Loading...
Specifications (19) '?- U`'1 \q - obock- k lQ0 cts\K SAW310..r MATERIAL HANDLI,I. *`I IN RING FST IgM SPECIAL PRODUCTS CONVEYORS STORAGE RACKS OTHER SERVICES SHELVING SPECIAL PRODUCTS TANK SUPPORTS TALL SUPPORTS SELECTIVE SEISMIC ANALYSIS METAL SHUTTLES MACHINERY HEADER STEEL DRIVE-IN PERMIT ACQUISITION METAL/WOOD VLM RACKBLDGS SORT PLATFORMS PUSH BACK EGRESS PLANS MOVABLE CAROUSELS SHEDS PICK MODULES FLOW RACK STATE APPROVALS GONDOLAS VRC MEZZANINES ROOF VERIFICATION CANTILEVER PRODUCT TESTING LOCKERS MODULAR OFFICES FOOTINGS CATWALKS FENCES Licensed in 50 States OFFICE CO RECEIVED APR 16 2019 CITY OF I PahriCi BUILDING DIVISION Analysis of Storage Racks for Office Depot #921 15060 S.W. Sequoia Parkway, Tigard, OR 97224 Job No. 19-0583 Approved by: Of#114/r"" Sal E. Fateen,P.E. 3/12/2019 �4tipPR. 1-6.% 1NEe s/0� vet6243 1- coo OREGON oen a, v• 01, - ,.*, ca E. F Pati DEC 3 1 2019 1130 E.Cypress St * Covina,CA 91724 * (909)869-0989 F �_ PROJECT: Office Depot#921 • SEIZMIC '' FOR: Office Depot_2082 ADDRESS: 15060 S.W.Sequoia INC Tigard,OR SHEET#: 1 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 1985 DATE: 3/12/2019 TEL:(909)869-0989 PROJECT#: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 Table of Contents Parameters 2 Components and Specifications 3 Loads and Distributions 6 Basic Load Combinations 9 Longitudinal Analysis 10 Column&Backer Analysis 11 Beam Analysis 13 Beam to Column Analysis 16 Bracing Analysis 17 Anchor Analysis 19 Overturning Analysis 22 Baseplate Analysis 23 Slab and Soil Analysis 25 Gondola Analysis 26 to 34 Breakroom Bookcase 35 Scope: This storage system analysis is intended to determine its compliance with appropriate building codes with respect to static and seismic forces. The storage racks are prefabricated and are to be field assembled only,with no field welding. PROJECT: Office Depot#921 SEIZMIC FOR: Office Depot 2082 ADDRESS: 15060 S.W.Sequoia INC Tigard,OR SHEET#: 2 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 1985 DATE: 3/12/2019 TEL.(909)869-0989 PROJECT#: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 The storage racks consist of several bays,interconnected in one or both directions,with the columns of the vertical frames being comon between adjacent bays. This analysis will focus on a tributary bay to be analyzed in both the longitudinal and transverse direction. Stability in the longitudinal direction is maintained by the beam to column moment resisting connections,while bracing acts in the transverse direction. '111\ 411%.,./0` / V-B 431 IIS/ 0 ill A4? ji p ©© CONCEPTUAL DRAWING Some components may not be used or may vary rrrrrTrmaim TRIBUTARY AREA Legend 1. Column 2.Base Plate 3.Anchors 4.Bracing ac ng 5.Beam TRANSVERSE 6. Connector LONGITUDINAL -" NOTE:ACTUAL CONFIGURATION SHOWN ON COMPONENTS&SPECIFICATIONS SHEET ,I, _.,,_ _ PROJECT: Office Depot#921 I SEIZ,M16----- 1� FOR: Office Depot_2082 „s� , ,� ADDRESS: 15060 S.W.Sequoia INC Tigard,OR �.` ',- SHEET#: 3 MATERIAL HANDLING NEIN RING CALCULATED BY: tchang EST.1965 DATE: 3/12/2019 TEL(909/869-4)989 PROJECT#: 20190306_15 1130 E.CYPRESS ST,COVINA,CA 91724 COMPONENTS AND SPECIFICATIONS Configuration 1:Type 44 x 120 upright SK 1.7 Analysis per section 2209 of the 2015 IBC S =0.97 F =1.11 1=1 V�g=312 lbs. Ps,, =3120 lbs. Levels:3 Panels:3 S=0.42 P= 1.58 SDC=D Y Trans =766 lbs. PSe rm = 1332 lbs. Load per Level 2000 lbs 20" 40" N. 2000 lbs 48" 120" 40" N. 2000 lbs N S- 42" 40" N N N 98" 44" FRONT VIEW SIDE VIEW FRAME BEAM CONNECTOR COLUMN 4.5 x 2.5 .065(SBRCP450) 3 Pin 2"cc Connector 3 x 2.85 .065(RTFBP) Steel=55 ksi Max Static Cap.=5920 lb. Stress=16% Steel=55000 psi Stress=35% Stress=28%(level 1) Max stress=16%(level 1) HORIZONTAL BRACE Max stress=35%(level 1) 1 x 2-.060 TUBE Stress=10%(panel 1) DIAGONAL BRACE 1.125 DIA.-.060 TUBE Stress=36%(panel 1) Base Plate Slab&Soil Anchors Steel=36000 psi * Slab=5"x 2500 psi Hilti Kwik HUS-EZ ESR 3027 7 x 5 x 0.375 in. 2 anchors/plate Sub Grade Reaction=50 pci 0.5 in.x 1.52 •in.Min.Embed. Moment=2964 in-Ib. Stress=7% Slab Bending Stress=15%(5) Pullout Capacity=777 lbs. Shear Capacity=836 lbs. Anchor stress= 19% Seizmic Analyzer version 20190307 ©Copyright 1991-2018 Seizmic Inc.All rights reserved PROJECT: Office Depot#921 SEIZMIC FOR: Office Depot 2082 ADDRESS: 15060 S.W.Sequoia INC — Tigard,OR SHEET#: 4 MATERIAL HANDLING,ENGINEERING CALCULATED BY: tchang 1885 g DATE: 3/12/2019 TEL(909)869-0989 PROJECT#: 20190306_15 1130 E.CYPRESS ST,COVINA,CA 91724 — COMPONENTS AND SPECIFICATIONS Configuration 2:Type 30 x 120 upright SK 1.7 Analysis per section 2209 of the 2015 IBC s,=0.97 F = 1.11 1= 1 V =312 lbs. Psran. =3120 lbs. Levels:3 Panels:3 s,=0.42 P„=1.58 SDC=D V qn=766 lbs. PSe, =1953 lbs. mc Loaa pei Level \ \ S-- 2000 lbs Qf 20" 40" • • S-- 2000 lbs 48" 120" 40" • S-- 2000 lbs 42" 40" 8 N \ J 98" 30" is FRONT VIEW SIDE VIEW FRAME BEAM CONNECTOR COLUMN 4.5 x 2.5-.065(SBRCP450) 3 Pin 2"cc Connector 3 x 2.85-.065(RTFBP) Steel=55 ksi Max Static Cap.=5920 lb. Stress=16% Steel=55000 psi Stress=35% Stress=28%(level 1) Max stress=16%(level 1) HORIZONTAL BRACE Max stress=35%(level 1) 1 x 2-.060 TUBE Stress=8%(panel 1) DIAGONAL BRACE 1.125 DIA.-.060 TUBE Stress=34%(panel 1) Base Plate Slab&Soil Anchors Steel=36000 psi * Slab=5"x 2500 psi Hilti Kwik HUS-EZ ESR-3027 7 x 5 x 0.375 in. 2 anchors/plate Sub Grade Reaction=50 pci 0.5 in.x 1.52 in.Min.Embed. Moment=2964 in-lb. Stress=7% Slab Bending Stress= 17%(S) Pullout Capacity=777 lbs. Shear Capacity=836 lbs. Anchor stress=56% Serzmic Analyzer version 20190307 ©Copyright 1991-2018 Seizmic Inc.All rights reserved ` PROJECT: Office Depot#921 SEIZMIC xFOR: Office Depot_2082 ADDRESS: 15060 S.W.Sequoia INCTigard,OR " SHEET#: 5 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 3/12/2019 TEL.(909)869-0989 PROJECT#: 20190306_15 1130 E.CYPRESS ST,COVINA,CA 91724 COMPONENTS AND SPECIFICATIONS Configuration 3:Type 42 x 120 upright SK 1.7 Analysis per section 2209 of the 2015 IBC S =0.97 F = 1.11 /=1.5 V "g=166 lbs. Psmnc =870 lbs. Levels:3 Panels:3 S;=0.42 F,=1.58 SDC=D i "s=336 lbs. PSesm =714 lbs. Load per Level \ T500 lbs _ 20" 20" 500 lbs 20" \ 500 lbs 48" 120" 80" 42" 8" N. N 98" , •, 42., .I FRONT VIEW SIDE VIEW FRAME BEAM CONNECTOR COLUMN 4.5 x 2.5-.065(SBRCP450) 3 Pin 2"cc Connector 3 x 2.85-.065(RTFBP) Steel=55 ksi Max Static Cap.=5920 lb. Stress=9% Steel=55000 psi Stress=9% Stress=23%(level 1) Max stress=9%(level 1) HORIZONTAL BRACE Max stress=9%(level l,) 1x2-.060 TUBE Stress=4%(panel 1) DIAGONAL BRACE 1.125 DIA.-.060 TUBE Stress=19%(panel 2) Base Plate Slab&Soil Anchors Steel=36000 psi * Slab=5"x 2500 psi Hilti Kwik HUS-EZ ESR-3027 7 x 5 x 0.375 in. 2 anchors/plate Sub Grade Reaction=50 pci 0.5 in.x 1.52 in.Min.Embed. Moment=3237 in-lb. Stress=4% Slab Bending Stress=5%(S) Pullout Capacity=777 lbs. Shear Capacity=836 lbs. Anchor stress=34% Seizmic Analyzer version 20190307 ®Copyright 1991-2018 Seizmic Inc.All rights reserved PROJECT: Office Depot#921 SEIZMIC FOR: Office Depot_2082 ADDRESS: 15060 S.W. Sequoia �. Tigard,OR SHEET#: 6 MATERIAL HANDLING' NGINEERING CALCULATED BY: tchang EST 19 DATE: 3/12/2019 TEL(909)869-0989 PROJECT#: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 Loads and Distributions:Type 44 x 120 upright Determines seismic base shear per Section 2.6 of the RMI&Section 2209,of the 2015 IBC ELI, Fn #of Levels: 3 SDC: D RL: 6 Ss: 0.97 II Pallets Wide: 2 W,,,: 6000 REL 5.,: 4 S1: 0.42 =NJ. F5 V Pallets Deep: 1 WD,: 240 lbs Fa: 1.11 Ip: 1 EL< MI FA Pallet Load: 1000 Fv: 1.58 Tl: l EL F3 Total Frame Load: 6240 lbs EL2 F2 SDS=2/3 S, Fa= 0.72 SD, =2/3 S,•F,= 0.44 • F, W,=0.67W,,L+WDL= 42601bs Seismic Shear per RMI 2012 2.6.3: Longitudinal Transverse Vlovgl =C, Ip W, =SD,/(TL•RL) 1,, W, =0.44/(16) 1 4260=312.4 lbs V,o�need not be greater than: V,�need not be greater than: Vlong2 =C, Ip•W, Vtrensl =C, Ip W, =SDs/RL Ip W =SD,/RT 1,'W, =0.72/61 4260=511.2 lbs =0.72/41 4260=766.8 lbs If S,>=0.6,then V1o,„shall not be less than: If S,>=0.6,then Vtr,o,shall not be less than: Vlnn� =C, 1p Wy Vtrao,2 =C, Ip W, =0.5 5,/RL•Ip W, =0.5•S,/R 'I,•W, =0.5 0.42 1 4260=149.1 lbs =0.5 0.42 1 4260=223.65 lbs shall not be less than: V shall not be less than: V10 4 =C, Ip'W, V«a„„ =C, 1 'W, =Max[0.044'SDS,0.03]•Ip•W, =Max[0.044'SDS,0.5 S,/Rr,0.03] IP W, =Max[0.03,0.03,0.03] 1 4260= 149.1 lbs =Max[0.03,0.05,0.03]'1'4260=223.65 lbs Since: 312.4<=511.2 Since: &312.4>= 149.1 766.8>=223.65 &312.4>= 149.1 &766.8>=223.65 V,o�=312 lbs V,,ao,=766 lbs : ficee DepotDepot#921 2082 ,�sE�Z-- �,� �- PROJECTFOR: OfOffic ti��y��,� ADDRESS: 15060 S.W.Sequoia �.� INC Tigard,OR SHEET#: 7 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang Esr.,sse DATE: 3/12/2019 TEL(909)869-0989 PROJECT#: 20190306_15 1130 E CYPRESS ST,COVINA,CA 91724 Loads and Distributions: Type 44 x 120 upright(Page 2) WH f.=V EWH Longitudinal Transverse Level k w w hx f, w w hx f 1 40 1040 41600 52 1040 4127.67 2 80 1040 83200 104 1040 832001600 255.33 3 120 1040 124800 156 1040 124800 383 PROJECT: Office Depot#921 SEIZMI FOR: Office Depot_2082 INC ADDRESS: 15060 S.W. Sequoia Tigard,OR SHEET#: 8 MATERIAL HANDLING,S ENGINEERING CALCULATED BY: tchang 1985 DATE: 3/12/2019 TEL(909)869-0989 PROJECT/4: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 — Fundamental Period of Vibration(Longitudinal) Per FEMA 460 Appendix A-Development of An Analytical Model for the Displacement Based Seismic Design of Storage Racks in Their Down Aisle Direction T = 2n �NL1 Wp1hp12 9(Nc kc6e k (kb kkl\ (A-7) e�+ Nb + kce) Where: #of levels 3 Wp; =the weight of the ith pallet supported by the storage rack min.#of bays 3 N, 36 hp, =the elevation of the center of gravity of the ith pallet Ne 8 with respect to the base of the storage rack k 300 kip-in/rad g =the acceleration of gravity k„ 3857 kip-in/rad NL =the number of loaded levels kb 244 kip-in/rad 1(0 =the rotational stiffness of the connector k, 979 kip-in/rad k}, =the flexural rotational stiffness of the beam-end Ib 2.14 in4 L 98 in kb =the rotational stiffness of the base plate I, 1 in' kG0 =the flexural rotational stiffness of the base upright-end H 120 in E 29500 ksi N, =the number of beam-to-upright connections Level hP WP. Nb =the number of base plate connections 1 57 in 2 kip 6E1, 2 97 in 2 kip k,= 3 138 in 2 kip L 4E1= ° H EI k = ° H L =the clear span of the beams H =the clear height of the upright Ib =the moment of inertia about the bending axis of each beam h =the moment of inertia of each base upright E =the Young's modulus of the beams Calculated T= 1.32 Since the calculated T is greater than 1,the more conservative value of 1 is used in the calculations �._ PROJECT: Office Depot#921 SEIZMIC FOR: Office Depot_2082 ADDRESS: 15060 S.W.Sequoia INC Tigard,OR SHEET#: 9 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 3/12/2019 TEL PROJECT#: 20190306_15 1130 E.CYPRESS ST,COVINA,CA 91724 LRFD Basic Load Combinations:Type 44 x 120 upright 2015 IBC&RMI/ANSI MH 16.1 V Trans=766 lbs is,4„,, =Ef. „•hx=71,493 in-lbs 13 =0.7 V Long=312 lbs Erran, =MTrao,/frame depth= 1,624 lbs 13 = 1.0(Uplift combination only) P =Product Load/2=3,000 lbs p =1 D =Dead Load•0.5=120 lbs SDS =.72 L=Live Load=0 lbs S=Snow Load=0 lbs R=Rain Load=0 lbs Lr=Live Roof Load=0 lbs W=Wind Load=0 lbs Basic Load Combinations 1.Dead Load = 1.4 D+ 1.2 P =(1.4.120)+(1.2.3,000)=3,768 lbs 2.Gravity Load = 1.2D+ 1.4P+ 1.6L+0.5(LrorS orR) =(1.2.120)+(1.4.3,000)+(1.6.0)+(0.5.0)=4,344 lbs 3.Snow/Rain =1.2D+0.85P+(0.5L or 0.5W)+ 1.6(Lr or S or R) =(1.2.120)+(0.85.3,000)+(0.5.0)+(1.6.0)=2,694 lbs 4.Wind Load =1.2D+0.85P+0.5L+ 1.0W+0.5(Lr or S or R) =(1.2120)+(0.85.3,000)+(0.5.0)+(1.0.0)+(0.5.0)=2,694 lbs 5A.Seismic Load (Transverse)=(1.2+0.2SDS)D+(1.2+0.2SDS)(3P+0.5L+pETran5+0.2S =(1.2+0.2•.72)•120+(1.2+0.2•.72)•0.7.3,000+0.5.0+ 1.1,624+0.2 0=4,608lbs 5B.Seismic Load (Longitudinal)=(1.2+0.2SDS)D+(1.2+0.2SDS)3P+0.5L+pELong+0.2S =(1.2+0.2•.72)•120+(1.2+0.2•.72)•0.7.3,000+0.5 0+ 1 0+0.2 0=2,983lbs 6.Wind Uplift =0.9D+0.9P,,,+ 1.0W =0.9.120+0.93,000+ 1.0.0=108 lbs 7.Seismic Uplift =(0.9-0.2SDS)D+(0.9-0.2SDS)IPapp-PE,„ _(0.9-0.2•.72)•120+(0.9-0.2..72)•1.3,000- 1 •1,624=733 lbs For a single beam,D=32 lbs P=1,000 lbs I=125 lbs See Base Plate tension Analysis for Over-Strength factor application. 8.Product/Live/Impact = 1.2D+1.6L+0.5(SorR)+ 1.4P+ 1.4I (1.2.32)+(1.6.0)+(0.5.0)+(1.4.1,000)+(1.4.125)=1,613lbs ASD Load Combinations for Slab Analysis 1. (1 +0.1055'DS)D+0.75((1.4+0.14SDS)(3P+0.7pE) =(1 +0.105•.72)•120+0.75((1.4+0.14•.72)•0.7.3,000+0.7.1.1,624)=3,345 lbs 2. (1 +0.14SDS)D+(0.85+0.14SD5)13P+0.7pE =(1 +0.14•.72)•120+(0.85+0.14°.72) 0.7 3,000+0.7 1 1,624=3,266 lbs 3. D+P = 120+3,000=3,120 lbs • PROJECT: Office Depot 4921 f SEIZMI t FOR: Office Depot_2082 tri` " ADDRESS: 15060 S.W.Sequoia Tigard,OR SHEET#: 10 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 19 DATE: 3/12/2019 TEL PROJECT#: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 — Longitudinal Analysis:Type 44 x 120 upright This analysis is based on the Portal Method,with the point of contra flexure of the columns assumed at mid-height between beams,except for the lowest portion,where the base plate provides only partial fixity and the contra flexure is assumed to occur closer to the base(or at the base of pinned condition,where the base plate cannot carry moment). ��M Mn-n Mcolla= Mc0 =McoM MSM= ��Mcp�,+MLow�)/2)+M�na, �� M5-5 F1Fn S Vc0 = VLo�R/#of columns= 156 lbs /\ M4-4AIM M5 = 2964 in-lbs 'iF4 II M3-3 ,, MLO,,,_ ((V..h)-M5,,, , \---___--7 F3 Fr h3 (156 lbs•38 in.) 2964 in-lbs=2964 in-lbs ii M2-2 A2 III " h2 r-s-,rSbb M1-1 ,, Fl pr III M base FRONT ELEVATION Levels k f Axial Load Moment Beam End Connector Moment Moment 1 40 26 3,120 2,964 1,594 4,558 2 40 52 2,080 2,964 1,594 4,558 3 40 78 1,040 2,964 1,594 3,076 PROJECT: Office Depot#921 1 SEIZMI FOR: Office Depot_2082 a, .F ADDRESS: 15060 S.W.Sequoia 1N Tigard,OR ;_- SHEET#: 11 MATERIAL HANDLING;ENGINEERING CALCULATED BY: tchang EST.1985 ' DATE: 3/12/2019 TEL(909)869-0989 PROJECT#: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 COLUMN ANALYSIS: Type 44 x 120 upright(Level 1 ) Analyzed per RMI,AISI 2012(LRFD)and the 2015 IBC. Section subject to torsional or flexural-torsion buckling(Section C4.1.2) IK•L/Rx = 1.7 38/1.259 =51.3 Ky•L/R = 142/ 1.071 =39.23 KL/Rax =51.3 (Eq.C3.1.2.1- 3 x 2.85-.065 o =(r2+r2+X2),2 7) SECTION PROPERTIES =(1.2592+1.0712+-2.7232)12=3.185 in. Depth 2.85 in. Width 3 in. 13 =1 -(Xo/ro)2 (Eq C4.1.2-3) t 0.065 in. = 1 -(-2.723/3.185)2=0.269 Radius 0.125 in. P, =WE/(KL/r)a,2 (Eq C4.1.1-1) Area 0.629 in.' AreaNet 0.531 in.2 =3.142.29500/51.32=110.623 ksi I, 0.997 in.' F2 =(1/2/3)((, +6r)2—(4136_,0))'2) (Eq C4.1.2-1) S, 0.664 in.' =(1 /(20.269)((110.623 +95.424)-(110.623+95.424)2 S.Net 0.625 in.' -(4 0.269 110.623 95.424))'2)=55.216 ksi R, 1.259 in. I 0.721 in.' where: S,, 0.439 in.' oe. =172E/(K L/R,)2 (Eq C3.1.2-11) R. 1.071 in. =3.142.29500/51.32=110.623 ksi J 0.001 in.^ a, =1/A,2(GJ+(112EC,)/(K,L)2) CH 1.899 in.' (EqC3.1.2-9) J 3m =1 /0.629.3.1852(11300.0.001 Xo -2.723 in. +(3.142.29500.1.899)/(0.8 38)2)=95.424 ksi K, 1.7 L, 38 in. F =Min(F„F2)=55.216 ksi K,. 1 P =Aem•F (Eq C4.1-1) L 42 in. 7,e =(F/F)12=(55/55.216)12=0.998 (Eq C4.1-4) K, 0.8 Fv 55 ksi Since 7v < 1.5: F 65 ksi F =(0.658^(a,,2))•F,=36.249 (Eq C4.1-2) Q 0.9 Thus: G 11300 ksi E 29500 ksi P =179251bs Cm 0.85 P = 15236 lbs C, -1 C,, 1 C,, I Phi,, 0.9 Phi, 0.85 ` PROJECT: Office Depot#921 rJi SEIZMIC ' " IFOR: Office Depot 2082 /" , i p'+'•°," ADDRESS: 15060 S.W.Sequoia -,--- IN Tigard,OR 2 MATERIAL HANDLING ENGINEERING SHEET#: EST.1985 CALCULATED BY: tchang DATE: 3/12/2019 TEL.(909)869-0989 PROJECT#: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 - COLUMN ANALYSIS: Type 44 x 120 upright(Level 1) Analyzed per RMI.AISI 2012(LRFD)and the 2015 IBC. Lateral-torsional buckling strength[Resistance](Section C3.1.2) P =P o0=23118 lbs 3 x 2.85-.065 Where: SECTION PROPERTIES Depth 2.85 in. Poo =AF,=0.495.55 =27198lbs Width 3 in. M =M=SF=S„P t 0.065 in. (Eq C3.1.2.1-1) Radius 0.125 in. F =CboA(a ya)'n/St.=309.568 ksi Area 0.629 in.2 F =CA a„,(j+C(j2+o2(0,/Oe,))1i2)/(CTFSE)=126.958ksi (Eq 3.1.2.1-4) AreaNet 0.531 in.2 F =(Cri2Edr e)/V(S,(KyL)2=510.12 ksi Ix 0.997 in.° (Eq 3.1.2.1-10) S 0.664 in.' F,,,„„ =126.958 ksi Sx Net 0.625 in.3 Since:0.56E<2.78F R. 1.259 in. F =(10/9)F/1 -(10F/36F))=53.8 ksi (Eq C3.1.2.1-2) I, 0.721 in.4 Reduced F er=1 -((1 -Q)/2)•(F/F)Q-.F:=51.2 ksi Sr 0.439 in.' R, 1.071 in. M,=31984 in-lbs My=22481 in-lbs M =M m;n J 0.001 in." M,,,Ø1, =28786 in-lbs MA,=20233 in-lbs C, 1.899 in.6 PF, =II2E7/(KxL)2=69523 lbs (Eq C5.2.2-6) I. 3 in. PE), =I-12Eg,/(KL)2= 118920 lbs (Eq C5.2.2-7) Xe -2.723 in. a =(1 -( P/P,))=0.962 (Eq C5.2.2-4) 1.i L, 38 n. ay =(1 -(0P/Py))=0.978 (Eq C5.2.2-5) K 1 Pins =4,608 lbs P,o„g 2,983 lbs L6, 42 in. M =M=2971 in-lbs (Eq C5.2.2-2) R1 0.8 Pst =(1.2•D)+(1.4•P)=4344lbs Fy 55ksi F 65 ksi P_„/P =4344/15236=0.29 Static Stress=28% Q 0.9 Since: P,/P>=0.15 r G 11300 ksi Stressl =P,/P +M/(o6M)+M/(06M„) (Eq C5.2.2-2) E 29500 ksi C,., 0.85 =((2,983/15236)+(2971 /28786)+(1 /20233))=28% C -1 Stress2 =P,/P,, +CM/(0,111„,a,)+C yM/(06Myay) (Eq C5.2.2-1) Cb 1 =(2,983/23118)+(0.85.2971 /28786.0.962))+(0.85.1 /20233.0.978)))=22% Cif 1 Stress3 P,/13,,,=4,608/23118=19% Phib 0.9 Column Stress=Max(Stressl,Stress2,Stress3,Static)=28% Phi 0.85 A r_____:„---,,, PROJECT: Office Depot#921 [ SEIZMIC ----Th. I� FOR: Office Depot_2082 y'I e. ADDRESS: 15060 S.W.Sequoia _ INC/_ -I Tigard,OR �.,,.�� SHEET#: 13 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 1985 DATE: 3/12/2019 TEL.(909)869-0989 PROJECT#: 20190306_15 1130 E.CYPRESS ST,COVINA,CA 91724 BEAM ANALYSIS Type 44 x 120 upright Determine allowable bending moment per AISI Check compression flange for local buckling(B2.1) / B Effective width w=C-2t-2r = 1.625-(2•0.065)-(2.0.25) = 1.0 in. / , wit = 0.995/0.065 = 15.31 \' {.. R. = (1.052/k1"2)•(w/t)•(F/E)"2 = (1.052/2)• 15.308•(55/29500)1'2 = 0.35 D x<=0.673:Flange is fully effective. Check web for local buckling(B2.3) A f,(comp) = F••(y3/y2) = 55*2.04/2.36 = 47.65 ksi f2(tension) = Fy•(y,/y2) = 55* 1.83/2.36 = 42.61 ksi 'P = -(f214) = -(42.61/47.65) = -0.89 Buckling coefficient k=4+2•(1 -111)3+2•(1 -'P) =4+2(1 --0.89)3+2(1 --0.89) = 21.38 4.5x2.5-.065 Flat Depth w=yl+y3=1.83+2.04 = 3.87 Top flange width C= 1.625 in. w/t = 3.87/0.065 = 59.54 w/t<200:OK Bottom width B= 2.5 in. = (1.052/k12)•(w/t)•(f/E)12 = (1.052/2)•59.538•(47.65/29500)1/2 = Web depth A= 4.5 in. Beam thickness t= 0.065 in. 0.54 Radius r= 0.25 in. bl=w•(3-'P) = 4•(3 --0.89) = 15.07 Fy= 55 b2=w/2=1.94 Fu= 65 Y1= 1.83 bl+b2=15.07+ 15.07 = 17.01 Web is fully effective Y2= 2.36 Determine effect of cold working on steel yield point(FYA)per section A7.2 Y3= 2.04 Ycg= 2.14 Corner cross-sectional area Lc=(II/2)•(r+t/2) Ix= 2.14 = (H/2)•(0.25+0.065/2) = 0.444Sx= 0.91 Lf= effective width=0.995 E= 29500 FBeam F= 300 C = 2•L,l L f+2•L, = 2•0.444/0.995+2•L, = 0.4714 Beam Length L= 98 m = 0.192•(F/F)-0.068 = 0.192•(65/55)-0.068 = 0.1589 B, = 3.69•(F/F)-0.819•(F"/F)2- 1.79 = 3.69•(65/55)-0.819•(65/55)2- 1.79 = 1.43 Fu/Fy=65/55 = 1 <1.2 r/t=0.25/0.065 = 3.846 <=7=OK Fy, = Be•Fy l(r/t)"' = 1.43 .55/(3.846)'" = 63 Fyarop = C•Fy,,+(1 -C)•Fy = 0.471 •63+(1 -0.471)•55 = 59 Fp_a"rc"m = Fy"-r"p• Yg/(A- Kg) = 59.2.14/(4.5-2.14) = 54 �, PROJECT: Office Depot#921 SEIZMIC FOR: Office Depot 2082 ADDRESS: 15060 S.W.Sequoia INC Tigard,OR SHEET#: 14 MATERIAL HANDLINBG ENGINEERING CALCULATED BY: tchang EST 19 DATE: 3/12/2019 TEL:(909)869-0989 PROJECT#: 20190306 15 I 130 E.CYPRESS ST,COVINA,CA 91724 — BEAM ANALYSIS Type 44 x 120 upright Check Allowable Tension Stress for Bottom Flange Lf ange-bot = B-(2•r)-(2•t) = 2.5-(2•0.25)-(2•0.065) = 1.87 C = 2•L / L +2 L 2••0.444/ 1.87+2 0.444). 0.322 -- ' bottom c ( flange-bot c) ( • y-bottom = Cbottom•Fyc+(1 -C6oaom)'Fy, = 0.322•63+(1 -0.322)•55 = 57.69 Fya = Fy,„_top = 58.94 ksiA �I Determine Allowable Capacity For Beam Pair(Per Section 5.2 of the RMI,PT II) Check Bending Capacity Mcente, _ (I)•M = W•L S2•Rm/8 e•. . . .. ... . . .. . .. S2 = LRFD Load Factor = (1.2•DL+ 1.4•PL+ 1.4.0.125•PL)/PL For DL =2%of PL: S2 = 1.2.0.02+ 1.4+ 1.4.0.125 = 1.6 4.5x2.5-.065 Top flange width C= 1.625 in. Rm = 1 -((2•F•L)/(6•E•I+3•F•L)) BottomwidthB= 2.5 in. = 1 -((2.300.98)/(6.29500.2.14+3•300.98)) = 0.87 Web depth A= 4.5 in. M = F a S = 50.68 in-kip Beam thickness t= 0.065 in. Radius r= 0.25 in. W = 4•M•8•(#of Beams)/(L•Rm•S2) = (50.68.8•2)/(98.0.87. 1.6) FY== 55 = 5920 lbs/pair Fu= 65 Y1= 1.83 Y2= 2.36 Check Deflection Capacity Y3= 2.04 Amax = A .Ra Ycg= 2.14 Amax = L 1180 Ix= 2.14 Sx= 0.91 Rd = 1 -(4•F•L)/(5•F•L+ 10•E•I) E= 29500 = 1 -(4.300.98)/(5•300.98+10.29500.2.14) = 0.85 FBeam F= 300 Ass = (5• W•L3)/(384•E•I) Beam Length L= 98 L/180 = (5• W•L3•Ra)/(384•E•I•(#of Beams)) W = (384•E•J•2)/(180.5•L2•Rd) = (384.29500.2.14.2)/(180.5.982.0.85)• 1000 = 6598 lbs/pair 1` PROJECT: Office Depot#921 SEIZMIC ----' FOR: Office Depot 2082 . ._ ADDRESS: 15060 S.W.Sequoia i �INC Tigard,OR __ , SHEET#: 15 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 1955 DATE: 3/12/2019 TEL.(909)869-0989 PROJECT#: 20190306_15 1130 E.CYPRESS ST,COVINA,CA 91724 Allowable and Actual Bending Moment at Each Level Mtans=WP/8 Mallowsranc—Wallow,sianc•P/8 seismic—conn Mall ,seismic-8x•F9 Level M static Mallow,sianc seismic llowseismic Result 1 12,740 36,260 2,061 36,260 Pass 2 12,740 36,260 1,319 36,260 Pass 3 12,740 36,260 798 36,260 Pass PROJECT: Office Depot#921 SEIZMI FOR: Office Depot_2082 ADDRESS: 15060 S.W. Sequoia Tigard,OR SHEET#: 16 MATERIAL HANDLINBG ENGINEERING CALCULATED BY: tchang EST 19 DATE: 3/12/2019 TEL(909)869-0989 PROJECT#: 20190306_15 1130 E.CYPRESS ST,COVINA,CA 91724 — Beam to Column Analysis:Type 44 x 120 upright 1.Shear Strength of Pin Pi III, 3i4 Iffy Pin Diameter=0.438 in. F,,= Fn,=54000 psi AISI Table E3.4-1 Ah= d2 n/4=0.15 in. er P.= A,, F.=8136.39 lbs AISI Table E3.4-1 PShear= OP„=0.75 P.=6102lbs I 1 2.Bearing Strength of Pin Column Thickness t,=0.07 in. Since d/te< 10 C=3 mf= 1.0 F„= 65000 psi Po= C mF d t Fu=5551.651bs AISI E3.3.1 -1 PHe ;�g= $P,,=0.75 5551.65=4163 lbs 3.Moment Strength of Bracket Edge Dist.= 1 in. TChp= 0.179 in. SCh,= 0.127 in.' M,,= So F,=6985 in-lbs AISI C3.1.1 -1 Ms,,„E,h= OM.=0.9 M,,=0.9 Sc,;p•F, =6286.5 in-lbs C= 1.67 d= Edge Dist./2=0.5 in. MStrength= c d PChp P,hp= M5,.„,0,/(c.d)=7542 lbs Minimum Value of P1 Governs P,= Min(P13,_0 Pc„„)=4163 lbs MCOm,.AlI=_ (P,•4.5)+(P, (2.5/4.5) 2.5)+(P, (0.5/4.5) 0.5)=24746.72 in-lbs PROJECT: Office Depot#921 • SEIZMIC 1 FOR: Office Depot_2082 ADDRESS: 15060 S.W.Sequoia 1F1 ) Tigard,OR _ SHEET#: 17 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985" DATE: 3/12/2019 TEL.(909)869-0989 PROJECT#: 20190306_15 1130 E.CYPRESS ST,COVINA,CA 91724 BRACE ANALYSIS Type 44 x 120 upright(Panel 1) Analyzed per RMI.AISI 2012(LRFD)and the 2015 IBC. Section subject to torsional or flexural-torsion buckling(Section C4.1.2) K,•4,/R„ =0.52/0.377 =137.89 K•L/R = 152/0.377 = 137.89 KL/Rn,x =137.89 (Eq.C3.1.2.1- 1.125 DIA.-.060 TUBE o =0;2+1;2+X 91/27) SECTION PROPERTIES =(0.3772+0.3772+02) 2=0.533 in. Depth 1.125 in. Width 1.125 in. 13 =1 -(Xo/ro)2 (Eq C4.1.2-3) t 0.06 in. =l -(0/0.533)2=1 Radius 0.09 in. F, =172E/(KL/r) 2 (Eq C4.1.1-1) Area 0.201 in.' AreaNet 0.201 in. 2 =3.142.29500/137.89'=15.312 ksi I, 0.029 in.4 F2 =(1/2/3)((ax +6)2-(4)36x6))12) (Eq C4.1.2-1) S 0.051 in.' =(1 /(2.1)((15.312+ 11264.198)-(15.312+11264.198)2 S,Net 0.051 in.' -(4.1•15.312.11264.198))12)=15.312 ksi R 0.377 in. I0.029 in.' where: S, 0.051 in.' ax =172E/(KL/R)2 (Eq C3.1.2-11) R 0.377 in. =3.142 29500/ 137.892=15.312 ksi J 0.057 in.4 at =1/Ar02(GJ+(I72EC, C 0 in.')/(K,L)2) (Eq C3.1.2-9) J, 0 in. =1 /0.201.0.5332(11300.0.057 X0 0 in. +(3.142.29500 0)/(0.8.52)2)=11264.198 ksi K 0 L, 52 in. F =Min(F„F2)=15.312 ksi K 1 P =A0,..F (Eq C4.1-1) Ly 52in. x =(F,/F)12=(36/ 15.312)12=1.533 (Eq C4.1-4) Kt 0.8 F 36 ksi Since X >= 1.5: F„ 42 ksi F =(0.877/212)•F=13.429 (Eq C4.1-3) Q 1 Thus: G 11300 ksi E 29500 ksi P =26951bs Cm 0.85 P =2290 lbs Cs -1 Cb 1 C11 1 Phi, 0.9 Phix 0.85 PROJECT: Office Depot 4921 SEIZMIFOR: Office Depot 2082 -, .r.,x"`' ADDRESS: 15060 S.W. Sequoia INC Tigard,OR SHEET#: 18 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 19 DATE: 3/12/2019 TEL(909)869-0989 PROJECT#: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 — BRACE ANALYSIS Type 44 x 120 upright(Panel 1) Analyzed per RMI,AISI 2012(LRFD)and the 2015 IBC. Lateral-torsional buckling strength[Resistance] (Section C3.1.2) P, = P„00,=6141 lbs 1.125 DIA.-.060 TUBE Where: SECTION PROPERTIES Depth 1.125 in. P o =AF,,F,=0.201 36=7225 lbs Width 1.125 in. 0.06 in. M =M =SF =SmnF (Eq C3.1.2.1-1) Radius 0.09 in. F =C 0A(6 y6,)1 2/Si=875.023 ksi Area 0.201 in.' =C Av,(j+C(j2+02(6/6x))v2)/(CFS,)=875.023 ksi (Eq 3.1.2.1-4) AreaNet 0.201 in.' F = C H EdI° / S K L z=68.198 ksiIx 0.029 in.4 ( b ) ( y y) — (Eq3.1.2.1-10) Sx 0.051 in.' F m;� =68.198 ksi Sx Net 0.051 in.' Since:0.56E <2.78F R 0.377 in. F =(10/9)F,(1 -(10F/36F,))=34.1 ksi (Eq C3.1.2.1-2) ly 0.029 in.4 Reduced F eff=1 -((1 -Q)/2)•(F /F)Q•F=34.1 ksi S 0.051 in.' R, 0.377 in. Mx=1732 in-lbs A4„.},=1732 in-lbs M =m„,„„„ 1 0.057 in.' M.Ob =1559 in-lbs Myon 1559 in-lbs C„ 0 in.b PFx =n2E7/(K L)2=3079 lbs (Eq C5.2.2-6) �x 0 in. PEy =n2EJ/(K L)2=3079 lbs (Eq C5.2.2-7) X° 0 in. K 0 Max Pa =2695 lbs Lx 52 in. VFm�s =7051bs K, =((L-6)2+(D-2B)2)12=52.77 in. L 52 in. VnaB =(VFmns'LD,as)/D=972 lbs K, 0.8 F 36 ksi Brace Stress= V /P=36% Fu 42 ksi Q 1 G 11300 ksi E 29500 ksi Cm, 0.85 C, -1 C,, Cf 1 Phi,, 0.9 Phi° 0.85 S PROJECT: Office Depot#921 —7--11 ', FOR: Office Depot 2082 rs'Ii� ADDRESS: 15060 S.W.Sequoia INC i Tigard,OR -1-- ,,,,_ . -- SHEET#: 19 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 3/12/2019 TEL:(909)869-0989 PROJECT#: 20190306_15 1130 E.CYPRESS ST,COVINA,CA 91724 POST-INSTALLED ANCHOR ANALYSIS PER ACI 318-14,CHAPTER 17 Configuration 1 Type 44 x 120 upright Assumed cracked concrete application Anchor Type 1/2"dia,1.52"hef,4.5"min.slab ICC Report Number ESR-3027 1.5 her =2.28 in. Slab Thickness(h) =5 in. Ca, =12 useCa,, =2.28 in. Min. Slab Thickness(h) =4.5 in. Cat =12 useCa2 adi =2.28 in. Concrete Strength(f) =2500 ksi Diameter(da) =0.5 in. 3 h, =4.56 in. Nominal Embedment(hnort,) =2.25 in. Effective Embedment(haf) =Hef S, =5 in. Use S,add =4.56 in. Number of Anchors(n) =2 S2 =0 in. Use S2 aa, =0 in. e'N =0 e•V =0 From ICC ESR Report cal Si 1.5hef A,, =0.161 sq.in. �1�`~�1` ANc 15hef f =112540 psi S =3 in. r,,`4- t m„ Cas Cm;a =1.75 in. V C =2.75 in. Avc �i i i_Alk Np =9999 in. ha 1 1.5 cal si 1.5cat $ss ; Adj. Strength Tension Capacity= 1036 lbs 0.75 777 lbs Shear Capacity=1115 lbs 0.75 8361bs �..._ PROJECT: Office Depot#921 SEIZMIC ' FOR: Office Depot 2082 ADDRESS: 15060 S.W. Sequoia INC Tigard,OR SHEET#: 20 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 3/12/2019 TEL(909)869-0989 PROJECT#: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 ANCHOR ANALYSIS-TENSION STRENGTH Configuration 1 Type 44 x 120 upright Steel Strength 17.4.1 =0.75 17.3.3.a i 4)Ns =4)nA,f,a=0.75.2.0.161•112540=27,178 lbs 17.4.1.2 Concrete Breakout Strength (1)N„g 17.4.2 =0.65 17.3.3 c ii Category 1-B ANO=(C,ad)+S,,dJ+ 1.5hef) (Caz adJ+S2,,„+ 1.5he1)=41.587 sq.in. ANco=9hef2=20.794 sq.in. Check if ANco>=ANc ANc/ANu,=2 `t'ec,N=1 17.4.2.4 1 17.4.2.5 N= 1 17.4.2.6 K = 17 X.=1 Nb=K,k,(f)°5(hee)'5=1593 lbs 17.4.2.2 d cPN= 1 17.4.2.7 ONcbg=�(ANc/ANc0)(4jcoN)(8cdN)(PCN)(PcPN)(Nb) 17.4.2.1 0.65 (41.587/20.794) 1 1 1 1 1593=2,071 lbs Pullout Strength 4N, 17.4.3 0=0.65 17.3.3 c ii Category 1-B `Y P=1 17.4.3.6 oNP.=4)PYcpNpo,(f/2500)°5=12,999 lbs 17.4.3.1 Steel Strength(4N,a)=27,178 lbs Embedment Strength-Concrete Breakout Strength(4)N„bb)=2,071 lbs Embedment Strength-Pullout Strength(4)N,„)=12,999 lbs PROJECT: Office Depot#921 [ SEIZMIC — , FOR: Office Depot 2082 ADDRESS: 15060 S.W.Sequoia Tigard,OR SHEET#: 21 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST 1985 DATE: 3/12/2019 TEL.(909)869-0989 PROJECT#: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 ANCHOR ANALYSIS-SHEAR STRENGTH Configuration 1 Type 44 x 120 upright Steel Strength(IN,. V,a 9,245/Anchor--per report 17.5.1 =0.65 17.3.3.Condition a ii (IN.=On•Vee=0.65.2.9,245=12,019 lbs 17.5.1.2a Concrete Breakout Strength 4)V 17.5.2 =0.7 17.3.3 ci-B Ave=(1.5Ca,+Sed;+ 1.5Ce,)ha=202.8 sq.in. Ave.=3Ca,ha=180 sq.in. Check if Avee>=Ave Ave/Ave.=1.127 =1 17.5.2.5 Y'ad,v=0.9 17.5.2.6 Y'cv=1 17.5.2.7 Thy=1.897 17.5.2.8 da=0.5 in. 17.5.2.2 La=1.52 in. 17.2.6 d =1 The smaller of 7(L,/da)°2(da)°57,,,(f)°5cal 1.5 and 9? (f)°5ca11.5=12,850 lbs 17.5.2.2 a, 17.5.2.2 b =0(AvlAv ( ,v)( ,,,v)(''C,v)(`I',,v)(V,,) 17.5.2.1 0.7•(202.8/180)•1.0.9.1.1.897.12,850=17,306 lbs Pryout Strength 4)V.1 17.5.3 0=0.7 17.3.3 Ci-B K,5=1 17.5.3.1 NcbS=3,186 lbs �VaPe=(1)K.N„,g=0.7.1.3,186=2,230 lbs Steel Strength(4Nee)=12,019 lbs Embedment Strength-Concrete Breakout Strength((Web)= 17,306 lbs Embedment Strength-Pryout Strength(4V5)=2,230 lbs PROJECT: Office Depot#921 SEIZMIC FOR: Office Depot_2082 ADDRESS: 15060 S.W. Sequoia Tigard,OR SHEET#: 22 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST.1985 DATE: 3/12/2019 TEL.(909)869-0989 PROJECT#: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 OVERTURNING ANALYSIS Configuration) Type 44 x 120 upright Per RMI Sec 2.6.9 and ASCE7-10.Sec 15.5.3.6.Weight of rack with all levels loaded to 67%capacity,&with only top level loaded FULLY LOADED Wp =6,000 lbs Wd,=240 lbs ',I �/ � Fr Wp, 67%=6,000 0.67=4,020 lbs *POPA — "v V,ns=(1-0.18 1•((0.67.4,020)+240))=528 lbs poi F5 Mom,=VTran,•Ht=528.111 =58,608 in-lbs %1 Ms,=((Wp,•0.67)+Wd,)•d•Factor � F3 =((6,000.0.67)+240)•44 0.5=93,720 in-lbs F2 P0,5=1 (M0,,-Ms,)/d=(58,608-93,720)/44=-798 lbs 1. F1 0)=no uplift _. . . . . . .. . . .. . P 1fift Pmaxm,„= 1•(Mor,+M,,)/d=(58,608+93,720)/44=3,462 lbs CROSS AISLE ELEVATION TOP SHELF LOADED Shear=403 lbs Mo,,=VT„,•Ht=403 (120+((40- 10)/2))=54,405 in-lbs M, =(1+Wd,)•d=(2,000+240)•(44 0.5)=49,280 in-lbs Pnp,;f,= 1•(Mo«—M,)/d=(54,405 -49,280)/44= 116 lbs ANCHORS No.of Anchors:2 Pull Out Capacity per Anchor:777 lbs Shear Capacity per Anchor:836 lbs COMBINED STRESS Fully Loaded =((0/2)/777)+((528/4)/836) 0.158 Top Shelf Loaded =((116/2)/777)+((403/4)/836) 0.195 Seismic UpLift =((0/2)/777 0 Critical(LC#7B) PROJECT: Office Depot#921 [ SEIZMIC �' FOR: Office Depot_2082 ADDRESS: 15060 S.W.Sequoia _ '� Tigard,OR SHEET#: 23 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST,sas DATE: 3/12/2019 TEL:(909)869-0989 PROJECT#: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 — Base Plate Analysis:Type 44 x 120 upright The base plate will be analyzed with the rectangular stress resulting from the vertical load P,combined with the triangular stresses resulting from the moment Mb(if any).Three criteria are used in determining Mb: 1.Moment capacity of the base plate 2.Moment capacity of the anchor bolts 3.Vc,•h/2(full fixity) Mb is the smallest value obtained from these three criteria. F5=36000 psi \f Poo,=3143 lbs M�Se=2964 in-lbs I•I �•� P/A=Pan,/(D•B)=3143/(5.7)=90 psi fb=M /(D•B2/6)=2964/(5.72/6)=72.59 psi b1 b t b 1 7' fbz=fb (2•b,/B)=72.59•(22/7)=41.48 psi fb,=fb-fbz=72.59-41.48=31.11psi Mb=wb,2/2=(b,2/2)•(fa+fb,+0.67•fbz) MEM =(22/2)•(90+31.11 +0.67.41.48)=297.12 in-lbs SD==(B•t2)/6=0.16sq.in. - ib3 F5==0.75•Fy=27,000 psi fb/Fb=Mb/(SBaro•FBaae)=297.12/(0.16.27,000)=0.07 1b 1 PIV" Plate width B= 7 in. Base Plate Tension analysis per AC1318-14 17.2.3.4.3(b),ductile yield of base plate Plate depth D= 5 in. Plate thickness t= 0.38 in. Moment Arm(L)=(S0-b)/2=1 in. Column weft h= 3 in. Manobor=TTotal/2•L=777 in-lbs Column depth d= 2.85 in. S=D•t2/6=0.022in' bl = 2 in. 1‘4,,„1810=S•Fy=777 in-lbs Sx= 5 in. =0.9•Mn=699 in-lbs Sy= 0 in. (pM,„„s„„1a1Q<M,„„00,Base plate will yield first. TT„,„,= 1,554 lbs. Since the base plate will yield before anchor getting full tension 0.16 in. capacity,over-strength factor is not applicable. PROJECT: Office Depot#921 I S�EIZM � FOR: Office Depot 2082 ADDRESS: 15060 S.W. Sequoia _IN Tigard,OR SHEET#: 24 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchan EST.1985 g DATE: 3/12/2019 TEL.(909)869-0989 PROJECT#: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 — Equation for Maximum Considered Earthquake Base Rotation Per RMI 2012 Commentary 2.6.4 kc+kbe 1-1 WPiPi kckbe ) a,-the first iteration of the second order amplification term (X - computed using Wp,from section 2.6.4 of the Commentary S kbkce kc+kbe CNc+Nb( kckbe- kb+kce ) Where: #oflevels 3 Wp, =the weight of the ith pallet supported by the storage rack min.#of bays 3 Ne 36 hp; =the elevation of the center of gravity of the ith pallet Ne 8 with respect to the base of the storage rack k 300 kip-in/rad N, =the number of loaded levels k 3857 kip-in/rad ke =the rotational stiffness of the connector kb 244 kip-in/rad k,, 979 kip-in/rad kbe =the flexural rotational stiffness of the beam-end 1t, 2.14 in4 kb =the rotational stiffness of the base plate L 98 in k,, =the flexural rotational stiffness of the base upright-end I, 1 in4 N, =the number of beam-to-upright connections H 120 in E 29500 ksi Nb =the number of base plate connections Level 6EIb 4EI EI, 1 57 in 2 kip kbe= k = kb= L H H 2 97 in 2 kip 3 138 in 2 kip L =the clear span of the beams H =the clear height of the upright 1b =the moment of inertia about the bending axis of each beam 1, =the moment of inertia of each base upright E =the Young's modulus of the beams as=0.19 Per RMI 2012 7.1.3 p C (1.+as)Mb Cd the deflection amplification factor per section 2.6.6 Db = Mb the base moment from analysis kb Oh 0.18 Per RMI 2012 2.6.6, in unbraced direction,seismic separation for rack structure is 0.05 hoa1.Therefore tanOm, 0.5 0„„,x=2.862 rad Oh ok Maximum moment in base plate M„,,,=if one anchor,then 0 OR(#of anchors/2)*anchor pull out capacity* spacing of anchor(Sx) Mm„3,885 kip-in > M, OK PROJECT: Office Depot#921 SEIZMIC FOR: Office Depot_2082 ,1ya,r, ADDRESS: 15060 S.W.Sequoia C �Nc Tigard,OR SHEET#: 25 MATERIAL HANDLING ENGINEERING CALCULATED BY: tchang EST. gas DATE: 3/12/2019 TEL.(909)869-0989 PROJECT#: 20190306 15 1130 E.CYPRESS ST,COVINA,CA 91724 SLAB AND SOIL ANALYSIS(LRFD) P =Gravity_Load(see Basic Load Combinations)=4,609 lbs f =7.5•(f)1/2-=375 psi Base Plate Width B 7 in. d,req'd =(Ptoox/(4.1.72•((Ks•r,/e0)•104+3.6)•0)1'2=1.7 in. Depth W 5 in. b =(e0•d,req'd3/(12•(1 -µ2)•k,))14=12.432 in. b,req'd =1.5•b=19 in. P =1.72[(ke•r,/e)•104+3.6]•f,•t2=66,418 lbs Frame P =4•Pa=39,851 lbs Frame depth d 44 in. P_„/T1 =0.12 SLAB AND SOIL ANALYSIS(ASD) Concrete =MAX(ASD Load Combo 1,ASD Load Combo 2,ASD Load Combo 3) Thickness t 5 in. P =3,346 lbs fc 2,500 psi f =7.5•(f)112=375psi $ 0.6 sZ 3 P =1.72[(ks•r,/e)•104+3.6]•f,•t2=66,418lbs 1 d,req'd =(P_0/(4.1.72•((Ks•r,/e0)•104+3.6)•f,))"2=1.7 in. ks 50 b =(e0•d,req'd'/(12•(1 -µ2)•ks))14=12.432 in. r, 2.96 b,req'd = 1.5•b=19 in. e0 2,850,000 P =P./52=22,139lbs P/P =0.15 SEIZMIC J PROJECT Office Depot#921 FOR Office Depot Inc. MATERIAL HANDLING ENGINEERING SHEET NO. 26 TEL:(909)869-0989 CALCULATED BY TC 1130 E.CYPRESS STREET,COVINA,CA 91724 DATE 3/6/2019 Sales Floor Gondola Analysis SCOPE: THE PURPOSE OF THIS ANALYSIS IS TO SHOW THAT THE FOLLOWING LIGHT DUTY STORAGE FIXTURE IS IN COMPLIANCE WITH SECTION 1613 OF THE 2015 IBC AND ASCE 7-10. PARAMETERS: THE STORAGE FIXTURE UNIT USED IN THIS PROJECT CONSISTS OF LOZIER GONDOLA TYPE COMPONENTS. FIXTURE UNITS WILL BE ANALYZED UTILIZING THE FOLLOWING LATERAL FORCE FORMULA: LATERAL FORCE: Fp=[0.4*ap*SDs*Ip/Rpl*Wp*[1+2(z/h)l EXCEPT WHERE: Fp shall not be taken as less than 0.3*SDs*Ip*Wp and Fp is not required to be taken as greater than 1.6*SDs*Ip*Wp SPECIFICATIONS: - MAIN STEEL Fy=36 KSI - ANCHORS 3/8"0 X 2-1/2" MIN. EMBEDMENT HILTI KH-EZ(ICC ESR-3027) - SLAB 5 IN x 2500 PSI - SOIL 1,000 PSF FIXTURE TYPES: Calc. Pages 1 TYPE 72"H&78"H GONDOLA(DOUBLE SIDED) 27 to 30 2 TYPE 72"H&78"H GONDOLA(SINGLE SIDED) 31 to 34 SEIZMIC INC. PROJECT Office Depot#921 FOR Office Depot Inc. MATERIAL HANDLING ENGINEERING SHEET NO. 27 TEL:(909)869-0989 CALCULATED BY TC 1130 E.CYPRESS STREET,COVINA,CA 91724 DATE 3/6/2019 Loads & Distribution:TYPE 72"H & 78"H GONDOLA(DOUBLE SIDED) Per ASCE 7-10 Chapter 13.3 Fa= 1.11 <===ASSUMED SITE CLASS D Ss= 0.97 SIDS= 0.718 Depth= 36.0 IN Ip= 1 ap= 1 Rp= 2.5 z= 0 h= 1 0.4 x ap x Sin x(1+2z/h)x Wp/[Rp/Ip] 0.115 x Wp 1.6 x Sps x Ip x Wp 1.149 x Wp SHALL NOT BE GREATER THAN 0.3 x Sos x Ip x Wp 0.215 x Wp SHALL NOT BE LESS THAN 0.215 x Wp GOVERNS #.OF LEVELS= 4 LVL wDL/shelf= 20 LB wPL/shelf= 150 LB Wp= 1360 LB <===Double Sided LONGITUDINAL&TRANSVERSE DIRECTION 0.7*V= 0.7*0.215 Wp = 205 LB LATERAL FORCE DISTRIBUTION h LEVEL WEIGHT HEIGHT Fi Mot 19.0 IN 1 340 LB 19 IN 51 LB 972 IN-LB 13.0 IN 2 340 LB 32 IN 51 LB 1,637 IN-LB 13.0 IN 3 340 LB 45 IN 51 LB 2,303 IN-LB 13.0 IN 4 340 LB 58 IN 51 LB 2,968 IN-LB 58 IN 1360 LB I= 205 LB 7,880 IN-LB r r°111EIZMI� INC. PROJECT Office Depot#921 FOR Office Depot Inc. MATERIAL HANDLING ENGINEERING SHEET NO. 28 TEL:(909)869-0989 CALCULATED BY TC 1130 E.CYPRESS STREET,COVINA,CA 91724 DATE 3/6/2019 Transverse Column Analysis: Analyzed per AISI.Section properties are based on net effective sections. P= 1,360 LB M=0.75*Mot= 5,910 IN-LB A KxLx/rx= 2 x 72 IN/1.056 IN = 136.4 <===(KI/r)max KyLy/ry= 1 x 12 IN/0.484 IN = 24.8 ro= (rx^2+ry^2+xo^2)^0.5 = 1.162 IN 13= 1-(xo/ro)^2 B = 1.000 Fe is taken as the smaller of Fel and Fel: Fel= r)max^2 15.66 KSI aex= T02E/(KxLx/rx)^2 = 15.66 KSI at= 1/Aro^2[GJ+(rt^2ECw)/(KtLt)^2] = 94.71 KSI Fe2= 1/(2R)x{(aex+at)-[(aex+at)^2-(4 x13 x aex x at)]^0.5} SECTION PROPERTIES = 15.66 KSI A= 1.875 IN Fe= 15.66 KSI B= 2.563 IN Fy/2= 18.00 KSI C= 0.563 IN Since, Fe <Fy/2 t1= 0.050 IN Then, Fn= Fe t2= 0.188 IN = 15.66 KSI Aeff= 0.776 IN^2 Pn= Aeff x Fn Ix= 0.867 INA4 = 12,150 LB Sx= 0.676 IN^3 Dc= 1.92 rx= 1.056 IN ly= 0.182 INA4 Pa= Pn/Oc Sy= 0.270 IN^3 = 6,328 LB ry= 0.484 IN P/Pa= 0.21 > 0.15 J= 0.006 INA4 Thus,check: P/Pa+(Cmx*Mx)/(Max*µx)5 1.0 Cw= 0.014 INA6 P/Pao+Mx/Max<_1.0 xo= 0.000 IN Pno= Ae x Fy Kx= 2.0 = 27,936 LB Lx= 72.00 IN Pao= Pno/Oc Ky= 1.0 = 14,550 LB Ly= 12.00 IN Me= Cb x ro x Aeff x(aey x at)^0.5 Kt= 1.0 = 191 IN-KIP Lt= 12.00 IN My= Sx x Fy Fy= 36 KSI = 24,336 IN-LB G= 11,300 Mc= My[1-My/(4Me)] E= 29,500 KSI = 23,561 IN-LB Cmx= 0.85 Max=Maxo= Mc/Of Cb= 1.0 = 14,108 IN-LB Of= 1.67 µx= {1/[1-(Oc*P/Pcr)]}^-1 = 0.79 Thus, (1360 LB/6328 LB)+(0.85 x 5910 IN-LB)/(14108 IN-LB x 0.79)= 0.67 <1.0,OK (1360 LB/14550 LB)+(5910 IN-LB/14108 IN-LB)= 0.51 <1.0,OK SEIZMIC INC. PROJECT Office Depot#921 FOR Office Depot Inc. MATERIAL HANDLING ENGINEERING SHEET NO. 29 TEL:(909)869-0989 CALCULATED BY TC 1130 E.CYPRESS STREET,COVINA,CA 91724 DATE 3/6/2019 Arm & Base Check: Arm Bracket Analysis: ASSUME ONLY THE TOP CLIP IN TENSION Arm Length= 22.00 IN A= 0.100 INA2 M= (wPL+wDL)/shelf x Arm Length/2 d= 1.125 IN = 170 LB x 22 IN/2 Fy= 36,000 PSI = 1,870 IN-LB -" 2516" VARI S Tcap= 0.6 x Fy x Area = 0.6 x 36000 PSI x 0.1 INA2 = 2,160 LB Mcap= Tcap x d 11 GA. = 2160 LB x 1.125 IN = 2,430 IN-LB M/Mcap= 0.77 <1.0 Therefore Ok A Base Check: A= 1.350 IN B= 5.938 IN Mmax= 5,910 IN-LB t= 0.050 IN Sx= 0.870 IN"3 fb= Mmax,seismic/Sx Fy= 36,000 PSI = 5910 IN-LB/0.87 IN"3 = 6,793 PSI B Fb= 0.6 x Fy = 21,600 PSI fb/Fb= 0.31 <1.0 Therefore Ok Base Connector: THICKNESS= 0.12 IN d= 6. IN Tcap= 0.6 x Fy x A Fy= 36,000 PSI = 0.6 x 36000 PSI x 0.1 INA2 ASSUME A= 0.10 INA2 = 2,160 LB 1/2 Mcap= Tcap x d = 2160 LB x 6 IN BEARING AREA > T� = 12,960 IN-LB 7r Mmax/Mcap= 0.46 <1.0 Therefore Ok 11 GA. TENSION AREA -4 — BASE CONNECTOR PLATE SEIZMIC INC. PROJECT Office Depot#921 FOR Office Depot Inc. MATERIAL HANDLING ENGINEERING SHEET NO. 30 TEL:(909)869-0989 CALCULATED BY TC 1130 E.CYPRESS STREET,COVINA,CA 91724 DATE 3/6/2019 Overturning Analysis:TYPE 72"H & 78"H GONDOLA(DOUBLE SIDED) Vtotal = 205 LB Mot= 1(V* H) DEPTH(D)= 36 IN = 7,880 IN-LB TOP SHELF HEIGHT= 58 IN Mst= (wPL+wDL)*(D/2) = (1200 LB+160 LB)*36 IN/2 = 24,480 IN-LB Puplift= Mot-(0.6-0.11SDs)*Mst/D = (7880 IN-LB-12755 IN-LB)/36 IN = 0 LB <= NO UPLIFT ANCHOR: QUANTITY= 2 PULLOUT= 570 LB SHEAR= 830 LB OCCURRENCE= 2 Ps/Pt+Vs/Vt_<1.2 COMBINED STRESS= (0 LB/(2*570 LB))+(205 LB/(2*830 LB)) = 0.12 <1.2 OK SEIZMIC INC. PROJECT Office Depot#921 FOR Office Depot Inc. MATERIAL HANDLING ENGINEERING SHEET NO. 31 TEL:(909)869-0989 CALCULATED BY TC 1130 E.CYPRESS STREET,COVINA,CA 91724 DATE 3/6/2019 Loads & Distribution:TYPE 72"H & 78"H GONDOLA(SINGLE SIDE) Per ASCE 7-10 Chapter 13.3 Fa= 1.11 <===ASSUMED SITE CLASS D Ss= 0.97 Sps= 0.718 Depth= 18.0 IN Ip= 1 ap= 1 Rp= 2.5 z= 0 h= 1 0.4 x ap x SDS x(1+2z/h)x Wp/[Rp/Ip] 0.115 x Wp 1.6 x SDS x Ip x Wp 1.149 x Wp SHALL NOT BE GREATER THAN 0.3 x SDS x Ip x Wp 0.215 x Wp SHALL NOT BE LESS THAN 0.215 x Wp GOVERNS #.OF LEVELS= 4 LVL wDL/shelf= 20 LB wPL/shelf= 150 LB Wp= 680 LB <===Single Sided LONGITUDINAL&TRANSVERSE DIRECTION 0.7*V= 0.7*0.215 Wp = 102 LB LATERAL FORCE DISTRIBUTION h LEVEL WEIGHT HEIGHT Fi Mot 19.0 IN 1 170 LB 19 IN 26 LB 486 IN-LB 13.0 IN 2 170 LB 32 IN 26 LB 819 IN-LB 13.0 IN 3 170 LB 45 IN 26 LB 1,151 IN-LB 13.0 IN 4 170 LB 58 IN 26 LB 1,484 IN-LB 58 IN 680 LB = 102 LB 3,940 IN-LB SEIZMIC INC. PROJECT Office Depot#921 FOR Office Depot Inc. MATERIAL HANDLING ENGINEERING SHEET NO. 32 TEL:(909)869-0989 CALCULATED BY TC 1130 E.CYPRESS STREET,COVINA,CA 91724 DATE 3/6/2019 Transverse Column Analysis: Analyzed per AISI.Section properties are based on net effective sections. P= 680 LB M=0.75*Mot= 9,075 IN-LB <==seismic+static A KxLx/rx= 2 x 72 IN/1.056 IN = 136.4 <===(KI/r)max KyLy/ry= 1 x 12 IN/0.484 IN = 24.8 / ro= (rx^2+ry^2+xo^2)^0.5 = 1.162 IN l = 1-(xo/ro)^2 B = 1.000 Fe is taken as the smaller of Fel and Fel: Fel= n^2E/(KL/r)max^2 = 15.66 KSI C hex= n^2E/(KxLx/rx)^2 = 15.66 KSI atim \\\\ + 6t= 1/Aro^2[GJ+(1^2ECw)/(KtLt)^2] = 94.71 KSI Fe2= 1/(213)x{(6ex+at)-[(6ex+6t)^2-(4 x(3 x hex x 6t)]^0.5} SECTION PROPERTIES = 15.66 KSI A= 1.875 IN Fe= 15.66 KSI B= 2.563 IN Fy/2= 18.00 KSI C= 0.563 IN Since, Fe <Fy/2 t1= 0.050 IN Then, Fn= Fe t2= 0.188 IN = 15.66 KSI Aeff= 0.776 INA2 Pn= Aeff x Fn Ix= 0.867 INA4 = 12,150 LB Sx= 0.676 IN^3 Oc= 1.92 rx= 1.056 IN ly= 0.182 IN^4 Pa= Pn/Qc Sy= 0.270 INA3 = 6,328 LB Ty= 0.484 IN P/Pa= 0.11 < 0.15 J= 0.006 IN^4 Thus,check: P/Pa+Mx/Max<_ 1.0 Cw= 0.014 IN^6 xo= 0.000 IN Pno= Ae x Fy Kx= 2.0 = 27,936 LB Lx= 72.00 IN Pao= Pno/Oc Ky= 1.0 = 14,550 LB Ly= 12.00 IN Me= Cb x ro x Aeff x(bey x 6t)^0.5 Kt= 1.0 = 191 IN-KIP Lt= 12.00 IN My= Sx x Fy Fy= 36 KSI = 24,336 IN-LB G= 11,300 Mc= My[1-My/(4Me)] E= 29,500 KSI = 23,561 IN-LB Cmx= 0.85 Max=Maxo= Mc/Of Cb= 1.0 = 14,108 IN-LB Of= 1.67 µx= {1/[1-(Oc*P/Pcr)]}^-1 = 0.89 Thus, (680 LB/6328 LB)+(9075 IN-LB/14108 IN-LB)= 0.75 <1.0,OK SEIZMIC INC. PROJECT Office Depot#921 FOR Office Depot Inc. MATERIAL HANDLING ENGINEERING SHEET NO. 33 TEL:(909)869-0989 CALCULATED BY TC 1130 E.CYPRESS STREET,COVINA,CA 91724 DATE 3/6/2019 Arm & Base Check: Arm Bracket Analysis: ASSUME ONLY THE TOP CLIP IN TENSION Arm Length= 22.00 IN A= 0.100 IN^2 M= (wPL+wDL)/shelf x Arm Length/2 d= 1.125 IN = 170 LB x 22 IN/2 Fy= 36,000 PSI = 1,870 IN-LB vs. 2516' VARI S Tcap= 0.6 x Fy x Area = 0.6 x 36000 PSI x 0.1 INA2 = 2,160 LB Mcap= Tcap x d GA. = 2160 LB x 1.125 IN = 2,430 IN-LB M/Mcap= 0.77 <1.0 Therefore Ok A Base Check: A= 1.350 IN B= 5.938 IN Mmax= 9,075 IN-LB t= 0.050 IN Sx= 0.870 INA3 fb= Mmax,seismic/Sx Fy= 36,000 PSI = 9075 IN-LB/0.8711\11'3 = 10,431 PSI B Fb= 0.6 x Fy = 21,600 PSI fb/Fb= 0.48 <1.0 Therefore Ok Base Connector: THICKNESS= 0.12 IN d= 6. IN Tcap= 0.6 x Fy x A Fy= 36,000 PSI = 0.6 x 36000 PSI x 0.1 IN^2 ASSUME A= 0.101111'2 = 2,160 LB 1/2" i Mcap= Tcap x d P� = 2160 LB x 6 IN BEARING AREA ► = 12,960 IN-LB Mmax/Mcap= 0.70 <1.0 Therefore Ok 11 GA TENSION AREA 4-- BASE BASE CONNECTOR PLATE SEIZMIC INC. PROJECT Office Depot#921 FOR Office Depot Inc. MATERIAL HANDLING ENGINEERING SHEET NO. 34 TEL:(909)869-0989 CALCULATED BY TC 1130 E.CYPRESS STREET,COVINA,CA 91724 DATE 3/6/2019 Overturning Analysis:TYPE 72"H & 78"H GONDOLA(SINGLE SIDE) Vtotal= 102 LB Mot= 1(V* H) DEPTH (D)= 18 IN = 3,940 IN-LB TOP SHELF HEIGHT= 58 IN Mst= (wPL+wDL)*(D/2) = (600 LB+80 LB)*18 IN/2 = 6,120 IN-LB Puplift= Mot-(0.6-0.11Sp5)*Mst/D = (3940 IN-LB-3189 IN-LB)/18 IN = 42 LB <= UPLIFT ANCHOR: QUANTITY= 2 PULLOUT= 570 LB SHEAR= 830 LB OCCURRENCE= 2 Ps/Pt+Vs/Vt<_1.2 COMBINED STRESS= (84 LB/(2*570 LB))+(102 LB/(2*830 LB)) = 0.14 <1.2 OK SEIZMIC INC. PROJECT Office Depot#921 FOR Office Depot Inc. MATERIAL HANDLING ENGINEERING SHEET NO. 35 TEL:(909)869-0989 CALCULATED BY TC 1130 E.CYPRESS STREET,COVINA,CA 91724 DATE 3/6/2019 Loads& Distribution: Breakroom Bookcase Per ASCE 7-10 Chapter 13.3 Fa= 1.11 <===ASSUMED SITE CLASS D Ss= 0.97 Sus= 0.718 Ip= 1 ap= 1 Rp= 2.5 z= 0 h= 1 0.4 x ap x Sps x(1+2z/h)x Wp/[Rp/Ip] 0.115 x Wp 1.6 x SOS x Ip x Wp 1.149 x Wp SHALL NOT BE GREATER THAN 0.3 x Sus x Ip x Wp 0.215 x Wp SHALL NOT BE LESS THAN 0.215 x Wp GOVERNS wLL= 300 LB wDL= 200 LB Wp= wDL+wLL = 500 LB 0.7*V= 0.7*0.215 Wp = 75 LB Vtotal= 75 LB Mot= (V* H*2/3) DEPTH (D)= 18 IN = 4,716 IN-LB HEIGHT(H)= 94 IN Mst= (Wp)*(D/2) = 4,500 IN-LB Puplift= Mot-(0.6-0.14SDs)*Mst/D = (4716 IN-LB-2248 IN-LB)/18 IN = 137 LB <= UPLIFT ANCHOR: 3/8"0 X 2-1/2" MIN. EMBEDMENT HILTI KH-EZ(ICC ESR-3027) PULLOUT CAPACITY= 570 LB SHEAR CAPACITY= 830 LB Ps/Pt+Vs/Vt<_1.2 COMBINED STRESS= (137 LB/(2*570 LB))+(75 LB/(4*830 LB)) = 0.14 <1.2 OK