Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (44)
1 Y P�� \‘- \\ L . iPWU ENGINEERING INC. Ph: (503) 810-8309 Email: pwuengineering@comcast.net � �' / j Lateral Structural Analysis Calculations Only: MAR 2 6 2018 Job #: SUN1829 Date: 3/08/18 (�Mil Ttri Client: Suntel Design Inc., Windwood Homes .sirkv`r Irc,f Project: Willow, Lot 19 Annand Heights, Tigard, OR - �' l' .s\ OPRO i 9 ?I REves , ,� '= I EGONPH/L 1P ' , Expires: 06/30/2018 The following calculations are for a lateral wind and seismic engineering only and are associated with a conventional foundation system. The complete vertical engineering package, which includes the foundation design, is outside the scope of our services and done by others. The lateral design is based on information provided by the client who is solely responsible for its accuracy. The engineering represents the finished product. Discrepancies from information provided by the client invalidate this design. PWU Engineering shall have no liability(expressed, or implied), with respect to the means and methods of construction workmanship or materials. PWU Engineering Inc. shall have no obligation of liability, whether arising in contract(including warranty), Tort(including active, passive, or imputed negligence) or otherwise, for loss or use, revenue or profit, or for any other incidental or consequential damage. ♦ �PWU ENGINEERING INC. Ph: 503 810-8309, Email: pwuengineering@comcast.net The following calculations are for Willow Lateral Engineering Only. Vertical engineering is outside the scope of work. Wind Loading: Per ASCE 7. Fig 6-2 See attached elevations for wind loading breakdown per level. 123mph Ultimate 3-sec gust Exposure B for Category I and II structure, Which is equal to 95mph ASD per the 2017 O.R.S.C. The mean roof height of the house h =26' approximately. tyANFRS 111114,4*Direction End Zones � a 4/0114 isti- c 21 1„---'<::fkAFRS Direction 2a End Zones Note: End zone may occur at any corner of the building. a = .10*34' =3.4' or for h =26' a = .4(h) =.4(26')=10.4' a =3.4' controls a must be larger than .04(34') = 1.4' and 3' Therefore: 2a =6.8' see Fig 6-2 ASCE 7, and Figure above. Seismic Loading: D1 seismic design category per O.R.S.C. SDs= .76, R= 6.5, W=weight of structure V= [SDs/(R x 1.4)] W V = .0835 W Roof Dead load= 17 psf Floor Dead load= 15 psf Interior Wall Dead load= 6 psf Exterior Wall Dead load= 12 psf Wind per ASCE 7 �PWU ENGINEERING INC. Project Willow Direction Front to Back 3s Gust Roof Least Speed Exp. Angle A L(ft) hAVG(ft) 95mph B 33.7 1.00 34.0 26.0 �y� 8:12 �� C MAffRS a= 3.4 ft D'ea'n 111 End Zones A 16.1 psf ora= 10.4ft WOO B 11.1 psf Check 10psf min and a> 1.4 ft Wrel0j }! MY4FR5 Direction C 12.9 psf load across all and a> 3.0 ft 2:&" D 8.9 psf zones. Ere Zones 2a 6.8 ft Note End zone may occur at any corner''thetxiilding. WR L(ft) 6.8 20.4 6.8 hA(ft) 4.0 4.0 hB(ft) 12.0 12.0 he (ft) 4.0 hp(ft) 12.0 W(plf) 0.0 0.0 197.0 157.6 197.0 0.0 0.0 0.0 0.0 0.0 300.0 WR AVG 173.4 plf 200.0 10psf min load: 160.0 plf 100.0 Governing value: 173.4 plf 0.o W2 L(ft) 6.8 20.4 6.8 hA(ft) 9.5 9.5 hB(ft) he (ft) 9.5 hp(ft) W(plf) 0.0 0.0 153.0 122.1 153.0 0.0 0.0 0.0 0.0 0.0 200.0 W2 AVG 134.4 plf 10psf min load: 95.0 plf 100.0 Governing value: 134.4 plf 0.o Wi L(ft) hA(ft) hB(ft) he(ft) hp(ft) W(pIf) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 - W1 AVG #DIV/0! 10psf min load: #DIV/0! 0.5 Governing value: #DIV/0! 0.0 PWU Engineering Inc.©2014,Software v0.09,12/01/14 :1'.!" II 13 I! i ;On - ik ill, it il oat`g f d� jt `� 1 III In . l1 � II , ,I 'I ' IIl '!lI1 itl1�itil ,f1 ). ( I� II'fI 1111 �fII ' I Ih'li11 1iIl � I' Ip!acilAI 1 'II 1 {I i11 I 1111 I11 !I iI IPi IIt � ' I 1,1:,,,,,.,1 �.I 11 lII ,,!_,,,,.(1, III l , .I1 I lII IIIIli nll l 111i ' IIl I IIIIII II I1II I' !lI I f1 IIT IIII it 1 1 ; 1l II: IIIII'1iIl � I H. -11 ' !III �II 11II I�I,I'I� jj.ll � I I'j�l1 l I I II I: l!'*,1'101' I III�III I I I I I �'I1I11 1. ,IIl II � �� ; 1I . 0. il 11 ILi! 1; II '.' ,, 4 ;1 11IIi ll l ll' ' l11 'II 'I1•1 I IIll111ll 11 '1. I pSI • • II (RI it ' III '14,I 11 I I S i'1 I I I I I lull l II' � III 'I1illl IMII�II i ill IIII I!'�II I I I 1.1 I I I Iil II 1.1• ( I I III I'll'.LI IIII'1 ll ill I.I I I 1 11 II X11-il.•1,ll 111 II I II 1 II I i 11 �I II II���II I �':ll IIII I'I Ill l'I I I l I Ilv ''4 ^ �/ II I ill Ili. j' I Ii'II'I li I,I II� w! I�� I • IIII ',: .1,h11,1.1,1,114,1,1.1,,1011,„•.,,,. I L1 f, III III Ic 'I "�� L ___,1 rijIlil Il II.:.II 111 1 111 iI�I'I lil I I ; I 1 ��,� P I1 111 1 r I IIS I' .I i IIIIl1 ,,. I ,, T� f ' I lll,J ,1II'llIlil!:..I ' IIII I,,l'I I;',' '� IP' ' 1 II,.I II ill 'III:i.11l,ll l 11III LII llll �' !it :I:I:I !� 1 Wind per ASCE 7 ENGINEERING INC. Project Willow `�/ Direction Side to Side 3s Gust Roof Least Speed Exp. Angle A W(ft) hAvG(ft) 95mph B 39.8 1.00 34.0 26.0 illit 10.12i`[ MWFRS a= 3.4 ft °rent nn End zone= 2a A 16.1 psf ora= 10.4 ft �.� WOO1 B 11.1 psf Check 10psf min and a> 1.4 ft / y/ _., S C 12.9 psf load across all and a> 3.0 ft cmion D 8.9 psf zones. Eno Zones 2a 6.8 ft Note Ene zone may occur at any corner of the huiId ng WR L(ft) 6.8 24.4 6.8 hA(ft) 10.0 4.0 h8 (ft) 9.0 he (ft) 10.0 ho(ft) 4.0 W(plf) 0.0 161.0 163.9 0.0 163.9 0.0 0.0 0.0 0.0 0.0 200.0 WR AVG 163.4 plf 10psf min load: 131.1 plf 100.0 Governing value: 163.4 plf 0.o W2 L(ft) 6.8 24.4 4.0 2.8 4.0 hA(ft) 9.5 5.0 9.5 4.5 hB(ft) 5.0 he(ft) 9.5 4.5 ho(ft) W(1510 0.0 153.0 122.1 138.3 153.0 127.7 0.0 0.0 0.0 0.0 200.0 W2 AVG 131.2 plf 10psf min load: 95.0 plf 100.0 Governing value: 131.2 plf WI L(ft) hA(ft) hB (ft) he (ft) ho(ft) W(plf) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 i W1 AVG #DIV/0! 10psf min load: #DIV/0! 0.5 Governing value: #DIV/0! o.o i , PWU Engineering Inc.02014,Software v0.09,12/01/14 , ill ' I mit Ji it a i.- i i � , e tflIti IIII 111 1 p ! \ d J ,1 1 i ,111;1111, .......... I i IF 41[0111 rk)11,111 i 1 1$ r� 1 Il1��!4�,I 1111' 1 fir 1 ,,, 11 lii.,r1F'f,it,1'1!' 1 1 1 IF 41 1 1 1 \\'''' 1 1 1 ..„ ,,, ' 7 pp , , .si 40r ijrj I 'ilit; !I 13 K ._ili!I '44 .__.__: x. 1111111111 ..!..E...._ ... 1 t 1 1 11116 _ t•_,_,0 l I I .� I I 1 � iIi/Ililill rtill 1111111111' .1 4 I ,1.,,Pr 1111111111111 ' Egg 1 �2.� a��.' III ��n Ilii, .�.i;.;-0 .ila H ,I Illi I 11 . � , 1 � � 1 11111111, '. I ;11 1 1 I! .IIIIIIIIIII 11 I! if I Q ii q e 1= fth p 1- I F b§ iv iih f b -; . -\\ i' 7 no \ , fowl , , on \ \\I, „.. i,,,„,, A Ji MI) 1' I1, it 1I ,1iilii�" I STT 4 WI II III ,1 :,.iy ,W 0 ,,/ it ailN 341JIJ s b� Ii 7. bs ' 1 §at/ aa; si Seismic & Governing Values ` PWU ENGINEERING INC. Project Willow `�/ Seismic Loading per latest edition of O.S.S.C. and O.R.S.C. V= CS*W Design Cs = (SDs)/(1.4R/le) Category R SOS le k D1 6.5 0.76 1.00 1.00 Roof Dead Load: 17psf Floor Dead Load: 15psf V=1 0.0835*W Interior Wall Dead Load: 6psf Exterior Wall Dead Load: 12psf Buidling Weight per Level PSF Front to Back Length Side to Side Length Weight Height WR= (17+5+3) * 38.0 ft 34.0 ft 32.30 k 8.00 ft W2= (15+5+3+4) * 42.0 ft 34.0 ft 38.56 k 9.00 ft W1 = (15+5+3+4) * 0.00 k Total W: 70.86 k Total V: 5.92 k Vertical Distribution of Seismic Forces FX= Cv*V C„X= (Wxhxk)/(FWihik) WX h,k WX*hxk WX*hXk EWihik CSX WR*hRk= 32.30 k 17.00 549.1 C„R= 549.1 896.1 0.613 W2*h2k= 38.56 k 9.00 347.0 Cv2 = 347.0 896.1 0.387 W1*h1k= 0.00 k 0.00 0.0 C„1 = 0.0 896.1 0.000 EWihik= 896.1 Check Seismic Front to Back vs Wind Seismic Wind FR= 106.7 plf+ 0.0 plf= 106.7 plf < 173.4 plf Wind Governs F2= 67.4 plf+ 106.7 plf= 174.0 plf < 307.8 plf Wind Governs F1 = #DIV/0! 174.0 plf= #DIV/0! #DIV/0! #DIV/0! #DIV/0! Check Seismic Side to Side vs Wind Seismic Wind FR= 95.4 plf+ 0.0 plf= 95.4 plf < 163.4 plf Wind Governs F2= 54.6 plf+ 95.4 plf= 150.0 plf < 294.6 plf Wind Governs F1 = #DIV/0! 150.0 plf= #DIV/0! #DIV/0! #DIV/0! #DIV/0! Redundancy factor= 1.0 per ASCE 7 section 12.3.4.2 PWU Engineering Inc.©2014,Software v0.09,12/01/14 • Line Loads ENGINEERING INC. Project Willow High Roof Diaphragm- Upper Floor Walls Line A P = 2.95 k LTOTAL = 24.0 ft v = 2.95 k / 24.0 ft = 123 plf Type A Wall h = 8.0 ft LwoRST = 12.0 ft MOT = 123 plf * 8.0 ft * 12.0 ft = 11.79 kft MR = (15 psf * 2.0 ft + 12 psf * 8.0 ft) * (12.0ft)2 / 2 * 0.6 = 5.44 kft + (0lb * 0.0 ft) + (0lb * 0.0 ft) = 0.00 kft + 5.44 kft = 5.44kft T = (11.79kft - 5.44kft) / 12.0 ft = 0.53 k + 0.00 k = 0.53 k No hd req'd Line C P = 2.95 k LTOTAL = 24.8 ft v = 2.95 k / 24.8 ft = 119 plf Type A Wall h = 8.0 ft LwoRST = 10.0 ft MOT = 119 plf * 8.0 ft * 10.0 ft = 9.53 kft MR = (15 psf * 2.0 ft + 12 psf * 8.0 ft) * (10.0ft)2 / 2 * 0.6 = 3.78 kft + (0lb * 0.0 ft) + (0lb * 0.0 ft) = 0.00 kft + 3.78 kft = 3.78 kft T = (9.53kft - 3.78kft) / 10.0 ft = 0.57 k + 0.00 k = 0.57 k No hd req'd Line 1 P = 1.14 k LTOTAL = 12.0 ft v = 1.14 k / 12.0 ft = 95 plf Type A Wall h = 8.0 ft LwoRST = 3.0 ft MOT = 95 plf * 8.0 ft * 3.0 ft = 2.29 kft MR = (15 psf * 10.0 ft + 12 psf * 8.0 ft) * (3.0ft)2 / 2 * 0.6 = 0.66 kft + (0 lb * 0.0 ft) + (0lb * 0.0 ft) = 0.00 kft + 0.66 kft = 0.66 kft T = (2.29kft - 0.66kft) / 3.0 ft = 0.54 k + 0.00 k = 0.54 k No hd req'd Line 2 P = 3.10 k LTOTAL = 12.5 ft v = 3.10 k / 12.5 ft = 248 plf Type A Wall h = 8.0 ft LwoRST = 12.5 ft MOT = 248 plf * 8.0 ft * 12.5 ft = 24.83 kft MR = (15 psf * 17.0 ft + 12 psf * 8.0 ft) * (12.5ft)2 / 2 * 0.6 = 16.45 kft + (0 lb * 0.0 ft) + (0 lb * 0.0 ft) = 0.00 kft + 16.45 kft = 16.45 kft T = (24.83kft - 16.45kft) / 12.5 ft = 0.67 k + 0.00 k = 0.67 k No hd req'd Line 3 P = 1.96 k LTOTAL = 16.6 ft v = 1.96 k / 16.6 ft = 118 plf Type A Wall h = 8.0 ft LwoRST = 5.3 ft MOT = 118 plf * 8.0 ft * 5.3 ft = 4.97 kft MR = (15 psf * 2.0 ft + 12 psf * 8.0 ft) * (5.3ft)2 / 2 * 0.6 = 1.04 kft + (0 lb * 0.0 ft) + (500 lb * 5.3 ft) = 2.63 kft + 1.04 kft = 3.67 kft T = (4.97kft - 3.67kft) / 5.3 ft = 0.25 k + 0.00 k = 0.25 k No hd req'd See FTAO Calc Low Roof/Upper Floor Diaphragm-Main Floor Walls Line A P = 4.22 k LTOTAL = 32.0 ft v = 4.22 k / 32.0 ft = 132 plf Type A Wall h = 9.0 ft LwoRST = 16.0 ft MOT = 132 plf * 9.0 ft * 16.0 ft = 19.01 kft MR = (15 psf * 2.0 ft + 12 psf * 9.0 ft) * (16.0ft)2 / 2 * 0.6 = 10.60 kft + (0lb * 0.0 ft) + (0lb * 0.0 ft) = 0.00 kft + 10.60 kft = 10.60 kft T = (19.01 kft - 10.60kft) / 16.0 ft = 0.53 k + 0.00 k = 0.53 k No hd req'd Line B P = 2.29 k LTOTAL = 16.5 ft v = 2.29 k / 16.5 ft = 138 plf Type A Wall h = 9.0 ft LWORST = 16.5 ft MOT = 138 plf * 9.0 ft * 16.5 ft = 20.57 kft MR = (15 psf * 2.0 ft + 12 psf * 9.0 ft) * (16.5ft)2 / 2 * 0.6 = 11.27 kft + (0lb * 0.0 ft) + (0 lb * 0.0 ft) = 0.00 kft + 11.27 kft = 11.27 kft T = (20.57kft - 11.27kft) / 16.5 ft = 0.56 k + 0.00 k = 0.56 k No hd req'd Line C P = 3.96 k LTOTAL = 34.0 ft v = 3.96 k / 34.0 ft = 116 plf Type A Wall h = 9.0 ft LWORST = 12.8 ft MOT = 116 plf * 9.0 ft * 12.8 ft = 13.35 kft MR = (15 psf * 2.0 ft + 12 psf * 9.0 ft) * (12.8ft)2 / 2 * 0.6 = 6.73 kft + (0 lb * 0.0 ft) + ( 0lb * 0.0 ft) = 0.00 kft + 6.73 kft = 6.73 kft T = (13.35kft - 6.73kft) / 12.8 ft = 0.52 k + 0.00 k = 0.52 k No hd req'd Line 1 P = 2.06 k LTOTAL = 11.0 ft v = 2.06 k / 11.0 ft = 187 plf Type A Wall h = 9.0 ft LWORST = 3.3 ft MOT = 187 plf * 9.0 ft * 3.3 ft = 5.48 kft MR = (15 psf * 7.0 ft + 12 psf * 9.0 ft) * (3.3ft)2 / 2 * 0.6 = 0.67 kft + (0lb * 0.0 ft) + (0lb * 0.0 ft) = 0.00 kft + 0.67 kft = 0.67 kft T = (5.48kft - 0.67kft) / 3.3 ft = 1.48 k + 0.00 k = 1.48 k Use type 1 hd Line 2 P = 5.86 k LTOTAL = 14.0 ft v = 5.86 k / 14.0 ft = 419 plf Type B Wall h = 9.0 ft LWORST = 5.3 ft MOT = 419 plf * 9.0 ft * 5.3 ft = 19.78 kft MR = (15 psf * 10.0 ft + 12 psf * 9.0 ft) * (5.3ft)2 / 2 * 0.6 = 2.13 kft + (0lb * 0.0 ft) + (0lb * 0.0 ft) = 0.00 kft + 2.13 kft = 2.13 kft T = (19.78kft - 2.13kft) / 5.3 ft = 3.36 k + 0.00 k = 3.36 k Use type 2 hd Line 3 P = 3.80 k LTOTAL = 7.5 ft v = 3.80 k / 7.5 ft = 506 plf Type C Wall h = 5.3 ft LWORST = 1.5 ft MOT = 506 plf * 5.3 ft * 1.5 ft = 3.99 kft MR = (15 psf * 2.0 ft + 12 psf * 5.3 ft) * (1.5ft)2 / 2 * 0.6 = 0.06 kft + (0 lb * 0.0 ft) + (0lb * 0.0 ft) = 0.00 kft + 0.06 kft = 0.06 kft T = (3.99kft - 0.06kft) / 1.5 ft = 2.62 k + 0.00 k = 2.62 k Use type 12 hd at garage See FTAO Calc Use type 1 hd at FTAO Force Transfer Around Opening (FTAO) �PWU ENGINEERING INC. Diekmann Technique @ Upper Floor Line 3 Li = 2.0 ft Lo= 6.0 ft L2= 2.0 ft V= 0.47k vA= -71 plf vp= 126 plf vF= -71 plf hu = 1.0 ft 4- 4- = 0.38 k - = 0.38k F2= 0.38k vB= 118 plf vG = 118 plf ho= 5.O ft F1 = 0.38k F2= 0.38k hL= 2.O ft vo= -71 plf vE = 126 plf vH = -71 plf T H = 0.38k H = 0.38k H= ( 0.47k *8.0ft) / 10.0ft= 0.38 kI H:W Ratios 5.Oft : 2.Oft = 2.5 : 1 vh = 0.47k/ 4.O ft= 118plf 5.O ft : 2.Oft = 2.5 : 1 vv= 0.38 k/ 3.0 ft= 126 plf Use: Type A Wall F = 126p1f* 6.00ft= 0.76k F1 = ( 0.76k* 2.0 ft)/ 4.0 ft= 0.38 k F2= ( 0.76 k* 2.O ft)/ 4.O ft= 0.38 k Use: (1) Bays BLKG T+C Couple after Dead Load is applied for holdown requirements MR= [( 15psf* 2ft+ 12psf* 8.Oft) * (10.0 ft)^2 *0.6/2 ] + ( 0.0ft *5001b) = 3.78 kft T= 0.38 kft- ( 3.78kft / 10.0 ft) = 0.00 k +O.00k= 0.00 k, No hd req'd -- PWU ENGINEERING INC. Force Transfer Around Opening (FTAO) Diekmann Technique @ Main Floor Line 3 L� = 2.5 ft Lo= 5.0 ft L2= 2.5 ft V= 2.18k vA= -218 plf vp= 653 plf vF= -218 plf hu = 1.0 ft F� = 1.63k F2 = 1.63k vB= 435 plf vG= 435 plf 110= 6.0 ft F� = 1.63 k F2 = 1.63 k —+ — ht.= 2.0ft vo= -218 plf vE = 653 plf vH= -218 plf 1I T H = 1.96k H = 1.96k H= ( 2.18k * 9.0ft) / 10.0ft= 1.96 k H:W Ratios 6.Oft : 2.5ft = 2.4 : 1 vh = 2.18k/ 5.Oft= 435p1f 6.Oft : 2.5ft = 2.4 : 1 v,= 1.96 k/ 3.0 ft= 653 plf Use: Type C Wall F = 653 plf* 5.00 ft= 3.26 k F� = ( 3.26k* 2.5ft )/ 5.Oft= 1.63k F2 = ( 3.26 k* 2.5ft)/ 5.O ft= 1.63 k Use: (2) Bays BLKG T+C Couple after Dead Load is applied for holdown requirements MR= [( 15psf* 2 ft+ 12psf* 9.O ft) * (10.0 ft)^2 *0.6/2 ] + ( 10.0ft *5001b) = 9.14 kft T= 1.96kft- ( 9.14kft / 10.0ft) = 1.04k +0.00k= 1.04k1 Use type 1 hd • o e e Ire \ O , L_I 0 1_,,__I C, \ E eOe Sy la ® O P JQ \ ,,,v _ Jo 'ii, ,wr 0 .. IIEQ Z Irk 9.E0 Oki A 4 e \ ®E`� IIOJ O \ o C 4" I •" I-'." ENTIRE WALL ELEv LL ELEV 3'-6" 3,.-b. IO'-0" TO EE 1 BNEATMED :ATL ED O OF USE OSCOIL STRAP :OIL 13'_8• BECE I.T ACROSSS ENTIRE LENGTH LEND NITRE LENGTH "T OF FTAO OF BFEARIILL,L PER DET UALL PER DET SEGMENT Q 10/64 FOR FTAO METHOD FTAO METHOD ENTIRE WALL ELEV 4161h, MANUFACTURER TO DESIGN v TO BE SNEATMEP v END TRUSS TO MATCH USE 0822 COIL STRAP PROFILE OF VAULTED ACROE6 ENTIRE LENGTH TRUSSES OVER ROOM. OF SNEARIWLL PER DET BALLOON FRAME WALL UP 10/64 FOR FTAO METHOD TO VAULTED BOTTOM CHORD OF END TRUSS. UPPER FLOOR LATERAL PLAN • • 0 { t t t 0 = \ \ ( 4 I I a • 6 .r § P. . • Ur • F . -Pt let ( © r 11111:M==. An. IlEill• • ' • . • . ii a) Q • • IT lir___ ulf, • 1,_,,_ lilill ,wr• - . 1,4...... " /. . .. . . r--'--- k Anikk vt. 0 8 • .0r - .!? . . . • -,— 10'..O ENTIRE WAL./.ELEV( •i - i' la.:; 0 ..t. XII — I--" ' 1 Alinik-' I -" EXTWArSEGMENT° FrAc -to EE COILThel"WRAF / ACROSS ENTIRE LEM CV SEARWALL PER I - - EXTEND HEADER —t—t— —(00 ID " 0 10/64 FOR FTAO METH -OVER TOP OF GARAGE ior , ,„ EN' -PIER.POUR STEM WALL I% ' UP 60 WALL 14EIGHT NYC% SI4EATI-1 ENTIRE FA:E USE 0 '•BETWEEN TOP OF STEM ACRO86 -WALL AND 00110M. OP CF=RIPPLE WALL SLW SNEAI . HEADER IS 6.-3.MAX Ww/'CTYPE SHTG AS REO'D 10/64 FOI - PER DETAIL 11/64 / / MAIN FLOOR LATERAL PLAN 4,..i..o. II'MARV CTIMS PPR uni nn,.crNPrIl IP ARP nnIKIINAII._ HOLDOWN SCHEDULE MARK Boundary Tension of DF Tension of HF Anchor Anchor Anchor Tension NUMBER HOLDOWN Studs Allowable Lbs Allowable Lbs Mono Pour Two Pour End Corner CL Dim. 1 HDU2-SDS2.5 (2)2x 3075 2215 SSTB16 SSTB2OL S=2550, S=2550, 1%6" w=3610 w=3610 2 HDU4-SDS2.5 (2)2x 4565 3285 SB5/8X24 SB%X24 w=66°' w=66 0 1 16" 3 HDU5-SDS2.5 (2)2x 5645 4065 SB5/8X24 SB5/8X24 w 660, w=66705' 1%6" 4 HDU8-SDS2.5 (3)2x 7870 5665 SSTB28 (NOTE 6.) SSTB34 (NOTE 6.) S=6395, S=7315, 1/„ 8 MIN STEMWALL 8 MIN STEMWALL w=7615 w=8710 PAB8-36, 10"min PAB8-36, 10" min S=16435, S=16435, Vii 8 HDU11-SDS2.5 (1)6x 9535 6865 embed into bottom embed into bottom w=17080 w=17080 1 of 32" min width of 32"min width S=16435, S=16435, g „ 9 HDU14-SDS2.5 (1)6x 14445 10350 footing. If at retaining footing. If at retaining w=17080 w=17080 1/6 wall lap anchor with wall lap anchor with vert reinf bar hooked vert reinf bar hooked to Ftg. to Ftg. 5 MST37 (2)2x 2710 2345 N/A N/A 6 MST48 (2)2x 4205 3640 N/A N/A 7 MST60 (2)2x 6235 5405 N/A N/A Notes: 1 . Install all holdowns per manufacturer specification per C-C-2017 Simpson Strong Tie catalog. 2. Match studs on schedule for walls below on all wall to wall holdowns. 3. (2)2x studs nailed together with (2) rows of 16d @ 3" o.c. staggered. Trimmer stud may be used as part of boundary member. 4. Refer to shearwall schedule and typical shearwall details for wall locations and configurations. . 5. Refer to Simpson catalog for minimum embed of anchors into concrete. i 6, Increase footing depth or stemwall height as required for 287/8" minimum embedment depth. S H EA RWA L L SCHEDULE (a-n) SEE NOTE(n)BELOW FOR CLIP REQUIREMENTS MARK REF NOTES: (a,i) Note: (b) EDGE NAILING FEILD NAILING SILL TO CONCRETE SILL TO WOOD SHEAR TRANSFER CAPACITY CAPACITY NUMBER SHEATHING NAIL SIZE SPACING SPACING CONNECTION. Note: (c) CONNECTION. Note (g) CLIPS (h) Lb/Ft (SEISMIC) Lb/Ft (WIND) A6" OSB (1) SIDE 8d 6" 12" 2" Dia. A.B. @ 30" o/c 16d @ 4" o/c A35 @ 24"o/c 255 357 B OSB (1) SIDE (f) 8d 4" 12" 2"Dia. A.B. @ 18" o/c (m) 16d @ 22"o/c A35 @ 15" o/c 395 553 C 16" OSB (1) SIDE (e,f) 8d 3" 12" 2"Dia. A.B. @ 12"o/c (m) 16d @ 2"o/c A35 @ 12" o/c 505 707 D OSB (1) SIDE (e,f) 8d 2" 12" 2"Dia. A.B. @ 11" o/c (m) 16d @ 2" o/c A35 @ 9" o/c 670 938 E OSB (2) SIDE (d,e,f) 8d 6" 12" 2"Dia. A.B. @ 12"o/c (m) 16d @ 2"o/c A35 @ 12" o/c 510 714 F 16"OSB (2) SIDE (d,e,f) 8d 4" Staggered 12" 2"Dia. A.B. @ 8" o/c (m) 16d @ 3" o/c (2) rows staggered A35 @ 6" o/c 790 1106 G 6" OSB (2) SIDE (d,e,f) 8d 3" Staggered 12" 2"Dia. A.B. @ 7" o/c (m) 16d @ 2"o/c (2)rows staggered HGA1OKT @ 8" o/c 1010 1414 H 6" OSB (2) SIDE (d,e,f) 8d 2" Staggered 12" 2"Dia. A.B. @ 52'o/c (m) 16d @ 12" o/c (2)rows staggered HGA1OKT @ 6"o/c 1340 1876 Notes: a) All wall construction to conform to SDPWS Table 4.3A. b) Use Common Wire Nails for all wood sheathing and cooler nails for gypboard sheathing. c) A.B. minimum 7" embed into concrete. 3"x3"x1/4" plate washers req'd at all shear wall A.B. in seismic zone D, E, and F; not req'd in seismic zone A, B, or C. d) Panel joints shall be offset to fall on different framing members or framing shall be 3x or thicker and nails on each side shall be staggered. e) 3x or Dbl 2x framing at all panel edges and nails shall be staggered. f) All edges blocked. g) Common Wire Nails. h) Clip to be attached from continuous blocking to top of continuous top plates. Clips are not required at Gyp Bd walls but blocking is attached per the toenailing schedule. i) See attached typical shearwall details. j) Sheathing to be Structrual I Sheathing. k) Values are for framing of H-F. m) 3x, Dbl 2x, or 2x Flat at panel edges. Stagger nails. See note C for plate washers and details for plate washer edge distance. On sill plates of all walls use a single 2x sill and 2x blocking in between the studs for plywood edge nailing surface. n) Clips are only required on interior shearwalls unless otherwise noted on plans and details.