Loading...
Specifications cA C) SLS ''' LXVIING.•`M RECEIVED 1 t APR 4 2.019 South Valley Engineering CITY OFTIGARD 4742 Liberty Rd. S #151 • Salem, OR. 97302 BUILDING DIVISION Ph. (503) 302-7020 • Fax (888) 535-6341 www.southvalleyengineering.com Project No. 11902034 Revision 1 Calculations for Tigard High School 9000 SW Durham Rd. Tigard, OR. 97224 Date 3/28/2019 Engineer .E ) PROF; /c;cierry 4,. X r OREGON r/FN R. HE° RENEWS: 6/30/19 POST FRAME BUILDING SUMMARY SHEET Owner: Tigard High School Date: 3/28/2019 Building location: 9000 SW Durham Rd. Tigard,OR.97224 Project No.: 11902034 Revision: 1 Building Description: Private shop Building Codes: 2014 OSSC,ASCE 7-10 Building dimensions: Environmental information: Width: 40 ft. Wind speed: 120 MPH Length: 84 ft. Wind exposure: B Height: 16 ft. Seismic design category: D Eave overhang: 2 ft. S5: 0.95 Gable overhang: 2 ft. Si: 0.42 Roof pitch: 4 /12 Ground snow load: 25 psf. Bay spacing: 12 ft. Design Snow Load: 25 psf. Post tributary width: 12 ft. Roof dead load: 3 psf. (incl.ceiling load if any) Concrete Slab: No Soil bearing capacity: 1,500 psf. Risk Category: I Per Table 1.5-1 ASCE 7-10 Post&posthole information: Eave wall posts: Gable wall posts: Size: 6x8 Size: 6x8 Grade: #2 H-F Grade: #2 H-F Type: RS* Type: RS* Posthole diameter: 24 in Posthole diameter: 24 in Posthole depth**: 5.00 ft. Posthole depth**: 5.00 ft. Post Constraint/backfill: no slab,concrete Post Constraint/backfill: no slab,concrete backfill backfill *Rough Sawn *Rough Sawn **To bottom of footing **To bottom of footing Purlin &girt information: Purlins Girts Size: 2x6 Size&orientation: 2x6 Commercial Grade: #2 D-F Grade: #2 D-F Spacing: 24 in.o.c. Spacing: 24 in.o.c. Sheathing information: Roof: 29 ga. Metal only Walls: All walls,are 29 ga.metal only Page 1 of 12 Snow Load Calculations Snow load calculations per ASCE 7-10 Chapter 7 pg: 25 psi-Ground Snow Load Ce: 1.0 Exposure Factor from ASCE Table 7-2 Ct: 1.2 Thermal Factor from ASCE Table 7-3 is: 1.0 Importance Factor from ASCE Table 1.5-2 Flat Roof Snow Load,Pt=0.7 X pg x Ce x Ct x Is Pt: 21 psf-Flat Roof Snow Load Cs: 0.88 Figure 7-2 based on Ct,roof slope and surface ps: 18.4 psf-Sloped roof snow load Pdesign: 25 psf-Design Snow Load Page 2 of 12 Wind Pressure Calculations Wind calculations per ASCE 7-10 Chapter 28 Part 1:Enclosed and Partially Enclosed Low Rise Buildings Roof Pitch: 4 /12 Design Wind Speed,V: 120 MPH Eave Height: 16 ft. Wind Exposure: B Risk Category: Velocity pressures q2&qh per equation 28.3-1: q2=0.00256xK2xK2txKdxV2 at eave height z qh=0.00256xKhxKZtxKdxV2 at mean roof height h Angle: 18.43 K2: 0.63 Velocity pressure coefficient at eave ht.z from Table 27.3-1 Kh: 0.70 Velocity pressure coefficient at roof ht.h from Table 27.3-1 Kn: 1.0 Topographic effrect-assume no ridges or escarpments Kd: 0.85 Wind Directionality Factor,Table 26.6-1 Velocity Pressures:q2= 19.68 psf qh= 21.93 psf Determine Velocity Pressure Coefficients&Wind Pressures per ASCE 7-10 Figure 28.4-1 for MWFRS MWFRS 1. Windward Eave Wall Pressure 2. Leeward Eave Wall: GCpfww: 0.52 GCpfwr: -0.42 qww: 10.16 psf qfw: -8.17 psf 3. Windward Eave Roof Pressure 4. Leeward Eave Roof: GCptwr: -0.69 GCptir -0.47 qwr -13.58 psf qir: -9.22 psf 5. Windward Gable Wall: 6. Leeward Gable Wall: GCptwg: 0.40 Cptwg: -0.29 qhw: 7.87 psf qiw: -5.71 psf Components&Cladding GCp;: 0.18 Internal pressure per Figure 26.11-1 7. Roof elements GCpr: -0.82 ger: 21.98 psf Roof elements per Figure 30.4-2B 8. Wall elements: GCpw: -0.96 ger: 24.93 psf IWall elements per Figure 30.4-1 Page 3 of 12 • Seismic Design Parameters Calculate seismic building loads from ASCE 7-10 Section 12.14.8 Seismic Parameters Ss=1 0.95 S1= 0.42 F,.,= 1.12 F,= 1.58 per Tables 11.4-1 & 11.4-2 SMs= 1.07 SM1= 0.66 Calculated per Section 11.4.3 Sos= 0.71 SDI= 0.44 Calculated per Section 11.4.4 Seismic Design Category= D From Section 11.6 F= 1.0 for 1 story building Response Mod.Factor R: Roof: 2.5 From Table 12.14-1, Section B-24 Left gable wall: 2.5 From Table 12.14-1, Section B-24 Right gable wall: 2.5 From Table 12.14-1,Section B-24 Front eave wall: 2.5 From Table 12.14-1,Section B-24 Rear eave wall: 2.5 From Table 12.14-1,Section B-24 Calculate building weights,W,for seismic forces Building width= 40 ft. Building length= 84 ft. Building height= 16 ft. Roof area= 3,872 sf Gable wall area= 773 sf Eave wall area= 1344 sf Roof+ceiling DL= 3 psf Snow LL(if appliable)= 0 psf Roof W= 11,616 lbs Loft(y/n): n Loft dead load: N/A psf Full or partial loft: N/A Wall Areas Building dead loads Loft dead loads Left gable wall: 773 SF Left gable wall: 3 psf Left gable wall: 0 lbs Right gable wall: 773 SF Right gable wall: 3 psf Right gable wall: 0 lbs Front eave wall: 1,344 SF Front eave wall: 3 psf Front eave wall: 0 lbs Rear eave wall: 1,344 SF Rear eave wall: 3 psf Rear eave wall: 0 lbs Calculate Seismic Base Shear,V per Section 12.14.8 V=[(FxSDs)/R]xW (Eqn. 12.14-11) Total dead loads,W (incl roof, loft) Roof: 5,808 lbs Vroof= 1,651 lbs base shear for roof diaphragm Left gable wall: 6,968 lbs VLEw= 1,981 lbs base shear for wall diaphragm Right gable wall: 6,968 lbs VRGW= 1,981 lbs base shear for wall diaphragm Front eave wall: 7,824 lbs VFEW= 2,225 lbs base shear for wall diaphragm Rear eave wall: 7,824 lbs VREW= 2,225 lbs base shear for wall diaphragm Page 4 of 12 Diaphragm Stiffness Calculation Tffwill be eedo "Post Frame Building Design", byhe Johndiaphragm N.Walkerstiandness Frank E.calculatWoeste.d basThis d methodonthe ismethowidely acceptedology frm in the post frame industry for determining metal diaphragm stiffness. 1. The diaphragm stiffness,c'= (Ext)/[2x(1+u)x(g/p)+ (K2/(bxt)2) Where: c'= 3130 lbs/in=Diaphragm stiffness of the test panel(1992 Fabral Test for Grandrib Ill) E= 2.75E+07 psi=Modulus of elasticity for metal sheathing t= 0.017 in=Steel thickness for 29 ga metal sheathing u= 0.3 =Poisson's ratio for steel g/p= 1.085 =Ratio of steel corrugation pitch to steel sheet width b= 144 in.=Length of test panel K2= - =Sheet edge purlin fastening constant(unknown) 2.The diaphragm for the same metal for a different length b can be calculated with the above above equation once the constant K2 is known. Solving for K2 yields: K2=[((Ext)x(bxt2))/c]-[2x(1+u)x(bxt)2x(g/p) K2= 878 in4 3.The stiffness of the acutal panel will be calculated from equation in 1. above,based on its actual length,b' Roof pitch= 4 /12 Building width= 40 ft 8= 18.43 °roof angle b'= 252.98 in= length of steel roof panel at the given angle for 1/2 of the roof c= 9294 lbs/in-stiffness of actual roof diaphragm 4.Calculate the equivalent horizontal roof stiffness,ch for the entire roof ch= 2xcx(cos29)x(b'/a) ch= 29,391 lb/in a= 144 in.post spacing 5. Calculate the stiffness,k,of the post frame,which is the load required for the top of the frame a distance,d For d=1",k=P=(6xdxEpxlp)/L3 d= 1 in-deflection used to establish k 1p= 256 in4-Momentof inertia of post Ep= 1.10E+06 psi-Modulus of elasticity of post L= 180 in-Bending length of post k= 290 lbs/in 6.Determine the side sway force, mD from tables based on k/ch verses number of frames. NF= 8 frames in building (including end walls) k/ch= 0.0099 mD= 0.94 =calculated stiffness of metal roof diaphragm Since roof sheathing is metal, mD used for calculations is 0.94 Page 5 of 12 Post Wind Load Calculation Determine the bending stress on the post from the wind load Windward wall wind pressure= 1016 psf Leeward wall wind pressure= -8.17 psf Total wind pressure= 18.34 psf Total wall pressure to use= 18.34 psf(10 psf min.per code) L= 180 in Bending length of the post w= 18.34 pli Distributed wind load on the post Mix= 37,131 lbf-in Moment as a propped cantilever(w x L2)/(2 x 8) fb_pc= 580 psi Stress on the post from the distirbuted wall wind,=Mpc/S, R= 1,238 lbf Total side sway force=3 x w x(L/8) mD= 0.94 Stiffness coefficient from diaphragm stiffness calculation, or 1.0 if wood sheathing in roof Q= 1,165 lbf Side sway force resisted by the roof diaphragm= mD x R WR= 17.3 pli The total distributed wind load resisted by the roof diaphragm=8 x((Q/(3 x L)) wpost= 1.07 pli The total distributed wind load NOT resisted by the roof diaphragm for which the post must resist.Wpost=w-wR Mcant= 17,399 lbf-in The moment in the post as a simple cantilever =wpost x((L2)/2) (This value is 0 if roof is a wood diaphragm) (cant= 136 psi The fiber stress in the post from simple cantilever stress =Mcant/(2 x SX) (This value is 0 if roof is a wood diaphragm) Mpost= 52,355 lbf-in The total moment in the post= (mD x Mpc)+Mcant fb-post= 682 psi The total bending stress on the post=(mD x fb_pc)+fcant Page 6 of 12 Post Design Determine the allowable bending and compression stresses for the eave wall posts per 2012 NDS Nominal Design Values(allowable) Adjustment factors per Table 4.3.1 Fb: 575 psi-bending CD for snow 1.15 LDF for snow Fc: 575 psi-compression CD for wind/seismic 1.6 LDF for wind/seismic Co for post 1.0 Size factor for posts< 12"in depth Final Design Values Cp= 0.82 Column stability factor per Section 3.7 Fb_desi9n: 920 psi final allowable bending stress Fc_design: 539 psi final allowable compression stress Combined Bending And Compressive(CBAC)Post Loads by Load Case Determine the maximum Combined Bending And Compressive stresses in the eave wall post per NDS 3.9.2 using applicable load cases from ASCE 7-10 Section 2.4. Load Case 1 -Dead Load+Snow Fb design: 920 psi Final allowable bending stress Fc_design: 539 psi Final allowable compression stress Pdead= 792 lbs Dead load Psnow= 6600 lbs Snow load A= 48 sq-in Cross-sectional area of post FcE= 1,015 psi fb= 0 psi=0 fc= 154 psi=(Psnow+ Pdead)/A CBAC1= 0.08 =((fc/Fc_design)2)+((fb/(Fb_design(1-(fc/FcE)))))) Load Case 2-Dead Load+0.6Wind Fb_design: 920 psi Final allowable bending stress Fcdesign: 539 psi Final allowable compression stress Pdead= 792 lbs Dead load Psnow= 6600 lbs Snow load A= 48 sq-in Cross-sectional area of post FcE= 1,015 psi fb= 409 psi=0.6 x fb_post fc= 17 psi= Pdead/A CBAC2= 0.45 =((fc/Fc_design)2)+((fb/(Fb_design(1-(fc/FoE)))))) Load Case 3-Dead Load+0.75(0.6Wind)+0.75Snow Fb design: 920 psi Final allowable bending stress Fcdesign: 539 psi Final allowable compression stress Pdead= 792 lbs Dead load Psnow= 6600 lbs Snow load A= 48 sq-in Cross-sectional area of post FcE= 1,015 psi fb= 307 psi=.75 x(0.6 x fb_post) fc= 120 psi= ((.75 x Psnow)+ Pdead)/A CBAC3= 0.43 =((fc/Fc_design)2)+((fb/(Fb_design(1-(fc/FcE)))))) Max.CBAC= 45% » Maximum post usage< 100%OK Page 7of12 • Post Embedment Calculation Determine the minimum posthole diameter and embedment depth for the eave wall posts per ASAE EP486.1 Since there is no slab,the post will be considered non-constrained at the top The backfill will be concrete full depth. Design Criteria: Sy= 1500 psf-vertical soil bearing capacity S= 150 psf-lateral sod bearing capacity Mpost= 2,618 ft-lbs-Moment at top of one posthole Va= 677 lbs-Lateral load on post at top of posthole Posthole dia.= 2 ft. b= 2.00 ft-maximum width of post in soil(=posthole diameter if concrete backfill) Aftg= 3.14 ft2-area of footing d= - ft-depth of footing to be determined below Per Sections 4.2.2.1 and 4.2.2.2,allowable lateral soil bearing capacities may be increased by 2 for isolated posts(spaced at least 3 ft. apart),and by 1.33 for wind loading SLAT= 449 psf-factored lateral soil bearing capacity Minimum embedment depth required for lateral load,non-constrained at the top, concrete backfill,per Section 6.6.2 dmm= [((6 x Va) + ((8 x Mpost)/d)))/(SLAT x b)]^1/2 (iteration to dmin_L= 3.38 ft:minimum depth requried for lateral load Allowable vertical soil bearing pressure for gravity loads S,= Sy X Aftg x(1+(0.2 x(d-1)) Sy= 1500 psf-vertical soil bearing capacity Aft9= 3.14 ft2-area of footing d= minimum depth for vertical bearing requirements Maximum vertical load on footing from gravity load Pfooting= 7,392 lbs-vertical load on footing Posthole depth for this building = 5.00 ft-minimum depth to bottom of footing Vertical capacity for footing Pauow= 8,482 lbs->Pfooting-OK Page 8 of 12 Roof and Gable Wall Shear Loads and Diaphragm Design Roof Roof width= 40 ft. Hoof= 6.67 ft. Total roof wind pres.,0.6 x Pr= -2.61 psf(0.6 x Pr) Total roof wind pressure to use= 4.80 psf-use 0 if Pr<0 Total wall wind pressure= 11.00 psf(0.6 x(qwW-qtr)) Total wall wind pressure to use= 11.00 psf-use 0.6 x 16=9.6 psf minimum Diaphragm seismic load= 1,156 lbs-VRoof x 0.7 Diaphragm wind load= 3,954 lbs Diaphragm load to use= 3,954 lbs-Wind load controls Roof shear= 99 plf Sheathing= 29 ga.Metal only Allowable shear= 113 plf>Roof shear-OK Sheathing fastening= #9 screws at 9"o.c. Gable walls Left Gable Wall Left gable wall shear Vseismic= 1,387 lbs-VLGw x 0.7 Left gable wall shear VW;fd= 3,954 lbs-from Diaphragm wind load above Diaphragm load to use= 3,954 plf-Wind controls Left Gable wall= 99 plf Allowable shear= 113 plf>Wall shear-OK Sheathing fastening= #9 screws at 9"o.c. Right Gable Wall Right gable wall shear Vseismic= 1,387 lbs-VRGw x 0.7 Right gable wall shear Vw;r,d= 3,954 lbs-from diaphragm wind load above Diaphragm load to use= 3,954 plf-Wind controls Right Gable wall= 99 plf Allowable shear= 113 plf>_Wall_shear_-OK Sheathing fastening= #9 screws at 9"o.c. Page 9 of 12 Eave Wall Shear Loads and Diaphragm Design Eave walls Building Length= 84 ft. Gable wall wind pressure= 9.60 psf-use 0.6 x 16=9.6 psf minimum Diaphragm wind load= 1,310 lbs Front Eave Wall Front eave wall shear Vselsmic= 1,557 lbs-VFEw x 0.7 Front eave wall shear VW;nd= 1,310 lbs-from diaphragm wind load above Diaphragm load to use= 1,557 plf-Seismic controls Front eave wall= 23 plf Allowable shear= 113 plf>Wall shear-OK Sheathing fastening= #9 screws at 9"o.c. Rear Eave Wall Rear eave wall shear Vseismic= 1,557 lbs-VREw x 0.7 Rear eave wall shear Vw;nd= 1,310 lbs-from diaphragm wind load above Diaphragm load to use= 1,557 plf-Seismic controls Rear eave wall= 19 plf Allowable shear= 113 plf>Wall shear-OK Sheathing fastening= #9 screws at 9"o.c. Page 10 of 12 • Purlin &Girt Calculations Purlin Calculation Roof Pitch: 4 /12 Roof Angle: 18.4 ° Greatest purlin span: 138 in Purlin SX: 7.56 in3 Live+dead load: 28 psf Max.o.c.spacing: 24 in.o.c. M: 10,539 in-lbf fb: 1,394 psi Fb allowable: 1,547 psi-per NDS Section 4 and Design Values for Wood Construction Purlin usage: 90% OK End reactions: Snow load: 322 lbs If joist hanging,use LU26 joist hanger w/10d nails or JB26 top-flange joist hanger w/10d nails uplift: 316 lbs (2) 16d nails each side of purlin block or joist hanger adequate Girt Calculation Greatest Bay Spacing: 12 ft. O.C.Spacing: 24 in Girt SX: 7.56 in3 Total wind pressure: 14.96 psf w: 2.49 pli Girt Span: 138 in M: 5,935 lbf-in fb: 785 psi Fb allowable: 2,153 psi-per NDS Section 4 and Design Values for Wood Construction Girt usage: 36% OK Page 11 of 12 • • BEARING BLOCK BOLTS IN DOUBLE SHEAR Calculate required number of bolts,and the correct bolts spacings and bearing block size for the intermediate truss bearing posts. Posts are assumed to be#2 HF;bearing blocks assumed to be#2 HF. Total load from both trusses= 7,392 lbs. Bolt size= 5/8 "0(NOTE: Use 5/8"0,3/4"O 7/8"0 Cr 1"0 only) Main member,er,= 6 in-post width Post depth= 8 in-post depth Side member(s),es= 3 in-total for 2 side members No.of fastener columns= 2 No.of bolts required,nb= 4.05 >> nb= 5 Bolts)in block Truss bearing block= 2x6 Verify with truss engineering Minimum block length, Lb= 16.88 in (no less than 12") Minimum block width,Wb= 5.5 in (<[(2 x de)+dehe], <truss bearing block) Dimension Summary det= 4 3/8 in(min) deb= 2 1/2 in(min) drys= 2 1/2 in(min) dens= 1 in(min) de= 1 in(min) det Number of bolts,nb= 5 (min) Lb 6 _ drys Block length,Lb= 16 7/8 in(min) drys ® drys Block width,Wb= 51/2 in(min) _ deb de de Ochs —Wb, NOTE: Number of bolts shown for example only-use nb for actual design. Page 12 of 12