Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
CAS \C1- ocw ,,,,r,, , ,,-4 ,1, . / L -- , --,-, ' f:44-2,7, JOB#2016-03 POLYGON /viz _, ,7-__1 � �� :: SHEET NO 1 OF BUILDING SYSTEMS CALCULATED BY MCL DATE 11/20/2015 PO Box 110.9493 Porter Rd.Aurnsrille,OR 97325 800.682.1422 ModeroBuildingsysterns.conn CHECKED BY DATE SCALE RECEIVED APR 11 2019 STRUCTURAL CALCULATIONS FOR CITY OF TIGARD 28' X 35' MODULAR BUILDING DIVISION MATERIAL SUMMARY MS-1 --> MS-3 BENDING STRESS B5-1--> B5-2 ROOF FRAMING ANALYSIS RF-1--> RF-4 - EXTERIOR WALL STUD STUD-1 FLOOR FRAMING ANALYSIS FLR-1-->FLR-5 LATERAL FORCE ANALYSIS LFA-1--> LFA-4 FOUNDATION ANALYSIS FDN-1 --> FDN-6 LOADING ANALYSIS 1-1--> 1-5 "6;.,i*,,‘.%1 j f BBBff1fr, 1 , 5. I. _I__ ,..,...,,,„ , . JOB#2016-03 POLYGON -f- (fill''� [ D 7SHEET NO MS-1 OF MS-3 = BUILDING SYSTEMS CALCULATED BY MCL DATE 11/20/2015 PO Box 110.9493 Porter Rd•Aumsville,OR 97325 CHECKED BY DATE 800.682;1422 ModerneutldingSystems.com SCALE MATERIAL SUMMARY FOR 28' X 35' MODULAR ROOF FRAMING: TYP RF RAFTER USE 2x10 HF#2 @.24" O C. _ . SEE RF-1 TYP 6'-O"OR LESS OPENING USE (2) 2 x 8 DF#2 SEE RF-2 HDR RIDGE BEAM USE (4)MURPHY LVL 3100 Fb - SEE RF-3 _ 2.0E, 1.5" W (EA)x 24" D COLUMNS: ENDWALL COLUMNS USE (2)4X6 DF#2 SEE RF-4 MIDSPAN COLUMNS USE N/A EXTERIOR WALL STUD USE 2X6 HF STUD GRADE @ 16" STUD-1 F O.C. FLOOR FRAMING: TYP FLR JOIST USE 2X8 DF#2 @ 16" O.C. SEE FLR-1-4 TYP FLR JOIST SUPPORT BEAM USE `4X8 DF Ji2 SEE FLR-5 • JOB U 2016-03 0 D\P SHEET NO FDN-1 OF FDN- //:7 _ BUILDING SYSTEMS CALCULATED BY MCL 11/19/2015: PO Box 110.9493 Porter Rd•^umsvitl2,OR 9/325 CHECKED BY DATE 800.682.1422 Modern9uild ngsystems.com FOUNDATION DESIGN' _ MODULAR BUILDING LENGTH (L)_ 35.00''; SITE TYPE_ GRAVEL BUILDING WIDTH (B)= 27.67', MAX BRG PRESSURE=L1800 psf FRAME RAIL OFFSET=I N/A FLOOR TRIB WIDTH =I 6.92 '` ROOF OVERHANG = 0.004` ROOF TRIB WIDTH = 6.92 WALL PLATE HEIGHT=1 8.00`'(ABOVE F.F.) TRANSVERSE WIND/SEIS. = 5318#_ LONGIT. WIND/SETS. =1 4692#E WIND UPLIFT=, - 13465 #' SNOW LOAD=f 25 psf; BUILDING WEIGHTr=1-_27006#`(No Snow) F.F, HEIGHT! 1.00`,(ABOVE GRADE) AVG. ROOF HEIGHT = 11.501-(ABOVE GRADE) PIER PAD AREA AT EXTERIOR FTG LOAD TO SKIRTWALLllV = DL= 6.92'(12 psf)+8'(10 psf)+6.92'/2(10 psf) = 198 plf LL= 6.92'/2 X 100 psf= 346 plf SL= 6.92'X 25 psf= 173 plf D+ L= 543 plf D +S= 370 plf D+0.751+0.755 = 587 plf CONTROLS PIER SPACING = q = (587p1f-Oplf)X (5')/1,78 ft^2 = 1648 psf OK on GRAVEL USE+/- 16 in.SQ. PADS OR 2 x 12 x 24 in. P.T. PADS AT 5' O.C. AT INTERIOR FTG DL= 6.92' (10 psf) = 69 plf LL= 6.92' (100 psf)= 692 plf D+ L= 761 plf CONTROLS PIER SPACING = 4 q = 761p1f X(4')/1.78 ft^2 = 1709 psf Qon GRAVEL USE+/- 16 in.SQ. PADS OR 2 x 12 x 24 in. P.T. PADS AT 4' O.C. JOB ##2016-03 Cu I LI , . .. SHEET NO FDN-2 OF FDN- BUILDING SYSTEMS CALCULATED BY MCL 11/19/2015 PO Box 110.9493PorterRd,Auadviile,OR97325 CHECKED BY DATE gad.632.1422 ModernBulldingsystems.com SCALE AT ENDWALL COLUMN FTG COLUMN DL=13033 It COLUMN SL=;6051# _ • DL= [3' (10 psf) + 10.5' (10 psf)] X 6.92' = 934# Lk= 3' (100 psf)X 6.92' = 2075# D+ L= 6041# D+S= 10018# D +0.751+0.75S= 10061# CONTROLS <10125#Therefore OK. (See FON-3,5 ) AT MIDSPAN COLUMN, TG COLU N'?k 0 COLUMN SL= ' DL= 6.92 a psf) (4') = -,,. -,' 277# LI= 6,92' (100 p 4') = -'`� 2766# � D+ L= 3043# CONTROLS D+S= 277x 0+0.75L+0,75 �-351## - 6093#=Tl1-er-ef-or-e=©I See-F-DN -o -' _ ,, JOB#2016-03 JJti ,E SHEET NO FDN-3 OF FDN-4p 4// //:(///:::1 BUILDING SYSTEM CALCULATED BY MCL 11/19/2015 PO Uox 110.9993 Porten Rd•Aumsvt#ie,OR 97325 CHECKED BY DATE 800.682.1422 ModernUuldingSYstems.com SCALE @ ENDWALL COLUMN FOOTING TRY Width (b) each = 0,63 ' Pmax= 1800psf X 2 X 0.63'X 4.5'= 10125# DL°%o= 40% SL% = 60% w 81= 1800psf X 0.63'X 0.4= 448 pif - w SI.= 1800psf X 0.63'X 0.6= 677 plf @ MIDSPAN COLUMN FOOTING T`1' - e – _=.> rigif" H cn :0ri'—L Width (b) each = 0.60 ' Pmax= 1800psf X 6 X 0,6'X 4' = 2609 41 DL%o = 100% SL%= 0% V cc18 0•sfX0.6' = 1087 plf > iooPsfx 0.6'X0= 0plf @ MIDSPAN INTERMEDIATE POST TRY 6 s L -,., Width (b) each = 0.46' w DL= 18000F-X_4'X 1/2 ME_MBEgS=•.-- –3600 plf W st= 1800psf X„ =01 EMBERS= 0 plf Project Title: POLYGON Engineer MCL Project ID: 2016-03 /1 _.f.--/ Pro ect Descr: 28'x 35'MODULAR OFFICE - BUILDIN SYSTEMS [ �A 4 co. C w Printed:ISNOV2615,3.04Pr4 { W�at�-�lv�m fee CWm}ects1ENERCA-.026160-212016-0-1.EC8,, ENERCAI C INC 1993-2015,Bold 6.15 10.6,Vere 15.10,6- L ; ..W-06009;1 , ,n .<. ; .. , p lc'enu „cfrAERROV,MING,s_YSIENIC Description; t;NDWALL COLUMN FIG-2016-83 Calculations per NDS 2012,IBC 2012,CBC 2013,ASCE 7-10 Load Combination Set:1BC 2012 Material Properties Analysis Method: Allowable Stress Design Fb-Tension 750.0 psi E:Modulus of Elasllcily Load Combination IBC 2012 Fb-Compr 750.0 psi Ebend-xx 1,300.0 ksi Fc-Pal 700.0 psi Eminbend-xx 470.0 ksi Wood Species :Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade :No.2 Fv 95.0 psi Ft 475.0 psi Density 32.210pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling 0(0.4480 S(0 6776} jr r{ s fli d +.ori • a� r A s•, rrr � R�� • 8x8(FLAT) 8x6(FLAT) 8x8(FLA) - span=1.040fl Span Span=1,940fl ti Service loads.entered,Load Factors will be applied for calculations. Loads on all spans... Uniform Load on ALL spans: 0=0,4480, S=0.6770 kilt I =D 5111 `SUMIl34RYE . --- '_ — .r_..:Design OK Maximum Bending Stress Ratio - 0.779 1 Maximum Shear Stress Ratio = 0.556 :1 Section used for this span 8x6(FLAT) Section used for this span 8x6(FLAT) fb Actual = 671.85pst fv Actual = 60.69 psi. FB:Allowable = 862.50 psi Fv:Allowable _ 109.25 psi Load Combination +D+S+ii Load Combination 40+541 Location of maximum on span = 1.94011 Location of maximum on span = 1.484 ft Span#where maximum occurs = Span#I Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0,025 in Ratio= 1858 ax Upward Transient Deflection 0.000 in Ratio- 0<360 Max Downward Total Deflection 0.042 in Ratio= 1118 Max Upward Total Deflection -0.001 in Ratio= 5748 91011iC8e ohS X `'ri Support notation:Far left is#1 Values In KIPS Load Combination Support 1 Support 2 Support 3 Support 4 Overall MAXimum 2.531 2:531 Overall MINimum 1,008 1.008 4041 1.008 1.008 +03641 Z531 2.531 D Only 1.008 1.008 S Only 1.523 1.523 jog ?616)-0 3 BUILDING SYSTEMS SHEET NO. 1--Q (•'5CF 9493 Porter Road SE . PO Box 110 CALCULATED BY 1 1(..,(.„• DATE I I -2C-).' AUMSVILLE, OREGON 97325 CHECKED BY DATE 503-749-4949 • Fax 503-749-4950 SCALE I I I 1 li 1 1 1 L.: I 1 ' I 1 H * I I I - ri-"A ISL)A-111611.. ' k s. - ..---- 3_1:3 '(_1 '...i .._.,-,(11-__Fi_itI i I i -- -T— - 7— _ .. .._ 1 __. i 1 , ' 1 ,__ , ___ _ 1 jI 1 i , ___?1 _4- i),, :,17g -, Iji.r4-r.. (11:Ift,c),_ -.7, 1777 1 I vcf._A3P-E1 .._.._ 1 11 - I * 7 . _ i. 1_. 111.111 I L . 1 ' * II -1 1 1 TiAtimr4) 0. _ ___., ., , ... ...., 5 . :-./ - , 4 t 7:- , , , j ,:,v C " 141.1)' , , .• , 4 i J ,,...._ Lp • ' vl>• .!p -2,__...L .,._ 1:11‘ ._ I _.___. _____ 1 r ii-1_.111111 P._. _ ___. ____ . , Hi I)) ___,,,_. ____ ---- •---- -- -- . ixtu, lit --.A. ./. ./ A'- . _4-- 11 \ . .-?...x-- 4, , 1 641 ' I I 111111 . I ' r- I MI 1 1 . I .... . , _ . - 11 ..._ . I Ett ,-.c....- e- .1(411111111111 1 1111 RI . RI Liiiiiifti 1117111111111 .1 II _ . III II 111 I .'" -111r-- , ' ' 6('•TAII- -,... _L , . ),.-4 . . _.... ...___ . 1 ,_ _ (Li , - - :., I -7) I t. ' 3111 ., /1-Yi, . • ' ... _ .il , . 111 it A_ . . • —I ..____ ,_ ..„. _7 ......_ ____,_ — 111-7 4------- — c -------- I -. -°°. - I MR_ _ 4 i t4 i if: 4: '14 .- 5 .:P LE( .i ri-(1C.:,i . 0 .)( iiiii ini__(_;!. .- - ...... , ... - 1•11111111111111N "11111111 miiimrammo I , II t A VAI -. t:I ' I -12 •z-r;.il s'• 7 6t--- ii. ____ c„ ..,, _, _ _ ,-11 , _ ii - my i it ._c'iv, ,-2-.*.' 1)(2.__- i ___ _ . I • 11 II 11E111 111 . . _ Mil III Mill , R 7_ _____ el _ _ III _ . 11111 I-- -•:_z - ----- .__ P - ‘ • •I r) - , ,t - .2 7-3_ i 4 ) .1-1.1t..) --Lt :1111 1- k 1311 te.,.. 12+-1' l' IA 1,- ..,.:2 ii____ — 1111MIN I . ' 1111 II — . —— IIII i 1 I I 1 Ill Jon 21163-0' 3 F SHEET NO. fsl‘t' f 0 OF�_.t'(Pi--- (a _ _BUILDING SYSTEMS 9493 Porter Road SE • Pd Box 110 CALCULATED BY_JAL"- DATE ( 1-�')-t AUMSVILLE, OREGON 97325 CHECKED BY _DATE 503-7494949 s Fax 503-749-4950 SCALE _1__.:._ R d d Q�;-'1-I0.: -- HJLi5 .. --._- Il I -7--- f 1 ----(--i5- -- lii. -15-119.)1111)11_1- If-46----‘-- 4 Z__ .10 ._.`__ ___,- • 21(11/: :-1-.'.--; ' 1 - r--lr i I - li___ _ lila i If i r- r - . __ __:: _...____[_ ___ ____ I - - - -- - ti 7i- 7(. ;7i -A ,, Ai ) ___ , -i -He .----,--1--(41 t -t,-. :..._ 6 . 1 T- I • HIE, _ I _ IIITILEIHTiIII Mill 1 'r . . 11 _ p -..abf-.- ii 1111 1 mi v I iiL- . i_ 11 INN 1 No p 1 . - ----- •1. — At -- tr' i Aa'14t- . ' )4 ..s• git, _ . ' I„ __I _ ..._, _ I I , Et" r -- -7 ' 11131- ) , lEll 1 III . �a Fi a I" .. i • ,.��, a `�. _ IIII 11.1 Lj I _.• __ _jr: jI1iIjII _ - ^I I. -, -, - _ _, ,,......._ _ . _ , , _._ �_ D , - JOB it 2016-03 E SHEET NO L-1 OF L-5 4,1 , --, — �lll-,l�lN Y T M CALCULATED BY s MCL DATE 11/19/2015 PO Box 110.9493 Porter Rd.Aumsvf le,on 97325 CHECKED BY CHAT 800.682.1422 ModernBu(ldfngSystems.cvn7 SCALE WIND ANALYSIS FOR ENCLOSED SIMPLE DIAPHRAGM LOW-RISE BUILDINGS - BASED ON IBC 2012 I ASCE 7-10 CHAPTER 28, PART 2 INPUT DATA Risk Category= RCII (Table 1.54) Basic Wind Speed = Vult -,----T-=':T1Vasd =108 ' mph (3 sec gust)(Fig 26.5-1) Exposure Category= EC = (Sec. 26.7) Topographic Factor= Kzt 0-1 (Sec. 26.8 & 26.84) Adjustment Factor= Lambda 1.00 (Sec 28.6-1) - Building Length = L 1; 35.00 ft Building width = B 27.67 ft 1 1:41:51 PM - Building Height to Eave = he } 10.00 ft Building Height to Ridge = hr _13:00 ft Eave Overhang oh i_ 0 00 ft Building End Zone = a 3.00 ft Roof Pitch RPG==:12 Approx. Roof Angle = RA 10 degrees (Ref. Fig. 28.6-1) OUTPUT Wind Pressure,ps30(Fig. 28.6-1) Horizontal A-ps30 35.10 psf Horizontal 8-ps30 44.50 psf Horizontal C-ps30 2330 psf Horizontal D-ps30 -8.50 psf Vertical E-ps30 -37.30 psf Vertical (-ps30 -22.80 psf Vertical G-ps30 -26.00 psf Vertical H-ps30 -17.50 psf O.H. Eoh-ps30 -52.30 psf O.H. Goh-ps30 -40.90 psf JOB $ C131 �A3 r �, - ��� SHEET NO L 2 z /ir � OF L-5 , � BUILDING SYSTEMS CALCULATED BY MCL DATE 11/19/2015 PO Box 220.9493 Porter Rd..AumsvilIe,OR 9732S CHECKED BY DATE 800.682.1422 ModernouildingSysterns.corn SCALE Wind Pressure,ps ps= Lambda * Kzt*ps30 Min Loading Horizontal A-ps 35.10 psf 16.00 Horizontal B-ps -14.50 psf 8.00 Horizontal C-ps 23,30 psf 16.00 Horizontal D-ps -8.50 psf 8.00 Vertical E-ps -37.30 psf 0.00 Vertical F-ps -22.80 psf 0.00 Vertical G-ps -26.00 psf 0.00 Vertical H-ps -17.50 psf 0.00 O.H. Eoh-ps -52.30 psf 0.1-I. Gob-ps -40.90 psf _ CASE A-Transverse Wind Min Loading A-tw 2106 lbs 960 lbs - Set to 0 B-tw -261 lbs 144 lbs _ C-tw 6757 lbs 4640 lbs Set to 0 D-tw -740 lbs 696 lbs - Total 8863 lbs(SD) 6440 lbs Convert to ASO x 0.6 0.6 Total Force an building side L= 5318 lbs(ASO) 3864 lbs CASE B-Longitudinal Wind A-lw 1106 lbs 504 lbs C-lw 6715 lbs 4611 lbs Total 7821 lbs(SD) 5115 lbs Convert to ASO x 0.6 0.6 Total Force on building end B: 4692 lbs(ASO) 3069 lbs CASE A-Transverse Uplift w/gable end OH uplift E-up -3096 lbs w/gable end OH uplift F-up -1893 lbs w/gable end OH uplift G-up -10432 lbs w/gable end OH uplift H-up -7021 lbs sidewall eaves OH uplift Eoh-up 0 lbs sidewall eaves OH uplift Gob-up 0 lbs Total -22442 lbs(5D) Convert to ASO x 0.6 Total Uplift Force «13465 lbs(ASD) zdAr-i --,- J013#2016-03 SFIEET NO L-3 OF 1-5 BUILDING SYSTEMS CALCULATED BY MCI 'DATE 111/19/2015' PO Box 110.9493 Porter lid.Aumsville,on 97375CHECKED[3Y DATE 800.682.1427 hlod zniulldingSystems,com „___ SCALE 28'x 3S'_MODULAR SEISMIC per IBC 2012/ASCE 7-10 ASCE 7-10 Table 1.5-1 Risk Category `IT ASCE 7-10 Table 1.5-2 Seismic Importance Factor Te— 1.00 ASCE 7-10 Table 12.2-1 Response Modification Factor R= � 6 StL-= USGS Data Spectral Response Accel. Ss= I 1.500 ASCE 7-10 11.4.2 Site Class D ASCE 7-10 Table 11.4-1 Site Coefficient Fa = ( 3. 000_ ASCE 7-10 Eqn. 11.4-1 Sms=Ss * Fa Sms= 1.500 ASCE 7-10 Eqn 11,4-3 Sds= 2/3 *Sms Sds= 1.000 ASCE 7-1012,14.8.1 F=1.0 for one story bldgs F= 1.000 ASCE 7-10 Table 11.6-1 Seismic Design Cat. D - ASCE 7-10 Eqn 12.8-1 V=(F*Sds I(RIIe) * W)* 0.7 V= 0.108 W ' IBC 2012 1605.3.1 Note: 0.7 converts to ASD ASCE 7-10 Eqn 12.8-5 Vmin = 0.010 W Building Weight Roof(psi) Exterior Wall (psf) =tae o 2.5 32_: -. 1,7 =1--1,67-eft- 3sS 1.5 u " 1.7 1t?T[ 1.9 T 1.3 ___,— .11- $I 1.8 _8yp€ 2,8 1pl 1.8 0 =—--- 0 - 0 - 0 — , 0 Total 9.5 __ 7.5 interior Wall(psf) Floor(psi) 8_Gy 3 2.8 ` is6 1.0 K4@ 1.1 -3, 2,5 f 2.8 tr 6 2.2 _, 0 1.6 0 _ ._ =s 0 0 _ 0 Total 6.7 7.3 0 JOB #20x6-03 I] � SHEET NO L-447- ID, 14, OF L-5 BUILDING SYSTEMS CALCULATED BY MCL DATE 11/19/2015 PO Box 1W.9493 Porter Rd.A inisviiio,OR 97375 CHECKED BY DATE 800.682.1422 ModerroBuildingSystems.com SCALE Building Weight(can't) N5- t1ow_ 27.67 ' 3 35.00' 0.0 psf = 0 lbs A.Roof =, 27.67 ' (, 35.00' 9.5 psf = 9200 lbs Ext.Wall=' 8.00' 1225.34' 7.5 psf - 7520 lbs Int.Wall= 4_0U' =.0.101V-- -- 6.7 psf = 3216 lbs Floor=1 27;67' _ 35.O0' 7.3 psf - 7070 lbs Chassis= -- = 0 lbs LL — —_ -- = 0 lbs Total 27006 lbs Wr= Total DL tributary to roof 14568 lbs . W1= Total DL tributary to floor 12438 lbs Fx Story(Shearwali)Force Table Story Force-k Ex Coef= Story Height Weight Ex=wx*hx/(E V*hx/(F Story Shear wx*hx)*V wx*hx) (hx) (wx) (wx*hx) (Vx) R 1o,Oo ' -= 14.57 k 146 k-ft 2.68 k 0.184 2.68 k 1 1.00' - 12.44k 12k-ft 0.23k 0.018 2.91k Grade 0.00' Sum(E) 27.01 k 158 k-ft V=2.91 k Shear Value OK Comparison . Design Maps Summary Report Page 1 of 2 MtiSGS Design Maps Summary Report l.-_- 5 5- �ti- Of: t�.r User-Specified Input Report Title 2016-03, Tigard Thu November 19,2015 19,38:09 UTC Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available In 2008) Site Coordinates 45.431°N, 122.771°W Site Soil Classification Site Class D-"Stiff Soil" Risk Category I/II/III ._.�..1 Ii nil - U ooain - ij averto� L--f- ii - 0(9 frit , ./� 4 1) _ ,i'vi(IniliiJ iu l7 �a� ./..--7-." ,! � '! _ s) i, ¢ ' i Mllvin�ikifl / 1 7 f i'' L.j Qi ) It .l ar . <ti ;i• '# it 3 i' Lake QSWego �e1+alis m'. .. }Ging f_'ifY _:fivjhr,m _ -fd 1� , AmERIcA ' ! , Tu lefln i 'may J i y - ^#.Ir'Is}a Cilie St • , k -_� •, f" "-�-""-�. _ i -92611444e-- an►eiiaTi ii2uit -f-fl :4Map uest USGS-Provided Output ss 0.972 g S,,s 1.080 g Sim = 0.720 g 1 •C0U o CJ }"--. S1 = 0.423 g S = 0.667 g Ss/ = 0.445 g For information on how the SS and SI values above have been calculated from probabilistic(risk-targeted)and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEHRP"building code reference document. MCER Response Spectrum Design Response Spectrum 009 7,10 P.00 0.55' 0.72 0.00 - s.c.I 0.77 0,56 v 0.cc 40 0.22 - 0.24 0.22 0.10 0.11 0.00 0.00 n00 0.00 070 0,40 0.00 0.110 7.00 Ln 3.40 i,69 100 2,00 0.00 0;20 0+0 0;G0 050 I 00 i"70 1-40 i 0 1,00 .00 Period,T(sec) Period,T(sec) http://ehp l-earthquake.cr.usgs.gov/designinaps/us/suinmaty.php?tejnplate... 11/19/2015 p Design Maps Summary Report Page 1 Of 2 mogGs Design Maps Summary Report 1—`-3 i e �- User--Specified Input Report Title 20.16--03, Hillsboro Thu November 19,2015 19:39;58 UTC Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available In 2008) Site Coordinates 45.523°N, 122.99°W Site Soil Classification Site Class D-"Stiff Soli" Risk Category I/II/III S H' I lei - ' -N, ~ .l 33 rotti t Grove {x llll3hoi o f 1 } -" ii t ` N 0 RI'1" -H i Q7 c. ) } i /. tvl I I 1 -A 02015 MapQuest Some data 02015`Op ?- � �4 MapQuest USGS-Provided Output Ss = 0.991 g S„s = 1.093 g Spy = 0.729 g 1‘000 b a 011 si = 0.448 g S,,, = 0.695 g S,;x 0.463 g For Information on how the SS and Si values above have been calculated from probabilistic(risk-targeted)and deterministic ground motions in the direction of maximum horizontal response,please return to the application and select the"2009 NEHRP"building code reference document. MClwn Response Spectrum Design Response Spectrum 0.00 1.10 0.53, 0,72 002 0.><i 0,7r 0.sq M .... meq 0,44 2 0.33! 0.24 (1.22 • 0.14 0.110.01 0.00 1 11 1 I I I 0.00 — 1 0:00 0.N 0.40 0-C.00 4.00 3,00 1, 0 1.40 1,G0 I:00 ZOO 0.60 .0..:r0 0.40 0.t0 0.00 1.00 I,NN 1.40 I.00 1.00 2.00 Period,T(sec) Period,T(sec) http://ei p2-earthquake.wr.usgs.gov/designmaps/us/sunimary.php?template... 11/19/2015 Exit Index Search `OlifI VrA J E FRICTION FACTORS AND ADEESION FOR DISSIMILAR MA'1`LRTA:LS _.._ {NAVFAC DM 7.2,Table 1, p7.2.63) Friction Friction Interface Materials angle, factor degrees \Wass concrete on the following foundation materials: Clean sound rook 0.70 35 Clean gravel,gravel-sand mixtures,coarse sand 0.35 to 0.60 29 to 31 Clean fine to medium sand,silty medium to coarse sand,silty or clayey gravel 0.45 to 0.55 24 to 29 Clean fine sand,silty or clayey fine to medium sand 0.35 to.045 19 to 24 Fine sandy silt,non-plastic silt 030 to 0.35 17 to 19 Very stiff and hard residual or pre-consolidated clay 0.40 to 0.50 22 to 26 Medium stiff and stiff clay and silty clay 0.30 to 0.35 17 to 19 (Masonry on foundation materials has same friction factors.) Steel sheet piles against the following soils: Clean gravel,gravel-sand mixtures,well-graded rock fill with spalls 0.40 22 CIean sand,silty sand-gravel mixture,single size hard rock fill 030 17 Silty sand,gravel or sand mixed with silt or clay 025 14 Fine sandy silt,non-plastic silt 0.20 11 Formed concrete or concrete sheet piling against the following soils: Clean gravel,gravel-sand mixtures,well-graded rock fill with spalls 0.40 to 0.50 22 to 26 a Clean sand,silty sand-gravel mixture,single size hard rock fill 030 to 0.40 17 to 22 Silty sand,gravel or sand mixed with silt or clay 030 17 Fine sandy silt,non-plastic silt 0.25 14 Various structural materials: Masonry on masonry,igneous and metamorphic rocks: Dressed soft rock on dressed soft rock 0.70 35 Dressed hard rock on dressed soft rock 0;65 33 Dressed hard rock on dressed hard rock 0.55 29 Masonry on wood(cross grain) 0.50 26 Steel on steel at sheet pile interlocks 0.30 17 Interface Materials(Cohesion) Adhesion Ca(psf) 'Very soft cohesive soil(0•-250 psi) 0-250 Soft cohesive soil(250_500 psf) 250-500 Medium stiff cohesive soil(500-1000 psf) 500-750 Stiff cohesive soil(1000-2000 psf) 750-950 Very stiff cohesive soil(2000-4000 psf) 950-1,300 C-11 0 ., .,..... INSTRUCTIONS FOR USING i d'}. Ui g anchorse7,nc._ MOBI LE HOME PIERS -. The manufactured home shall be installed and ki leveled by qualified contracting personnel who \., are acceptable and licensed by the governing authority. Minute Man piers are designed to SUPPORT mobile homes and are not to be used for raising or lowering the home.' 1' Minute Man piers.should be placed directly under the main support frames on both sides /k of the home spaced In accordance with the �.._. _._ __. home manufacturer's instructions, mr1mUIE-MAH ANCHORS 28726 , 1Rt 6524 RAZED 3000125 3`101 VFW FACTOR t um- 2 RATED SAGO In 2.26101 SAfEN FAC1OR �. i:. -� r. 'MACEXIENSION WARNING!DO NO11aSE 10JACK HOME MINUTE MAN PiER SET-UP PROCEDURES t Designed and manufactured for use under mobile and manufactured homes and commercial structures, the support Piet Is best suited to a dry environment, Minute Man piers are not recommended for use within 1800 foot of a coastline or to an application where the base of the pier would be Immersed In water, Air support piers must be attached to the I-beams with an appropriate pier head,to prevent horizontal movement. 2 Use hydraulic jacks or other suitable devices to level the chassis beam of the home. Be sure to use sufficient jacks and safety blocking to safely support the home before installing support piers. Level the chassis using a water level or other leveling device for accuracy, After the chassis is leveled using hydraulic lacks and levels,you may begin to install the support piers. 3 Using the appropriate pier for the installation,determine the pier height that will be best for each individual pier location and Insure that the height to the bottom of the chassis beam is no greater than 36 inches. insure that the pier caps ore appropriate for the type of chassis beam or for the marriage line. 4 Prepare a level surface at the location of each pier. Use coarse sand or gravel,If necessary to prepare the surface so as to have full contact for the footing pad. The surface of the fooling pod needs to be high enough to insure that the base . _-• --.- - _ come into contact with any drainage 4 water that may be present under the home. Do not set a footing pad on organic material. Use the appropriate type and size of fooling pad for the load required, Refer to the home manufacturer's installation manual for specific loads and footing sizes,and to the governing authority In the locale In which you are installing, s Locate the support pier on the footing pad,making certain to center the support pier on the pier pad, Where required by local code,secure the support pier to the footing pad with appropriate fasteners, In no case are you to extend the threaded rod adjuster more than 2 Inches, When more height is needed,use the next toiler size support pier. Carefully align the support pier under the chassis beam or marriage line and install the pier head, Tighten and snug plus one-hotf tum, A Repeat this installation process with each pier. After all support piers are Installed,you may then remove the safely blocking and hydraulic lacks used to Initially level the chassis, J L8, . .*._". ._....__. �... .. ..z..� . .z...,, _ _.,. ..Y...P,.., . , D___. Li E , , 3013 #2016-03 POLYGON :_ --_------, , *,,..%.,.. F.", to ./ Zz' = = --,"; 7 ---- SHEET NO MS-2 OF MS-3 ,, .., .,,,, -„,.. 0.g -44, — _ — __ BUILDING SYSTEMS CALCULATED BY MCI_ DATE / (/ /---- 11/20/2015 _ PO Box 110•9493 Porter Rd.Auatsvilie,Olt 97325 CHECKED BY DATE 800.682.1422 NlodernI3ullciinESysterns.conl SCALE SHEATHING: ROOF USE USE MIN 7/16"SHTG w/15 GA STAPLES SEE LFA-1,2 AT 6" EDGE& 12" FIELD (UNBLOCKED) (ES114539,TABLE 6) UPGRADE TO 4" & 8".AT ROOF EXT END1A/ALLS USE USE MIN 15/32" SHTG w/8d (.113)AT SEE LFA-1 6" EDGE & 12" FIELD (BLOCKED) (ESR- 1539, TABLE 8) .... 4 EXT SIDEWALLS USE USE MIN 15/32"SHTG w/8d (.113)AT SEE LFA-2 6" EDGE& 12" FIELD (BLOCKED) (ESR- 1539,TABLE 8) , - ' ' '- , • ' , ., FLOOR USE USE MIN 19/32"SHTG w/8d (.113)AT SEE LFA-1,2 6" EDGE&12" FIELD (UNBLOCKED) (ESR- .. 1539,TABLE 6) UPGRADE TO 23/32" . , SHTG AT 6" &8". AT FLOOR . . . MOBILE UNIT TO CHASSIS USE N/A SEE FDN-4 2,iigc.X:,_": .....„ ':''.., ..i.c.- _:•.':. ..,' ...2"=';' '--%-: , ,-...c, imeimmgmossonew ------Th ri.7.1..7')4 (7.4;'44.,4,..• ,..-:''''''. c,Z7 - - _ El_ ,i,,,,c,,„ oilkt,4 ,, ,,k ,,,,„,, XY1 I/ ,.. ...mr, ,:.. ,,,.., ,,,,4 ..., :, 5,,,,,, -p-- '41.; 'ia• '4•;x:e SHEET N BUILDING SYSTEMS .100Bm#S.2301.6.03 POLYGON CALCULATED BY MCL D0A1TMES-3 11/20/2015 PO Box 119.9493 Porter ltd.Aurnsville,OR 97325 CHECKED BY DATE 800.682.1422 modern13uIldingSYsterris.colil SCALE SHEAR WALL HOLD DOWNS USE USE MIN SIMP CS-18 w/ (4) SEE LFA-3 N40's EA END SIDEWALL TOP PLATE SPLICE USE USE MIN 4 ft SPLICE w/ SEE LFA-4 - (12) 12d1 s (.151) EA END ENDWALL TOP PLATE SPLICE USE USE MIN SIMP CS-18 w/(4) SEE LFA-4 N-10's EA END RIDGE BEAM TO RIDGE BEAM USE USE MIN (3)-5/8 in DIA SEE LFA-4 CONNECTIONS M.B.'s AT RIDGE.BEAM " A FOUNDATION: - . TYP EXT FIG USE USE+/-16 in,SQ. PADS OR 2 x 12 x 24 SEE FDN-1 _ , In...,P•T• PA,..PS AT 5.- j.°..'C - . = TYP INTERIOR FIG USE USE+/- 16 In. SQ. PADS OR 2 x 12 x 24 SEE FDN-1 in. P.T. PADS AT 4' 0.C.' . . ENDWALL COLUMN FIG USE (2) (FLAT) P.T. HF#2, 6.x 8 SEE FDN-3,4 , - . . x 4,51 L - - --.. - PIT SET BRACES MOD USE P.1. 2x6 BRACES w/ ......51.A P . _ SEE FDN-5 SIDEWALLS A35m/(6),N-S:s EALEG0 5' 0.C, PER DETAIL . _ . PIT SET BRACES MOD USE P.T. 2><6 BRACES wr /SIMP ' SEE FDN-5 ENDWALLS A35 w/(8.)-Ns EA LEG.@ 5' 0.C. PER - - . . . MODERN BUILDING SYSTEMS, INC. BENDING STRESSES 9493 Porter Road SE * PO Box 110 SHEET NO BS-1 OF BS-2 AUMSVILLE, OREGON 97325 CALCULATED BY MCL DATE 09/03/13 503-749-4949 CHECKED BY DATE Fax 503-749-4950 SCALE ALLOWABLE BENDING STRESS F'b= Fb(CD Cm Ct CL CF Cf,Ci Cr) Fb- BENDING STRESS DESIGN VALUE Ca- LOAD DURATION FACTOR CF-SIZE FACTOR Cr- REPETITIVE MEMBER FACTOR BASED ON 2012 NDS FLOORS OR ROOFS ROOFS Fib W/O F'bW/ ` M.O.E. DURATION DURATION A SIZE SPECIES (x10^6) Fb (psi) CF Cr (psi) CD(Snow) (psi) JOISTS AND RAFTERS 2 x 8 DF#1 &Btr 1.8 1200 1.2 1,15 1656 1.15 1904 DF#1 11 1000 1.2 1.15 1380 1.15 1587 DF#2 1.6 900 1.2 1.15 1242 1.15 1428 SPF#1/#2 1,4 875 1.2 1.15 1208 1.15 1389 HE#2 1.3 850 1,2 1.15 1173 1.15 1349 2 x 10 DF Set Struct 1.9 1500 1.1 1.15 1898 1.15 2182 DF#1 &Btr 1.8 1200 1.1 1,15 1518 1.15 1746 DF#1 1.7 1000 1.1 1.15 1265 1.15 1455 HF#1 1.5 975 1,1 1.15 1233 1.15 1418 DF#2 1.6 900 1.1 1.15 1139 1.15 1309 SPF#1/#2 1.4 875 1.1 1.15 1107 1.15 1273 HE#2 1.3 850 1.1 1.15 1075 1.15 1237 HEADERS 4x 4 DF#2 1,6 900 1,5 N/A 1350 1.15 1553 4 x 6 DF#2 1.6 900 1.3 N/A 1170 1.15 1346 4 x 8 DF#2 1.6 900 1:3 N/A 1170 1.15 1346 4 x 10 DF#2 1.6 900 1.2 N/A 1080 1.15 1242 1 ESR-2913 I Most Widely Accepted and Trusted Page $ 2 of BS-2 5.4 Evaluation of the effect of lire-retardant or 6.0 EVIDENCE SUBMITTED preservative treatment on LVL is outside the scope of Data in accordance with the ICC-ES Acceptance Criteria this report. for Structural Wood-based Products (AC47), dated 5.5 Installation, fabrication, identification and connection October 2009,(corrected December 2009). details must be In accordance with this report, the 7.0 IDENTIFICATION manufacturers published installation instructions and The Murphy LVL must be identified with stamps bearing the applicable oconflicts code.This reportn must govern b iserd the Murphy Engineered Wood Division name(or the name are conflicts between the manufacturers published of one of the listees noted at the beginning of this report); installation instructions and this report. grade; evaluation report number (ESR-2913); the 5.6 Murphy LVL is produced in Sutherlin,Oregon,under a production shift and date of manufacture;and the name of quality control program with inspections byAPA-The the inspection agency [APA—The Engineered Wood Engineered Wood Association(AA-649). Association(AA-649)j. TABLE 1—DESIGN PROPERTIES(ALLOWABLE STRESS DESIGN)FOR MURPHY LVL''k' DESIGN STRESS(psi) PROPERTY 2,250F6:1,5E 2,750 Fb-1,8E 2,850 Fe-1.9E 2,950 Fb+2.0E 3,100 F6.2.0E Bending(Fe) Joist' 2,250 2,750 2,850 2,950 3,100 Plank 2,200 2,750 2,800 2,950 3.100 Tension parallel to grain(Ft)s 1,350 1,950 1,950 2,100 2,100 Joist 285 285 a_ 285 290 290 Longitudinal shear(F,) Plank 150 150 150 150 150 Compression parallel(Fri) 2;350 2,350 2,350 3,200 3,200 Compression Joist 750 750 750 750 750 perpendicular(F°,) Plank 450 450 550 550 550 # Joist 1.5 x 106 1.8 x 10° 1.9x 106 2.0 x 108 2.0 x 10 a Modulus of Elasticity,E Plank 1:4 x 106 1.8x 106 1.9 x 10 2.0 x 10 2.0x be - For SI:1 psi-6.9 kPa. 'The tabulated values are design values for normal duration of load.All values,except for E and FA,:,may be adjusted for other load durations as permitted by the code.The design stresses are limited to conditions in which the average equilibrium moisture content of solid-sawn lumber Is less than 16 percent 7Reference design values must be adjusted,.as applicable,in accordance with Section 8.3 of the NOS. sJolst=load parallel to gtueline.Plank-load perpendicular to glueline. 4The tabulated values are based on a reference depth of 12 inches.For other depths,When loaded edgewise,the allowable bending stress (Fe)shall be modified by(12/d)°i8 where d=depth In inches.For depths less than 2'f2 inches,the factor for the 2'/2-Inch depth must be used. $The values published in Table 1 are based on a reference length of 3 feet.For other lengths,the allowable tensile stress must be modified by (3te)°'11,where t=length in feet.For lengths less than 3 feet,the unadjusted allowable tension stresses In Table 1 are used. TABLE 2—FASTENER DESIGN FOR MURPHY LVL:EQUIVALENT SPECIFIC GRAVITY' NAILS BOLTS Withdrawal Load Lateral Load Lateral Load Installed In Edge -installed in Face Installed In Edge Installed In Face Installed-in Face Parallel to Grain Perpendicular to Grain 0.49 0.50 0.50 0.50 0,50 0,50, 'Fastener values based on The equivalent specific gravities in the above table are for normal toad duration and may be adjusted using the load duration factors In accordance with the code, • ,— Project Title: POLYGON Engineer: MCI Protect ID: 2016-03 1 %, Project Descr: 28'x 35'MODULAR OFFICE 4 ly 6 '' E3UILDING SYSTEMS = r :. = _ L1 [Vii C3La'd @ 171 F310 CAPs$1301s1ENERCh 112016-0 NOV21.2st4 3:41651 E'06 E1lERCA C INC.1683-201 0u d 6.15:10,6 Ver6.15,10 6 f,ic #:.KW-08009251A . , sib '=:-i'P' "ie r q, ' x x.;;74:4;;I::::;:-„: Licensee:MODE-N BU.., BINS;' MT a't Description: TYP ROOF RAFTER-201603 ` CObb F?>*FERENCES - - I -- Calculations per NDS 2012,IBC 2012,CBC 201 3,RSCS 7-10 Load Combination Set:IBC 2012 Material Properties Analysis Method;: Allowable Stress Design Fb-Tension 850 psi E:Modulus ofEtssIMly Load Combination f BC 2012 Fb-Compr 850 psi Ebend-xx 1300 ksl Fc-Pril 1300 psi Eminbend-xx 470 ksl Wood Species : Hem Fir Fc-Perp 405 psi Wood Grade :No.2 Fv 95.0 psi Ft 525 psi Density 26.83 pcf Beam Bracing : Beam is Fully Braced against lateral-torsion buckling Repetitive Member Stress Increase 0 0.024 S 0.06 ::::::::**::::::::K.41;:::::::;:::::::::: .,s.. ,.4 , r ii ' ii•♦:r ♦r :r♦ • r .r, r i,. ♦a' ir♦r+: . :: ♦:::::::4:::::::::::::::::::::::::::::;:::::::::*::::::::::::::. •:: . rr� i: r•♦ rR•••♦♦+i+ ....da ..,.... ....::+,*. .....:.• •,.,.••. .. +t?.... h:rs sir r r ::+.+.•r•.4 S0•.4S•:*:'¢r' drA. A • 2x10 I Span=13.560 ft 4iapifair;ath_ £ i 14-, :;1,A717:.�. - Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load D=0.0120, S=0.030 ksf, Tributary Width=2.0 ft,(Roof Dead Load and Snow Load) FS GN SUIITiati = — Dui•n OK " ''4 Maximum Bending Stress Ratio _ 0,905 1 Maximum Shear Stress Ratio = 0.518 :1 1 Section used for this span 2x10 Section used for this span 2x10 fb:Actual _ 1,119.72 psi fv:Actual _ 56.60 psi FB:Allowable = 1,236.54psi Fv:Allowable = 109.25 psi Load Combination +D+S+-i Load Combination 40+5A I Location of maximum on span = 6.790ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.359 in Ratio= 453 Max Upward Transient Deflection 0.000_in Ratio= 0<240 Max Downward Total Deflection 0.518 in Ratio= 314 Max Upward Total Deflection 0.000 in Ratio= 0 <180 .; - POO:Rati fee ; ` Support notation:Forfeit Value- s in KIPS Load Combination Support 1 Support 2 Overall MAXimum 0.588 0.588 Overall MINimum 0.181 0.181 40+1.1 0.181 0.181 iD+Sil 0.588 0.588 D Only 0.181 0.181 S Only 0A07 0.407 Protect Title. POLYGON ' (�'i � F Engineer MCL Project ID: 2016.43 0 U Project Descr. 213'x 35'MODULAR OFFICE BUILDING SYSTEMS `Y -,2. 6r ('r Priritd:19 NOV 2015,2:45Prd Fle=CtProlec�\EtiErt t12D464 2�2Ol6-&i.Ea 6 OOu Beam ENERW.LC me 95832O1y5,,rynurSd8f5.1D;5 Va6.l5.10.fi itltt�x �W.t16t}t?92F+`I�;.. ,.�, . ;�, A,-. - . F ` �1 ..Description: UP TO 6'0'OPENING HDR-2016-03 obrog-FalEN.gs Calculations per NDS 2012,IBC 2012,CBC 2013,ASCE 7-10 — Load Combination Set:IBC 2012 Material Properties _ -- Analysis Method: Allowable Stress Design Fb-Tension 900.0 psi E:Modulus of Elasticity Load Combination IBC 2012 Fb-Cornpr 900.0 psi Ebend-xx 1,600.Oksi Fc-PHI 1,350.0 psi Eminbend-xx 580.0ksI Wood Species :Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade :No.2 FV 95.0 psi Ft 575.0 psi Density 32.210 pcf Beam Bracing : Beam bracing is defined as a set spacing over all spans i Unbraded t_ettgths First Brace starts at ft from Left-Most support Regular spacing of lateral supports on length of beam=1.330 ft 1X0.10104 S(0.WO +� rr , riv as r•a, r , K r . rr . ♦ e r r •f t ryyr. rr • r t,° rr r ♦.♦ r.r r a.r Sr. t. + :f r, r„+,fir •„ rrrr'r r:: : rti• r rrr rr ” • :� r ter._i.!s!4!....*.ea .. .. .. ..+.... ._. ... .....*. .................},. -•.s ■ I 244 ' Span=8.59ft 4P.p11BffikifW _ _ --:-.1:7:;'_-7-;,-7:17,-;:57:-..- _ = Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loads Uniform Load: 0=0.0120, S=0.030 kat,Tributary Width=8.420 ft,(112 Roof span and max 18'overha) E;yiGhlSi/MM4RY` --- ' - Design OK �` �xx ,.. ::.: . - Maximum Bending Stress Ratio 0.697.1 Maximum Shear Stress-Ratio = 0.601 : 1 Section used for this span 2-2x8 Section used for this span 2.2x8 db:Actual = 864.50 psi fv:Actual 65.69 psi PB:Allowable = 1,240.67psi Fv:Allowable _ 109.25 psi Load Combination 40+5+H Load Combination 4D+5411 Location of maximum on span = 3.2501t Location of maximum on span = 5.907 ft Span twhere maximum occurs -- Span#1 Span-ii whefe tnaxiMMI°cows = Span 01 Maximum Deflection Max Downward Transient Deflection 0.067 in Ratio= 1165 . Max Upward Transient Deflection 0.000 In Ratio= 0<360 Max Downward Total Deflection 0.095 in Ratio 820 Max Upward Total Deflection 0,000 in Ratio= 0<240 ritaar Reacttotis = Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Ova/BIM/Vim= 1.165 1.165 Overall MlNimum 0.344 0,344 4D+11 0.344 0.344 40+S+H 1.165 1.165 D Only 0.344 0,394 S Only 01321 0,821 Project Title: POLYGON Engineer, MCL Project ID: 2016-03 ' - -// Project Ciescr: 2a'x 36'MODULAR OFFICE BUILDINGSYSTEMS 1�� r� = ;� , Pdn d.19 NOV 2015,11:48N4 ®Qd B��tlrl Re G:1ProjedstENERGA tt2016-0-212016-0-1:EC6 ENERCAtG INC.19432015,Barki:6,15.10 6 Vern 15,10 vi0 .'KW:06009251,,..,:".., s., 31t ,' . . �r ,,, M ,, ,� ,� ,� .���;-�e a:� .. �v .�' ,M$�I�.�. 4i49'...�,N11tlMli'C}0ftikkA, z Description: (4)LVL RIDGE BEAM-2016-03 Calculations per NOS 2012,IBC 2012,CBC 2013,ASCE 7-10 Load Combination Set:IBC 2012 Material Properties _ Analysis Method: Allowable Stress Design Fb-Tension 2,736.40 psi E:Modulus of Elasticity Load Combination 1130 2012 Fb-Compr 2,736,40 psi Ebend-xx 2,000.Oksl Fc-Prll 3,200.0 psi Eminbend-xx 1,800.Oksl Wood Species :Murphy LVL 3100Fb-2,OE x 24"Deep Fc-Perp 750.0 psi Wood Grade :Manufactured Fv 290.0 psi Ft 2,100.0 psi Density 35.00 Beam Bracing : Beam bracing is defined as a set spacing over all spans Unbraced Lengths = _= - First Brace starts at ft from Left-Most support Regular spacing of lateral supports on length of beam=4.0 ft D 0.13831S(..0,.,4:49) rrr • :: 4 ♦::♦ ,t:,f r:' ♦r r•*♦'f • ♦a as'� .♦ rr s 4 . •♦ r �, .r, ♦ :s ♦,*1_a i �r _.___ _ _.. . . tto A (4)Murphy LVL.24'Deep Span=35.0 ft F AJ7ii ii_Loads _ � Service loads entered,Load Factors will be applied for calculations. Beam self weight calculated and added to loads Loads on all spans... Uniform Load on ALL spans: D=0.010, S=0.030 ksf, Tributary Width=13.830 ft +ES#GNgfriVMAR Design OK Maximum Bending Stress Ratio — 0.601:1 Maximum Shear Stress Ratio = 0.286 1 Section used for this span (4)Murphy LVL 24"D Section used for this span (4)Murphy LVL 24"0 fb:Actual = 1,876.42 psi fv:Actual .. 95.48 psi F8:Allowable .. 3,123.39 psi FV:Allowable _ 333.50 psi Load Combination +D+8+1-1 Load Combination 4-Di-S+1-1 Location of maximum on span = 17.500ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span W1 Maximum Deflection Max Downward Transient Deflection 1.019 in Ratio= 412 Max Upward Transient Deflection 0.000 in Ratio= 0<240 Max Downward Total Deflection 1.445 in Ratio= 290 Max Upward Total Deflection 0.000 In Ratio= 0<180 r Werticat:Reictitjt 7 1 Support notation:Far left is#1 Values In KIPS Load Combination Support 1 Support 2 Overall MAXimum 10.294 10.294 Overall MiNimum 3.033 3.033 4041 3.033 3.033 40+841 10.294 10.294 0 Only 3.033 3.033 S Only 7,281 7.261 1 Project Title: POLYGON Protect ID: 201&03 _Q, � Engineer: MCL , Proect Descr: 2$'x 35'MODULAR OFFICEE[b- i, Printed:19 NOV 2015,2:47Pld T__.. file=evrtocis11:NEack.ivoim 2,201624,1,EC6 s, WO0C3..rOILIMI ENERCALC INC.10882015 Buibi6t5,10. Ver:6A15.106 :mss ^4 , . l 1 0kft o _..B.131LU1. G . T tI "� , i�t!i1-D0008251��.. �;�� ;;�.. ,. ,o ,- -..o ��,� 1.1 Description: END COLUMN FOR RIDGE BEAM 1 OF 2 REDD FA END-2016403 -Cbtfe'Ref0j0e 7 _ ---,-:±2- ------ _ Calculations per 2012 NDS, IBC 2012,CBC 2013,ASCE 7-10 Load Combinations Used IBC 2012 k_ eneral ipfnr>irition =u - __ Analysis Method: Allowable Stress Design Wood Section Name 4x6 End Fbdlles Top&Bottom Pinned Wood GradingtManut. Graded Lumber Overall Column Height 10.170 ft Wood Member Type Sawn (Used for non slender calculations) Exact WIdth 3.50 in Allow Stress Modification Factors Wood Species Douglas Fir-Larch Exact Depth 5.50 in Cf or Cv for Bending 1.30 Wood Grade No.2 Area 19.250 in"2 Cf or Cv for Compression 1.10 FI)-Tension 900.0 psi Fv 95.0 psi lx 48.526 I04 Cf or Cv for Tension 1,30 Fb-Compr 900.0 psi Ft 575.0 psi ly 19.651 )n"4 Cm:Wet Use Factor 1.0 Fc-Pal 1,350.0 psi Density 32,210 pct Ct:Temperature Factor IA) Fc-Perp 625.0 psi Cfu:Flat Use Factor 1.0 E;Modulus of Elasticity... x-x Bending y-y Bending Axial IO:Built up columns 1.0 NOS 19.3.2 Basic 1,600.0 1,600.0 1,600.0 ksi Use Cr:Repetitive? No( .s!0Y1 Minimum. 580.0 580.0 Brace condition for deflection(buckling)along columns: X-X(width)axis: Unbraced (depth){depiti}axis: Unbrac:ed Length for X-X Axis budding=10.170 ft,K=1.0 Service loads entered.Load Factors will be applied for calculations. Column self weight included:43.791 lbs*Dead Load Factor AXIAL LOADS. 912 of Ridge Beam Rxt O end:Axial Load at 10.170 ft,Xecc=1.0 in,0=1.516,S=3.630 k Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.4492:1 Maximum SERVICE Lateral Load Reactions.. Load Combination +D+S+}1 Top along Y V 0.0 k Bottom along Y-Y 0.0 k Governing NAS Forumla Comp+MW,NDS Eq.3.9-3 Top along X-X 0.04217 k Bottom along X-X 0.04217 k Location of max.above base 10.102 ft Maximum SERVICE Load Lateral Deflections... At maximum location values are... Along Y Y 0.0 in at 0,0 ft above base Applied Axial 5.190 k forbad combination:nta Applied Mx 0.0 k-it Along X X 0.1577 in at 5.938 It above base Ec:All My 0.4260 k f for load combination +04--5+i Fc:AllowaNe 817.95 pal Other Factors used to calculate allowable stresses.,. PASS Maximum Shear Ratio- 4 02005:'f sendictq Conuxesslon Tension Load Combination +0+5+H Location of max.above base 10.170 ft Applied Design Shear 3.286 psi Allowable Shear 109.250 pal Paditilm l eflec 1466 LtJadCainbma#lnns t4TA Load Combination Max.X-X Deflection Distance Max.Y-Y Deflection Distance 40411 -0.0465 In 5,938 ft 0.000 In 0.000 ft +0+5411 -0.1577 in 5.938 ft 0.000 In 0.000 ft 0 Only -0.0465 in 5;938 ft 0.000 In 0.000 ft S Only 0.1113 In 5.938 ft 0.000 In 0.000 ft r Project Title: POLYGON Engineer: MCI Project ID; 2016-03 i A .,,_ r -3' ,, Project Descr; 28'x 35"MODULAR OFFICE BUILDING SYSTEMS "fi=t l 1 eft, {`; 00-1 Prin!ed:19 NOV2015,341PM Wood Column nl� cWro,�ecs1E1 rncA 1r�oa� tsu t•ics i ENFRCAte tt'C.1983-2015,suilt6151os versl5fos LidAcrK 0 P002$1MCMOIKy " .: 1 W,: ,.. Lidex, e.21 0P NAikKlrifNQ4,,Y, JE St Description: EXTERIOR WALL STUD-2016 03 I Code Refrer:ces _ :----:-7-11-7;-11 Calculations per 2012 NDS, IBC 2012,CBC 2013,ASCE 7-10 Load Combinations Used: iBC 2012 r Gener_atiii6-rrnatton .._ _ Analysis Method: Allowable Stress Design Wood Section Name 2x6 End Fixitles Top&Bottom Pinned Wood Gradilni/Menuf. Graded Lumber Overall Column Height 8.0 ft Wood Member Type Sawn (Used for non slender calculations) Exact Width 1.50 in Allow Stress Modification Factors Wood Species Hem Fir Exact Depth Wood Grade Stud 5.50 In Cf or Cv for Bending 1.0 Fb-Tension 675 psi FY 95.0 psi Area 8.250 in"2 Cf or Cv for Compression 1.0 lx 20.797 Mt Cf or Cv for Tension 1.0 Fb-Compr 575 psi Ft 400 psi ty 1.547 in"4 Cm:Wet Use Factor 1.0 Fc-PM 800 psi Density 26.83 pcf Ci:Temperature Factor 1.0 Fc-Perp 405 psi E:Modulus of Elasticity... x-x Bending y-y Bending Axial Cfu Fiat Use Factor 1.0 Kf:Built-up columns 1,0 NDS 15.3.2 Basic 1200 1200 1200 ksi Use Cr:Repetitive? No(non-gib onto Minimum 440 440 Brace condition for deflection(buckling)along columns: X-X(Width)axis: Fully braced against buckling along X X Axis Y Y(depth)axis Fully braced against buckling along Y-Y Axis -Ili+f101f- Oat i-=tZ FIFIZ. 7--,7!4,7517,---'7-7?-!-71 Service loads entered.Load Factors will be applied for calculations. Column self weight included:12.297 lbs*Dead Load Factor AXIAL LOADS.,. SL=30 psf,0,H.,-up to 18":Axial Load at 8.0 ft,Xecc=1,0 in,0=0.2410,S=0.3360 k BENDING.LOADS. C&C wind:Lat.Uniform Load creating Mx-x,W=0.0640 kilt Bending&Shear Check Results PASS Max.Axial+Bending Stress Ratio = 0.6076:1 Maximum SERVICE Lateral Load Reactions.. Load Combination -+044.60W+11 Top along Y-Y 0.2560 k Bottom along Y-Y 0,2560 k Governing NOS Forumtaip+Mxx+Myy,NDS Eq.3.9- Top along X-X 0.006010 k Bottom along X-X 0.006010 k Location of max.abova base 4.242 ft Maximum SERVICE Load Lateral Deflections,.. At maximum location values are.., Along Y-Y 0.2389 in at 4.027 ft above base Applied Applied Alai 0.3061 k-ft 0.2533 k forbad combination:W Only Applied My -0.01065 k-it Along X-X -0.1854 in at 4.671 It above base Fc:Allowable 1,280.0 psi for toad combination;-iD+S+H Other Factors used to calculate allowable stresses... PASS Maximum Shear Stress Ratio= 0.1225:1 Bending Compression Tension Load Combination -*11*0.60W+H Location of max.above base 0.0 it Applied Design Shear 27.927 psi Allowable Shear 152.0 psi _Maxi iiiiie efte tons for, oad_Coriibtn6;tionr Load Combination Max.X X Deflection -Distance Max.Y-Y Deflection Distance l0'4,i'i -0.0774 In 4:671 ft 0.000 In 0.000 ft i-0+S�H -0.1854 In 4.671 ft 0.000 in 0,000 ft 40+0.60W-ll -0.0774 In 4.671 ft 0.143 in 4.027 ft 40.60D{0.60W+0.60/4 -0.0465 In 4.671 ft 0.143 In 4.027 ft O Only -0.0774 In 4.671 ft 0.000 In 0.000 ft S Only -0.1079 In 4.671 ft 0,000 in 0 000 ft W Only 0.0000 In 0,000 ft 0.239 in 4,027 ft • Project Title: POLYGON • '' 1 z// LEngineer: MCL Project ID: 2016 03 a Project Descr: 28 x 35 Mt?DUL1�R OFFICE BUILDING SYSTEMS H-11-- 4t, � t'1 -5- Printed 19NOV2016,26;e1 - c1Pn eclslEtrERCA-..1x2016-0-22216 SEcs Wood Beam 101:f. .-000092$,.., . . _ I ce n see,OvioDE N BUJLP1NG SYSTEIVI5;;, Description: TYP FLOOR JOIST-DIST LOAD(OFFICE)-2016-03 J- Ct3DE.ROERENCES"__ -. Calculations per NOS 2012,IBC 2012,CBC 2013,ASCE 7-10 Load Combination Set:IBC 2012 Material Properties Analysis Method Allowable Stress Design Fb-Tension 900.0 ps E:Modulus of Elasticity Load Combination MC 2012 Fb-Compr 900.0 ps Ebend-xx 1,600.0 ksi Fe-Pill 1,350.0 ps Eminbend-roc 580.0 ksl Wood Species :Douglas Fir-Larch Fe-Perp 625.0 ps Wood Grade :No.2 Fv s Ft 575.0 ps Density 32.210 pct Beam Bracing : Beam bracing is defined as a set spacing over all spans Repetitive Member Stress Increase -._ti.rthrac011Lengths --_ _ • ,- First Brace starts at ft from Left-Most support Regular spacing of lateral supports on length of beam=2.0 ft D(0 01330 L(0.06650) - l.sa ::l. , t t.I.X • •r , r, , ,...rex ra :X. . O v r :4 f r s r' .r r: 4. r e y • r• ir r t r : s., r:' < ;:••xri ', jdr .:: .+!..: ..r. _ .+.▪ .lr .. .' ~+ r'r. • .:. _ ... •+�-_.� r.. ...•+:i. - _� 1'., r'.r r s+r r r s s r_r ... 2x8 2x8 Span=6.920 ft Span=6:920 ft ti a Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and addecito loads Loads on all spans... Uniform Load on ALL spans 0 0.010, L=0.050 ksf, Tributary Width=1,330 ft 11-0tCN01,1W741? = "-k-7=--T-77' ; _ '_>'' #Design OK :..t$$..d Maximum Bending Stress Ratio = 0.36a I Maximum Shear Stress Ratio = 0.447 : 1 Section used for this span 2x8 Section used for this span 2x8 fb:Actual = 449.50 psi fv:Actual _ 42.48 psi FB:Allowable = 1,237.63 psi Fv:Allowable - 95.00 psi Load Combination -,04-4H Load Combination ` *1-1 ay. 1., caro. um on spay = 0:00011 - Location of rnaxinulm on span —= 6.920 ft Span it where maximum occurs = Span it 2 Span#where maximum occurs = Span#1_ Maximum Deflection Max Downward Transient Deflection 0.019 in Ratio= 4387 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.023 in Ratio= 3547 Max Upward Total Deflection 0.000 in Ratio= 0<240 i _ @(ti001.R-ae1lofls - [-----4';';-71-::1- _ -- '--L'.1---Z, Support notation:Far left is#1 Values Inl{1PS load Combination Support 1 Support 2 Support 3 Overall MAXimum 0213 0:711 0:213 Overall Minium 0.041 0.136 0.041 404F1 0.041 0.136 0.041 40+1.411 0.213 0.711 0.213 0 Only 0.041 0.136 0.041 L Only 0173 0.575 0.173 �,y Projecnt T1tle: POLYGON En ieer; MCL Protect ID: 2016-03 1° • 0 i0 ' Project Descr: 2.8'x 35'MODULAR OFFICE BUILDING SYSTEMS ' r (�G '. Printed. 9t:0V2015,2,57PM WUad Beam Fie C Pi 9s1ENERCA lt20160 212015-0-1.EC6 ENE RCAtC INC.133.2015,Build 615.10.0 Ver.6.15.10.6 L1r # r' 10928,1 ,. ,: -," ,". ,-..;, - a ° a15 s9 :_ 4,D RU BUILPINO SY$,C tSrS Description: TYP FLOOR JOIST-PT LOAD at SUPPORT(OFFICE).2016-03 I CQTJ ? FEftEiVCES Calculations per NDS 2012,IBC 2012,CBC 2013,ASCE 7-10 Load Combination Set:IBC 2012 Material Properties Analysis Method: Allowable Stress Design Fb-Tension 900.0 psi E:Modulus of Elasticity Load Combination IBC 2012 Fb-Compr 900.0 psi Ebend-xx 1,600.0 ksi Fc-Prll 1,350.0 psi Eminbend-xx 580.0 ksi Wood Species :Douglas Fir Larch Fc-Perp 625.0 psi Wood Grade :No.2 Fv 100.0 psi Ft 575.0 psi Density 32.210pcf Beam Bracing : Beam bracing Is defined as a set spacing over all spans Repetitive Member Stress Increase V_=UnivadeiLengths = __- First Brace starts at ft from Left-Most support Regular spacing of lateral supports on length of beam=6.0 ft Lf0,4) i} * ' +i' efo.0i330) S .:*: :'r ♦ r ♦ arP4 . a.1 ,fir e .*.e:•.'...;..... } ., i S• 1•::V:44. i, , ♦♦ .•i i: .r '` 5.:.::4i.X. •.+•as"••••,y ,i• •;*- ....tea,r *.. *'ice�.._ •••.. a_.r.!_rr..,t._. *:.... __•1'i 51 s,..._ .....r_r�in_sa rreir..ar_____1 "I' '1 e.?rr .-r 2x8 2x8 Span=6.920 0 Span=6.920 Yt ' I Aj9i51[edlo8d& -T = Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loads Loads on all spans... Uniform Load on ALL spans: D=0.010 ksf, Tributary Width=1.330 ft Load for Span Number 1 Uniform Load: L=0.40;kif1,Extent=0.60—»3.10 ft, Tributary Width=1.0 ft,(1k pt load over 2 lolsts;0.5k o) F-t1ESiGN-SUMMARY -7e- Design OK - �. - Maximum Bending Stress Ratio = 0.771:1 Maximum Shear Stress Ratio = 0.972: 1 Section used for this span 2x8 Section used for this span 2x8 fb:Actual = 932.98ps1 fir:Actual = 97.17 psi FB:Allowable _ 1,209.82psi Fv:Allowable 100.00 psi Load Combination +0+L44-1 Load Combination -fD-1t H Location of maximum on span = 2.281 ft Location of maximum on span = 0.000 ft Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.084 in Ratio= 993 Max Upward Transient Deflection -0.029 in Ratio= 2836 Max Downward Total Deflection 0.088 in Ratio= 942 Max Upward Total Deflection -0.026 in Ratio= 3240 E-r...tical geaCtions __�_. = : Support notation:Far left is#1 Values In KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 0.714 0.523 -0.060 - Overall MMNimum 0,041 0.136 -0,019 +4:41-1 0.041 0.136 0,041 +13+1.+H 0.714 0.523 -0.019 D Only 0.041 0.136 0.041 • Project Titre: POLYGON • 'm - h Engineer: MCL Protect ID: 2016-03 / l -[ � ,? Project Descr: 28'x 35'MODULAR OFFICE f/e_____//,/iv& BUILDING SYSTEMS -11S— Printed.19 NOV2816,3:U)(la7M F+1a GWto}ecislEttERGa-it2A16.92t20t69.1.EC6 vO0d Bear ENERGALC iNG 19632D15;90:615.1Qf Ver615.1O6 f q °igsv 0>00921r1 4 'L.A18 0 " $t f " Description: TYP FLOOR JOIST-PT LOAD at CNTR(OFFICE)-201003 ( _coog REFERENCES u:!-C-'4--'-'-'7-13- Calculations per NDS 2012,IBC 2012,CBC 2013,ASCE 7-10 Load Combination Set IBC 2012 Material Properties Analysis Method: Allowable Stress Design Fb-Tension 900.0 psi E:Modulus of Elasticity Load Combination IBC 2012 Fb-Compr 900.0 psi Ebend-xx 1,600.Oksi Fc-Pril 1,350.0 psi Eminbend-xx 580.0ksi Wood Species : Douglas Fir-Larch Pc Perp 625.0 psi Wood Grade :No.2 Fv 95.0 psi Ft 575.0 psi Density 32.210pcf Beam Bracing : Beam bracing is defined as a set spacing over all spans Repetitive Member Stress increase r Unbrao d Lengths = .`_ First Brace starts at ft from Left-Most support Regular spacing of lateral supports on length of beam='6,0.ft — 110A) * j 010.013301_____=...... 14. t :-::::fie : ♦r+r , S '. '• :, + trt • 4: • t4Sr r r r , i't i+•r r Qi7C3� 2x8 203. Span=8.920 ft Span=6,920 ft ` 2 item Lt3ads z Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loads Loads on all spans... Uniform Load on ALL spans: 0=0.010 ksf, Tributary Width=1.330 ft Load for Span Number 1 Uniform Load: L=0.40 kift,Extent=220 »4.70 ft, Tributary Width=1,0 ft,(1 k pi load over 2 foists;0.5k o1 �f tsGN SUMMARY - -- — _ Design OK 1£� �" -' --- - Maximum Bending Stress Ratio - 0.8821 Maximum Shear Stress Ratio _ 0.939:12x8 Section used for this span 2x8 Section used for this span fb:Actual = 1,066.64 psi fv:Actual = 89.25 psi FB:Allowable - 1,209.82 psi fv:Allowable = 05.00 pal Load Combination +04L+N Load Combination _ 0 6.34D ft Location of maximum on span 3.2096 Location of maximum on span Span#where maximum occurs = Span#1 Span#where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.106 in Ratio= 780 Max Upward Transient Deflection -0.044 in Ratio= 1895 Max Downward Total Deflection 0.111 in Ratio= 749 Max Upward Total Deflection -0.040 In Ratio= 2070 dermic 1 f3eac#ions = x Supportnatation:Far lett is#1 Values In KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 0;453 0.814 -0,090 OverallMiNimum 0.041 0.136 0.041 4D+tf 0,041 0.136 0.041 -0(,4H 0,453 0.614 -0.049 O Only 0.041 0.136 0.041 Project Title: POLYGON i ,/ _i I Engineer: MCI Project ID: 201603 ` �� f, Project Descr: 28'x 35'MODULAR OFFICE / BUILDING SYSTEMS7 / { f,- -''. 4- c�i- -' 1 Prired:IS NOV 2015,2 r6P1,1 I Wood Beam ENERCALC UC.s�a3t 15 t;� s'1 .s vers:15,1 0.6 tc #a JtWii o..000 'i, ..:, ti'.,; e.';:t.."1,--',':4a4,;;444.,:;,,, ',?,..-.9:::::,14.,. r r , SIENIS Description: TYP FLOOR JOIST-DIST LOAD(LOBBY)-2016-03 iCODEREFERENCEs, - Calculations per NDS 2012, IBC 2012,CBC 2013,ASCE 7-10 Load Combination Set IBC 2012 Material Properties Analysis Method: Allowable Stress Design Fb-Tension 900.0 psi E:Modulus of Elasticity Load Combination IBC 2012 Fb-Comer 900.0 psi Ebend-xx 1,600.0 ksi Fc-Pili 1,350.0 psi Eminbend-xx 580.0 ksi Wood Species :Douglas Fir Larch Fc-Perp 625.0 psi Wood Grade :No.2 Fv 95.0 psi Ft 575.0 psi Density 32.2100 Beam Bracing Beam bracing Is defined as a set spacing over all spans Repetitive Member Stress Increase aetI ced L en i s First Brace starts at 0.0 ft from Left-Most support Regular spacing of lateral supports on length of beam=2.0 ft D10.01330 1{0.1330) t: 1 i1 1tt A' t t t i {I { i ♦ ;!tA { "!t!t W t} t i{! f _t YC :':':*.{...5'.':._:.:.. .... !. ♦ . . i i:k.L.:r u:.l:'....a♦..:.d� ♦ +:i!P{.ti{:'.,:St •t ::.•.... :♦.1 •i.,:•.,♦,...::: 0:0:X 2x8 2x8 Span 6.020 ft Span=6.020 ft _i _ Service loads entered.Load Factors Wit be applied for calculations, Beam self weight calculated and added to loads Loads on all spans.... Uniform Load on ALL spans: 0=0.010, L.=0.10 ksi, Tributary Width=1.330 ft DE31aN'SUMMRKY ° __ Design OK - Maximum Bending Stress Ratio = 0.657.1 Maximum Shear Stress Ratio = 0.809 :1 Section used for this span 2x8 Section used for this span 2x8 lb:Actual _ 813.01 psi fv:Actual 76.83 psi F8:Allowable 1,237.63ps1 Fv:Allowable = 95.00 psi Load Combination 4044.41 Load Combination 413.+.L4.11 Location of maximum on span = 0A00ft Location of maximum on span = 6.920 ft Span#where maximum occurs = Span#2 Span#`where maximum occurs = Span#1 Maximum Deflection Max Downward Transient Deflection 0.038 in Ratio= 2193 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0;042 in Ratio= 1981 Max Upward Total Deflection 0,000 in Ratio= 0<240 • YertlaiiReactio)ts ----Ig- -"f— 1 Supportnotaton Parfait_. � �,. �c ...aValues in KIPS Load Combination Support 1 Support 2 Supporta Overall MAXimum 0.386 1.287 0.386 Overall MiNirnum 0.041 0.136 0.041 +0+1-1 0,041 0.136 0.041 40411 0.386 1.287 0.386 D Only 0.041 0.136 0.041 L`Only 0.345 1.150 0.345 0 , Project Title: POLYGON Prolect ID: 2016-03 1-1 -- k,_ me `.?"4'... ,., \ L1 i _ ''.;-:<4; :";.‘!':''t '.e:. t''I: Project Descr: 28'x 35'MODULAR OFFICE ,., ")BUILDINGSYSTEMS 1 or' V --1--- ...) KW:1910V 2015,302PM - ' - - - - CT 1 1 kENERCA-112016-0,42016-0-1BC6 Wood i3earn - _ Rae" ' m'a°5 ENFACAt C.,Itin.19.33-2015,BAL6.16.10 6,Ver.6 1510 6 - , 4,X*0 006!2 '1.544MINAVIMMEASii3Of.Ve-ZitO5: 245,4"t4VAV,71.443f,-.Licla',s903,,IVIPAERNA,V,ILOIN.014,NAM Description: TTP FLOOR JOIST-SUPT BEAM(LOBBY)-2016-03 ,- - A- ,--_-.----.-,-,— -- _.. _ l--coDggEFEKNO815::-;--2._;--L-_-:,--1±:'-',::•---,------ -,--7;fl•--1--... -- — Calculations per NOS 2012,IBC 2012,CBC 2013,ASCE 7-10 Load Combination Set:IBC 2012 Material Properties Analysis Method: Allowable Stress Design Fb-Tension 900.0 psi E:Modulus of Elasticity Load Combination IBC 2012 Fb-Compr 900.0 psi Ebend-xx 1,600.0ksi Fc-Pril 1,350.0 psi Eminbend-xx 580.0 ksi Wood Species : Douglas Fir-Larch Fc-Perp 625.0 psi Wood Grade :No2 Fv 115.0 psi Ft 575,0 psi Density 32210pcf Beam Bracing : Beam bracing Is defined as a set spacing over all spans r,-__uTiiaittz:obtth1747t :v17::k.V---z-77 First Brace starts at ft from Left-Most support Regular spacing of lateral supports on length of beam r--2,0 ft _ Die.I020 L(080501 ----A o..:1/4:•x„x.*..K.:*x.x,x•x,x.K.x.x.:,y,...x.••..y*:o:. • ...K..•...**):c:.:::•* vx.%+::::::;::::::_:::::.,..: ..-..,,.,:...N,,K,....w.::•xo ..x•:,x.:.:.:•:.x4t::tw..t.o:•:mk:.;te*:.:4•,';',-:.:.t.:t',i•">:4.:•:e::.:•elt.*:•:•:*4V ::K*:w.ve.we :•:.:: ? tf4f...1.K1•1:1•:•).141.0.4..:.:.X.1.:•*:00....1.:.1: --144A:).:::44.X.....14..-:•04,,..*•*:*::::::::•:::::::•t•::::::::::, ::.:::::::::::::::::::::::: 1i1!::::;11:1* *11:1i1:;::1:1:::!:11i1E1i11:11X:11Kli:::41:* :ft::t1 *:!iei:if:::: **.:4 :::!:::::::::::::::::::: 441 4x8 Span.4.04 Span=4.05 — - F:Airel VirlAiliarKft171a- i:4a17:771 Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loads Loads on all spans... Uniform Load on ALI.spans: 0...0.1020, L=0.8650 kilt Design OK -'4.t.. __ . _ , •_ __ _ _ _ _ ___ _____ Maximum Bending Stress Ratio ,---. 0.851:1 Maximum Shear Stress Ratio ---. 0,948 :1 Section used for this span 4x8 Section used for this span 4x8 lb:Actual = 761.35 psi fv:Actual = 109.05 psi FB:Allowable . 1,168.68 psi Fv;Allowable = 115.00 psi 1 oad Combination +0-14.41 Load Combination 40+L4l —Locetion-of-maximum on span - - 4.00011 Lbcatkimcfmaximurn on span ,. 3•37 ft Span tl where maximum occurs Span#1 Span#where maximum occurs - Span#1 Maximum Deflection Max Downward Transient Deflection 0.012 in Ratio 4074 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.013 in Ratio... 3623 Max Upward Total Deflection 0.000 in Ratio r- 0<240 Support notation:Far lalt Is#1 Values In KIPS Load Combination Support 1 Support 2 Support 3 Overall MAXimum 1.459 4.863 1.459 Overall MlNimurn 0.162 0.538 0,162 40-41 0.162 0.638 0.162 4041.4H 1.459 4.863 1.459 0 Only 0.162 0.538 0,162 1 Only 1.298 4325 1.298 'JOB #-2016-03 7://./.: 0 I 0 ERN SHEET NO LFA-1 OF LFA-4 BUR DING SYSTEMS _ CALCULATED By ma DATE 11/19/2015 PO Box 1104 9493 Porter Rd•Aornsville,OR 97325 CHECKED BY DATE 800.682.1422 tvlocieroBultdingSystemt.corn SCALE SHEAR DIAPHRAGM DESIGN BUILDING INFORMATION: BUILDING LENGTH (1) =1 35.001 - BUILDING WIDTH (B) = 27.67 SHEAR WALL PLATE HEIGHT =I 8.00_ ROOF OVERHANG =I 0.90 _ TRANSVERSE LOADING , SEISMIC= 2680# LONGITUDINAL LOADING - SEISMIC= 2680# TRANSVERSE (SEISMIC CONTROLS) SEISMIC ROOF = 2680# 77 plf 35.00 '1` Vrf = ROOF/2 WALLS= 1340# 1340# Lrf = 27.67 ' • v rf = 48 plf USE MIN 7/16"SHTG w/15 GA STAPLES AT 6" EDGE&12" FIELD (UNBLOCKED) (ESR-1539,TABLE UPGRADE - - TO 4"_&8"--,--AT ROOF_ SHEAR WALL PIER LENGTHS _ - - - Lwa II = 20.17 ico_orana v wall = 66 plf USE-MIN 15/32"SHTG wJ8d (.113)AT 6" EDGE 84:12" FIELD (BLpCKEb)-(ESR-153%TABLE 8) Vflr = 1340 # Lflr = 27.67 ' v fir = 48 p If USE MIN 19/32"SHTG-W/8d ( 113)AT 61' EDGE& 12"._ _ - F (UNBLOCKED) (ESR-1539,TABLE 6) UPGRADE TO 23/32"SHTG AT 6" & 8".AT FLOOR - _ • tt4^- `';',,''''4 ' , '; n ri JOB 112016-03 (‘-' ' .,..,' ,,o, 14,. ,, ,,t. SHEET NO LFA-2 (,,,,,, A BUILDING SYSTEMS CALCULATED BY MCL OF LFA-4 _ DATE 11/19/2015 . , PO[lox 110.9493 Porter Rd.Aurn5ville,Oft 97325 CI-IECKED BY DATE 800.682.1422 modernBuitdingsystemsxem SCALE SHEAR DIAPHRAGM DESIGN (CON'T) LONGITUDINAL (SEISMIC CONTROLS) SEISMIC ROOF = 2680# 96 plf t 27.67 ' t Vrf =ROOF/2 WALLS= 1340 if 1340# Lrf = 35.00 ' v rf = 38 plf r--91) ----- ::1_fict-T—__.„--• = ..f. 7-8-2-11-3}.)748.WISMJ_&-.__._.I. _.- .-,___-.1------7---- .77:1,- USE MIN 7/16"SHTGw/15-GA STAPLES AT 6" EDGE-& _ - - - - 12" FIELD (UNBLOCKED)(ESR-1539,TABLE 6) UPGRADE _ TO 4" &8" AT ROOF -- - - ---- - - - - - - _ SHEAR WALL PIER LENGTHS -7-f----------71'.--7;--007___-_-.-__-----A: --Z----0-04 Lwall •-,.- 2700 ' ---f-L--7„_,:01Y1------,----- 01 vwall --- 50 plf USE MIN 15/32"SHIG-w/8d (.113)-AT 6" EDGE& 12" _ , _ FIELD (BLOCKED) (ESR71539,TABLE 8), -- -- =.. -__ -_ Vflr = 1340# LfIr = 35,U0' vflr = 38 p If USE MIN 19/32"_SHTG w/8d (.113)Al 6" EDGE_& 12'1= - - - - FIE_LD (UNBLOCKED)2(ESR-1539,TABLE 6)L.JPGRAI3E TO - -- 23/32" SHTG AT 6" & 8" AT FLOOR , _ • ? - - __ _ JOB U 2016-03 SHEET NO LFA-3 OF LFA-4 BUILDING SYSTEMS CALCULATED BY MCL DATE 11119/2015 PO Box 110.9493 Porter Rd•Almnsvnie,OR 97325 B00.682.1422 MoclernBuildingsYstems.com CHECKED BY DATE SCALE SHEARWALL HOLD DOWNS (TRANSVERSE) UNIT SHEAR - 6691fPIER WIDTH =I 10.00' ROOF TRIB WIDTH =I 3.0O Mot= 66pIf X 10 X 8' 5315 lb-ft Mr= [3'(12psf)+8110psf)] X 101A2/2 X 0.6 3480 lb-ft T=C=M/b (5315 -3480)Ib-ft/(10-0.5)' 193 # PER NAIL VALUE (SIMP C-2015 PG 189) 171 N = 193#/171# EA= 4 NAILS (MIN) [ USE MIN SIMP CS-18 w/ (4) N-10's EA END SHEARWALL HOLD DOWNS (LONGIT) UNIT SHEAR =1- 1 507plf PIER WIDTH = - 4.00l ROOF TRIB WIDTH —t_ Mot= 50pIf X 4' X 8' = 15881b-ft Mr= [6.92`(12ps0+81(10psf)] X 4112/2 X 0.6 782 lb-ft T=C=M/b (1588 -782)lb-ft/(4-0.5)' 230# PER NAIL VALUE(SIMP C-2015 PG 189) 171# DF N = 230#/171# EA= 4 NAILS (MIN) USE MIN SIMP CS-18 w/ 4) N-10's EA END ` . . ^ JOB it 2016-03 ��� [LJ� � ��~,�~�, �m�v, SHEET NO LEA-4 OFLFA-4 `� �� �1��l��/�� SYSTEMSCALCULATED - - — -- ~ ' ~~ [ALCUU\TEDQYk�CL DATE 11/ 1S ppBox z/o.y*ovPorter,u°^u�ywo�onx7a2s — ---- - - - -- 800,oa2`1422 moav,"u"um"o,�tem,'com CHECKED BY DATE SCALE SIDEWALL TOP PLATE SPLICE T=C=M/b /77p}fX35/«2\//0X27.67'\ 424# PER NAIL VALUE(NDS ZO1ZTABLE 11N' Cd=1.6\= I55# DF N = 434#/ 15S# EA= 12 NAILS (MIN) ____ _ -____-___...-______-^_____~_..'-_. ,__ ,_-____`-,_^_~-___ USE MIN 4 ft S .131 EA END ENDWALL TOP PLATE SPLICE T=C=M/b (96p|f X 27.67'A2)/(8 X 35') 263 # PER NAIL VALUE (SIMP C-2015 PG 189) 17l # OF N = 263# / 171#E4= 4NA|L5 (K4|N) USE MIN SIMP CS-18 w/(4) N'1�sEAEND SHEAR TRANSFER AT IVI.L. v =Vay' = 1340#X (35/X27.6772)/37.67/ /4\ = 73 plf I /35' X27.67/^3\/12 V= 73plfX /�5Y?\ /�� 2= 1271# `_ ' -'' � PER BOLT VALUE (NDS 2O12TABLE 11A> (600ttX1.6)= 96O# LVL or GLB: G=0.50 N= 1271# /86O#EA= 3 (MIN) 13.'sATR|DGE8EAK8 �