Specifications cA C) SLS ''' LXVIING.•`M
RECEIVED
1 t APR 4 2.019
South Valley Engineering CITY OFTIGARD
4742 Liberty Rd. S #151 • Salem, OR. 97302 BUILDING DIVISION
Ph. (503) 302-7020 • Fax (888) 535-6341
www.southvalleyengineering.com
Project No.
11902034
Revision 1
Calculations for
Tigard High School
9000 SW Durham Rd.
Tigard, OR. 97224
Date
3/28/2019
Engineer
.E ) PROF;
/c;cierry 4,. X
r
OREGON
r/FN R. HE°
RENEWS: 6/30/19
POST FRAME BUILDING SUMMARY SHEET
Owner: Tigard High School Date: 3/28/2019
Building location: 9000 SW Durham Rd.
Tigard,OR.97224 Project No.: 11902034
Revision: 1
Building Description: Private shop Building Codes: 2014 OSSC,ASCE 7-10
Building dimensions: Environmental information:
Width: 40 ft. Wind speed: 120 MPH
Length: 84 ft. Wind exposure: B
Height: 16 ft. Seismic design category: D
Eave overhang: 2 ft. S5: 0.95
Gable overhang: 2 ft. Si: 0.42
Roof pitch: 4 /12 Ground snow load: 25 psf.
Bay spacing: 12 ft. Design Snow Load: 25 psf.
Post tributary width: 12 ft. Roof dead load: 3 psf. (incl.ceiling load if any)
Concrete Slab: No Soil bearing capacity: 1,500 psf.
Risk Category: I Per Table 1.5-1
ASCE 7-10
Post&posthole information:
Eave wall posts: Gable wall posts:
Size: 6x8 Size: 6x8
Grade: #2 H-F Grade: #2 H-F
Type: RS* Type: RS*
Posthole diameter: 24 in Posthole diameter: 24 in
Posthole depth**: 5.00 ft. Posthole depth**: 5.00 ft.
Post Constraint/backfill:
no slab,concrete Post Constraint/backfill: no slab,concrete
backfill backfill
*Rough Sawn *Rough Sawn
**To bottom of footing **To bottom of footing
Purlin &girt information:
Purlins Girts
Size: 2x6 Size&orientation: 2x6 Commercial
Grade: #2 D-F Grade: #2 D-F
Spacing: 24 in.o.c. Spacing: 24 in.o.c.
Sheathing information:
Roof: 29 ga. Metal only
Walls: All walls,are 29 ga.metal only
Page 1 of 12
Snow Load Calculations
Snow load calculations per ASCE 7-10 Chapter 7
pg: 25 psi-Ground Snow Load
Ce: 1.0 Exposure Factor from ASCE Table 7-2
Ct: 1.2 Thermal Factor from ASCE Table 7-3
is: 1.0 Importance Factor from ASCE Table 1.5-2
Flat Roof Snow Load,Pt=0.7 X pg x Ce x Ct x Is
Pt: 21 psf-Flat Roof Snow Load
Cs: 0.88 Figure 7-2 based on Ct,roof slope and surface
ps: 18.4 psf-Sloped roof snow load
Pdesign: 25 psf-Design Snow Load
Page 2 of 12
Wind Pressure Calculations
Wind calculations per ASCE 7-10 Chapter 28 Part 1:Enclosed and Partially Enclosed Low Rise Buildings
Roof Pitch: 4 /12 Design Wind Speed,V: 120 MPH
Eave Height: 16 ft. Wind Exposure: B Risk Category:
Velocity pressures q2&qh per equation 28.3-1:
q2=0.00256xK2xK2txKdxV2 at eave height z
qh=0.00256xKhxKZtxKdxV2 at mean roof height h
Angle: 18.43
K2: 0.63 Velocity pressure coefficient at eave ht.z from Table 27.3-1
Kh: 0.70 Velocity pressure coefficient at roof ht.h from Table 27.3-1
Kn: 1.0 Topographic effrect-assume no ridges or escarpments
Kd: 0.85 Wind Directionality Factor,Table 26.6-1
Velocity Pressures:q2= 19.68 psf qh= 21.93 psf
Determine Velocity Pressure Coefficients&Wind Pressures per ASCE 7-10 Figure 28.4-1 for MWFRS
MWFRS
1. Windward Eave Wall Pressure 2. Leeward Eave Wall:
GCpfww: 0.52 GCpfwr: -0.42
qww: 10.16 psf qfw: -8.17 psf
3. Windward Eave Roof Pressure 4. Leeward Eave Roof:
GCptwr: -0.69 GCptir -0.47
qwr -13.58 psf qir: -9.22 psf
5. Windward Gable Wall: 6. Leeward Gable Wall:
GCptwg: 0.40 Cptwg: -0.29
qhw: 7.87 psf qiw: -5.71 psf
Components&Cladding
GCp;: 0.18 Internal pressure per Figure 26.11-1
7. Roof elements
GCpr: -0.82
ger: 21.98 psf Roof elements per Figure 30.4-2B
8. Wall elements:
GCpw: -0.96
ger: 24.93 psf IWall elements per Figure 30.4-1
Page 3 of 12
•
Seismic Design Parameters
Calculate seismic building loads from ASCE 7-10 Section 12.14.8
Seismic Parameters
Ss=1 0.95 S1= 0.42
F,.,= 1.12 F,= 1.58 per Tables 11.4-1 & 11.4-2
SMs= 1.07 SM1= 0.66 Calculated per Section 11.4.3
Sos= 0.71 SDI= 0.44 Calculated per Section 11.4.4
Seismic Design
Category= D From Section 11.6 F= 1.0 for 1 story building
Response Mod.Factor R:
Roof: 2.5 From Table 12.14-1, Section B-24
Left gable wall: 2.5 From Table 12.14-1, Section B-24
Right gable wall: 2.5 From Table 12.14-1,Section B-24
Front eave wall: 2.5 From Table 12.14-1,Section B-24
Rear eave wall: 2.5 From Table 12.14-1,Section B-24
Calculate building weights,W,for seismic forces
Building width= 40 ft. Building length= 84 ft. Building height= 16 ft.
Roof area= 3,872 sf Gable wall area= 773 sf Eave wall area= 1344 sf
Roof+ceiling DL= 3 psf Snow LL(if appliable)= 0 psf Roof W= 11,616 lbs
Loft(y/n): n Loft dead load: N/A psf Full or partial loft: N/A
Wall Areas Building dead loads Loft dead loads
Left gable wall: 773 SF Left gable wall: 3 psf Left gable wall: 0 lbs
Right gable wall: 773 SF Right gable wall: 3 psf Right gable wall: 0 lbs
Front eave wall: 1,344 SF Front eave wall: 3 psf Front eave wall: 0 lbs
Rear eave wall: 1,344 SF Rear eave wall: 3 psf Rear eave wall: 0 lbs
Calculate Seismic Base Shear,V per Section 12.14.8
V=[(FxSDs)/R]xW (Eqn. 12.14-11)
Total dead loads,W (incl roof, loft)
Roof: 5,808 lbs Vroof= 1,651 lbs base shear for roof diaphragm
Left gable wall: 6,968 lbs VLEw= 1,981 lbs base shear for wall diaphragm
Right gable wall: 6,968 lbs VRGW= 1,981 lbs base shear for wall diaphragm
Front eave wall: 7,824 lbs VFEW= 2,225 lbs base shear for wall diaphragm
Rear eave wall: 7,824 lbs VREW= 2,225 lbs base shear for wall diaphragm
Page 4 of 12
Diaphragm Stiffness Calculation
Tffwill be eedo "Post Frame Building Design",
byhe Johndiaphragm N.Walkerstiandness Frank E.calculatWoeste.d basThis d methodonthe ismethowidely acceptedology frm in the post frame industry for
determining metal diaphragm stiffness.
1. The diaphragm stiffness,c'= (Ext)/[2x(1+u)x(g/p)+ (K2/(bxt)2)
Where: c'= 3130 lbs/in=Diaphragm stiffness of the test panel(1992 Fabral Test for Grandrib Ill)
E= 2.75E+07 psi=Modulus of elasticity for metal sheathing
t= 0.017 in=Steel thickness for 29 ga metal sheathing
u= 0.3 =Poisson's ratio for steel
g/p= 1.085 =Ratio of steel corrugation pitch to steel sheet width
b= 144 in.=Length of test panel
K2= - =Sheet edge purlin fastening constant(unknown)
2.The diaphragm for the same metal for a different length b can be calculated with the above
above equation once the constant K2 is known. Solving for K2 yields:
K2=[((Ext)x(bxt2))/c]-[2x(1+u)x(bxt)2x(g/p) K2= 878 in4
3.The stiffness of the acutal panel will be calculated from equation in 1. above,based on its actual length,b'
Roof pitch= 4 /12 Building width= 40 ft 8= 18.43 °roof angle
b'= 252.98 in= length of steel roof panel at the given angle for 1/2 of the roof
c= 9294 lbs/in-stiffness of actual roof diaphragm
4.Calculate the equivalent horizontal roof stiffness,ch for the entire roof
ch= 2xcx(cos29)x(b'/a) ch= 29,391 lb/in a= 144 in.post spacing
5. Calculate the stiffness,k,of the post frame,which is the load required for the top of the frame a distance,d
For d=1",k=P=(6xdxEpxlp)/L3
d= 1 in-deflection used to establish k 1p= 256 in4-Momentof inertia of post
Ep= 1.10E+06 psi-Modulus of elasticity of post L= 180 in-Bending length of post
k= 290 lbs/in
6.Determine the side sway force, mD from tables based on k/ch verses number of frames.
NF= 8 frames in building (including end walls) k/ch= 0.0099
mD= 0.94 =calculated stiffness of metal roof diaphragm
Since roof sheathing is metal, mD used for calculations is 0.94
Page 5 of 12
Post Wind Load Calculation
Determine the bending stress on the post from the wind load
Windward wall wind pressure= 1016 psf
Leeward wall wind pressure= -8.17 psf
Total wind pressure= 18.34 psf
Total wall pressure to use= 18.34 psf(10 psf min.per code)
L= 180 in Bending length of the post
w= 18.34 pli Distributed wind load on the post
Mix= 37,131 lbf-in Moment as a propped cantilever(w x L2)/(2 x 8)
fb_pc= 580 psi Stress on the post from the distirbuted wall wind,=Mpc/S,
R= 1,238 lbf Total side sway force=3 x w x(L/8)
mD= 0.94 Stiffness coefficient from diaphragm stiffness calculation,
or 1.0 if wood sheathing in roof
Q= 1,165 lbf Side sway force resisted by the roof diaphragm= mD x R
WR= 17.3 pli The total distributed wind load resisted by the roof diaphragm=8 x((Q/(3 x L))
wpost= 1.07 pli The total distributed wind load NOT resisted by the roof diaphragm
for which the post must resist.Wpost=w-wR
Mcant= 17,399 lbf-in The moment in the post as a simple cantilever
=wpost x((L2)/2) (This value is 0 if roof is a wood diaphragm)
(cant= 136 psi The fiber stress in the post from simple cantilever stress
=Mcant/(2 x SX) (This value is 0 if roof is a wood diaphragm)
Mpost= 52,355 lbf-in The total moment in the post= (mD x Mpc)+Mcant
fb-post= 682 psi The total bending stress on the post=(mD x fb_pc)+fcant
Page 6 of 12
Post Design
Determine the allowable bending and compression stresses for the eave wall posts per 2012 NDS
Nominal Design Values(allowable) Adjustment factors per Table 4.3.1
Fb: 575 psi-bending CD for snow 1.15 LDF for snow
Fc: 575 psi-compression CD for wind/seismic 1.6 LDF for wind/seismic
Co for post 1.0 Size factor for posts< 12"in depth
Final Design Values Cp= 0.82 Column stability factor per Section 3.7
Fb_desi9n: 920 psi final allowable bending stress
Fc_design: 539 psi final allowable compression stress
Combined Bending And Compressive(CBAC)Post Loads by Load Case
Determine the maximum Combined Bending And Compressive stresses in the eave wall post per NDS 3.9.2
using applicable load cases from ASCE 7-10 Section 2.4.
Load Case 1 -Dead Load+Snow
Fb design: 920 psi Final allowable bending stress
Fc_design: 539 psi Final allowable compression stress
Pdead= 792 lbs Dead load
Psnow= 6600 lbs Snow load
A= 48 sq-in Cross-sectional area of post FcE= 1,015 psi
fb= 0 psi=0 fc= 154 psi=(Psnow+ Pdead)/A
CBAC1= 0.08 =((fc/Fc_design)2)+((fb/(Fb_design(1-(fc/FcE))))))
Load Case 2-Dead Load+0.6Wind
Fb_design: 920 psi Final allowable bending stress
Fcdesign: 539 psi Final allowable compression stress
Pdead= 792 lbs Dead load
Psnow= 6600 lbs Snow load
A= 48 sq-in Cross-sectional area of post FcE= 1,015 psi
fb= 409 psi=0.6 x fb_post fc= 17 psi= Pdead/A
CBAC2= 0.45 =((fc/Fc_design)2)+((fb/(Fb_design(1-(fc/FoE))))))
Load Case 3-Dead Load+0.75(0.6Wind)+0.75Snow
Fb design: 920 psi Final allowable bending stress
Fcdesign: 539 psi Final allowable compression stress
Pdead= 792 lbs Dead load
Psnow= 6600 lbs Snow load
A= 48 sq-in Cross-sectional area of post FcE= 1,015 psi
fb= 307 psi=.75 x(0.6 x fb_post) fc= 120 psi= ((.75 x Psnow)+ Pdead)/A
CBAC3= 0.43 =((fc/Fc_design)2)+((fb/(Fb_design(1-(fc/FcE))))))
Max.CBAC= 45% » Maximum post usage< 100%OK
Page 7of12
•
Post Embedment Calculation
Determine the minimum posthole diameter and embedment depth for the eave wall posts
per ASAE EP486.1
Since there is no slab,the post will be considered non-constrained at the top
The backfill will be concrete full depth.
Design Criteria:
Sy= 1500 psf-vertical soil bearing capacity
S= 150 psf-lateral sod bearing capacity
Mpost= 2,618 ft-lbs-Moment at top of one posthole
Va= 677 lbs-Lateral load on post at top of posthole
Posthole dia.= 2 ft.
b= 2.00 ft-maximum width of post in soil(=posthole diameter if concrete backfill)
Aftg= 3.14 ft2-area of footing
d= - ft-depth of footing to be determined below
Per Sections 4.2.2.1 and 4.2.2.2,allowable lateral soil bearing capacities may be increased
by 2 for isolated posts(spaced at least 3 ft. apart),and by 1.33 for wind loading
SLAT= 449 psf-factored lateral soil bearing capacity
Minimum embedment depth required for lateral load,non-constrained at the top,
concrete backfill,per Section 6.6.2
dmm= [((6 x Va) + ((8 x Mpost)/d)))/(SLAT x b)]^1/2 (iteration to dmin_L= 3.38 ft:minimum depth requried for
lateral load
Allowable vertical soil bearing pressure for gravity loads
S,= Sy X Aftg x(1+(0.2 x(d-1))
Sy= 1500 psf-vertical soil bearing capacity
Aft9= 3.14 ft2-area of footing
d= minimum depth for vertical bearing requirements
Maximum vertical load on footing from gravity load Pfooting= 7,392 lbs-vertical load on footing
Posthole depth for this building = 5.00 ft-minimum depth to bottom of footing
Vertical capacity for footing Pauow= 8,482 lbs->Pfooting-OK
Page 8 of 12
Roof and Gable Wall Shear Loads and Diaphragm Design
Roof
Roof width= 40 ft.
Hoof= 6.67 ft.
Total roof wind pres.,0.6 x Pr= -2.61 psf(0.6 x Pr)
Total roof wind pressure to use= 4.80 psf-use 0 if Pr<0
Total wall wind pressure= 11.00 psf(0.6 x(qwW-qtr))
Total wall wind pressure to use= 11.00 psf-use 0.6 x 16=9.6 psf minimum
Diaphragm seismic load= 1,156 lbs-VRoof x 0.7
Diaphragm wind load= 3,954 lbs
Diaphragm load to use= 3,954 lbs-Wind load controls
Roof shear= 99 plf
Sheathing= 29 ga.Metal only
Allowable shear= 113 plf>Roof shear-OK
Sheathing fastening= #9 screws at 9"o.c.
Gable walls
Left Gable Wall
Left gable wall shear Vseismic= 1,387 lbs-VLGw x 0.7
Left gable wall shear VW;fd= 3,954 lbs-from Diaphragm wind load above
Diaphragm load to use= 3,954 plf-Wind controls
Left Gable wall= 99 plf
Allowable shear= 113 plf>Wall shear-OK
Sheathing fastening= #9 screws at 9"o.c.
Right Gable Wall
Right gable wall shear Vseismic= 1,387 lbs-VRGw x 0.7
Right gable wall shear Vw;r,d= 3,954 lbs-from diaphragm wind load above
Diaphragm load to use= 3,954 plf-Wind controls
Right Gable wall= 99 plf
Allowable shear= 113 plf>_Wall_shear_-OK
Sheathing fastening= #9 screws at 9"o.c.
Page 9 of 12
Eave Wall Shear Loads and Diaphragm Design
Eave walls
Building Length= 84 ft.
Gable wall wind pressure= 9.60 psf-use 0.6 x 16=9.6 psf minimum
Diaphragm wind load= 1,310 lbs
Front Eave Wall
Front eave wall shear Vselsmic= 1,557 lbs-VFEw x 0.7
Front eave wall shear VW;nd= 1,310 lbs-from diaphragm wind load above
Diaphragm load to use= 1,557 plf-Seismic controls
Front eave wall= 23 plf
Allowable shear= 113 plf>Wall shear-OK
Sheathing fastening= #9 screws at 9"o.c.
Rear Eave Wall
Rear eave wall shear Vseismic= 1,557 lbs-VREw x 0.7
Rear eave wall shear Vw;nd= 1,310 lbs-from diaphragm wind load above
Diaphragm load to use= 1,557 plf-Seismic controls
Rear eave wall= 19 plf
Allowable shear= 113 plf>Wall shear-OK
Sheathing fastening= #9 screws at 9"o.c.
Page 10 of 12
•
Purlin &Girt Calculations
Purlin Calculation
Roof Pitch: 4 /12
Roof Angle: 18.4 °
Greatest purlin span: 138 in
Purlin SX: 7.56 in3
Live+dead load: 28 psf
Max.o.c.spacing: 24 in.o.c.
M: 10,539 in-lbf
fb: 1,394 psi
Fb allowable: 1,547 psi-per NDS Section 4 and Design Values for Wood Construction
Purlin usage: 90% OK
End reactions:
Snow load: 322 lbs If joist hanging,use LU26 joist hanger w/10d nails
or JB26 top-flange joist hanger w/10d nails
uplift: 316 lbs (2) 16d nails each side of purlin block or joist hanger adequate
Girt Calculation
Greatest Bay Spacing: 12 ft.
O.C.Spacing: 24 in
Girt SX: 7.56 in3
Total wind pressure: 14.96 psf
w: 2.49 pli
Girt Span: 138 in
M: 5,935 lbf-in
fb: 785 psi
Fb allowable: 2,153 psi-per NDS Section 4 and Design Values for Wood Construction
Girt usage: 36% OK
Page 11 of 12
•
•
BEARING BLOCK BOLTS IN DOUBLE SHEAR
Calculate required number of bolts,and the correct bolts spacings and bearing block size for the intermediate truss
bearing posts. Posts are assumed to be#2 HF;bearing blocks assumed to be#2 HF.
Total load
from both trusses= 7,392 lbs.
Bolt size= 5/8 "0(NOTE: Use 5/8"0,3/4"O 7/8"0 Cr 1"0 only)
Main member,er,= 6 in-post width
Post depth= 8 in-post depth
Side member(s),es= 3 in-total for 2 side members
No.of fastener columns= 2
No.of bolts required,nb= 4.05 >> nb= 5 Bolts)in block
Truss bearing block= 2x6 Verify with truss engineering
Minimum block length, Lb= 16.88 in (no less than 12")
Minimum block width,Wb= 5.5 in (<[(2 x de)+dehe],
<truss bearing block)
Dimension Summary
det= 4 3/8 in(min)
deb= 2 1/2 in(min)
drys= 2 1/2 in(min)
dens= 1 in(min)
de= 1 in(min) det
Number of bolts,nb= 5 (min) Lb 6 _ drys
Block length,Lb= 16 7/8 in(min) drys
® drys
Block width,Wb= 51/2 in(min) _
deb
de
de
Ochs
—Wb, NOTE: Number of bolts shown for
example only-use nb for actual design.
Page 12 of 12