Loading...
Specifications (18) i ,, _ `+ 10-t- 0004" . q---A- -- h• ,. -a . . .., orricp eppv ORIGHT RECEIVED engineers FEB 2 5 2019 Las Vegas 1645 Village Center Cir. Suite 10 CITY OF TIGARD as Vegas,NV 89134 BUILDING DIVISION (p)702.933.7000 (r)702.933.7001 800.933.7611 wrightengineers.com STRUCTURAL Irvine 2 Venture,Suite 200 CALCULATIONS Irvine,CA 92618 (p)949.477.4001 (0 949.477.4009 PROJECT: 85°C BAKERY CAFE - WASHINGTON SQUARE Phoenix 7400 W.Detroit St 9753 SW WASHINGTON SQ. RD. UNIT D02 Suite 170 PORTLAND, OR 97223 Chandler,AZ 85226 (p)480.483.6111 (0 480.483.61 12 PROJECT No: SNL190233 Slt CLIENT: 85°C Bakery Café 91160S.300W Suite 2 DATE: February 21, 2019 Sandy,UT84070 (p)801.352.2001 (0 801.352.2006 SHEET INDEX Tucson BASIS FOR DESIGN 1 2200 East River Road DESIGN LOADS 2 Suite 104 STOREFRONT SUPPORT DESIGN TUp)on,AZ8(p)520.468.77410 S 1 400 MASONRY OPENING DESIGN M1 NEW PATIO GRAVITY& LATERAL DESIGN P1 MECHANICAL ANCHORAGE MA1 0 , ; lirof I GON a4 RATION DATE 6/30/20 These calculations are the sole property of WRIGHT ENGINEERS and may not be reproduced in whole or part without written permission.Calculations are valid only for the above named project and location and are not valid unless engineer's original wet signed seal is affixed. I!i!IRIGHT engineers BASIS FOR DESIGN 1.1 BUILDING CODE: 2014 OREGON STRUCTURAL SPECIALTY CODE 1.2 ROOF LIVE LOAD: 20 PSF(REDUCIBLE) 1.3 FLOOR LIVE LOAD: N/A 1.4 WIND LOAD: REFER TO"DESIGN WIND LOADS"SHEET 1.5 SEISMIC LOAD: REFER TO"DESIGN SEISMIC LOADS"SHEET 1.6 SNOW LOAD: REFER TO"DESIGN SNOW LOADS"SHEET 2.1 FOUNDATION: DESIGNED PER RECOMMENDATIONS BY 2014 OREGON STRUCTURAL SPECIALTY CODE. ALL FOOTINGS SHALL EXTEND A MINIMUM OF 18 INCHES BELOW PAD GRADE. ALLOWABLE DEAD PLUS LIVE LOAD SOIL PRESSURE=1500 PSF. 3.1 CONCRETE: ALL CONCRETE SHALL BE NORMAL WEIGHT OF 145 PCF USING HARDROCK AGGREGATES. MINIMUM 28-DAY COMPRESSIVE STRENGTH,fc,USED FOR DESIGN=4000 PSI.(FOUNDATION DESIGN BASED ON 2500 PSI). 4.1 MASONRY: HOLLOW, MEDIUM WEIGHT(115 PCF), LOAD-BEARING CONCRETE MASONRY UNITS CONFORMING TO ASTM C90. ALL BLOCKS SHALL BE PLACED IN RUNNING BOND CONSTRUCTION U.N.O.WITH ALL VERTICAL CELLS IN ALIGNMENT. COMPRESSIVE MASONRY STRENGTH,fm,SHALL BE 2000 PSI. 5.1 REINFORCING STEEL: REBAR SHALL CONFORM TO ASTM A615 OR ASTM A706(A706 REQ'D. FOR ALL REINFORCING TO BE WELDED)AND SHALL BE GRADE 60(fy=60 KSI)DEFORMED BARS U.N.O. REINFORCING IN SLABS ON GRADE MAY BE GRADE 40(fy=40 KSI)DEFORMED BARS FOR ALL BARS#4 AND SMALLER U.N.O. ON PLANS OR DETAILS. 6.1 STRUCTURAL STEEL: STANDARD AND YIELD STRENGTH SHALL BE AS FOLLOWS U.N.O.: SHAPE: STANDARD: Fy: ROLLED WIDE FLANGE SECTIONS ASTM A992 50 KSI OTHER STANDARD STEEL SHAPES AND ROLLED SECTIONS ASTM A36 36 KSI BARS AND PLATES ASTM A36 36 KSI PIPES ASTM A501 36 KSI OR ASTM A53 TYPE E OR S,GRADE B 35 KSI HOLLOW STRUCT.SECTIONS(RECT.) ASTM A500,GRADE B 46 KSI HOLLOW STRUCT.SECTIONS(ROUND) ASTM A500,GRADE B 42 KSI BOLTS(EXCEPT IN WOOD CONNECTIONS) ASTM A325X --- NUTS ASTM A563 WASHERS ASTM F436 ANCHOR RODS ASTM F1554,GRADE 36 36 KSI OR GRADE 55 WHERE NOTED 55 KSI (GRADE 55 RODS SHALL COMPLY WITH WELDABILITY SUPPLEMENT S1) WELDS E-70 SERIES THREADED ROD,EPDXY BOLTS,STUDS AND BOLTS IN WOOD CONNECTIONS ASTM A307 6.2 STEEL DECK: ROOF AND COMPOSITE FLOOR DECK SHALL BE BY VERCO,ASC,OR APPROVED EQUAL. DECK WELDING SHALL USE E60 OR E70 SERIES ELECTRODES. 7.1 PLYWOOD: C-D OR C-C SHEATHING CONFORMING TO THE FOLLOWING NOMINAL THICKNESS,SPAN RATING AND NAILING PATTERN U.N.O. NAILING IS ON CENTER SPACING: THICKNESS: SPAN RATING: EDGE NAILING: FIELD NAILING: THICKNESS: SPAN RATING:EDGE NAILING: FIELD NAILING: 3/8" 24/0 8d AT 6" 8d AT 12" 3/4" 48/24 10d AT 6" 10d AT 12" 7/16" 24/16 8d AT 6" 8d AT 12" 1" 60/48 10d AT 6" 10d AT 12" 15/32" 32/16 8d AT 6" 8d AT 12" 1 1/8" 60/48 10d AT 6" 10d AT 12" 7.2 NAILS: ALL NAILS EXCEPT 16d NAILS SHALL BE COMMON NAILS U.N.O. 16d NAILS MAY BE 16d SINKER, 16d BOX OR 12d COMMON U.N.O. 8.1 COLD-FORMED STEEL:JOISTS,STUDS,TRACK, ETC.,SHALL HAVE STEEL THICKNESS AND EFFECTIVE SECTION PROPERTIES AS LISTED IN THE METAL STUD MFR.'S ASSOCIATION MANUAL(ICC ER-4943). 12, 14 AND 16 GAGE STUDS AND JOISTS SHALL HAVE A MINIMUM YIELD STRENGTH OF 50 KSI. THINNER GAGE STUDS AND JOISTS,ALL GAGES OF TRACK,ALL DIAGONAL TENSION STRAPS OR BRACES, AND BRIDGING SHALL HAVE A MINIMUM YIELD STRENGTH OF 33 KSI U.N.O. Basis For Design.doc Copyright WRIGHT ENGINEERS v20071112 PROJECT: No: SHEET: W RIGHT engineers DESIGN DEAD LOADS METAL DECK ROOF(PATIO): STANIDING SEAM ROOF 2.0 3/4"GYPBOARD 3.0 1 1/2"B DECK 2.5 STEEL STUD JOISTS AT 16"o.c. 3.0 SPRINKLERS 1.0 SUSPENDED CEILING 1.0 MECH&MISC 2.5 DL(PSF): 15.0 EXTERIOR STUD WALLS: WALL FINISH 3.0 6"STUDSAT16"O.C. 1.5 1/2"PLYWOOD 2.0 (2)5/8"GYPBD 5.6 INSULATION 0.4 MISC. 2.5 DL(PSF): 15.0 INTERIOR STUD WALLS: WALL FINISH 1.5 6"STUDS AT 16"O.C. 1.5 (2)5/8"GYPBD 5.6 INSULATION 0.4 MISC. 1.0 DL(PSF): 10.0 MASONRY WALLS: 8"CMU SOLID GROUTED 78.0 12"CMU SOLID GROUTED 124.0 190233 LOADS v031706.xls COMMERCIAL Copyright WRIGHT ENGINEERS UPDATE 02-12-03 2 PROJECT: No: SHEET: RIGHT engineers DESIGN SNOW LOADS ASCE7-10 CHAPTER 7 RISK CAT: III Pg(psf): 20 I : 1.1 Pf(psf): 22 Ce: 1.0 Ps(Psf): 22 Ct: 1.0 Cs: 1.0 SNOW DRIFT LOADS AT LOWER ROOFS AND PROJECTIONS ASCE 7 SECTION 7.7,7.8 Y(Pof): 16.6 hb(ft): 1.33 LOWER ROOF OR UPPER PROJECTIO ROOF N/PARAPET WINDWARD LEEWARD LOCATION h1(ft) he(ft) I.(ft) Iu(ft) hd(ft) Pd(psf) hd(ft) Pd(psf) w(ft) Saar ge Load Due 0 OMEN hd Ps* 1 Bffl oed Snow LoEO } w E FIGURE 74.CONFIGURATION OF SNOW DRIFTS ON LOWER ROOFS UNBALANCED SNOW LOAD WINDWARD LEEWARD (HIP&GABLE ROOFS)ASCE 7 SECTION 7.6.1 W(ft) Iu(ft) Ps(psf) hd(ft) Ps(psf) w(ft) ROOF PITCH= 3:12 0.00 20.00 0.00 SLIDING SNOW ASCE 7 SECTION 7.9 W(ft) Pslide(Psf) Wslide(ft) 0.00 15.00 3 PROJECT: No: SHEET: WRIGHT engineers DESIGN WIND LOADS MAIN WIND FORCE-RESISTING SYSTEM ASCE 7-10,CHAPTER 27,DIRECTIONAL PROCEDURE-PART I p=qGCp-qi(GCpi) qz=0.00256KzKztKdV2 MEAN ROOF HT,h(FT): 13 Cp AS SHOWN IN FIGURE: ROOF PITCH: 3:12 0.0 -0.6 EXPOSURE: 13 -1.1 V(MPH): 130 RISK CATEGORY: 1 I 1 Kt: 1.00 WINDWARD LEEWARD Kd: 0.85 GCpi(+/-): 0.18 0.8 -0.5 G: 0.85 --' n/ SLOPE, 8(DEG): 14.0 HORIZONTAL DIMENSIONS Cp OF WINDWARD WALL IS USED WITH qz,ALL OTHER Cp ARE USED WITH qh LEAST(FT): 13 NOTE THE NEGATIVE WINDWARD ROOF Cp IS THE MAXIMUM UPLIFT GREATEST(FT): 33 I.E.HORIZONTAL DISTANCE FROM WINDWARD EDGE FROM 0 TO h/2 LRFD ASD LATERAL DESIGN PRESSURES WINDWARD WINDWARD NET WALL P USING POSITIVE Cp AT WINDWARD ROOF ELEV.(FT) Kz qz(PSF) WALL(PSF) NET WALL P(PSF) WALL(PSF) (PSF) 15 0.57 20.96 14.3 23.2 8.6 13.9 Kh: 0.57 20 0.62 22.80 15.5 24.4 9.3 14.6 LRFD ASD 25 0.66 24.27 16.5 25.4 9.9 15.2 qh(PSF): 21.0 12.6 30 0.70 25.74 17.5 26.4 10.5 15.8 LEEWARD WALL(PSF): 8.9 5.3 40 0.76 27.95 19.0 27.9 11.4 16.7 WINDWARD ROOF(PSF): 0.0 0.0 50 0.81 29.79 20.3 29.2 12.2 17.5 LEEWARD ROOF(PSF): 11.0 6.6 60 0.85 31.26 21.3 30.2 12.8 18.1 70 0.89 32.73 22.3 31.2 13.4 18.7 NET ROOF P(PSF): 11.O 6.6 80 0.93 34.20 23.3 32.2 14.0 19.3 INTERNAL P(PSF): 3.8 2.3 90 0.96 35.30 24.0 32.9 14.4 19.7 100 0.99 36.41 24.8 33.7 14.9 20.2 120 1.04 38.25 26.0 34.9 15.6 20.9 140 1.09 40.08 27.3 36.2 16.4 21.7 160 1.13 41.56 28.3 37.2 17.0 22.3 180 1.17 43.03 29.3 38.2 17.6 22.9 200 1.20 44.13 30.0 38.9 18.0 23.3 LRFD ASD T.O.PARAPET(FT): 14 WINDWARD LEEWARD £,PARAPET I PARAPET PARAPET,p=qpGCpn PARAPET PARAPET PRESSURES PRESSURES Kz AT T.O.PARAPET: 0.57 NET GCpn: 1.5 1.0 - - gp(PSF): 20.96 NET P(PSF): 31.4 21.0 52.4 31.4 - NOTE PARAPET PRESSURES SHOWN ARE NET PRESSURES,DUE WINDWARD LEEWARD TO THE COMBINATION OF THE PRESSURES ON THE FRONT AND _÷ -). BACK PARAPET SURFACES. VERTICAL DESIGN PRESSURES WIND NORMAL TO RIDGE FLAT ROOF OR WIND PARALLEL TO RIDGE Cp: -1.1 Cp: -1.3 LRFD PUPLIFT(PSF): 22.6 LRFD PUPLIFT(PSF): 26.9 ASD PuvuFT(PSF): 13.6 ASD PUPLIFT(PSF): 16.2 190233 2012 Wind ASCE 7 v20160211.zlsm MWFRS Copyright WRIGHT ENGINEERS UPDATE 08-28-06 4 PROJECT: No: SHEET: ............... • WRIGHT engineers DESIGN SEISMIC LOADS ASCE 7-10 SECTION 12.8-EQUIVALENT LATERAL FORCE PROCEDURE SITE CLASS: D RISK CATEGORY: III SITE SPECIFIC R: 6.5 IE: 1.25 SDs: 0.723 Ct: 0.02 Ss: 0.978 Sol : 0.446 x: 0.75 S1 : 0.425 SEISMIC DESIGN CAT: D Ta(SEC): 0.1 Fa: 1.109 CS : 0.139 TL(SEC): 16.0 Fv: 1.575 CS MIN: 0.040 Cs MAX: 0.593 DESIGN BASE SHEAR,V: 0.139 W PRIMARY SYSTEM DIAPHRAGMS&COLLECTORS V(K): 0.14 MIN(12.10.1.1):0.181 W k: 1 MAX:0.361 W VERT.DISTRIBUTION,Fx DIAPHRAGM,Fp LEVEL WEIGHT(K) ELEV.(FT) LRFD ASD 12.10.1.1 GOVERING Fp Fp/Fx ROOF 1.0 14.0 0.139 Wx 0.099 Wx 0.139 W 0.181 W 1.30 CONNECTIONS LRFD ASD ASCE 7-10 SECTION 12.1.3 Fp: 0.096 Wp 0.069 Wp ARCHITECTURAL,MECHANICAL&ELECTRICAL COMPONENT ANCHORAGE ASCE 7-10 CHAPTER 13 Fp(EQ.13.3-1) Ip(13.1.3): 1.0 ap Rp z(FT) LRFD ASD MAX(EQ.13.3-2): 1.157 Wp 1.0 2.5 14.00 0.347 Wp 0.248 Wp MIN(EQ.13.3-3): 0.217 Wp 1.0 2.5 12.25 0.318 Wp 0.227 Wp 1.0 2.5 10.50 0.289 Wp 0.207 Wp 1.0 2.5 8.75 0.260 Wp 0.186 Wp 1.0 2.5 7.00 0.231 Wp 0.165 Wp 1.0 2.5 5.25 0.217 Wp 0.155 Wp 1.0 2.5 3.50 0.217 Wp 0.155 Wp 1.0 2.5 1.75 0.217 Wp 0.155 Wp 190233 2018 Seismic IBC v20190121.xls 2012 or 2018 Seismic IBC Copyright WRIGHT ENGINEERS v2007.07.03 5 PROJECT: No: SHEET: A This is a beta release of the new ATC Hazards by Location website.Please contact us with feedba: RIGF1T 1 TC Hazards by Location engineers Search Information Address: 9585 SW Washington Square Rd,Tigard,OR 97223,USA Coordinates: 45.4502155,-122.78062239999997 Timestam p: 2019-02-02T17:46:59.3232 Hazard Type: Seismic Reference Document: ASCE7-10 Risk Category: III Site Class: D Report Title: 85C-WASHINGTON SQUARE Map Results � � r I GtiYrr€tui ' (3lshort ., '` ids � �, . : �`� � �etc '' " , � * i 1 ?"-s r*E � a ` MaeI map'Mr- =:':1!.]..± ut,a ' .Pr t,. _ ,as . 'cad -rt.** .w - _ m} its MCER Horizontal Response Spectrum Design Horizontal Response Spectrum Sa(9) Sa(9) 1.00 0.60 0.80 0.60 0.40 0.40 0.20 0.20 0.00 0.00 0 5 10 15 Period(s) 0 5 10 Text Results Basic Parameters Name Value Description Ss 0.978 MCER ground motion(period=0.2s) S1 0.425 MCER ground motion(period=l.Os) SMS 1.084 - Skil0.67 SiteSite-modifiedmodified spectralspectral accelerationacceleration valuevalue SDS 0.723 Numeric seismic design value at 0.2s SA S01 0.446 Numeric seismic design value at 1.Os SA Additional Information Name Value Description SDC D Seismic design category 6 PROJECT: No: SHEET: Fa 1.109 Site amplification factor at 0.2s 1121RIGHT Fv 1.575 Site amplification factor at 1.0s ePGA 0.428 MCEG peak ground acceleration C1 I Cl 8 @ C S FPGA 1.072 Site amplification factor at PGA PGAM 0.459 Site modified peak ground acceleration TL 16 Long-period transition period(s) SsRT 0.978 Probabilistic risk-targeted ground motion(0.2s) SsUH 1.09 Factored uniform-hazard spectral acceleration(2%probability of exceedance in 50 years) SsD 2.277 Factored deterministic acceleration value(0.2s) S1RT 0.425 Probabilistic risk-targeted ground motion(1.0s) Si UH 0.488 Factored uniform-hazard spectral acceleration(2%probability of exceedance in 50 years) S1D 0.746 Factored deterministic acceleration value(1.0s) PGAd 0.83 Factored deterministic acceleration value(PGA) The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design. Disclaimer Hazard loads are provided by the United States Geological Survey Seismic Design Web Services. While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or liability for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy,suitability and applicability by engineers or other licensed professionals.ATC does not intend that the use of this information replace the sound judgment of such competent professionals,having experience and knowledge in the field of practice,nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website.Users of the information from this website assume all liability arising from such use.Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report. 7 PROJECT: No: SHEET: EgRIGHT engineers VAS 4t 17:41(‘;\1 .`- Uqctivo.c 4-KIAACS 36\rfs:: 0:41/ 0.liqrS•rsWr (1I-11. (1) IMCE _ AScE., "V r- 6 vsr VA a 1 (?•401rSps ettn_ (1.t 0_22A Tr 0.4 0\ .-41.3YIS (1 4 —L k T... 5.2 A14,0, c./ 5 ostc .94' 1%, 1.14 %Kiltvixtr"‘4.118 A ?ivveN.A.4\ Vesliw kin 6 fsf 1,,o,R-DvAir,k vas. Si PROJECT 05°C fifir -1 (AK- No• SHEET, Colv+VV6.,5 • • ,Y Z X 3 6 M3 N 1 N5 s 4 Wright Engineers SK- 1 EA 24'-0" OPENING (GLASS DOOR) Feb 21, 2019 at 12:40 PM 190233 24FT OPENING.r3d S2 .Y A Z X ) 16 -.265k/ft 1i A y.YV • y {Iii ' 11 N5 )14 Loads: BLC 1, DEAD Wright Engineers SK-2 EA 24'-0" OPENING (GLASS DOOR) Feb 21, 2019 at 12:43 PM 190233 24FT OPENING.r3d S3 Y Z X 13 �N6 .09k/ft -.01k/ft. X11 Y% N5 -.01k/f4 4 Loads: BLC 2, SEISMIC Wright Engineers SK-3 EA 24'-0" OPENING (GLASS DOOR) Feb 21, 2019 at 12:43 PM 190233 24FT OPENING.r3d S4 Company : Wright Engineers EIRIGHT illRisA Designer EA Job Number : 190233 engineers Model Name : 24'-0"OPENING(GLASS DOOR) Global Display Sections for Member Calcs 5 Max Internal Sections for Member Calcs 97 Include Shear Deformation? Yes Increase Nailin• Ca•acit for Wind'? Yes Include Warping? Yes Trans Load Btwn Intersecting Wood Wall? Yes Area Load Mesh (in^2) 144 Merge Tolerance(in) .12 P-Delta Analysis Tolerance 0.50% Include'P-Delta for Walls? Yes Automatically Iterate Stiffness for Walls? Yes Max Iterations for Wall Stiffness 13 Gravity Acceleration (ft/sec^2) 32.2 Wall Mesh Size (in) 24 Eigensolution Convergence Tol. (1.E-) 4 Vertical Axis Y Global Member Orientation Plane XZ Static Solver Sparse Accelerated I Dynamic Solver - Accelerated Solver 'Hot Rolled Steel Code AISC 14th(360-10): LRFD IAdjust Stiffness'? Yes(Iterative) MI1111t17 �� aril RISAConnection Code AISC 14th(360-10): LRFD Cold Formed Steel Code AISI 5100-12: ASD Wood Code AF&PA NDS-12: ASD Wood Temperature < 100F -,1016',,, Concrete Code ACI 318-11 Masonry Code ACI 530-13:ASD i fit Aluminum Code AA ADM1-10:ASD- Building Number of Shear Regions 4 Region Spacing Increment(in) Biaxial Column Method Exact Integration Parme Beta Factor(PCA) .65' Concrete Stress Block Rectangular Use Cracked Sections'? Yes Use Cracked Sections Slab? Yes Bad Framing Warnings? No Unused Force Warnings? Yes Min 1.Bar Diem.Spacing'? I No Concrete Rebar Set REBAR SET ASTMA615 IMin % Steel for Column .; , 1 lc Max % Steel for Column _ 8 a i S5 PROJECT: No: SHEET: CaRCompany : Wright Engineers I IIIRISA Designer : EA JobNumber : 190233 engineers Model Name : 24'-0"OPENING(GLASS DOOR) Global, Continued Seismic Code ASCE 7-10 Seismic Base Elevation (ft) Not Entered Add Base Weight? Yes Ct X .02 Ct Z .02 T X(sec) Not Entered T Z(sec) 1 Not Entered RX 13 RZ 3 CtExp. X .75 Ct Exp. Z .75 SD1 1 SDS 1 Si 3 TL (sec) 5 1 Risk Cat I or II Om Z 1 OmX 1 1 Rho Z 1 _ Rho X 1 1, r iu1� Footing Overturning Safety Factor 1 Optimize for OTM/Sliding No 'r, Check Concrete Bearing No Footing Concrete Weight(k/ft^3) 1.145 ' 'Footing Concrete fc(ksi) 4 Footing Concrete Ec(ksi) 3644 Lambda 1 Footing Steel fy(ksi) __ 60 Minimum Steel 0.0018 Maximum Steel 0.0075 Footing Top Bar #6 Footing Top Bar Cover(in) 1.5 Footing Bottom Bar #6 Footing Bottom Bar Cover(in) 13 Pedestal Bar #6 Pedestal Bar Cover(in) 1.5 Pedestal Ties #4 Hot Rolled Steel Properties pert es Label E[ksi] G Lksij Nu Therm(\1 E...Density[k/ft... Yield[ksi] Ry Fu[ks.i]_ Rt 1 A36 Gr.36 29000 I 11154 .3 I .65 .49 36 1.5 58 1.2 2 11154 A572 Gr.50 29000 i .3_ 1 .65 .49 50 I 1.1 65 ,',11, P` 3 1 A992 29000 1.1154 4 A500Gr.42 29000 11154 .3 I .65 .49 ' 42 --- 1.4 58 1.3 1 5 I A500 Gr.46 I 29000 11154 .3 .65 .49 46 1 1.4 58 1.3 1 Hot Rolled Steel Section Sets Label Shape Type Design List Material Design R_. A[in2] lyy[in4j Izz[in4] J[in4] 7 JAMB HSS8x6x6None None I A500 Gr.46 I Typical 8.97 50.6 1 79.1 I 100 2 I HEADER 1 HSS12x6x61 None None 1 A500 Gr,46 I Typical 1 11.8 72.9 1 215 178 '1 S6 PROJECT: No: SHEET: Company Wright Engineers MRIGHT IiIRISA Designer EA Job Number 190233 e n g l n e e r S Model Name : 24'-0"OPENING(GLASS DOOR) Member Primary Data Label I Joint J Joint K Joint Rotate(deg) Section/Shape Type Design List Material Design... 1 , M1 N1 N3 I JAMB Nonel None I A500 Gr 46 'Typical 4 M2 N4 N6 JAMB None, None A500 Gr.46 Typical; 3 M3 I N2 N5 I HEADER None None A500 Gr.46 Typical Member Advanced Data Label I Release J Release I Offset[in] J Offset[in] T/C Only Physical TOM Inactive Seismic Design... M1 Yes None 3 M3 BenPIN BenPIN Yes None Hot Rolled Steel Design Parameters Label Shape Length[ft] Lbyy[ft] Lbzzjft] Lcomp topjftl Lcomp bot[ftl L-torqu... Kyy Kzz Cb Function 1 M1 JAMB I 30 I I 1 Lateral JAMB 30 Lateral 3 M3 HEADER 24 -_ Lateral Member Distributed Loads (BLC 1 : DEAD) Member Label Direction Start Maanitude[k/ftF] End Magnitude[k/ft,F] Start Locationfft.%] End Location(ft.%1 1 M3 Y -.1 -.1 ' 0 1 0 M3 �_ , -.165 1'' 0 0 Member Distributed Loads (BLC 2 : SEISMIC) Member Label Direction Start Magnitudejk/ft.F] End Magnitude[k/ft,F] Start Location[ft.%] End Location[ft.%] 1 M3 Z -.09 -.09 0 0 2 M1 Z -.01 -.01 0 0 3 1 M2 Z I -.01 I -.01 I 0 0 Basic Load Cases BLC Description Categry X GravityY Gravity Z Gravity Joint Point Distribu...Area(M...Surfac... 1 DEAD DL -1 I1 2 2 SEISMIC ' EL a 3 Load Combinations Description Sol... PDelta S... B... Fa... BLC Fa...B... Fa... BLC Fa...B...Fa...B... Fa...B...Fa...B... Fa...B...Fa...B... Fa... 1 1.4DL IYesl Y jaiLI1.4.L I I I I I II I 2 1..2DL + 1.OEL Yes 7 Y 1.27EL 1 I _1 1 1 1 I 3 DEFLECTION(DEAD) Y DL 1 I 1 I 4 I DEFLECTION 1 YADL 1 EL .7 11 1 L ( � Envelope AISC 14th(360-10):LRFD Steel Code Checks Member Shape Code... Loc[ft] LC Shear Che...Locjft]Dir LC phi*Pnc...phi*Pnt[k]phi*Mny..phi*Mn z...Cb Eqn 1 M1 HSS8x6x6I .157 10.938 2 .010 0 z 12 188.203 371.358 68.31 183.145 1 H1-lb 2 HSS8x6x6 1 .157 10.938r-i A .010= 0 z 2 88.203371.358 68.31 83,145 1;'H1-1b' 3 M3 HSS12x6x6 .242 I 12 2 .027 0 I y 11 1197.998 488.52 90.143 154.56 1....H1-1b ALL < 1.0 --> OKAY S7 PROJECT: No: SHEET: • Company : Wright Engineers MRIGHT 1 bRISA Job Number 19 EA 0233 Model Name : 24'-0"OPENING(GLASS DOOR) engineers Envelope Member Section Deflections Memmlber 1 Seciimaxl x o[in] L3C y 0[M] L3C z orini_7 L3C x Rotoate[r... L3C (n)LINI/CRatio L3C (n)UNzcRatio LC31 1 2 ' min1 0 1 3 0 1 3 0 3 0 3 , NC , 3 NC 3 3 2 max 1 -.002 3 0 1 3 0 3 0 1 3 1 NC 3 NC 3 4 ; min -.002 3 ,, 0 3 -412 4 0 1 3 1 NC 3 874.474 4 5 1 3 max -.002 3 0 3 0 , 3 0 3 NC 3 NC 3 6 1 min -.002 '',7 -3 0 1 3 -.551 4 0 ; 3 NC I 3 I 652.855 -4 7 4 max -.002 3 0 3 0 3 0 : 3 NC ' 3 1 NC 3 8 min I -.002 3 0 3 -.365 ' 4 , 0 3 I NC 1 3 1 987.11 4 9 5 max -.002 3 0 1 3 0 3 ; 0 1 3 1 NC 3 NC 3 10 1 min -.002 3 0 1 3 0 , 3 0 1 3 I NC 3 NC 3 11 M2 1 max 0 3 0 3 0 , 3 0 3 NC 3 NC 3 12 min 0 3 0 1 3 1 0 1 3 1 0 1 3 NC 3 ; NC 3 13 2 max -.002 3 1 0 ' 3 0 3 0 1 3 NC 3 NC 3 14 min112 -.002 3 1 0 3 ; -.412 4 I 0 1 3 I NC 1 3 874 474k 4 15 3 max -.002 3 0 3 0 3 0 3 ' NC 3 NC 1 3 16 min -.002 3 0 T 3 - 1 I 4 1 0 1 3 1 NC ; 3 652.855 4 17 I4 max -.002 ' 3 I 0 3 , 0 ; 3 0 3 NC , 3 NC 1 3 18 ' min 1 002-. 1 3 0 3 ; -.365 1 4 0 11 3 NC 1 3 i 987.11 i 4 19 1 5 max -.002 3 0 3 0 3 ; 0 1 3 1 NC 3 NC , 3 ' 20 min -.002 3 , 0 3 0 3 0 3 I NC 1 3 N;C:::''77-; 3 21 M3 1 max 0 3 -.002 3 0 1 3 0 3 NC 3 NC 3 22 min 0 3 -.002 1 3 -.524 1 4 '-1.713e-31 4 NC 3 NC;1,1- --:;;;;;117T,T-3 23 2 max 0 3 1 -.263 , 3 0 3 0 1 3 1106.367 3 NC 3 24 min ' 0 1 3 -.263 3 -.683 4 ;-1.713e-3 4 11106.367, 3 11817.043 ;-'4 1 25 3 max 0 3 -.368 1 3 0 3 1 0 1 3 _1. 788.287 3 NC 3 26 min 0 ; 3 ' -.368 -1 3 -.746 : 4 1-1.713e-3 4 788.287 3 1294.643; 4 27 4 max 0 3 -.263 3 0 ' 3 0 3 1106.367 3 NC 3 28 ' min 0 I 3 -.263 1 3 -.683 4 -1.713e-31 4 1106367 3 1817043 4 29 5 max 0 3 -.002 1 3 0 3 0 3 NC 3 NC 3 30I min 0 , 3 -.002 3 -.524 4 I-1.713e-3 4 NC 1 3 NC 3 - . . S8 PROJECT: No: ,SHEET: • Z x girN N8 M � s I � N10 M3 1 N5 Ii .1 4 Wright Engineers SK- 1 EA 31'-0" OPENING Feb 21, 2019 at 1:01 PM 190233 31 FT OPENING.r3d S9 Z X 45N, -.1k/ft Loads: BLC 1, DEAD Wright Engineers I SK-2 EA 31'-0" OPENING Feb 21, 2019 at 1:02 PM 190233 31 FT OPENING.r3d S10 r ►1 z x 515911, -.09k/ft< -.01 k/f -.01 k/f Loads: BLC 2, SEISMIC Wright Engineers SK-3 EA 31'-0" OPENING Feb 21, 2019 at 1:03 PM 190233 31 FT OPENING.r3d S11 . EIRIGHT IiIRISA Company : Wright Engineers Designer : EA Job Number : 190233 e n g 1 n e a r S Model Name : 31'-0"OPENING Global Display Sections for Member Calcs 5 Max Internal Sections for Member Calcs 97 Include Shear Deformation? Yes Increase Nailing Capacity for Wind? 1Yes Include Warping? Yes Trans Load Btwn Intersecting Wood Wall'? Yes ;Area Load Mesh (in^2) 144 Merge Tolerance (in) 1 .12 P-Delta Analysis Tolerance 0.50% [Include P-Delta for Walls? Yes Automatically Iterate Stiffness for Walls? Yes Max Iterations for Wall Stiffness 13 Gravity Acceleration (ft/secA2) 132.2 Wall Mesh Size (in) 124 Eigensolution Convergence Tol. (1.E-) 4 Vertical Axis Y Global Member Orientation Plane 1XZ Static Solver Sparse Accelerated _ Dynamic Solver Accelerated Solver Hot Rolled Steel Code AISC 14th(360-10): LRFD Adjust Stiffness'? 1 Yes(Iterative) RISAConnection Code AISC 14th(360-10): LRFD Cold Formed Steel Code AISI 5100-12: ASD Wood Code AF&PA NDS-12: ASD Wood Temperature < 100F Concrete Code ACI 318-11 Masonry Code ACI 530-13:ASD Aluminum Code AA ADM1-10: ASD- Building Number of Shear Regions 14 Region Spacing Increment(in) 1417' 14 Biaxial Column Method Exact Integration Parme Beta Factor(PCA) 1,.65 Concrete Stress Block Rectangular Use Cracked Sections'? Yes Use Cracked Sections Slab? Yes Bad Framing Warnings'? I No Unused Force Warnings? Yes jMin 1 Bar Diam. Spacing'? No Concrete Rebar Set REBAR SET ASTMA615 Min% Steel for Column . 1 ,„ta Max % Steel for Column 18 1 -47141.0., Miiiiirow S12 PROJECT: No: SHEET: • Company : Wright Engineers DIiIRISAesigner EA Job Number 190233 e n g I n e e r s Model Name 31'-0 "OPENING Global, Continued Seismic Code ASCE 7-10 ;Seismic Base Elevation (ft) i Not Entered Add Base Weight? Yes LCt X .02 Ct Z .02 T X(sec) Not Entered T Z (sec) Not Entered R X ,,3 RZ 3 Ct Exp.X .75 Ct Exp. Z .75 SD1 1 SDS 1 S1 1 TL (sec) 5 Risk Cat I or II Om Z 1 OmX 1 Rho Z �__-__ 1 RhoX ,1 Footing Overturning Safety Factor 11 Optimizefor OTM/Sliding No ,p Check Concrete Bearing No (Footing Concrete Weight(k/ft"3) 1.145 Footin Concrete fc(ksi) 4 Footing Concrete Ec(ksi) 13644 Lambda 1 Footing Steel fy(ksi) 160 (Minimum Steel 0.0018 Maximum Steel 10.0075 (Footing Top Bar #6 Footing Top Bar Cover(in) 1 5 Footing Bottom Bar #6 (Footing Bottom Bar Cover(in) 13 'Pedestal Bar #6 Pedestal Bar Cover(in) 1.5 Pedestal Ties ##4 Hot Rolled Steel Properties [ksi] [ksi] .Densit k/ft... Yield[ksi] Rte Fu[ksi _ - Rt 1 A36 Label 29000 111540 3 Therm 1 E.. .49 36 1.5 58 i 1.2 L2 I ``A572Gr.50 �T 111 3 . 9 50 ` 1.1 1 45 1.1 I 3 A992 4:oo.a 111 'Lei .3 1 .65 .49 50 1.1 65 1.1 4 I A511* Gr.42 ;1 * 111 << .3 .6 ;9 r.sR 4 '$ 1.3; 5 A500 Gr.46 29000 11154 .3 I .65 .49 46 1.4 58 1.3 I Hot Rolled Steel Section Sets Label Shape Type Design List Material Design R... A Fin21 Ivy[in41 lzz[in41 J rin41 1 1 JAMB HSS8x6x6.1 None I None A500 Gr.46 Typical 8.97 50.6 79.1 100 2 None None € b� ,�W ,HSS12x6x6 ' A500 Gr,46 Typical 1 �� 3 CHANNEL I C8x11.5 None None A36 Gr.36 ' Typical 3.37 1.31 32.5 .13 S13 PROJECT: No: SHEET: Company : Wright Engineers I H T illRasA Designer EA Job Number : 190233 S n g I n e e r S Model Name : 31'-0"OPENING Member Primary Data Label I Joint J Joint K Joint Rotate(deo) Section/Shape Type Design List Material Design... 1 M1 N1 I N3 I JAMB None None I A500 Gr.46 Typical 2 M2 " N4 `N6 I JAMB !None None A500 Gr.46 'Typical 3 I M3 N2 N5 I I HEADER None None A500 Gr.46 Typical 4 M4 N7 N8 CHANNEL .None1 None A36 Gr36 Typical 5 M5 N9 N10 _ CHANNEL 'None, None I A36 Gr.36 Typical Member Advanced Data Label I Release J Release I Offset[in] J Offset[in] T/C Only Physical TOM Inactive Seismic Design ... 1 M1 BenPIN 1 Yes None_ nPIN L Yes � None 3 M3 BenPIN BenPIN Yes None ti t �_ • `. 1 Yes ; - None 5 M5 Yes I None Hot Rolled Steel Design Parameters Label Shape Length[ft] Lbyy[ft] Lbzz[ft] Lcomp top[ft]Lcomp bot[ftL-torou... Kyy Kzz Cb Function 1 M1 JAMB 30 Lateral M2 ,JAMB 301. ��� t �� Lateran 3 M3 HEADERAn{ 31 Lateral M4 z �.A N 7 NEL _W-7. -:d,l« `� r= _ i tiit `�Ili��i 1t lial_ 5 M5 CHANNEL, 7 Lateral Member Distributed Loads (BLC 1 : DEAD) Member Label Direction Start Ma.nitude k/ft F End Ma.nitude k/ft F Start Location ft% End Location ft% 1 M3 Y -.1 -.1 0 0 Member Distributed Loads (BLC 2 : SEISMIC) Member Label Direction Start Magnitude[k/ft,F] End Magnitude[k/ft,F] Start Location ft% End Location[ft,%] 1 M3 Z .09 0 2 NilN k I i • {) 3 M2 Z 1 -.01 0 0 Basic Load Cases BLC Description Category X GravityY GravityZ Gravity Joint Point Distribu...AreajM...Surfac... 1 DEAD DL -1 1 2 i SEISMIC EL ' 3 Load Combinations Yes Description Sol... PDelta S... B... Fa...1.4BLC Fa...B... Fa... BLC Fa...B... Fa...B... Fa...B... Fa...B... Fa...B... Fa... 1 1.4DL B...TFa_. 2 1.2DL+ 1.OEL Yes Y DL 1.2' EL 1 3 DEFLECTION(DEC)AY DL 1 I 4 '' DEFLECTION Y ,DL -1 1 EL 7 S14 PROJECT: No: SHEET: iIRISA 190 233 R I G H TComgpeyer WEAright Engineers Model Name : 31'-0"OPENING 8CgI1eB r S Envelope A/SC 14th(360-10): LRFD Steel Code Checks Member Shape Code... Loc[ft] LC Shear Che...Loc[ft]Dir LC phi*Pnc... hi*Pnt[klphi*Mn y...phi*Mn z...Cb Eqn 1 M1 HSS8x6x6 .178 10.938 2 .012 0 z I2 88.203 371.358 68.31 83.145 1 IH1-1b .i 2 M2 HSS8x6x6 ` 4, 10.938 ' 2 .012 0 iz 2' 88.203 371.358 68.31 83.145 1 Hi-1 ba 3 M3 HSS12x6x6 .251 15.5 2 .016 0 H z 2 1119.009 488.52 90.143 154.56 1. ..H1-1b, 4 M4 _": C8x11.5 X359 3.5 I 2 I .010 0 z,2:41.942 109.188 3.353 24.85 I1=---H1-lb 5 1 M5 C8x11 5 ' .359 3.5 1 2 1 .010 1 0 z I2 41.942 109.188 3.353 24.85 '1....H1-1b I\ ALL < 1.0 --> OKAY S15 PROJECT No: \SHEET: . MRIGI-Imer IIRISA Company : Wright Engineers Designer : EA JobNumber : 190233 engineersModel Name 31'-0"OPENING Envelope Member Section Deflections Memberec x[in] LC in 1 max'' y[ ] ( LC z[in] LC x Rotate jr... LC (n)L� LC M1 1Ratio LC (n)L/z Ratio 0 3 0 3 0 3 0 3 NC 3 NC 3 0 3 1 0 3 0 3 1 0 3 I NC 3 NC i 3 3 2 max 0 3 1 0 3 0 3 0 1 3 NC 3 NC 1 3 4 ,min 0 3 0 3 -.548 14 0 3 NC 3 1705.609 4 5 3 max -.001 3 0 3 0 3 0 3 NC 3 NC 3 6 1 1rnin`' -.001 3 0 3 -.759 4 0 3 1 NC 3 527:645 :4 7 14 max -.002 3 0 3 0 30 3 NC 3 NC 3 8 L 1 min -.002 3 I 0 ; '3' -.565 4 'I 0 3 NC 3 800.008 1 4 1 9 I 5 max -.002 3 0 3 0 3 0 1 3 NC 3NC 13 10 min ', -.002 3 0 1 ;3 -.153 14 0 13 NC 3 1 NC 3 11 M2 1 max 0 3 0 I 3 0 3 0 3 NC 3 NC 3 12 1 min 0 3 0 1 3 0 3 1 0 3 NC 1 3 NC 3 1 13 2 max 0 1 3 0 3 0 1 30 3 NC , 3 NC I3 1 14 ! min 0 3 ] 0 ' 3 -.548 4 0 3 NC 13 I 705.609 4_1 15 3 max -.001 3 I 0 3 0 3 0 3 NC 3 NC 3 16 min -.001 , 3 0 1 3 -.759 4 0 , 31 NC 3 1 527.645 4_ 17 I 4 max -.002 3 0 3 0 3 0 3 NC 3 NC 3 18 min -.002 3 0 1 3 -.565 J 4 0 3 1 NC 3 800.008 1 4 19 15 max -.002 3 1 0 3 0 1 3 I 0 1 3 NC 3 NC 1 3 20 min -.002 3 0 3 -.153 4' 0 13' NC 3 1 NC 1 3 21 M3 1 max 0 3 -.001 1 3 0 3 0 3 1 NC 3 NC 3 22 min I 0 3 -.001 1 3 -.705 4 2.536e-3 4 I NC 1 3 NC , 3 23 2 max 0 3 -.334 3 0 3 1 0 I 3 1117.7991 3 NC 1 3 24 ! ! min 0 1 3 -.334 ' 3 -1.146 4 1-2.536e-3 4` 1117.7991 3 1 843.167 14 25 3 max 0 __. 3 1 -.469 3 0 I 3 0 ' 3 796.431 3 NC 13 26 min 0 13 -.469 3 -1.324 14 1-2.536e-3-' 796.431 ' 3 1 600.757 1 4 27 4 max 0 3 -.334 1 3 0 3 0 3 1117.799 3 NC 3 28 min I 0 1 3 -.334 13 -1.146 4 2.536e-3 4 11117.7991 3 843.167 1 4 29 5 max 0 3 -.001 3 0 3 0 3 NC 3 NC I 3 30 1 min 0 '' 13 1 -.001 1 3 -.705 4 1-2.536e-3 4 NC 1 3 NC 3 31 M4 1 1 max 0 3 1 0 3 0 3 0 3 NC 3 NC 3 32 min 0 3 1 0 1 3 0 3 0 1 1 NC 3' NC 3 33 2 max 0 3 -.001 1 3 0 3 0 3 NC 3 NC 3 34 1 min 0 3 -.001 3 -.105 4 I 0 1 3 NC 3 800.413 4 35 1 3 max 0 3 -.002 3 0 3 0 1 3 NC 3 NC I 3 36 1 min 0 3 I -.002 1, 3 -.153 4 0 3 NC 3 1 549.695 4 37 I 4 max 0 3 1 -.001 3 0 3 0 3 NC 3 NC 3 38 I min ', 0 3 1 -.001 13 -.105 4 0 13 NC , 3 800.413 4 39 5 maxi 0 3 0 1 3 0 3 0 3 NC 3 NC 3 40 I min , 0 3 0 3 0 i 3 1 0 3 NC 13 NC 3 41 M5 1 max 0 1 3 0 3 0 3 1 0 1 3 NC 3 NC 3 42 I min 0 3 'I 0 13 ; 0 3 0 3 I NC 1 3 NC ' 3 43 2 max 0 3 , -.001 3 0 3 0 3 1 NC 3 NC 1 3 ' m , 44 m 0 ' 3 -.001 3 -.105 ' 4 0 3 I r,s1 3 1800.413 4 45 I 3 max 0 1 3 -.002 13 0 1 3 1 0 1 3 NC 3 1 NC 3 46 min 0 1 3 -.002 3 -.153 4 0 1 3 NC , 3 549.695 4 47 4 max 0 __ 3 -.001 3 0 1 3 0 3 NC 3 NC 3 ! 48 min 0 3 -.001 3 -.105 4 0 i' 3 1 NC 1 3 800.413 I »4 49 5 max l, 0 3 0 1 3 0 3 0 3 NC 3 NC 3 50 min 0 13 0 13 0 3 0 3 , NC 1 3 I NC 3 S16 PROJECT: No: SHEET: EgRIGHT www.hilti.us Profii r s Company: Wright Engineers Page: 1 Specifier: Project: 85C BAKERY-WA SQ Address: Sub-Project I Pos.No.: 190233 Phone I Fax: I Date: 2/21/2019 E-Mail: Specifiers comments: 1 Input data Anchor type and diameter: KWIK HUS-EZ(KH-EZ)3/8(2 1/2) Effective embedment depth: hef.act=1.860 in., hnom=2.500 in. Material: Carbon Steel Evaluation Service Report: ESR-3027 Issued I Valid: 12/1/2017 1 12/1/2019 Proof: Design method ACI 318-11 /Mech. Stand-off installation: eb=0.000 in.(no stand-off);t=0.500 in. Anchor plate: Ix x ly x t=12.000 in.x 6.000 in.x 0.500 in.;(Recommended plate thickness:not calculated Profile: Rectangular HSS(AISC);(L x W x T)=8.000 in.x 6.000 in.x 0.313 in. Base material: cracked concrete,2500,fc'=2,500 psi;h=4.000 in. Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C, D,E,or F) Tension load:no Shear load:yes(D.3.3.5.3(c)) R-The anchor calculation is based on a rigid baseplate assumption. Geometry[in.]&Loading[Ib,in.lb] o _ Y eq (h�z5 Ly, X S17 PROJECT: No: SHEET: L!A!IRIGHT www.hilti.us Profiidh$hbf293.O r s Company: Wright Engineers Page: 2 Specifier: Project: 85C BAKERY-WA SQ Address: Sub-Project I Pos. No.: 190233 Phone I Fax: I Date: 2/21/2019 E-Mail: 2 Load case/Resulting anchor forces A y Load case:Design loads Anchor reactions[Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 0 253 0 253 2 0 1,120 0 1,120 01 0 ►x 02 3 0 687 0 687 max.concrete compressive strain: -[ ] max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 0[Ib] resulting compression force in(x/y)=(0.000/0.000): 0[Ib] Anchor forces are calculated based on the assumption of a rigid baseplate. 3 Tension load Load Nua[Ib] Capacity$N„[Ib] Utilization 13N=Nua/4 N„ Status Steel Strength* N/A N/A N/A N/A Pullout Strength* N/A N/A N/A N/A Concrete Breakout Strength** N/A N/A N/A N/A *anchor having the highest loading **anchor group(anchors in tension) S 1 8 PROJECT: No: SHEET: . W WRIGHT www.hilti.us Profiidh&hbf'2%.b r s Company: Wright Engineers Page: 3 Specifier: Project: 85C BAKERY-WA SQ Address: Sub-Project I Pos.No.: 190233 Phone I Fax: I Date: 2/21/2019 E-Mail: 4 Shear load Load Vn,[Ib] Capacity 4 Vn[Ib] Utilization pv=Vu,/.Vn Status Steel Strength* 1,120 1,866 61 OK Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength*" 2,060 2,376 87 OK Concrete edge failure in direction*" N/A N/A N/A N/A *anchor having the highest loading **anchor group(relevant anchors) 4.1 Steel Strength Vc,,eq =ESR value refer to ICC-ES ESR-3027 d/ Vsteel>Vila ACI 318-11 Table D.4.1.1 Variables Ase,V[in.2] iota[psi] 0.09 120,300 Calculations Vsa.eq[Ib] 3,110 Results Vsa,eq[Ib] 4,steel 4,nonductiie 4t Vsa[Ib] V.[Ib] 3,110 0.600 1.000 1,866 1,120 4.2 Pryout Strength [(ANc) N ] ACI 318-11 Eq. D-41 Vcpg —kcp ANCo W ec,N W ed,N W c,N W cp,N b ( ) (I) Vcpg Z Vua ACI 318-11 Table D.4.1.1 AN, see ACI 318-11,Part D.5.2.1,Fig. RD.5.2.1(b) ANco =9/-If ACI 318-11 Eq.(D-5) 1 W ec,N 2 eN <_1.0 ACI 318-11 Eq.(D-8) 1 +3her � W ed,N =0.7+0.3 (15Gaminh )5 1.0 ACI 318-11 Eq.(D-10) ef W cp,N =MAX(camin 1.5het)<1.0 Cac f ACI 318-11 Eq. (D-12) ��ac Nb =kc X.a"NI(befs ACI 318-11 Eq.(D-6) Variables kap hef[in.] ecl,N[in.] ea,N[in.] ca,min[in.] 1 1.860 2.000 0.000 W c,N Cac[in.] kc X.a fc[psi] 1.000 2.920 17 1.000 2,500 Calculations ANc[in.2] ANcO[in.2] W ecl,N W ec2,N W ed,N W cp,N Nb[lb] 84.15 31.14 0.582 1.000 1.000 1.000 2,156 Results Vcpg[Ib] •concrete 0 seismic 0 nonductile 4t Vcpg[Ib] V.[lb] 3,394 0.700 1.000 1.000 2,376 2,060 S19 PROJECT: No: SHEET: RIGHT www.hilti.us ProfiidbhhbP2a.t r s Company: Wright Engineers Page: 4 Specifier: Project: 85C BAKERY-WA SQ Address: Sub-Project I Pos.No.: 190233 Phone I Fax: I Date: 2/21/2019 E-Mail: 5 Warnings • The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations(ETAG 001/Annex C, EOTA TR029,etc.).This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used.The factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Refer to the manufacturer's product literature for cleaning and installation instructions. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D, E or F is given in ACI 318-11 Appendix D.The connection design(shear)shall satisfy the provisions of Part D.3.3.5.3(a),Part D.3.3.5.3(b),or Part D.3.3.5.3(c). • Part D.3.3.5.3(a)require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.Part D.3.3.5.3(b)waive the ductility requirements and requires that the anchors shall be designed for the maximum shear that can be transmitted to the anchors by a non-yielding attachment.Part D.3.3.5.3(c) waives the ductility requirements and requires the design strength of the anchors to equal or exceed the maximum shear obtained from design load combinations that include E,with E increased by coo. • Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions(MPH).Reference ACI 318-11, Part D.9.1 Fastening meets the design criteria! S20 "PftWECT: - No: SHEET: EIRIGHT www.hilti.us ProfiidhahbP293.b r s Company: Wright Engineers Page: 5 Specifier: Project: 85C BAKERY-WA SQ Address: Sub-Project I Pos. No.: 190233 Phone I Fax: I Date: 2/21/2019 E-Mail: 6 Installation data Anchor plate,steel:- Anchor type and diameter:KWIK HUS-EZ(KH-EZ)3/8(2 1/2) Profile: Rectangular HSS(AISC);8.000 x 6.000 x 0.313 in. Installation torque:480.001 in.lb Hole diameter in the fixture:df=0.500 in. Hole diameter in the base material:0.375 in. Plate thickness(input):0.500 in. Hole depth in the base material:2.750 in. Recommended plate thickness:not calculated Minimum thickness of the base material:4.000 in. Drilling method: Hammer drilled Cleaning:Manual cleaning of the drilled hole according to instructions for use is required. 6.1 Recommended accessories Drilling Cleaning Setting • Suitable Rotary Hammer • Manual blow-out pump • Torque wrench • Properly sized drill bit A 2.000 6.000 6.000 • • r� j .._. 'i, ij ", i,i� SIG ......, tt R (��rc t 4> ^- • ma' ill As„_ O O O O O O M t _. 0 1 • • ►x i 0 0 rw j: 0 0 ri cri 1.250 4.750 4.750 1.250 Coordinates Anchor in. Anchor x y c, c, c_y, C y 1 -4.750 0.000 - - - - 2 4.750 0.000 - - - - 3 0.000 0.000 - - - - S21 PROJECT: No: SHEET: WRIGHT www.hilti.us ProfiiAhehbfl28.b r s Company: Wright Engineers Page: 6 Specifier: Project: 85C BAKERY-WA SQ Address: Sub-Project I Pos. No.: 190233 Phone I Fax: Date: 2/21/2019 E-Mail: 7 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. S22 sPROJECT: SHEET: ITAYIRIGHT www.hilti.us ProfiiAhahbf12A3.O r S Company: Wright Engineers Page: 1 Specifier: EA Project: 85C BAKERY WA SQ Address: Sub-Project I Pos.No.: 190233 Phone I Fax: I Date: 2/21/2019 E-Mail: Specifier's comments: } 1 Input data Anchor type and diameter: KWIK HUS-EZ(KH-EZ)3/8(2 1/2) Effective embedment depth: h P et,act=1.860 in.,hnom=2.500 in. Material: Carbon Steel Evaluation Service Report: ESR-3027 Issued I Valid: 12/1/2017 1 12/1/2019 Proof: Design method ACI 318-11 /Mech. Stand-off installation: eb=0.000 in.(no stand-off);t=0.500 in. Anchor plate: IX x ly x t=8.000 in.x 10.000 in.x 0.500 in.;(Recommended plate thickness:not calculated Profile: Rectangular HSS(AISC);(L x W x T)=8.000 in.x 6.000 in.x 0.313 in. Base material: cracked concrete,2500,fc'=2,500 psi;h=4.000 in. Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) Tension load:no Shear load:yes(D.3.3.5.3(c)) R-The anchor calculation is based on a rigid baseplate assumption. Geometry[in.]&Loading[Ib,in.lb] fOcfP. ea i "tpI iI=1 S23 PROJECT: No: SHEET: I!A!IRIGHT www.hilti.us Profii dhahbP2B.b r s Company: Wright Engineers Page: 2 Specifier: EA Project: 85C BAKERY WA SQ Address: Sub-Project I Pos.No.: 190233 Phone I Fax: I Date: 2/21/2019 E-Mail: 2 Load case/Resulting anchor forces A Load case:Design loads 02 01 Anchor reactions[Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 0 1,030 0 1,030 2 0 1,030 0 1,030 Dx max.concrete compressive strain: -[%o] max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 0[Ib] resulting compression force in(x/y)=(0.000/0.000): 0[Ib] Anchor forces are calculated based on the assumption of a rigid baseplate. 3 Tension load Load N .[Ib] Capacity$N„[Ib] Utilization DN=N„a/4 N„ Status Steel Strength* N/A N/A N/A N/A Pullout Strength* N/A N/A N/A N/A Concrete Breakout Strength** N/A N/A N/A N/A *anchor having the highest loading **anchor group(anchors in tension) ` S24 PROJECT: l No: SHEET: WRIGHT www.hilti.us Profiidhah6il2t.i).1 r S Company: Wright Engineers Page: 3 Specifier: EA Project: 85C BAKERY WA SQ Address: Sub-Project I Pos.No.: 190233 Phone I Fax: IDate: 2/21/2019 E-Mail: 4 Shear load Load Vua[Ib] Capacity 4)Vn[Ib] Utilization p,=V„./4)V„ Status Steel Strength* 1,030 1,866 56 OK Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength** 2,060 2,997 69 OK Concrete edge failure in direction** N/A N/A N/A N/A *anchor having the highest loading **anchor group(relevant anchors) 4.1 Steel Strength Vsa,eq =ESR value refer to ICC-ES ESR-3027 4 Vsteei>Vua ACI 318-11 Table D.4.1.1 Variables Ase,V[in.2] fut.[psi] 0.09 120,300 Calculations Vsa,eq[Ib] 3,110 Results Vsa,eq[Ib] (steel 4)nonductile (I) Vsa[Ib] Vua[Ib] 3,110 0.600 1.000 1,866 1,030 4.2 Pryout Strength Vcpg -kcp[(A-)V ec,N V ed,N V c,N V cp,N Nb] ACI 318-11 Eq.(D-41) w Vcpg>Vua ACI 318-11 Table D.4.1.1 ANc see ACI 318-11, Part D.5.2.1,Fig. RD.5.2.1(b) ANco =9 her ACI 318-11 Eq.(D-5) 1 V ec,N 1 +2 eN <_1.0 ACI 318-11 Eq.(D-8) het V ed,N =0.7+0.3 ( °)<1.0 ACI 318-11 Eq.(D-10) V cp,N =MAXc—min 1.5hef _c 1.0 ( cac cac ) ACI 318-11 Eq.(D-12) Nb =kc A a AiTc fiefs ACI 318-11 Eq.(D-6) Variables kcp hef[in.] ec1,N[in.] ecz.N[in.] comb [in.] 1 1.860 0.000 0.000 = W c,N cac[in.] kc A a fc[Psi] 1.000 2.920 17 1.000 2,500 Calculations ANC[in.2] ANco[in.2] V ecl,N V ec2.N V ed,N V cp,N Nb[Ib] 61.83 31.14 1.000 1.000 1.000 1.000 2,156 Results Vcpg[Ib] 4)concrete 4)seismic 4)nonductile 4 Vcpg[Ib] Vua[lb] 4,281 0.700 1.000 1.000 2,997 2,060 PROJECT: I 5255 l No: l SHEET: RIHT www.hilti.us Profi§'dhibP2c811 r s Company: Wright Engineers Page: 4 Specifier: EA Project: 85C BAKERY WA SQ Address: Sub-Project I Pos.No.: 190233 Phone I Fax: I Date: 2/21/2019 E-Mail: 5 Warnings • The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations(ETAG 001/Annex C,EOTA TR029,etc.).This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used.The factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Refer to the manufacturer's product literature for cleaning and installation instructions. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D, E or F is given in ACI 318-11 Appendix D.The connection design(shear)shall satisfy the provisions of Part D.3.3.5.3(a),Part D.3.3.5.3(b),or Part D.3.3.5.3(c). • Part D.3.3.5.3(a)require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.Part D.3.3.5.3(b)waive the ductility requirements and requires that the anchors shall be designed for the maximum shear that can be transmitted to the anchors by a non-yielding attachment. Part D.3.3.5.3(c) waives the ductility requirements and requires the design strength of the anchors to equal or exceed the maximum shear obtained from design load combinations that include E,with E increased by(o. • Hilti post-installed anchors shall be installed in accordance with the Hilti Manufacturer's Printed Installation Instructions(MPII).Reference ACI 318-11,Part D.9.1 Fastening meets the design criteria! S26 PROJECT: No: SHEET: MRIGHT www.hilti.us ProfiiAlhhbP2 .. r s Company: Wright Engineers Page: 5 Specifier: EA Project: 85C BAKERY WA SQ Address: Sub-Project I Pos.No.: 190233 Phone I Fax: Date: 2/21/2019 E-Mail: 6 Installation data Anchor plate,steel:- Anchor type and diameter:KWIK HUS-EZ(KF-1-EZ)3/8(2 1/2) Profile:Rectangular HSS(AISC);8.000 x 6.000 x 0.313 in. Installation torque:480.001 in.lb Hole diameter in the fixture:df=0.500 in. Hole diameter in the base material:0.375 in. Plate thickness(input):0.500 in. Hole depth in the base material:2.750 in. Recommended plate thickness:not calculated Minimum thickness of the base material:4.000 in. Drilling method:Hammer drilled Cleaning:Manual cleaning of the drilled hole according to instructions for use is required. 6.1 Recommended accessories Drilling Cleaning Setting • Suitable Rotary Hammer • Manual blow-out pump • Torque wrench • Properly sized drill bit •Y 4.000 • 4.000 • • 0 0 0 N 02 01 • 0 q1,14 • • 'x 0 0 O 0 0 N 00 • 0 O 4,14,4 r . 1.250 5.500 1.250 • • Coordinates Anchor in. Anchor x y c.x c, c.y c,Y 1 2.750 3.000 - - - - 2 -2.750 3.000 - - - - S27 PROJECT: No: SHEET: MRIGHT www.hilti.us Profi dhEhbf'2t.b r s Company: Wright Engineers Page: 6 Specifier: EA Project: 85C BAKERY WA SQ Address: Sub-Project I Pos. No.: 190233 Phone I Fax: Date: 2/21/2019 E-Mail: 7 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. S28 PROJECT: No: SHEET: • 2 X 2 N4 1 WRIGHT ENGINEERS � SK-2 EA MASONRY JAMB Feb 21, 2019 at 1:21 PM 190233 MASONRY JAMB.r3d M1 .Y Z X Ok/ft 11, • 1k/ft Loads: BLC 1, DEAD LOAD WRIGHT ENGINEERS SK-4 EA MASONRY JAMB Feb 21, 2019 at 1:21 PM 190233 MASONRY JAM B.r3d M2 .Y 2 X I i. `/ Y<, Y' /I ,0 pr, , ......_ ..,_, Vim'' i } j F<, V// Y, i ✓/I �, _ I I — ., -.27k/fir Loads: BLC 2, SEISMIC LOAD WRIGHT ENGINEERS SK- 5 EA MASONRY JAMB Feb 21, 2019 at 1:21 PM 190233 MASONRY JAM B.r3d M3 • Company : WRIGHT ENGINEERS I I :I R IIRISA Designer : EA Job Number : 190233 engineers Model Name : MASONRY JAMB Global Display Sections for Member Calcs 15 Max Internal Sections for Member Calcs 97 Include Shear Deformation? Yes Increase Nailing Capacity for Wind? Yes Include Warping? Yes TransLoad Btwn Intersecting Wood Wall? I Yes Area Load Mesh (inA2) 1144 Merge Tolerance (in) 1.12 P-Delta Analysis Tolerance 0.50% Include P-Delta for Walls? !Yes Automatically Iterate Stiffness for Walls? Yes j Max Iterations for Wall Stiffness 13 Gravity Acceleration Ift/secA2) 32.2 jWall Mesh Size (in) 24 Eigensolution Convergence Tol. (1.E-) 4 [Vertical Axis Y Global Member Orientation Plane XZ Static Solver 'Sparse Accelerated Dynamic Solver I Accelerated Solver Hot Rolled Steel Code I AISC 14th(360-10): LRFD Adjust Stiffness? ]Yes(Iterative) RISAConnection Code AISC 14th(360-10): LRFD Cold Formed Steel Code ;AIS[ 5100-12: ASD Wood Code AF&PA NDS-12: ASD Wood Temperature l< 100F, Concrete Code ACI 318-11 Masonry Code ACI 530-13:ASD Aluminum Code AA ADM1-10:ASD - Building Number of Shear Regions 14 Region Spacing Increment(in) 14 "'' Biaxial Column MethodExact Integration Parme Beta Factor(PCA)" .65 'Concrete Stress Block Rectangular Use Cracked Sections? 1 Yes Use Cracked Sections Slab? Yes Bad Framing Warnings? 1 No Unused Force Warnings? Yes Min 1 Bar Diam. Spacing? I No ;Concrete Rebar Set REBAR SET ASTMA615 Min % Steel for Column 11 Max % Steel for Column 8 M4 PROJECT: No: SHEET: 1 Company : WRIGHT ENGINEERS MRIGHT illRisA Dgerr‘ E JobesiNrber 19A0233 fl g I n e e r S Model nu ame MASONRY JAMB e Global, Continued (Seismic Code I ASCE 7-10 Seismic Base Elevation (ft) I Not Entered Add Base Weight? Yes Ct X I .02 Ct Z .02 T X(sec) I Not Entered T Z (sec) Not Entered RX 3 RZ 3 rCt Exp.X .75 Ct Exp. Z .75 rSD1 1 SDS 11 rS1 1 TL (sec) 5 [Risk Cat I or II OmZ 1 OmX !1 Rho Z 1 Rho X II Footing Overturning Safety Factor 1 Optimize for OTM/Sliding No Check Concrete Bearing No Footing Concrete Weight(k/ft^3) 1.145 Footing Concrete fc(ksi) 4 Footing Concrete Ec(ksi) ;3644 Lambda 1 jFooting Steel fy(ksi) 60 Minimumimum SSteteele0.00018 1axl ;0. 075 Footing Top Bar #6 Footing Top Bar Cover(in) 1.5 Footing Bottom Bar #6 Footing Bottom Bar Cover(in) I3 Pedestal Bar #6 Pedestal Bar Cover(in) 1.5 Pedestal Ties #4 Hot Rolled Steel Properties Label E[ksi] G[ksil Nu Therm(\1 E...Density[k/ft... Yield[ksi] Ry Fu[ksi] Rt 1 A36 Gr.36 2900Q 11154 .3 .65 ' .49 36 1 5 I 58 1.2 572 r.50 29000=., 11154 .3 .65 ...i .49 _ 65 1.1 3 A992 29000 11154 .3 .65 .49 50 1.1 65 1.1 4 A500 Gr.42 .29000 11154 .3 x.65 _._1 .49 � ��'�1.4 58 1.3 5 i A500 Gr.46 29000 11154 .3 .65 .49 46 1.4 I 58 1.3 Hot Rolled Steel Section Sets Label Shape Type Design List Material Design R... A[int] lyv[in4] Izzjin4] J[in4] 1 HR1A W8x10 i Beam Wide Flange A36 Gr.36 Typical 2.96 12.09 30.8 .043 M5 PROJECT: No: SHEET: Company : WRIGHT ENGINEERS RIGFIT IiIRISA EA0 233 engineers Model Name : MASONRY JAMB Member Primary Data Label I Joint J Joint K Joint Rotate(deg) Section/Shape Type Design List Material Design... 1 M1 N1 ' N2 90 HSS8x6x10 Beam', Wide Flange A500 Gr.46 Typical 2 M2 N3 N4 C8x11.5 Beam Wide Flange A36 Gr.36 Typical l Member Advanced Data Label I Release J Release I Offset[in] J Offset[in] T/C Only sical TOM Inactive Seismic Design 1 M1 Yes None M2 BenPIN 1 Yes -- I i None Hot Rolled Steel Design Parameters Label Shape Length:ft] Lbyy[ftl Lbzz[ft] Lcomp top[ft] Lcomp bot[ft]L-torqu... Kyy Kzz Cb Function 1 M 1 HSS8x6x10 30 Lbyy Lateral 2 i M2 C8x11.5 10 LbyyLateral' Member Distributed Loads (BLC 1 : DEAD LOAD) Member Label Direction Start Magnitud [k/f f] End Magnitude[k/ft,F] Start Locationjft%1 End Location[ft,%] 1 M2 Y 0 -.55 0 %50 2 M2 Y -.55 0 50 °%a100 Member Distributed Loads (BLC 2 : SEISMIC LOAD) Member Label Direction Start Magnitude[k/ft,F] End Magnitude[k/ft,F] Start Location[ft,%]_ End Location[ft,%] 1 M-1 Z -.27 -.27 0 0 Basic Load Cases 0 BLC DesLription OAD CaDL ry X Gravit Gra Gravity Gravity Joint Point Distribu .Area(M...iSurfac... D 2 SEISMIC LOAD EL I 1 Load Combinations Description Sol... PDelta S... B... Fa... BLC Fa...B... Fa... BLC Fa...B... Fa...B... Fa...B... Fa...B... Fa...B... Fa...B... Fa... 2 1.2DLLE+C1TOOENL DLI 112 EL ]11 .17 1 r 1 Member AISC 14th(360-10): LRFD Steel Code Checks LC Member Shape UC Max Loc[ft] Shear UC Loc[ft] Dir phi*Pnc[k] phi*Pnt[k]phi*Mnvy..phi*Mnzz... Cb Eqn 1 1 M1 HSS8x6x10 .249 14.6881 .023 0 v 126.03 579.6 1101.775 124.545 1.1361H1-1b 2 1 ,I M2 C8x11,5 303 5 =050 10 y 20.552 109.1881 3.353 , 18.747 1.175 H1-1b ALL < 1.0---> OKAY M6 ?fluke t: -- -- No: - — ,,SHEET:`SHEET: f Company : WRIGHT ENGINEERS IA/ RIGI-IT il I R1SA ernrber E. %'0233 Model uName : MASONRY JAMB engineers Member Section Deflections LC Member Label Sec x[in] y[in] z[in] x Rotate[rad] (n)Uy Ratio (n)Liz Ratio 0© M1 1 0 0 0 0 I NC NC 2 2 0 . ' —.936 0 0 384.473 NC 3 3 0 —1.312 0 0 274.473 NC 4 4 0 —.934 0 0; 385.594 L. NC i',.2.9 5 5 0 , 0 0 0 NC NC 6 2 M2 1 0 0 0 —7.559e-3 I NC 7 2 0 —.077 —.246 —7.559e-3 1568.64 NC 8 3 0 —.109 -.492 7.559e-3 I 1106.381 NC s 9 4 0 —.077 —.737 —7.559e-3 1568.64 NC 10 15 ; 0 1 0 -.983 c -7.559e-3 I NC /NC'�_h---- r PROJECT: No: SHEET: M7 . W RIGHT engineers LOAD-BEARING WALL \I , I I' I ] • 1 / I . H1 = EI TI LC, c0 �' 0 1 0 I H1 Fi1' H3 ,� • O 3 o H1 Ho I Li,€ I H2 GRAVITY MEMBER KEYPLAN P1 PROJECT: No: SHEET: . Vig R I G T Project Name: 190233 ii Model: Rafter Date:02 1/2019 e r s Code: 2012 NASPEC[AISI S100-2012] Simpson Strong-Tie®CFS DesignerTA° 2.8.1.0 R1 Ttz:_ Slope 3 € "] R2 112 ft Oft Section : 1000S200-54(50 ksi)Single C Stud Fy=50 ksi Maxo= 4254.2 Ft-Lb Moment of Intertia, I=10.769 in^4 Va=1660.8 lb Rafter Spacing= 16 in Rafter Slope= 3 :12 Flexural Bracing, Main Span : Mid-Pt Flexural Bracing,Overhang: None Distortional Buckling K-phi : 0 lb-in/in Distortional Buckling Bracing, Lm: None Axial Bracing : Mid-Pt Load Cases Span Overhang 1 Dead Load 15 15 2 Live Load 20 20 3 Snow Load 22 22 4 Outward Wind Load 50 50 5 Inward Wind Load 20 20 Load Combinations Combination Case Factor Case Factor Case Factor 1 1 1 2 1 None 1 2 1 1 3 1 None 1 3 1 0.6 4 1 None 1 4 1 1 3 0.75 5 0.75 Rafter Flexural and Deflection Mmax Ma Mmax/ Load Span Load Overhang Load Span Ft-Lb Ft-Lb Ma Comb. Defl Comb. Defl Comb. Center Span 1150 3845 p 0.299 4 L/1489 4 L/1489 4 Rafter Bending and Web Crippling Summary Load Load Bearing Pa Pn Max Load Stiffeners Rxn (Ib) Comb. (in) (Ib) (Ib) Intr. Comb. Req'd R1 371.8 4 6.00 989.1 1731.0 0.20 4 NO R2 371.8 4 6.00 989.1 1731.0 0.20 4 NO SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com P2 PROJECT: No: SHEET: • . W Pro'ectName: 1 RIGHT 1 90233 Model: Rafter Date:021/2019 e r s Code: 2012 NASPEC[AISI S100-2012] Simpson Strong-Tie®CFS DesignerTM 2.8.1.0 Rafter Bending and Shear Summary Vmax Load Va Intr. Load Intr. Load Rxn (Ib) Comb. Factor VNa M/Ma Unstiffen Comb. Stiffen Comb. R1 372 4 1.000 0.22 0.00 0.22 4 N/A N/A R2 372 4 1.000 0.22 0.00 0.22 4 N/A N/A Rafter Combined Bending And Axial Load Max Axial Load Bracing Max Allow Ld Max Intr. Ld. (Ib) Comb. KyLy KtLt KL/r lb P/Pa Value 1611.0 4 Mid-Pt Mid-Pt 111 4946.3 0.33 0.63 SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com P3 PROJECT: No: SHEET: • - W RIGHT Project Name: 190233 Model: Studs Date:02121/2019 e r s Code: 2012 NASPEC[AISI S100-2012] Simpson Strong-Tie®CFS DesignerTM 2.8.1.0 Section : 600S137-54(50 ksi)Single C Stud Maxo= 1938.3 Ft-Lb Va= 2822.9 lb I= 2.52 inA4 1 Loads have not been modified for strength checks Loads have been multiplied by 0.70 for deflection calculations 1.00 51.00 r3. Bridging Connectors-Design Method=AISI S100 Simpson Strong-Tie Span/CantiLever Bridging Connector Stress Ratio Span LSUBH3.25 (Max) 0.53 Top CantiLever N/A - Shear and Web Crippling Checks Bending and Shear(Unstiffened): 11.9% Stressed @R2 Bending and Shear(Stiffened): NA 13.00 51.00 Web Stiffeners Required?: No I Simpson Strong-Tie®Connectors Connector Anchor Support Rx(Ib) Ry(Ib) Simpson Strong-Tie®Connector Interaction Interaction R1 329.54 310 FCB43.5 Min(4#12-14)&(2)#12 SST X to A36 Steel 54.60% 91.05% R2 384.46 0 SCB45.5(2)&(2)#12 SST X to A36 Steel 50.59% 48.36% *Reference catalog for connector and anchor requirement notes as well as screw placements requirement Flexural and Deflection Check Mmax Mmax/ Mpos Bracing Ma(Brc) Mpos/ Deflection Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma(Brc) (in) Ratio Span 1064.7 0.549 1064.7 48.0 1569.1 0.679 0.305 L/512 Top CantiLever 25.5 0.013 16.3 None 1938.3 0.008 0.074 L/324 Distortional Buckling Check Span K-phi Lm Brac Ma-d Mmax/ lb-in/in in Ft-Lb Ma-d Span 0.00 156.0 1770.1 0.601 Top CantiLever 0.00 12.0 1770.1 0.014 Combined Bending and Axial Load Details SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com P4 PROJECT: ,.No: SHEET: • . W RIGHT Project Name: 190233 Model: Studs Date:02121/2019 e r S Code: 2012 NASPEC[AISI S100-2012] Simpson Strong-Tie®CFS DesignerTM 2.8.1.0 Axial Ld Bracing(in) Max K-phi Lm Bracing Allow Intr. Span (Ib) KyLy KtLt KUr (lb-in/in) (in) load(lb) P/Pa Value Span 310.0(c) 48.0 48.0 106 0.0 156.0 3908.7(c) 0.08 0.76 Top CantiLever 0.0(t) 12.0 12.0 N/A 0.0 12.0 12843.9(t) 0.00 0.01 SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com P5 PROJECT: ,No: SHEET: RIGHT Project Name: 190233 Model: 9'-6"OPENING-BEARING (H1) Date:02/21/2 19 r S Code: 2012 NASPEC[AISI S100-2012] Simpson Strong-Tie®CFS DesignerTM 2.8.1.0 n Design Loads 10 ft Wall Lateral Pressure: 24 psf 1 U n RO Lateral Pressure: Head/Sill Only aft u " Lateral Element Forces multiplied Lateral by 1 for strength checks P' Lateral Forces multiplied by 0.7 for deflection determination Gravity Load at Header: 15 psf +Additional header load 235 plf n +Additional load from each cripple of 310 lbs at 16 in o.c. t)ft k 1- 9.5ft ;l Lateral Pressure to 1 Head/Sill Only Brace Settings Flexural Distortional Bracing Axial KyLy Axial KtLt K-Phi(lb- Distortional Interconnection Component(s) Members(s) (in) (in) (in) in/in) LM(in) Spacing(in) Wall Studs 600S137-54(50), 48 in 48 in 48 in 0 None N/A Single@16 in o/c Jamb Studs 600S137-54(50),Boxed 48 in Mid-Pt Mid-Pt 0 None 12 in Vertical Header 800S200-54(50),Boxed Full N/A N/A 0 None N/A Lateral Header 600T125-43(33),Boxed Full N/A N/A 0 None N/A Summary Analysis Results Axial Max. Bottom Top or End Load Moment Max. Reaction Reaction Component(s) Members(s) (lb) (Ft-Lb) Shear(lb) (Ib) (Ib) Wall Studs 600S137-54(50), 530.0 484.0 176.0 176.0 176.0 Single@16 in o/c Jamb Studs 600S137-54(50),Boxed 2624.4 1560.0 544.0 715.0 544.0 Vertical Header 800S200-54(50),Boxed N/A 5781.6 2434.4 N/A 2434.4 Lateral Header 600T125-43(33),Boxed N/A 1489.1 627.0 N/A 627.0 Summary Design Results Deflection Bending +Axial Shear Web Design Component(s) Members(s) Span Parapet Interaction Interaction Stiffners OK Wall Studs 600S137-54(50), L/1329 L/0 0.44 0.06 NA Yes Single@16 in o/c Jamb Studs 600S137-54(50), U1012 UO 0.64 0.42 No Yes Boxed SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com P6 PROJECT: No: SHEET: ARIGHT Project Name: 190233 Model: 9'-6" OPENING-BEARING (H1) Da e:021/2019 e r S Code: 2012 NASPEC[AISI S100-2012] Simpson Strong-Tie®CFS DesignerTM 2.8.1.0 Vertical Header 800S200-54(50), U471 NA 0.77 0.58 R1,R2 Yes Boxed Lateral Header 600T125-43(33),Boxed U702 NA 0.98 0.23 R1,R2 Yes Simpson Strong-Tie®Connectors(o.Studs Connector Anchor Support Rx(Ib) Ry(lb) Simpson Strong-Tie®Connector Interaction Interaction R1 176.00 530.00 FC32-5/97(6#10)&(4)#14 SST E to A36 Steel 30.69% 27.02% R2 176.00 0.00 SC62-5/97(3)&(4)#12 SST X to A36 Steel 8.30% 8.50% *Reference catalog for connector and anchor requirement notes as well as screw placements requirement Simpson Strong-Tie®Connectors Jambs Connector Anchor Support Rx(Ib) Ry(Ib) Simpson Strong-Tie®Connector Interaction Interaction R1 715.00 2624.38 (2)FCB43.5 Max(6#12-14)&2"Hard Side and 1"Free 97.30% 89.31 % Side Weld to A36 Steel R2 544.00 0.00 By Others&Anchorage Designed by Engineer NA NA *Reference catalog for connector and anchor requirement notes as well as screw placements requirement Simpson Strong-Tie®Wall Stud Bridging Connectors @ Studs Bracing Design Length Number of LSUBH LSUBH SUBH SUBH MSUBH MSUBH Span/CantiLever (in.) Braces Pn(Ib.) (Min)' (Max)' (Min)' (Max)' (Min)' (Max)' Span 48 3 7035.7 OK(0.95) OK(0.38) OK(0.86) OK(0.57) OK(0.60) OK(0.58) Simpson Strong-Tie®Wall Stud Bridging Connectors Jambs Bracing Design Length Number of LSUBH LSUBH SUBH SUBH MSUBH MSUBH Span/CantiLever (in.) Braces Pn(Ib.) (Min)' (Max)' (Min)' (Max)' (Min)' (Max)' Span 66 N/A N/A N/A N/A N/A N/A N/A N/A Notes: 1)Values in parentheses are stress ratios. 2) Bridging connectors are not designed for back-back,box, or built-up sections. 3) Reference www.stronqtie.com for latest load data, important information, and general notes 4)CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same. 5)If the bracing length is larger than the span length, bridging connectors are not designed. SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com P7 PROJECT: r_ No: SHEET: . ORIGI-IT Project Name: 190233 Model: 10'-0" OPENING-NON BEARING (H2) Dae:02/21/2 19 r S Code: 2012 NASPEC[AISI S100-2012] Simpson Strong-Tie®CFS DesignerTM 2.8.1.0 Design Loads 1 ft Wall Lateral Pressure: 24 psf RO Lateral Pressure: Head/Sill Only 3 ft Parapet Lateral 48 psf Pressure: u n Lateral Element Forces multiplied Lateral by 1 for strength checks i; i Lateral Forces multiplied by 0.7 for L deflection determination Gravity Load at Header: 15 psf v +Additional header load 75 plf n +Additional load from each cripple of 50 14101011410.41PliefirrlirWit 0 lbs at 16 in o.c. 0 f ( 100 ft w Lateral Pressure to: Head/Sill Only v Brace Settings Flexural Distortional Bracing Axial KyLy Axial KtLt K-Phi(lb- Distortional Interconnection Component(s) Members(s) (in) (in) (in) in/in) LM(in) Spacing(in) Wall Studs 6005137-54(50), 48 in 48 in 48 in 0 None N/A Single@16 in o/c Jamb Studs 600S137-54(50), Boxed 48 in Mid-Pt Mid-Pt 0 None 12 in Vertical Header 600S137-54(50),Boxed Full N/A N/A 0 None N/A Lateral Header 600T125-54(50),Boxed Full N/A N/A 0 None N/A Summary Analysis Results Axial Max. Bottom Top or End Load Moment Max. Reaction Reaction Component(s) Members(s) (lb) (Ft-Lb) Shear(lb) (Ib) (Ib) Wall Studs 600S137-54(50), 330.0 660.1 210.5 205.5 274.5 Single@16 in o/c Jamb Studs 600S137-54(50),Boxed 1102.5 1935.4 674.5 873.5 706.5 Vertical Header 600S137-54(50), Boxed N/A 2156.2 862.5 N/A 862.5 Lateral Header 600T125-54(50), Boxed N/A 1850.0 740.0 N/A 740.0 Summary Design Results Deflection Bending +Axial Shear Web Design Component(s) Members(s) Span Parapet Interaction Interaction Stiffners OK Wall Studs 6005137-54(50), L/828 L/530 0.51 0.08 NA Yes Single@16 in o/c Jamb Studs 600S137-54(50), L/688 L/371 0.60 0.52 No Yes Boxed SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com P8 PROJECT: No: SHEET: • W RIGHT Project Name: 190233 Model: 10'-0"OPENING-NON BEARING (H2) Dat :021/2019 e r S Code: 2012 NASPEC[AISI S100-2012] Simpson Strong-Tie®CFS DesignerTM 2.8.1.0 Vertical Header 600S137-54(50), U459 NA 0.56 0.15 No Yes Boxed Lateral Header 600T125-54(50),Boxed L/681 NA 0.63 0.14 No Yes Simpson Strong-Tie®Connectors(a.Studs Connector Anchor Support Rx(Ib) Ry(Ib) Simpson Strong-Tie®Connector Interaction Interaction R1 205.54 330.00 FC32-5/97(6#10)&(4)#14 SST E to A36 Steel 22.68% 20.49% R2 274.46 0.00 SC62-5/97(3)&(4)#12 SST X to A36 Steel 12.95% 13.26% *Reference catalog for connector and anchor requirement notes as well as screw placements requirement Simpson Strong-Tie®Connectors A Jambs Connector Anchor Support Rx(Ib) Ry(Ib) Simpson Strong-Tie®Connector Interaction Interaction R1 873.54 1102.50 (2)FC32-5/97(4#10)&(4)#12 SST X to A36 Steel 47.41 % 46.16% R2 706.46 0.00 By Others&Anchorage Designed by Engineer NA NA *Reference catalog for connector and anchor requirement notes as well as screw placements requirement Simpson Strong-Tie®Wall Stud Bridging Connectors @ Studs Bracing Design Length Number of LSUBH LSUBH SUBH SUBH MSUBH MSUBH Span/CantiLever (in.) Braces Pn(Ib.) (Min)' (Max)' (Min)' (Max)' (Min)' (Max)' Span 48 4 7035.7 NO GOOD OK(0.40) OK(0.91) OK(0.60) OK(0.63) OK(0.61) (1.00) Top CantiLever Span N/A 0.00 N/A N/A N/A N/A N/A N/A Simpson Strong-Tie®Wall Stud Bridging Connectors @ Jambs Bracing Design Length Number of LSUBH LSUBH SUBH SUBH MSUBH MSUBH Span/CantiLever (in.) Braces Pn(Ib.) (Min)' (Max)' (Min)' (Max)' (Min)' (Max)' Span 78 N/A N/A N/A N/A N/A N/A N/A N/A Top CantiLever Span N/A 0.00 N/A N/A N/A N/A N/A N/A Notes: 1)Values in parentheses are stress ratios. 2) Bridging connectors are not designed for back-back,box, or built-up sections. 3)Reference www.strongtie.com for latest load data, important information, and general notes 4)CFS Designer will not select bridging connectors unless all flexural and axial bracing settings are the same. 5)If the bracing length is larger than the span length, bridging connectors are not designed. SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com P9 PROJECT: - No: SHEET: IBRIGFIT Project Name: 190233 engineers Model: 13' Beam (H3) Code: 2012 NASPEC[AISI S100-2012] Simpson Strong-Tie@ CFS DesignerTM 2.8.1.0 Reactions Support Reactions(Ib) R1 812.50 125.00 R2 812.50 Shear and Web Crippling Checks Bending and Shear 14.4% Stressed (Unstiffened): @R1 } ° : E$' Bending and Shear NA R1 R2 (Stiffened): Web Stiffeners No 13.00 Required?: Section : (2)600S137-54(50 ksi)Boxed C Stud Maxo= 3876.6 Ft-Lb Va= 5645.8 lb I= 5.04 in^4 Loads have not been modified for strength checks Loads have been multiplied by 0.70 for deflection calculations Flexural and Deflection Check Mmax Mmax/ Mpos Bracing Ma(Brc) Mpos/ Deflection Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma(Brc) (in) Ratio Span 2640.6 0.681 2640.6 Full 3876.6 0.681 0.379 L/412 SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com P10 PROJECT: z '\Wo: SHEET: RIGHT engineers �.2 f 33' € /7/ / / I Ca � I /' Wi S1 fl 0, fi, firdirr Amk 0' 13' W2 S2 P11 PROJECT: No: SHEET: WRIGHT engineers FLEXIBLE DIAPHRAGM LOAD CALCULATIONS DESIGN NET WIND PRESSURES (PSF) WALL ELEV.(FT)WINDWARD 0 8.6 LEEWARD WALL: 5.3 15 8.6 WINDWARD ROOF: 0.0 20 9.3 LEEWARD ROOF: 6.6 25 9.9 WINDARD PARAPET: 18.9 30 10.5 LEEWARD PARAPET: 12.6 RIDGE or DIAPHRAGM ABOVE 40 11.4 MIN.NET PRESSURE: 9.6 CALCULATED 50 12.2 EQUIVALENT LOADED DIAPHRAGM 60 12.8 DIAPHRAGM LOAD DIAPHRAGM BELOW 70 13.4 1 80 14.0 IIN 90 14.4 100 14.9 WIND LOADS W1 W2 ELEV.RIDGE/DIAPH.ABOVE(Fr): 14 14 ELEV.LOADED DIAPH.(FT): 13 13 ELEV LOW DIAPH.(Fr): 0 0 SURFACE TYPE ABOVE: PARAPET PARAPET DIAPH.LOAD(ELF): 123.0 123.0 WINDWARD,LEEWARD,or BOTH: BOTH BOTH CONT.ACROSS DIAPH?: Y Y WIND LOAD CALCULATIONS W1:13.9psf(6.5ft)1+31.4psf(1.Oft)1=123.0pIf W2:13.9psf(6.5ft)1+31.4psf(1.0ft)1=123.0pIf SEISMIC LOADS S1 52 SEISMIC COEFFICIENT: 0.099 0.099 DIAPH.DL(PSF): 15 15 DIAPH.DEPTH(Fr): 13 33 WALL DL)PSF): 15 15 WALL TRIB.(Fr): 15 15 DIAPH.LOAD)PLF): 41.6 71.3 SEISMIC DIAPHRAGM LOAD=SEISMIC COEFFIECIENT•(DIAPH.DL*DIAPH.DEPTH+WALL DL`WALL TRIB.) 190233 Flex Diaph v20170404.x)s Apply Loads Copyright WRIGHT ENGINEERS v2008.05.02 P12 PROJECT: No: SHEET: W RIGHT engineers START 1 END ASSUMES FLEXIBLE DIAPHRAGM: Q 0 • • • Q7� LINE... LINE... LINE... LINE... DESCRIPTION: EAST-WEST DIRECTION APPLIED DISTRIBUTED LOADS APPLIED POINT LOADS CALCULATED LINE LOADS WIND SEISMIC START,x(FT) END,x(Fr) LINE No. LOC,x(Fr) W(Les) S(Les) LINE No. LOC,X(FT) WFORCE SFORCE W1 S1 0 33 1.1 0 2029 686 1.2 33 2029 686 ' DESCRIPTION: NORTH-SOUTH DIRECTION APPLIED DISTRIBUTED LOADS APPLIED POINT LOADS CALCULATED LINE LOADS WIND SEISMIC START,x(FT) END,x(Fr) LINE No. LOC,x)FT) W(Les) S)LBS) LINE No. LOC,x(Fr) WFORCE SFORCE W2 S2 0 13 A 0 799 463 B 13 799 463 DESCRIPTION: APPLIED DISTRIBUTED LOADS APPLIED POINT LOADS CALCULATED LINE LOADS WIND SEISMIC START,x(Fr) END,x(FT) LINE No. LOC,x(FT) W(Les) S(Les) LINE No. LOC,X(FT) WFORCE SFORCE DESCRIPTION: APPLIED DISTRIBUTED LOADS APPLIED POINT LOADS CALCULATED LINE LOADS WIND SEISMIC START,x(Fr) END,X(FT) LINE No. LOC,x(Fr) W(Les) S(Les) LINE No. LOC,x)FT) WFORCE SFORCE 190233 Flex Diaph v2O17O4O4.xls Apply Loads Copyright WRIGHT ENGINEERS v2OO8.O5.O2 P13 PROJECT: No: SHEET: . MRIGHT engineers Fx-UNFACTORED FORCE FROM INPUT v-DIAPH.SHEAR(FACTORED FOR SEISMIC BASED ON Fp/Fx AND p FACTOR _ NOTE:LEFT AND RIGHT DESIGNATE EACH SIDE OF SW LINE WITH CORRESPONDING FORCE DIAPHRAGM FORCES _ TYP.DIAPH.CAP.(PLF WIND): 535 TYP.DIAPH.CAP.(PLF SEIS): 535 DESCRIPTION: EAST-WEST DIRECTION Fp/Fx: 1 p: 1 DIAPH.DEPTH WIND LEFT WIND RIGHT SEISMIC LEFT SEISMIC RIGHT LINE LOC,x(FT) LEFT(FT) RIGHT(FT) Fx(LB) V(PLF) Fx(LB) v(PLF) Fx(LB) V(PLF) Fx(LB) V(PLF) 1.1 0 0 13 0 0 2029 156 0 0 686 53 1.2 33 13 0 2029 156 0 0 686 53 0 0 TYP.DIAPH.CAP.(PLF WIND): 535 TYP.DIAPH.CAP.(PLF SEIS): 535 DESCRIPTION: NORTH-SOUTH DIRECTION Fp/Fx: 1 p: 1 DIAPH.DEPTH WIND LEFT WIND RIGHT SEISMIC LEFT SEISMIC RIGHT LINE LOC,x(Fr) LEFT(FT) RIGHT(FT) Fx(LB) V(PLF) Fx(LB) V(PLF) Fx(LB) v(PLF) Fx(LB) V(PLF) A 0 0 33 0 0 799 24 0 0 463 14 B 13 33 0 799 24 0 0 463 14 0 0 TYP.DIAPH.CAP.(PLF WIND): 535 TYP.DIAPH.CAP.(PLF SEIS): 535 DESCRIPTION: Fp/Fx: 1 p: 1 DIAPH.DEPTH WIND LEFT WIND RIGHT SEISMIC LEFT SEISMIC RIGHT LINE LOC,x(FT) LEFT(FT) RIGHT(FT) Fx(LB) v(PLF) Fx(LB) v(PLF) Fx(LB) v(PLF) Fx(LB) v(PLF) TYP.DIAPH.CAP.(PLF WIND): 535 TYP.DIAPH.CAP.(PLF SEIS): 535 DESCRIPTION: Fp/Fx: 1 p: 1 DIAPH.DEPTH WIND LEFT WIND RIGHT SEISMIC LEFT SEISMIC RIGHT LINE LOC,x(FT) LEFT(FT) RIGHT(FT) Fx(LB) v(PLF) Fx(LB) v(PLF) Fx(LB) v(PLF) Fx(LB) v(PLF) 190233 Flex Diaph v20170404.xls Apply Loads Copyright WRIGHT ENGINEERS v2008.05.02 P14 PROJECT: No: `SHEET: . - 36 . Type 36/4 Screw Pattern at Supports ` f k' #12 or#14 SDI Recognized Screws - EI F to Supports 0.0385" and thicker it Sidelaps Connected with PunchLok H Tool Allowable Diaphragm Shear Strength,q (plf)and Flexibility Factors,F((inilb)x106) DECK SIDELAP SPAN(ft-in.) GAGE ATTACHMENT 2,-0.. 3,-i.. 4,-0.. 55•-O" 6'-O" r_Ou 8._O" 9'-O" 10.-O" q iinnial 548 476 495 444 464 426 445 415 VSC2 X24" F -24,1+542R -12.1+360R -4.5+269R -0.9+215R 3+178R 4.5+153R 7.1+133R 7.8+1188 9.8+106R VSC2 Q 18" q 632 548 555 555 508 516 522 489 498 F -25.2+542R -12:1+3608 5.9+2708 2.2+216R 1.5+1798 3.2+153R 4.5+134R 6 5+119R 7.2+107R VSC2 c}x 12" q 632 616 606 598 592 588 585 582 580 F -25 2+5428 -112+361R -6.9+2708 -3.1+216R -0.5+18OR 1.4+154R 2.8+1352 4+120R 4.9+1088 22VSC2 B" q 678 681 665 669 658 663 655 658 653 F -26+543R -14,5+361R -12+271R R -4.8+217R -22+180R -0.6+155R 0.9+1358 1.8+120R 2,7+1088 VSC2 Q 6" q 701 697 694 692 691 690 689 688 688 F -26.5+543R-14.9+3628 -9.1+2718 -5,5+217R -3.2+1818 -1.5+155R -02+135R0,8+120R 1.6+1088 ,ter... VSC2 4" q 723 722 721 720 719 719 719 719 718 ,.. F 27.1+5438-15.7+362R -10+271R -6.6+217R 4.3+181R -2 7+155R -1.4+136R -0.5+121R 0.3+109R 1 q 668 689 606 632 572 599 554 578 542 VSC2 @ 24" F -13.4+342R -5.7+2288 -0.6+1708 1.6+1368 4,3+113R 5.1+96R 7+84R 7,3+75R 8.7+67R VSC2©18" q 781 689 699 702 648 659 667 630 640 F=-14.4+343R -5.7+228R -1.9+171R 0.5+136R 3+1138 4+97R 4.8+85R 62+75R 6.6+68R VSC2 12" q 781 765 757 749 743 739 736 734 732 F 144+3438 -61+228R -2.7+171R -0.3+137R 1.4+1148 2_5+97R 3A+85R 4.2+76R 4.7+68R 20 0q 829 833 818 823 812 817 809 813 =807 V5C2 @ 8 F 15.1+3438 7.8+2298 -3.8+1718 -1.7+1378 0+114R 1+988 1.9+868 2.5+768 3.1+688 VSC2 t ;6re q 853 850 848 846 845 844 843 842 842 F 15.5+344R -8,2+229R -4.5+172R -2.3+1378 -0 8+114R 0.3+98R 1.1+86R 1,7+76R 22+69R �. VSC2{c4" q 875 874 873 872 872 871 871 871 871 F -16.1+3448 -8.9+229R -5.3+172R -3.1+137R -1.6+115R 0.6+98R 0.2+86R 0.8+76R 1.3+69R q 926 960 856 894 818 854 797 830 784 VSC2 24" F -4.7+167R -1.2+111R 1.6+83R 2.5+66R 4+55R 4.2+47R 52+41R 5.2+37R 5.9+33R q 1068 960 974 980 916 930 941 897 910 VSC2 @ 18" F -17+168R -1.2+1118 0.6+83R 1,7+67R 3+55R 3,4+47R 3:7+42R 4,5+37R 4.6+33R 1� 6 VSC2(6112" F -5,7+168R1068 5.7 16688 1.9+1128 0+84R 12+67R 1.9+56R 2.5+1052 1043 1036 1030 48 1023 1021 1019 488 2.9+42R 3.2+378 3.5+33R 18 q 1123 1129 1113 1118 1107 1112 1104 1109 1103 VSC2 ra 8" F -6.2+1688 -27+112R -9.7+84R 0.3+67R .1+56R 1.5+48R 2+42R 2.3+37R 2.6+34R VSC2 ate 6" q 1149 1146 1144 1143 1141 1141 1140 11441 1139 F -6.5+168R -19+112R -1.1+84R -0.1+67R 0.6+56R 1.2+488 1.5+42R 1.8+37R 2,1+34R VSC2 4" q 1172 1171 1170 1170 1169 1169 1169 1169 1169 F -6.8+1688 -3.3+112R -1.6+84R -0.5+67R 02+56R 0.7+4R 1+42R 1,3+37R 1.6+34R 1 ,F VSC2 24" q 1182' 1227 1104 1152 1061 1106 1037 1078 1022 F -1-2+95R €•8+63R 2.7+47R 3.1+38R 42+31R 4.2+27R 5+23R 4.9+21 R 5.5+19R m� VSC2 10„ 9 1352 1227 1246 1254 1179 1197 1210 1158 1174 F -2+96R 0.6+63R 1.8+47R 2.4+38R 34+31R 3.6+27R 3.7+24R 4.3+21R 4,3+19R VSC2 12" q 1352 1336 1327 1319 1313 1309 1306 1303 1301 ilry� F -2+96R 0.2+64R 1,3+48R 2+38R 24+32R 28+27R 3+24R 32+21R 3.4+19R16 1 �. VSC2 @ 8" q 1416` 1423 1405 1412 1400 1406 1397 1402 1395 F 25+96R -0.5+64R 0,7+48R 1.2+38R 1.7+32R 2+27R 23+24R 2.4+21R 2.6+19R VSC2(a16 6. q 1445 1442 1440 1438 1437 1437 TM 1436 1436 __ m 1435 INE F -18+96R -0.7+64R 0,3+48R 1+38R 1 4+32R 1.7+27R 1.9+24R 2.1+21R 22+19R q 1470 1469 1469 1468 1468 1467 1467 1467 1467 VSC2 @ 4" F -3.1+96R -1.1+84R 0+48R 0.6+38R 1+32R 1.2+27R 1.5+24R 1 6+21R 1,8+19R See footnotes on page 28, P15 IGHT Project Name: 190233 Model: GRID 1.1 SW Date: 121 r engineers Code: 2012 NASPEC[AISI 5100-2012] Simpson Strong-Tie®CFS DesignerTM 2.8.1.0 Simple Shear Wall design is intended for use with element and component design or other designs where special seismic considerations are not required. For design of building LFRS shear walls, use CFS Designer's Stacked Shear Wall design module. _V (lb) —\\\\\\\`\\\�\\\`\` \\\\\ •��\\ \\M:\\' \\ \\\\\\ * \ \ \ \ \ \ \ \\\\ \\ \\\\\M.\\\,\\ \ \ \ _\\\,'\ \\\ , ' \\\ \ \ , \ M\ ' \. \\\.\\ \% \ \ Height \\ \\\\ I L'\\\ \\-N\\.\ \\ \\\N\ \\\\\ \\\,, \ \\\\ ‘ \‘‘\\\s\\s\,\,\ \\\,,s‘\\ \%\..\\\ \.Z\'.\.k\:\. i,r.:\V;:t'\.\\\\,•: I 13ft —I 1 I % --- f Length 2ft_1 Chord Data Load Data (Factored ASD) Chords: 600S137-54(50)Back-To-Back V(wind)= 2100 lb 2012 NASPEC[AISI S100-2012] V(seismic)= 700 lb Chord Fastener Spacing,a= 12 in Shearwall Chord Force= 14891 lb Sheathing Data Includes Anchor Offset= 2.0 in Shear values per IBC 2012(AISI S213-07/S1-09) Additional Axial Loads= 0 lb Total Axial Loads= 14891 lb See AISI S213-07/S1-09 for additional information KyLy, KtLt for Axial Capacity= 48 in Stud Thickness= 54 mils Maximum KL/r= 92 Sheathing: 7/16 Rated Sheathing(OSB)1 side Allowable Axial Load= 9269 lb Input Chord Moment= 0 Ft-Lb Fasteners: 6-inches oc edges, 12-inches oc field Flexural Bracing= 48 in Distortional Buckling Inputs for Moment and Axial Screws attaching panels to CFS steel framing shall comply with K-phi= 0 lb-in/in ASTM C1513.Also,for framing members that are 54 mil and thinner, Lm= None use minimum#8. For 68 mil and thicker, use min.#10. Allowable Moment= 3540 Ft-Lb Aspect Ratio= 6.50:1 Chord Interaction= 1.61 Allowable Aspect Ratio for Seismic= 4.00:1 Allowable Aspect Ratio for Wind= 2.00:1 Unit Shear(Wind)= 1050 lb/ft Allowable Unit Shear(Wind)= 0 lb/ft Unit Shear(Seismic)= 350 lb/ft Allowable Unit Shear(Seismic)= 0 lb/ft SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com P16 PROJECT: ,No: SHEET: \AfRIGHT Project Name: 190233 Model: GRID 1.1 SW Date:02/21%2019 e r s Code: 2012 NASPEC[AISI S100-2012] Simpson Strong-Tie@ CFS DesignerTM 2.8.1.0 Overturning Uplift Data Anchor offset Each End= 2.0 in Uplift at Anchor-Wind= 14891 lb Uplift at Anchor-Seismic(unfactored)= 4964 lb Warning: Unit Shear for Wind exceeds allowable Warning: Unit Shear for Seismic exceeds allowable SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com P17 PROJECT: No: SHEET: • . W Project Nam WRIGHT e: 190233 Model: GRID A& B SW Date:21/2019 e r s Code: 2012 NASPEC[AISI S100-2012] Simpson Strong-Tie®CFS DesignerTM 2.8.1.0 Simple Shear Wall design is intended for use with element and component design or other designs where special seismic considerations are not required. For design of building LFRS shear walls, use CFS Designer's Stacked Shear Wall design module. \.:"\\\\* .tb) \\\s\\\\\\\\\\ \\\\.\\\\\\\\\\\\\\\\\ *k\\\\\\\.\ \\\\\\\\\\\\\ \ \\\\'�\\ \\\\ \\\ : \\M\\. \ \\\\ \ \\\\ \\\ \\ \ \\\\\\ \\\ \ MM\W \\ Height \ \\\ \‘% \q\ \ \ \ \ \\ \ \\\ \\\\ \\\\\ \ 1. \\ \\\ \\\\\ \\ \ \ \\\\ I1 1I Length 10ft Chord Data Load Data (Factored ASD) Chords: 600S137-54(50)Back-To-Back V(wind)= 900 lb 2012 NASPEC[AISI S100-2012] V(seismic)= 500 lb Chord Fastener Spacing,a= 12 in Shearwall Chord Force= 1190 lb Sheathing Data Includes Anchor Offset= 2.0 in Shear values per IBC 2012(AISI S213-07/S1-09) Additional Axial Loads= 0 lb Total Axial Loads= 1190 lb See AISI S213-07/S1-09 for additional information KyLy, KtLt for Axial Capacity= 48 in Stud Thickness= 54 mils Maximum KUr= 92 Sheathing: 7/16 Rated Sheathing(OSB)1 side Allowable Axial Load= 9269 lb Input Chord Moment= 0 Ft-Lb Fasteners: 6-inches oc edges, 12-inches oc field Flexural Bracing= 48 in Distortional Buckling Inputs for Moment and Axial Screws attaching panels to CFS steel framing shall comply with K-phi= 0 lb-in/in ASTM C1513.Also,for framing members that are 54 mil and thinner, Lm= None use minimum#8. For 68 mil and thicker, use min.#10. Allowable Moment= 3540 Ft-Lb Aspect Ratio= 1.30:1 Chord Interaction= 0.13 Allowable Aspect Ratio for Seismic= 4.00:1 Overturning Uplift Data Allowable Aspect Ratio for Wind= 2.00:1 Anchor offset Each End= 2.0 in Unit Shear(Wind)= 90 lb/ft Uplift at Anchor-Wind= 1190 lb Allowable Unit Shear(Wind)= 455 lb/ft Uplift at Anchor-Seismic(unfactored)= 661 lb Unit Shear(Seismic)= 50 lb/ft Allowable Unit Shear(Seismic)= 376 lb/ft SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com P18 PROJECT: No: SHEET: I GHT Project Name: 190233 Dat : Model: GRID A& B SW e021%2019e r $ Code: 2012 NASPEC[AISI S100-2012] Simpson Strong-Tie®CFS DesignerTM 2.8.1.0 SIMPSON STRONG-TIE COMPANY INC. www.strongtie.com P19 PROJECT: No: SHEET: 3' Connectors for Cold-Formed Steel Construction SISON S/LTT, S/DTT and HTT Tension Ties The HTT is a single-piece formed tension tie— no rivets,and a 4-ply formed seat.No washers � �_`,+, 1w -, are required. f �1't,.. �. ~ T W ' S/DTT2Z tension tie Is suitable for lighter-duty "'EJ y j • hold-down applications on single or back-to-back ° - fl studs,and installed easily with#14 self-drilling , fl ° r Screws. j ° ° 45 mm • The HTT,S/DTT and S/LTT tension ties are ideal a 7 r C ° t for retrofit or new construction projects.They 'n \C , provide high-strength,post-pour,concrete-to-steel « N t connections. it C ,°L"0 • 76mm t.Material:HTT— 111 mil(11 ga.) washerDTT1Z,S/DTT2Z—68 mil(14 ga.) a not iS/LTT20B—Strap:97 mil(12 ga.); � �/(1. � required Plate:229 mil(3 ga.) r,�' � ,��%', Finish:HU,S/LTT—Galvanized; i> - J 1 e" - N DTT1Z,S/DTT2Z—ZMAX®coating � �/ HTT5 I o Installation: DTf1 Z S/DTf2Z (HTT4 similar) U.S.Patent Pending U.S.Patent • Use all specified fasteners. 1 8,555,580 `" ,: • Use the specified number of type of screws } to attach the strap portion to the steel stud.Bolt Tension * / the base to the wall or foundation with a suitable (f„2, I Load transfer co anchor;see table for the required bolt diameter. 't 46 plate-washer d I[• not required H • S/DTT2Z requires a standard cut washer C (included)be installed between the nut andici, S/LTT20 •- the seat. Typical pf1 Z C • Do not install S/LTT2OB raised off of the Installation bottom track. ".. C • See SB and SSTB Anchor Bolts on pp.236-239 d f9 for anchorage options. Typical HTT5 C • See SET-XP®and AT-XP®adhesive products for --- --- Installation anchor bolt retrofit options. � as a Holdown 0 �% V Codes:See p.11 for Code Reference Key Chart O I 0 z Dimensions(in.) Fasteners ASD(lb.) LRFD(lb.) y a Stud Nominal Member Tension Code 8 Model i Anchor Bolt Stud Thickness Tension Deflection Tension Deflection Load° Ref. W W H q Diameter' Fasteners' mil(ga.) at ASD at LRFD Load Load (lb.) F (in.) { Load' Load' co i o D-T1Z 17, 1 7., I (6 )-- 0 33(201 905 0.156 1 270 0.250 3,485 col- SILTT20 2 20 1154 1/Z (8)#10 33(20) 1,200 0.125 1,890 0.250 4,625 p 33(20) 1,570 0.138 2,200 0.250 4,265 a ni S/DTT2Z 15/5 61115 1415 1 (8)#14 43(18) 1,685 0.151 2,355 0.250 5,570 5 2-33(2-20) 1,735 0.153 2,430 0.250 5,735 IP1, p 33(20) 3,180 0.104 4,770 0.187 8,215 FL, o HTT4 254 12'/3 1'/a 54 (18)#10 2 33 (2-20) 5e 0#125 6,675 0.250 11,835 0 6 43(18) 4,240 0.125 6,505 0.250 11,585 I 0.1 HTT5 214 ' 16 1% % (26)#10 2-43(2-18) 4,670 0.125 6,970 0.250 12,195 1-54(1-16) 4,150 0.125 6,425 0.250 12,365 These products are available with additional corrosion protection.Additional products on this page may also be available with this option.Check with Simpson Strong-lie for details. 1.The Designer shall specify the foundation anchor material type,embedment and configuration. 2.Stud design by Specifier.Tabulated loads are based on a minimum stud thickness for fastener connection. 3.Deflection at ASD or LRFD includes fastener slip,holdown deformation and anchor rod elongation for holdowns installed up to 4”above top of concrete.Holdowns may be installed raised,up to 18"above top of concrete,with no load reduction provided that additional elongation of the anchor rod is accounted for.See bottom of p.243 for installation detail. 4.The Nominal Tension Load is based on the tested average ultimate(peak)load and is provided for design in accordance with section C5 of AISI S213 that requires a tension tie to have a nominal strength to resist the lesser of the amplified seismic load or the maximum force the system can deliver. 5.See pp.138 through 171 for more information on Simpson Strong-Tie fasteners. P20 244 _ WRIGHT engineers MECHANICAL UNIT ANCHORAGE FORCES CENTER OF GRAVITY UNIT ILRFD Fp I ASD Fp WEIGHT(LBS)I Fp(LBS) HEIGHT (IN) WIDTH(FT) Mar(LB-IN)I MR(LB-IN) I OVERTURNING RTU-1 0.347 Wp 0.248 Wp 1200 298 45.0 21420 NO MAU-1 0.347 Wp 0.248 Wp 1100 273 34.5 2 15.55 9412 10230 NO HOOD 0.347 Wp 0.248 Wp 425 105 BRACED ABOVE CENTER OF GRAVITY,NO OVERTURNING MOMENT PROVIDE #14 SCREW AT 24" O.C. SCREW CAPACITY = 203 LB/SCREW [SEE ATTACHED] PROVIDE A MIN. OF (2) SCREWS MA1 \rrcoJtc,r: No: SHEET: