Specifications (34) _owak ci)-43( st) ) v),->ckArN.
OFFICE COPY
RECEIVED
MAR 1 4 2019
Structural
Engineeng CITY
nOF TIGARD
BUILDING DIVISION
Structural Calculations for
Altar'd State
Slab and Façade Updates
ic
ring-tete%
Prepared for:
City of Tigard, OR
„
Prepared by: \
JDH Engineering ylikt ild*"1
Tim DenHartigh, P.E. (OR) =,4
Joshua Cardinal, P.E. (MI)
JDH ENGINEERING INC 3000 tvonre<0 Avenue SW.Suite B Grandvdie,MI 19118 P 616 531 6020 F ói&5318637
DESIGN DEAD LOADS: LoO 774 4-7.0-Ljr,
MALL FLOOR: 75 PSF
MALL ROOF; 23 PSF
GARAGE: SELF WEIGHT 5 PSF COLLATERAL DL
DESIGN LIVE LOADS:
ROOF: SNOW LOADS IN ACCORD WITH INTERNATIONAL BUILDING CODE SECTION 1608, INCLUDING DRIFTING SNOW LOADS.
= I Pg C:e7O I = 1,W Pg = 35.7 PSF f = 25FSF
UPPER LEVEL MALL FLOOR., 100 PSF — REDUCIBLE
GARAGE: 50 PSF — UNREDLIC1BLE
"8— WIND LOAD:
BASIC 'MD SPEED -- 85 MPH
-R; EXPOSURE "C"
4=1.00 (OCCUPANCY CATEGORY PER TABLE 1604.5 IS CATEGCCYII)
SEISMIC LOAD:
SEISMIC DESIGN IS IN ACCORD WITH 'MTH IBC OCCUPANCY CATEGORY PER TABLE 1O45 IS CATEGORY II. SEISMIC USE
GROUP I.
St = 0.37 Ss = 1.2 1 = 1.25 SITE CLASS = C
LATERAL LOAD RESISTING SYSTEMS:
MALL; SPECIAL CONCENTRICALLY BRACED FRAMES WITH SPECIAL MOMEN'T RESISTING FRAMES
R = 6.0 = 2.O
WEST GARAGE BEARING WALL SYSTEM WITH SPECIAL REINFORCED CONCRETE SHEAR WALLS
R 5.0 Uc = 2,5
ATC Hazards by Location https://hazards.atcouncil.org/o/seismic?lat=45.4502155&Ing=-122...
Search Information Ne
Address: 9585 SW Washington Square Rd,Tigard,OR 97223,'`= ,,,.. `,,.irvr r.
USA , 234 ft
j -TJ
i ihztrnc,<k Hand
Coordinates: 45.4502155,-122.78062239999997 N,(isiaar<ax' �s c•
"trate t.,, :t Cre-tturr,
Beaverton
Elevation: 234 ft ���
}ht f
Timestam p: 2019-02-25T19:32:50.368Z
tJattona'
Hazard Type: Seismic
$" Map data("2019 Google
Reference ASCE7-10
Document:
Risk Category: II
Site Class: C
MCER Horizontal Response Spectrum Design Horizontal Response Spectrum
Sa(g) Sa(g)
ii 0.60
0.80 k
0.50
0.60 \ 0.40
0.40 0 30
0.20
0.20
0.10
"``mak e
0.00 -�.,� ... �.. 0.00
—
0 5 10 15 Period(s) 0 5 10 15 Period(s)
Basic Parameters
Name Value Description
SS 0.978 MCER ground motion(period=0.2s) I � YM 5".1 -`' '?(zmirC
S1 0.425 MCER ground motion(period=1.Os) 4/1-6 01''0041 0 1 0 (2C-T.71,,ty-
e ud-f- -gip-('`. L`o r. 1 A)r lir—r 147j1-",4
2x'
SMS 0.987 Site-modified spectral acceleration value ( 4 j r�
SMI 0.585 Site-modified spectral acceleration value r~c) 'Arl*'t YtX)(71
SOS 0.658 Numeric seismic design value at 0.2s SA =-(/fess ,i:0 evil/-t c T""
SDI 0.39 Numeric seismic design value at 1.0s SA 7:b�, rn r".)-1'.
"'Additional Information L
Name Value Description
SDC 0 Seismic design category
Fa 1.009 Site amplification factor at 0.2s
F„ 1.375 Site amplification factor at 1.0s
CRg 0.897 Coefficient of risk(0.2$)
CR1 0.871 Coefficient of risk(1.0$)
PGA 0.428 MCEG peak ground acceleration
FPGA 1 Site amplification factor at PGA
2 of 2 2/25/2019,2:33 PM
JDH Engineering JOB TITLE Altar'd State
3000 Ivanrest SW, Suite B
Grandville, MI 49418 JOB NO. 2019-02-017 SHEET NO.
616-531-6020 CALCULATED BY JAC DATE 3/4/19
CHECKED BY DATE
www.struware.com
Code Search
Code: International Building Code 201til1t-
Occupancy:
Occupancy Group= M Mercantile
Risk Category & Importance Factors:
Risk Category= II
Wind factor= 1.00
Snow factor= 1.00
Seismic factor= 1.00
Type of Construction:
Fire Rating:
Roof= 0.0 hr
Floor= 0.0 hr
Building Geometry:
Roof angle (0) 0.25/12 1.2 deg
Building length(L) 600.0 ft
Least width (B) 190.0 ft
Mean Roof Ht (h) 40.0 ft
Parapet ht above grd 42.0 ft
Minimum parapet ht 2.0 ft
Live Loads:
Roof 0 to 200 sf: 20 psf
200 to 600 sf: 24-0.02Area, but not less than 12 psf
over 600 sf: 12 psf
Floor:
Typical Floor 75 psf
Partitions N/A
Retail stores: First floor, rooms 100 psf
Partitions N/A
Partitions N/A
��� ��� Hazards Location
���wby
Search information
N 8
Address: 9585 SW Washington Square Rd,Tigard,OR 97223
USA
nxmrons
Coordinates: 45.4502155,-122.
Elevation: 234 ft
Timestamp: 2019-03-04T21:30:36.745Z
Hazard Type: Wind
Map data 028|*Google,/wsm|
ASCE 7-16 ASCE 7-10 ASCE 7-05
MRI 10-Year 67 mph MRI 10-Year 72 mph ASCE 7-05 Wind Speed 85 mph
MRI 25-Year 72 mph WR125-Year 79 mph
MRI 50-Yea77 mph MRI 50-Year 85 mph
MRI 100-Yer 82 mph MRI 100-Yea91 mph
Risk Category I 91 mph Risk Category 100 mph
Risk Category II 97 mph Risk Category II � 110 mph
Risk Category II 103 mph Risk Category Ill-tV 115 mph
Risk Category IV 107 mph
The results indicated here DO NOT reflect any stale or local amendments to the values or any delineation lines made during the building code
adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with
design.
Disclaimer
Hazard toads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer.Per ASCE 7,islands and coastal areas
outside the last contour should use the last wind speed contour of the coastal area—in some cases,this website will extrapolate past the last wind
speed contour and therefore,provide a wind speed that is slightly higher.NOTE:For queries near wind-borne debris region boundaries,the •
resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.
Mountainous terrain,gorges,ocean promontories,and special wind regions shall be examined for unusual wind conditions.
While the information presented on this website is believed to be correct,ATC and its sponsors and contributors assume no responsibility or
liability for its accuracy.The material presented in the report should not be used or relied upon for any specific application without competent
examination and verifi^uUonofits accuracy,suitability and applicability byengineers orother licensed professionals.ATC does not intend that the
use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice,nor
to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website.
•
Users of the information from this website assume all liability arising from such use.Use of the output of this website does not imply approval by
the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude
location in the report.
JDH Engineering JOB TITLE Altar'd State
3000 Ivanrest SW,Suite B
Grandville,MI 49418 JOB NO.2019-02-017 SHEET NO.
616-531-6020 CALCULATED BY JAC DATE 3/4/19
CHECKED BY DATE
Ultimate Wind Pressures
Wind Loads -Components& Cladding : h :5 60'
Kb(case 1)= 1.04 h= 40.0 ft 0.2h=8.0 ft
Base pressure(qh)= 32.7 psf 0.6h= 24.0 ft
Minimum parapet ht= 2.0 ft GCpi= +1-0.18
Roof Angle(8)= 1.2 deg qi=qh= 32.7 psf
Type of roof=Gable
Roof
Surface Pressure(psf) 1 User input
Area 10 sf 20 sf 50 sf -100 sf 200 sf 350 sf 500 sf 1000 sf 0 sf 280 sf
Negative Zone 1 -61.5 -57.4 -52 1 -48 -43.9 -40.7 -38.6 -38.6 .61.5 -42.0
Negative Zone 1 -35.3 -35.3 -35.3 -35.3 -30.4 -26.4 -23.9 -19.0 -35.3 -28.0
Negative Zone 2 .81.1 -75.9 -69 -63.8 -58.6 -54.4 -51.7 -51.7 -81.1 -56.0
Negative Zone 3 -110.5 -100.1 -86.3 -75.9 -65.5 -57,0 -51.7 -51.7 -110.5 -60.4
Positive All Zones 16 16 16 16 16.0 16.0 16.0 16.0 16.0 16.0
Overhang Zone 1&1' -55.6 -54.6 -53.3 -52.3 -43.9 -37.0 -32.7 -32.7 -55.6 -39.8
Overhang Zone 2 -75.2 -68.3 -59.1 -52.1 -45.2 -39.5 -36.0 -36.0 -75.2 -41.8
Overhang Zone 3 -104.6 -92.5 -76.4 -64.2 -52.1 -42.2 -36.0 -36.0 -104.6 -46.1
Overhang pressures in t e table above assume an internal pressure coefficient(Grew)of 0.0-
Overhang soffit pressure equals adj wall pressure(which includes internal pressure of 5.9 psf)
Parapet
_
qp= 33.0 psf Surface Pressure(psf) User Input
Solid Parapet Pressure 10 sf 20sf 50 sf 100 sf 200 sf 500 sf 4 sf
t t: one : II . ": • :•,: : ,0 . 105.7
Zone 3: 135.5 123.3 107.3 95.2 83.1 67,1 135.5
CASE B: Interior zone: -62.4 -59,3 -55.1 -51.9' -48.8 -44.6 -62.4
Corner zone: -71.4 -66.6 -60.4 -55.6 -50.9 -44.6 -71.4
_
Walls GCp+/-GCpi Surface Pressure at h User input
Area 10 sf 100 sf 200 sf 500 sf 10 sf 100sf 200 sf 500 sf 250 sf 280 sf
Negative Zone 4 -1.17 -1.01 -0.9r -0.90 -38.3 -33.1 -31.5 -29.4 -31.0 -30.7
Negative Zone 5 -1.44 -1.12 -1.03 -0.90 -47.1 -36.7 -33.6 -29.4 -32.6 -32.0
Positive Zone 4&5 1.08 0.92 0.87 0.81 35.330.1 28.6 26.5 28.1 27.8
_
Note:GCp reduced by 10%due to roof angle<=10 deg.
JDH Engineering JOB TITLE Altar'd State
3000 Ivanrest SW,Suite B
Grandville,M149418 JOB No.2019-02-017 SHEET NO.
616-531-6020 CALCULATED BY JAC DATE 314/19
.__._................______......
CHECKED BY DATE
Location of C&C Wind Pressure Zones-ASCE 7-10&earlier
»? 4 > a a `2a 1 'a
si r M _ - .. ir1 1} E$3 "+1
4 ./.Y.'../ i �r 1 i t \.9 om' f 1•.._., -_.......f...., ---'t
4 1 I L.,, \ 5 t l;, �t'I
l,,v, € 1 (1) {,0 }(11r i t
j t Ott, -ryy --(:)a
-� ii_ _—
f (2? } .. cul
Roofs w! 0 s 10° Waits h s 60' Gable,Sawtooth and
and all walls &alt design h<90' Multispan Gable 0 s 7 degrees& Monoslope roofs
h>60' Monoslope s 3 degrees 3°<0 5 100
h S 60'&aft design h<90' h S 60'&alt design h<90'
a a 1 a 1 I a a a teary „, ,1
1 !!�� ! @ 7 i
1 I I 1 \?-� , 'j
1
OA i i t 1 1 t 1,--
OA
., 1< 1 t ;i 1 , i{= t 4 € a•• a
1 i i
3 z-
1 I I � 2 , .' :_1 1
\,,i1 1 3 �1 1, / v,i.f L t 1
Monoslope roofs Multispan Gable& Hip 7` < 0 s 27' 1 t 1._
I I
10°<0530 Gable 70 <8; qg° I i
h s 60'&alt design h<90' # i
1 d
Sawtooth 10°<0 5 45°
h<60'&alt design h<90'
a
" i t p
/ ttoe 2-'41, 4y6. / !
1 <m.w{
Wi V >L
,, ' I '
W
......
Stepped roofs 0<_3'
h 560'&alt design h<90'
i
I
1
JDH Engineering JOB TITLE Altar'd State
30001vanrest SW,Suite B
Grandville,MI 49418 Jae NO.2019-02-017 SHEET No.
616-531-6020 CALCULATED BY JAC DATE 3/4/19
CHECKED BY DATE
. ..__...__.___._.....................
Location of C&C Wind Pressure Zones°ASCE T-16
2a
,� .,--/''N,3 '''' ' =� 0. 3i 0. ll '
( �: i mil R#
1 i I I i,-.. _ I 1 t
1 i I z> 1 I 1 I t"
1^ , ,.'` r Vii `
i ! y,.. ice.,
L »3 1 { t
VLAl L j am'"" L.._._ _..� " r—75-1--/--,1-
_����
Roofs w/ 6 s 10° Walls h 5 60' Gable,Sawtooth and
and all walls &alt design h<90' Multispan Gable 8 5 7 degrees& Monoslope roofs
h>60' Monoslope 5 3 degrees 3°<8 s 10°
h s 60'&alt design h<90' h S 60'&alt design h<90'
rm /
i 7T a a •�a�
AB CD
ti
I '� z ; IN
_iii _
_ S ? j i i ilk ! a - __
1 I _) 1 `\�' . "1 1
1 I I , \ I I
1
1
Monoslope roofs Multispan Gable& Hip 7° < 8 s 2r _i
10°<6 5 30° Gable 7° <6<_ 45°
h560'&alt design h<90' .' __ 4).___,;,
,
Sawtooth 10°<6 a 45°
h 5 60'&alt design h<90' ,
a
„, ._
r.1 r 2 47
,Attiiii-/0-
_W1 W2 � W2 W3
W W
Stepped roofs 6 s 3°
h S 60'&alt design h<90'
PROJECT A SHEET PROJECT NO.201 l*C2- 7
J LI H
DESCRIPTION L.04 0 S t4-1 By:j74
OF
• Structural
ering DATE VLI1 26i(1
Engine
Pr -.) R.4-E7515itig
Cri0G, 10,4J. 3Z 0 par 2 ficr
F;(2,„ MCIPt C.•;11.* 'ft:44;ra..0 .;) 38,0 aff' 615:
if
j-cx. Torr,m- SstwAs sq7o fSf
?Att. ,S11.00 ,57 6*. pj
ta c
(gz. -Yzo -:A:xmoo ( 7--) (4-) - 063- (3,BY'
to, 6,,ist? A 6)6Z t r CAS.C) 9,1 1.1 ( 5f3 t.,,v4iecr
F.A.)42- I Lik cks-0,0-rez
N-NI. /Aar Si ace
, 8
(73F 1:51..ocrAjc.,
(37 PEOC rtX/2 14--` 44.4/3'4' 40,,o,,w4 etc)
At /Ner-,16 or (a7e,
k.
Si,/ 7'
sv--- ) i . 432 F C 2C A JC-.7.- 141000A-14:q,-7
FRANK,4 PRESS f.4.1 7:I C
CONNECTION SCHEDULE
1 — CONNECTION SCHEDULE
,
nu
1
F'e,TF Slira BM MO Cr ....44.404LE I, KW SIEN4
,
S.72 DO-7S Mint 1 ""NC,,NES,5 CAPv.C14141 SU Dan .1_10174 1 SUE ,F.4P0.4571
-,,
I .W12 2 5 1/2 1/4 12v , 1I WV 2
5 17'2 t 1/16 4141/,
1412„ 404 3 a 1/2 1/4 264 , 512 W14 31 :1.15 26T
i 6 112
I-.
515 Wi6 4 11 72 2)16 45v
MI 418 4 i1 172 r,'.4 4,"
.....
1 '
3,415
421 5 14 172 1,4 574 1521 5 '14,72.
524 5 IT 1i3 1,4 14241 1 534 5 171/2
I 1
=
5F7 ID , 35
0. 421 7 20 112 1/4 1244 ,
,/.! i 1/4
`....<
-I'
I
i
m 0030 a3i3 5 33 113 510 1455 1 W''10 41/53 a , 23./2 .,
CD
I ,
,
; ,-..-
..t
1 1 t
'
CD 535 4 351/3 5710 155, 02,6 S 361/2 1, 6716 416,7v
„.,•<-,
1 I
fQ
S.71 hil;E6
l'\.)
" Mtn 407 .44E54 432514 1154 55 Apr 13,46-1114
0/
....J.
CO 2. UM%CAR CONN 0 WE 11.AUCC COW 1411 RANCE 5.44 5E5
CA)
-....
.9? /---Vent X.12.511 FitY_TS
'
-,1 !
1/
c, 1 .3/4--11:41,4551,7, =, 1 '4.7930055,40:
/ r-- 3/h CIA STO 44‘4141.
/ / \ 10 541450'in 02115 \ TO n6101-'AFT4 CCPF 1/ / \ MEW FECCO \ WHEW 55041)
\
, / ,
/ /
o i ,,, /--p,..47E E.401 5455 \ .... \ ..„..,,
* ./ 1 / '.,-ti MiEDUI
1/ -lligl 1/2* \ r'...
r05
1—amoimiw „,t, t_.=-----4.111011011w" — ''-
,
....
I \ • .... ;5'S..,, _
1 •sl.,-,3 1
-I 1- + x.„ ,
.---- ,- ST.€114 ....:'
4. + _-
......4........, ',' , A 51
1 1/2 .. •I 44 ..
, \'( \"-Sit DJ
• ...-1 1/2" ....
\ \--2-L4x2 itz<slie. ------"-*"."."-----\,\--STE.Du
-7-503 V.115/:E 7"
-
,..,,
030
,, \SZI-ES .1
IA 4.
.,..
`N.
WELDED CONN BOLTED CONN ? c
5456 55 or wAsoNay
21 TYP BEAM SPLICE Ask TY? STEEL BEAM CONN
_
331
;ST,..PL'Mitt:
VP 5A.1 N..")4;4,1f )(IP 4,6.1€C5,10.=
„... _ .,
cCP sl,IC 'SP t,Ak4DPiWAWA NA S.!E, TYPE Ar4Co vArgEP
Oz a4LTL,SEE TW DELT SCHEELILE—, 7.accs SEE -IP ."..•0 SC4EDLLE—,
,'2' \ ,'2-
318 SEE'.›. EAP PLAT s„ WAX letr STEEL HER P.A7 MAY
5/r STEEL St4EAP 0LATE , SW STEEL UAP
'NAPE'V = 27" Dv mow ,
\ <
\ \ , I
TEL EiEmi—,„ \ r t.„, S'TEL CAP RATE tEL ELAM--. ' ,
'. i
' /—I/2'SAIL CAP R.A17.
/ s, \
i
\ 1
,,
%, , \ ! ,
A 1
.1
=' , :===i
I' ...--.........—
<, ,--...--...-....
I
, \ ,.
,.., 1 ,,,,,.
+
/ / \
7.`-1 i !
i
,
, / ? \
STEN COLLOM / 1 <
,, ,,.„ '- /
=o
,, ,,,,,,
1 .,,
o. , ---STEEL CLL
/1 1 1 -*--- /2"1444C1( =4.C,P,2 STEEL , /
/
t< \
117,) 1 STTTENEP;LATE-T,P.
irg:', i
71 / 5,,,i6 ..'
5.<1612
<1)
4'
cr
2
co
•2
All TYP SLIEAR BEAM / COL CONN rip SHEAR BEAM I COL CONN
N.) 5
cr 1
s 3 1
W STAE tit) Se.,A.LE IcALE Pc)VALE
1\3
0
—,
0
CA)
N,)
...1 MR 521,Ire MD 1411,43EP
:ii 7 BEIM SEE m'MT SO-,EOLLE—<„,
....1.
\ /—';',:.c°'WE, TYPE VA)NVORER
X KU'S<SEE T,P,CAL
M 2ir STEEL EtEAR PLATE \
/ 50...T<;:liEELJLE
vr STEEL,SWAP PLATE , „,
3/17 vat Si-Dit P....„.4TE V64E4E il",,. 2r IP MOPE—,„ \, ,
4 VC tEL DEAR P.ATE .
- crEEI K+46
/r--. _
5 \ %
\ YIT'EgE"E"-27'OP IIE2PE—, /
0 CL,
<SUFI REAM—'s \ \
! / /
1 ,
% \ '
IL
r
c.,- — ' —— ---''t:------:/ '
\ \ „
-.„ , + \
, + '
..,
+ i ‘
...4.- Cr
‘
I
' \\
,. •,,,± \ ....,0
, \
r
----1 AA
I —S1EEL MINN ,3,18'Sail. SHEAR PLATE /
\ \
---„,—.1-1
ExTEND TO ENE ..<f EEAM
/ KAMOS„ I'M
/ '''' <, r,
/ 1 ,
3,,+f L,
F i r,
SA TYP SHEAR BEAM I COL CONN STEEL BEAM I BEAM CONN
SCALE' NO SCOLE
------- -
'...,
J1 D PROJECT R.......-
tof 1-544tAi tof;
PROJECT NCO
Z02Ort
SHEET
flDESCRIPTION BY
OF
Structural DATE Z/Z512(:)141
Engineering
or.. u
_4(k7 IA,t, eflppcsra-Z5s
i
r t aA46
ii
75 iljka-- T-H1 Z 'r-r -rie il'illi:Olven Cfeigotyll
or “TC
k
(2W - 4 1 c7r 5- 14-m. -rpv,i- ",..,,, r.g
1-- OvIrtz sin CAic-Ti-1 1peroc.4 -to 15EvE,or -9,1-: ec,ri.vco 123,,,,41,11,f7-
1,>17,3 pm i 0 Cs'A-- CP t4 3,Lr r d
4r4)Al t-',/Z.„C• 4)5 1,0Pna,,ey04 70 Dr?64.71.'1G &VAC,C (..:0 A)PrZace;!,i4r$C,0,4c
--......„,,,
.,14,,:r")
Si t°
1LCT
re
11
I ,
1
I i 0 Fitr-t-r - 10,9 f AJ
( . . cziocu 1.054.4.., ) t..... to 7.,t
,r, :,-- 0 .,..4 z: (43( ) Narc-, 7 0 ccoloP. F0,..
., o (1/3----
at t C r -.- .0, 5 3 (I SW p(1.,(1,t 1 (:)r COCi I:„,,1:44171:0:4 w' v
1 1(
,Nfor Fort Sr roe.tAr.
_ t.rikkt3 _ —
5,3 CO t.,,,)E4,...),
/1aiz (t-icl '''':)(1'-01)/3Lok,R
) (Pik
Ut Cs" .I.,s/--4k.v., 1:?,
3. 1
41.
''f LlidE.:V) 1..CUT/1
(tort C C:..ri o) to to -7, 6 tLt ti.
t.t,tt Itztt , 0=z.< t ii tta, 0.1,kr
0 t,
1(
-FiN,<1.Y.4 PRESS€44555IS
- - ......
DECK ATTACHMENT SCHEDULE
,.....,....._-
REWARKS
,
0 1 1$01144,11:11 t t A 1101-144114 t A I tAtAtif ht
Mr f *sliPPORTS
ECLAPS
T
1 3E(5, 5-5/SEA PER 1 t/2-• LCN TOR SEAM
0 154,
vir SHEAR}
I A WOL bilEET WELD 0
(14-4-„F&F SttE,021°
I „ifi 7 7-5 ft4 NA
A NO 10 SrLREWS 0 2*-0' OC 3fr 00E SHEET
1
t to to SC-WC 0 r-.kr Of,
I b _
OE 1/2 .„ONG ror---..zom teecnr DEM;
' Jr *DE 9TEET
re
.,,
, 1 112 L1FiG kw xe.,Akt
mc- r
E SKET .6t-a, '
lg.,
hOFES
1 vERCo PAWED CA GAINAWED I tiz' fg-Si X '18 GA, F-E' S0,044. Pe ILOO EVALLI°011044 ;EMT [P-1141),
2. 0T4ER 14A141FACTURES ts1UST OMIT THEIR 0210AFHWENT SOW:DOLE MD CO FITCP7 SHCA1416 E023.160LENT
SIVAR VALLES FOP ATTACHAENT
6+4 r'S'ITAk.,v DO-414,4ZrkkeS A ocer TA, ,re DEac CL r ,,., t EN
-.- I AL JS ,
illrAcHill'EA'rr G4,-- e0Afreez /41,,,t0re,. As if " 8Pc; w4u.
S 0 c-kt Asst A irglc_ktineiiii- ri PC e f/
at- ConcrAtax, yri,? ENO P-4*" ,,,
— _
/
:!
cAtEuT
/ # StAt4(t4
/ i i#r- *SIDELAP
4714A-16ft-11
/
I i
gg
g k° ib
a --N-- ---4k 0
•r"' t g
:1" 1 ---- -
-e4
LA- Lk E
0
r ..
IP—1r 1
.
,
,t-
,.
O N N)I( A X , r/
- ...
r- E1 AMR F
ot$ .
if r___ri...2
' A'IACti %VMS OR -
. 1 5/ \t"-i, fNikg
\ i
\
\ ,
WALL
'L.- tvET StECA
sFAN
TYP METAL DECK ATTACH
„.
,s
52 1
5CAL12' t40 SCALE ( APHP0A4 ATTIACtIWEtil)
Monday, February 25, 2019 4:59:54 PM -Window
it
TYPICAL FASTENER LAYOUT
1.5(VL,VLI)
36"COVERAGE
36/4 PATTERN • •
33"COVERAGE
33/4 PATTERN • • •
2VLI& 3VLI 1.3C
36"COVERAGE 32"COVERAGE
36/4 PAI I ERN •
3214 PAI l ERN • • }
0.6C
30"COVERAGE
30/4 PATTERN • •
DIAPHRAGM ° I DESIGN
Joist Spacing =3'-0" W-305 plf
Deck: 26 gage 0.6CSV Deck with Type 1 Insulating Fill in 15'-0"panels _■�III[��������"1� ����J �
Fasteners:
Support: 30/4 Pattern -#12 TEK Screws
Sidelape: 1 -#12 TEK Screws
B-4a' all
From diaphragm strength tables: K, =0.517, K2= 530, K3=260
G,= K2 +K = 1.4
530 +260=327 Kiln L-100'
3.20+3K, Span 3 3.20+3{0.517)(3)
WL2 0.305(100)2
_ 8xBxG° - 8(45)(327) 0.026 in
Strength Check:
R m WL/2 = 305(100)= 152501bs S= 1 45 0 =339 plf<340 plf(from page 65)OK
. 18 ga 2VI.1-36 Grade 50 Composite Deck-Slab rl U=n rz
5 in.Total Slab Depth, fc=3500 psi, 145 pcf NWC VULCRAFT GROUP
5/8"Visible Dia.Arc Spot Weld Connections to Supports A992 GRSO Support member or equivalent
36/8 Perpendicular Connection Pattern to Supports 0.1 s t
1-1/2"Top Arc Seam Weld Sidelap Connections
ASD Allowable Diaphragm Shear Strength Sniff!,plf
Sidelap Span
Connection
Spacing(in.) 10'-0" 11'-0" 12'-0" 13'-0" 14'-0" 15'-0" 16'-0" 17'41" 18'-0"
4 '3778 3771 3765 3760 3755 3752 3749 3746 3743
6 3359 3352 3346 3341 3337 3333 3330 3327 3325
8 3150 3162 3137 3148 3128 3138 3121 3130 3116
12 2941 2934 2928 2923 2919 2915 2912 2909 2906
18 2815 2820 2788 2794 2799 2776 2781 2786 2767
24 2732 2744 2719 2730 2710 2720 2703 2712 2697
36 2690 2668 2649 2665 2650 2636 2650 2638 2627
Dipahragm Shear Stifness,G',kip/in. ,
Sidelap
Span
Connection
Spacing(in.) 10-0" 11'-0" 12'-0" 13'-0" 14'-0" 15'-0" 16'-0" 17'-0" 18"-0"
4 3614 3614 3614 3614 3614 3614 3614 3614 3614
6 3610 3610 3610 3610 3610 3610 3610 3610 3610
8 3607 3607 3606 3607 3606 3606 3606 3606 3606
12 3600 3600 3599 3599 3599 3599 3599 3599 3598
18 3592 3593 3590 3591 3591 3589 3590 3590 3588
24 3584 3586 3582 3584 3581 3583 3580 3582 3580
36 3578 3574 3570 3574 3570 3567 3571 3568 3565
Average Connection Spacing to Supports at all Parallel and Perpendicular Chords&Collectors(in.)
Sidelap
Span
Connection
Spacing(in.) 10'-0" 11,-0" 12'-O" 13%0" 14'-O" 15'-O" 16'-O" 17'-0" 18'-O"
4 3 3 3 3 3 3 3 3 3
6 4 4 4 4 4 4 4 4 4
8 4 4 4 4 4 4 4 4 4
12 4 4 4 4 4 4 4 4 4
18 5 5 5 5 5 5 5 5 5
24 5 5 5 5 5 5 5 5 5
36 5 5 5 5 5 5 5 5 5
Tables generated using calculator V2.0 based on AISI 5310-16. Date: 2/27/2019
The itillirmation,cakulations and data accessed or received through use of ibis design tool are presented for general information only and are not to be used or relied upon for any application without i
independent verification by a licensed professional engineer,or other qualified professional.The provider of the website through which you accessed the design tool disclaims(i)any and all
representations,warranties,and conditions express or implied,related to such information,calculations or data accessed or received through use of this design tool,including hut not limited to warranties 1
of merchantability,fitness bra particular purpose,and non-infringement;and(ii)any and all liability whatsoever arising out afar related to this design tool,ants use,including but not limited to liability
I
by reason of death,personal injury,or damage to property.The design tool and its use are governed by the terms and conditions of use of the website through which you accessed the design tool,which
can be found an http://www.vulcraftrant/about-us/termsandconditions,and your use of the design tool confirms your agreement to those terms and conditions.
Page 1 of 1
18 21/1.1-36 Grade 50 Composite Deck-Slab
5 in.Total Slab Depth,Pc 3500 psi, 145 pcf NWC V U t-C R A T GROUP
5/8"Visible Dia.Arc Spot Weld Connections to Supports A992 GR50 Support member or equivalent
36/4 Perpendicular Connection Pattern to Supports 0.1 s t(in.)
1-1/2"Top Arc Seam Weld.Sidelap Connections
ASD Allowable Diaphragm Shear Strength Sn/S1,plf
Sidelap
Connection Span
Spacing(in.) 10'-0" 11'-0" 12'-0" 13'-0" 14'-0" 15'-0" 16"-0" 17'-0" 18"-Q"
4 3737 3733 3731 3728 3726 3724 3723 3722 3720
6 3318 3315 3312 3310 3308 3306 3305 3303 3302
8 3109 3125 3103 3117 3099 3111 3095 3106 3093
12 2900 2897 2894 2891 2889 2888 2886 2885 2884
18 2774 2782 2754 2763 2770 2748 2755 2762 2744
24 2691 2706 2685 2698 2680 2692 2677 2688 2674
36 2649 2630 2615 2634 2620 2609 2625 2614 2595
Dipahragm Shear Stifness,G',kip/in.
Sidelap
Connection Span
Spacing(in.) 10`_0" 11"-0" 12'-0" 13'-0" 14'-0" 15'-0" 16'-0" 17.-0" 18"-0"
4 3614 3614 3614 3614 3614 3614 3614 3614 3614
6 3610 3610 3610 3610 3610 3610 3610 3609 3609
8 3606 3606 3606 3606 3605 3606 3605 3606 3605
12 3598 3598 3598 3598 3598 3598 3597 3597 3597
18 3589 3590 3587 3588 35893587 3588 3588 3586
24 3579 3581 3578 3580 3577 3579 3577 3579 3576
36 3571 3566 3562 3567 3563 3560 3565 3562 3559
Average Connection Spacing to Supports at all Parallel and Perpendicular Chords&Collectors(in.)
Sidelap
Connection Span
Spacing(in.) 10" 0 11'-0" 12,_0" 13"-0" 14"-Q" 15"-0" 16"-0" 17"-0"" 18"_0"
4 3 3 3 3 3 3 3 3 3
6 4 4 4 4 4 4 4 4 4
8 4 4 4 4 4 4 4 4 4
12 4 4 4 4 5 5 5 5 5
18 5 5 5 S 5 5 5 5 5
24 5 5 5 5 5 5 5 5 5
36 5 5 5 5 5 5 5 5 5
Tables generated using calculator V2.0 based on AISI 5310-16. Date: 2/27/2019
The information,calculations and data accessed or received through use of this design tool are presented for general information only and are not to be used or relied upon for any application without
independent verification by a licensed professional engineer,or other qualified professional.The provider of the website through which you accessed the design tool disclaims(i)any and all
representations,warranties,and conditions express or implied,related to such information,calculations or data accessed or received through use of this design tool,including but not limited to warranties
of merchantability,fitness for a particular purpose,and non-infringement;and(ii)any and all liability whatsoever arising out of or related to this design tool,or its use,including but not limited to liability
by reason of death,personal injury,or damage to property.The design tool and its useare governed by the terms and conditions of use of the website through which you accessed the design tool,which
can befound as http:/fttww-vulcraftcmn/about-us/termsandconditions,and your use of the design tont confirms your agreement to those terms and conditions.
Page 1 of 1
Diaphragm Geometry
Diaphragm Width= 95.5 feet
Diaphragm Depth I — 35 feet
Diaphragm Depth 2= 59.5 feet
From Original Design
Mall Floor Dead Load= 75 psf
Total Floor Dead Load= 426 kip
Seismic Parameters(Per ATC Hazards)
R= 6.0 SDS= 0.658
00= 2.0 Cs= 0.137
Ie= 1.25 V*— 58.39 kip
p= 1.3 *At Each End of Diaphragm
Diaphragm Capacity= 2.9 klf Per Vuleraft
New Diaphragm Total Load= 50.8 kip Seismic Weight
With Ovcrstrength 101.7 kip For Diaphragm
With Redundancy= 132.2 kip For Frames
Items above provide a breakdown of the applied diaphragm force that was
analyzed in addition to the eccentricities introduced from the brace locations
and the accidental torsion per ASCE7
A T c, "(- t y SHEEN
PROJECT PROJECT NO. I Z-0I v
* JDH
DESCRIPTION e 4 I 417244'EWA, BY
OF
,---,~` Structural BIZ/ .7/1t
Engineering "C 2 DATE
. _
t
z.,...('...hie
14, 1
€ eta
lr..I1 j6/ St 7,"7,_1 VIZ,
1r
p
t
0
i.da„A
4 �, .1tM rbc a. {
tCohn S , ,.. -.
ft_
4, ( - ) •ro
I
p t
i
r e c cf, T'`i
., ....
r t s (314 (3-xi
/1 ( ) Lew r .
+6,
drir t_:DT To ecit.yeiz,gpfE"
TO
"t .'` o0 S.
p W30X124
N2 N4
2
v
3
naC34 Apptimd load
JDH Engineering Inc SK- 1
JAC Washington Square Mall Mar 6,2019 at 1:04 PM
2019-02-017 STORY FRME Brace Bay Stiffnesses.r3d
ftionvivr- 14149,ala eotAAri,4) itiegtkieirkr e /1"eo
Column: Mi
Shape: W14X233
Material: A992 Dy in
Length: 17 ft
I Joint: N1
Dz in
J Joint N2
LC 1: Applied Load
Code Check: 0.005 (bending) -008at 17 ft
Report Based On 97 Sections
505 at 0 ft
-.241 at 0 ft
k70-•: "-
'• ‘t'x't.\\tmz„ Vz
v v
4.944 at 0 ft
k-ftmz ' k.,ft My k-ft
‘":.`
-3.639 at 17 ft
.158 atOft Oat 9.74 ft
-.004 at 0 ft \
fa ksi
•
0 at 9.74 ft - 158 atOft
AISC 14th(360-10):ASD Code Check
Direct Analysis Method
Max Bending Check 0.005 Max Shear Check 0,001 (y)
Location 0 ft Location 0 ft
Equation Max Defl Ratio L/10000
Bending Flange Compact Compression Flange Non-Slender
Bending Web Compact Compression Web Non-Slender
y-y z-z
Fy 50 ksi Lb 17 ft lift
Pnc/om 1710.918 k KL/r 49.788 30.775
Pnt/om 2050.898 k
Mny/om 551.397 k-ft L Comp Flange 17 ft
Mnz/om 1087.824 k-ft L-torque 17 ft
Vny/om 342.4 k Taub 1
Vnz/om 982.583 k
Cb 2.22
Ore-44ct.; 1--a-44(k16 eouurrm.) illovc.goir.A..rr e 1 ko"1-04c)
Column: m5
Shape: W10X49
Material: A992 Dy • in
Length: 17 ft ,,,,,,
I Joint: N5 Dz in
J Joint: N7
LC 1: Applied Load
Code Check: 0.000 (bending)
-.002 at 17 ft
I Report Based On 97 Sections
...
0 at 0 ft
A k
im.
Vy k Vz k
T k-ft Mz — k-ft My k-ft
fa ksi fc ksi ft ksi
AISC 14th(360-10):ASD Code Check
Direct Analysis Method
Max Bending Check 0.000 Max Shear Check 0.000 (y)
Location 0 ft Location 0 ft
Equation F11-lb Max Defl Ratio L/10000
Bending Flange Compact Compression Flange Non-Slender
Bending Web Compact Compression Web Non-Slender
y-y z-z
Fy 50 ksi Lb 17 ft 17 ft
Pnc/om 269.696 k KL/r 80.101 46.938
Pntlom 431.138 k
Mny/om 70.609 k-ft L Comp Flange 17 ft
Mnz/om 131.052 k-ft L-torque 17 ft
Vny/om 68 k Taub 1
_
Vnz/om 201.198 k
Cb 1
Project Title:
• Engineer:
Project ID:
Project Descr:
File=CAPROGRA-2ENERCA-1ENERCALC 6,
Torsional Analysis of Rigid Diaphragm Sothvare... '.1)1ENERCALC,INC,1902016,Build,10,18.12 22.
Lie,#!KW-06003069 ”..---1---,-- Licensee:JIDH ENGINEERING INC,
Description: Bay Shear Magnitude
General Information Calculations per
_
Applied Lateral Force 103.0 k Center of Shear Application:
Additional Orthogonal Force 0.0 k Distance from'X"datum point 51.787 ft
Distance from"Y"datum point 27.922 ft
Maximum Load Used for Analysis: 103.0 k
Accidental Torsion values per ASCE 7-05 12.8.4.2
Note: This load is the vector resolved from the above Ecc.as%of Maximum Dimension 5.00 %
two entries and wit be applied to the system of
elements at angular increments. Maximum Dimensions:
Along"X"Axis 95.667 ft
Load Orientation Angular Increment 360.0 deg Along"Y"Axis 59.458 ft
Load Location Angular Increment 90.0 deg
Center of Rigidity Location (calculated)...
"X"
dist,from Datum 31.133 ft
"Y"dist.from Datum 31.058 ft
Accidental Eccentricity+1-from"X"Coord.of Load Application: 4.783 ft
Accidental Eccentricity+/-from"Y"Coord.of Load Application: 2.973 ft
Generic Resisting Elements Generic Resisting Element Deflections(Stiffness)for constant load:
Label: FRAME 1 Element X Location 0 ft Element"y°direction deft per kip= 0.0000 in
Element V Location 15 ft Element"x"direction dell per kip= 0.0080 in
Element Angle CCW 90 deg
Label: FRAME 2 Element X Location 0 ft Element"y"direction dell per kip= 0.0000 in
Element V Location 44.729 ft Element'X"direction deft per kip= 0.0080 in
Element Angle CCW 90 deg
Label: FRAME 3 Element X Location 95.667 ft Element"y"direction deft per kip= 0.0000 in
Element Y Location 44.729 ft Element"x°direction deft per kip= 0.0080 in
Element Angle CCW 90 deg
Label: X-B'ace 2 Element X Location 45 ft Element"y"direction deft per kip= 0.0015 in
Element Y Location 30 ft Element"x"direction deft per kip= 0.0000 in
Element Angle CCW 0 deg
Label: X-Bracel Element X Location 15 ft Element"y°direction deft per kip= 0.0015 in
Element Y Location 30 ft Element"x"direction deft per kip= 0.0000 in
Element Angle CCW 0 deg
ANALYSIS SUMMARY Maximum shear forces applied to resisting elements,Eccentricity with respect to Center of Rigidity
Max Shear along Member Local"y-y"Axis Max Shear along Member Local"x-x"Axis
Resisting Element Load Angle X-Ecc(ft) Y-Ecc(ft) Shear Force (k) Load Angle X-Ecc(ft) Y-Ecc(ft) Shear Force (k)
FRAME 1 0 -15.87 -3,14 0.000 0 -20.65 -6.11 23.238
FRAME 2 0 -15.87 -3.14 0.000 0 -20.65 -0.16 7.180
FRAME 3 0 -15.87 -3.14 0.000 0 -20.65 -0.16 7.180
X-Brace 2 0 -20.65 -6.11 45.711 0 0.00 0.00 0,000
X-Bracel 0 -20.65 -6.11 45.711 0 0.00 0.00 0.000
Project Title:
Engineer:
Project ID:
Project Descr:
Torsional Analysis File=C1PROGRA-2IENERCA-1ENERCALC_6
Software copyright ENERCALC,INC.1983.2016,Build:10.18.12,22.
1 tin a$W-06003060 Licensee¢•JDH ENGINEERING INC.
Description: Eay Shear Magnitude
General InformationCalculations per
Applied Lateral Force 103.0 k Center of Shear Application
.....Additional Orthogonal Force 0.0 k Distance from"X"datum point 51.787 ft
Maximum Load Used for Analysis: 103.0 k
Distance from'Y"datum point 27.922 ft
Note: This load is the vector resolved from the above Accidental Torsion values per ASCE 7-0512.8.4.2 u
Ecc.as%of Maximum Dimension 5.00 h
two entries and will be applied to the system of
elements at angular increments. Maximum Dimensions:
Along"X"Axis 95.667 ft
Load Orientation Angular Increment 360.0 deg Along"Y"Axis 59.458 ft
Load Location Angular Increment 90.0 deg
Center of Rigidity Location (calculated)...
"X"dist.from Datum 31.133 ft
°Y"dist.from Datum 31.058 ft
Accidental Eccentricity+1-from°X"Coord.of Load Application: 4.783 ft
Accidental Eccentricity+!-from"Y"Coord.of Load Application: 2,973 ft
Generic Resisting Elements Generic Resisting Element Deflections(Stiffness)for constant load:
Label FRAME 1 Element X Location 0 ft Element"y'direction defl per kip= 0.0000 in
Element Y Location 15 ft Element"x"direction defl per kip= 0.0080 in
Element Angle CCW 90 deg
Label: FRAME 2 Element X Location 0 ft Element"y"direction defl per kip= 0.0000 in
Element Y Location 44.729 ft Element"x"direction deft per kip= 0.0080 in
Element Angle CCW 90 deg
Label: FRAME 3 Element X Location 95.667 ft Element"y"direction deft per kip= 0.0000 in
Element Y Location 44.729 ft Element"X'direction deft per kip= 0.0080 in
Element Angle CCW 90 deg
Label: X-Brace 2 Element X Location 45 ft Element"y"direction deft per kip= 0.0015 in
Element Y Location 30 ft Element"x"direction deft per kip= 0.0000 in
Element Angle CCW 0 deg
Label: X Bracel Element X Location 15 ft Element"y"direction deft per kip= 0.0015 in
Element Y Location 30 ft Element"x"direction dell per kip= 0.0000 in
Element Angle CCW 0 deg
ANALYSIS SUMMARY Maximum shear forces applied to resisting elements.Eccentricity with respect to Center of Rigidity
Max Shear along Member Local"y-y"Axis Max Shear along Member Local"x-x"Axis
Resisting Element Load Angle X-Ecc(ft) Y-Ecc(ft) Shear Force (k) Load Angle X-Ecc(ft) Y-Ecc(ft) Shear Force (k)
FRAME 1 90 -15.87 -3.14 20.600 90 -25,44 -3.14 65.370
FRAME 2 90 -15.87 -3.14 20.600 90 -25.44 -3.14 55.654
FRAME 3 90 -15.87 -3.14 20.600 90 -25.44 -3.14 55,654
X-Brace 2 90 -25.44 -3.14 22,966 90 -15.87 -3.14 20.600
X•Bracel 90 -25.44 -3.14 22.969 90 -15.87 -3.14 20.600
Project Title:
• Engineer:
Project ID:
Project Descr:
Torsional Fite=CAPR4GRA-21ENERCA-1ENERCALC 6.
Y Sofhvare copyright ENERCALC,INC.1983-2018,Bui1d:10.18.12.22.
Lie.#:KW-06003069 Licensee:ADH ENGINEERING INC.
Description: Bay Shear Magnitude
General Information Calculations per
Applied Lateral Force 102,0 k Center of Shear Application:
.,...Additional Orthogonal Force 0.0 k Distance from"X"datum point 51.787 ft
Distance from"Y"datum point 27.922 ft
Maximum Load Used for Analysis: 102.0 k
Note: This load is thevector resolved from the above Accidental Torsion values per ASCE 7-0512.8.4.2 0
Ecc.as%of Maximum Dimension 5.00 to
two entries a=dd will be applied to the system of
elements at angular increments. Maximum Dimensions:
Along"X"Axis 95.667 ft
Load Orientation Angular Increment 15,0 deg Along"Y"Axis 59.458 ft
Load Location Angular Increment 15.0 deg
Center of Rigidity Location (calculated)...
"X"dist.from Datum 31.133 ft
"Y"dist,from Datum 31.058 ft
Accidental Eccentricity+1-from"X"Coord.of Load Application: 4.783 ft
Accidental Eccentricity+1-from"Y"Coord.of Load Application: 2.973 ft
Generic Resisting Elements Generic Resisting Element Deflections(Stiffness)for constant load:
Label FRAME 1 Element X Location 0 ft Element"y"direction deft per kip= 0.0000 in
Element Y Location 15 ft Element"x"direction deft per kip= 0.0080 in
Element Angle CCW 90 deg
Label: FRAME 2 Element X Location 0 ft Element"y"direction deft per kip= 0.0000 in
Element Y Location 44.729 ft Element"x"direction deft per kip= 0.0080 in
Element Angle CCW 90 deg
Label: FRAME 3 Element X Location 95.667 ft Element"y"direction deft per kip= 0.0000 in
Element Y Location 44.729 ft Element"x"direction deft per kip= 0.0080 in
Element Angle CCW 90 deg
Label: X-Brace 2 Element X Location 45 ft Element"y"direction deft per kip= 0.0015 in
Element Y Location 30 ft Element"x"direction deft per kip= 0.0000 in
Element Angle CCW 0 deg
Label: X-Bracel Element X Location 15 ft Element"y"direction dell per kip= 0.0015 in
Element Y Location 30 ft Element"x"direction deft per kip= 0.0000 in
Element Angle CCW 0 deg
ANALYSIS SUMMARY Maximum shear forces applied to resisting elements,Eccentricity with respect to Center of Rigidity
Max Shear along Member Local"y-y"Axis Max Shear along Member Local"x-x"Axis
Resisting Element Load Angle X-Ecc(ft) Y-Ecc(ft) Shear Force (k) Load Angle X-Ecc(ft) Y-Ecc(ft) Shear Force(k)
FRAME 1 90 -15.87 -3,14 20.400 75 -25.27 -3.91 33'.
FRAME 2 90 -15.87 -3.14 20,400 90 -25.44 -3,14 55.113
FRAME3 90 -15.87 -3,14 20.400 90 -25.44 -3.14 55.113
X-Brace 2 .210 -24.04 -5,24 40.275 90 -15.87 -3.14 20.400
X-Bracel 210 -24.04 -5.24 49.275 90 -15.87 -3.14 21400
eii . •7' L L CSA :1,A) Or 0 NO 't - ° OF 3
p
'// c c;0 r1 a - 17A/ gmt-4 f o 04,4,33/30, "c 14:
t mrt t` Le.::“ ¢r `-6-d T.›10 4/C 4-L, P 1 ,�0-W. 7" t 0 r . ( k t
Project Title:
. Engineer:
Project ID:
Project Descr:
Torsional Analysis of Rigid Diaphragm File e.CAPROGRA.-2ENERCA.-1ENERCALC_6.
Software copynght ENERCALC,INC.1983-2018,SulId:10.18.12,22.
iC.#,t KWe06003069 Licensee:JDH ENGINEERING INC,
Description; Bay Shear Magnitude
Layout of Resisting Elements
Legend: Defined Wall Defined Deflection x Datum
1
"--- Center of Rigidity e ( ) Accidental eccentricity application boundary
* FRAM*
pay
•
X-Bracel i X-Brace 2 -..„
Y-Y
FRAME
*
I
<
i
t
<
i
1
Project Title:
Engineer:
Project ID:
Project Descr:
To
C14[hr� 1tjt Rigid DiaphragmFile=G:1PROGRA-21ENERCA-1ENERCALC_6.
Software copyright ENERCALC,INC.1983-2018,Build:10.18.12.22.
Lie.# KW"O6003O69 Licensee:JDH ENGINEERING INC.
Description: Say Shear Magnitude
Analysis Notes
This program is designed to distribute an applied shear load to a set of resisting elements.
Each resisting element data entry specifies a deflection along a"major and"minor"axis due to a 1,000 lb load.Each resisting element may be entered as a wail or a column
(whereby the deflection is calculated),or as a generic resisting element with specified deflection.The deflections define the stiffness of each resisting element.
Each resisting element is defined at an(X,Y)location from a datum the user has previously defined.A counter-clockwise rotation of the element can be entered with respect to a
traditional"+X"axis line.
A main"shear"load and an optional orthogonal shear load are specified for distribution to the system of resisting elements.In addition the maximum orthogonal dimensions of the
structure and minimum accidental eccentricity percentage are specified.
From the entered loads the program calculates resultant farce vectors for each angular orientation that is requested.The force is applied to the resisting elements in angular
increments to generate a series of resulting direct and torsional shear loads on each element.This application of force is then repeated at angular intervals along an elliptical path
defined by the minimum accidental eccentricity.
The end result is a table of direct shear and torsional shear values for each element from the iterated angles of load application and accidental eccentricity.These values are
then searched to find the maximum major and minor axis shears applied to each resisting element.
€jI
33
f£{
}
f� ,‘„0-1/9-0e-ext SHEE r
PROJECT_._t i PROJECT NO..
DESCRIPTION...._° ;J BY Jc. OF
Structural /& r`1
Engineering _ DATE87
...:...__
SO itr ... O,` (r )
/11
'f t r i111r ! .`G' ager :
5th
( 931q/'°`1
0.zs 47331.0
i
k11J k001(3r4+ Y' i w I. t+ t
AA <
2 3 (fie f Zce( IC)(000 kt 7 ? $ ...
1
e '
It
(3'g)( l</ arta 014
1
,. (6 6 o //,6730, k
idW.scu.V iYerS:i 1b+nHi..,vL
Hilti PROFIS Engineering 3.0.39
www.hilti.com
Company: .301( V.sfuechre-04.6- Page: 1
Address: Specifier:
Phone I Fax: E-Mail:
Design: Pottery Barn-Diaphragm Modifications Date: -3/ton oci 3/6/2049
Fastening point: 0/4061^-gf:05 0:tie ati6
Specifiers comments;
1 Input data
Anchor type and diameter: HIT-RE 500 V3+HAS-V-36(ASTM F1554 Gr.36)1/2 di
Item number: 2198021 HAS-V-36 1/2"x4-1/2 (element)/2123401
HIT-RE 500 V3(adhesive)
Effective embedment depth: hef =2.750 in.(heo,„,„,=3.750 in.)
Material: ASTM A 1554 Grade 36
Evaluation Service Report: ESR-3814
Issued I Valid: 9/1/2018 1 1/1/2019
Proof: Design Method ACI 318-14/Chem
Stand-off installation: e5=0.000 in.(no stand-off);t 0.500 in.
Anchor plates; i x ly x t=12.047 in.x 4.000 in.x 0.500 in.;(Recommended plate thickness:not calculated)
Profile: no profile
Base material: cracked concrete,,fcl=3,500 psi;h=5.000 in.,Temp.short/long;32/32"F
Installation: hammer drilled hole,Installation condition:Dry
Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present
edge reinforcement:none or<No.4 bar
R- The anchor calculation is based on a rigid anchor plate assumption.
Geometry[in.]&Loading[Ib,in.lb]
4
0
4
IDez gn'cads
("0")
Sued od
•,\-,
•k 4'1
•
st,
z „
Y
input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2093-2009 Hilti AG,FL-9494 Schaan Mutt is a registered Trademark of Mb AG,Schaan
414111611111911
Hi[ti PROFIS Engineering 3.0.39
www.hilti.com
Company: Page: 2
Address: Specifier:
Phone I Fax: I E-Mail:
Design: Pottery Barn-Diaphragm Modifications Date: 3/6/201g
Fastening point:
2 Load case/Resulting anchor forces
Load case:Design loads
Anchor reactions[Ib[
Tension force:(+Tension,-Compression) A
Anchor Tension force Shear force Shear force x Shear force y
1 0 2,000 2,000 0 1 I►x
max,concrete compressive strain: -I%a]
max.concrete compressive stress: -[psi]
resulting tension force in(x/y)=(0,00010.000): 0[Ib[
resulting compression force in(x/y)=(0.00010.000):0[Ib[
Anchor forces are calculated based on the assumption of a rigid anchor plate.
3 Tension load
Load Nua[Ib[ Capacity 4 N.[lb] Utilization t'N=N„a/.Nn Status
Steel Strength* N/A N/A N/A N/A
Bond Strength" N/A N/A N/A N/A
Sustained Tension Load Bond Strength* N/A N/A N/A N/A
Concrete Breakout Failure** N/A N/A N/A N/A
'highest loaded anchor "anchor group(anchors in tension)
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2009 HOU AG,FL-9494 Schaan HIM is a registered Trademark of Hit ti AG,Schaan
2
Hilti PROFIS Engineering 3.0.39
www.hilti.com
Company: Page: 3
Address: Specifier:
Phone i Fax: ( E-Mail:
Design: Pottery Barn-Diaphragm Modifications Date: 316/2019
Fastening point:
4 Shear load
Load Van[ib] Capacity 4 Vn[lb] Utilization JJv=Vae4 Vf) Status
Steel Strength* 2,000 3,211 63 OK
Steel failure(with lever arm)* N/A N/A N/A N/A
Prycut Strength(Bond Strength controls)** 2,000 2,152 93 OK
Concrete edge failure in direction y+** 2,000 2,279 88 OK
*highest loaded anchor *"anchor group(relevant anchors)
4.1 Steel Strength
Ven =ESR value refer to ICC-ES ESR-3814
Vsteet Van ACI 318-14 Table 17.3.1.1
Variables
A.,v lin.) f„ta[psi]
0.14 58,000
Calculations
Vsa[Ibi
4,940
Results
Vsa[ib] 4'steel 4' Vsa.[ibJ V,,„(lb]
4,940 0.650 3,211 2,000 _.._
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003-2009 HMI AG,FL-9494 Schaaf) Hith is a registered Trademark of Hilti AG,Schaan
3
'Hart
Hilti PIROFIS Engineering 3.0.39
www.hiiti.com
Company: Page: 4
Address: Specifier:
Phone I Fax: E-Mail:
Design: Pottery Barn-Diaphragm Modifications Date: 3/6/2019
Fastening point:
4.2 Psyout Strength(Bond Strength controls)
=k7-I•S) N
ed.Na Jce.Na Ntsa ACI 318-14 Eq.(17.5.3.1a)
mriao
4) V, Va. ACI 318-14 Table 17.3.1.1
see AC1318-14,Section 17.4.5.1,Fig.R 17,4.5.1(b)
Amao =(2 cNa)2 ACI 318-14 Eq.(17.4.5.1c)
10 da Jt t—Ls ACI 318-14 Eq.(17.4.5.1d)
CNa 1100
10 ed,N. =0.7+0.3(••-v-st)s 1.0 ACI 318-14 Eq.(17.4.5.4b)
CNa
X¢/cori =MAX(—C"—L-141,.141)<1.0 ACI 318-14 Eq.(17.4.5.5b)
cac caa
Naa =X a tax rt•da•haf ACI 318-14 Eq.(17.4.5.2)
Variables
kat, k.e.una[PSil da[in.] hat[in.] ca,min[in.] k.c[psi]
2 2,502 0.500 2.750 2.500 1,336
;a[in.] X a
5.568 1.000
Calculations
cl,,N[in.] ANa[in.2] Aisiao[in.2] 'I'ed,Na
7.507 75.07 225.39 0.800
111
cp,Na N [Ib]
1.000 5,770
Results
Vca[lb] 4'...crate 4) V,(Ib] V,[Ib]
3,074 0.700 2,152 2,000
Input data and results must be checked for conformity with the existing conditions and for plausibilityl
PROM Engineering(c)2003-2009 Hilti AG,FL-9494 Schaan 'HIM is a registered Trademark of KM AG,Schaan
4
1111111111141119
Hilti PROFIS Engineering 3.0.39
www.hiiti.com
Company: Page: 5
Address: Specifier:
Phone I Fax: J E-Mail:
Design: Pottery Barn-Diaphragm Modifications Date: 3/6/2019
Fastening point:
4.3 Concrete edge failure In direction y+
Vthp 'ir ,v Wnv Wparalta,v Vh ACI 318-14 Eq.(17.5,2.1a
4 V a Vua ACI 318-14 Table 17.3.1.1
Avc see ACI 318-14,Section 17.5.2.1,Fig.R 17.5,2.1(b)
Avao =4.5 c�� ACI 318-14 Eq.(17.5.2.1c)
tV ed,V =0.7+0.3 1 5c s 1.0 ACI 318-14 Eq.(17.5.2,6b)
W n.v =,,(1.5ce1 a 1.0 ACI 318-14 Eq.(17.5.2.8)
V ha
o.z
Vb =(7{ (t) AZ) x a 'Vic cl,"t5 ACI 318-14 Eq.(17.5.2.2a)
da
Variables
cal[in.] cat['in.] V.c,v ha[in.] 1,[in.]
2.500 - 1.000 5.000 2.750
a da[in.] fc[psi] W paralleIN
1.000 0.500 3,500 2.000
Calculations
Ava[in.2] Avco[in.2] W edv Wh,v Vb iib]
28.12 28.12 1.000 1.000 1,628
Results
Vd,[Ib] 4 concrete 4 Vcb[lb] Vua[lb]
3,256 0.700 2,279 2,000
5 Warnings
• The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations(ETAG 001/Annex C,EOTA TR029,etc.).
This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed
to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Engineering calculates the minimum required
anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid anchor
plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing
conditions and for plausibility!
• Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential
concrete failure prism into the structural member.Condition B applies where such supplementary reinforcement is not provided,or where pullout
or pryout strength governs.
• Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the
Evaluation Service Report for cleaning and installation instructions.
• For additional information about ACI 318 strength design provisions,please go to https:/lsubmittals.us.hilti.com/PROFISAnchorDesignGuide/
• Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors.Reference ACI 318-14,
Section 17.8.1.
Input data and results must be checked for conformity with the existing conditions and for plausibilityl
PROFIS Engineering(c)2003-2009 Hilti AC,FL-9494 Schaan Hitt is a registered Trademark of Hilt AG,Schaan
5
,waw
Hilti PROMS Engineering 3.0.39
www.hiiti.com
Company: Page: 6
Address: Specifier:
Phone I Fax: i E-Mail:
Design: Pottery Barn-Diaphragm Modifications Date: 3/6/2019
Fastening point:
Fastening meets the design criteria!
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c}2003.2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of HiltI AG,Schaan
6
1161111191
Hilti PROEM Engineering 3.0.39
www.hlitt.com
Company: Page: 7
Address: Specifier:
Phone I Fax: I E-Mail:
Design: Pottery Barn-Diaphragm Modifications Date: 316/2019
Fastening point
6 installation data
Anchor type and diameter:HIT-RE 500 V3+HAS-V-36
(ASTM F1554 Gr.36)1/2
Profile:no profile Item number:2198021 HAS-V-36 1t2"x4-112"(element)/
2123401 HIT-RE 500 V3(adhesive)
Hole diameter in the fixture:df=0.563 in. Installation torque:360 in.lb
Plate thickness(input):0.500 in. Hole diameter in the base material:0.563 in.
Recommended plate thickness:not calculated Hole depth in the base material:2.750 in.
Drilling method:Hammer drilled Minimum thickness of the base material:4.000 in.
Cleaning;Compressed air cleaning of the drilled hole according to instructions for use is required
1/2 Hilti HAS Carbon steel threaded rod with Hilti HIT-RE 500 V3
6.1 Recommended accessories
Drilling Cleaning Setting
• Suitable Rotary Hammer • Compressed air with required accessories • Dispenser including cassette and mixer
• Properly sized drill bit to blow from the bottom of the hole • Torque wrench
• Proper diameter wire brush
Y
6.024 6.024
•
• a
o 8
c q
or or
0 1 • • Ir,
o t7
o o
O o
CV
6.024 I 6.024
f .-
Coordinates Anchor in.
Anchor x y C.x CSX Cry Coy
1 0.000 0.000 - - 2.500 2.500
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003.2009 Hai AG,FL-9494 Schaan Hilti is a registered Trademark of Hliti AG,Schaan
7
•
1 :...,
Hilti PROFIS Engineering 3.0.39
www.hliti.com
Company: Page: 8
Address: Specifier:
Phone I Fax: i E-Mail:
Design: Pottery Barn-Diaphragm Modifications Date: 316/2019
Fastening point:
7 Remarks; Your Cooperation Duties
- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and
security regulations in accordance with Hiiti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly
complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using
the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in.
Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you.
Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to
compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms
and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific
application.
• You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the
regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use
the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each
case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data
or programs,arising from a culpable breach of duty by you.
Input data and results must be checked for conformity with the existing conditions and for plausibility!
PROFIS Engineering(c)2003.2009 Hilti AG,FL-9494 Schaan Hilt!Is a registered Trademark of Hilt!AG,Schaan
8
0
•
cn
a.
co
E
y
3
n
Cn
0
47 TYP SITE RET WALL _. ' " ' SITE RET '- "< r
< - "
•
S3„.4 Op SCALE'. NO SCALE �. _ a
4 SCO 19
W NE
r: .e ., SCALE' NO SCALE
o ---,1.--..—
"
'0 WO _ LAAACAN4444 `* SEE ARCH'L -C
Atm( meow LOAD T ----„1,_ J, — /
.. C
} E OVERHAND PIEF.F.
m R root METAL SILO `�.07
£LAZI1K *HERE •
SA-AR-ON-GRADE—, [ ` J j
5 [ sS' SEE PLAN
OCCURS ""4.,.,, i T T 9
5 (",` - 2 X34 j6 or CC--,„ _ x
Ss
co
r
C
CO r s 4 ,,, i
�, l'-6' t / ''—iia ole," DC
EACH WAY
-n
2 -~'a. _
- — SEAM. PLAN
I.a #4 DOWELS AT �� • ,A16 DC TO GRADE BEAM/
0 PILE CAP X ,. Pili CAP
CO
ra 1,6" BEYOND
FO ilk L FOUNDATION
..._ c.:---..
13
CD
5
CO
CD
i
to
a
N