Loading...
Specifications (39) CICO1S4NISHKIAN DEAN csA `; RECEIVE® 1 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 APR 12019 CIT` OF TIGARD BUILDING DIVISION ND31642 . 03 Woodward Elementary School Renovations 12325 SW Katherine St. Tigard, OR 97223 STRUCTURAL CALCULATIONS TU/ 1 12/19/2018 �5.$.\) PROfF ` F Rob Aman, PE, SE, LEED AP if 15,386 Project Manager #OREGON 'tz1Y 30, 199 Mark Santa Maria, PE, SE //N T p°P' Project Engineer EXPIRATION DATE: 12-31-19 Edwin T. Dean, PE, S DIGITAL SIGNATURE: 12-19-18 Principal-In-Charge Project Job Ref. NCONSULTING I S NAND KSTRUU CTURAL ENA LE DGINEERSESINCEA1919N TESD—Woodward Renovations 31642.03 Nishkian Dean Section Sheet noirev. 1022 SW Salmon St.Suite 300 Structural Calculations 1 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 TABLE OF CONTENTS TABLE OF CONTENTS 1 STRUCTURAL NARRATIVE 2 DESIGN CRITERIA SUMMARY 3 MATERIAL PROPERTIES 4 BUILT-UP COLUMN AT CORNER 5 BUILT-UP WINDOW HEADER 6 ASCE 41-17 CALCULATIONS 8 TIER 1 QUICK BASE SHEAR CHECK 9 DETERMINATION OF FORCES AND DEFORMATIONS FOR LSP 10 COMPARISON CHECKS FOR I/O AND US 10 SEISMIC WEIGHTS 11 SHEAR WALL CHECK (ASCE41-17) 13 SHEAR WALL HOLDOWN (ASCE 41-17) 15 SHEAR WALL CHECK (ASCE7-10) 17 SHEAR WALL HOLDOWN (ASCE 7-10) 19 HOLDOWN ANCHORAGE 21 RTU LOAD TO EXISTING BEAM, NEW BEAM SPEC 23 RTU LOAD TO EXISTING GLULAM BEAM 26 RTU LOAD TO EXISTING COLUMN 27 RTU SPECS 31 CU LOAD TO EXISTING BEAM, NEW BEAM SPEC 34 N S H K A N Project Job Ref. CON 'LTING AND STRI URAL ENGINEER �N E1919 TTSD—Woodward Renovations 31642.03 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 2 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 STRUCTURAL NARRATIVE Durham Elementary School is a 1-story, 68,800 square foot building consisting of classrooms, a library, a cafeteria, gym, and areas for other uses. It was originally constructed in 1988 and underwent major additions in 1995. two phases in 1978 and 1979. The building consists of a mix of wood framed shear walls, concrete shear walls, concrete floor slabs, wood and steel columns, and tectum and plywood over wood roof framing. This partial building renovation includes adding wall openings in existing shear walls, adding skylights, adding a steel column and glu-lam headers for a storefront wall, and adding support for a new rooftop AHU. Affected shear walls and holdowns are analyzed for ASCE 41-17 and OSSC 14. ASCE 41-17 modifications are voluntary for the scope of work covered by the bond issue. Required upgrades as noted by these calculations outside of the bond scope area are intended to be addressed by a future seismic upgrade. Project Job Ref. N I S N K I A NE A N TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 S Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 3 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 DESIGN CRITERIA SUMMARY A. Code 1. Oregon Structural Specialty Code (OSSC) 2014, refers to a. 2012 International Building Code b. ASCE 7-10 Minimum Design Loads for Buildings and Other Structures 2. ASCE 41-17 Seismic Evaluation and Retrofit of Existing Buildings B. Loads and other criteria 1. Risk Category: Ill 2. Floor Live Load: Classrooms 50 psf, Lobbies and First Floor Corridors 100 psf 3. Seismic Design Criteria a. Seismic Design Category: D b. Importance Factor: IE = 1.25 c. MCE Spectral Response Acceleration at Short Periods: Ss = 0.944g d. MCE Spectral Response Acceleration at Period of 1 Second: Si = 0.414g e. ASCE 7-10 Parameters: i. Design Spectral Response Acceleration for Short Period: SDS = 0.706g ii. Design Spectral Response Acceleration for Period of 1 Second: SD1 = 0.438g f. ASCE 41-17 Parameters: i. Design Spectral Response Acceleration for Short Period: Sxs = 0.530g ii. Design Spectral Response Acceleration for Period of 1 Second: Sx1 = 0.329g Project Job Ref. N I S N K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no.lrev. 1022 SW Salmon St.Suite 300 Structural Calculations 4 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 MATERIAL PROPERTIES A. STRUCTURAL STEEL 1. Wide Flange Shapes: ASTM 992 2. Plates and Other Rolled Shapes: ASTM A36 3. Tubes: ASTM A500 Gr. B 4. Pipe: ASTM A53 Gr. B 5. Fasteners a. High-Strength Bolts: ASTM A325N b. Standard Anchor Bolts: ASTM F1554, Gr. 36 c. Wood Connection Bolts: ASTM A307 6. Welding a. Electrodes: E70xx B. CONCRETE 1. 28-Day Compressive Strength: 3000 psi 2. Reinforcing Steel a. Typical: ASTM A615, Gr. 60 C. WOOD 1. Structural light framing: No. 2 Douglas Fir-Larch 2. 3x & 4x members: No. 1 Douglas Fir-Larch 3. Glue laminated members: Douglas Fir-Larch Comb 24F-V8 4. Laminated strand lumber (LSL): Fb = 2325 psi, 1.55E 5. Other materials and fasteners: as noted on drawings Project Job Ref. N I S H K I A N DEAN TTSD—Woodward Renovations 31642.03 !I CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 5 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 BUILT-UP COLUMN AT CORNER Tributary width supported by window header,; trib=2.5 ft Roof weight: Built-up roofing; 3.5 psf insulation; 1.5 psf 3" CFD; 6.0 psf 4x6 @ 5'-0" OC; 1.0 psf New suspended ceiling; 2.5 psf MEP; 1.0 psf Total; DLroof= 15.5 psf; Snow load supported by roof,; SL = 25 psf Header length,; Lhdr= 5 ft Wall total height,; hwai = 12.75 ft Wall height above window,; hwau_abv= 3 ft Wall weight,; wwall = 10 psf Distributed load to beam,; w= (DLroof+ SL) trib+hwall_abv wwall= 131.250 plf Design moment,; M =w Lhdr2/8 =410.156 lb_ft Design shear,; V=w Lhdr/2 =328.125 lb 0o Post at corner condition supports headers from two windows Axial load to built-up column,; P = 2 V+ 1.33 ft (hwall Wwall +trib (DLroof+ SL)) = 960.488 lb STRUCTURAL WOOD MEMBER DESIGN (NDS) In accordance with the ANSI/AF&PA NDS-2005 using the ASD method Tedds calculation version 1.7.07 (Library item—Timber beam design title) Analysis results Design axial compression; P =960 lb Sawn lumber section details Nominal breadth; bnom =2 in; Dressed breadth; b= 1.5 in Nominal depth; dnom =6 in; Dressed depth; d = 5.5 in Number of sections; N =4; Breadth of member; bb=6 in (Library item—Timber section summary) Lumber grading; Stud Douglas Fir-Larch (Library item—Timber summary) Member details Service condition; Dry (Library item—General beam summary) Load duration; Two months (Library item—Load duration summary) Unbraced length in x-axis; Lx= 13.5 ft; Unbraced length in y-axis; Ly= 13.5 ft Effective length factor in x-axis; Kx = 1; Effective length factor in y- axis; Ky= 1 Effective length in x-axis; Lex= 13.5 ft; Effective length in y-axis; Ley= 13.5 ft (Library item—Effective lengths summary) Project Job Ref. N I S H K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 6 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 Strength in compression parallel to grain -c1.3.6.3 Design compressive stress; Fb' =289 lb/in2; Applied compressive stress; fo=29 lb/in2 PASS-Design compressive stress exceeds applied compressive stress (Library item:Compressive stress check summary) BUILT-UP WINDOW HEADER Tributary width supported by window header,; trib =2.5 ft Roof weight: Built-up roofing; 3.5 psf insulation; 1.5 psf 3" CFD; 6.0 psf 4x6 @ 5'-0"OC; 1.0 psf New suspended ceiling; 2.5 psf MEP; 1.0 psf Total; DLroot= 15.5 psf; Snow load supported by roof,; SL= 25 psf Header length,; Lhdr= 5 ft Wall total height,; hwaii = 12.75 ft Wall height above window,; hwau_abv= 3 ft Wall weight,; wwaii = 10 psf Distributed load to beam,; w= (DLroof+ SL) trib+hwali_abv Wwall= 131.250 plf Design moment,; My=w Lhdr2/8 = 410.156 lb_ft Design shear,; F =w Lhdr/2 = 328.125 lb STRUCTURAL WOOD MEMBER DESIGN (NDS) In accordance with the ANSI/AF&PA NDS-2005 using the ASD method Tedds calculation version 1.7.07 (Library item—Timber beam design title) Analysis results Design moment in minor axis; My=410 lb_ft Design shear; F = 328 lb Maximum reaction; R=328 lb Sawn lumber section details Nominal breadth; bnom =2 in; Dressed breadth; b= 1.5 in Nominal depth; dnom =6 in; Dressed depth; d = 5.5 in Number of sections; N= 5; Breadth of member; bb=7.5 in (Library item—Timber section summary) Lumber grading; Stud Douglas Fir-Larch (Library item—Timber summary) Member details Service condition; Dry (Library item—General beam summary) Length of bearing; Lb=4 in Project Job Ref. N I S H K I A N DEAN TESD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 7 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 (Library item—Bearing length summary) Load duration; Two months (Library item—Load duration summary) Bearing perpendicular to grain -c1.3.10.2 Adjusted compression; Fc_perp' = 625 Ibfin2; Applied compression; fc_perp= 11 lb/in2 PASS- Design compressive stress exceeds applied compressive stress at bearing (Library item—Timber bearing summary) Strength in bending -c1.3.3.1 Design bending stress; Fb'= 1065 lb/in2; Actual bending stress; fb= 95 lb/in2 PASS- Design bending stress exceeds actual bending stress (Library item—Timber bending summary) Strength in shear parallel to grain -c1.3.4.1 Design shear stress; Fv'=207 lb/in2; Actual shear stress; fy= 12 lb/in2 PASS-Design shear stress exceeds actual shear stress (Library item—Timber shear summary) Project Job Ref. N I S N K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Sheet no./rev. Section 1022 SW Salmon St.Suite 300 Structural Calculations 8 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 ASCE 41-17 CALCULATIONS Design Maps Summary Report Design Maps Summary Report User-Specified Input User-Specified Input Report Tide Mary Woodward Report Title Mary Woodward ES SRGP Mon Poovembe•.12.2018ES 27SRGP3743 UTC Man Novemba+12.2018 23:44:13 UTC Building Code Reference Document ASCE 41-13 Retrofit Standard,BSE-'IE Building Code Reference Document ASCE 41-13 Retrofit Standard,BSE-1N (wne+�Il:cs t/5G5 natartl tlala available m 2008) iw5a5 uI 8w U555 58x808 data ava4ebl,,n 20081 Site Coordinates 45.43387°N,122.80383°W Site Coordinates 45.43387°N,122.80383°W Site Soil Classification Site Glass D-"StlN Soli" Site Soil Classification Site Class D-'Stiff Soil' ,jlillsboro ,Hillsboro a`:: ortland eortland Beaverton �} ' "" Beaverton �, 4 ttt i`` it, ..r^ Ti, r� m.4" Ti rd. cti �° Lake Oswego take Oswego 4 ,' matin -/," 'DJalatin o 0 ,k jti' < ' Sherw od Sherwood Oregon City Qf l Oregon City ',1,1,,.., 1' USGS-Provided Output USGS-Provided Output s...,.. 0.292 9 Ss458 g .aso-u 0. S4:.uu0e 0.716 g S..mrse 0.110 9 Sem... 0.260 g Sat.au-0� 0.444 g I Design Maps Summary Report User-Specified input Report Title Mary Woodward ES SRGP Mon November 12,2018 23,4207 UTC Building Code Reference Document ASCE 41-13 Retrofit Standard,BSE-2E 8,0585„t•&as USGS 580x8 data avmiabie�n 7008} Site Coordinates 45.43387°N,122.80383°W Site Soil Classification Site Class O--Stiff Soil' 4Hill i' en Beaver a A.,,,:.„1-:4_. _. _ . G ( 1 .4",- �7a ,,7 .�" aa` ss r + er° f 7 d USGS-Provided Output Se,S7a. 0.708 g S„,.z...,a 0.874 9 S,.,,am 0.309 9 S..au-m 0.552 9 Project Job Ref. N I S N K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 9 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 TIER 1 QUICK BASE SHEAR CHECK For the Tier 1 analysis pseudo seismic force,the response spectral acceleration is the largest of the value determined from BSE-1 E accelerations and the value determined by 75% of the BSE-1 N accelerations (equiv.to the accelerations used for design of new buildings per IBC 2015). BSE-1E -IMMEDIATE OCCUPANCY(I/O) Sxs BsE 1E= 0.458 SX1 BSE 1E= 0.260 BSE-1N (IBC 2015) SXS_BSE_1N= 0.716; 0.75 SXS_BSE_1N=0.537 Sx1_BSE_1N= 0.444; 0.75 SX1_BSE_1N=0.333 ;GOVERNS OVER BSE— 1 E BSE-2E— LIFE SAFETY(US) SxS_BSE_2E= 0.874; Sx1_BSE_2E= 0.551; The lateral system is a mixture of wood and precast Tilt-Up concrete shear walls,with flexible diaphragms. The modification factor is conservatively taken as the most unfavourable condition in the building. Building height also varies, and the maximum building height is used to estimate the building period. Modification factor; C= 1.4 Building fundamental period (4.4.2.4); Cr= 0.020 hn = 25; ft = 0.75 T= CT hn = 0.22; s I/O Spectral Acceleration (4.4.2.3); Sa = 0.75 SX1_BSE_1N/T= 1.489 Sa_max= 0.75 SXS_BSE_1N = 0.537 Sa_io=min(Sa, Sa_max) = 0.537 Base Shear coefficient (I/O); CBS_T1_lo= C Salo = 0.752 L/S Spectral Acceleration (4.4.2.3); Sa= SX1_BSE_2E/T= 2.464 Sa_max= SXS_BSE_2E= 0.874 Sa_Ls=min(Sa, Sa_max) = 0.874 Base Shear coefficient (US); CBs_T1_Ls= C Sa_LS= 1.224 GOVERNING CONDITION FOR INITIAL SHEAR WALL CHECK System Modification Factors for Shear walls; MS_10= 1.5; MS Ls= 3.0 I/O-; Ces_T1_io/MS_io= 0.50; GOVERNS US-; CBS_T1_LS/MS_LS= 0.41 00 Immediate Occupancy governs over life safety for the shear walls Project Job Ref. N I S N K I A N DEAN TTSD—Woodward Renovations 31642.03 • CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 10 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 DETERMINATION OF FORCES AND DEFORMATIONS FOR LSP Pseudo Seismic Force for LSP, the response spectral acceleration is the same as that used for the Tier 1 analysis. Using the simplified method with a building period less than 0.3s and a maximum m-factor between 2 and 6 for US and max m-factor of 2 for I/O,the product of the modification factors is taken from Table 7-3. The value of the effective mass factor is taken from Table 7-4. Sa_iO = 0.537; I/O Sa_Ls= 0.874; US Modification factors Table 7-3; C1C2 io= 1.1 C1C2 Ls = 1.4 Effective mass factor; Cm = 1.0 Base shear coefficient; CBS_LSPIO= C1C2_IO Cm Salo= 0.59; I/O CBS_LSP_LS= C1C2_LS Cm Sa_LS= 1.22; US COMPARISON CHECKS FOR I/O AND L/S Plywood Shear Walls Wood stuctural panel sheathing or siding; m_io= 1.7;; m Ls= 3.8 I/0; CBs_LSP_lo/m_Io= 0.347 US; CBS LSP LS/m LS= 0.321 For shearwall checks use I/O with m of 1.7 Plywood/Tectum Unblocked Chorded Diaphragms m_io= 1.5;; m Ls= 2.5 I/O; CBs_LSP_lo/m_Io= 0.394 US; CBS LSP LS/m LS= 0.488 For diaphragm checks use US with m of 2.5 Holdowns—Overturning 7.2.8.1 m_OT_io=4;; m0TLs= 8 I/O; CBS_LSP_10/(C1C2_I0 oc oT_Io) = 0.134 US; CBS_LSP_LS/(C 1 C2_LS oC OT_LS) = 0.109 For holdown checks use I/O with m of 4 Project Job Ref. CO I TI N K U A N *DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 11 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 SEISMIC WEIGHTS Walls Wood Siding; 1.5 psf /z" Ply; 1.5 psf 2x6@16"; 1.6psf Insulation; 0.5 psf 5/8"Gyp.; 3.1 psf Misc.; 1.0 psf TOTAL; 10 psf Plywood Roofs BU Roof; 3.5 psf Insulation; 1.5 psf 5/8" Ply; 1.8 psf 16" TJI@16"; 2.5 psf 1" Gyp.; 5.0 psf Suspended Ceiling; 1.5 psf Mech & Elect.; 0.5 psf TOTAL; 17 psf CFD Roofs w/4x3 BU Roof; 3.5 psf Insulation; 1.5 psf CFD (2W); 5.0 psf 4X3 @ 2'; 1.0 psf 4X6 @ 5'; 1.0 psf 5 1/8x19 @ 10' ; 2.0 psf Mech & Elect.; 0.5 psf TOTAL; 15 psf CFD Roofs w/4x10 BU Roof; 3.5 psf Insulation; 1.5 psf CFD (3"); 6.0 psf 4X10 @ 4'; 2.0 psf 8 3/4x36 @ 14'; 5.6 psf Mech & Elect.; 0.5 psf TOTAL; 19.5 psf Project Job Ref. NISHKIAN TTSD—Woodward Renovations 31642.03 CONSJ._INC,;ND 5'ItUC"-PA:ENGINEERS SNCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 12 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 Section C Seismic tributary to Roof Level at Section B: Walls; Wwal c = 10 psf 0.5 14 ft (120 ft 4 + 70 ft 5) = 58.1 kip Plywood Roofs; Wpiyc= 17 psf 70 ft 120 ft= 142.8 kip Total Weight; Wc= Wwauc +Wpiyc = 200.9 kip 24 A 'I. . L4 -30' /:>R - e . I ; -,fe. gar Y 1 7 _ . !. !Y ;es ' !!ff M 0 F. Iv .. N SOS 7 1 SWX09 - 70 _. - fit. .`� i' -/-%. �"-.t � i .' SWX10 $ 30 .. '• 10 -20 . ' _°Y' SWX11 fir. :,A $ ,., .,}i - '1 1125- t. 23 . `"" Q i ' a� .°SWM1 60� ., ..-' t w. ..� . SWM2 ffl . ,,;• 1. -' _ 7.: --.'452;:,.. �' ts•7. {, ' [e[`t •M • 1, `\ r t-124 i I 14 N . .2, .. .' �$r SWX12 SWX13 H 61 SWX14 .S.----""—\.S.----""—\ • :./.� ,. .1 :.. t N Sol 25 50 V REVISED WALLS 4 Ew 0 b £.v4o1 Project Job Ref. c> N I S N K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 13 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 SHEAR WALL CHECK (ASCE41-17) CBS LSP Io= 0.591 We= 200.900 kips Vc= CBS_LSP_IO We= 118.7 kip co Existing walls use 8d @ 6" OC Allowable shear capacity,; va = 520 plf 1.5 1.7 = 1326.000 plf Minimun Minimum i Fastener Nominal Penetration Fastener Sheathing Panel i in Framing Type&Size 6 Material Thickness,. Member or (in.) Blocking v. G. [ (in.) (pti) (kips/in.) Nall(common or galvanized box) OSB PLY wood 5/16 1-114 ed 400 13 10 Structural 3/6' 460 19 14 Panels- Structural I's 71162 1-318 8d 510 16 13 15/32 560 14 11 15/32 1.12 104 680 22 16 5/16 1-1/4 360 13 9.5 Wood 3/8 400 11 8.5 Structural 3/8` 440 17 12 Panels- 7/16' 1-3/8 84 480 15 11 5� ., 15/32 520 13 10 15/32 1-1/2 10d 620 22 14 19/32 680 19 13 EW direction Walls: yew=Vc/120 ft= 988.9 plf SW LINE TRIBUTARY LENGTH SHEAR IN LINE EWos; Txos=60 ft; Vevs= Vew Txos=59.3 kip; EWo7; T007=60 ft; Vew7= Vew Txo7=59.3 kip; Shearwall label; Length ; SWY13; Ly13=25 ft; SWY14; Ly14=23 ft; SWY15(revised wall); Ly15= 11 ft; SWY16(revised wall); Los=20.5 ft; LOAD IN WALL; Load(plf); Status; V013=Vew Ly13/(Ly13+ L014) =30.90 kip;; vy13=Vy13/Ly13= 1236 plf; ; <1326 PLF, OK; Vy14=Vews Ly14/(Ly13+ L014)=28.43 kip;; vy14=Vy14/Ly14= 1236 plf; ; <1326 PLF, OK; Vy1s=Vew7 Ly15/(Ly15+ Ly16)=20.72 kip;; vyls=Vyls/Los= 1884 plf; ; >1326 PLF,ADD SUREBOARD; Vie=Vew7 Lyle/(Ly1s+ Ly16)=38.62 kip;; vy16=Vyis/Los= 1884 plf; ; >1326 PLF,ADD SUREBOARD; Project Job Ref. 11> N I S H K I A N DEAN TTSD—Woodward Renovations 31642.03 • CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 14 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 NS direction Walls: vns=Vc/60 ft = 1977.9 plf SW line Tributary Area Shear in line NSoe; Txos=30 ft; Vnso6= V ns Txos=59.3 kip; NSo7; T.07=30 ft; Vnso7= Vns Txo7=59.3 kip; SHEAR WALL LABEL LENGTH SWX10; Loo=30 ft; SWX11; Lx11=30 ft; SWX12; Lx12=25 ft; SWX13; L513= 50 ft; SWX14(REMOVED); LOAD IN WALL; WALL SHEAR;; STATUS; Vxio=Vnsos Lxio/(Lx10+ Lx11) =29.67 kip;; vxlo=Vxio/Lxio=989 plf; <1326 PLF, OK; Vxii =Vnsos Lx11/(LxAo+ Lxii) +21.7 kips= Vx»=Vxii/Lx11 = 1712 plf; >1326 PLF,ADD SUREBOARD; 51.37 kip;; V513=Vns07 Lx13/(Lx13+ Lx12) =39.56 kip;; vx13=Vx13/Lx13=791 plf; <1326 PLF, OK; Vx12=Vnso7 Lx12/(Lx13+ Lx12)= 19.78 kip;; Vx12=Vx12/Lx12=791 plf; <1326 PLF, OK; SWX11 includes additional load from Section F, calculated below: Seismic tributary to Roof Level at Section F: Walls; WwallF= 10 psf 0.5 0 ft 435 ft= 0.000 kips Tectum roofs,; WpIyF= 15 psf 70 ft 70 ft= 73.500 kips Total Weight,; WF=WwalIF+WpIyF= 73.500 kips Shear to section F,; VF= CBS_LSP_IO WF=43.4 kips 1/2 load distributed in NS direction distributed to SWX11: Vswx11 = VF/2 = 21.708 kips Project Job Ref. N I S N K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 15 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 SHEAR WALL HOLDOWN (ASCE 41-17) Wall dead load,; WL= 10 psf Roof dead load,; DLr= 15 psf Wall height,; h = 12.5 ft X-DIRECTION WALLS OTM Trib Wall Weight Roof weight; OTMx10=Vx10 h = trxio=5 ft; W,xio=WL h Lxio=3.750 kips; Wrxio=DLr trxio Lxio=2.250 kips; 370.849 kip_ft; OTMxii =Vx11 h = trx„ =20 ft; Wwx11 =WL h Lx11 =3.750 kips; Wrx11 =DLr trx„ Lx11 =9.000 kips; 642.099 kip ft; OTMx13=Vx13 h = trxi3=5 ft; W.13=WL h Lx13=6.250 kips; Wrx13=DLr trxi3 Lx13=3.750 kips; 494.465 kip ft; OTMx12=Vx12 h = trx12=5 ft; Wwx12=WL h Lx12=3.125 kips; Wrx12=DLr trx13 Lx12= 1.875 kips; 247.233 kip_ft; Resisting Moment; RMxio= (Wwxio+Wrx1o) Lx10/2 +(DLr trxio Lxio) Lx1o/2= 123.7 kips ft; RMx11 =(Wwx11 +Wrx11) Lx11/2 +(DLr trx11 Lx11) Lx11/2=326.2 kips ft; RMx13=(Wwx13+Wrx13) Lx13/2 +(DLr trx13 Lx13) Lx13/2=343.7 kips ft; RMx12=(Wv,«12+Wrx12) 612/2 +(DLr trx12 Lx12) Lx12/2=85.9 kips_ft; Tension Force(+value for uplift) Compression Force(+value for compression); STATUS; Txio=(OTMxio/(4 1.1)-0.9 RMx1o)/(Lxio—6 in)=- Coo=OTMxio/(4 1.1)/(Lxio—6 in) =2.857 kips; OK; 0.918 kips; Tx11 =(OTMx11 /(4 1.1)-0.9 RMx11)/(Lxii —6 in)=- Cx11 =OTMx11 /(4 1.1)/(Lx11 —6 in) =4.947 kips; OK; 5.007 kips; Tx13=(OTMx13/(4 1.1)-0.9 RMx13)/(L.13—6 in)=- Cx13=OTMx13/(4 1.1)/(L.13—6 in)=2.270 kips; OK; 3.980 kips; Tx12=(OTMx12/(4 1.1)-0.9 RMx12)/(L.12—6 in)=- C.12=OTMx12/(4 1.1)/(L.12—6 in)=2.293 kips; OK 0.863 kips; Project Job Ref. N I S H K I A N DEAN TTSD—Woodward Renovations 31642.03 • CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 16 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 Y-DIRECTION WALLS OTM Trib Wall Weight Roof weight; OTMy13=Vy13 h = try13= 15 ft; WWy13=WL h Ly13=3.125 kips; Wry13= DLr try13 Ly13=5.625 kips; 386.301 kip_ft; OTMy1a=Vy14 h = tr 14= 15 ft; Ww04=WL h Ly14=2.875 kips; Wry14= DLr tryla Ly14=5.175 kips; 355.397 kip_ft; OTMy1s=Vis h = tryls= 15 ft; WWyis=WL h Los= 1.375 kips; Wryls= DLr tryls Los=2.475 kips; 259.006 kip ft; OTMy16=Via h = try16= 15 ft; Wwyi6=WL h Ly16=2.563 kips; Wry16= DLr try16 Ly16=4.613 kips; 482.692 kip ft; Resisting Moment; RM03=(WWy13+Wry13) Ly13/2 +(DLr try13 Ly13) Ly13/2= 179.7 kips_ft; RMy14=(Wwy14+Wry14) Ly14/2 + (DLr try14 Ly14) Ly14/2= 152.1 kips_ft; RMyis=(Wwy1s+Wry1s) Ly15/2 + (DLr tris Los) Los/2=34.8 kips_ft; RMy16=(Wwy1s+Wry16) Ly16/2 + (DLr try16 Ly16) Ly16/2= 120.8 kips_ft; Tension Force Compression Force; STATUS; Ty13=(OTMy13/(4 1.1)-0.9 RMy13)/(Ly13—6 in) Cy13=OTMy13/(4 1.1)/(Ly13—6 in)= OK; =-3.017 kips; 3.583 kips; = — C =011414/ 4 1.1 / L —6 in)= OK Toa OTM 1a/ 4 1.1) 0.9 RM 1a /(Loa 6 in) 1a 1a v ( v ( v ) ( v =-2.494 kips; 3.590 kips; Ty1s=(OTMy1s/(4 1.1)-0.9 RMy1s)/(Los—6 in) Cos=OTMy1s/(4 1.1)/(Los—6 in)= HDU REQD; =2.624 kips; 5.606 kips; Toe=(OTMy16/(4 1.1)-0.9 RMyis)/(Ly16—6 in) Cy16=OTMy16/(4 1.1)/(Los—6 in) = OK; =0.048 kips; 5.485 kips; Project Job Ref. c> N I S H K I A N DEAN TESD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 17 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 SHEAR WALL CHECK (ASCE7-10) Latitude,Longitude:45.3623,-122.7713 Print Date 12/17/2018,12:07:53 PM Design Code Reference Document ASCE7-10 Risk Category 111 Site Class D-Stiff Soil Type Value Description Ss 0.944 MCER ground motion.(for 02 second period) Si 0.414 MCER ground motion.(for 1.0s period) S,,s 1.06 Site-modified spectral acceleration value S;..1 0.657 Site-modified spectral acceleration value Sns 0.706 Numeric seismic design value at 0.2 second SA 0.438 Numeric seismic design value at 1.0 second SA Short period spectral response acceleration,; SDs = 0.706 Importance factor,; le = 1.5 Response modification factor,; R= 6.5 Base shear coefficient,; C5 = SDS/ (R/le) = 0.163 Seismic weight,; Wc= 200.900 kips ASCE 7-10 base shear,; Vc= CS Wc= 32.731 kips x Existing walls use 8d @ 6" OC Allowable shear capacity,; vs = 520 plf 1.6 = 832.000 plf Minimun Minimum Fastener Nominal Penetration Fastener Sheathing Panel in Framing Type&Size 6 Material Thickness Member or (in.) Blocking (in.) (Pif) (kips/in.) Nail(common or OSB PLY galvanized box) Wood 5/16 1-114 6d 400 13 10 Structural 3/62 460 19 14 Panels- Structural 7/162 1.3/8 Bd 510 16 13 l" 15/32 560 14 11 15/32 1-1/2 10d 680 22 16 5/16 1.114 64 360 13 9.5 400 11 8.5 __..__... _.. Wood 3/6' 440 17 12 ParunelS al 7/162 1-3/8 8d 480 15 11 Sheathing.s 15/32 520 13 10 15/32 1.112 tOd 620 22 14 19/32 680 19 13 Project Job Ref. N I S H K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 18 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 EW direction Walls: Vew =VB/ 120 ft= 99.8 plf SW LINE TRIBUTARY LENGTH SHEAR IN LINE EWos; Txo6=60 ft; Vew06= Vew Txo6=6.0 kip; EW07; Tx07=60 ft; Vew07= Vew Tx07=6.0 kip; Shearwall label; Length ; SWY13; Ly13=25 ft; SWY14; Ly14=23 ft; SWY15(modified wall); Ly1s= 11 ft; SWY16(modified wall); Ly16=20.5 ft; LOAD IN WALL WALL SHEAR STATUS; Vy13=Vew06 Ly13/(Ly13+ Ly14)=3.12 kip; vy13=Vy13/Ly13= 125 plf; ; <832 PLF, OK; Vy14=Vewos Ly14/(Ly13+ Ly14)=2.87 kip; vy14=Vy1a/Ly14= 125 plf; ; <832 PLF, OK; Vy15=Vew07 Ly15/(Ly15+ Ly16) =2.09 kip; vyls=Vyis/Los= 190 plf; ; <832 PLF, OK; Vy16=Vew07 Ly16/(Ly15+ Ly16)=3.90 kip; Vy1s=Vyis/Los= 190 plf; ; <832 PLF, OK; NS direction Walls: Vns =VB/70 ft = 171.1 plf SW line Tributary Area Shear in line NSos; Tyo6=35 ft; Vnso6= Vns Tyo6=6.0 kip; NSo7; Tyo7=35 ft; Vnso7= Vns Tyo7=6.0 kip; SHEAR WALL LABEL LENGTH SWX10; Loo=30 ft; SWX11; Lx11=30 ft; SWX12; Loo=50 ft; SWX13; Lx12= 25 ft; SWX14(REMOVED) LOAD IN WALL; WALL SHEAR;; STATUS; Vx10=Vnso6 Lx10/(Lx10+ Lx11)=2.99 kip;; Vxio=Vxio/Lxio= 100 plf; <832 PLF, OK; Vx11 =Vnso6 Lx11/(Lx10+ Lx11)+6.0 kips= vx11=Vx11/Lx11 =300 plf; <832 PLF, OK; 8.99 kip;; Vx13=Vns07 Lx13/(Lx13+ Lx12) =3.99 kip;; Vx13=Vx13/Lx13=80 plf; <832 PLF, OK; Vx12=Vns07 Lx12/(Lx13+ Lx12) =2.00 kip;; Vx12=Vx12/Lx12=80 plf; <832 PLF, OK; 0o SWX11 includes additional load from Section F, calculated below: Seismic tributary to Roof Level at Section F: Walls; WwaIIF= 10 psf 0.5 0 ft 435 ft= 0.000 kips Tectum roofs,; WpIyF= 15 psf 70 ft 70 ft= 73.500 kips Project Job Ref. N I S H K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 19 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 Total Weight,; WF=WwallF+WplyF= 73.500 kips Shear to section F,; VB= Cs WF= 12.0 kips 1/2 load distributed in NS direction distributed to SW 10: Vsw10=VB/2= 5.987 kips SHEAR WALL HOLDOWN (ASCE 7-10) Wall dead load,; WL= 10 psf Roof dead load,; DLr= 15 psf Wall height,; h = 13 ft X-DIRECTION WALLS OTM Trib Wall Weight Roof weight; OTMxio=Vx10 h = trxlo= 10 ft; Wwx10=WL h Lxio=3.900 kips; Moo=DLr trxio Lxio=4.500 kips; 38.918 kip ft; OTMx11 =Vx11 h = trx11 =20 ft; Wwx11 =WL h Lx11 =3.900 kips; Wrxii =DLr trx11 Lx11 =9.000 kips; 116.918 kip ft; OTMx13=Vx13 h = trx13=5 ft; Wwx13=WL h 613=6.500 kips; Wrx13=DLr trx13 Lx13=3.750 kips; 51.891 kip ft; OTMx12=Vx12 h = trx12=5 ft; Wwx12=WL h Lx12=3.250 kips; Wrx12=DLr trx13 Lx12= 1.875 kips; 25.945 ki p ft; Resisting Moment; RMx10=(Wwxio+Wrxio) Lx10/2 +(DLr trxio Lx1o) Lx10/2= 193.5 kips ft; RMx11 =(Wwx11 +Wrx11) Lx11/2 + (DLr trx11 Lxii) Lx11/2=328.5 kips ft; RMx13=(Wwx13+Wrx13) Lx13/2 + (DLr trx13 Lx13) Lx13/2=350.0 kips ft; RMx12=(Wwx12+Wrx12) Lx12/2 + (DLr trx12 Lx12) Lx12/2=87.5 kips ft; Tension Force(+value indicates uplift) Compression Force(+ indicates compression); STATUS; Txio=(0.7 OTMxio-0.6 RMxio)/(Lxio—6 in)=-3.012 kips; Cxio=0.7 OTMxio/(Lxio—6 in)=0.923 kips; OK; Tx11 =(0.7 OTM x11 0.6 RMx1,)/(Lx„—6 in)=-3.907 kips; Cx11 =0.7 OTMx11 /(Lx1, —6 in) =2.774 kips; OK; Tx-13=(0.7 OTMx13-0.6 RMx13)/(Lx13—6 in)=-3.509 kips; Cx13=0.7 OTMx13/(Lx13—6 in) =0.734 kips; OK; Txi2=(0.7 OTMx12-0.6 RMx12)/(Lx12—6 in)=-1.402 kips; Cx12=0.7 OTMx12/(Lx12—6 in) =0.741 kips; OK; Project Job Ref. N ILSGNAND KAA NN RUCTURALENGINEER 919 IN ,DEAN TTSD—Woodward Renovations 31642.03 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 20 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 Y-DIRECTION WALLS OTM Trib Wall Weight Roof weight; OTMy13=Vy13 h = try13= 15 ft; Wvy13=WL h Ly13=3.250 kips; Wry13= DLr try-13 Ly13=5.625 kips; 40.540 kip ft; OTMy14=VO4 h = try14= 15 ft; Wvy14=WL h Ly14=2.990 kips; Wry-14= DLr try14 Ly14=5.175 kips; 37.297 ki p ft; OTMy15=Vyis h = tris= 15 ft; Wvyls=WL h 415= 1.430 kips; Wryis=DLr tryis Los=2.475 kips; 27.181 kip ft; OTMy16=Vyis h = try16= 15 ft; Wwy1s=WL h Ly16=2.665 kips; Wry16= DLr try11 Lyis=0.308 kips; 50.655 kip ft; Resisting Moment; RMy13=(Wvy13+Wry13) Ly13/2 +(DLr (ry13 Ly13) Ly13/2= 181.2 kips_ft; RMy14=(Wwy14+Wry14) Ly14/2 +(DLr try14 Ly14) Ly14/2= 153.4 kips_ft; RMy1s=(WAyis+Wryis) Lyis/2 +(DLr tris Ly15) Lyis/2=35.1 kips_ft; RMyis=(Way16+Wry1s) Ly16/2 +(DLr try16 Lyis) Ly16/2=77.7 kips_ft; Tension Force(+value indicates uplift) Compression Force(+ indicates compression); STATUS; Ty13=(0.7 OTMy13-0.6 RMy13)/(Ly13—6 in)=-3.280 kips; Cy13=0.7 OTMy13/(Ly13—6 in)= 1.158 kips; OK; Ty14=(0.7 OTMy14-0.6 RMy14)/(Ly14—6 in)=-2.931 kips; Cy14=0.7 OTMy14/(Ly14—6 in)= 1.160 kips; OK; Ty1s=(0.7 OTMyis-0.6 RMy1s)/(Los—6 in)=-0.193 kips; Cos=0.7 OTMyis/(Los—6 in)= 1.812 kips; OK; Ty16=(0.7 OTM06-0.6 RMyI6)/(Ly16—6 in)=-0.559 kips; Cyis=0.7 OTMyis/(Ly16—6 in)= 1.773 kips; OK; Project Job Ref. N I S N K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 21 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 HOLDOWN ANCHORAGE Maximum LRFD holdown force (ASCE 41-17),; TASCE41 =2.55 kips Maximum ASD holdown force (ASCE 7-10),; TASCE7 = 1.01 kips LRFD conversion: Conversion of ASD catalog design values to LRFD reference resistance values(Z): Z =Kf x(tabulated value) Selecting the format conversion factor(1996 LRFD 3.4): Load Case Rotio of ASD Catalog LRFD Reference Resistance Z Design Values All Load Combinations 125% Except Those That 100% - 125 Z=(100%value)x 3.32 Contain Wind or Seismic (AF&PA/ASCE 16-95. 125% < 1.25 Equations 1.3-1 to 1.3-3) 100% Z=(100%value)x 2.88 160% Load Combinations That 133% = 1.2 Z=(160%value)x(116)x3.32 Contain Wind or Seismic 160%and 133%not both greater of: (AF&PA/ASCE 16-95, listed or (133%volue)x( 1 )x2.88 Equations 1.3-4 to 1.3-6) 160% < 1.2 1.33 133% or (160%vatue)x(E6-)x2.88 Per ASCE 41-13 Table 12-3 footnote"e",connectors not listed are assumed to be force controlled, meaning that the lower-bound strength must be used,which per ASCE 41-13 12.2.2.5 is obtained by multiplying the expected strength by 0.85. The adjusted connector strength is: (tabulated value) Z'=Z•CM•Ct= 1.6 '(1.0)•(1.0) The expected strength of the connector is: (tabulated value) Zc-=Z'•Kf•A dZ= 1.6 '(2.88)•(1.0)•(1.0) The final acceptance criteria strength value becomes: (tabulated value) Zac=(0.85)'ZCe= 1.6 •(2.88)•(0.85)= 1.53•(tabulated value) ASD capacity of Simpson DTT2Z,; HDASD= 1825 lb LRFD capacity of Simpson DTT2Z,; HDLRFD= HDASD 1.53 = 2792.250 lb 09 Use Simpson DTT2Z holdown at all conditions where holdown is required per the previous calculations. Project Job Ref. NISHKIAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 22 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 Dimensions Fasteners Minimum Allowable Tension Lo Model (in.) Wood (160)' Ga.. Anchor Member W H B CC SD Bolt Dia. Wood Thickness DF/SP SPF/HF Al (in) Fasteners (in.) (6)SD#9 x 1 V? 840 840 • DT T1Z 14 11 71/4 1 3/46 'fa 36 3/6 (6)10d x 11/2" 11/2 910 640 (8)10d x 11/2" 910 850 ® DTT2Z (8)1/4"x 11/2.SDS 1' t825 1,800 14 3% 6% 1% 1456 356 '/e (8)'W x 11/2"SDS 3 2145 1,835 © DTT2Z-SDS2.5 (8)1/4"x 2W SDS 3 2,145 2,105 ▪ HDU2-SDS2.5 14 3 8"/e 31/4 13'46 1% 36 (6)'/1'x 21/2'SDS 3 3,075 2,215 ▪ HDU4-SDS2.5 14 3 101346 3'/4 1356 1% 6/6 (10)Yi'x 21/2"SDS 3 4,565 3,285 HDU5-SDS2.5 14 3 13346 31/4 1356 1% 6/6 (14)'/4"x 2W SDS 3 5,645 4,065 3 6,765 4,870 • HDU8-SDS2.5 10 3 16% 31/2 1% 1' '/6 (20)1b"x 21/2"SDS 31 6,970 5,020 4% 7,870 5.665 51 9.335 6.865 HDU11-SDS2.5 10 3 221/4 31/2 1% 11/2 1 (30)1/4"x 21/2"SDS 71/4 11,175 8,045 4x6" 10,770 7,755 • HDU14-SDS2.5 7 3 25156 3' 1}56 1316 1 (36)1/0"x 21/2"SDS 71/45 14,390 10,435 51/2'3 14,445 10,350 Epoxy anchor: oe Existing concrete f'c= 3000 psi 0o Anchor centered in 6" stem wall. 00 Use 12" diameter threaded rod w/Simpson SET-3G epoxy, embed 8". Input Data Design method:ACI 318-14 Anchor:SET-3G,w/ 1/2'43 F1554 Gr. 36 Effectve Embedment depth: 7.750 rich Concrete:Normal-weight State:Cracked Compressive strength: 3000 psi Seismic design:No SET-3G Governing tension ratio:97.3%(Pass) Ratio N43 fib) Nr,[b] Steel strength 41.3% 2550 6176 Concrete breakout 97.3% 2550 2620 Adhesive 92.0% 2550 2773 SET-3G w/ 1/2"D F1554 Gr.36 with hef= 7.750 inch meets the selected design criteria. Project Job Ref. N I S N K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 23 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 RTU LOAD TO EXISTING BEAM, NEW BEAM SPEC Roof weight: Built-up roofing; 3.5 psf insulation; 1.5 psf 3" CFD; 6.0 psf 4x6 @ 5'-0"OC; 1.0 psf GL 5.125 x 19 @ 10'-0"OC; 2.0 psf New suspended ceiling; 2.5 psf MEP; 1.0 psf Total; D= 17.5 psf; Snow load: p9= 20 psf+ 5 psf= 25 psf; minimum snow load with rain-on-snow surcharge Is= 1.10; importance factor for Risk Cat III structure S = pm = Is* p9 = 27.5 psf; minimum snow load, controls over roof live load ASD Load combo: D+ S =45 psf; controlling load combo 12.0' 23'.0" U U 0 0 R IR -O J V Ij W 1 W 10'0' 11 —-— (E)GL 6314x6 48 - / to x —r IZI - ° 4X6 Loads to (E)4X6: L= 10 ft; beam length Atrlb= (5 ft/2) + (5 ft/2) = 5 ft; trib area to beam wostoBM = (D + S) *Atrlb= 225 plf; weight from dead and snow loads wself= (35 pcf) * (3.5 in) * (5.5 in) = 4.7 plf; beam self weight MDSself= ((WDStoBM +wself) * LA2)/8 = 2.87 kip_ft; moment due to dead, snow, and self weight Project Job Ref. 0 N I S N K I A N DEAN TTSD-Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 24 Portland,OR 97205 - - Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 pm-u= 1600 lbs/(4.5 ft* 5.5 ft) = 64.6 psf; area weight of RTU WRTUtoBM = PRTU* (5 ft/2 + 0.5 ft) = 194 plf; RTU weight trib to 4x6 RRTu = [(WRTutoBM *4.5 ft)/(2*L)] * (2*L-4.5 ft) = 676 lbs; worst case reaction from RTU MRTU = (RRTu^2)/(2*wRTutoBM) = 1.18 kip_ft; moment due to new RTU Mtot= MDSself+ MRTU =4.05 kip_ft; total max moment Sx= (3.5 in * (5.5 in)^2)/6 = 17.6 in3; elastic section modulus fb= Mtot/Sx= 2754 psi; actual bending stress Fb= 1800 psi; per original drawings CL= 1.0; beam stability factor, compression edge supported throughout length CD= 1.15; duration factor, snow load CF= 1.3; size factor, select structural DFL per original drawings Fb'= Fb*CL* CD* CF= 2691 psi; adjusted bending design stress fb/Fb' = 1.024; 1.0, OK, existing 4x6 is adequate to support new RTU loads Check shear: VDS = (WDstoBM * L)/2 = 1125 Ib; shear due to dead and snow loads VRTU = RRTU = 676 Ib; max shear due to new RTU Vtot= VDs +VRTU = 1801 Ib; total max shear Excerpt from 1976 UBC: TABLE RC.2!3 4.1-ALLOWABLE UNIT STRESSES-STRUCTURAL LUMBER-Km-1161u e51 idtaumbleUMtSlrmeonfprStructuralLumber-VISUAL GFLAVING 1976 U BC (Normal lauding.SeealsoS9cilon.2904) Mauwee.E 11MR COEDS DS IN PiNirsbil PM 104.11011 INCH Corm* O* *. Torsion aeon toe, Nos 1&014.116 1611.0.0.8708 112E niroork 104401060- MUNa1 an• P+w•Id196466 inoonin OF IMPS SPODIEI AND CLAA4r► trow. .ar4e .*Dido Show 9,0941 10 Doln ELASTICilY 910118M 00501151181.11,ORAN CATYDN MVO lhrm 'F; 'F.e' "f.i•• uFr' 'E" GRAND COAST SktCIES.Orn hook dry or eurfoos4 ere.6314141)1;1144 mess m.t.) 3N0 171 61 743 1104 1,5113,024 Tricot No.L 2'644' WO visa 130 63 243 $73 1.5110,000 No.a 'nick 1034 IMO 625 63 245 ma 1.41.11.1111 No.3 2'to 4' 115 675 350 9) 243 42$ 1,22.1161 Apploc net WC 1154 14$31 723 65 245 1431 1.512.110 A 173 675 350 65 243 415 1.22101111 Cools rua346 _. 1'Io 4' 150 873 430 63 345 114 1,210000 c 425 Sao 234 65 243 451 1.210040 3 Utak,Swaged hit 740 235 123 63 243 433 1,214,0[4 15.11 c $act Sitmiur41 1400 1500 815 65 .24$ 975 1,500000 2tluNU L.T Cly No.1 Y to 4' 119 1250 725 65 24$ 113111 71 1.500.000 11Ind 133 S No.2 thick 903 ' 3010 630 65 245 7 1.100.000 DI N6,3 f and 5205 +204 720 65 245 471 I,3a0.rim C Ap,tuwre w10er 11110 1254 72$ 63 2245 KW 1.546.m : I ' Dohs!. Decking 1250 1450 - - 345 - 1,400,001 O 000 g CmTsa -trail P030 1200 - 24$ 9 IDOLIGa.A5 F1A-LAR (Saer4ttd dry of turfort1 volt.Gid O Pk%mals,n.4.1 1.1131.1140,5 FIR-LAACa1(North) Dense Select Stosa 2430 MO 100 91 Salug 1,900j310 es 5Irunural u� 203 5900 1740 05 ;115, $S T,naArn Sime No..3 211N1 5900 1510 95 41514,2�q 1 - No.t 2'104' 1750 8M lobo 05 SIS IS 1, I•I�. flneu No.I Ihkk 3703 3950 [CU0 45 415 11$) 1;340.003 No.2 2 104' 5450 1650 153 95 115 IRO .1,140..403 2M,3 ec18e DM 923 475 45 345 404 1.100,000 h sossralwc 1750 XO0 1092 95 313 1194 1.140.604 25-1 514 103 925 475 95 MI 440 1.100.000 .25-3 Cnmuotiinn and Co!homdnd &Ink 100 2'm 4' 1000 1810 625 93 316 I191 1.500.400 . (o 6oninen25 1 Ln�T 4'Mk 5 5 IT) 9 310 955 MS � 1.000000 2 ll1} r4) ,�-2119) 2412 14631 Eli, , 452313. 16101400 1.909060 1,1011,030 attic 916.ICY 2'm 4' I :. 2654 1205 5 453 1450 1.91QU00 No.1 Oink 1500` 1750 11100 45 361 1230 1,800.130 nr 1to No,2 te'tad N5] 1714 434 15 457 1230 1.741.000 540.2 wider 1250 410 825 95 301 1050 1,740.000 No.3 721 150 415 91 191 673 6,3011000 Appearance 1500I 17°.11 11x14 45 389 1530 1,900,'09 a Project Job Ref. N I S N K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 25 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 Fv= 95 psi; reference shear design value per 1976 UBC Fv' = Fv* CD= 109 psi; adjusted shear design value AGL= 3.5 in* 5.5 in = 19 in2; area of glulam V' = (2/3)* Fv'*AGL = 1402 lb; adjusted design shear Vtot/V' = 1.285; > 1.0, specify new member to support new RTU loads Try new 4x10 to replace(E)4X6: Mtot= 4.05 kip_ft; total max moment SX= (3.5 in * (9.25 in)^2)/6 = 49.9 in3; elastic section modulus fb= Mtot/Sx = 974 psi; actual bending stress Fb = 1000 psi; specify No. 1 DFL CL= 1.0; beam stability factor, compression edge supported throughout length CD= 1.15; duration factor, snow load CF= 1.2; size factor Fb' = Fb* CL* CD* CF= 1380 psi; adjusted bending design stress fb/Fb' = 0.706; < 1.0, OK, new 4x10 is adequate to support new RTU loads Check shear: Vtot= 1801 lb; total max shear F„= 180 psi; specify No. 1 DFL Fv' = Fv* CD= 207 psi; adjusted shear design value AGL= 3.5 in * 9.25 in = 32 in2; area of glulam V' = (2/3) * Fv'*AGL= 4468 Ib; adjusted design shear Vtot/V' = 0.403; < 1.0, OK, new 4x10 is adequate to support new RTU loads Project Job Ref. c> N I S H K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 26 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 RTU LOAD TO EXISTING GLULAM BEAM (E)GL d 314x6 0' 4'-6"--1 NEW 1600 LB _ __ _ _... _ ._.. RTU -- 4X6 I J j } { Loads to GL 6.75 x 6: L= 9.167 ft; Glulam length Atrlb= (5ft/2) + (9ft/2) = 7ft; trib area to glulam WDStoGL = (D + S) *Atrlb= 315 plf; weight from dead and snow loads wseif= (35 pcf) * (6.75 in)* (6 in) = 9.8 plf; glulam self weight MDSseif= ((WDstoGL+wself) * LA2)/8 = 3.41 kip_ft; moment due to dead, snow, and self weight pRTu= 1600 lbs/(4.5 ft*5.5 ft) = 64.6 psf; area weight of RTU WRTUtoGL = pRTU* (5 ft/2) = 162 plf; RTU spread over 4'-6"at end of glulam RRTU = [(WRTUtoGL*4.5 ft)/(2*L)] * (2*L—4.5 ft) = 549 Ibs;worst cast reaction from RTU MRTu = (RRTu"2)/(2* WRTUtoGL) = 0.93 kip_ft; moment due to new RTU Mtot= MDSseIf+ MRTU =4.34 kip_ft; total max moment Sx= (6.75 in * (6 in)A2)/6 =40.5 in3; elastic section modulus fb= Mtot/Sx= 1287 psi; actual bending stress Fb= 2200 psi; ref. bending design stress per orig dwgs, DF 22F stress class, 1976 UBC CL= 1.0; beam stability factor, d<b so 1.0 Co= 1.15; duration factor, snow load Cv= (21 ft/L)^0.1 * (12/6)A0.1 * (5.125/6.75)A0.1 = 1.133; volume factor Cv= 1.0; volume factor cannot exceed 1.0 Fb'= Fb*CD* Cv= 2530 psi; adjusted bending design stress, use min of CL and Cv fb/Fb' = 0.509; < 1.0, OK, existing glulam is adequate to support new RTU loads Check shear: VDS= (WDStoGL* L)/2 = 1444 Ib; shear due to dead and snow loads VRTu = RRTU = 549 Ib; max shear due to new RTU Vtot=Vos+VRTU = 1993 lb; total max shear Project Job Ref. 0> N I S N K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 27 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 Excerpt from 1976 UBC 1976 UBC TABLE NO.25-C.1co PART A—ALLOWABLE UNIT STRESSES FOR STRUCTURAL GLUED-LAMINATED SOFTWOOD m TIMBER FOR NORMAL LOADING DURATION—VISUALLY GRADED m 0 _ ALLOWABLE UNIT STRESSES IN POUNDSPER SQUARE INCH 1 EXTREME FIBER IN BENDING(Fry)' HORIZONTAL SHEAR(F0 Z WHEN LOADEn• COMPRESSION Load Parallel to Load Perpendicular TENSION COMPRESSION PERPENDICULAR MODULUS OF COMBINATION NUMBER OF Wide Face of to Wide Face of PARALLEL TO PARALLEL TO Parallel to Perpendicular TO GRAIN ELASTICITY SYMBOL LAMINATIONS Laminations Laminations GRAIN(Fit GRAIN(Fd Wide Face to Wide (Fcl/ (EI 1 2 3 4 B 9 10 DRY CONDITIONS OF USE' Douglas Fir and Western Larch' 16F' 4 or more 1600 1300 1500 — 165 385 1,600,000 18P 4 or more — 1800 1440 1500 — 165 385 1,700,000 20f 4 or more — 2000 1600 1500 — 165 385' 1,700,000 4 or more E 1 1600 1500 — 1165 I 385•, 1,800,000 4F' 4 or more — £4(kT 1600 1500 — 165 385' 1,800,000 1' 4 or more' 900 1200 1000 1500 145 165 385 1,600,000 2' 4 or more' 1500 1800. 1400 1800 145 165 385 1,800,000 3' 4ormore' 1900 2200 18004-- 2100 145 165 450 1,900,000= 4' 4 or more 2100 2400 1900 2000 145 165 410 2,000,000 5' 4 or more' 2400 2600 2100 2200 145 165 450 2,100.000 Fv= 165 psi; reference shear design value per 1976 UBC Fv' = Fv* CD= 190 psi; adjusted shear design value AGL= 6.75 in *6 in =40 in2; area of glulam V' = (2/3) * Fv'*AGS= 5123 Ib; adjusted design shear Vtot/V' = 0.389; < 1.0, OK, existing glulam is adequate to support new RTU loads RTU LOAD TO EXISTING COLUMN aI6I ©t to _ u � I � I .1W TS 3.5x3.5x1/4 1 I iE)GL6314r6 R> 9"+2" (E)016 344025 12 I I 4X8 gr F 1 I I I I I �-TS 4x4x1/4 I I I . Loads to TS 3.5x3.5x1/4, smallest col taking max load: TS column, ASTM A501 per original dwgs, assume Gr.A 36 ksi H = 10.58 ft—(25.5 in) = 8.46 ft; column height, 25.5"deep glulam above Atnb= (15ft) * (0.5* 30ft+ 0.5* 30ft) + (0.5 * 9.167ft) * (0.5 * 5ft+ 0.5 * 9ft)=482 ft2;trib area to column Dooi = 20 psf; dead load includes glulam weight and col self weight S = 27.5 psf; snow load Pu= (1.2* Dcoi + 1.6 * S) *Atrib+ 1.6 kips = 34.4 kips; worst case LRFD load combo for steel col including 1600 lb RTU Project Job Ref. N I S H K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no.lrev. 1022 SW Salmon St.Suite 300 Structural Calculations 28 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 STEEL COLUMN DESIGN In accordance with AISC360-10 and the LRFD method Tedds calculation version 1.0.05 Library item:Calc title '� -0.23" ri 3.5' Library item:Show column section sketch Column and loading details Column details Column section; HSS 3.5x3.5x0.25 Library item-Input title Design loading Required axial strength; Pr= 35 kips; (Compression) Library item-Loading axial Maximum moment about x axis; Mx= 0.0 kips_ft Library item-Loading span loads x Maximum moment about y axis; My= 0.0 kips_ft Library item-Loading span loads y Maximum shear force parallel to y axis; Vry = 0.0 kips Maximum shear force parallel to x axis; Vrx = 0.0 kips Library item-Loading shear Material details Steel grade; A501 Yield strength; Fy= 36 ksi Ultimate strength; Fu = 58 ksi Modulus of elasticity; E = 29000 ksi Shear modulus of elasticity; G = 11200 ksi Library item-Material properties Unbraced lengths For buckling about x axis; Lx = 102 in For buckling about y axis; Ly= 102 in For torsional buckling; LZ = 102 in Effective length factors For buckling about x axis; Kx= 1.00 For buckling about y axis; Ky= 1.00 For torsional buckling; KZ= 1.00 Library item-Unbraced lengths K factors Project Job Ref. N I S H K I A N DEAN TTSD—Woodward Renovations 31642.03 JI CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 29 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 Section classification Library item-Classification title Section classification for local buckling (cl. B4) Critical flange width; b= bt-3 t= 2.801 in Critical web width; h = d -3 t= 2.801 in Width to thickness ratio of flange (compression); f_c= b/t= 12.021 Width to thickness ratio of web(compression); W c= h/t= 12.021 Width to thickness ratio of flange (major flexure); ffx = b/t= 12.021 Width to thickness ratio of web (major flexure); w_fx = h/t= 12.021 Width to thickness ratio of flange (minor flexure); f_fy= h/t= 12.021 Width to thickness ratio of web (minor flexure); w_fy= b/t = 12.021 Library item-Class title RHS Compression Limit for nonslender section; r_c= 1.40 OE/Fy) = 39.735 The section is nonslender in compression ClassCompression = if(and( f c<= r_c , w_c<= r_c),"Nonslender","Slender") = "Nonslender" Library item-Class compression RHS Slenderness Library item-Slenderness title Member slenderness Slenderness ratio about x axis; SRx = Kx Lx/rx= 76.9 Slenderness ratio about y axis; SRy = Ky Ly/ry= 76.9 Library item-Column slenderness Reduction factor for slender elements Library item-Reduction factor title Reduction factor for slender elements (E7) The section does not contain any slender elements therefore:- Q = 1.0; Qx= 1.0; Qy= 1.0; Qz= 1.0 Slender element reduction factor; Q = 1.0 Library item-Q non slender Compressive strength Library item-Compressive strength title Flexural buckling about x axis (cl. E3) Elastic critical buckling stress; Fex= (#2 E) /(SRx)2 =48.4 ksi Fy= Fy; Fex = Fex Library item-Flexural buckling title x Reduction factor; Qx= Q = ;1.000 Qx = Qx = 1.000 Flexural buckling stress about x axis; Fcrx = Qx (0.658Qx Fy/Fex) Fy= 26.4 ksi Library item-Fcrx slend<4.71 Nominal flexural buckling strength; Pnx = Fcr< Ag = 76.7 kips Library item-Flex buck comp strength x Flexural buckling about y axis (cl. E3) Elastic critical buckling stress; Fey= (#2 E)/(SRy)2 =48.4 ksi Fy= Fy; Fey= Fey Library item-Flexural buckling title y Reduction factor; Qy= Q = ;1.000 Qy= Qy = 1.000 Flexural buckling stress about y axis; Fcry= Qy (0.658°Y FY/Fey) Fy= 26.4 ksi Project Job Ref. N I S N K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 30 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 Library item-Fcry slend<4.71 Nominal flexural buckling strength; Pny= Fcry Ag= 76.7 kips Library item-Flex buck comp strength y Design compressive strength (cl.E1) Resistance factor for compression; c= 0.90 PD= if(or(type=="HR",type=="HC"), c min(Pnx, Pny), c min(Pnx, Pny, getvar("Pnt",0 kips))) = 69.1 kips Design compressive strength; Pc= c min(Pnx, Pny) = ;69.1; kips PASS- The design compressive strength exceeds the required compressive strength Library item-Design comp strength LRFD Pn =69.1 kips; Pu/ Pn= 0.498; < 1.0, OK, existing column is adequate to support new RTU loads ae Project Job Ref. (> NNILSGA KANDR'CMAN GINEEREINCE1919 DAN TTSD—Woodward Renovations 31642.03 . CONishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 31 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 RTU SPECS r ,f.21`. 'frfic PHYSICAL DATA Table 1 Physical Data—unit weights DPS 00 thraargh 028 .. lAadcl Small Cabinet 160diurn Cabinet 0113 j 004 1105 —1 006 _._._.007 010 T 012 I 018 Weight,..010;4 S ege Weip1A1` 1000 1 1025 1058 16001600 1606 ' 1763 1-1e11 pump 1030 1030 1066 115! 1880 1660 t 1660 1823 Eled'tIC Heal ... 43 45,.:.,e,,.. 45 45 100 100 3333_ 100 100 H0002W 1 kw11 11 11 15.5 31) 30 30 - 30 Hot Wales 2 Row 32 32 ._ 32 �. 31 31 31 31 ®as Haat 75 75 63 i 93 188 1 t03 185 — 186 He)Gee Re heat 8 a 12 12 28 31 31 31 • enter 163 163 163 163 308 306 305 306 High c*pauty w+l 105 105 r 105 108 215 215 215 J_ 215 swr y t1A1111ee1e3 5 Adds tbs.) - 101OA 160 160 1 a0 166 300 1_ 300 1 300 300 Mooed Air 175 1751 T 175 250 2250 i 250 , 250 -s: r . 1 tr "�' "° B"a it 1• 1 [use 1600 Ib total par mech. Model @ LargeCa®mut ry t 15 Fan 5Vs0OhtsMEL) j 014 013 420 i 026 028 121n[h 010 nrn) 87 ��Wage(In ibs.p 2,455 2575 ' 1.1011 14 Inch(360 nye) _ 91 01004 Pune — — ..L..._- __ leandt(400 nee) 115 Electric 00091 226 ._� 21 kteh{560 nine 115 -raw 6) Hot Meer Heat grow 104 I ; M:I.. ;''W', "_ 3 row' 3 33 3. 140 003—� 156 230 901} 178 007 -015 ._ 200 295 toss Hca ` 016-028 657 _'r 3333... 25 .. 3333 3333 Hai Dab r#t18a1 30 .. Em+I z r 500 Table d:Refrigerant Charge ERW-Snm1 4' 150 3333._ __,3333. _. . Cooling Model --1--;004 7_00400 SAW-Lege 400 FIrR Sloe 51antterd UnH et**ead iii ® �q0 _ 4`3"" rd ttatt of 0110.RH 5lindard Ullk wr mr.FGRH trlascr FanEl 254Rt 113 ,. 120 14:4 200 4 Oti tt.a 13.8 15,0 96 5 15.3 112 16.5 16.7 _ �.._„„,:m 3.333 -..,.._..�_. MEM 41 6 16:3 111 168 19.7 111FAI 46 .._.. F S 11.1 NEU17 1 26,0 312 M pis 200 2335 4130 450 Woe(Fan#bbXe .31 3333... 12 20.0 26.0 400 ,3333 468 .. ® ..4 . _ 115 /E #.44 302 $ 4d.0 61.5 . ALS 333 _. 40 578 z.:.. $11 15 370 i 3 S 970 4 Srtb tl Factor,Fan 25 114 8 20 34.8 Project Job Ref. AO N I S N K I A N DEAN TESD—Woodward Renovations 31642.03 • CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 32 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 r L.}./k At DIMENSIONAL AL D A Figure 27!LIPS 003-.0.06,6,Economizer,No Energy kecrwery Oetaii:A•B for Horizontal Supply and Return Ale Openings , 4 1 Yd 164 1 a p l_I i -ee-*. - nab _. 14D 3.a - py '= {y & ,.,;4. '1/4 ,:i: t: /t. 447rapp /0 : , I ': zir ,4‘ ,, 7 ____, . .e. . diait atpr EDGE 4 1 1 ra- : 4 " ,r, 24.8 ._,, r -,---.� mer ";49 I - / TJ ete__ 7 /r .Hot w+�r aetion owl( mo.:( 74A4 .7.8 _. ra"+avr 1 # t'. Ira .w.-- w r roc ._.e. 1§ .7.0.,5^ ice. f Ir l4 1 Y ,r r • 8_C1 i +' 3 f .fjt . ! .Qi4 -440v f r '�"r � efilHT a-. .•'Jif/ _ eft d = r NOTE Horizontal above the roof gas connection only I.Recornrnended location for f seki cul side power connection 2.Not provided on 100%Rclum Air units 3.Not provided on 100%Outdoor Air units 4 Not provided on units with Horiznnia l Supply Air opening 5 Not provided on units with Horizontal Return Air opening 1.5PArov.C,_+InAPPlied.onel 36 GAT 256-13•REBEL PACKAGED ROOFTOP Project Job Ref. CO I TI N K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 33 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 Project Job Ref. N I S N K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 34 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 CU LOAD TO EXISTING BEAM, NEW BEAM SPEC Roof weight: Built-up roofing; 3.5 psf insulation; 1.5 psf 3" CFD; 6.0 psf 4x6 @ 5'-0" OC; 1.0 psf GL 5.125 x 19 @ 10'-0" OC; 2.0psf New suspended ceiling; 2.5 psf MEP; 1.0 psf Total; D= 17.5 psf; Snow load: p9 = 20 psf+ 5 psf= 25 psf; minimum snow load with rain-on-snow surcharge Is= 1.10; importance factor for Risk Cat III structure S = pm = Is* p9 = 27.5 psf; minimum snow load, controls over roof live load ASD Load combo: D+ S =45 psf; controlling load combo 1 I X6 @ 5-0"OC - - ----- ---- — 1; I .,r X6 @ 5-0 OC I (E)CFD 1 11 (E)GL BEAM I i II I I Loads to (E) 4X6: L= 10 ft; beam length Atrlb = (5 ft/2) + (5 ft/2) = 5 ft; trib area to beam WDstoBM = (D + S) *Atrib= 225 plf; weight from dead and snow loads wself= (35 pcf)* (3.5 in) * (5.5 in) = 4.7 plf; beam self weight MDsself= ((wDstoBM +Wseif) * L^2) /8 = 2.87 kip_ft; moment due to dead, snow, and self weight pRTu= 1850 lbs/(8.25 ft*4.92 ft) = 45.6 psf; area weight of RTU WRTUtoBM = PRTU* 5 ft/2= 114 plf; RTU weight trib to 4x6 RRTU = (WRTUtoBM *4.5 ft)/(2*L)] * (2*L—4.5 ft) = 397 lbs; worst case reaction from RTU MRTU = (RRTUA2)/(2* WRTUtoBM) = 0.69 kip_ft; moment due to new RTU Mtot= Mosso+ MRTU = 3.56 kip_ft; total max moment SX= (3.5 in * (5.5 in)^2)/6 = 17.6 in3; elastic section modulus Project Job Ref. CO I N K U A N DEAN TTSD-Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 35 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 fb= Mtot/SX= 2424 psi; actual bending stress Fb= 1800 psi; per original drawings CL= 1.0; beam stability factor, compression edge supported throughout length CD= 1.15; duration factor, snow load CF= 1.3; size factor, select structural DFL per original drawings Fb'= Fb* CL* Co* CF= 2691 psi; adjusted bending design stress fb/Fb' = 0.901; - 1.0, OK, existing 4x6 is adequate to support new RTU loads Check shear: Vos = (wostoBM * L)/2 = 1125 Ib; shear due to dead and snow loads VRTu = RRTU = 397 Ib; max shear due to new RTU Vtot= VDs +VRTU = 1522 Ib; total max shear Excerpt from 1976 UBC: fi tsila TABLE 1443,ES/4,1-ALLOWAOLE UNIT STRESSES-STRUCTURAL LUMBER-(Canllnued) ANowiti19Unit Stresses for Structural Lumber-VISUAL GRAVING 1976 UBC (Normal Ia4ding.See 7070 Sootier'21049 ALLDWA6tE IAI11911115989 IN 8011609 FIER90$6RRE OCR JEXT116MlrF 1,t6eYI - 04NO1N0'r6 gamma 9:21 swn d rh1‘01111111‘01111114. Tthaawln1$9 3l pdoFWirr Praiator MODULUS M LO S OF voloEn teGain ECdY RAat tOf9llGCtEl9tN/AE CGren 0 amahat 164714 6i ate. AR TM" I `l' 1111911 SPEC1E54Suriaue9 dry or surfaced proal_t2sed at 19%tram.m.e.) Sean Strada.' 13431800 VS 65 315 1105 1,503,11©0 No,k Y to 4- 1292 1450 T50 61 245 575 1,101,000 540,2 Weir 1010 1200 623 65 245 700 1.403.1JPJl No,5 2'604' 513 675 530 65 245 425 1,710,01 Aepparatus tilde IMO 1450 125 65 245 1WV1,500.6(11 S 575 675 3.30 65. 243 425 1.200906 Creadrurliun _.. 2'I94' 116 875 430 95 245 1476 1.200060 'te s Stus dd Owe 421 500 230 65 245 630 havoc, Waite 4`aide alb 273 175 65 2k) 425 I,100):49 25.2 Ti _ .... - t»Commas O 34414 Structural 1301 1500 k75 65 245 973 1.5601000 2through 6. XI Nu,t r to 4" 1100 125 T-4 65 245 al 1,Am081 LI and 151 Nn.2 wire 900 105 110 63 245 1.4001.060 to No,2 6'and 523 611 750 65 245 471 1.100.001 `.. r Appellate uiOg 110) 1236 77* 65 245 50 77 1.500,C4U G Sean ,._.. Decking 1295_.. 1456 - .. . - hhaa LRAM R maybe 0 Commercial 1$ 120 .40 0 - - rl 0 'MAIL AS 5111 1.ARcf94/raced dry or satiated m.o.Lira at 1954 mins,e*e3 D(%JGLAS FIR-LARCH(North) Dense Select stream] 24.41 1920 ROO91 456 IDS 0.6003001 Structural 313 Siva Sctural 0 1100 91 1N 1400 2,10114001 Dime No.1 3070 79311 1310 53 455 1490 1,100,00) 14o.1 2'on 4" 1750 2050 1430 91 311 1:950 1.100.006 [Sana Na.2 Oka 1700 1950 1400 95 455 1151 1;1119,000 1440,2 2'IN.0 J410 5730 950 95 519 1600 1,106,400 No.3 W118 900 9.35 475 91 la 400 V1(001105- ApparriTiera 5750 2050 1053 95 315 1106 1.6 23-2 Stud 850 923 473 95 3115 606 1,501,1106 25.3 9184 C a Ep+o1 2'ID 4• 1030 1260 0 1.3 625 95 335 11100,966 25-4 m Fralneas (10365 4'wide 27Mitit 4 335 ITS 93 383 600 1.500,090 675 350 93 365 975 1.50000 3 thrwith III) Dam 5elmsO rat 2400 1460 433 1650 5,9053116 Srk¢t ll 2596 1200 155. 1800 9.800.070 Deme 840.l 2'to 4' 26:40 1251 31 433 1430 1,900.110 No-I Oki 1504` 1756 1051 15 145 3330 9,314,6'0 Data 149,2 Se ad 14,91 1306 950 15 433 3250 1,7013100 NIL wider 5250 1456 819 93 385 1050 6,700,600 No.3 725 25 139' 93105 675 1.500.600 $ Appearance 1500 1 1797 plen 94 395 5330 1,e2v,4922 Fv= 95 psi; reference shear design value per 1976 UBC Fv' = Fv* CD= 109 psi; adjusted shear design value AGL = 3.5 in* 5.5 in = 19 in2; area of beam V = (2/3) * Fv'*ASL= 1402 lb; adjusted design shear Vtot/V' = 1.086; > 1.0, specify new member to support new RTU loads Project Job Ref. c> N I S N K I A N DEAN TTSD—Woodward Renovations 31642.03 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Structural Calculations 36 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date MSM 12/19/2018 Try new 4x10 to replace(E)4X6: Mtot= 3.56 kip_ft; total max moment Sx= (3.5 in * (9.25 in)^2)/6 =49.9 in3; elastic section modulus fb= Mtot/Sx = 857 psi; actual bending stress Fb= 1000 psi; specify No. 1 DFL CL= 1.0; beam stability factor, compression edge supported throughout length CD= 1.15; duration factor, snow load CF= 1.2; size factor Fb' = Fb* CL* CD* CF= 1380 psi; adjusted bending design stress fb/Fb' = 0.621; < 1.0, OK, new 4x10 is adequate to support new RTU loads Check shear: Vtot= 1522 Ib; total max shear Fv= 180 psi; specify No. 1 DFL Fv' = Fv* CD= 207 psi; adjusted shear design value AGL= 3.5 in* 9.25 in = 32 in2; area of glulam V' = (2/3) * Fv'*AGL= 4468 Ib; adjusted design shear Vtot/V' = 0.341; < 1.0, OK, new 4x10 is adequate to support new RTU loads