Loading...
Specifications ezrksck • k 6-\05\Dve9 c-1 • GREEN MOUNTIAIN RE(01-71VED ,„, IOW structural engineering NOV 2 1 2018 CITY OF TIGARD BUILDING DIVISION STRUCTURAL CALCULATIONS for Whitney Plan Willow Brook, Lot 3 Tigard, Oregon Contractor: Pacific Lifestyle Homes (360) 573-8081 .00 PRQp Aor N " coet 14 1619 4 OREGO 4/14k„ 17 V + 4f ANOv. Expires: December 31, 2019 Project Number: 18017 October 30, 2018 Index Structural Information Lateral Analysis L-1 thru L-11 Framing Analysis F-1 thru F-1 5 th greenmountainse corn-info@greenmountamse corn - 4857 NW Lake Rd.,Suite 260.Camas,WA 98607 GREEN MOUNTAIN structural engineering STRUCTURAL DESIGN INFORMATION GOVERNING CODE: 2015 International Residential Code(IRC) 2015 International Building Code(IBC) This engineering pertains to the design of the Lateral Force Resisting System and a review of the home designer's framing and foundation plans. The home designer is responsible for making any necessary changes as required by these calculations to their framing and foundation plans. 1. Dead Load: A. Roof 15 psf B. Floor 10 psf C. Exterior walls 10 psf D. Exterior walls with veneer 50 psf E. Interior walls with gypboard each side 5 psf 2. Floor live load: 40 psf 3. Snow load: A. Uniformly distributed snow load on roof 25 psf 4. Wind load—based on ASCE 7-10 CH 27 MWFRS Directional Procedure: A. 3 Second Gust Wind Speed V=140 mph B. Exposure B C. Importance factor I=1.0 D. Topographical Factor Kzt=1.0 E. Wind Directional Factor .Kd=0.85 F. Structure classified as enclosed 5. Seismic load—based on ASCE 7-10 Section 12.14: A. Mapped Spectral Acceleration for short periods Ss=1.0 B. Mapped Spectral Acceleration for 1 second period S1=0.34 C. Soil Site Class D D. Ductility coefficient R=6.5 E. Seismic Design Category D 6. Foundation Soil Properties: A. Undisturbed sandy silt per IBC 2015 Table 1806.2 Soil Class#5 B. Maximum vertical bearing pressure 1500 psf 7. Retaining wall lateral loads: A. Walls free to displace laterally at top 40 pcf B. Walls restrained against lateral displacement at top 45 pcf 8. Concrete: A. 28 day design strength F'c 3000 psi B. Reinforcing bars ASTM A615,Grade 60 A G PROJECT: PLH - Whitney. W.. structural engineering DATE: 1/9/2018 BY AMA JOB NO: 18017 SHEET: L-1 LATERAL _- �...,� .._�,a�..�... ...� .���. .. SEISMIC DESIGN BASED ON ASCE-7-10 16175 Simplified analysis procedure for seismic design of buildings SEISMIC BASE SHEAR 1.2'SDs (EQ.12.14-11 with F=12) V:= W R Ss mapped spectral accel eration for 55 := 1.00 short periods(Sec.11.4.1) from USGS web site Si mapped spectral acceleration for Si := 0.34 1 second period(Sec.11.4.1) Fa Site coefficient(Table 11.4-1) Fa' 1'1 Based on Soil F„ Site coefficient(Table 11.4-2) F�:= 1.8 Site Class D SMs:= Fa•Ss SMs = 1.1 (Eq.11.4-1) SM1 := F„•S1 SM1 = 0.61 (Eq.11.4-2) 11.4.43 Design spectrum response acceleration parameters 2 SDs:= 3•SMs SDs = 0.73 > 0.50g SEISMIC 2 CATEGORY SD1 := 3-SM1 SD1 = 0.41 > 0.20g D per Table 11.6-1 WOOD SHEAR PANELS 1.2 SDs R:= 6.5 V:= -W R 1.2.0.73 V:_ •W V:= 0.135•W 6.5 12.4 Seismic Load Combinations E := 1.3•V (Eq.12.4-3 with redundancy factor=1.3 per 12.3.4.2) WSD:= 0.7•E 0.7.1.3.0.135•W 0.123•W WOOD SHEAR PANELS J GREEN M O U N Th I N PROJECT: PLH - Whitney _u ,tr _ 4__,,. 1/9/2018 AMA structural engineering DATE: BY: JOB NO: 18017 SHEET: L-2 LATERAL SIMPLIFIED WIND AND SEISMIC COMPARISON WIND 11 psf psf Wind base Ht Shear FI Length L:= 56-ft Height Ht:= 22 ft WIND:= L•Ht•(11•psf+ 7.psf) WIND =22176 lb SE ISMIC r` Fr / Wroof Wwall Seismic ease Shear Aroof := 56•ft•50 ft Wwalls 4'9'ft•56•ft SEISMIC:— (Aroof•15•psf+ Wwalls•10•psf)•0.123 SEISMIC= 7645.68 lb WIND GOVERNS DESIGN NN , G PROJECT:IOW 8 01 structural engineering DATE: 1/9/2018 BYAMA .. rv: . ..,W. JOB NO: 18017 SHEET: L-3 LATERAL .A_.:. . ....... .. .. r.. .rr..�n.m�.�... � �w..�.w WIND DESIGN IS BASED ON ASCE 7-10 CH.27 MWFRS DIRECTIONAL PROCEDURE VELOCITY PRESSURE q,:= .00256•KZ•KZt•Kd•V2•I EXPOSURE B WIND SPEED(3 second gust) Vas := 140 mph IMPORTANCE FACTOR I := 1.0 TOPOGRAPHICAL FACTOR KZt := 1.0 WIND DIRECTIONAL FACTOR Kd:= 0.85 EXPOSURE COEFFICIENT 0'-15' KZ:= 0.57 q2:= .00256-KZ•KZt•Kd•V352•I gZ= 24.31 (varies/height) 15'-20' KZ:= 0.62 qz:= .00256•KZ•Kit-Kd•V352.1 qZ= 26.44 20'-25' K„:= 0.66 q2:= .00256•KZ•KZt•Kd-V3,2•I qZ= 28.15 25'-30' KZ:= 0.70 qz:= .00256-KZ•Kit-Kd-V3$2.1 qZ= 29.85 WIND PRESSURE P:= g2•G•CP G:= 0.85 Gust factor CP pressure coefficient For Working Stress Design Multiply WIND PRESSURE by 0.6 per IBC 1605.3.1 AT WALLS 0'-15' WINDWARD PN,:= 0.6.24.31.psf•0.85.0.8 P,N= 9.92 psf LEEWARD PL:= 0.6.24.31•psf-0.85.0.5 PL = 6.2 psf 15'-20' WINDWARD P,,,:= 0.6.26.44•psf•0.85.0.8 PN,= 10.79 psf LEEWARD PL:= 0.6.26.44•psf•0.85.0.5 PL = 6.74 psf AT ROOF 15'-20' WINDWARD PH,:= 0.6.26.44•psf•0.85.0.3 PW= 4.05 psf LEEWARD PL:= 0.6.26.44•psf•0.85.0.6 PL = 8.09 psf 20'-25' WINDWARD P,:= 0.6.28.15•psf•0.85-0.3 PH,=4.31psf LEEWARD PL:= 0.6.28.15•psf-0.85.0.6 PL = 8.61psf GREEN M O U N T h I N PROJECT: PLH - Whitney DATE: 1/9/2018 AMA structural engineering Br JOB NO: 18017 SHEET: L 4 LATERAL ,. ..• _.,•a.•...•u WIND DESIGN IS BASED ON ASCE 7-10 CH.27 MWFRS DIRECTIONAL PROCEDURE 4.05 C.p-0.5 J. 8.09 Assume psf psf Cp--0.6 0 := 35 '`f ife �t 9.92 11111 6.2 psf psf windward leeward Mean Roof Height 9 + 24 = 16.5 2 Loads at Roof roof Windward 4.05•psf•13.5•ft= 54.67 plf Leeward 8.09•psf•13.5•ft= 109.22 plf Wall loads at main level Windward 9•92•Psf•4.5•ft=44.64 plf Leeward 6.2•psf•4.5•ft= 27.9 plf GREEN MOUNTAIN PROJECT: PLH - Whitney AO i/9/2oi8 AMA 1801structural engineering DATE:JOB NO: /9/2 SHE 7 L-5 LATERAL w., EEE: p. WIND ON ROOF 236 v y/ Wavg=187p1f M=60(12)2/2 / Q =43201b o / / < / / / / , / co / r 1 \ ; 1 \ / 146pIf / I r r 7. - 1 \ i \ / \ \ \ / I � N r // / / i F / / < GREEN MOUNTAIN PROJECT: PLH - Whitney 1161V 2018 AMA structural engineering DATE: 1/9/ BY: JOB NO: 18017 SHEET: L-6 LATERAL ... WIND ON MAIN LEVEL I' T C1 M 6285 OPT.NOOK > EXTENSION 1 I OPTIONAL 1 iI- ! I OPT. 1 OVEN1111 1 00 00 • 1 I 0 1 LI / lu A =-- - r A l VI III IE 1 l X OPTIONAL DOOR --lZl MI Ln '/ El • OPT. y _ DOOR!� (3)CAR i I _. .. -- / GARAGE ii'l I --PT. LD.FROM GIRDER—_--. I- F—' '—1 PT, LD.FROM GIRDER—_--__ \ (@ B,C S D) ��� 1J REMOVE WALL NATH l'-� - 1AR OFT ory % PT. LD.FROM GIRDERS / / 7- -U .......— 1— 6300 eJ > G R E EN M O U N TSI I M PROJECT: PLH - Whitney structural engineering DATE 1/9/2018 BY: AMA ... ._ ,.,., ._.,. .r.,_ JOBNO: 18017 SHEET: L-7 LATERAL �n. �,_... �_.. SHEAR WALL DESIGN Pdl Pdl 4 Wdl I ' `` 1.-- / — p ti( P:= wind V:= seismic h 1 L R=Hol down Force Based on Basic Load Combinations 0.6D + 0.6W 0.6•D + 0.7•E Overturning Moment: Mot:= P•h L2 Resisting Moment: Mr := 0.6•(Wdi + Wwaii)• + 0.6•Pdi•L Mot — Mr Holdown Force R:— L PLH - Whitne PROJECT. Y GREEN M O U N T�I N .,. �..���� ,., �_ ._�, _ __ 11110 structural engineering DATE: i/9/ AMA 2018BY JOB NO: 18017 SHEET: L-8 LATERAL � T , _x.. .. . � . Shear Wal Is at Right Elevation Wind Force P:= 5797•lb P= 5797lb Lengthofwall L:= 18•ft+ 6•ft+ 8ft+ aft L= 35ft P ShearV:= — v= 165.63 plf B L 6 Overturning Mot := P•9•ft•35 Mot = 8943.94Ib•ft Moment (6.ft)2 Resisting Mr:= 0.6•(15•psf•25•ft+ 10•psf•9•ft)• 2 + 0.6.400•Ib•6•ft Moment Mr = 6462Ib•ft Holdown Mot — Mr —413.66 lb Force 6•ft Shear Walls at Left Elevation Wind Force P:= 5797•Ib P= 5797lb Lengthofwall L:= 13•ft+ 4ft+ 23ft L=40ft P Shear v:= —L v= 144.93 plf B 4 Overturning Mot := P'9'ft'— Mot = 5217.3lb•ft Moment 40 (4•ft)2 Resisting Mr:= 0.6•(15•psf•5•ft+ 10•psf•9•ft)• 2 + 0.6.400•Ib•4•ft Moment Mr= 1752 lb•ft Holdown Mot — Mr Force — 866.33 lb 4-ft G PROJECT: PLH Whitney 161V. structural engineering DATE: 1/9/2018 BY: AMA JOB NO: 18017 SHEET: L-9 LATERAL ... _.r _�«. ... Shear Walls at Rear Elevation Wind Force P:= 6285-lb P= 62851b Length of wall L:= 6ft+ 10•ft+ 7ft+ aft L= 26ft P Shearv:= — v= 241.73plf B L 3 Overturning Mot := P-9'ft•— Mot = 6526.73 lb-ft Moment 26 (3-ft)2 Resisting Mr:= 0.6-(15•psf•5-ft+ 10•psf•9-ft)- 2 + 0.6.400-lb•3-ft Moment Mr = 1165.5lb•ft Holdown Mot - Mr Force = 1787.08 lb HTT4 3-ft Shear Walls at Front Elevation - at 2 car garage worst case Wind Force P:= 6300-lb P= 63001b Length of wall L:= 3.33-ft-2+ 3ft•2 L= 12.66ft P Shearv:= — v=497.63p1f D L 3 Overturning Mot := P•9-ftMot = 13436.02lb•ft Moment 12.66 (3•ft)2 Resisting Mr:= 0.6•(15•psf•3-ft+ 10.psf•9-ft)• 2 + 0.6.600•Ib•3•ft Moment Mr= 1/111.51b-ft Holdown Mot - Mr Force 3ft 3997.17 lb HTT4 A G R E EN M O U M T I N PROJECT: PLH - Whitney 1/9/2018 AMA 111110 structural engineering DATE.. BY JOB NO: 18017 SHEET L-10 LATERAL ._ ,, CALCULATE MAXIMUM UPLIFT ON GIRDER TRUSS ASCE 7-10 CH.28 MWFRS ENVELOPE PROCEDURE V3S:= 140-mph Exp. B P:= gh•C(GCpf) — (GCP)] MEAN ROOF HT=30 ft(max) 0 := 25 KZ:= 0.70 K-it := 1.0 Kd:= 0.85 V:= 140 I := 1.0 qh := .00256•KZ•KZt•Kd•V2•I qh = 29.85 psf G•CPf From Fig 28.4-1 0 := 25 GCPf := —0.61 GCP; := 0.18 P:= gh•[(GCPf) — (GCP;)] P=—23.59 psf USING LOAD COMBINATION 16-15: 0.6D+0.6W MAX NET UPLIFT- USE ROOF DEAD LOAD =12 PSF lb W:= 0.6.12•psf- 0.6.23.6•psf W=-6.962 uplift ft MAX UPLIFT AT END OF GIRDER TRUSSES: TRIBUTARY AREA At := 5ft•25•ft•1.2 At = 150 ft2 UPLIFT U := At•W U =—1044 lb USE(2) Simpson H2.5A's GREEN M O U N T III N PROJECT: PLH - Whitney 111110 structural engineering DATE: 1/9/2018 BY AMA JOB NO: 18017 SHEET: L-11 LATERAL Determine Diaphragm Shear&Deflection CD First Floor: Seismic Force FpX <_ 0.4 Sds I-WP (ASCE 7-1012.10-3) SDS:= .73 I:= 1.0 WSD Fpx•:= 0.7 0,4 SDS I WpX FPx:= 0.2-wPx WDL := 15 psf W:= 30-ft wseismic := W wDL•0.2 wseismic = 90 plf L:= 55•ft w seismic force 7/8" PLY u10 D NAILS 6"EDGES 12"FIELD w wseismic 2 A v:= _ J� W v= 82.5plf SHEAR: Per SDPWS 2015 Table 4.2C 7/8" UNBLOCKED DIAPHRAGM vallowed 215•plf > v= 82.5 plf QED : BLOCKING NOT REQUIRED DEFLECTION: Per SDPWS: 42-1: v= 82.5plf A:= (1.5•in)•(5.5•in) Area of chord cross section L= 55ft E:= 1400000.psi Modulus of elasticity of chords lb W= 30 ft GA:= 8.5 — (Table 4.2C) in EA,„:= 2•[0.03125•(16•in + 32•in + 32•in + 16•in)] EA„ = 6in Breyer CH.9.8 5 v•L3 1in� 0.25•v•L (EAcx)ft A :_ — + + A = 0.258 in �8•E•A•W) �ft� 1000-GA 2•W GREEN MOUNTAIN PROJECT:IOW PLH - whitriey /9/2018 AMA structural engineering DATE: 1 1 BY: JOB N0: 18017 SHEET: F-1 FRAMING _____ ROOF LOADS Wd = 15psf ROOF PLAN A WI = 25psf 1>: NO 1:, \ 0 0 p .,_ / o/ s ! o / 83s®� — / cq li 3 / \ i • i A GREEN NOUN-1111N PROJECT: PLH - Whitney IOW structural engineering DATE1/9/2018 : '" BY: AMA JOB NO: 18017 SHEET: F F-2 FRAMING N G '00F LOADS d = 15psf ROOF PLAN B W = 25psf I MMEMMEMMEMEMEMMOrH � I a / 0 / / of I I GREEN MOUNTAIN PROJECT: PLH - Whitney structural engineering DATE: 1/9/2018 BY: /9/ AMA JOB NO: 18017 SHEET: F-3 FRAMING r., ��a� . ..,w µ..�.M�,.. .� ROOF LOADS Wd = 15psf ROOF PLAN C I = 25psf / \ / / — � a/ I / ,-- / o/ I ori' / bc O GREEN M O U M T h I M PROJECT: PLH - Whitney lie BY: AMA structural engineering DATE: 119/2018 JOB N0: 18017 SHEET: F-4 FRAMING WOOF LOADS• = 15psf ROOF PLAN D WI — 25psf N I 7 \// I I r A,5 0 j ���0 \ 1 0 \ ,,_ , / 0/ / , GREEN M O U N T n I N PROJECT: PLH - Whitney 116, AMA structural engineering DATE: 1/9/2018 BY:n "' JOB NO: 18017 .. .. SHEET: F5 FRAMING ROOF LOADS Wd = 15psf ROOF PLAN E WI = 25psf / / 1 / , / 1 / o0 o// 0 \ :il,\ • I / :X / / A (=I GREEN M O U N T IA I N PROJECT: PLM - Whitney 4W structural engineering DATE: 1/9/2018 T BY: AMA JOB N0: 18017 SHEET: F-6 FRAMING -.OF LOADS= 15psf ROOF PLAN F WI 25psf iA I/ j \ \ //I k ,// / 1 ✓ , \ / 4- / 0/ 0 / 0/ Nt 0 / 1 .1-- j II \ \ / /______ / / \ // / 1 / GREEN MOU1ThIN PROJECT: PLH - Whitney 111111), structural engineering DATE: 1/9/2018BY: AMA JOB NO: 18017 SHEET: F-7 FRAM I N G TRACK ROOF LOADS PATE OBER O iIX OPTIONAL A��1G I/NO O' i :o 1_ o 11111 o 0.11 I TI: 1 ft mom r S83c 0 x �� S �c.,� ' I 'I ISI OPTIONAL I OOR IOPT. OAR' E 9��COC' AGO s10,> .®1-.0u, .: 1111111111111111111.1 1a-2®AGO ®PF 68 ®4� i�' . .1)F REMOTE WAL.OFR Al (' C/�, \ 1'59 .mo .' � ' C , 9 ; �1 4 1== .-O®. G j n g GREEN M O O N Tn I N PROJECT: PLH - Whitney structural engineering DATE: 1/9/2018 m ..,. . ., BY: AMA JOB NO: 18017 SHEET: F-8 FRAMING 4510 @3.5' O 4x10 A 5' 1370 3174 4510 @.5' 1040p If ROOF 4x12 5' 5354 2838 © 200pIf ROOF 6x12 V V V V �( 16' /� 1707 1707 928 899 @4' @6' 4x12 A 8' 3528 3635 41) X240p If ROOF 6x12 V V V V OR 16' U 4x12 or 2027 12' 2027 ei Project: '. page Green Mountain Location: 1 Green Mountain SE Multi-Loaded Multi-Span Beam of [2015 International Building Code(2015 NDS)] "._. 3.5 IN x 9.25 IN x 5.0 FT #2-Douglas-Fir-Larch(North)-Dry Use StruCalc Version 10.0.1.4 1/10/2018 11:10:38 AM Section Adequate By:2.6% F-9 Controlling Factor: Moment DEFLECTIONS Center LOADING DIAGRAM Live Load 0.03 IN L/2047 Dead Load 0.02 in Total Load 0.04 IN L/1354 Live Load Deflection Criteria: L/240 Total Load Deflection Criteria: L/180 REACTIONS A Live Load 900 lb 2100 lb Dead Load 470 lb 1074 lb Total Load 1370 lb 3174 lb 1 Bearing Length 0.63 in 1.45 in REAM DATA Center _ Span Length 5 ft Unbraced Length-Top 0 ft 5ft Unbraced Length-Bottom 5 ft Live Load Duration Factor 1.15 Notch Depth 0.00 UNIFORM LOADS Center MATERIAL PROPERTIES Uniform Live Load 0 plf #2-Douglas-Fir-Larch(North) Uniform Dead Load 0 plf Base Values Adjusted Beam Self Weight 7 plf Bending Stress: Fb= 850 psi Fb'= 1173 psi Total Uniform Load 7 plf Cd=1.15 CF=1.20 POINT LOADS-CENTER SPAN Shear Stress: Fv= 180 psi Fv'= 207 psi Load Number One Cd=1.15 Live Load 3000 lb Modulus of Elasticity: E= 1600 ksi E= 1600 ksi Dead Load 1510 lb Comp.1 to Grain: Fc- = 625 psi Fc- '= 625 psi Location 3.5 ft Controlling Moment: 4754 ft-lb 3.5 Ft from left support of span 2(Center Span) Created by combining all dead loads and live loads on span(s)2 Controlling Shear: -3174 lb At right support of span 2(Center Span) Created by combining all dead loads and live loads on span(s)2 Comparisons with required sections: Req'd Provided Section Modulus: 48.63 in3 49.91 in3 Area(Shear): 23 in2 32.38 in2 Moment of Inertia(deflection): 30.69 in4 230.84 in4 Moment: 4754 ft-lb 4879 ft-lb Shear: -3174 lb 4468 lb NOTES Project: ' page • Green Mountain / Location:2 :��' Green Mountain SE Multi-Loaded Multi-Span Beam of [2015 International Building Code(2015 NDS)] 3.5 IN x 11.25 IN x 5.0 FT #2-Douglas-Fir-Larch(North)-Dry Use StruCalc Version 10.0.1.4 1/11/2018 12:04:50 PM Section Adequate By: 1.5% F-10 Controlling Factor: Shear DEFLECTIONS Center LOADING DIAGRAM Live Load 0.02 IN L/3075 Dead Load 0.01 in Total Load 0.03 IN L/2241 Live Load Deflection Criteria: U240 Total Load Deflection Criteria: L/180 REACTIONS A Live Load 3680 lb 2120 lb 1 Dead Load 1674 lb 718 lb Total Load 5354 lb 2838 lb Bearing Length 2.45 in 1.30 in TRI BEAM DATA Center Fss Span Length 5 ft Unbraced Length-Top 0 ft 5ft Unbraced Length-Bottom 5 ft Live Load Duration Factor 1.15 Notch Depth 0.00 UNIFORM LOADS Center MATERIAL PROPERTIES Uniform Live Load 0 plf #2-Douglas-Fir-Larch(North) Uniform Dead Load 0 plf Base Values Adiusted Beam Self Weight 8 plf Bending Stress: Fb= 850 psi Fb'= 1075 psi Total Uniform Load 8 plf Cd=1.15 CF=1.10 POINT LOADS-CENTER SPAN Shear Stress: Fv= 180 psi Fv'= 207 psi Load Number One Cd=1.15 Live Load 3000 lb Modulus of Elasticity: E= 1600 ksi E'= 1600 ksi Dead Load 1510 Ib Comp.-1-to Grain: Fc-1= 625 psi Fc- = 625 psi Location 0.5 ft Controlling Moment: 3841 ft-lb TRAPEZOIDAL LOADS-CENTER SPAN 2.3 Ft from left support of span 2(Center Span) Load Number One Created by combining all dead loads and live loads on span(s)2 Left Live Load 800 plf Controlling Shear: 5354 lb Left Dead Load 240 plf At left support of span 2(Center Span) Right Live Load 800 plf Created by combining all dead loads and live loads on span(s)2 Right Dead Load 240 plf Load Start 1.5 ft Comparisons with required sections: Req'd Provided Load End 5 ft Section Modulus: 42.87 in3 73.83 in3 Load Length 3.5 ft Area(Shear): 38.8 in2 39.38 in2 Moment of Inertia(deflection): 33.36 in4 415.28 in4 Moment: 3841 ft-lb 6615 ft-lb Shear: 5354 lb 5434 lb NOTES Project: page .Green Mountain Location:3 Green Mountain SE Multi-Loaded Multi-Span Beam of [2015 International Building Code(2015 NDS)] • 5.5 IN x 11.5 IN x 16.0 FT #2-Douglas-Fir-Larch(North)-Dry Use StruCalc Version 10.0.1.4 1/10/2018 11:16:22 AM Section Adequate By:48.8% F-11 Controlling Factor: Moment DEFLECTIONS Center LOADING DIAGRAM Live Load 0.20 IN L/944 Dead Load 0.14 in Total Load 0.35 IN L/553 Live Load Deflection Criteria: L/240 Total Load Deflection Criteria: L/180 • REACTIONS A B Live Load 1000 lb 1000 lb Dead Load 707 lb 707 lb Total Load 1707 lb 1707 lb Bearing Length 0.50 in 0.50 in w BEAM DATA Center Span Length 16 ft Unbraced Length-Top 0 ft Unbraced Length-Bottom 16 ft Live Load Duration Factor 1.15 Notch Depth 0.00 UNIFORM LOADS Center MATERIAL PROPERTIES Uniform Live Load 125 plf #2-Douglas-Fir-Larch(North) Uniform Dead Load 75 plf Base Values Adiusted Beam Self Weight 13 plf Bending Stress: Fb= 875 psi Fb'= 1006 psi Total Uniform Load 213 plf Cd=1.15 CF=1.00 Shear Stress: Fv= 170 psi Fv'= 196 psi Cd=1.15 Modulus of Elasticity: E= 1300 ksi E'= 1300 ksi Comp.-L to Grain: Fc- = 625 psi Fc-1'= 625 psi Controlling Moment: 6830 ft-lb 8.0 Ft from left support of span 2(Center Span) Created by combining all dead loads and live loads on span(s)2 Controlling Shear: -1707 lb At right support of span 2(Center Span) Created by combining all dead loads and live loads on span(s)2 Comparisons with required sections: Rea'd Provided Section Modulus: 81.45 in3 121.23 in3 Area(Shear): 13.1 in2 63.25 in2 Moment of Inertia(deflection): 226.93 in4 697.07 in4 Moment: 6830 ft-lb 10166 ft-lb Shear: -1707 lb 8244 lb NOTES Project: $ page Green Mountain j Location:4 �„ �� Green Mountain SE Multi-Loaded Multi-Span Beam of [2015 International Building Code(2015 NDS)] 3.5 IN x 11.5 IN x 8.0 FT #2-Douglas-Fir-Larch(North)-Dry Use StruCalc Version 10.0.1.4 1/10/2018 11:21:10 AM Section Adequate By: 144.8% F-12 Controlling Factor: Moment DEFLECTIONS Center LOADING DIAGRAM Live Load 0.03 IN L/3643 Dead Load 0.01 in Total Load 0.04 IN L/2322 Live Load Deflection Criteria: L/240 Total Load Deflection Criteria: L/180 REACTIONS A Live Load 450 lb 750 lb Dead Load 273 lb 422 lb Total Load 723 lb 1172 lb 1 2 Bearing Length 0.33 in 0.54 in BEAM DATA Center Span Length 8 ft Unbraced Length-Top 0 ft 8ft Unbraced Length-Bottom 8 ft Live Load Duration Factor 1.15 Notch Depth 0.00 UNIFORM LOADS Center MATERIAL PROPERTIES Uniform Live Load 0 plf #2-Douglas-Fir-Larch(North) Uniform Dead Load 0 plf Base Values Adiusted Beam Self Weight 9 plf Bending Stress: Fb= 850 psi Fb'= 1075 psi Total Uniform Load 9 plf Cd=1.15 CF=1.10 POINT LOADS-CENTER SPAN Shear Stress: Fv= 180 psi Fv'= 207 psi Cd=1.15 Load Number One Two Live Load 600 lb 600 lb Modulus of Elasticity: E= 1600 ksi E= 1600 ksi Dead Load 328 lb 299 lb Comp.1 to Grain: Fc- -= 625 psi Fc-1-'= 625 psi Location 4 ft 6 ft Controlling Moment: 2823 ft-lb 4.0 Ft from left support of span 2(Center Span) Created by combining all dead loads and live loads on span(s)2 Controlling Shear: -1172 lb At right support of span 2(Center Span) Created by combining all dead loads and live loads on span(s)2 Comparisons with required sections: Req'd Provided Section Modulus: 31.51 in3 77.15 in3 Area(Shear): 8.5 in2 40.25 in2 Moment of Inertia(deflection): 34.39 in4 443.59 in4 Moment: 2823 ft-lb 6913 ft-lb Shear: -1172 lb 5555 lb NOTES A Proect: " 4-- .4 ".:: page r Green Mountain Location:5 .— Green Mountain SE Multi-Loaded Multi-Span Beam of [2015 International Building Code(2015 NDS)] 5.5 IN x 11.5 IN x 16.0 FT #2-Douglas-Fir-Larch(North)-Dry Use StruCalc Version 10.0.1.4 1/10/2018 11:24:57 AM Section Adequate By:25.3% F-13 Controlling Factor:Moment DEFLECTIONS Center LOADING DIAGRAM Live Load 0.33 IN L/590 Dead Load 0.09 in Total Load 0.41 IN L/466 Live Load Deflection Criteria: L/240 Total Load Deflection Criteria: L/180 REACTIONS A B Live Load 1600 lb 1600 lb Dead Load 427 lb 427 lb Total Load 2027 lb 2027 lb Bearing Length 0.59 in 0.59 in w BEAM DATA Center Span Length 16 ft Unbraced Length-Top 0 ft 16ft Unbraced Length-Bottom 16 ft Live Load Duration Factor 1.15 Notch Depth 0.00 UNIFORM LOADS Center MATERIAL PROPERTIES Uniform Live Load 200 plf #2-Douglas-Fir-Larch(North) Uniform Dead Load 40 plf Base Values Adiusted Beam Self Weight 13 plf Bending Stress: Fb= 875 psi Fb'= 1006 psi Total Uniform Load 253 plf Cd=1.15 CF=1.00 Shear Stress: Fv= 170 psi Fv'= 196 psi Cd=1.15 Modulus of Elasticity: E= 1300 ksi E'= 1300 ksi Comp.1 to Grain: Fc-1= 625 psi Fc-1'= 625 psi Controlling Moment: 8110 ft-lb 8.0 Ft from left support of span 2(Center Span) Created by combining all dead loads and live loads on span(s)2 Controlling Shear: 2027 lb At left support of span 2(Center Span) Created by combining all dead loads and live loads on span(s)2 Comparisons with required sections: Req'd Provided Section Modulus: 96.72 in3 121.23 in3 Area(Shear): 15.56 in2 63.25 in2 Moment of Inertia(deflection): 283.52 in4 697.07 in4 Moment: 8110 ft-lb 10166 ft-lb Shear: 2027 lb 8244 lb NOTES w. GREEN MOUNTAIN PROJECT: PLH - Whitney 1/9/2018 AMA 1111le structural engineering DATE: „_ �,�_ BY: JOB NO: 18017 SHEET: F-14 FRAMING FOUNDATION LOADS , (21 rlici / OPTIONAL NOOK • 24X24X122n A _ - - ,,. O O O O � : yp O 0 OOOO 1 i/ • O O 0 O O 0 0 0 I • 0 0 0 0 • O 0 0 0 t O O 0 0 • O 0 0 I s 0 0 8.s 1 � ©3 0 0 ----8 Val o O 0 0 0 0 •24X24X12 , i4X2T @E O O • @3C ®0 � �c0G O Øc91p -/ J : 1 AI -28 E 1 O 1� • 36 363s O 0 • ill <01 - - ��,�®s 6 • GREEN M O U N T h I N PROJECT PLH - Whitney IOW structural engineering DATE: 1/9/2018 BY. AMA JOB NO: 18017 SHEET: F-15 FRAMING Foundation Design Soil Bearing Pressure SSP:= 1500•psf (assummed) continuous foundation footing 12 inches wide with a 6 inch stem that is 18 inches tall. total engaged area Allowed Load A:= (16•in + 6-in + 16•in)•12•in A= 3.2 ft2 Allowed Load SBP•A= 475016 MEM in. FA Individual Footings: Size Area Capacity 18" diameter A:= 9-in•9•in•3.14 Pall := 1500•psf•A Pall = 2649.4 lb 24"x24" A:= 24•in•24•in Pall := 1500•psf•A Pall = 6000 lb 28"x28" A:= 28•in•28•in Pall := 1500•psf•A Pall = 8166.7 lb 36x36" A:= 36•in•36•in Pall 1500•psf•A Pail = 13500 lb 48"x48" A:= 48•in•48•in Pall 1500•psf•A Pall = 24000lb Continuous Footings: 12 inch wide: Capacity 1500 psf X12 inches=1500 plf