5402x0 iNIROr. y ■1rr ■ N:■m■ i : iiii.*i� nr ■•111 111R 336428x0ilmr: N ■ ildi ■ ■1Fr■ r0.41314 (Vt29,Nd26il ih• mlimmm3ii :m v ■si1'Nr ■rp r ■rN■■■■ ii■r�ammir iiiii c Ir' mrU■iiii■ •�»terr . 2, . a�waa: i■Nr■ ■ % • ` W' :::i *i■rgii•■1'miiii :: ! °•r:aii : :iii■i:iii r; " W::::- ■■K ::Ausmile, 8 *r1■i■ i mri : rrm:d ■N *ewr•»:i » rirrIirNrrr ■ wrmrr iit iww " m• i • S....,..!-_.1:1111:::::„2:: rse !-. r::..mN■ :miI • lii-4,; ,kt3rr iiMiii1111:"°111=2:111.6.r, ii ® i ■■■r4Y ismr � "• ? erk R:imi■■Rxeis: mmi ' S • •N a:me- Nr mrNi" ri rwm Ari ir'r" rRrNiii ? kror yN:: 't wu Mr •rr6' 1k''dKrrm�:N.clk:ir■■r ■ .# i:galios:: ` 34!3:101111615:n ii4■� : Rk •r8 f■v■::gi:.r'11;232211""""4 i 1ii """ r x::1:::111i. r1mrwwmi■ wrrw ,- ,■ i 3: 1.: 1 i4r • iiZ rrig e: ,i;.,'::,'41111p� arrt 41T4::::::: iii: ryis ■ ■ ir9rt EA#a6h ♦w■ Q • � ,. • a ::imrm■Nrr am•m■r■k = :- rRwN■x -4rNr■y8 /iSii is > i ¢ . iirrsi11111111111:115111111111111111111111igif as�xi iw=rrm.eiiiiiiu3i:Siliiirioimiiri ■ ..xtgiCimiii iiUSU Uii fwa r "r}i rri:iirr ■� a■R;:rr ::gs:4::rrrsiiii�:■�:ii: it ■ ..:61::::,,:n�yi i" x * �r�1;rri •: ■ri ..r r•1iiwm •• '■■rr C •rmrr �ir -GG: iii CNiQONiRM r :"rr ri. ■RNUMRiii:ra:91- SSarrr (mn •r ■r ilii■n1 t ..� : r .::::I•arii ■■Ui:l: 1iiMi�i ■ N ■■ppriM 'z4■rrrwr, ' 7r1 : ir1Nrr ..vie1. :=ma ,„,.. arrr■ ririf■riirrir■■■fiiiliri:i .. rwriiiri i ■ Nrirm4r ■•mm tsarar w■ aai*rr■••:.wait a.,karrr• a« u41— . ,1111.....-a m fcau#.-" CC::11::imiiiiMiiiw•i ririirmmwioir '74.4=112L.-- r rri1:231■r rr■. ■■ ■■■■■■■NNNmZfrN■� ii:: iii " r*a �w,`is-CNwiE NLiiisir NrNi:gr 'rf;rorsiiir ■rrrrr 3n1W r2iiiii-'ir■wr$ ■r ■r mirniiiikx+ -9.T.,72:11:::1iiiimra . •rrrr. Tier & "Thickness forairrwrrwx s:VP. Displacement)GBoundary nxd7it.8o3n340S.i4d9e2P8"nned Stress : Load:D-0.6*W(D- Panel Self Weight,.6W-15.71b/ft2 Wind Load) Panel Span= 94.0 in Maximum Stress= 3.03 ksi Maximum Displacement= 0.88 in *HS Glass Field failure of 8 in 1000 Allowable Stress= 6.75 ksi Allowable Displacement=L/100= 0.94 in If Checked as 2 Side Pinned Left and Right as top sill channel does not work as a rigid support: Maximum Stress= 4.15 ksi HS Glass Edge failure probably of 8 in 1000 Allowable Stress= 5.30 ksi Page 15 of 59 4 - Glass Fin Analysis Page 16 of 59 I Fin Glass 00 AI BOgii 2 a OPP. I 1 { I �� I I t I GL-02 LAMMED t �� MB CLASS FlN(BY SCIS) I f 5'-11.f 7'-93‘4" 7.10" , 7'-9Y" �, 5'-117.4' j [ 5 G.S. GS. G S. G . G.S. �' I 41 , 5'-11)x" , 7'-10)44" 7'-10 ' 7'-104" 5'-11)6" 2E'-6h" _ 1 F. ��V,�,� II r r. r((( r. I 0 ;, 6L-01 INSULATED T��n GLASS(BY SAS) FIN-2(Fin): dl', Thickness of Glass Fin, �;,,= 0.945 in t I 1 3.,k Depth of Fin, df;„= 10.0 in Height of Fin, hf;,,= 14.67 ft I `, e coD Tributary Width,Wtr;b= 7.833 ft s _L___) Fin Dead Load, Df;,,= 154.0 lb Ultimate Exterior Wind Pressure, pw+= 20.0 Ib/ft2 Exterior Wind Suction, pw= -23.0 Ib/ft2 Exterior Wind Suction, pw= -25.3 lb/ft2 (corner zone) Page 17 of 59 Fin Glass - Effective Thickness (Fin-2) Reference:ASTM E-1300 Interlayer thickness(h„)= 1.50 mm Nominal Glass Ply 1 thickness= 12.00 mm Note: Nominal ply thicknesses are used for deflection Glass Ply 1 minimum thickness(h1)= 11.91 mm calculations only. Minimum thicknesses are used for all Nominal Glass Ply 2 thickness= 12.00 mm stress and buckling calculations Glass Ply 2 minimum thickness(h2)= 11.91 mm Young's modulus for glass(E)= 1.05E+07 psi Smallest in-plane dimension of bending(a)= 10 in Interlayer complex shear modulus(G*)= 100 psi *The value for G varies based on duration of load and temperature. For simplicity,the value of G that produced the most conservative For calculations of laminate deflection: effective thickness was used. hs= 0.531 in !1 /l f1 11� fi = 0. (f1 r ftp)+11,. hs1= 0.2657 in {1A.1 — h1+112 tt`:7 — h1±112 I = Iiif1s:,-l-/1?�1s:s hs:2= 0.2657 in 1 Is= 0.0667 in I' = Ellt Shear transfer coefficient:f= 0.0071 1 +9.6 s Cih Laminate effective thickness(het„)= 0.6005 in Use the actual thickness of the glass fins for stress and deflection check For calculations of maximum glass bending stress: hs= 0.528 in hs;1= 0.2640 in h =V13--13+ 1117 h5.2= 0.2640 in Is= 0.0653 in • lI gt°x Shear transfer coefficient:1= 0.0071 /1 l:eta h 1 2I'h,_ Laminate buckling effective thickness(het;,N)= 0.5961 in 3 Laminate effective thickness for ply1 h _ /1 ( 1;et;a)= 0.6694 in _ tfi-�' "1r't:na_ Laminate effective thickness for ply 2(h2;et;a)= 0.6694 in 11, r h5:1 Page 18 of 59 Glass Fin Criteria Fin top is restrained by fin shoe attached to support structure (translation in x-direction, z-direction, rotation in y-direction and z direction) Fin Geometry: Height of Fin, hfn= 14.67 ft Depth of Fin, dm,= 10.0 in Thickness of Fin,tfn= 0.945 in Fin Design Loads: Fin Tributary Width,Wtrib= 7.83 ft Wind Pressure, pw+= 20.0 lb/ft2 Wind Suction, pw= -25.3 lb/ft2 Distributed Wind Pressure,w+= 156.7 lb/ft Distributed Wind Suctions,w= -198.4 lb/ft Head/Base Reaction, Fw+= 1149.1 lb Fw= -1454.9 lb Fin Design Dead Load, D= 226.2 lb Fin bottom is restrained by fin sheo assembly anchored into concrete. (translation in x,y and z directions, rotation in x- direction and y-direction) Page 19 of 59 Fin - Controlling Load filePlate Stress:11-z surface(psi) '..oPlate Disp:D(XYZ)On) Max=3.889965x 103[Pt:63,Nd:191j r fisi Max=2.398288 x 10-1 [Pt:905,Nd:640] 3 +q14 3.577656x 10 2.214663 x 10'1 3 3.265398x10 2.031038x10'1 2.953039 x 103 2.640730x 103 :V 41141 1.847413x10"1 3 2.690730 x 10 1.663788 x 10-1 2.328422x 10 3 SIII 1 �"'«".` 1.980163 x 10- 2.016113x103 .., �'� '�` 1.296538x10'1 i,, 1.703805x103 1.112913x10-1 1.391496x 103 9.292882x102 1.079128x103 7.456632x 10-2 1 7.668789x10' 2 5.620382x 10' #cE „ 4.545704x102 i 3.784132x10-2 '" 1.122618x102 " 2 ��' w « 1.947881x10 tgit t; Min=-1.7D0968x 102[Pt:178,Nd:67] r er s Min=1.116312x 10-3[Pt:1,Nd:127j s *. • r r'ta RID; R Mf4f1 y q¢ t M I., Glass: 14.67 ft x 10 in,0.945 in Thickness Boundary Condition:See Fin Loads for Description Load: D-0.6*W(D-Fin Selfweight,.-6W-15.2 lb/ft2 Wind Load) Panel Span= 176.0 in Maximum Stress= 3.89 ksi Maximum Displacement= 0.24 in Allowable Stress= 10.60 ksi Allowable Displacement=L/175= 1.01 in Page 20 of 59 Fin Buckling- Controlling Load FINAL SUCKLING RESULTS CALCULATED BUCKLING- LOAD FACTORS 1 5.3245151E2+00 5_4£453215E+00 3 1.14430472E+01 Fin Glass:14.67 ft x 10 in,0.945 in Thickness Boundary Condition:See Fin Loads for Description Load: D-0.6*W(D-Fin Selfweight,.-6W-15.2 lb/ft2 Wind Load) Safety factor against buckling= 9.3 Minimum allowable safety factor against buckling= 2.0 Page 21 of 59 Fin - Controlling Load (10yr Broken Lite) Sr;g 3 ffi Plate Stress:11-z surface (psi) p; ) (in). ��� Plate Dis D YZ 3,576979x103 t:63 Nd:191 ;" °`.. , 2.205323x 101 [Pt:405,Nd:6401 3.380487x 103 "I 2.089793x 10 2.987504x103 int 1.858735x101 a 2.594520x103 adwt 1.-27676x10-1 *Irm2.201537x 103 Ar:+�. L 396617x 101 "� 1.808553x 103 * 1.165558x 10-1 1.415569x 103 9.344998 x 10-2 .E! 1.022586x 103 7.031411x 10-2 >1i 6.296023x 10? 4.723824x 10-2 2.3666187x10' 2.413236x10 -1.563649x 102 [Pt 178,Nd:671 1.026494x 10-3 [Pt 1,Nd:1271 ■,> laws1110, ra k A ffin Y4 � Glass:14.67 ft x 10 in,0.472in (1 Lite Thickness) Boundary Condition:See Fin Loads for Description Load: D-0.6*W(D-Fin Selfweight,.-6W-11.0 lb/ft210Yr Wind Load) Panel Span= 176.0 in Maximum Stress= 3.58 ksi Maximum Displacement= 0.21 in Allowable Stress= 10.60 ksi Allowable Displacement=L/175= 1.01 in Page 22 of 59 Fin Buckling- Controlling Load (10yr Broken Lite) FINAL BUCKLING RESULTS CALCULATED BUCKLING LOAD FACTORS 1 6.63680426E+00 2 6.75018997E+00 3 6.1354E596E+00 4 8.33343672E+00 5 9.51504631E+00 6 1.02027566E+01 7 1.20014914E+01 8 1.23717253E+01 ao- ss Glass:14.67 ft x 10 in,0.472in(1 Lite Thickness) Boundary Condition:See Fin Loads for Description Load:D-0.6*W(D-Fin Selfweight,.-6W-11.0 Ib/ft210Yr Wind Load) Safety factor against buckling= 6.6 Minimum allowable safety factor against buckling= 2.0 Page 23 of 59 e , 5 - Brackets Design Page 24 of 59 Base Channel and Anchor Bolts Glass Dimensions: Base Channel Anchor Bolt Check: Thickness of Glass,teas,= 0.810 in Bolt Spacing,s bort = 12 in Tributary Height of Glass,hglass= 14.67 ft Maximum Shim Space,t shjm = 1.0 in Tributary Width of Glass,wgass= 7.83 ft Size of Bolt,d bort=- 3/8-16 in Rotational Restraint Level,am= 2.0 Base Channel Dimensions: Area of Bolt,Abort2 = 0.050 in Height of Channel,hchanne= 3.0 in Section Modulus of Bolt,Slack= 0.003 in3 Thickness of Channel,tchannel= 0.250 in Ultimate Strength of Bolt,iota= 120,000 lb/in2 Width of Channel,wchannel= 3.0 in Bending Length,Lb= 1.625 in Area of Channel Leg,Achanneu leg= 3.00 int/ft Tension in Single SS Anchor(Profis),N"a= 322 lb Section Modulus of Channel Leg,Schannel leg= 0.125 in3/ft Allowable Tension in Single SS Anchor(Profis),*Ns,= 4,476 lb Shear in Single SS Anchor(Profis),Vua= 115 lb Applied Base Channel Load: Allowable Shear in Single SS Anchor(Profis),CVs""= 292 lb Wind Pressure Applied to Panel,0.6*pwtnd= 15.7 lb/ft2 Combined Loading Ratio of Steel,CSRstee)= 0.22 51 Seismic Load Applied to Panel,0.7*peq= 5.3 lb/ft2 Tensile Utilization(Profis),)'N= 0.193 Shear Load on 12"length of channel,Pchanne)leg= 69.0 lb/ft Shear Utilization(Profis),Qv= 0.531 Bending Load on 12"length of channel leg,Mchannei leg= 276.1 in-lb/ft Combined Loading Ratio of Bolts,RNV=13N'+13vt= 0.41<-1 Base Channel Check: Shear Stress on Channel Le g•ishear= 23.0 Ib/int «-J1n6uma.ss)aY6n7 Allowable Shear on Channel Leg,tialow- 12,727 lb/in2 //—a. n.2m14e Bending Stress on Channel Leg,6bend= 2,209 lb/in2 , / ../—M JI6 SS mamma B"6.S/ -- _-_� /� -ava,umxc er«„(BY SAS) Allowable Bending on Channel Leg,hallow= 21.212 lb/in2 ,K. .g; 6656 is-166Th„� or 6.S, * 1 , i.s...• ;/Z ,k•ORM IS.ATCF SAS) Base Plate Check: w , % i i-1r n..PBBCB'0011101-Bat�Yy1Y nuG < �'OG61U„G a,.• / coa E.Nam.,) BG �r Spacing of bolts= 12 in ° ''2 i/ t„B D4ENT IBY PCG)yeyn J•yN.[p({B iA„f ♦..... H'Mint Cpii.=Wows) Tension in Bolt= 276.1 lb / 61-Btrvm n„s xs cBY ows) Fl B6w R / Lever arm= 3 in '$LO(n',a / /�s v.¢o w i"w.k 1 ) Bending Moment in Plate= 828.4 in-lb Thickness of plate= 0.25 in e r l; Section Modulus of plate= 0.125 in3 Stress in plate= 6,627 lb/in2 *Use 3/8”Powers Power-Bolt CS-FLAT HEAD SLEEVE ANCHOR Allowable bending stress in plate= 21,557 lb/in2 @ 12”o.c.w/3-1/2”Embedment Page 25 of 59 Base Channel Bolt Check Bolt Spacing 5 bon= 12 in Shim Thickness t shim= 1 in Boit Size d bon= 3/8-16 in Rotational Restraint Level am= 2.0 Bolt Area Abort= 0.0775 in2 Bolt Section Modulus Sboit= 0.0030 in3 Bending Length Lb= 1.281 in Tension in Bolt ft= 1,195 lb Allowable Tension in a SS Bolt Ft= 3,100 lb Shear in Bolt f„= 69.0 lb Allowable Shear in a SS Bolt F„= 1,614 lb Combined Loading CSR= 0.15<1 Page 26 of 59 845E- Ar cwo.4 Gea._441/4-,•r7/01/..." s9 7 6,4-S4 G A0.4 Noe',E s.. /i/'-//e - 4 ' : G s P.1-47 i/:-.4J C -o0b-7WA .eUNfr) 3� „ p a 'M - a 0<7 w/ ,d/N,.t1 1 ifs �-/9 M a'-r Reeve-/ A o% 31 '' Pa/f 3odoPsi Milt//Ma ri c49011P/01gsrin-E ..1.702E44°41.7.4", 4 't. 3000 e,$ / I'T .-- 5 / 93 dpg S' w/ P S.=f 4. r_ A.? 9 S.G.�3..5 T ' ?4, -- / 'Zv34e„S 1„ z 6 e /s .4.-a.,x ic,,o = d. 9/ ("5.04 x e.- 3 %y .. F�� = 0: S/ l lY = / 3Vy s C/rJ,,, = -1'6o, _2-47 iN - ,c-3� 1-11t i______. ilf / ,a-,r/M r//"1 ._ / 4 r4 - v a _ r A e - a _ • J t V a , • / 3.,, % „ 6.-04. . W4E' VS N I LT/ P!'zo `IS .0-1v it .So,r--,74-10d . 70 ajV6 L 7 E Aiv'7/G;fl 7 - boAO.S A.. Go,i, 4x-.7z Page 27 of 9 MIIT1 www.hilti.us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 1 Specifier: SC Project: JLR Portland Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: I Date: 11/2/2018 E-Mail: Specifier's comments: 1 Input data n e� Anchor type and diameter: Kwiic-Bott __-3f8(2 3/4) Effective embedment depth: homerhnan,-3.063-tat-- Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2017 15/1/2019 Proof: Design method ACI 318-14 i Mech. Stand-off installation: without clamping(anchor);restraint level(anchor plate):2.00;et,=1.000 in.;t=0.250 in. Hilts Grout:CB-G EG,epoxy,ff,cr,ut=14,939 psi Anchor plate: Ix x ly x t=5.000 in.x 5.000 in.x 0.250 in.;(Recommended plate thickness:not calculated Profile: no profile Base material: cracked concrete,3000,fc'=3,000 psi;h=12.000 in. Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No,4 bar R-user is responsible to ensure a rigid base plate for the entered thickness with appropriate solutions (stiffeners,...) Geometry[in.]&Loading[Ib,in.ib] z of ��0 co _, 3.5 �" 192 . \I \�`.o y �'o,�- _1`x•4''' r25k 16 717 . . .. • ,x Page 28 of 59 _ Input data and results must be checked for agroomont with the existing conditions and for plausibility) PROFIS Anchor(e)2003-2009 HMI AG,FL-9494 Schaan HNtt Is a registered Trademark of Hilil AG,Schoen Ii111 .T1 www.hitti.us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 2 Specifier: SC Project: JLR Portland Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: I Date: 11/2/2018 E-Mail: 2 Load case/Resulting anchor forces y Load case:Design loads Anchor reactions[lb] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 330 192 0 -192 ! I max.concrete compressive strain: 0.06[%G] Ten on max.concrete compressive stress: 252[psi] resulting tension force in(x/y)=(0.000/0.000): 330[Ib] resulting compression force In(x/y)=(0.000%2.326): 330[Ib] Anchor forces based on a rigid base plate assumption) 0 aurn-praTi•- 3 Tension load Load Na.[Ib] Capacity 41N„[lb] Utilization PN=NUJ$Nn Status Steel Strength` 330 4,875 -.. 7 OK Pullout Strength* 330 2,246 15 OK Concrete Breakout Strength** 330 2,435 14 OK *anchor having the highest loading '"anchor group(anchors in tension) 3.1 Steel Strength Nsa =ESR value refer to ICC-ES ESR-1917 443 „74 - 4) Nsa 2 Nua ACI 318-14 Table 17.3.1.1 2 Variables t t Ase.N lin 2] furs[psi] N 2 0.05 125,000 Calculations Nsa[Ib] 6,500 Results Nsa[Ib] $stool 4, Nsa[lb] Nua[Ib] 6,500 0.750 4,875 330 Pagg29 of 59 Input data and results must be chocked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003.2009 Heti AG,FL-9494 Schwan Heti Is a registered Trademark of Hill AG.Schwan PiIL.TI www.hittl.us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 3 Specifier. SC Project: JLR Portland Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: I Date: 11/2/2018 E-Mail: 3.2 Pullout Strength N°n,r° =N..2500 2500 refer to ICC-ES ESR-1917 Npni a Rai AC1318-14 Table 17.3.1.1 Variables 6[Psi] A,a Np.2500[lb] 3,000 1.000 3,155 Calculations fc 2500 1.095 Results N9n.i<Iib) 4)comate 4, N9,,.6[Ib) Nue[Ib] 3,456 0.650 2,246 330 3.3 Concrete Breakout Strength Nab =( Arr..)W ed,N V c N V ap N Nb ACI 318-14 Eq.(17.4.2.1a) t) Nae a N„, ACI 318-14 Table 17.3.1.1 ANc see ACI 318-14,Section 17.4.2.1,Fig.R 17.4.2.1(b) Amp =9 het ACI 318-14 Eq.(17.4.2.1c) 1 W ooN = 1+2)5 1.0 ACI 318-14 Eq.(17.4.2.4) 3 hat W ed.N=0.7+0.3(Oa.msn S 1.0 ACI 318-14 Eq.(17.4.2.5b) t 1.5her c9N =MAX( 1.5he1`51.0 ACI 318-14 Eq.(17.4.2.7b) bac � bac Nb =kc X a VIc hei5 ACI 318-14 Eq.(17.4.2.2a) Variables hal[in-] Gatti[in,) ec2.N[in.] ca.,,en[in.] W c.N 2.750 0.000 0.000 3.500 1.000 ca,:[in.] kc X a fc[PSI] 4.125 17 1.000 3,000 Calculations ANc 011.2] ANc0[M.2] V ec1,N V ac2,N V ed.N W c9.N Nb[lb] 62.91 68.06 1.000 1.000 0.955 1.000 4,246 Results Nab[lb] 4 concrete $ Na,[ib] Nue[Ib] 3,746 0.650 2,435 330 Page 30 of 59 Input data and results must be checked for agreement with the ebstng conditions and for plausbilityl PROFIS Anchor(c)2003-2009 HOU AG.FL-9494 Schaan HOd Is a registered Tradomark of Hllti AG.Schaan III www.hilti.us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 4 Specifier: SC Project: JLR Portland - Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: ] Date: 11/2/2018 E-Mail: 4 Shear load /3¢ Load V1°[ib] Capacity 4)Vr,l[Ib] Utilization ftv=Von/43 Vn Status Steel Strength* 192 1 :•9 11 OK Steel failure(with lever arm)* 192 $9 82,',3 _4'S 3` OK Pryout Strength** 192 5,245 4 OK Concrete edge failure in direction y-** 192 1,603 12 OK *anchor having the highest loading "anchor group(relevant anchors) 4.1 Steel Strength Vsa =ESR value refer to ICC-ES ESR-1917 0 Vsteel'Vua ACI 318-14 Table 17.3.1.1 Variables Ase,v[in 2] foto[psi] 0.05 125,000 Calculations Vsa[ib] 3,595 Results Vse[Ib] (I)steel 4,ea 4, Vse[Ib) Vua Pb) 3,595 0.650 0.800 1,869 192 4.2 Steel failure(with lever arm) VS" =at,,,L6•Ma bending equation for stand-off M, =M;(1 - Na. , resultant flexural resistance of anchor Nsa MS =(1.2)(S)(fu,min) characteristic flexural resistance of anchor (1—°a reduction for tensile force acting simultaneously with a shear force on the anchor \ csNsaj S =n(d32)3 elastic section modulus of anchor bolt at concrete surface Le =z+(n)(do) internal lever arm adjusted for spelling of the surface concrete ¢Vs' a Vua ACI 318-14 Table 17.3.1.1 /Z.4, , d it .4i"2.409 5.) Variables / ant fu.e,in[ps7 Nua[Ib] dt Nsa[Ib] z[in.] n do[in.] 2.00 1 00 330 4,875 1.125 0.500 0.375 Calculations v . s'2 . la-f N„.- ✓ MpLMS . -' ] (1 �f s. Nt.[ 16] b[in.) 4 .350 t}'932 398.400 1.313 f Results 4L3 T3 Vs 4,steel 4'\t';'upr Vua[ib] 7 0.650 3S5 192 _ y,3 Page 31 of 59 Input data and results must be checked for agreement with the existing condilions and for plausibility) PROFIS Anchor(c)2003-2009 HIM AG,FL-9494 Schaan Hall is a registered Trademark of Hliti AG,Schaan www.hltti-us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 5 _ Specifier. SC Project: JLR Portland Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: I Date: 11/2/2018 E-Mail: 4.3 Pryout Strength Ve =kro[\ -)V ad,N V c,N W ep,N Nb] ACI 318-14 Eq.(17.5.3.1a) 4, V,,a V„a ACI 318-14 Table 17.3.1.1 ANc see ACI 318-14,Section 17.4.2.1,Fig.R 17.4.2.1(b) ANcg =9 4 ACI 318-14 Eq.(17.4.2.1c) I 1 V ee.N= ` 2 eN)5 1.0 ACI 318-14 Eq.(17.4.2.4) ' 3 her yr Km=0.7+0.3 t1 5h r)51.0 ACI 318-14 Eq.(17.4.2.5b) =MAX( .1.52 )5 1.0 ACI 318-14 Eq.(17.4.2.7b) V cp,N `` Cae � Cao Nb =kc A a 417c he,5 ACI 318-14 Eq.(17.4.2.28) Variables kep hef[in.] ect,N[in•1 ear,'[in.] Capin[in.] 2 2.750 0.000 0.000 3.500 V e.N Cec[in.] kc X a fa[PSI] 1.000 4.125 17 1.000 3,000 Calculations AN,[int] ANeo[ice 2] V ect.N V ee2,N V ed.N V cp,N Nb[Ib] 62.91 68.06 1.000 1.000 0.955 1.000 4,246 Results Vee[Ib] 4)mew. 4) Vm[ib] Vua[Ib] 7,492 0.700 5,245 192 Page 32 of 59 1 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(e)2003.2009 Hgg AG.FL-9494 Sthaan HIM Is a registered Trademark of Hila AG,Schwan N111.1719 www.hllti.us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 6 Specifier: SC Project: JLR Portland Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: Date: 11/2/2018 E-Mail: 4.4 Concrete edge failure in direction y- AVc Vcb =(K70) W ed,V W c,V W h,V W paraltol,V Vb ACI 318-14 Eq.(17.5.2.1a) 4) Vcb z Vte ACI 318-14 Table 17.3.1.1 Avo see ACI 318-14,Section 17.5.2.1,Fig.R 17.5.2.1(b) Avec =4.5 c;, ACI 318-14 Eq.(17.5.2.1c) 1 W ec,v= 2e,)5 1.0 ACI 318-14 Eq.(17.5.2.5) 1+3cat W°"=0.7+0.3(1 JCxt)5 1.0 ACI 318-14 Eq.(17.5.2.6b) n.vh =�1.5cat 2 1.0 ACI 318-14 Eq.(17.5.2.8) 4r a 0.2 Vb =(7(d) 1�)x n?cal ACI 318-14 Eq.(17.5.2.2a) a Variables cal[in.] ca2[in.] acv[in.] 4r cv ha[in.] --- 3.500 - 0.000 1.000 12.000 I,[in.] ?.a da[in.] fc[psi] paratml,V 2.750 1.000 0.375 3,000 1.000 Calculations Avc[in.2] Avco[in.Z] �y ec,v W ed.V W h.v Vb[Ib] 55.13 55.13 1.000 1.000 1.000 2,290 Results Vcb[Ib] t concrete 5 Vcb[Ib] V„a[Ib] 2,290 0.700 1,603 192 5 Combined tension and shear loads PN Dv c Utilization r3N,V[%] Status ye' 0981 5/35 j OK (iNv=[i +[iv<=1 .d3-5u 6`x, 3 / 6 Warnings • The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations(ETAG 001/Annex C,EOTA TR029,etc.).This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor.Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used.The cti factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • ACI 318 does not specifically address anchor bending when a stand-off condition exists. PROFIS Anchor calculates a shear load corresponding to anchor bending when stand-off exists and includes the results as a shear Design Strength! • Refer to the manufacturer's product literature for cleaning and installation instructions. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • Hilti post-installed anchors shall be installed in accordance with the Hiltl Manufacturer's Printed installation Instructions(MPH).Reference ACI 318-14,Section 17.8.1. Page 33 of 59 input data and results must be checked for agreement with the existing conditions and for plausibility! PROPS Anchor(c i 2003-2009 Hilt AG,FL-9494 Schaan Hilt is a registered Trademark of Hilt AG,Schaan overs Power-Bolt PRODUCT INFORMATION FASTENERS Power-Bolts Heavy-Duty Sleeve Anchor ZS PRODUCT DESCRIPTION SECTION CONTENTS Page No. o 2 The Power-Bolt anchor, is a heavy duty sleeve style,self-locking anchor which is vibration General Information 1 resistant and removable.It is available with a finished hex head or flat head with a hex key mi to insert and can be used in concrete,block,brick,or stone. Installation Specifications 2 > Expansion occurs at two locations within the drilled hole.First,the cone is pulled into the Material Specifications 3 r large triple-tined expansion sleeve,developing a mid-level,compression force.Further turning Performance Data 4 causes the threaded bolt to advance into the threads of the expander cone,forcing its four sections outward.This action engages the base material deep in the anchor hole,greatly Design Criteria 10 increasing the holding power of the Power-Bolt.The bolt and cone remain locked together Ordering Information 11 which prevents loosening under vibratory conditions. The Power-Bolt is also designed to draw the fixture into full bearing against the base material through the action of its flexible compression ring.As the anchor is being tightened, the compression ring will crush if necessary to tightly secure the fixture against the face of the base material. The internal bolt of the Power-Bolt is removable and reusable in the same anchor sleeve Hex Head Power-Bolt making it suitable for applications such as mounting machinery which may need to be Assembly removed for service and for temporary applications such as heavy duty form work. GENERAL APPLICATIONS AND USES •Column Base Plates and Mechanical Equipment Flat Head Power-Bolt • Dock Bumpers and Support Ledgers Assembly • Racking and Railing Attachments FEATURES AND BENEFITS HEAD STYLES +High load capacity +Two-level expansion mechanism Finished Hex Head +Internal high strength bolt is removable and reusable Flat Head +Compression zone in sleeve clamps fixture to the base material +Low profile finished head design ANCHOR MATERIALS Zinc Plated Carbon Steel TESTING, APPROVALS AND LISTINGS Type 304 Stainless Steel Tested in accordance with ASTM E488 and AC01 criteria ANCHOR SIZE RANGE(TYP.) FM Global(Factory Mutual)—File No.1.1. 1 K8A3.AH(See report for sizes) Underwriters Laboratories(UL Listed)—File No. EX1289(See listing for sizes) 114"diameter through 314"diameter APPROVALS AND LISTINGS SUITABLE BASE MATERIALS CSI Divisions:03151-Concrete Anchoring,04081-Masonry Anchorage and 05090-Metal Normal-Weight Concrete Fastenings. Expansion anchors shall be Power-Bolt as supplied by Structural Lightweight Concrete Powers Fasteners, Inc., Brewster, NY. Grouted Concrete Masonry(CMU) Hollow CMU Brick Masonry Stone Page 34 of 59 www.powers.com Canada:(905)673-7295 or(514)631-4216 Powers USA:(800)524-3244 or(914)235-6300 1 'rowers1 . , 1 FASTENERS PRODUCT INFORMATION Power-Boll -J - INSTALLATION SPECIFICATIONS - U w Carbon Steel Hex Head Power-Bolt Anchor Diameter,d Installation Procedure Q V Dimension 1/4" 5116" 3/8" I 1/2" 5/8" I 3/4" Using the proper UZ diameter bit,drill a111 ANSI Drill Bit Size,da;r(in.) 1/4 5/16 3/8 1/2 518 3/4 hole into the base C c,, Fixture Clearance Hole,dr,(in.) 5/16 3/8 7/16 9/16 11/16 13/16 material to a depth of )>a 'G Internal Bolt Size(UNC) 10-24 1/4-20 5/16-18 3/8-16 1/2-13 5/8-11 at least 1/2"or one „ t. 0� Head Height(in.) 7/64 11/64 13/64 15/64 5/16 25/64 anchor diameter deeper than the , ��q j= Washer O.D.,d;,(in.) 1/2 5/8 13/16 1 1-1/4 1-1/2 embedment required. • 1t/s^ ", Wrench Size(in.) 5/16 7/16 1/2 9/16 3/4 15/16 The tolerances of the : t,N( ; " •-,". Max Bolt Torque, Tmax(ft-lbs) 4 12 25 45 100 120 drill hit used must . meet the requirements of ANSI Standard Carbon Steel Flat Head Power-Bolt (80°-82° head) 0212.15. ; Anchor Diameter,d lttti Blow Dimension 318" 1/2" 5/8" of dust the hole clean I and other ANSI Drill Bit Size,dau(in.) 3/8 1/2 5/8 material.Do not 9• '` " y r Fixture Clearance Hole,dh(in.) 7/16 9/16 11/16 modify the anchor or , ::n : , ..., advance the bolt in Internal Bolt Size(UNC) 5/16-18 318-16 1/2-13 the anchor assembly ri ' .: v 7 ' ,r in 15/64 1/4 21/64 prior to installation. Head Height(t .) Head Diameter,did(in.) 3/4 7/8 1-1/8 Allen Wrench Size(in.) 7/32 5/16 3/8 Drive the anchor Max Bolt Torque,Tmax(ft-lbs) 25 45 100 through the fixture 1.=, into the anchor hole f: Stainless Steel Hex Head Power-Bolt until the bolt head is ,," ''" firmly seated against , v 4. Anchor Diameter,d the fixture.Be sure • P :•, P:• Dimension 1/4" 3/8" 1/2" I 5/8" 3/4" the anchor is driven to ', • . the required - ANSI Drill Bit Size,dar,(in.) 114 3/8 1/2 5/8 3/4 embedment depth. A ro Fixture Clearance Hole,dh(in.) 5/16 7/16 9/16 11/16 13/16 ' P :•I " P=• Internal Bolt Size(UNC) 10-24 5/16-18 3/8-16 1/2-13 5/8-11 Head Height(in.) 7/64 13/64 15/64 5/16 25/64 Tighten the anchor by 2 Washer O.D.,d„(in.) 1/2 13/16 1 1-1/4 1-1/2 turning the head 3 to ,ram Wrench Size(in.) 5/16 1/2 9/16 3/4 15/16 4 turns past finger rd , a tight. .—Sa-�• Max Bolt Torque, 7',„„(ft-lbs) 3 12 25 60 90 r . ; _� . d -I d,4 I, © ' Y' Nomenclature f • ;M 'r - dh )tqtr t _ d =Diameter of anchor } da, =Diameter of drill bit 11 do =Diameter of fixture clearance hole d =Flat head diameter h, h ! It,. h da =Diameter of masher h =Base material thickr;ess. I The minimum value of h should be 1.5 by or 3", ( whichever is greater 1 r k It, =Minimum embedment depth i ► I =Length of anchor !� t =Fixture thickness • db, dr.( Page 35 of 59 Powers USA:(800)524-3244 or(914)235-6300 Canada:(905)673-7295 or(514)631-4216 www.powers.com -4vers. Power-Bolt PRODUCT INFORMATION FASTENERS - m MATERIAL SPECIFICATIONS Z S Anchor Component Carbon Steel Hex Head Carbon Steel Flat Head Stainless Steel Hex Head IA Internal Bolt *SAE Grade 5 SAE Grade 5 **Type 304 SS 0 Z Washer AISI 1040 N/A Type 18-8 SS a Expander Sleeve AISI 1010 AISI 1010 Type 304 SS !r Extension Sleeve AISI 1010 AISI 1010 Type 304 SS Expander Cone AISI 12L14 AISI 121.14 Type 303 SS Compression Ring Nylon Nylon Nylon Dust Cap Nylon Nylon Nylon Zinc Plating ASTM B 633,SC1,Type III (Fe/Zn 5)—Mild Service Condition N/A '1/4 and 5/16"Diameter Power•8olts are manufactured with SAE Grade 8 internal bolts. "Manufactured with a minimum yield strength of 65,000 psi. Stainless steel anchor components are passivated.The stainless steel expander cone is zinc plated. Washer Bolt Length 1 Expander Cone sp� II ss tl T 'a4- Dust Cover ExtcrisronSkeuvo L Diameter Expander Sleeve Compression Ring Flat Head Bolt - Length 1 Expander Cone. HNx insert-or::x. . ._',11 ,"..4--,,-1- 1 ` ' Dust Cover f J L Diameter Expander Sleeve Extension Sienve Compression Ring Length Identification Mark DIA B I C I D I E F GIHII JKIL MIN 0 From 1" 1-1/2" 2" 2-1/2" 3" 3-1/2" 4" 4.1/2" 5" 5-1/2" 6" 6-1/2" 7" 7-1/2" 8" 8-1/2" Up to but 1-1/2" 2" 2-1/2" 3" 3-1/2" 4" 4-1/2" 5" 5-1/2" 6" 6-1/2" 7" 7-1/2" 8" 8-1/2" 9" not including Page 36 of 59 www.powers.com Canada:(905)673-7295 or(514)631-4216 Powers USA:(800)524-3244 or(914)235-6300 ?owers. FASTENERS PRODUCT INFORMATION Power-Bolt ..# - PERFORMANCE DATA 6 to cc Ultimate Load Capacities for Carbon and Stainless Steel Power-Bolt in Normal-Weight Concrete" Anchor Minimum Minimum Concrete Compressive Strength (Cc) d= Diameter Embedment 2,000 psi(13.8 MPa) 3,000 psi(20.7(v1Pa) 4,000 psi(27.6 MPa) 6,000 psi(41.4 MPa) V Z Depth Ui 4 d hY Tension Shear Tension Shear Tension Shear Tension Shear Ul in. in. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. (mm) (mm) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) 11/4 1,180 2,070 1,380 2,100 1,580 2,130 1,660 2,130 (31.8) (5.3) (9.3) (6.2) (9.5) (7.1) (9.6) (7.5) (9.6) 1/4 1 3/4 1,400 2,070 1,550 2,305 1,700 2,540 1,860 2,540 (6.4) (44.5) (6,3) (9.3) (7.0) (10.4) (7.7) (11.4) (8.4) (11.4) 21/2 1,880 2,070 1,940 2,730 2,000 3,385 2,100 3,385 (63,5) (8.5) (9.3) (8.7) (12.3) (9.0) (15.2) (9.5) (15.2) 1 1/2 2,320 2,800 2,430 3,000 2,540 3,200 2,620 3,200 (38.1) (10.4) (12.6) (10.9) (13.5) (11.4) (14.4) (11.8) (14.4) 5/16 2 2,640 3,280 2,880 3,755 3,120 4,230 3,270 4,230 (7.9) (50.8) (11.9) (14.8) (13.0) (16.9) (14.0) (19.0) (14.7) (19.0) 3 2,880 3,440 3,330 4,410 3,780 5,380 4,260 5,380 (76.2) (13.0) (15.5) (15.0) (19.8) (17.0) (24.2) (19.2) (24.2) 2 3,500 3,985 4,045 5,205 4,585 6,425 5,915 7,440 (50.8) (15.8) (17.9) (18.2) (23.4) (20.6) (28.9) (26.6) (33.5) 3/8 21/2 3,800 4,380 4,330 5,770 4,855 7,160 6,665 7,960 (9.5) (63.5) (17.1) (19.7) (19.5) (26.0) (21.8) (32.2) (30.0) (35.8) 31/2 4,395 4,980 5,195 6,815 5,995 8,650 7,150 8,650 (88.9) (19.8) (22.4) (23.4) (30.7) (27.0) (38.9) (32.2) (38.9) 21/2 4,900 6,840 5,710 7,535 6,520 8,225 7,320 8,225 (63.5) (22.1) (30.8) (25.7) (33.9) (29.3) (37.0) (32.9) (37.0) 1/2 31/2 6,140 8,540 7,590 9,200 9,040 9,860 9,890 10,780 (12.7) (88.9) (27.6) (38.4) (34.2) (41.4) (40.7) (44.4) (44.5) (48.5) 5 7,260 10,140 8,480 11,230 9,700 12,320 10,935 12,315 (127.0) (32.7) (45.6) (38.2) (50.5) (43.7) (55.4) (49.2) (55.4) 2 3/4 5,360 7,970 6,535 9,970 7,705 11,970 8,490 11,970 (69.9) (24.1) (35.9) (29.4) (44.9) (34.7) (53.9) (38.2) (53.9) 5/8 4 6,460 10,860 8,210 12,710 9,960 14,560 13,110 15,900 (15.9) (101.6) (29.1) (48.9) (36.9) (57.2) (44.8) (65.5) (59.0) (71.6) 6 9,400 13,780 10,570 16,230 11,740 18,680 15,580 18,670 (152.4) (42.3) (62.0) (47.6) (73.0) (52.8) (84.1) (70.1) (84.0) 3 7,660 12,375 8,580 14,245 9,500 16,110 10,780 16,110 (76.2) (34.5) (55.7) (38.6) (64.1) (42.8) (72.5) (48.5) (72.5) 3/4 41/2 10,060 16,900 11,200 20,250 12,340 23,600 16,240 23,600 (19.1) (114.3) (45.3) (76.1) (50.4) (91.1) (55.5) (106.2) (73.1) (106.2) 7 11,780 22,640 13,440 25,880 15,100 29,120 21,980 29,120 (177.8) (53.0) (101.9) (60.5) (116.5) (68.0) (131.0) (98.9) (131.0) 1.Tabulated load values are for anchors installed in concrete.Concrete compressive strength must be at the specified minimum at the time of installation. 2.Ultimate load capacities roust be reduced by a minimum safely factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety or overhead. Page 37 of 59 Powers USA:(800)524-3244 or(914)235-6300 Canada:(905)673-7295 or(514)631-4216 www.powers.com ?owers. Power-Boil PRODUCT INFORMATION FASTENERS �'S DESIGN CRITERIA (ALLOWABLE STRESS DESIGN) Zm = Load Adjustment Factors for Normal-Weight Concrete n3� Spacing,Tension (Eros) & Shear(Fvs) Notes:For anchors loaded in tension and shear,the critical spacing(sc,)is equal to 2 embedment depths O 2 Dia.(in.) 1/4 3/8 1/2 5/8 314 (2 h,)at which the anchor achieves 100% ,'A n h,•(in.) 1 1/4 1 3/4 21/2 2 21/2 31/2 21/2 31/2 5 2 3/4 4 6 3 14 1/2 1 7 of load. 111 jy Sc,(in,) 2 1/2 3 1/2 5 4 5 7 5 7 10 51/2 8 12 6 9 14 Minimum spacing(s,,,,,)is equal to 1 embedment r Smin(in.) 1 1/4 1 3/4 21/2 2 21/2 31/2 21/2 3 1/2 5 23/4 4 6 3 41/2 7 depth(n,.)at which the anchor achieves 50% 1 114 0.50 I of load. 1 3/4 0.70 0.50 2 0.80 0.57 0.50 N 21/2 1.00 0.71 0.50 0.63 0.50 0.50 I 2 3/4 0.79 0.55 0.69 0.55 0.55 0,50 .....„---11_\- .---11-\` N, I - 3 0.86 0.60 0.75 0.60 0.60 0.55 0.50 = • 3 112 1.00 0.70 0.88 0.70 0.50 0.70 0.50 0.64 0.58 \/,,�'� c 4 0.80 1.00 0.80 0.57 0.80 0.57 0.73 0.50 0.67 -.� 4 1/2 0.90 0.90 0.71 0.90 0.64 0.82 0.56 0.75 0.50 `: „ :1` ,/, ' ci 5 1.00 1,00 0,71 1.00 0.71 0.50 0.91 0.63 0.83 0.56 \-� % 5112 0.79 0.79 0.55 1.00 0.69 0.92 0.61 S 0. 6 0.86 0.86 0.60 0.75 0.50 1.00 0.67 O ice, '' 7 1,00 1.00 0.70 0.88 0.58 0.78 0.50 8 0.80 1.00 0.67 0.89 0.57 9 0.90 0.75 1,00 0.64 10 1.00 0.83 0.71 12 1.00 0.86 14 1.00 Edge Distance,Tension (FNc) Notes:For anchors loaded in tension,the critical Dia.(in.) 1/4 3/8 1/2 5/8 3/4 edge distance(Ce,)is equal to 12 anchor diameters (12d)at which the anchor achieves 100%of load. ec,(in.) 3 4 1/2 6 7 1/Z 9 Minimum edge distance(c,,.,)is equal to 5 anchor Cmin(in,) 1 1/4 1 7/8 2 1/2 3 1/8 3 3/4 diameters(5d)at which the anchor achieves 70% 1 1/4 0.70 of load. 1 5/8 0.76 1 7/8 0.81 0.70 2 0.83 0.71 N i 2 1/2 0.91 0.77 0.70 -C kJ 3 1.00 0.83 0.74 3 1/8 0.84 0.75 0.70 _�� 3 3/4 0.91 0.81 0.74 0.70 • -›-- a (.c., , ,-, \=0, 4 0.94 0.83 0.76 0.71 4 1/2 1.00 0.87 0.79 0.74 1. ./." -J 0 5 0.91 0.83 0.77 /� e 6 1.00 0.90 0.83 ';\ ��- '� -ET 6 1/4 0.91 0.84 � • 7 0.97 0.89 �` ` 71/2 1,00 0.91 �' \ C; 8 0.94 \<` 9 1.00 Edge Distance, Shear(Fvc) Notes:For anchors loaded in shear,the critical edge Dia.(in.) 1/4 3/8 1/2 5/8 3J4 distance(cc,)is equal to 12 anchor diameters(12d) at which the anchor achieves 100%of load. cc,(in.) 3 4 1R 6 7 112 9 Minimum edge distance(cm:n)is equal to 5 anchor cmtn(in.) 1 1/4 1 7/8 2 1/2 3 1/8 3 3/4 diameters(5d)at which the anchor achieves 35% 1 1/4 0.35 of load. 1 5/8 0.49 17/8 0.58 0.35 2 0.63 0.38 t 21/2 0.81 0.50 0.35 �o`� -- -`` 3 1.00 0.63 0.44 �' • 3118 0.66 0.47 0.35 C� Vl ty , I 3 3/4 0.81 0.58 0.44 0.35 '' • 4 0.88 0.63 0.48 0.38 C • �'\ � 4112 1.00 0.72 0.55 0.44 5 0.81 0.63 0.50 ,' i y� 0 a 6 1.00 0.78 0.63 `-•,,,,,,,,,>......„„ W 6114 0.81 0.66 C 7 0.93 0.75 \ ' 7 1/2 1.00 0.81 8 0.88 9 1.00 Page 38 of 59 www.powers.com Canada:(905)673-7295 or(514)631-4216 Powers USA:(800)524-3244 or(914)235-6300 -?overs. Power-Bolt` PRODUCT INFORMATION FASTENERS 'S ORDERING INFORMATION Z2 Carbon Steel Hex Head Power-Bolt 2 Ar Cat.No. Anchor Size Drill Dia. Min.Embed. Std.Box Std.Carton Wt./100 0 2 6900 1/4"x 1" 1/4" 7/8" 100 600 2 �:..-1 M 6902 1/4"x 1 3/4" 1/4" 1-1/4" 100 600 3 III b 6906 1/4"x 3" 1/4" 1-1/4" 100 600 5 r" 6907 5/16"x 1 3/4" 5/16" 1-1/2" 100 600 5 6908 5/16"x 2 1/2" 5/16" 1-1/2" 50 300 6 6909 5/16"x 3 1/2" 5/16" 1-1/2" 50 300 8 6911* 3/8"x 1 7/8" 3/8" 1-1/4" 50 300 6 6910 3/8"x 2 1/4" 3/8" 2" 50 300 8 6913 3/8"x 3" 3/8" 2" 50 300 11 6914 318"x 3 1/2" 3/8" 2" 50 300 12 6916 3/8"x 4" 3/8" 2" 50 300 14 6930 1/2"x 2 3/4" 1/2" 2-1/2" 50 200 16 6932 1/2"x 3 3/4" 1/2" 2-1/2" 25 150 21 _ 6934 1/2"x 4 3/4" 1/2" 2-1/2" 25 150 26 6936 1/2"x 5 3/4" 1/2" 2-1/2" 25 150 32 6940 5/8"x 3" 5/8" 2-3/4" 20 120 28 6942 5/8"x 4" 5/8" 2.3/4" 15 90 40 6944 5/8"x 5" 5/8" 2-3/4" 15 90 47 6945 5/8"x 6" 5/8" 2-3/4" 15 90 57 6947 5/8"x 8 1/2" 5/8" 2.3/4" 10 40 77 6950 3/4"x 3 1/4" 3/4" 3" 15 90 47 6952 3/4"x 4 1/4" 3/4" 3" 10 60 58 6954 3/4"x 5 1/4" 3/4" 3" 10 60 70 6956 3/4"x 7 1/4" 3/4" 3" 10 40 105 6957 3/4"x 8 1/4" 3/4" 3" 10 40 110 The published length is measured from below the washer to the end of the anchor. 'This size does not have a compression ring. Carbon Steel Flat Head Power-Bolt Cat.No. Anchor Size Drill Dia. Min. Embed. Std.Box Std.Carton Wt./100 , 6981 3/8"x 3 3/4" 3/8" 2" 50 300 14 , F 6982 3/8"x 5" 3/8" 2" 50 300 17 - 6983 3/8"x 6" 3/8" 2" 50 300 20 6984 1/2"x5" 1/2" 2-1/2" 25 150 26 6987 5/8"x 5 1/2" 5/8" 2-3/4" 15 90 57 The published length is the overall length of the anchor. The flat head Power-Bolt anchor has a her,key insert formed in the head of the bolt. Each hoe contains an Allen wrench which matches the insert size. Stainless Steel Hex Head Power-Bolt Cat.No. Anchor Size Drill Dia. Min.Embed. Std.Box Std.Carton Wt.J100 5902 1/4"x13/4" 1/4" 1-1/4" 100 600 3 txt 5906 1/4"x 3" 1/4" 1-1/4" 100 600 5 w:_ 5910 3/8"x 2 114" 3/8" 2" 50 300 10 5914 3/8"x 3 1/2" 3/8" 2" 50 300 12 5916 3/8"x 4" 3/8" 2" 50 300 14 5930 1/2"x 2 3/4" 1/2" 2-1/2" 50 200 16 5934 1/2"x 4 3/4" 1/2" 2-1/2" 25 150 26 The published length is measured from below the washer to the end of the anchor. 0 201 I Powers Fasteners,Inc.All Rights Reserved. Power-3olt is a trademark of Petvepage 39 of 59 the most current product information please visit uvo'epowers.corn. www.powers.com Canada:(905)673-7295 or(514)631-4216 Powers USA:(800)524-3244 or(914)235-6300 Fin Shoe at Base Fin Shoe loads: Block Shear Check: Fin Reaction from Wind Suction,0.6*FW.= 873.0 lb Factor of Safety,0= 1.95 Height of Fin Shoe Channel,hshoe= 3.0 in Tension Coefficient,kt= 1.25 Moment at Fin Shoe Channel Base,Mshoe= 3,492 in-lb Yield Strength of Channel,Fty= 35,000 lb/in2 Top Edge Distance of Fastener,dee= 0.500 in End Dam and Fastener Check: Gross Tension Area,Agt= 0.125 in2 Number of fasteners resisting load,n= 2 Net Tension Area,Ant= 0.069 in2 Size of Bolt, db = 5/16-18 in Gross Shear Area,Ag„= 0.125 in2 Shear Load on Fasteners,Vfastener= 873.0 lb Net Shear Area,An„= 0.069 in2 Tension in Single Bolt,ft= 87 lb Tension to Shear Area Coefficient,Am/Any= 1.00 Allowable Tension in Single SS Bolt,Ft= 2,097 lb Allowable Shear Force, Rn/n= 1816 lb Shear in Single Bolt,f„= 436 lb Allowable Shear in Single SS Bolt,F„= 1,083 lb / Combined Loading Ratio,CSR= 0.16 5 1 z +d i Tear Out Area,Near= 0.185 in �, Bearing Stress on Aluminum Channel Leg,6bearing= 5,587 lb/in2 Allowable Aluminum Bearing Stress,al = 35,000 lb/in2 t Shear Stress Acting on Channel Leg, -tear= 2,354 lb/in2 _ I r j � \ Allowable Aluminum Shear Stress,tiauow= 12,727 lb/in2 \ j Bearing Check: 1, Nominal Size of Fastener,db= 0.3125 in Depth of Fastener,D = I Countersink cs 0.198 in Thickness of End Dam,tdam= 1.00 in ( ! t Edge Distance of Fastener,del= 0.500 in Fastener Spacing,s= 1.75 in I 1 l Thickness of Channel,tchannei= 0.250 in i 1 \ ✓ 1! Bearing Thickness,tbear(ng= 0.151 in Bearing Area,Abearing= 0.078 in2 Ultimate Strength of Channel,Ft„= 38,000 lb/in2 Allowable Bolt Bearing Force,Rn/0= 1471 lb Page 40 of 59 Fin Shoe Anchor Calculation Base Fin Shoe Anchor Bolt Check: Number of Anchors,n= 2 Bolt Spacing, sb = 6.25 in Maximum Shim Space, hshlm = 1 in Sb Size of Bolt, db = 1/2 in / Governing Load,Wload= 1454.9 lb RestraintLevel, = F Rotationalam 2.0 c7:;'. i H11" b ".. 2 sr .-�I� �� �� Area of Bolt A = - '�;�� .,� b It 0.10 in j„�Q' I = Section Modulus of Bolt,S 0.007 3 • bolt= I n ,,� ,-' [11 ='- -`.� ___ -''- -'���___.�t__=. Ultimate Strength of Bolt,F„= 115,000 lb/m2 2 u —±4 QZ.3 v 4.-_,AI, Q Bending Length,Lb= 1.250 in shim a A Tension in Single Bolt,N .= 381 lb • Q a I d Allowable Tension in Single SS Bolt,ON,= 8,666 lb 4 Qir=�kiti r i Shear in Single Bolt,V„a= 727 lb < 4. / a a Q Allowable Shear in Single SS Bolt,4NSM= 813 lb 4 4 Maximum Tensile Utilization,13N= 0.118 Maximum Shear Utilization,Rv= 0.478 Combined Loading Ratio,CSR= 0.86 51 *Use(2)1/2”KwikBolt TZ Anchor Bolts w/3-1/4”Minimum Embedment Page 41 of 59 Head Channel and Bolts Glass Dimensions: Head Bolt Check: Thickness of Glass,tglass= 0.709 in Number of Bolts 4 Tributary Height of Glass, hglass= 14.67 ft Maximum Shim Space, hshlro = 1.00 in Tributary Width of Glass,Wgiass= 7.83 ft Size of Bolts, dbolt = 1/2-13 in Rotational Restraint Level,am= 2.0 Head Channel Dimensions: Area of Bolt,Abort= 0.142 in2 Height of Channel,hchannei= 3.0 in Section Modulus of Bolt,Sboit= 0.008 in3 Thickness of Channel,tchannel= 0.250 in Bending Length,Lb= 2.000 in Width of Channel,Wchannel= 3.0 in Tension in Single SS Bolt,ft= 1,475 lb Area of Channel Leg,Achannei leg= 3.00 in2/ft Allowable Tension in Single SS Bolt, Ft= 5,676 lb Section Modulus of Channel Leg,Schannel leg= 0.125 in3/ft Shear in Single SS Bolt,f„= 68 lb Allowable Shear in Single SS Bolt, F„= 2,984 lb Applied Head Channel Load: Combined Loading Ratio,CSR= 0.07 <1 Wind Pressure Applied to Panel,0.6*pw= 15.7 lb/ft2 ; Seismic Load Applied to Panel,peQ=0.7*Fp= 5.3 Ib/ft2 ! lit I Shear Load on 12"Length of Channel,Pchannei leg= 69.0 lb/ft 'r Bending Load on 12"Length of Channel, Mchannel leg= 207.1 in-lb/ft •1161111101111 Head Channel Check: 1 -- Shear Stress on Channel, tshear= 23.0 lb/in2 ' Allowable Shear on Channel,'tallow= 12,727 lb/in2 _ ,h. III �;• Bending Stress on Channel,6bend= 1,657 lb/in2 �.•I ���� Allowable Bending on Channel,callow= 27,576 lb/in2 *Use(2)1/2"-13 Bolts at Each Ends Page 42 of 59 Head Fin Shoe Fin Shoe loads: Block Shear Check: Fin Reaction from Wind Suction,0.6*Fw_= 873.0 lb Factor of Safety,O= 1.95 Height of Fin Shoe Channel,ha= 3.0 in Tension Coefficient,kt= 1.25 Moment at Fin Shoe Channel,MH= 2,646 in-lb Yield Strength of Channel,Ftv= 35,000 lb/inZ Top Edge Distance of Fastener,de2= 0.50 in End Dam Fastener Check: Gross Tension Area,Agt= 0.125 in2 Number of fasteners resisting load,n= 2 Net Tension Area,Ant= 0.069 in2 Size of Bolt, db = 5/16-18 in Gross Shear Area,Ag„= 0.125 in2 Shear Load on Fasteners,Vfastener= 873 lb Net Shear Area,Any= 0.069 in2 Tension in Single Bolt,ft= 87 lb Tension Area to Shear Area Coefficient,Ant/An„= 1.00 Allowable Tension in Single SS Bolt,Ft= 2,097 lb Allowable Shear Force,Rijn= 2420 lb Shear in Single Bolt,f„= 436 lb Allowable Shear in Single SS Bolt,F„= 1,083 lb Fin Shoe Bolt Check: Combined Loading Ratio,CSR= 0.16_<1 Number of Bolts,n= 2 Tear Out Area,Atear= 0.185 in2 Bolt Spacing, shot = 3.13 in Bearing Stress on Aluminum Channel Leg,a bearing= 5,587 lb/in2 Shim Space, tshb„ = 1 in Allowable Aluminum Bearing Stress,hallow= 35,000 lb/in2 Size of Bolts, dbort = 5/8-11 in Shear Stress Acting on Channel Leg,ttear= 2,354 lb/in2 Rotational Restraint Level,a,,,= 2.0 Allowable Aluminum Shear Stress,tiauow= 12,727 lb/in2 Area of Bolt,Aboit= 0.226 in2 Section Modulus of Bolt,Sboit= 0.015 in3 Bearing Check: Bending Length,Lb= 0.500 in Nominal Size of Fastener,db= 0.3125 in Tension in Single Bolt,ft= 5,729 lb Countersink Depth of Fastener,Du= 0.198 in Allowable Tension in Single SS Bolt,Ft= 9,040 lb Thickness of End Dam,tdan,= 1.00 in Shear in Single Bolt,f„= 436 lb Edge Distance of Fastener,del= 0.5 in Allowable Shear in Single SS Bolt,F„= 4,782 lb Fastener Spacing,s= 1.625 in Combined Loading Ratio,CSR= 0.41 < 1 Thickness of Channel,tchannel= 0.250 in Bearing Thickness,tbearing= 0.151 in Bearing Area,kenning= 0.078 in2 Ultimate Strength of Channel,F.= 38,000 lb/in2 Allowable Bolt Bearing Force,Rn/0= 1471 lb Page 43 of 59 Jamb Channel & Bolts Glass Dimensions: Jamb Channel Bolt Check: Tributary Height Ht,;b= 14.67 ft Bolt Spacing sboit= 18 in Tributary Width Wtrib= 7.83 ft Shim Space tshim = 1 in Glass Thickness ;lass= 0.709 in Bolt Size d hair = 3/8-16 in Total Thickness ttotai= 1.240 in Rotational Restraint Level am= 2 Bolt Area Aboit= 0.0775 in2 Jamb Channel Dimensions: Bolt Section Modulus Sboit= 0.0030 in3 Height Channel Leg Hchannei= 3.0 in Bending Length Lb= 1.47 in Thickness of Channel tchannel= 0.250 in Tension in Bolt ft= 2,001.9 lb Width of Channel Wchannel= 3.0 in Allowable Tension in a SS Bolt Ft= 3,099.6 lb Area of Channel Leg Achannel leg= 3.0 in2/ft Shear in Bolt f„= 92.2 lb Section Modulus of Channel Leg Schannei leg= 0.125 in3/ft Allowable Shear in a SS Bolt F„= 1,614.2 lb Combined Loading CSR= 0.42 51 Applied Jamb Channel Load: Wind Pressure Applied to Panel Pwled= 26.1 lb/ft2 Shear Load on 12"Length of Channel Leg (0.6*W) Pchanneileg= 61.4 lb/ft Bending Load on 12"Length of Channel Leg(0.6W) Mchannel leg= 184.3 lb-in/ft Jamb Channel Check: Shear Stress on Channel Leg ;hear= 20 lb/in2 Allowable Shear on Channel Leg ;How= 12,727 lb/in2 Bending Stress on Channel Leg bend= 1,475 lb/in2 Allowable Bending on Channel Leg hallow= 27,576 lb/in2 Page 44 of 59 6 - Sealant Design Page 45 of 59 Sealant Stretch Check-Showroom Vertical Structural Sealant at Fins(In-plane Movement) Sealant Movement: Elastic Inlastic Glue Line Thickness= 0.625 0.625 in Allowable Structural Sealant Stretch(50%)= 0.938 0.938 in Allowable Movement for Structural Sealant= 0.699 0.699 in Vertical Distance between(2)Panels= 0.18 1.7722 in Movement Taken per Sealant= 0.090 0-8861 In Panel Racking System at Showroom for in-plane movement Oar-APPROX.LITERAL MOVEMENT 44. VERTICAL LIFT PROM IN-PLAE WEIASTIC MOVEMENT. WEATHER SEALANT WILL TEAR 0.2091IN FOR euSTGMOVEMENT W9 ''�Eo�F°sawniaelme aE /\ 0.353+-FOA FLASK MOVEMENT r-o• z -7' -o- SETTING BLOCK ROTATION POINT(TOP EDGE OF BLOCK) Weather Sealant In Head Channel(In-plane Movement) Case: Elastic Inelastic Sealant Movement: Glue Line Thickness= 0.625 0.625 in Allowable Weather Sealant Stretch(100%)= 1.250 1.250 in Allowable Movement for Structural Sealant= 1.083 1.083 in Movement per Sealant= 0.269 1.32E3 in 'Weather Sealant will tear in inelastic movement in in-plane movement However,the glass panels will remain engaged within channels and will not fall out. Weather Sealant is to tear during inelastic building movement as it is considered as maintenance repair Weather Sealant In Head Channel(Vertical Movement) Live Load In-Plane In-Elastic Glue Line Thickness in Glass and Fin Channel= 0.625 0.625 in Allowable Weather Sealant Stretch(100%). 1.250 1.250 in Allowable Movement for Weather Sealant= 1.083 1.083 in Maximum Vertical Movement= 0.900 1.3283 in Page 46 of 59 Sealant Stretch Check - Pavilion Sealant Movement: In-Plane Drift Vertical at Head Bracket Glue Line Thickness= 0.625 0.625 in Allowable Structural Sealant Stretch (50%)= 0.938 0.938 in Allowable Movement for Structural Sealant= 0.699 0.699 in Allowable Weather Sealant Stretch (100%)= 1.250 1.250 in Allowable Movement for Weather Sealant= 1.083 1.083 in Maximum Movement= 0.100 1.05 in Page 47 of 59 Vertical Sealant Design Glass Panel Sealant at Fin Check: Wind load .6W= 15.7 psf vin9rnum Sealant Bite Fin Thickness Panel width= 7.83 ft Tributary panel width for load on joint= 3.92 ft Distributed load along joint= 61.45 plf Fin thickness= 1.004 in Joint Size= 0.5 in Minimum Sealant Bite= 0.251969 in bitie Line Angie Required Sealant Bite= 0.256 in 1,itonairrai Sealant Bite Glass Tributary Width Glue Line= 0.5 in \Joint Size Glue Line Angle= 15 deg Nominal Sealant Bite= 0.39 in Area of 1 ft of sealant resisting force= 4.63 in"2 Stress in sealant= 13.27 psi OK Allowable stress in sealant= 20 psi Page 48 of 59 Appendices Page 49 of 59 Stainless Steel Bolt Capacities per AAMA -Alloy Groups 1, 2, and 3, Condition CW Nominal D Nominal Minimum Material Thickness to Equal Thread Thread Allowable Shear Tensile Capacity of Fastener(In.) Diameter& Diameter A(S)Tensile Stress A(R)Thread Root Single Double Thread/Inch (Inch) Area(Sq.In.) Area(Sq.In.) Allowable Tension(Pounds) (Pounds) (Pounds) A36 6063-T5 6063-T6 #6-32 0.1380 0.0091 0.0078 363 180 360 0.126 0.274 0.198 #8-32 0.1640 0.0140 0.0124 560 286 573 0.162 0.368 0.261 #10-24 0.1900 0.0175 0.0151 701 350 700 0.170 0.372 0.267 #12-24 0.2160 0.0242 0.0214 967 493 986 0.200 0.450 0.321 1/4-20 0.2500 0.0318 0.0280 1273 646 1291 0.226 0.541 0.360 5/16-18 0.3125 0.0524 0.0469 2097 1083 2166 0.284 0.459 3/8-16 0.3750 0.0775 0.0699 3100 1614 3228 0.341 0.553 7/16-14 0.4375 0.1063 0.0961 4252 2220 4440 0.395 0.642 1/2-13 0.5000 0.1419 0.1292 5676 2984 5969 0.456 0.745 9/16-12 0.5625 0.1819 0.1664 7278 3842 7685 0.510 0.836 5/8-11 0.6250 0.2260 0.2071 9040 4782 9564 0.563 0.923 3/4-10 0.7500 0.3345 0.3091 11288 6022 12045 0.590 0.963 7/8-9 0.8750 0.4617 0.4285 15584 8351 16701 0.686 1.123 1-8 1.0000 0.6057 0.5630 20444 10970 21940 0.778 1.276 Diameter Up Through 5/8" 3/4"and Over For Diameters up through 5/8": Fu(Min.Ultimate Tensile Strength) 110,000 psi 85,000 psi Ft=0.40Fu Fy(Min.Tensile Yield Strength) 65,000 psi 45,000 psi Allowable tension=0.40Fu[A(S)] Ft(Allowable Tensile Strength) 40,000 psi 33,750 psi Fv=0.40/(31'0.5)Fu Fv(Allowable Shear Stress) 23,094 psi 19,486 psi Allowable shear(Single)=0.40/(31'0.5)Fu[A(R)] For Diameters 3/4"and Over: A(R)=0.7854(D-1.2269/N)^2 Ft=0.75Fy A(S)=0.7854(D-0.9743/N)^2 Allowable tension=0.75Fy[A(S)] Fv=0.75/(3^0.5)*Fy Allowable shear(Single)=0.75/(3^0.5)*Fy[A(R)] Page 50 of 59 FII`..TI www.hiiti.us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 1 Specifier: SC Project: JLR Portland Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: I Date: 10/23/2018 E-Mail: Specifier's comments:Base Fin Shoe Anchors 1 Input data Anchor type and diameter: Kwik Bolt TZ-SS 316 1/2(3 1/4) - 44"1111ii tUl1jMl6C tstlttt II ¢". Effective embedment depth: het,ad=3.250 in.,Nom=3.625 in. Material: AISI 316 Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2017 I 5/1/2019 Proof: Design method ACI 318-11/Mech. Stand-off installation: without clamping(anchor);restraint level(anchor plate):2.00;eb=1.000 in.;t=0.500 in. Hilti Grout:CB-G EG,epoxy,fFGrout=14,939 psi Anchor plate: I,x ly x t=3.000 in.x 11.000 in.x 0.500 in.;(Recommended plate thickness:not calculated Profile: no profile Base material: cracked concrete,3000,fc'=3,000 psi;h=6.000 in. Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar R-user is responsible to ensure a rigid base plate for the entered thickness with appropriate solutions (stiffeners,...) Geometry[in.]&Loading[Ib,in.ib] Z 4 0 4.25 6.25 6 ,v 4,747, Vi1 - �� � Page 51 of 59 Input data and results must be checked for agreement with the existing conditions and for plausibilityl PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilt Is a registered Trademark of HiltiAG,Schaan 111.1111116691.1111 www.hilti.us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 2 Specifier: SC Project: JLR Portland Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: [ Date: 10/23/2018 E-Mail: 2 Load case/Resulting anchor forces ^y Load case:Design loads omp essio Anchor reactions[Ib] "2 Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 381 388 0 388 2 31 388 0 388 �x max.concrete compressive strain: 0.03[%00] max.concrete compressive stress: 151 [psi] resulting tension force in(x/y)=(0.000/-2.652): 412[ib] resulting compression force in(x/y)=(0.000/4.894): 412[Ib] Te6gn Anchor forces based on a rigid base plate assumption! 3 Tension load Load Nua[lb] Capacity 4,N„[Ib] Utilization DN=Nua/$N„ Status Steel Strength* 381 8,665 5 OK Pullout Strength* N/A N/A N/A N/A Concrete Breakout Strength** 412 3,482 12 OK *anchor having the highest loading **anchor group(anchors in tension) 3.1 Steel Strength Nsa =ESR value refer to ICC-ES ESR-1917 4, Nsa>_Nua ACI 318-11 Table D.4.1.1 Variables ASe.N[in.2] luta[psi] 0.10 115,000 Calculations Nsa[Ib] 11,554 Results Nsa[Ib] 4)steel 4) Nsa[Ib] Nua[Ib] 11,554 0.750 8,665 381 Page 52 of 59 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 H1111 AG,FL-9494 Schaan HIS Is a registered Trademark of Hilti AG,Schaan _ 1■■IILTI www.hilti.us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 4 Specifier: SC Project: JLR Portland Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: I Date: 10/23/2018 E-Mail: 4 Shear load Load Vua[Ib] Capacity 4)V„[Ib] Utilization Ry=Vua/$V„ Status Steel Strength* 388 3,578 11 OK Steel failure(with lever arm)* 388 812 48 OK Pryout Strength"* 777 11,581 7 OK Concrete edge failure in direction y+** 777 2,346 34 OK *anchor having the highest loading **anchor group(relevant anchors) 4.1 Steel Strength Vsa =ESR value refer to ICC-ES ESR-1917 (i) Vsteei z Vila ACI 318-11 Table D.4.1.1 Variables Ase,v[in.2] futa[psi] 0.10 115,000 Calculations Vsa[Ib] 6,880 Results Vsa[Ib] 0 steel eb 4t Vsa[Ib] Vua[Ib] 6,880 0.650 0.800 3,578 388 4.2 Steel failure(with lever arm) VM _ 1-b Ms bending equation for stand-off (b Ms =Ma(1 Nsa) resultant flexural resistance of anchor Ms =(1.2)(S)(fu,min) characteristic flexural resistance of anchor - (1- Nua ) reduction for tensile force acting simultaneously with a shear force on the anchor Nsa S ='t32)3 elastic section modulus of anchor bolt at concrete surface Lb =z+(n)(do) internal lever arm adjusted for spelling of the surface concrete VM >_Vua ACI 318-11 Table D.4.1.1 Variables am fu,min[psi] Nua[Ib] 4t Nsa[Ib] z[in.] n do[in.] 2.00 115,000 381 8,665 1.250 0.500 0.500 Calculations (( Nua M°[in.lb] (1 :Nsa) Ms[in.lb] Lb[In.] 980.410 0.956 937.337 1.500 Results VM[Ib] steel 0 V$[lb] Vua[lb] 1,250 0.650 812 388 Page 54 of 59 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan NH is a registered Trademark of NH AG,Schaan Iy11alri.I www.hilti.us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 5 Specifier: SC Project: JLR Portland Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: I Date: 10/23/2018 E-Mail: 4.3 Pryout Strength Vcpg =kcp[(;)tV ec,N V/ed,N N/c,N V/cp,N Nb] ACI 318-11 Eq.(D-41) IF Vcpg Z Vua ACI 318-11 Table D.4.1.1 ANc see ACI 318-11,Part D.5.2.1,Fig.RD.5.2.1(b) ANcp =91-6- ACI 318-11 Eq.(D-5) 1 N/ec,N – \(1 +2 eN)<_1.0 ACI 318-11 Eq.(D-8) 3 hef/ 'V ed,N =0.7+0.3(Ca.min1hef)g 1.0 ACI 318-11 Eq.(D-10) Ca V cp,N =MAX —min 1.51 )_<1.0 ACI 318-11 Eq.(D-12) ( . 'ac .ac / Nb =kc X a A Nis ACI 318-11 Eq.(D-6) Variables kcp hef[in.] ec1,N[in.] ec2,N[in.] ca,mia[in.] 2 3.250 0.000 0.000 4.250 W c,N Ca c[in.] kc X a #c[psi] 1.000 7.500 17 1.000 3,000 Calculations ANc[in•2] ANco[in•2] N/ecl,N V/ec2,N W ed,N W cp,N Nb[Ib] 149.91 95.06 1.000 1.000 0.962 1.000 5,455 Results Vcpg[Ib] IF concrete 4t Vcpg[Ib] Vua[Ib] 16,544 0.700 11,581 777 - Page 55 of 59 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilt is a registered Trademark of Hilti AG,Schaan WIIaTI www.hilti.us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 6 Specifier: SC Project: JLR Portland • Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: I Date: 10/23/2018 E-Mail: 4.4 Concrete edge failure in direction y+ Avc Vcbg =(Avc!)W ec,v W ed,V W c,v W h,V W parallel,V Vb ACI 318-11 Eq.(D-31) 4 Vcbg?Vua ACI 318-11 Table D.4.1.1 Av. see ACI 318-11,Part D.6.2.1,Fig.RD.6.2.1(b) Avco =4.5 cat ACI 318-11 Eq.(D-32) 1 W ec,V 1 + 2e„ 5 1.0 ACI 318-11 Eq.(D-36) 3cat W ed,V =0.7+0.3(1 Scat)5 1.0 ACI 318-11 Eq.(D-38) W h,V = ha J1.5cat Z 1.0 ACI 318-11 Eq.(D-39) `0.2 Vb =(7(d) ♦da)X a Nk 0et ACI 318-11 Eq.(D-33) a Variables cat[in.] cat[in.] ecv[in.] W c.v ha[in.] 4.250 - 0.000 1.0001 6.000 le[in.] a,a da[in.] fc[psi] W parallel,V 3.250 1.000 0.500 3,000 1.000 Calculations Ave[in.2] Avco[in.2] w ec,V \If ed,v W h,V Vb[Ib] 76.50 81.28 1.000 1.000 1.031 3,454 Results Vcbg[lb] I>concrete 4 Vcbg[Ib] Vua[ib] 3,351 0.700 2,346 777 5 Combined tension and shear loads [3N av Utilization 8N,V[%] Status rriy 0.118 0.478 5/3 33 OK NNV=I3 +[3V<=1 6 Warnings • The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations(ETAG 001/Annex C,EOTA TR029,etc.).This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor.Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used.The c factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • ACI 318 does not specifically address anchor bending when a stand-off condition exists. PROFIS Anchor calculates a shear load corresponding to anchor bending when stand-off exists and includes the results as a shear Design Strength! • Refer to the manufacturer's product literature for cleaning and installation instructions. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions(MPH).Reference ACI 318-11,Part D.9.1 Page 56 of 59 Input data and results must be checked for agreement with the existing conditions and for plausibility) PROFIS Anchor(c)2003-2009 Hilt AG,FL-9494 Schaan Hilti is a registered Trademark of Hilt,AG,Schaan I■1III.i.T1 www.hilti.us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 7 Specifier: SC Project: JLR Portland Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: I Date: 10/23/2018 E-Mail: Fastening meets the design criteria! Page 57 of 59 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of HiltI AG,Schaan 11411..T1 www.hilti.us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 8 Specifier: SC Project: JLR Portland Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: Date: 10/23/2018 E-Mail: 7 Installation data Anchor plate,steel:- Anchor type and diameter:Kwik Bolt TZ-SS 316 1/2(3 1/4) Profile:no profile Installation torque:480.001 in.lb Hole diameter in the fixture:dr=0.563 in. Hole diameter in the base material:0.500 in. Plate thickness(input):0.500 in. Hole depth in the base material:4.000 in. Recommended plate thickness:not calculated Minimum thickness of the base material:6.000 in. Drilling method:Hammer drilled Cleaning:Manual cleaning of the drilled hole according to instructions for use is required. a-user is responsible to ensure a rigid base plate for the entered thickness with appropriate solutions(stiffeners,...) 7.1 Recommended accessories Drilling Cleaning Setting • Suitable Rotary Hammer • Manual blow-out pump • Torque controlled cordless impact tool(Hilti • Properly sized drill bit Safeset System) • Torque wrench • Hammer y 1.500 1.500 11111 X • 1.500 1.500 Coordinates Anchor in. Anchor x y c.5 y 1 0.000 -3.125 - - - 10.500 2 0.000 3.125 - - - 4.250 Page 58 of 59 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 H!Itt AG,FL-9494 Schaan Hilt!Is a registered Trademark of Hiiti AG,Schaan 111111aT1 www.hilti.us Profis Anchor 2.7.9 Company: Sentech Arch.Systems Page: 9 Specifier: SC Project: JLR Portland Address: Sub-Project I Pos.No.: C-18023 Phone I Fax: I Date: 10/23/2018 E-Mail: 8 Remarks; Your Cooperation Duties - Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Page 59 of 59 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schwan RECEIVED JUL 11 2019 CITY OF ;: Perlo BUILDING D V IUt' SUBMITTAL CONSTRUCTION JAGUAR LAND ROVER OF Subcontractor: River City Glass & Window Inc. PORTLAND Submittal#: 50 Rev#: 2 Specification Section: 08 44 26 Perlo Job Number: 1368 Date Submitted: 6/14/19 Submittal Item: Glass Fin Wall Shop Drwgs Rev. 2 Please Respond By: 6/25/19 PROJECT SITE: PERLO CONSTRUCTION HAS REVIEWED THIS SUBMITTAL DATE 6/14/19 SIGNED Jake Jensen Jaguar Land Rover of Portland 10125 SW Washington Square Road REVIEW BY CONTRACTOR IS UNDERTAKEN SOLELY TO SATISFY ANY OBLIGATIONS OF CONTRACTOR TO OWNER Tigard, Oregon 97223 AND DOES NOT IN ANY WAY RELIEVE SUBCONTRACTOR FROM HIS OBLIGATION FULLY TO PERFORM ALL SUBCONTRACT REQUIREMENTS,NOR SHALL SUCH REVIEW APPROVER: GIVE RISE TO ANY RIGHT OF ACTION OR SUIT IN FAVOR OF SUBCONTRACTOR OR THIRD PERSONS AGAINST CONTRACTOR. REVIEW DOES NOT EXTEND TO Mildren Design Group CONSIDERATION FOR STRUCTURAL INTEGRITY,SAFETY, Attention: Curt Trolan DETAILED COMPLIANCE WITH CONTRACT REQUIREMENTS OR ANY OTHER OBLIGATION OF THE SUBCONTRACTOR. 7650 SW Beveland Street, Suite 120 SUBCONTRACTOR IS FULLY RESPONSIBLE FOR CONFIRMING AND CORRELATING ALL DIMENSIONS; Tigard, Oregon 97223 FABRICATING AND CONSTRUCTION TECHNIQUES; COORDINATING HIS WORK WITH THAT OF ALL OTHER TRADES;AND THE SATISFACTORY PERFORMANCE OF HIS GENERAL CONTRACTOR ENTIRE WORK IN STRICT ACCORDANCE WITH THE CONTRACT DOCUMENTS. Approver's Stamp: Perlo Construction Attention: Jake Jensen NO EXCEPTION NOTED 12F MAKE CORRECTIONS NOTED 0 11450 SW Amu Street REJECTED 0 REVISE AND RESUBMIT 0 Tualatin, Oregon 97062 THIS REVIEW IS FOR GENERAL CONFORMANCE WITH DESIGN CONCEPT ONLY. ANY DEVIATION FROM PLANS OR SPECIFICATIONS NOT CLEARLY NOTED BY THE CONTRACTOR HAS NOT BEEN REVIEWED. REVIEW SHALL NOT CONSTITUTE A COMPLETE CHECK OF ALL DETAILED DIMENSIONS OR COUNT OR SERVE TO RELIEVE THE CONTRACTOR OF CONTRACTUAL RESPONSIBIUTY FOR ANY ERROR OR DEVIATION FROM CONTRACT REQUIREMENTS. TM RIPPEY CONSULTING ENGINEERS PORTLAND, OREGON DATE: 6 -2 0 -19HY: rnt OR CCB 189245 LICENSED THROUGHOUT THE WESTERN UNITED STATES I AZ ROC 293181 FOR OFFICE USE ONLY— SITE ADDRESS: This form is recognized by most building departments in the Tri-County area for transmitting information. Please complete this form when submitting information for plan review responses and revisions. This form and the information it provides helps the review process and response to your project. City ofsTigardit • COMMUNITY DEVELOPMENT DEPARTMENT lig Tran Letter T l G A R D 13125 SW Hall Blvd. • Tigard, Oregon 97223 • 503.718.2439 • www.tigard-or.gov TO: 'T'tM, 40L4.1s1-4,c—r-EZ__ DATE RECEIVED: DEPT: BUILDING DIVISION r -" rt 70 JULY Mi ,g FROM: }t-ARZZ. ISS ST'it.4 CI `1 , D COMPANY: ?'ZZ t.c) COA/STR-Quney4 BUILDING DIVISION By: PHONE: ( z3) 2.10 . 9�ZS 4,0------ RE: /O/ZS ski 4c/It5ff/.t/C ./ 56., JPZ,E j'7 Sots - c>0/6 I, (Site Address) (Permit Number) —1 (. ke.- WW1) lZvvQL Z..T Lam./ (Project name or subdivision name and lot number) ATTACHED ARE THE FOLLOWING ITEMS: Copies: Description: Copies: Description: Additional set(s) of plans. Revisions: Cross section(s) and details. Wall bracing and/or lateral analysis. Floor/roof framing. Basement and retaining walls. Beam calculations. Engineer's calculations. ,(, Other(explain): AviNg g.e.. AA r REMARKS: Ci -1c t,J.k \ Ik\..t_ C,' 14.70,. U,kLU- r OA - 1624- , 000. 0a FOR OFFICE USE ONLY Routed to Permit Technician: Date: j))— lh ci' Initials: „ Fees Due:tj Yes ❑No Fee Description: Amount Due: $ 8 r2. O4 $ )so . '83 $ _o Special Instructions: Reprint Permit(per PE): ❑ Yes ]] Ne _❑ Done fr_ Applicant Notified: Date: 7 ,' // // Initials: I:ABuilding\Forms\TransmittalLetter-Revisions.doc 05/25/2012 II