Specifications T0cO1
�� ,\ �ow/a t Lr2
9
1i \.
1r
I'.'II I' 2 i I'3) 114 1 I ; oikilEWINIENERIE
,.
STRUCTURAL CALCULATIONS RECEIVEI)
NEW ADDITION
11958 SW 125th Ct., Tigard, OR 97223 MAY 1 0 2018
CHRIS & JESSICA ANDERSON CITY OF TIGARD
BUILDING DIVISION
May 9, 2018
Project No. 180145
78 Pages
,s> „,,,
5�(0)—v.PROic�L`
,:6-. off
Q, •• 909P' ,`"%,, ,
.� o.jArir 734
rk., IRE c411P"
EFFTRES:i'ap. zo/.'
***LIMITATIONS***
ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT
DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT,
WHO IS SOLELY RESPONSIBLE FOR THE ACCURACY OF THE SAME.
NO RESPONSIBILITY AND/OR LIABILITY IS ASSUMED BY,
OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS
BEYOND THAT SHOWN ON THESE SHEETS.
11611725 710,9eea nt, #17
'Pa ftcauuen, V,4 9g6E4
503, 737,4344
_ca{ tttezu.e.pact
l).si a:Map.-'t:naaua.rr3 i :l=xlt t:ttl+ ;:. rth rwk,.ts o‘;,.:11.is;c a rear sgx�`u .un,arrear}.phis:"ttttii�tste ...
usGs Design Maps Summary Report
User—Specified Input
Report Title Anderson Residence
5..,t torr S . 1s2t':::w:.
Building Code Reference Document ASCD 7-:0;tariddi
!+1LS...S ra.:41::::et4,0,..s frL,t 24/:&:
Site Coordinates 45.433734N, 122.605S9£W
Site Soil Classification Site Class D 'Sti(1 Sail•
Risk Category I/Ii/III
• J-4III Sb Oto
*Portland
Beaverton
i
Lake Oswego
44,
lu Alei tin
•
Sherwood
•
•
Oregian City
USGS—Provided Output
Ss = 0.963t Sns = 1,074y S„.5 zit 0.716q
S, = 0.423 9 S = 0.667 q 5 = 0.445 y
For information on hove the SS and S1 values above have heen calculated from probabilistic Frisk-targeted)and
deterministic or::lun,i motions in the tfre,:tic"n of ma'irrclrr hori!:antai resruunee, please_return to the application and
seleet the`2009 P,EF-IRP _ode reference document
Mt'F,Rcspon>a-'puUtruan pont i Response spectrum
si
t
Period.3-tut'• Peri d.'T Isee.
For Fn K. T arid Cvalues, pleantr s rear
Rtkt:a. I Ii et.in 3ttsn e>a pttucet St tt'e U.S_Cr4.1k gtc4 a.trey, tl o'sea t'u narznnky,topres.re{x{ni led.,e k">CP:.:ta.raCy of
tt.+ .'.=ttl•erCYs-rh tefitiS eel,i stb tatuie setatxa-£Mace I. {4e11G8_
1:311 PM
'=VA' /'v u,!'tt,2q_Le( Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC i Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 1 of 78
SEISMIC FORCES (ASCE7)
SEISMIC FORCES(ASCE 7-10)
Tedds calculation version 3.0.10
Site parameters
Site class D
Mapped acceleration parameters (Section 11.4.1)
at short period Ss=0.963
at 1 sec period Si =0.423
Site coefficientat short period (Table 11.4-1) Fa= 1.115
at 1 sec period (Table 11.4-2) = 1.577
Spectral response acceleration parameters
at short period(Eq. 11.4-1) Sims=Fa x Ss= 1.074
at 1 sec period (Eq. 11.4-2) SM1 = F„x Si =0.667
Design spectral acceleration parameters(Sect 11.4.4)
at short period (Eq. 11.4-3) Sas= 2/3 x SMs=0.716
at 1 sec period (Eq. 11.4-4) Sol =2/3 x SM1 =0.445
Seismic design category
Risk category(Table 1.5-1) II
Seismic design category based on short period response acceleration (Table 11.6-1)
D
Seismic design category based on 1 sec period response acceleration (Table 11.6-2)
D
Seismic design category D
Approximate fundamental period
Height above base to highest level of building hn= 17 ft
From Table 12.8-2:
Structure type All other systems
Building period parameter Ct Ct=0.02
Building period parameter x x=0.75
Approximate fundamental period (Eq 12.8-7) Ta=Ct x (hn)0 x 1sec/(1ft)x=0.167 sec
Building fundamental period (Sect 12.8.2) T=Ta=0.167 sec
Long-period transition period Tt_= 16 sec
Seismic response coefficient
Seismic force-resisting system(Table 12.2-1) A. Bearing_Wall_Systems
15. Light-frame(wood)walls sheathed with wood structural panels
Response modification factor(Table 12.2-1) R=6_5
f'
V_ %�t «L�rt:tp 1'�'f_" I Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 2 of 78
Seismic importance factor(Table 1.5-2) le= 1.000
Seismic response coefficient(Sect 12.8.1.1)
Calculated (Eq 12.8-2) C5_calc=SDS/(R/le)=0.1101
Maximum (Eq 12.8-3) Cs_max=SD1 /(T x (R/le)) =0.4086
Minimum (Eq 12.8-5) Cs_nsn= max(0.044 x SDS x le,0.01) =0.0315
Seismic response coefficient Cs=0.1101
Seismic base shear(Sect 12.8.1)
Effective seismic weight of the structure W= 12.8 kips
Seismic response coefficient Cs=0.1101
Seismic base shear(Eq 12.8-1) V= Cs x W= 1_4 kips
Vertical distribution of seismic forces(Sect 12.8.3)
Vertical distribution factor(Eq 12.8-12) Cvx=wx x hxk/E(w; x h;k)
Lateral force induced at level i(Eq 12.8-11) Fx=Cvx x V
Vertical force distribution table
Portion of Distribution
effective
Height from exponent Vertical Lateral force
Level base to Level i seismic weight related to distribution induced at
hx assigned to
(ft), Level i(kips), building period, factor, Cvx Level i (kips), Fx
wx
1 8.0 8.3 1.00 0.465 0.7
2 17.0 4.5 1.00 0.535 0.8
•
_ ___ Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 3 of 78
Design wind force:
vuit= 135 mph
Vasd=Vult*il(0.6)=104.571 mph
WIND LOADING (ASCE7-10)
WIND LOADING(ASCE7-10)
in accordance with ASCE7-10 incorporating Errata No. 1 and Errata No.2
Using the directional design method
Tedds calculation version 2.0.20
_V_
N 12ft-- -NI. 14 46.1 ft 101
Plan Elevation
Building data
Type of roof Gable
Length of building b= 12.00 ft
Width of building d =46.08 ft
Height to eaves H = 17.00 ft
Pitch of roof ao= 18.9 deg
Mean height h =20.94 ft
General wind load requirements
Basic wind speed V= 105.0 mph
Risk category II
/'�'f' Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)7374344 By R.P. Date 5/7/2018 Page 4 of 78
Velocity pressure exponent coeff(Table 26.6-1) Kd=0.85
Exposure category(c1.26.7.3) B
Enclosure classification (c1.26.10) Enclosed buildings
Internal pressure coef+ve(Table 26.11-1) GCp;_p=0.18
Internal pressure coef-ve(Table 26.11-1) GCp;_fl=-0.18
Gust effect factor Gf=0.85
Topography
Topography factor not significant Kzt= 1.0
Velocity pressure equation q =0.00256 x KZ x KZt x Kd x V2 x 1psf/mph2
Velocity pressures table
z(ft) K (Table 27.3-1) qz(psi)
15.00 0.57 13.67
15.00 0.57 13.67
17.00 0.59 14.15
20.94 0.63 15.06
24.89 0.66 15.81
Peak velocity pressure for internal pressure
Peak velocity pressure-internal (as roof press.) qi= 15.06 psf
Pressures and forces
Net pressure p=q x Gf x Cpe-qi x GCp;
Net force Fw= p x Aref
Roof load case 1 -Wind 0, GCp; 0.18, -cpe
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient cpe pressure qp p Aref FW
(ft) (psi) (psf) (ft2) (kips)
A(-ve) 20.94 -0.44 15.06 -8.39 292.26 -2.45
B (-ve) 20.94 -0.58 15.06 -10.11 292.26 -2.95
Total vertical net force Fw,v= -5.11 kips
Total horizontal net force Fw,h=0.16 kips
Walls load case 1 -Wind 0,GCp;0.18, -cpe
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient cpe pressure qp p Aref Fw
(ft) (psi) (psi) (ft2) (kips)
Ai 15.00 0.80 13.67 6.59 180.00 1.19
A2 17.00 0.80 14.15 6.91 24.00 0.17
B 20.94 -0.21 15.06 -5.37 204.00 -1.10
C 20.94 -0.70 15.06 -11.67 965.19 -11.26
D 20.94 -0.70 15.06 -11.67 965.19 -11.26
Overall loading
Projected vertical plan area of wall Avert w o= b x H =204.00 ft2
- ? Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC I Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
1
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 5 of 78
Projected vertical area of roof Avert_r_o= b x d/2 x tan(ao) =94.67 ft2
Minimum overall horizontal loading Fw,total_min=Pmin_w x Avert_w_o+pmin_r x Avert_r_o=4.02 kips
Leeward net force F=FW,we=-1.1 kips
Windward net force Fw= Fw,wA_l + Fw,wA_2= 114 kips
Overall horizontal loading Fw,tota =max(Fw- Fi+ Fw,h, Fw,total_min) =4.0 kips
Roof load case 2-Wind 0,GCpi-0.18, -Ocpe
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient cpe pressure qp p Aref Fw
(ft) (psi) (psi) (ft2) (kips)
A(+ve) 20.94 0.00 15.06 2.66 292.26 0.78
B(+ve) 20.94 -0.58 15.06 -4.69 292.26 -1.37
Total vertical net force Fw,v=-0.56 kips
Total horizontal net force Fw,h=0.70 kips
Walls load case 2-Wind 0, GCp;-0.18,-Ocpe
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient cpe pressure qp p Aref Fw
(ft) (psi) (psi) (ft2) (kips)
At 15.00 0.80 13.67 12.01 180.00 2.16
A2 17.00 0.80 14.15 12.33 24.00 0.30
B 20.94 -0.21 15.06 0.05 204.00 0.01
C 20.94 -0.70 15.06 -6.25 965.19 -6.03
D 20.94 -0.70 15.06 -6.25 965.19 -6.03
Overall loading
Projected vertical plan area of wall Avert_w_o=b x H =204.00 ft2
Projected vertical area of roof Avert_r_o=b x d/2 x tan(ao)=94.67 ft2
Minimum overall horizontal loading Fw,total_min=pmin_w x Avert_w_o+pmin_r x Avert_r_o=4.02 kips
Leeward net force Fi=Fw,wB=000 kips
Windward net force Fw= Fw,wA_l + Fw,wA_2=2.5 kips
Overall horizontal loading Fw,total=max(Fw-Fi+ Fw,h, Fw,total_min) =4_0 kips
Roof load case 3 -Wind 90, GCp;0.18, -cpe
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient cpe pressure qp p Aref Fw
(ft) (psi) (psi) (ft2) (kips)
A(-ve) 20.94 -1.13 15.06 -17.17 510.10 -8.76
B(-ve) 20.94 -0.70 15.06 -11.67 74.42 -0.87
Total vertical net force Fw,v=-9.11 kips
Total horizontal net force Fw,h=0.00 kips
Walls load case 3-Wind 90,GCp;0.18,-cpe
�, Vr y f r r ,'r_ Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P, Date 5/7/2018 Page 6 of 78
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient cpe pressure qp p Aref Fw
(ft) (psf) (psf) (ft2) (kips)
Ai 15.00 0.80 13.67 6.59 691.25 4.55
A2 15.00 0.80 13.67 6.59 0.00 0.00
A3 24.89 0.80 15.81 8.04 273.97 2.20
B 20.94 -0.50 15.06 -9.11 965.19 -8.79
C 20.94 -0.70 15.06 -11.67 204.00 -2.38
D 20.94 -0.70 15.06 -11.67 204.00 -2.38
Overall loading
Projected vertical plan area of wall Avert_w_90=d x H +d2 x tan(ao)/4=965.19 ft2
Projected vertical area of roof Avert_Loo 90=0.00 ft2
Minimum overall horizontal loading Fw,totai min=Pmin_w x Avert_w_90+pmin_r x Avert_r_90=15.44 kips
Leeward net force FI=Fw,wB= -8.8 kips
Windward net force Fw= Fw,WA_1 +Fw,wA 2+ Fw,wA_3=668 kips
Overall horizontal loading Fw,total=max(Fw- FI + Fw,h, Fw,total_min) = 15.5 kips
Roof load case 4-Wind 90, GCp;-0.18,+cpe
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient cpe pressure qp p Aref Fw
(ft) (psf) (psf) (ft2) (kips)
A(+ve) 20.94 -0.18 15.06 0.41 510.10 0.21
B (+ve) 20.94 -0.18 15.06 0.41 74.42 0.03
Total vertical net force Fw,v=0.22 kips
Total horizontal net force Fw,h=0.00 kips
Walls load case 4-Wind 90, GCpi-0.18, +cpe
Ref. Ext pressure Peak velocity Net pressure Area Net force
Zone height coefficient cpe pressure qp p Aref Fw
(ft) (psf) (psf) (ft2) (kips)
Ai 15.00 0.80 13.67 12.01 691.25 8.30
A2 15.00 0.80 13.67 12.01 0.00 0.00
A3 24.89 0.80 15.81 13.46 273.97 3.69
B 20.94 -0.50 15.06 -3.69 965.19 -3.56
C 20.94 -0.70 15.06 -6.25 204.00 -1.27
D 20.94 -0.70 15.06 -6.25 204.00 -1.27
Overall loading - -- --
Projected vertical plan area of wall Avert_w_90=d x H +d2 x tan(a0)/4 =965.19 ft2
Projected vertical area of roof Avert r 90=0.00 ft2
Minimum overall horizontal loading Fw,total_min=pmin_w x Avert_w_90+pmin_r x Avert_r_90= 15.44 kips
Leeward net force Ft=Fw,WB= -3.6 kips
Windward net force Fw= Fw,wA_1 + Fw,WA_2+ Fw,wA_3= 12.0 kips
Project New Addition Job# 180145
Address 11958 SW 125th Ct., Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr,#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 7 of 78
Overall horizontal loading max(Fw-Fi+Fw,h, Fw,totai_m;n)=115.5 kips
n•
F.
{
a
}
B
C r q r
Y_
46.1
46.1 ft ►i 4. 12 ft ► 4 -12 ft--►
Side face Windward face Leeward face
„ ( ,2 /'f Project New Addition Job# 180145
f
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC 1 Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 8 of 78
yrl------12A--- -'
S
i r
� E
ft* Mat
A-.
N— — 46-ft
r 1
Ems`
I
12 ft 'f -------_ ._-__-_.--- -------46.1 ft
Side face Leeward face
'r.}iutti,j%'/'�' Project New Addition Job# 180145
Address 11958 SW 125th CL,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 9 of 78
Resolution of reaction R4 into RI & R2:
R4 reactions: R4_wind= .756 kips
R4_seismic= .246 kips
Distance to centroid of structure: d =6 ft
Length of structure: L=28.75 ft
Moment about centroid: Mcentroid_wind= R4_wind*d=4.536 kip_ft
Mcentroid_seismic= R4_seismic*d=1.476 kip_ft
Reactions at Ri &R2:
Rwind= Mcentroid_wind/L=0.158 kips
Rseismic=Mcentroid_seismic/L=0.051 kips
WOOD SHEAR WALL R1 DESIGN (NDS)
WOOD SHEAR WALL DESIGN (NDS)
In accordance with NDS2015 allowable stress design and the segmented shear wall method
Tedds calculation version 1.2.02
Panel details
Structural wood panel sheathing on one side
Panel height h=8 ft Panel length b= 12 ft
Total area of wall A=96 ft2
D+S
W+Eq
it i 11 i �i ill
i 1 II TI-II
i� I I I it ( I
II ! 1 II II I
I II I!
Ii! II Ii II I II I II III III
I I ( i 'I I' 'I i t
I I I 'I 11 itif
I II II II I
Ii 56 il 1 II �� ;I II II II If ISI
II I Ii I �I I II
I �. , II i1
II II I� Ij I
i II ! .
IIS Ch1 it ,I I1 I I 11 I, n h
♦_
li 11 L II 11 IL 11IC 2
a i 2-
V' V•
O O
A ---- 12'
cRSV�S 14*,,,ftiny i"e Project New Addition Job# 180145
it I
P7177,477M:1:4.4.1471
I
; Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 10 of 78
Panel construction
Nominal stud size 2"x 6" Dressed stud size 1.5"x 5.5"
Area of studs As=8.25 in2 Stud spacing s= 16 in
Nominal end post size 2 x 2"x 6" Dressed end post size 2 x 1.5"x 5.5"
Area of end posts Ake= 16.5 in2 Hole diameter Dia =0.625 in
Net area of end posts Aen= 14.625 in2
Nominal collector size 2 x 2"x 6" Dressed collector size 2 x 1.5"x 5.5"
Service condition Dry Temperature 100 degF or less
Anchor stiffness ka=30000 lb/in
From NDS Supplement Table 4A-Reference design values for visually graded dimension lumber(2"-4"thick)
Species and grade Douglas Fir-Larch, stud grade, 2"&wider
Specific gravity G =0.50
Tension parallel to grain Ft=450 lb/in2 Compression parallel to grain Fc=850 lb/in2
Modulus of elasticity E = 1400000 lb/in2 Minimum modulus of elasticity Emtn=510000 lb/in2
Sheathing details
Sheathing material 15/32"wood panel oriented strandboard sheathing
Fastener type 8d common nails at 6"centers
From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls-Wood-based Panels
Nom.seismic shear capacity vs=520 lb/ft Nom.wind shear capacity vW=730 lb/ft
Apparent shear stiffness Ga= 13 kips/in
Loading details
Dead load D=247.5 lb/ft
Snow load S =412.5 lb/ft
Self weight of panel SWt= 12 lb/ft2
In plane wind load W=1465 lbs
Service wind load factor fwsery= 1.00
In plane seismic load Eq=297 lbs
SDs=0/16
From ASCE 7-10-c1.2.4.1 Basic combinations
Load combination no.1 D +0.6W
Load combination no.2 D +0.7E
Load combination no.3 D +0.75Lf+0.45W+0.75(Lr or S or R)
Load combination no.4 D +0.75Lf+0.525E+ 0.75S
Load combination no.5 0.6D+0.6W
Load combination no.6 0.6D+ 0.7E
Adjustment factors
Load duration factor Co= 1.60
Size factor tension CFt= 1.00 Size factor compression CFc= 1.00
Wet service factor tension CMt= 1.00 Temp.factor tension Ctt= 1.00
Wet serv.factor compression Civic= 1.00 Temp.factor compression Ctc= 1.00
Wet serv.factor mod.elasticity CME= 1.00 Temp.factor mod.of elasticity CtE= 1.00
Incising factor G= 1.00 Buckling stiffness factor CT= 1.00
Column stability factor CP=0.70
, Project New Addition Job# 180145
r
Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 11 of 78
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Max.shear wall aspect ratio 3.5
Shear wall length b=12 ft Shear wall aspect ratio h/b=0.667
Segmented shear wall capacity
Max.wind shear force Vw_max=0.879 kips Wind shear capacity Vw=4.38 kips
Vwmax/Vw=0.201
PASS-Shear capacity for wind load exceeds maximum shear force
Max.seismic shear force Vs_max=0.208 kips Seismic shear capacity Vs=3.12 kips
Vs max I Vs=0.067
PASS-Shear capacity for seismic load exceeds maximum shear force
Chord capacity for chords 1 and 2
Shear wall aspect ratio h/b=0.667
Shear force for tension V=0.879 kips Maximum tensile force T=0.449 kips
Max.applied tensile stress ft=31 lb/in2 Design tensile stress Ft=720 lb/in2
ft/Ft'=0.043
PASS-Design tensile stress exceeds maximum applied tensile stress
Shear force,compression V=0.879 kips Max. compressive force C=0.815 kips
Max. applied comp.stress fo=49 lb/in2 Design compressive stress Fc'=945 lb/in2
fo/Fc'=0.052
PASS-Design compressive stress exceeds maximum applied compressive stress
Hold down force
Chord 1 T, =0.449 kips
Chord 2 T2=0.449 kips
Wind load deflection
Shear wall deflection 6sww=0.096 in Deflection limit Aw_allow=0.24 in
6sww/Aw allow=0.398
PASS-Shear wall deflection is less than deflection limit
Seismic load deflection
Shear wall deflection fisws=0.071 in Deflection limit ds_anow=2.4 in
fisws/As avow=0.029
PASS-Shear wall deflection is less than deflection limit
Use Simpson MSTC28 holdown device
'( Project New Addition Job# 180145
'17',
Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 12 of 78
WOOD SHEAR WALL R2 DESIGN (NDS)
WOOD SHEAR WALL DESIGN (NDS)
In accordance with NDS2015 allowable stress design and the segmented shear wall method
Tedds calculation version 1.2.02
Panel details
Structural wood panel sheathing on one side
Panel height h =8 ft Panel length b= 12 ft
Total area of wall A=96 ft2
D+S
♦VVVi ii***+++++i+iii ►++i
W+E
a
si ;�Hi rI 11,1
„, , 1 �� 1T r
111 11 r 1, , i 1'i , 1 I ,i, , , ,
H ,I �, ,
11 I1 li ,
,, 1,
I
,
, 1
1,1
E. 1, !j i 1 ) I 11 !
1
, I 1 i
, �
�1I 11 ii ,1 1 11
,I I,I II I
II � �I i, , , 1 ii 1
it II 1, ,, ,i 1 ,,
„ „
I I , ii I,
I I! I , I
_,', tali r! li I it 1 j :Ch2
• _Q a
Y • Y
T T
i
O O
s 12' s
Panel construction
Nominal stud size 2”x 6" Dressed stud size 1.5"x 5.5"
Area of studs A5=8.25 in2 Stud spacing s= 16 in
Nominal end post size 2 x 2"x 6" Dressed end post size 2 x 1.5"x 5.5"
Area of end posts Ae= 16.5 in2 Hole diameter Dia=0.625 in
Net area of end posts Aen= 14.625 in2
Nominal collector size 2 x 2"x 6" Dressed collector size 2 x 1.5"x 5.5"
Service condition Dry Temperature 100 degF or less
Anchor stiffness ka=30000 lb/in
From NDS Supplement Table 4A-Reference design values for visually graded dimension lumber(2"-4"thick)
Species and grade Douglas Fir-Larch, stud grade, 2"&wider
Specific gravity G =0.50
Tension parallel to grain Ft=450 lb/in2 Compression parallel to grain Fc=850 lb/in2
1
„
-.:6)-_,-,---TS / ,,,Bing ILLY Project New Addition Job# 180145
,t7274
Address 11958 SW 125th Ct., Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17 -
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 13 of 78
Modulus of elasticity E= 1400000 lb/in2 Minimum modulus of elasticity Emin=510000 lb/in2
Sheathing details
Sheathing material 15/32"wood panel oriented strandboard sheathing
Fastener type 8d common nails at 6"centers
From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls -Wood-based Panels
Nom.seismic shear capacity vs=520 lb/ft Nom.wind shear capacity vw=730 lb/ft
Apparent shear stiffness Ga=13 kips/in
Loading details
Dead load D=215.62 lb/ft
Snow load S=359.375 lb/ft
Self weight of panel Swt= 12 lb/ft2
In plane wind load W=1465 lbs
Service wind load factor fwsery= 1.00
In plane seismic load Eq=297 lbs
SDs=0.716
From ASCE 7-10 -c1.2.4.1 Basic combinations
Load combination no.1 D+0.6W
Load combination no.2 D+0.7E
Load combination no.3 D+0.75Lf+0.45W+0.75(L1 or S or R)
Load combination no.4 D+0.75Lt+0.525E+0.75S
Load combination no.5 0.6D+ 0.6W
Load combination no.6 0.6D+0.7E
Adjustment factors
Load duration factor CD=1.60
Size factor tension CF,= 1.00 Size factor compression CFC= 1.00
Wet service factor tension CM,= 1.00 Temp.factor tension Ctt= 1.00
Wet serv.factor compression Civic= 1.00 Temp.factor compression Ctc= 1M0
Wet serv.factor mod.elasticity CME= 1.00 Temp.factor mod.of elasticity C,E= 1.00
Incising factor CI=1.00 Buckling stiffness factor CT= 1.00
Column stability factor CP=0.70
From SDPWS Table 4.3.4 Maximum Shear Wail Aspect Ratios
Max.shear wall aspect ratio 3.5
Shear wall length b= 12 ft Shear wall aspect ratio h/b=0.667
Segmented shear wall capacity
Max.wind shear force Vw_max=0.879 kips Wind shear capacity Vw=4.38 kips
Vw max/Vw=0.201
PASS-Shear capacity for wind load exceeds maximum shear force
Max.seismic shear force Vs_max=0.208 kips Seismic shear capacity Vs=3.12 kips
Vs_max/Vs=0.067
PASS-Shear capacity for seismic load exceeds maximum shear force
Chord capacity for chords 1 and 2
Shear wall aspect ratio h/b=0.667
Project New Addition Job# 180145
• Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 14 of 78
Shear force for tension V=0.879 kips Maximum tensile force T=0.461 kips
Max.applied tensile stress ft=32 lb/in2 Design tensile stress Ft'=720 lb/in2
ft/Ft'=0.044
PASS-Design tensile stress exceeds maximum applied tensile stress
Shear force,compression V=0.879 kips Max. compressive force C=0.794 kips
Max. applied comp.stress fc=48 lb/in2 Design compressive stress Fe'=945 lb/in2
fo/Fc'=0.051
PASS-Design compressive stress exceeds maximum applied compressive stress
Hold down force
Chord 1 Ti =0.461 kips
Chord 2 T2=0.461 kips
Wind load deflection
Shear wall deflection 6sww=0.096 in Deflection limit ow aVfow=0.24 in
bsww/Aw allow=0.399
PASS-Shear wall deflection is less than deflection limit
Seismic load deflection
Shear wall deflection bsws=0.072 in Deflection limit As_allow=2.4 in
bsws/As_allow=0.03
PASS-Shear wall deflection is less than deflection limit
Use Simpson MSTC28 holdown device
)
Project New Addition Job# 180145
7 e:Wi.
Address 11958 SW 125th Ct., Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 15 of 78
I
WOOD SHEAR WALL R3 DESIGN (NDS)
WOOD SHEAR WALL DESIGN (NDS)
In accordance with NDS2015 allowable stress design and the segmented shear wall method
Tedds calculation version 1.2.02
Panel details
Structural wood panel sheathing on one side
Panel height h=8 ft Panel length b=28.75 ft "
D+S
V*VVVi4"'VVVV*V*V***ii++i�V***V*VV*Viii+Vi+4+Vi+i44ili"i *V
W+E
{
in1u1r1 'W f4 jr II �I 11 I''_I _ — 11I1 1 , 1I11 4'11111.
II I 1 I 1 11 I I 1 11 1111 itII
h 11 m 1 k� II II i li 11I 11
Ii 1 ' m 11 1 11 WTI i I 11 11 1 _ __ 1�
I I (�I I 1 1 1 11 I• 11 1 it 11 11 r ==r1; i 11
(I 1111'1 11,1 H I ;I 11 I� 1 '1 III 1 x;11 1
11 Ch1 : r8:
I Chs `-- �H6 _L_ 11 il_ I ..il. _. t14 I 1L11 Ch10
1 I_x 12 ia O p p
't -3'----P `,T,A--2'-_04...__4'1.004"----♦ i-.--- ---6'4.996"-- ----_it.. ..._.-9'-- -----._..... -M2'5.004"P
of
Panel opening details
Width of opening wo, =0_5 ft Height of opening ho, =7 ft
Height to underside of lintel 101 =7 ft Position of opening Poi =3 ft
Width of opening wog=2 ft Height of opening hoz=6_5 ft
Height to underside of lintel 102=7 ft Position of opening P02=4.333 ft
Width of opening Wo3=0.5 ft Height of opening h03=7 ft
Height to underside of lintel 103=7 ft Position of opening P03= 10.417 ft
Width of opening W04=9 ft Height of opening h04=4.5 ft
Height to underside of lintel 104=7 ft Position of opening PO4= 17.333 ft
Total area of wall A= 169.5 ft2
Panel construction
Nominal stud size 2"x 6" Dressed stud size 1.5"x 5.5"
Area of studs A5=8.25 in2 Stud spacing s= 16 in
Nominal end post size 2 x 2"x 6" Dressed end post size 2 x 1.5"x 5.5"
Area of end posts Ae= 16.5 in2 Hole diameter Dia=0.625 in
Net area of end posts Aen= 14.625 in2
Nominal collector size 2 x 2"x 6" Dressed collector size 2 x 1.5"x 5.5"
Service condition Dry Temperature 100 degF or less
Anchor stiffness ka=30000 lb/in
� 1
cleG'v 1 , t tl2y /'/'C' Project New Addition Job# 180145
F Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 i By R.P. Date 5/7/2018 Page 16 - of 78
From NDS Supplement Table 4A-Reference design values for visually graded dimension lumber(2"-4"thick)
Species and grade Douglas Fir-Larch, stud grade,2"&wider
Specific gravity G=0.50
Tension parallel to grain Ft=450 lb/in2 Compression parallel to grain Fc=850 lb/in2
Modulus of elasticity E= 1400000 lb/in2 Minimum modulus of elasticity Emin=510000 lb/in2
Sheathing details
Sheathing material 15/32"wood panel oriented strandboard sheathing
Fastener type 8d common nails at 6"centers
From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls -Wood-based Panels
Nom.seismic shear capacity vs=520 lb/ft Nom.wind shear capacity vw=730 lb/ft
Apparent shear stiffness Ga= 13 kips/in
Loading details
Dead load D=30 lb/ft
Snow load S=50 lb/ft
Self weight of panel SWt= 12 lb/ft2
In plane wind load W=756 lbs
Service wind load factor fWsery= 1.00
In plane seismic load Eq=246 lbs
SDs=0.716
From ASCE 7-10-c1.2.4.1 Basic combinations
Load combination no.1 D+0.6W
Load combination no.2 D+0.7E
Load combination no.3 D+0.75Lf+0.45W+0.75(Lr or S or R)
Load combination no.4 D+0.75Lf+0.525E +0.75S
Load combination no.5 0.6D+0.6W
Load combination no.6 0.6D+0.7E
Adjustment factors
Load duration factor CD= 1.60
Size factor tension CR= 1.00 Size factor compression CFC= 1.00
Wet service factor tension CMt= 1.00 Temp.factor tension Ctt= 1.00
Wet serv.factor compression Cmc= 1.00 Temp.factor compression Cte= 1.00
Wet serv.factor mod.elasticity CME= 1.00 Temp.factor mod.of elasticity CtE= 1.00
Incising factor C;=1.00 Buckling stiffness factor Cr= 1.00
Column stability factor CP=0.70
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Max.shear wall aspect ratio 3.5
Segment 1 wall length bi =3 ft Shear wall aspect ratio h/131 =2.667
Segment 2 wall length b2=0.833 ft Shear wall aspect ratio h/b2=9.604
Segment 3 wall length b3=4.084 ft Shear wall aspect ratio h/b3= 1.959
Segment 4 wall length b4=6.416 ft Shear wall aspect ratio h/b4= 1.247
Segment 5 wall length b5=2.417 ft Shear wall aspect ratio h/b5=3.31
Segmented shear wall capacity-Equal deflection method
Wind loading:
Y i Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 17 of 78
Segment 4 stiffness Ica=6.577 kips/in Shear capacity,widest seg. vswwa=365 plf
Deflection at capacity load Scap=0.356 in
Seg. 1 stiffness k1 =2.165 kips/in Seg. 1 shear at Scap Vdswwl =256.97 plf
Seg 1 shear capacity Vsww1 =334.58 plf Vdswwl /Vswwl =0.768
PASS-Segment shear capacity exceeds segment unit shear at(Cap
Seg. 3 stiffness k3=3.457 kips/in Seg. 3 shear at Scap Vdsww3=301.44 plf
Seg 3 shear capacity vsww3=365 plf Vdsww3/Vsww3=0.826
PASS-Segment shear capacity exceeds segment unit shear at Scap
Seg. 5 stiffness k5=1.538 kips/in Seg. 5 shear at Scap Vdsww5=226.59 plf
Seg 5 shear capacity vsww5=305.24 plf vdsww5/Vsww5=0.742
PASS-Segment shear capacity exceeds segment unit shear at&ap
Max.wind shear force Vw_max=0.454 kips Wind shear capacity Vw=4.892 kips
Vw_max/Vw=0.093
PASS-Shear capacity for wind load exceeds maximum shear force
Seismic loading:
Segment 4 stiffness ka=6.577 kips/in Shear capacity,widest seg. vswsa=260 plf
Deflection at capacity load Scap=0.254 in
Seg. 1 stiffness k, =2.165 kips/in Seg. 1 shear at Scap vdswsl = 183.05 plf
Seg 1 shear capacity vswsi =238.33 plf Vdswsi /Vsws1 =0.768
PASS-Segment shear capacity exceeds segment unit shear at Scap
Seg. 3 stiffness k3=3.457 kips/in Seg. 3 shear at Scap vdsws3=214.72 plf
Seg 3 shear capacity Vsws3=260 plf Vdsws3/Vsws3=0.826
PASS-Segment shear capacity exceeds segment unit shear at Scap•
Seg. 5 stiffness k5=1.538 kips/in Seg. 5 shear at Scap Vdswa5= 161.41 plf
Seg 5 shear capacity Vsws3=217.43 plf vdsws5/Vsws3=0.742
PASS-Segment shear capacity exceeds segment unit shear at Scap
Max.seismic shear force Vs_max=0.172 kips Seismic shear capacity Vs=3.484 kips
Vs_max/Vs=0.049
PASS-Shear capacity for seismic load exceeds maximum shear force
Chord capacity for chords 1 and 2
Shear wall aspect ratio h/bi =2.667
Shear force for tension V=0.454 kips Maximum tensile force T=0.140 kips
Max.applied tensile stress ft= 10 lb/in2 Design tensile stress Ft' =720 lb/in2
ft/Ft=0.013
PASS-Design tensile stress exceeds maximum applied tensile stress
Shear force, compression V=0.454 kips Max. compressive force C=0.275 kips
Max. applied comp.stress fc=17 lb/in2 Design compressive stress Fc'=945 lb/in2
ff/Fc'=0.018
PASS-Design compressive stress exceeds maximum applied compressive stress
Chord capacity for chords 3 and 4
Shear wall aspect ratio h/b2=9.604
Segment not considered,shear wall aspect ratio exceeds maximum allowable.
t' _t'x I Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC i Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P, Date 5/7/2018 Page 18 of 78
Chord capacity for chords 5 and 6
Shear wall aspect ratio h/b3= 1.959
Shear force for tension V=0.454 kips Maximum tensile force T=0.173 kips
Max.applied tensile stress ft= 12 lb/in2 Design tensile stress Ft =720 lb/in2
ft/Ft=0.016
PASS-Design tensile stress exceeds maximum applied tensile stress
Shear force, compression V=0.454 kips Max. compressive force C=0.308 kips
Max. applied comp.stress fc= 19 lb/in2 Design compressive stress Fc'=945 lb/in2
fc/Fc'=0.020
PASS-Design compressive stress exceeds maximum applied compressive stress
Chord capacity for chords 7 and 8
Shear wall aspect ratio h/b4= 1.247
Shear force for tension V=0.454 kips Maximum tensile force T=0.220 kips
Max.applied tensile stress ft= 15 lb/in2 Design tensile stress Ft =720 lb/in2
ft/Ft=0.021
PASS-Design tensile stress exceeds maximum applied tensile stress
Shear force, compression V=0.454 kips Max. compressive force C =0.355 kips
Max. applied comp.stress fa=22 lb/in2 Design compressive stress Fc' =945 lb/in2
fc/Fa'=0.023
PASS-Design compressive stress exceeds maximum applied compressive stress
Chord capacity for chords 9 and 10
Shear wall aspect ratio h/b5=3.31
Shear force for tension V=0.454 kips Maximum tensile force T=0.118 kips
Max.applied tensile stress ft=8 lb/in2 Design tensile stress Ft'=720 lb/in2
ft/Ft=0.011
PASS-Design tensile stress exceeds maximum applied tensile stress
Shear force, compression V=0.454 kips Max. compressive force C=0.252 kips
Max. applied comp.stress fc= 15 lb/in2 Design compressive stress Fa'=945 lb/in2
fc/Fc'=0.016
PASS-Design compressive stress exceeds maximum applied compressive stress
1
Collector capacity
Maximum shear force Vmax=0.454 kips Max. force in collector Pcaii=0.129 kips
Max.applied tensile stress ft=8 lb/in2 Design tensile stress Ft =720 lb/in2
ft/Ft=0.011
PASS-Design tensile stress exceeds maximum applied tensile stress
Max.applied comp.stress fa=8 lb/in2 Design compressive stress Fd= 1360 lb/in2
fa/Fc'=0.006
PASS-Design compressive stress exceeds maximum applied compressive stress
Hold down force
Chord 1 Tt =0.14 kips
Chord2 T2=0.14 kips
Chord 5 T5=0.173 kips
Chord 6 Te=0.173 kips
f ' t ' / si�Erta /'(Y' Project New Addition Job# 180145
Address 11958 SW 125th Ct., Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 t By R.P. Date 5/7/2018 Page 19 of 78
Chord 7 T7=0.22 kips
Chord 8 Ta=0.22 kips
Chord 9 T9=0.118 kips
Chord 10 Tio=0.118 kips
Wind load deflection
Shear wall deflection 8sww=0.053 in Deflection limit Aw avow=0.24 in
Ssww/Aw allow=0.221
PASS-Shear wall deflection is less than deflection limit
Seismic load deflection
Shear wall deflection 8sws=0.065 in Deflection limit As allow=2.4 in
Ssws/As allow=0.027
PASS-Shear wall deflection is less than deflection limit
Use Simpson MSTC28 holdown device
Resolution of reaction R8 into R5 & R6:
Re reactions: Rewind= 1.62 kips
Re_seismic= .699 kips
Distance to centroid of structure: d =6 ft
Length of structure: L=46.0833 ft
Moment about centroid: Mcentroid_wind=R8_wind*d=9.720 kip_ft
Mcentroid_seismic= Re_seismic*d =4.194 kip_ft
Reactions at R5&Re:
Rwind= Mcentroid_wind/L=0.211 kips
Rseismic=Mcentroid_seismic/L=0.091 kips
Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 20 of 78
WOOD SHEAR WALL R5 DESIGN S GN (NDS)
WOOD SHEAR WALL DESIGN (NDS)
In accordance with NDS2015 allowable stress design and the segmented shear wall method
Tedds calculation version 1.2.02
Panel details
Structural wood panel sheathing on one side
Panel height h =8.25 ft Panel length b=8 ft
Total area of wall A=66 ft2
D+S
W+Eq
4- --_- ►
�s1 T -. i— — 11 1-
IL,� il
I II ,, ii
1 IIi I
1 i
II
I
ba j ! i i �( It
it iII
it c I� I�1 i I 11 !II I
.chi i-------, ---__1 ----- 11 I sCh2
— — =
a CO
a
Y ..Y
O Q
0)
N N
- 8' —-- —l^i
Panel construction
Nominal stud size 2"x 6" Dressed stud size 1.5"x 5.5"
Area of studs AS=8.25 in2 Stud spacing s= 16 in
Nominal end post size 2 x 2"x 6" Dressed end post size 2 x 1.5"x 5.5"
Area of end posts Ae= 16.5 in2 Hole diameter Dia=0.625 in
Net area of end posts Aen=14.625 in2
Nominal collector size 2 x 2"x 6" Dressed collector size 2 x 1.5"x 5.5"
Service condition Dry Temperature 100 degF or less
Anchor stiffness ka=30000 lb/in
From NDS Supplement Table 4A-Reference design values for visually graded dimension lumber(2" -4"thick)
Species and grade Douglas Fir-Larch, stud grade,2"&wider
Specific gravity G =0.50
Tension parallel to grain Ft=450 lb/in2 Compression parallel to grain Fc=850 lb/in2
-�`- /7 }Ming Pi r' Project New Addition Job# 180145
j
,# Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 21 of 78
Modulus of elasticity E= 1400000 lb/in2 Minimum modulus of elasticity Emm= 510000 lb/in2
Sheathing details
Sheathing material 15/32"wood panel oriented strandboard sheathing
Fastener type 8d common nails at 4"centers
From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls-Wood-based Panels
Nom.seismic shear capacity vs=760 lb/ft Nom.wind shear capacity vw= 1065 lb/ft
Apparent shear stiffness Ga=19 kips/in
Loading details
Dead load D= 130 lb/ft
Snow load S =216.68 lb/ft
Self weight of panel Swt= 12 lb/ft2
In plane wind load W=4836 lbs
Service wind load factor fwsery= 1.00
In plane seismic load Eq=790 lbs
SDs=0.716
From ASCE 7-10 -c1.2.4.1 Basic combinations
Load combination no.1 D +0.6W
Load combination no.2 D +0.7E
Load combination no.3 D+0.75Lr+0.45W+0.75(Lr or S or R)
Load combination no.4 D+0.75Lt+0.525E+0.75S
Load combination no.5 0.6D+0.6W
Load combination no.6 0.6D+0.7E
Adjustment factors
Load duration factor CD= 1.60
Size factor tension CFt= 1.00 Size factor compression CFc= 1.00
Wet service factor tension CMt= 1.00 Temp.factor tension Ott= 1.00
Wet serv.factor compression CMc= 1.00 Temp.factor compression Ctc= 1.00
Wet serv.factor mod.elasticity CME= 1.00 Temp.factor mod.of elasticity CtE= 1.00
Incising factor Ci=1.00 Buckling stiffness factor CT= 1.00
Column stability factor CP=0.67
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Max.shear wall aspect ratio 3.5
Shear wall length b=8 ft Shear wall aspect ratio h/b= 1.031
Segmented shear wall capacity
Max.wind shear force Vw_max= 2.902 kips Wind shear capacity Vw=4.26 kips
Vw max/Vw=0.681
PASS-Shear capacity for wind load exceeds maximum shear force
Max.seismic shear force Vs_max=0.553 kips Seismic shear capacity Vs=3.04 kips
Vs max/Vs=0.182
PASS-Shear capacity for seismic load exceeds maximum shear force
Chord capacity for chords 1 and 2
Shear wall aspect ratio h/b= 1.031
.
� '�v 1 na ttiii.=y 1_I I Project New Addition Job# 180145
it
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 < By R.P. Date 5/7/2018 Page 22 of 78 1
Shear force for tension V=2.902 kips Maximum tensile force T=2.901 kips
Max.applied tensile stress ft= 198 lb/in2 Design tensile stress Ft' =720 lb/in2
ft/Ft'=0.275
PASS-Design tensile stress exceeds maximum applied tensile stress
Shear force, compression V=2.902 kips Max. compressive force C =3.145 kips
Max. applied comp.stress fc= 191 lb/in2 Design compressive stress Fe'=916 lb/in2
fo/ =0.208
PASS-Design compressive stress exceeds maximum applied compressive stress
Hold down force
Chord 1 Ti =2.901 kips
Chord 2 T2=2.901 kips
Wind load deflection
Shear wail deflection 8sww=0.445 in Deflection limit Aw anew=0.495 in
8sww/Aw allow=0.9
PASS-Shear wall deflection is less than deflection limit
Seismic load deflection
Shear wall deflection Ssws=0.284 in Deflection limit As avow=2.475 in
Ssws/As allow=0.115
PASS-Shear wall deflection is less than deflection limit
Use Simpson MSTC48B3 holdown device
/_ Project Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17 I
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 23 of 78
WOOD SHEAR WALL R6 DESIGN (NDS)
WOOD SHEAR WALL DESIGN (NDS)
In accordance with NDS2015 allowable stress design and the segmented shear wall method
Tedds calculation version 1.2.02
Panel details
Structural wood panel sheathing on one side
Panel height h=8 ft Panel length b= 12 ft
D+S
w+Eq
Si r-- i 1Ir,- - 1 2 li tt III
IG 1 =� j i
II il) ! it I
III Ij I1 (I!' it'lI 11 I !
I i) 1 I I 1I
B 111
II )j II?j 1 IIIi 'i III
II 11 I III
IIIi-I .7- rl- r,-- ---(�j !; !I 11 I I
�, ! I I 11 II ,'I
SII I
�i iI i� 11 �� II ! I
ail Ill; ih I ,I
1,_
;I II,� a 11l
_Ti Ch1 II_Il. _.._11 Jh2 * li —_.11.1.r h3 IL J._Cho
a a to 2-
Coco coc
CV N N N 'I
1-
4 4' 11.4 4' ._ . 4'
Panel opening details
Width of opening woi =4 ft Height of opening hot =4 ft
Height to underside of lintel lot =7 ft Position of opening Poi =4 ft
Total area of wall A=80 ft2
Panel construction
Nominal stud size 2"x 6" Dressed stud size 1.5"x 5.5"
Area of studs As=8.25 in2 Stud spacing s= 16 in
Nominal end post size 2 x 2"x 6" Dressed end post size 2 x 1.5"x 5.5"
Area of end posts As=16.5 in2 Hole diameter Dia=0.625 in
Net area of end posts Aen= 14.625 in2
Nominal collector size 2 x 2"x 6" Dressed collector size 2 x 1.5"x 5.5"
Service condition Dry Temperature 100 degF or less
Anchor stiffness ka=30000 lb/in
I;
di)&V..S ,Oslictrtin9 Ye Project New Addition Job# 180145
142,E
1 ` Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 24 of 78
From NDS Supplement Table 4A-Reference design values for visually graded dimension lumber(2"-4"thick)
Species and grade Douglas Fir-Larch, stud grade,2"&wider
Specific gravity G =0.50
Tension parallel to grain Ft=450 lb/in2 Compression parallel to grain Fc=850 lb/in2
Modulus of elasticity E=1400000 lb/in2 Minimum modulus of elasticity Emin=510000 lb/in2
Sheathing details
Sheathing material 15/32"wood panel oriented strandboard sheathing
Fastener type 8d common nails at 2"centers
From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls-Wood-based Panels
Nom.seismic shear capacity vs= 1280 lb/ft Nom.wind shear capacity vw=1790 Ib/ft
Apparent shear stiffness Ga=39 kips/in
Loading details
Dead load D=240 lb/ft
Snow load S =359.38 lb/ft
Self weight of panel SWt= 12 lb/ft2
In plane wind load W=4836 lbs
Service wind load factor fwsery= 1.00
In plane seismic load Eq=790 lbs
Sos=0.716
From ASCE 7-10-c1.2.4.1 Basic combinations
Load combination no.1 D+0.6W
Load combination no.2 D+0.7E
Load combination no.3 D+0.75Lt+0.45W+ 0.75(Lr or S or R)
Load combination no.4 D+0.75Lt+0.525E +0.75S
Load combination no.5 0.6D+0.6W
Load combination no.6 0.6D+0.7E
Adjustment factors
Load duration factor Co= 1.60
Size factor tension CFt= 1.00 Size factor compression CFC= 1.Q0
Wet service factor tension CMt=1.00 Temp.factor tension Ctt= 1.00
Wet serv.factor compression CMC= 1.00 Temp.factor compression Ctc= 1.00
Wet serv.factor mod.elasticity CME= 1.00 Temp.factor mod.of elasticity CtE= 1.00
Incising factor C; =1.00 Buckling stiffness factor CT= 1.00
Column stability factor CP=0.70
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Max.shear wall aspect ratio 3.5
Segment 1 wall length b, =4 ft Shear wall aspect ratio h/b, =2
Segment 2 wall length b2=4 ft Shear wall aspect ratio h/b2=2
Segmented shear wall capacity-Equal deflection method
Wind loading:
Segment 2 stiffness k2=5.11 kips/in Shear capacity,widest seg. Vsww2=895 plf
Deflection at capacity load 6cap=0.701 in
k' ` .+ Project New Addition Job# 180145
Address 11958 SW 125th Ct., Tigard,OR 97223
.RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 25 of 78
Seg. 1 stiffness ki =5.11 kips/in Seg. 1 shear at bcap vdswwi =895 plf
Seg 1 shear capacity vswwi = 895 plf vdswwi /vswwi = 1.000
PASS-Segment shear capacity exceeds segment unit shear at kap
Max.wind shear force Vw_max=2.902 kips Wind shear capacity Vw=7.16 kips
Vw max/Vw=0.405
PASS-Shear capacity for wind load exceeds maximum shear force
Seismic loading:
Segment 2 stiffness k2=5.11 kips/in Shear capacity,widest seg. vsws2=640 plf
Deflection at capacity load 6cap=0.501 in
Seg. 1 stiffness ki =5.11 kips/in Seg. 1 shear at 6Cap Vdswsl =640 plf
Seg 1 shear capacity vswsi =640 plf vdswsi /vswsi =1.000
PASS-Segment shear capacity exceeds segment unit shear at Soap
Max.seismic shear force Vs_max=0.553 kips Seismic shear capacity Vs= 5.12 kips
Vs_max/Vs=0.108
PASS-Shear capacity for seismic load exceeds maximum shear force
Chord capacity for chords 1 and 2
Shear wall aspect ratio h/bi =2
Shear force for tension V=2.902 kips Maximum tensile force T=2.767 kips
Max.applied tensile stress ft= 189 lb/in2 Design tensile stress Ft=720 lb/in2
ft/Ft=0.263
PASS-Design tensile stress exceeds maximum applied tensile stress
Shear force, compression V=2.902 kips Max. compressive force C =3.126 kips
Max. applied comp.stress fc=189 lb/in2 Design compressive stress Fc'=945 lb/in2
fc/Fc'=0.200
PASS-Design compressive stress exceeds maximum applied compressive stress
Chord capacity for chords 3 and 4
Shear wall aspect ratio h/b2=2
Shear force for tension V=2.902 kips Maximum tensile force T=2.767 kips
Max.applied tensile stress ft= 189 lb/in2 Design tensile stress Ft =720 lb/in2
ft/Ft =0.263
PASS-Design tensile stress exceeds maximum applied tensile stress
Shear force,compression V=2.902 kips Max. compressive force C =3.126 kips
Max. applied comp.stress fc=189 lb/in2 Design compressive stress Fc'=945 lb/in2
fc/Fc'=0.200
PASS-Design compressive stress exceeds maximum applied compressive stress
Collector capacity
Maximum shear force Vmax=2.902 kips Max.force in collector Pccii=0.484 kips
Max.applied tensile stress ft=29 lb/in2 Design tensile stress Ft'=720 lb/in2
ft/Ft' =0.041
PASS-Design tensile stress exceeds maximum applied tensile stress
Max.applied comp.stress fc=29 lb/in2 Design compressive stress Fc'= 1360 lb/in2
fc/Fc'=0.022
PASS-Design compressive stress exceeds maximum applied compressive stress
ti
-AL 1'_; i t i` , ,'r Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 26 of 78
Hold down force
Chord 1 Ti =2.767 kips
Chord 2 T2=2.767 kips
Chord 3 T3=2.767 kips
Chord 4 T4=2.767 kips
Wind load deflection
Shear wall deflection bsww=0.464 in Deflection limit 4w_allow=0.48 in
bsww/4w auow=0.967
PASS-Shear wall deflection is less than deflection limit
Seismic load deflection
Shear wall deflection bsws=0.282 in Deflection limit As allow=2.4 in
bsws/4s allow=0.117
PASS-Shear wall deflection is less than deflection limit
Use.Simpson HDU2-SDS2.5 holdown device
c4,4
ftt :,9lltiProject New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 27 of 78
WOOD SHEAR WALL R7 DESIGN (NDS)
WOOD SHEAR WALL DESIGN (NDS1
In accordance with NDS2015 allowable stress design and the segmented shear wall method
Tedds calculation version 1.2.02
Panel details
Structural wood panel sheathing on one side
Panel height h=8 ft Panel length b=28.75 ft
D+S
i' 'trii"Vi**ii'*1+Y1iiVVIviIIVviVV*iVvi•V*VVVVOIYVvvVV VYiV*ii
n+E
. —R ; _ _ r_
_,7
-r
=
1 T1 ' i2 Is3 r _ i 1,-,,.,L
� -t . L -- R
r
` , '2 i il i I I.
I
li I I I 11 iI� 1 11 III III I1 I II
H. 11 I1 Id li I
1 i t I III 11 III 1I ,;11 I � Ii I, it i 11 fl' �o I 1, it .il, ,
.I, - 11 I I1 I 1 111111
1II !i III ! f t
lilt
I1 11
I I I,II 1 I I I1li 11
! iiI II,
to 1
SCh Cr2_� �Ch1 -- Ctr4} Nh . Il Ch6 Ch7
G
h8J
1 1 T 1 0 I 1 1
I w
1 1 l a 1 Y l a I _ 1 ! y ,I
M M
V M N N
d d O d O O
_.1. 1'6" V-...2 6"--N-__. ._-____- --9'-._...__.-__._._. __.*A--2'6' .1 --_._4'9.504" ___---M-----5'3.996"-------s4--3'1.5"--N
Panel opening details
Width of opening woi =2.5 ft Height of opening hot =6.55 ft
Height to underside of lintel lot =7 ft Position of opening Pot = 1.55 ft
Width of opening W02=2®5 ft Height of opening h02=665 ft
Height to underside of lintel 102=7 ft Position of opening Po2= 13 ft
Width of opening w03=5.333 ft Height of opening ho3=7 ft
Height to underside of lintel los=7 ft Position of opening P03=20.292 ft
Total area of wall A= 160.169 ft2
Panel construction
Nominal stud size 2"x 6" Dressed stud size 1.5"x 5.5"
Area of studs As=8.25 in2 Stud spacing s= 16 in
Nominal end post size 2 x 2"x 6" Dressed end post size 2 x 1.5"x 5.5"
Area of end posts Ae=16.5 in2 Hole diameter Dia=0.625 in
Net area of end posts Aen= 14.625 in2
Nominal collector size 2 x 2"x 6" Dressed collector size 2 x 1.5"x 5.5"
Service condition Dry Temperature 100 degF or less
Anchor stiffness ka=30000 lb/in
From NDS Supplement Table 4A-Reference design values for visually graded dimension lumber(2" -4"thick)
Species and grade Douglas Fir-Larch, stud grade, 2" &wider
Specific gravity G=0.50
Tension parallel to grain Ft=450 lb/in2 Compression parallel to grain F0=850 lb/in2
'�1t C P flrq /'
/ ' !' Project New Addition Job# 180145
, 14 Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC ! Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17 4 1
Vancouver,WA 98684 (503)737-4344 ! By R.P. Date 5/7/2018 Page 28 of 78
Modulus of elasticity E= 1400000 lb/in2 Minimum modulus of elasticity Emin=510000 lb/in2
Sheathing details
Sheathing material 15/32"wood panel oriented strandboard sheathing
Fastener type 8d common nails at 6"centers
From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls -Wood-based Panels
Nom.seismic shear capacity vs=520 lb/ft Nom.wind shear capacity vw=730 lb/ft
Apparent shear stiffness Ga= 13 kips/in
Loading details
Dead load D= 120 lb/ft
Snow load S=50 lb/ft
Self weight of panel SH,t= 12 lb/ft2
In plane wind load W= 1620 lbs
Service wind load factor fwsery= 1.00
In plane seismic load Eq=699 lbs
SDS=0.716
From ASCE 7-10-c1.2.4.1 Basic combinations
Load combination no.1 D +0.6W
Load combination no.2 D+0.7E
Load combination no.3 D +0.75Lf+0.45W+0.75(Lr or S or R)
Load combination no.4 D+0.75Lf+0.525E +0.75S
Load combination no.5 0.6D+0.6W
Load combination no.6 0.6D+0.7E
Adjustment factors
Load duration factor CD= 1.60
Size factor tension OFt= 1.00 Size factor compression CFC= 1.00
Wet service factor tension CMt=1.00 Temp.factor tension Ott=1.00
Wet serv.factor compression Cmc= 1.00 Temp.factor compression Ctc= 1.00
Wet serv.factor mod.elasticity CME= 1.00 Temp.factor mod.of elasticity CtE= 1.00
Incising factor Ci=1.00 Buckling stiffness factor CT= 1.00
Column stability factor CP=0.70
From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios
Max.shear wall aspect ratio 3.5
Segment 1 wall length bi =1_5 ft Shear wall aspect ratio h/bi =5.333
Segment 2 wall length b2=9 ft Shear wall aspect ratio h/b2=0.889
Segment 3 wall length b3=4.792 ft Shear wall aspect ratio h/b3= 1.669
Segment 4 wall length b4=3.125 ft Shear wall aspect ratio h/b4=2.56
Segmented shear wall capacity-Equal deflection method
Wind loading:
Segment 2 stiffness k2=10.32 kipslin Shear capacity,widest seg. vsww2=365 plf
Deflection at capacity load 6Cap=0.318 in
Seg. 3 stiffness k3=4.366 kips/in Seg. 3 shear at 6cap vdsww3=290.03 plf
Seg 3 shear capacity vsww3=365 plf Vdsww3/Vsww3=0.795
Project New Addition Job# 180145
a; Address 11958 SW 125th Ct., Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 29 of 78
PASS-Segment shear capacity exceeds segment unit shear at 8cap I
Seg.4 stiffness Ica=2.307 kips/in Seg.4 shear at Scap Vdsww4=234.96 plf
Seg 4 shear capacity vsww4=339.45 plf vdsww4/Vsww4=0.692
PASS-Segment shear capacity exceeds segment unit shear at*cap
Max.wind shear force Vw_max=0.972 kips Wind shear capacity Vw=5.409 kips
Vw_max/Vw=0.18
PASS-Shear capacity for wind load exceeds maximum shear force
Seismic loading:
Segment 2 stiffness k2=10.32 kips/in Shear capacity,widest seg. vsws2=260 plf
Deflection at capacity load Scap=0.227 in
Seg. 3 stiffness k3=4.366 kips/in Seg. 3 shear at 6cap Vdsws3=206.59 plf
Seg 3 shear capacity vsws3=260 plf Vdsws3/Vsws3=0.795
PASS-Segment shear capacity exceeds segment unit shear at*cap
Seg.4 stiffness k4=2.307 kips/in Seg.4 shear at kap vdsws4= 167.37 plf
Seg 4 shear capacity Vsws4=241.8 plf Vdsws4/Vsws4=0.692
PASS-Segment shear capacity exceeds segment unit shear at*cap
Max.seismic shear force Vs max=0.489 kips Seismic shear capacity Vs=3.853 kips
Vs max/Vs=0.127
PASS-Shear capacity for seismic load exceeds maximum shear force
Chord capacity for chords 1 and 2
Shear wall aspect ratio h/bi =5.333
Segment not considered,shear wall aspect ratio exceeds maximum allowable.
Chord capacity for chords 3 and 4
Shear wall aspect ratio h/b2=0.889
Shear force for tension V=0.972 kips Maximum tensile force T=0.438 kips
Max.applied tensile stress ft=30 lb/in2 Design tensile stress Ft' =720 lb/in2
ft/Ft'=0.042
PASS-Design tensile stress exceeds maximum applied tensile stress
Shear force,compression V=0.972 kips Max. compressive force C =0.669 kips
Max. applied comp.stress fc=41 lb/in2 Design compressive stress Fc' =945 lb/in2
fc/Fc'=0.043
PASS-Design compressive stress exceeds maximum applied compressive stress
Chord capacity for chords 5 and 6
Shear wall aspect ratio h/b3= 1.669
Shear force for tension V=0.972 kips Maximum tensile force T=0.331 kips
Max.applied tensile stress ft=23 lb/in2 Design tensile stress Fi =720 lb/in2
ft/Ft=0.031
PASS-Design tensile stress exceeds maximum applied tensile stress
Shear force,compression V=0.972 kips Max. compressive force C=0.561 kips
Max. applied comp.stress fc=34 lb/in2 Design compressive stress Fc'=945 lb/in2
fc/Fc'=0.036
PASS-Design compressive stress exceeds maximum applied compressive stress
Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 30 of 78
Chord capacity for chords 7 and 8
Shear wall aspect ratio h/b4=2.56
Shear force for tension V=0.972 kips Maximum tensile force T=0.251 kips
Max.applied tensile stress ft= 17 lb/in2 Design tensile stress Ft' =720 lb/in2
ft/Ft'=0.024
PASS-Design tensile stress exceeds maximum applied tensile stress
Shear force, compression V=0.972 kips Max. compressive force C=0.482 kips
Max. applied comp.stress fc=29 lb/in2 Design compressive stress Fc'=945 lb/in2
fo/Fc'=0.031
PASS-Design compressive stress exceeds maximum applied compressive stress
Collector capacity
Maximum shear force Vmax=0.972 kips Max. force in collector Pcon=0.154 kips
Max.applied tensile stress ft=9 lb/in2 Design tensile stress Ft =720 lb/in2
—
ft/Ft'=0.013
PASS-Design tensile stress exceeds maximum applied tensile stress
Max.applied comp.stress fo=9 lb/in2 Design compressive stress Fc'= 1360 Ib/int
fo/Fc'=0.007
PASS-Design compressive stress exceeds maximum applied compressive stress
Hold down force
Chord 3 T3=0.438 kips
Chord4 T4=0.438 kips
Chord 5 T5=0.331 kips
Chord 6 Ts=0.331 kips
Chord 7 T7=0.251 kips
Chord 8 Ts=0.251 kips
Wind load deflection
Shear wall deflection Ssww=0.093 in Deflection limit Aw allow=0.24 in
Ssww/Aw allow=0.387
PASS-Shear wall deflection is less than deflection limit
Seismic load deflection
Shear wall deflection Ssws=0.157 in Deflection limit Os allow=2.4 in
Ssws/As allow=0.065
PASS-Shear wall deflection is less than deflection limit
Use Simpson DTT2Z-SDS2.5 holdown device
Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)7374344 By R.P. Date 5/7/2018 Page 31 of 78
FLOOR JOISTS ANALYSIS & DESIGN (NDS)
STRUCTURAL WOOD MEMBER ANALYSIS&DESIGN (NDSI
In accordance with the ANSI/AF&PA NDS-2015 using the ASD method
Tedds calculation version 1.7.04
toad Envelope•Combination 1
0.077—
OD
L 17
A 1 3
�p_ft
€3,1--dF.4o,ent Enveiape
1.377—
. 1.4
ft l 12
A 1 B
kips Shear Force Envelope
0.5
0.459—
0-
-0 459
ft I 12
A 1 B
Applied loading
Beam loads
Dead self weight of beam x 1
Dead full UDL 20 lb/ft
Live full UDL 53 lb/ft
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Span 1 Dead x 1.00
Live x 1.00
Support B Dead x 1.00
Js',S ' 'i stt/tin� 1710 Project New Addition Job# 180145
to i
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 32 of. 78
Live x 1.00
Analysis results
Design moment M= 1377.4 lb ft Design shear F =459.1 lb
Total load on member Wtot=918.3 lb
Reaction at support A RA_max=459 lb RA_min=459 lb
Unfactored dead load reaction at support A RA_Dead= 140 lb
Unfactored live load reaction at support A RA_Live=319 lb
Reaction at support B RB_max=459 lb RB min=459 lb
Unfactored dead load reaction at support B Rs_Dead=140 lb
Unfactored live load reaction at support B RB_Live=319 lb
ILJ
-V, .4 1.5" .. _.._.--
--4 -►
Sawn lumber section details
Nominal breadth bnom=2 in Dressed breadth b= 1.5 in
Nominal depth dnom= 10 in Dressed depth d=9.25 in
Number of sections N = 1 Breadth of member bb= 1.5 in
Lumber grading No.2 Douglas Fir-Larch
Member details
Service condition 121.1
Length of span Ls1 = 12 ft
Length of bearing Lb=4 in
Load duration Ten years
The beam is one of three or more repetitive members
Bearing perpendicular to grain -c1.3.10.2
Adjusted compression Fc_perp=625 lb/in2 Applied compression fo_perp=77 lb/in2
PASS-Design compressive stress exceeds applied compressive stress at bearing
Strength in bending-c1.3.3.1
Design bending stress Fb'= 1139 lb/in2 Actual bending stress fb=773 lb/in2
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain -c1.3.4.1
Design shear stress FV= 180 lb/in2 Actual shear stress fv=50 lb/in2
—
PASS-Design shear stress exceeds actual shear stress
Deflection-c1.3.5.1
}
Allowable deflection 6adm=0.432 in Total deflection &b sl =0.226 in
PASS- Total deflection is less than design deflection
Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
I 11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 33 of 78
Use 2x10 DF/L#2 at 16" o.c.
FLOOR BEAM #1 ANALYSIS & DESIGN (AISC360)
STEEL BEAM ANALYSIS& DESIGN (AISC360-10)
In accordance with AISC360 14th Edition published 2010 using the ASD method
Tedds calculation version 3.0.12
load Envelope-Combination 1
aacai
0.0
ft I 17.5
A 1 0
klp ft Gann,a.r.s r-toEn.v`t:s
14.138—
13:1
it i 173 I.
A 1 a
kips Shear Force Envelope
3.232— 31
3232—
-3.2
ft I 173 i...
A 1 8
Support conditions
Support A Vertically restrained
Rotationally free
Support B Vertically restrained
Rotationally free
Applied loading
Beam loads Dead self weight of beam x 1
Y '
Cry Project New Addition Job# 180145
pt
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 34 of 78
Dead full UDL 0.105 kips/ft
Live full UDL 0.239 kips/ft
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Roof live x 1.00
Snow x 1.00
Dead x 1.00
Live x 1.00
Roof live x 1.00
Snow x 1.00
Support B Dead x 1.00
Live x 1.00
Roof live x 1.00
Snow x 1.00
Analysis results
Maximum moment Mmax= 14.1 kips_ft Mmin=0 kips_ft
Maximum shear Vmax=3.2 kips Vmin=-3.2 kips
Deflection bmax=0.5 in 8min=0 in
Maximum reaction at support A RA_max=3.2 kips RA min=32 kips
Unfactored dead load reaction at support A RA_Dead= 1_1 kips
Unfactored live load reaction at support A RA_Live=2.1 kips
Maximum reaction at support B RB max=3.2 kips Re_min=3.2 kips
Unfactored dead load reaction at support B RB_Dead= 1.11 kips
Unfactored live load reaction at support B RB_Live=2.1 kips
Section details
Section type W 6x25(AISC 14th Edn (v14.1))
ASTM steel designation A36
Steel yield stress Fy=36 ksi
Steel tensile stress FU=58 ksi
Modulus of elasticity E =29000 ksi
r «<`:=:y L Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684. (503)737-4344 By R.P. Date 5/7/2018 Page 35 of 78
o r
l
1
-►i 4-0.32"
co 1 r
1
}
fl
-----------0.08".-------Safety factors
Safety factor for tensile yielding city= 1.67
Safety factor for tensile rupture Qtr=2.00
Safety factor for compression S2c= 1.67
Safety factor for flexure Ste= 1.67
Safety factor for shear S2v= 1.50
Lateral bracing
Span 1 has continuous lateral bracing
Classification of sections for local buckling -Section B4.1
Classification of flanges in flexure-Table B4.1 b(case 10)
Width to thickness ratio bf/(2 x tf) =6.68
Limiting ratio for compact section kpff=0.38 x J[E/Fy]= 10.79
Limiting ratio for non-compact section krff= 1.0 x J[E/Fy] =28.38 Compact
Classification of web in flexure-Table B4.1 b(case 15)
Width to thickness ratio (d-2 x k)/tw= 15.53
Limiting ratio for compact section Xpwf=3.76 x 4[E/Fyj= 106/2
Limiting ratio for non-compact section krwf=5.70 x '/[E/Fy]= 161.78 Compact
Section is compact in flexure
Design of members for shear-Chapter G
Required shear strength Vr=max(abs(Vmax), abs(Vmin)) =3.232 kips
Web area Aw=d x tw=2.042 in2
Web plate buckling coefficient kv=5
Web shear coefficient-eq G2-2 Cv= 1.000
Nominal shear strength -eq G2-1 Vn=0.6 x Fy x Aw x Cv=44.099 kips
Allowable shear strength Vc=Vn/S2v=29.399 kips
PASS-Allowable shear strength exceeds required shear strength
ck' ivs 44l'Einy /'!'C Project New Addition Job# 180145
° Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC ; Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 36 of 78
Design of members for flexure in the major axis-Chapter F
Required flexural strength Mr= max(abs(Msi_max), abs(Msi_min)) = 14.138 kips_ft
Yielding -Section F2.1
Nominal flexural strength for yielding-eq F2-1 Mnyld=Mp= Fy x Zx=56.7 kips_ft
Nominal flexural strength Mn= Mnyld=56.700 kips_ft
Allowable flexural strength Mc= Mn/C2b=33.952 kips_ft
PASS-Allowable flexural strength exceeds required flexural strength
Design of members for vertical deflection
Consider deflection due to dead, live, roof live and snow loads
1 Limiting deflection 6iiim= Ls1 /360=0.583 in
Maximum deflection span 1 6=max(abs(8max), abs(6min)) =0.503 in
PASS-Maximum deflection does not exceed deflection limit
Use W6x25
i
"_-.k =:.'C Project New Addition Job# 180145
, Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 37 of 78
FLOOR BEAM #2 ANALYSIS & DESIGN (NDS)
STRUCTURAL GLUED LAMINATED TIMBER(GLULAM)MEMBER ANALYSIS &DESIGN(NDS) "
In accordance with the ANSI/AF&PA NDS-2015 using the ASD method
Tedds calculation version 1.7.04
Load Envelope-Combination 1
4.511-
ft I 17.833 I
A 1 8
kip_ft 8erdrg Moment Envelope
46568- _._..____--- ..
42'i.6
ft I —�. 17.833 I:
A 1 B
kips Shur Fake&metope
R1
8.070-. r__
-..-_._..._.,._ -___ .4
�_
0.0-A - - 1 A
-8533 i
41.5
ft I 17.833 I
A 1 B
Applied loading
Beam loads
Dead self weight of beam x 1 i
Dead full UDL 306 lb/ft
Snow full UDL 350 lb/ft
Dead point load 1070 lb at 118.00 in
Live point load 2094 lb at 118.00 in 1
Wind point load 1347 lb at 118.00 in
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Snow x 1.00
r,
f
dt'-__-VS .0 ,'«4't«,y /'/'i' 1 Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611.NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 38 of 78
Wind x 1.00
Span 1 Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Support B Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Analysis results
Design moment M =46568.0 lb_ft Design shear F=8533.2 lb
Total load on member Wtot= 16602.8 lb
Reaction at support A RA_max=8070 lb RA_min=8070 lb
Unfactored dead load reaction at support A RA_Dead=3405 lb
Unfactored live load reaction at support A RA_Uve=939 lb
Unfactored snow load reaction at support A RA_snow=3121 lb
Unfactored wind load reaction at support A RA_wind=604 lb
Reaction at support B RB_max=8533 lb Rs min=8533 lb
Unfactored dead load reaction at support B RB_Dead=3515 lb
Unfactored live load reaction at support B RB Live= 1155 lb
Unfactored snow load reaction at support B RB_snow=3121 lb
Unfactored wind load reaction at support B RB_wnd=743 lb
co
45 51.
► 4., 4-
Glulam section details
Net finished section breadth b=555 in Net finished section depth d= 16.5 in
Number of sections N =1 Alignment of laminations Horizontal
Stress class 24F-V4 DF/DF
Member details
Service condition
Length of span Ls, = 17.833 ft
Length of bearing Lb=4 in
Load duration Two months
Bearing perpendicular to grain -c1.3.10.2
Adjusted compression Fc_perp'=650 lb/in2 Applied compression fc_perp=388 lb/in2
PASS-Design compressive stress exceeds applied compressive stress at bearing
Project New Addition Job# 180145
( Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684503
( )737-4344 i By R.P. Date 5/7/2018 Page 39 of 78
Strength in bending-c1.3.3.1
Design bending stress Fb=2698 lb/in2 Actual bending stress fb=2239 lb/in2
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain-c1.3.4.1
Design shear stress Fv' =305 lb/in2 Actual shear stress fv= 141 lb/in2
PASS-Design shear stress exceeds actual shear stress
Deflection -c1.3.5.1
Allowable deflection 8adm=0.749 in Total deflection 8b sl =0.661 in
PASS- Total deflection is less than design deflection
Use 5'/z"x 16 1/2"24F-V4 GLB
/Yr Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 ! By R.P. Date 5/7/2018 Page 40 of` 78
MAIN FLOOR CANTILEVER JOISTS ANALYSIS & DESIGN (NDS)
STRUCTURAL WOOD MEMBER ANALYSIS& DESIGN (NDS)
In accordance with the ANSI/AF&PA NDS-2015 using the ASD method
Tedds calculation version 1.7.04
Load Envekipe-Combination2
0075-
0.0
ft I 4 12 1.
A 1 B 2 C
k;p ft Bending Moment Envebpe
-0.150- i>.2
" I 0.085-+
0.1
ft 4 2
A 1 8 2 C
LiNs Shear Force Envelope
0.150- .0.1 0.2
0.07
-0.188-
-0.2
ft I 4 I 2
A 1 8 2 C
Applied loading
Beam loads
Dead self weight of beam x 1
Dead full UDL 20 lb/ft
Live full UDL 53 Ib/ft
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Span 1 Dead x 1.00
Live x 1.00
Support B Dead x 1.00
Live x 1.00
`t
R AQ %7!i�tul'& CP6 [ Project New Addition Job# 180145
.i `s Address 11958 SW 125th Ct.,Tigard,OR 97223
RN$Consulting LLC Client Chris&Jessica Anderson
.11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 41 of 78
Span 2 Dead x 1.00
Live x 1.00
Support C Dead x 1.00
Live x 1.00
Analysis results
Design moment M = 150.3 lb_ft Design shear F= 187..9 lb
Total load on member Wtot=450.9 lb
Reaction at support A RA_max= 113 lb RA_min= 113 lb
Unfactored dead load reaction at support A RA_Dead=33 lb
Unfactored live load reaction at support A RA_LiVe=80 lb
Reaction at support B Rc_max=338 lb RB min=338 lb
Unfactored dead load reaction at support B RB_Dead=99 lb
Unfactored live load reaction at support B RB_Live=239 lb
Reaction at support C Rc_max=0 lb Rc_min=0 lb
Unfactored dead load reaction at support C Rc_Dead=0 lb
Unfactored live load reaction at support C Rc_uve=0 lb
--✓1.5"y..
y..__._,q..._--_.
Sawn lumber section details
Nominal breadth bnom=2 in Dressed breadth b= 1.5 in
Nominal depth dnom=6 in Dressed depth d =555 in
Number of sections N =1 Breadth of member bb= 1.5 in
Lumber grading No.2 Douglas Fir-Larch
Member details
Service condition
Length of span 1 Lxi =4 ft
Length of span 2 L52=2 ft
Length of bearing Lb=4 in •
Load duration Ten years
The beam is one of three or more repetitive members
Bearing perpendicular to grain-c1.3.10.2
Adjusted compression Fc_perp=684 lb/in2 Applied compression fc_perp=56lb/in2
PASS-Design compressive stress exceeds applied compressive stress at bearing
Strength in bending-c1.3.3.1
Design bending stress Fb' = 1346 lb/in2 Actual bending stress fb=239 lb/in2
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain-c1.3.4.1
Design shear stress Fv.=180 lb/in2 Actual shear stress f5=34 lb/in2
Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/712018 Page 42 of 78
PASS-Design shear stress exceeds actual shear stress
Deflection-c1.3.5.1
Allowable deflection Sadm=0.144 in Total deflection 6b s2=0.008 in
• PASS- Total deflection is less than design deflection
Use 2x6 DF/L#2 at 16"o.c.
•
MAIN FLOOR BEAM ANALYSIS & DESIGN (NDS)
STRUCTURAL WOOD MEMBER ANALYSIS&DESIGN (NDS)
In accordance with the ANSI/AF&PA NDS-2015 using the ASD method
Tedds calculation version 1.7.04
• toad Entrbpe-Combination 1
0225-4
G-
rt I 8 I
A B
kip h SerMine Moment Envelope
0.0-
1.797)
1.$
B
kips Shear Force Envelope
9
0.899- °- ._
fI
-0.899-
€t I -0.9
s
A 1 B
Applied loading
Beam loads
Dead self weight of beam x 1
Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 43 of 78
Dead full UDL 60 lb/ft
Live full UDL 160 lb/ft
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Span 1 Dead x 1.00
Live x 1.00
Support B Dead x 1.00
Live x 1.00
Analysis results
Design moment M=1797.4 lb ft Design shear F=898.7 lb
Total load on member Wtot= 1797.4 lb
Reaction at support A RA_max=899 lb R,n_mm=899 lb
Unfactored dead load reaction at support A RA_Dead=259 lb
Unfactored live load reaction at support A RA_Live=640 lb
Reaction at support B RB_max=899 lb RB_min=899 lb
Unfactored dead load reaction at support B RB_Dead=259 lb
Unfactored live load reaction at support B RB_uve=640 lb
N----3.5"--r
4" p
Sawn lumber section details
Nominal breadth bnom=4 in Dressed breadth b=3.5 in
Nominal depth dnom=6 in Dressed depth d =5_5 in
Number of sections N =1 Breadth of member bb=3.5 in
Lumber grading Select Structural Douglas Fir-Larch
Member details
Service condition
Length of span Lsi =8 ft
Length of bearing Lb=4 in
Load duration Ten years
Bearing perpendicular to grain-ci.3.10.2
Adjusted compression Fc_perp=625 Ib/int Applied compression fc_perp=64 lb/in2
PASS-Design compressive stress exceeds applied compressive stress at bearing
Strength in bending -c1.3.3.1
Design bending stress Fb'=1950 Ib/int Actual bending stress fb= 1222 lb/in2
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain-c1.3.4.1
Design shear stress Fv'= 180 lb/in2 Actual shear stress fv=70 lb/in2
PP j Project New Addition Job# 180145
{ Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 44 of 78
PASS-Design shear stress exceeds actual shear stress
Deflection-c1.3.5.1
Allowable deflection badm=0.288 in Total deflection bb s1 =0.225 in
PASS- Total deflection is less than design deflection
Use 4x6 DF/L#2 at 48" o.c.
MAIN FLOOR RIM BEAM ( R5 ANALYSIS & DESIGN (NDS)
STRUCTURAL WOOD MEMBER ANALYSIS & DESIGN (NDS)
In accordance with the ANSI/AF&PA NDS-2015 using the ASD method
Tedds calculation version 1.7.04
ea 34 Envelope-Ec.,:_-_.per a•+ 1
'441--
. 0,0—A a to is m
-2301—
• ft I 1.633 1 633 I 1.633 I 1.633 I 3.633 I 1.633 I 1.633 I 1.633 I 1.633 I 1.633 I
A 1 B 2 C 3 Co 4 E 5 F 6 G 7 it 8 1 9 1 10 K.
kip_ft Bending Moment Enve#ope
-0.6581 '0.7
-0S
0-4
-0.1 -0.1 -0.1 -0.2
0.0— .:� .... . . ��
0.1 0.0 0.0 0.1 0. 0.1 •
0.D.2
0.757-
0.8
ft 1 1:633 I 1.633 I 1.633 I 3.633 ( 1.633 I 1.633 I 1.633 I 1.633 I 1.633 I 1.633 I
A 1 B 2 C 3 D4 65 F 66 7 H8 1 9 1 10 K
kips Shear Force Envelope
2.213— 2.2 2.0 2.1
0.2 03 0.3 0.6 0.5
0.2
0.5
-0.3 -03 -03 -02
t1.A -0A
-1.259-- -0.6 �-.`� -0.8
-13
ft I 1.633 I 1.633 I 1.633 I 1.633 11.633 I 1.633 I 1.633 I 1.633 I 1.633 I 1.633
A 192 C 3 0 4 E 5 F 6 6 N 8 1 9 1 10 K
C i Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 ' By R.F. Date 5/7/2018 Page 45 of 78
Applied loading
Beam loads
Dead self weight of beam x 1
Dead full UDL 184 lb/ft
Live full UDL 40 lb/ft
Snow full UDL 122 lb/ft
Wind point load 2901 lb at 105.00 in
Wind point load-2901 lb at 192.00 in
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Span 1 Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Support B Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Span 2 Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Support C Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Span 3 Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Support D Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x1.00
Span 4 Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Support E Dead x 1.00
digit /J7Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)7374344 By R.P. Date 5/7/2018 Page 46 of 78
Live x 1.00
Snow x 1.00
Wind x 1.00
Span 5 Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Support F Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Span 6 Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Support G Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Span 7 Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Support H Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Span 8 Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Support 1 Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Span 9 Dead x 1.00
Live x 1.00
J Snow x 1.00
Wind x 1.00
Support J Dead x 1.00
Live x 1.00
1 Snow x 1.00
i
rdt,=y%'//' Project New Addition
Job# 180145
Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737.4344 By R.P. Date 5/7/2018 Page 47 of 78
Wind x 1.00
Span 10 Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Support K Dead x 1.00
Live x 1.00
Snow x 1.00
Wind x 1.00
Analysis results
Design moment M=756.5!bit Design shear F=2213.5 lb
Total load on member Wtot=5715.7 lb
Reaction at support A RD_max=224 lb RA_min=224 lb
Unfactored dead load reaction at support A RA_Dead= 121 lb
Unfactored live load reaction at support A RA_Live=26 lb
Unfactored snow load reaction at support A RA_snow=78 lb
Unfactored wind load reaction at support A RA_Wind=-1 lb
Reaction at support B RD_max=655 lb Re_min=655 lb
Unfactored dead load reaction at support B Rs_Dead=348 lb
Unfactored live load reaction at support B Re Jive=74 lb
Unfactored snow load reaction at support B Rs_snow=226 lb
Unfactored wind load reaction at support B Re_wind=7 lb
Reaction at support C Rc_max=523 lb Rc_min=523 lb
Unfactored dead load reaction at support C RC_Dead=296 lb
Unfactored live load reaction at support C RD_Live=63 lb
, Unfactored snow load reaction at support C Rc_snow= 192 lb
Unfactored wind load reaction at support C RC_Wind=-28 lb
Reaction at support D RD_max=683 lb RD_min=683 lb
Unfactored dead load reaction at support D RD_Dead=310 lb
Unfactored live load reaction at support D RD_Live=66 lb
Unfactored snow load reaction at support D RD_snow=201 lb
Unfactored wind load reaction at support D RD wind= 106 lb
Reaction at support E RE_max= 176 lb RE_min= 176 lb ,
Unfactored dead load reaction at support E RE_Dead=306 lb
Unfactored live load reaction at support E RE_Live=65 lb
Unfactored snow load reaction at support E RE_snow= 198 lb
Unfactored wind load reaction at support E RE_wind=-394 lb
Reaction at support F Rr_max=2811 lb RF min=2811 lb
Unfactored dead load reaction at support F RF_Dead=308 lb
Unfactored live load reaction at support F RF_uve=65 lb
Unfactored snow load reaction at support F RF_snow= 199 lb
Unfactored wind load reaction at support F RF_wind=2238 lb
Reaction at support G RD_max= 1782 lb RG_min= 1782 lb
Unfactored dead load reaction at support G RG_Dead=306 lb
,R,.-..'11::S !
Unfactored live load reaction at support G RG_Live=65 lb
Unfactored snow load reaction at support G RG_Snow= 198 lb
Unfactored wind load reaction at support G RG_wind= 1212 lb
Reaction at support H RH_max=228 lb RH min=228 lb
Unfactored dead load reaction at support H RH_Dead=310 lb
Unfactored live load reaction at support H RH_uVe=66 lb
Unfactored snow load reaction at support H RH snow=201 lb
Unfactored wind load reaction at support H RH_Wind=-349 lb
Reaction at support I Ri_max=869 lb Ri min=869 lb
Unfactored dead load reaction at support I Ri_Dead=296 lb
Unfactored live load reaction at support I RI_Live=63 lb
Unfactored snow load reaction at support I RI_Snow= 192 lb
Unfactored wind load reaction at support I Ri_wnd=318 lb
Reaction at support J RJ_max=-299 lb R. min=-299 lb
Unfactored dead load reaction at support J RJ_Dead=348 lb
Unfactored live load reaction at support J RJ_Live=74 lb
Unfactored snow load reaction at support J RJ snow=226 lb
Unfactored wind load reaction at support J RJ_wind=-947 lb
Reaction at support K RK_max=-1936 lb RK min= -1936 lb
Unfactored dead load reaction at support K RK Dead= 121 lb
Unfactored live load reaction at support K RK Live=26 lb
Unfactored snow load reaction at support K RK snow=78 lb
Unfactored wind load reaction at support K RK wind=-2161 lb
4_-3„ r
4 4" lo,
Sawn lumber section details
Nominal breadth bnom=2 in Dressed breadth b= 1.5 in
Nominal depth dnom=6 in Dressed depth d =5.5 in
Number of sections N =2 Breadth of member bb=3 in
Lumber grading No.2 Douglas Fir-Larch
Member details
Service condition
Length of span 1 Lsi =1.633 ft
Length of span 2 Ls2= 1.633 ft
Length of span 3 Ls3=1.633 ft
Length of span 4 Ls4= 1.633 ft
Length of span 5 Lss= 1.633 ft
Length of span 6 Ls6= 1.633 ft
Length of span 7 Ls7= 1.633 ft
Length of span 8 Lss= 1.633 ft
ii-i-V-1 44; ,,tu,iy e_.'t Project New Addition
Job# 180145
St
3 Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC . Client Chris&Jessica Anderson
.11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 49 of 78
Length of span 9 Lys= 1.633 ft
Length of span 10 Lsio= 1.633 ft
Length of bearing Lb=4 in
Load duration Ten minutes
Bearing perpendicular to grain-c1.3.10.2
Adjusted compression Fc_perp=684 lb/in2 Applied compression fc_perp=234 lb/in2
PASS-Design compressive stress exceeds applied compressive stress at bearing
Strength in bending -c1.3.3.1
Design bending stress Fb'=1872 lb/in2 Actual bending stress fb=600 lb/in2
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain-c1.3.4.1
Design shear stress FJ =288 lb/in2 Actual shear stress f„=201 Ib/int
PASS-Design shear stress exceeds actual shear stress
Deflection -c1.3.5.1
Allowable deflection 8adm=0.059 in Total deflection 8b_s6=.0.903 in
PASS- Total deflection is less than design deflection
Use dbl.2x6 DF/L#2
1
1
JV?JVS .p,e14,t/Ei,19_ILA Project New Addition Job# 180145
, Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 50 of 78
CANTILEVER ROOF RAFTER ANALYSIS & DESIGN (NDS)
STRUCTURAL WOOD MEMBER ANALYSIS&DESIGN (NDS)
In accordance with the ANSI/AF&PA NDS-2015 using the ASD method
Tedds calculation version 1.7.04
Load Envelope-Combination 1
0.05'1--1
0.0—
ft l s I 4
A 1 8 2 C
kipit Bending Moment Envelope
-0.453— -0.5
0.255— ---_._.-.
ft I 8 q (.
A 1 8 2 C
kips Shear Force Envelope
0.227— 0,2 0.2
0.0—
-0.283—
ft 1 8 -0.3
4
A 1 8 2
• Applied loading
Beam loads
Dead self weight of beam x 1
Dead full UDL 20 lb/ft
Snow full UDL 33 lb/ft
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Snow x 1,00
Span 1 Dead x 1.00
Live x 1.00
Snow x 1.00
Lye Project New Addition Job# 180145
Address 11958 SW 125th Ct., Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 51 of 78
Support B Dead x 1.00
Live x 1.00
Snow x 1.00
Span 2 Dead x 1.00
Live x 1.00
Snow x 1.00
Support C Dead x 1.00
Live x 1.00
Snow x 1.00
Analysis results
Design moment M=453.1 'bit Design shear F =283.2 lb
Total load on member Wtoc=679.7 lb
Reaction at support A RA_max= 170 lb RA_min= 170 lb
Unfactored dead load reaction at support A RA_Dead=70 lb
Unfactored snow load reaction at support A RA_snow= 100 lb
Reaction at support B RB_max=510 lb RB_min=510 lb
Unfactored dead load reaction at support B RB_Dead=210 lb
Unfactored snow load reaction at support B RB_snow=300 lb
Reaction at support C Rc_max=0 lb Rc_min=0 lb
Unfactored dead load reaction at support C RC_Dead=0 lb
Unfactored snow load reaction at support C Rc_snow=0 lb
r_
--4. 4-1.5'
Sawn lumber section details
Nominal breadth bnom= 2 in Dressed breadth b= 1.5 in
Nominal depth dnom= 10 in Dressed depth d =9.25 in
Number of sections N = 1 Breadth of member bb= 1.5 in
Lumber grading No.2 Douglas Fir-Larch
Member details
Service condition
Length of span 1 L51 =8 ft
Length of span 2 Ls2=4 ft
Length of bearing Lb=4 in
Load duration Two months
The beam is one of three or more repetitive members
Bearing perpendicular to grain -c1.3.10.2
Adjusted compression Fc_perp'=684 lb/in2 Applied compression fc_perp=85 lb/in2
r Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 52 of 78
PASS-Design compressive stress exceeds applied compressive stress at bearing
Strength in bending -c1.3.3.1
Design bending stress Fb'= 1309 lb/in2 Actual bending stress fb=254 lb/in2
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain -c1.3.4.1
Design shear stress F5'=207 Ib/int Actual shear stress fv=31 lb/in2
PASS-Design shear stress exceeds actual shear stress
Deflection-c1.3.5.1
Allowable deflection dadm=0.288 in Total deflection 6b s2=0.020 in
PASS- Total deflection is less than design deflection
Use 2x10 DF/L#2 at 16" o.c.
HIP BEAM ANALYSIS & DESIGN (NDS)
STRUCTURAL WOOD MEMBER ANALYSIS&DESIGN(NDS)
In accordance with the ANSI/AF&PA NDS-2015 using the ASD method
Tedds calculation version 1.7.04
Load Envelope-combination 1
3.34 -.
U.D.-
it I 11 335'
A 5
1 2
{
xSp ft Bending Moment Envelope
-0 7
0.0-, ,
3826— -��`— _L _
A 11.33 5.657 j
1 R 2
ii'':::k 1 i,yt ,1 �'%'�' Project New Addition
Job# 180145
Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 53 of 78
Shear force Envelope
kips 1.5
1A62-
43
-1.153- •1.2
ft i 11.33 �_...� 5.667
A g 2 t
Applied loading
Beam loads
Dead self weight of beam x 1
Dead full VDL 140 lb/ft to 0 lb/ft
Snow full VDL 200 lb/ft to 0 lb/ft
Load combinations
Load combination 1 Support A Dead x 1.00
Live x 1.00
Snow x 1.00
Span 1 Dead x 1.00
Live x 1.00
Snow x 1.00
Support B Dead x 1.00
Live x 1.00
Snow x 1.00
Span 2 Dead x 1.00
Live x 1.00
Snow x 1.00
Support C Dead x 1.00
Live x 1.00
Snow x 1.00
Analysis results
Design moment M=3425.6 Ib_ft Design shear F= 1462.0 lb
Total load on member Wtot= 2959.2 lb
Reaction at support A RA_max= 1462 lb RA_min= 1462 lb
Unfactored dead load reaction at support A RA_Dead=612 lb
Unfactored snow load reaction at support A RA_snow=850 lb
Reaction at support B RB_max= 1497 lb Rs_min= 1497 lb
Unfactored dead load reaction at support B RB Dead=647 lb
Unfactored snow load reaction at support B RB_Snow=850 lb
Reaction at support C Rc_max=0 lb Rc_min=0 lb
Unfactored dead load reaction at support C RC_Dead=0 lb
Unfactored snow load reaction at support C Rc_snow=0 lb
'c1V 0 ,itiny22C Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 54 of 78
I
Vg
Sawn lumber section details
Nominal breadth bnom=2 in Dressed breadth b= 1.5 in
Nominal depth dnom= 12 in Dressed depth d= 11.25 in
Number of sections N = 1 Breadth of member bb= 1.5 in
Lumber grading Select Structural Douglas Fir-Larch
Member details
Service condition
Length of span 1 Lsi = 11.33 ft
Length of span 2 Ls2=5.667 ft
Length of bearing Lb=4 in
Load duration Two months
Bearing perpendicular to grain-c1.3.10.2
Adjusted compression Fc_perp=684 Ib/int Applied compression fc_perp=250 Ib/int
PASS-Design compressive stress exceeds applied compressive stress at bearing
Strength in bending -c1.3.3.1
Design bending stress Fb= 1725 lb/in2 Actual bending stress fb= 1299 lb/in2
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain -c1.3.4.1
Design shear stress Fv'=207 lb/in2 Actual shear stress f„= 130 lb/in2
PASS-Design shear stress exceeds actual shear stress
Deflection -c1.3.5.1
Allowable deflection Scam=0.408 in Total deflection 8b s2=-0.296 in
PASS- Total deflection is less than design deflection
Use 2x12 DF/L Sel. Str.
�t�J Mutt 2 P/''/' Project New Addition Job# 180145
t :
4 Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 55 of 78
RcIV ' t g tie I Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 56 of 78
A-FRAME RAFTER MEMBER DESIGN (NDS)
STRUCTURAL WOOD MEMBER DESIGN (NDS)
In accordance with the ANSI/AF&PA NDS-2015 using the ASD method
Tedds calculation version 1.7.04
Analysis results
Design moment in major axis Mx=4254 Ib_ft
Design shear F =842 lb
N
W
1
it
3"--0-
Sawn
"-►Sawn lumber section details
Nominal breadth of sections bnom=2 in
Dressed breadth of sections b= 1.5 in
Nominal depth of sections dnom= 10 in
Dressed depth of sections d=9.25 in
Number of sections in member N =2
Overall breadth of member bb= N x b= 3 in 1
Species,grade and size classification Douglas Fir-Larch, No.1 grade, 2"&wider
Bending parallel to grain Fb= 1000 lb/in2
Tension parallel to grain Ft=675 lb/in2
Compression parallel to grain F0= 1500 lb/in2
Compression perpendicular to grain Fc_perp=625 lb/in2
Shear parallel to grain Fy= 180 lb/in2
Modulus of elasticity E = 1700000 lb/in2
Modulus of elasticity, stability calculations Emin=620000 lb/in2
Mean shear modulus Gdef= E/16= 106250 lb/in2
Member details
Service condition
Load duration Two months
Section properties
Cross sectional area of member A= N x b x d=27.75 in2
Section modulus Sx= N x b x d2/6=42.78 in3
Sy=d x (N x b)2/6= 13.87 in3
Second moment of area lx= N x b x d3/12= 197.86 in4
ly=d x (N x b)3/ 12=20.81 in4
Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)7374344 i By R.P. Date 5/7/2018 Page 57 of 78
Adjustment factors
Load duration factor-Table 2.3.2 CD= 1.15
Temperature factor-Table 2.3.3 Ct=1.00
Size factor for bending-Table 4A CFb= 1.10
Size factor for tension-Table 4A CF,= 1.10
Size factor for compression-Table 4A CFc= 1.00
Flat use factor-Table 4A Cru= 1.20
Incising factor for modulus of elasticity-Table 4.3.8
CiE= 1.00
Incising factor for bending, shear,tension &compression-Table 4.3.8
C.= 1.00
Incising factor for perpendicular compression-Table 4.3.8
Cic_perp= 1.00
Repetitive member factor-c1.4.3.9 Cr= 1.00
Bearing area factor-c1.3.10.4 Cb= 1.00
Depth-to-breadth ratio dnom/(N x bnom) = 2.50
-Beam is fully restrained
Beam stability factor-c1.3.3.3 CL= 1.00
Strength in bending -c1.3.3.1
Design bending stress Fb'= Fb x CD X Ct X CL x CFb x Ci x Cr= 1265 lb/in2
Actual bending stress fb=MX/SX= 1193 lb/in2
fb/Fb'=0.943
PASS-Design bending stress exceeds actual bending stress
Strength in shear parallel to grain-c1.3.4.1
Design shear stress FJ=F„x CD X Ct x C,=207 lb/in2
Actual shear stress-eq.3.4-2 ff=3 x F/(2 x A)=46 lb/in2
f„/Fv'=0.220
PASS-Design shear stress exceeds actual shear stress
Use dbl.2x10 DF/L#1
Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 58 of 78
A-FRAME TENSION MEMBER DESIGN (NDS)
STRUCTURAL WOOD MEMBER DESIGN (NDS)
In accordance with the ANSI/AF&PA NDS-2015 using the ASD method
Tedds calculation version 1.7 04
Analysis results
Design axial tension P= 1191 lb
A-
T-
► 1.5" I-
Sawn lumber section details
Nominal breadth of sections bnom=2 in
Dressed breadth of sections b= 1.5 in
Nominal depth of sections dnom=6 in
Dressed depth of sections d=5.5 in
Number of sections in member N = 1
Overall breadth of member bb= N x b= 1.5 in
Species, grade and size classification Douglas Fir-Larch, No.2 grade,2"&wider
Bending parallel to grain Fb=900 lb/in2
, Tension parallel to grain Fc=575 lb/in2
Compression parallel to grain Fc= 1350 lb/in2
Compression perpendicular to grain Fc_perp=625 lb/in2
Shear parallel to grain Fv= 180 lb/in2
Modulus of elasticity E= 1600000 lb/in2
Modulus of elasticity, stability calculations Emin=580000 lb/in2
Mean shear modulus Gdet= E/16= 100000 lb/in2
Member details
Service condition 211
Load duration Two months
The beam is one of three or more repetitive members
Section properties
Cross sectional area of member A= N x b x d=8.25 in2
Section modulus SX=N x b x dz/6=7.56 in3
S,=dx (Nxb)z/6=2.06in3
Second moment of area lX= N x b x d3/12=20.80 in4
ly=d x (N x b)3/12=1.55 in4
,t 0444,2 /' Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting.LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 59 of 78.
Adjustment factors
Load duration factor-Table 2.3.2 CD= 1.15
Temperature factor-Table 2.3.3 Ct= 1.00
Size factor for bending-Table 4A CFb= 1.30
Size factor for tension-Table 4A Cn= 1.30
Size factor for compression-Table 4A CFC= 1.10
Flat use factor-Table 4A Cfu=1.15
Incising factor for modulus of elasticity-Table 4.3.8
CIE= 1.00
Incising factor for bending, shear,tension&compression-Table 4.3.8
Ci=1.00
Incising factor for perpendicular compression-Table 4.3.8
Cic_perp=1.00
Repetitive member factor-c1.4.3.9 Cr= 1.15
Bearing area factor-c1.3.10.4 Cb= 1.00
Depth-to-breadth ratio dnom/(N x bnom) =3.00
-Beam is fully restrained
Beam stability factor-c1.3.3.3 CL= 1.00
Tension parallel to grain-c1.3.8.1
Design tensile stress Ft= Ft x CD x Ct x Crt x Ci=860 Ib/int
Applied tensile stress ft= P/A= 144 Ib/int
ft/Ft'=0.168
PASS-Design tensile stress exceeds applied tensile stress
Use 2x6 DF/L#2 w/(5)Simpson 1/4" x 3" SDS screws ea.end(mina
1'e Project New Addition Job# 180145
It
=7","7,F;14-14-L,7127;
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 60 of 78
BEAM #1 SUPPORT COLUMN MEMBER DESIGN (NDS)
STRUCTURAL WOOD MEMBER DESIGNSTRUCTURAL WOOD MEMBER DESIGN (NDS)
In accordance with the ANSI/AF&PA NDS-2015 using the ASD method
Tedds calculation version 1.7.04
Analysis results
Design axial compression P=3164 lb
a
in
ei
•
r —
3.5".------*
Sawn lumber section details
Nominal breadth of sections bnom=4 in
Dressed breadth of sections b=3.5 in
Nominal depth of sections dnom=4 in
Dressed depth of sections d=3.5 in
Number of sections in member N= 1
Overall breadth of member bb= N x b=3.5 in
Species,grade and size classification Douglas Fir-Larch, No.2 grade, 2"&wider
Bending parallel to grain Fb=900 lb/in2
Tension parallel to grain Ft=575 lb/in2
Compression parallel to grain Fe= 1350 lb/in2
Compression perpendicular to grain Fc_perp=625 lb/in2
Shear parallel to grain F"= 180 lb/in2
Modulus of elasticity E= 1600000 lb/in2
Modulus of elasticity, stability calculations Emin=580000 lb/in2
Mean shear modulus Gdef= E/16= 100000 lb/in2
Member details
Service condition
Load duration Ten years
Unbraced length in x-axis LX=8 ft
Effective length factor in x-axis Kx= 1
Effective length in x-axis Lex= Lx x Kx=8 ft
Unbraced length in y-axis Ly= 1 ft
Effective length factor in y-axis KY= '1
Effective length in y-axis Ley= Ly x Ky=1 ft
Section properties
Cross sectional area of member A= N x b x d= 12.25 in2
},
---Y♦ � ..:.,„z.1,,.:,_./ `fi' Project New Addition Job# 180145
•n7_177"..44711 42L-74
�i
j Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
•Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 61 of 78
Section modulus Sx=N x b x d2/6=7.15 in3
Sy=d x (N x b)2/6=7.15 in3
Second moment of area lx= N x b x d3/ 12= 12.51 in4
ly=d x (N x b)3/12= 12.51 in4
Adjustment factors
Load duration factor-Table 2.3.2 CD= 1.00
Temperature factor-Table 2.3.3 Ct= 1.00
Size factor for bending-Table 4A CFb= 1.50
Size factor for tension-Table 4A CFt= 1.50
Size factor for compression-Table 4A CFc= 1.10
Flat use factor-Table 4A Cru= 1.00
Incising factor for modulus of elasticity-Table 4.3.8
CiE= 1.00
Incising factor for bending,shear,tension &compression-Table 4.3.8
Ci= 1.00
•
Incising factor for perpendicular compression-Table 4.3.8
Cic_perp= 1.00
Repetitive member factor-c1.4.3.9 Cr= 1.00
Bearing area factor-c1.3.10.4 Cb= 1.00
Adjusted modulus of elasticity for column stability Emin= Emin x CME x Ct x CIE=580000 lb/in2
Reference compression design value Fc*= Fc x CD x Cmc x Ct x CFc x Ci = 1485 lb/in2
Critical buckling design value for compression FcE=0.822 x Emin'/(Lex/d)2=634 lb/in2
c=0.80
Column stability factor-eq.3.7-1
Cp=(1 +(FcE/F0*))/(2 x c)- -\l[((1 +(FcE/Fe'))/(2 x c))2-(FcE/Fc*)/c}=;0:38
Depth-to-breadth ratio dnom/(N x bnom) = 1.00
- Beam is fully restrained
Beam stability factor-c1.3.3.3 CL= 1.00
Strength in compression parallel to grain -c1.3.6.3
Design compressive stress Fc' = Fc x CD x Ct x CFc x Ci x CP=564 lb/in2
Applied compressive stress fc= P/A=258 lb/in2
fc/Fc'=0.458
PASS-Design compressive stress exceeds applied compressive stress
Use 4x4 DF/L#2
1 L 1LS t4uutin9 1'/'6; Project New Addition Job# 180145
v.47 .2
t 4 Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R,P. Date 5/7/2018 Page 62 of 78
BEAM #1 SUPPORT FOOTING ANALYSIS & DESIGN (ACI318)
FOUNDATION ANALYSIS& DESIGN (ACI318)
In accordance with ACI318-14
Tedds calculation version 3.2.07
FOOTING ANALYSIS
Length of foundation Lx=2 ft
Width of foundation Ly=2 ft
Foundation area A= Lx x Ly=4 ft2
Depth of foundation h = 10 in
Depth of soil over foundation h$on=0 in
Density of concrete ycono= 150.0 lb/ft3
iI ) 1 lI f l ( l ( ll ( 1j I (i j (
0.916 ksf L_L-L..-I 11.1.1.-1..1.�L..I L-1 I.L_1 1. 1-1 L_.1_-�. �-J.1._L �>11 J 0.916 ksf
- 1 f
- ! •
—� y J
1
x r---
0 916
0.916 ksf I I1.1.1 1 1 L-WI...I_I 1 -L..I 1 [1_L I_L_.[I i 1_L_1..f11 0.916 ksf
Column no.1 details
Length of column lxi =4.00 in
Width of column ly1 =4.00 in
position in x-axis xi = 12.00 in
position in y-axis y1 = 12.00 in
Soil properties
Gross allowable bearing pressure gallow Gross= 1.5 ksf
Density of soil ysou= 120.0 lb/ft3
', tl
ck?'/V T LEu2 Ift' Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)7374344 By R.P. Date 5/7/2018 Page 63 of 78
Angle of internal friction (1)19=30.0 deg
Design base friction angle Ebb=30.0 deg
Coefficient of base friction tan(6bb) =0.577
Foundation loads
Self weight Fswt= h x yconc= 125 psf
Column no.1 loads
Dead load in z FDZ1 = 1_1 kips
Live load in z FLz, =2.1 kips
Footing analysis for soil and stability
Load combinations per ASCE 7-10
1.0D(0.262)
1.0D + 1.0L(0.611)
Combination 2 results: 1.0D+ 1.0L
Forces on foundation
Force in z-axis Fdz=7D x A x Fswt+yD x FDz1 +YL X FLz, =3.7 kips
Moments on foundation
Moment in x-axis, about x is 0 Max=yo x A x Fswt x Lx/2+yo x (FDzi x x1) +yL x (FLzrx xi) =3.7 kip_ft
Moment in y-axis, about y is 0 Mdy=yD x A x Fswt x Ly/2+yD x (FDz1 x yi) +yL x (FLz1 x yi)=3.7 kip_ft
Uplift verification
Vertical force Fdz=3.664 kips
PASS-Foundation is not subject to uplift
Bearing resistance
Eccentricity of base reaction
Eccentricity of base reaction in x-axis edx= Mdx/Fdz-Lx/2=0 in
Eccentricity of base reaction in y-axis edy= Mdy I Fdz-Ly/2=0 in
Pad base pressures
q, = Fdz x (1 -6 x edx/Lx-6 x edy/Ly)/(Lx x Ly) =0.916ksf
q2= Fdz x (1 -6xedx/Lx+6xedy/Ly)/(Lx xLy) =0.916ksf
q3= Fdz X (1 +6xedx/Lx-6xedy/Ly)/(Lx xLy) =0.916ksf
q4= Fdzx (1 +6 x edx/Lx+6 x edy/Ly)/(Lx x Ly) =0.916 ksf
Minimum base pressure gmin=min(gi,g2,g3,q4)=0.916 ksf
Maximum base pressure qmax=max(ql,q2,q3,q4)=0.916 ksf
Allowable bearing capacity
Allowable bearing capacity gauow=gauow_Gross=1.55 ksf
qmax/gauow=0.611
PASS-Allowable bearing capacity exceeds design base pressure
'1" Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 64 of 78
FOOTING DESIGN (AC1318)
In accordance with ACI318-14
Material details
Compressive strength of concrete co=3000 psi
Yield strength of reinforcement fy=60000 psi
Cover to reinforcement cnom=3 in
Concrete type Normal weight
Concrete modification factor k= 1.00
Column type Concrete
Analysis and design of concrete footing
Load combinations per ASCE 7-10
1.4D (0.028)
1.2D + 1.6L+0.5Lr(0.087)
Combination 2 results: 1.2D+ 1.6L+0.5Lr
Forces on foundation
Ultimate force in z-axis Fuz=yo x A x F5wt+yo x FDz1 +YL x FLz1 =5_2 kips
Moments on foundation
Ultimate moment in x-axis, about x is 0 MUX=yo x A x Fs,t x LX/2 +yo x (FDz1 x xi) +yi_x (FLz1 x xi) =552 kip_ft
Ultimate moment in y-axis, about y is 0 Muy=yD x A x Fs,1 x Ly/2 +yo x (Foz1 x yi)+yL x (FLz1 x yi)=552 kip_ft
Eccentricity of base reaction
Eccentricity of base reaction in x-axis eux= Mux/Fuz- LX/2=0 in
Eccentricity of base reaction in y-axis euy= Muy I Fuz-Ly/2 =0 in
Pad base pressures
qui = Fuzx (1 6 x eux/LX 6xeuy/Ly)/(LX x Ly)= 1.309 ksf
qu2= Fuzx (1 -6xeuX/LX+6xeuy/Ly)/(Lx x Ly) = 1.309ksf
qua= Fuzx (1 +6xeux/Lx-6x euy/Ly)/(Lx x Ly) = 1.309ksf
qua= Fuzx (1 +6 x eux/Lx+6 x euy/Ly)/(Lx x Ly) = 1.309 ksf
Minimum ultimate base pressure qumin= min(qul,qu2,qu3,qua)=1.309 ksf
Maximum ultimate base pressure qumax=max(qul,qu2,qu3,qua) =1.309 ksf
Shear diagram,x axis(kips)
2.3
0
ti
-2.3
I
V % r ;t' ''/1 Project New Addition
Job# 180145
Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
,Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 65 of 78
Moment diagram,x axis(kip_ft)
0 0
1.2
Moment design,x direction, positive moment
Ultimate bending moment Mu.x.max=0.805 kip_ft
Tension reinforcement provided 2 No.5 bottom bars (17.3 in c/c)
Area of tension reinforcement provided Asx.bot.prov=0.62 in2
Minimum area of reinforcement(8.6.1.1) As.min=0.0018 x Ly x h=0.432 in2
PASS-Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement(8.7.2.2) smax=min(2 x h, 18 in) =18 in
PASS-Maximum permissible reinforcement spacing exceeds actual spacing
Depth to tension reinforcement d =h-Cnom-41x.bot/2 =6.688 in
Depth of compression block a=Asx.bot.prov x fy/(0.85 x fo x Ly)=0.608 in
Neutral axis factor 131 =0.85
Depth to neutral axis c=a/(31 =0.715 in
Strain in tensile reinforcement(8.3.3.1) Et=0.003 x d/c-0.003=0.02506
PASS- Tensile strain exceeds minimum required,0.004
Nominal moment capacity Mn=Asx.bot.prov x fy x (d-a/2)= 19.789 kip_ft
Flexural strength reduction factor Qtr= min(max(0.65+ (Et-0.002) x (250/3), 0.65), 0.9)=0.900
Design moment capacity OMn=tim x Mn=17.81 kip_ft
Mu.x.max/4Mn=0.045
PASS-Design moment capacity exceeds ultimate moment load
One-way shear design, x direction
Ultimate shear force Vu.x=0.76 kips
• Depth to reinforcement dv=h-Cnom-cx.bot/2 =6.688 in
Shear strength reduction factor =0.75
Nominal shear capacity(Eq. 22.5.5.1) Vn=2 x x'I(fo x 1 psi) x Ly x dv= 17.582 kips
Design shear capacity 4Vn=4v x Vn=13.186 kips
Vu.x/4Vn=0.058
PASS-Design shear capacity exceeds ultimate shear load
Two-way shear design at column 1
Depth to reinforcement dv2=6.375 in
Shear perimeter length (22.6.4) lxp= 10.375 in
Shear perimeter width(22.6.4) ly,= 10.375 in
Shear perimeter(22.6.4) bo=2 x IND+2 x lyp=41.500 in
Shear area Ap=lxp x lyp=107.641 in2
Surcharge loaded area Asur=Ap-Ix1 x ly1 =91.641 in2
Ultimate bearing pressure at center of shear area qup.avg= 1.309 ksf
Ultimate shear load Fur,=yD X FDz1 +yL x FLz1 +YD x Ap x Fswt-qup.avg x Ap=3.768 kips
Ultimate shear stress from vertical load vug=max(Fup/(bo x dv2),0 psi) = 14.244 psi
f i_;,, / ,'c Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 66 of 78
Column geometry factor(Table 22.6.5.2) R =ly1 /lxi = 1.00
Column location factor(22.6.5.3) as=40
Concrete shear strength(22.6.5.2) Vcpa= (2 +4/13) x 2,,x Ain x 1 psi) =328.634 psi ,
vcpb=(as x dv2/bo+2) x X x Ain x 1 psi) =446.097 psi
Vcpc=4 x X.x 4(fc x 1 psi) =219.089 psi
Vcp=min(vopa,vcpb,vcpc)=219.089 psi
Shear strength reduction factor (1)v=0.75
Nominal shear stress capacity(Eq.22.6.1.2) tin=Vcp=219.089 psi
Design shear stress capacity(8.5.1.1(d)) Ovn=(i)v x vn= 164.317 psi
Vug/On=0.087
PASS-Design shear stress capacity exceeds ultimate shear stress load
Shear diagram,y axis(kips)
2.3
0
0
-2.3
Moment diagram,y axis(kip_ft)
° a
1.2
Moment design,y direction, positive moment
Ultimate bending moment Mu.y.max=0.805 kip_ft
Tension reinforcement provided 2 No.5 bottom bars (17.3 in c/c)
Area of tension reinforcement provided Asy.bot.prov=0.62 in2
Minimum area of reinforcement(8.6.1.1) As min=0.0018 x Lx x h=0.432 in2
PASS-Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement(8.7.2.2) smax=min(2 x h, 18 in) =18 in
PASS-Maximum permissible reinforcement spacing exceeds actual spacing
Depth to tension reinforcement d =h-cnom-tjtx.bot-4y.bot/2=6.063 in
Depth of compression block a =Asy.bot.prov x fy/(0.85 x fc x Lx) =0.608 in
Neutral axis factor i31 =0.85
Depth to neutral axis c=a/(31 =0.715 in
Strain in tensile reinforcement(8.3.3.1)•
Et=0.003 x d/c 0.003=0.02243
PASS- Tensile strain exceeds minimum required, 0.004
Nominal moment capacity Mn=Asy.bot.prov x fy x (d-a/2)= 17.852 kip_ft
Flexural strength reduction factor (1)f=min(max(0.65 + (£t-0.002) x (250/3), 0.65), 0.9)=0.900
Design moment capacity 4Mn=(Of x Mn= 16.066 kip_ft
t Mu.y.max/4Mn=0.050
r-IV� -.1-'A,0-1,29 P/'C Project New Addition Job# 180145
rra, ; j os.zro;
s Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,'WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 67 of 78
PASS-Design moment capacity exceeds ultimate moment load .
One-way shear design,y direction
Ultimate shear force Vuy=0.76 kips
Depth to reinforcement dv=h-Cnom-(1)x bpi-()y.bot/2 =6.063 in
Shear strength reduction factor (1)v=0.75
Nominal shear capacity(Eq. 22.5.5.1) Vn=2 x 7 x 'Aro x 1 psi) x Lx x dv= 15.939 kips
Design shear capacity =delv x Vn= 11.954 kips
Vu.y/(IAA=0.064
PASS-Design shear capacity exceeds ultimate shear load
Two-way shear design at column 1
Depth to reinforcement dv2=6.375 in
Shear perimeter length (22.6.4) lxp= 10.375 in
Shear perimeter width (22.6.4) lyp= 10.375 in
Shear perimeter(22.6.4) bo=2 x lxp+2 x lyp=41.500 in
Shear area Ap=lxp x lyp= 107.641 in2
Surcharge loaded area Asur=Ap-Ix1 x ly1 =91.641 in2
Ultimate bearing pressure at center of shear area qup.avg= 1.309 ksf
Ultimate shear load Fup=yD x FDz1 +yL x FLz1 +yo x Ap x Fswt-qup.avg x Ap=3.768 kips
Ultimate shear stress from vertical load vug=max(Fup/(b0 x dv2),0 psi)= 14.244 psi
Column geometry factor(Table 22.6.5.2) (3=ly1 /lxi =1.00
Column location factor(22.6.5.3) as=40
Concrete shear strength (22.6.5.2) Vcpa=(2+4/13) x 2.x -(fc x 1 psi) =328.634 psi
Vcpb= (as x dv2/bo+2) x A,x Arc x 1 psi)=446.097 psi
v0p0=4xXx4(f0x 1 psi) =219.089 psi
Vcp= min(vcpa,Vcpb,Vcpc)=219.089 psi
Shear strength reduction factor (w=0.75
Nominal shear stress capacity(Eq.22.6.1.2) vn=Vcp=219.089 psi
Design shear stress capacity(8.5.1.1(d)) = v x vn= 164.317 psi
Vug/(bVn=0.087
PASS-Design shear stress capacity exceeds ultimate shear stress load
!Y.! Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr,#17
Vancouver,WA 98684 (503)737-4344 ? By R.P. Date 5/7/2018 Page 68 of 78
I; A
! .. «- - -- - - -._ —_. ;. 2 No.5 bottom ba (17.3 in c/c)
I
I
V /
I
111
i
T I
f ` }
}
2 No.5 bottom bars(17.3 in c/c)
h'- 1 i Wolin- p f'l' Project New Addition
•7,r. Job# 180145
/ v Address 11958 SW 125th Ct., Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 1 By R.P. Date 5/7/2018 Page 69 of 78
BEAM #2 SUPPORT COLUMN MEMBER DESIGN (NDS)
STRUCTURAL WOOD MEMBER DESIGN (NDS)
In accordance with the ANSI/AF&PA NDS-2015 using the ASD method
Tedds calculation version 1.7.04
Analysis results
Design axial compression P=8069 lb
A- -
•
3.5" h
Sawn lumber section details
Nominal breadth of sections bnom=4 in
Dressed breadth of sections b=3_5 in
Nominal depth of sections dnom=6 in
Dressed depth of sections d=5.5 in
Number of sections in member N = 1
Overall breadth of member bb= N x b=3.5 in
Species,grade and size classification Douglas Fir-Larch, No.2 grade,2"&wider
Bending parallel to grain Fb=900 lb/int
Tension parallel to grain Fc=575 lb/in2 •
Compression parallel to grain Fo= 1350 lb/in2
Compression perpendicular to grain Fc_perp=625 lb/in2
Shear parallel to grain Fv= 180 lb/in2
Modulus of elasticity E= 1600000 lb/in2
Modulus of elasticity, stability calculations Emin=580000 lb/in2
Mean shear modulus Gdef=E/16= 100000 lb/in2
Member details
Service condition Dry
Load duration Ten minutes
Unbraced length in x-axis Lx=8 ft
Effective length factor in x-axis Kx= 1
Effective length in x-axis Lex= Lx x Kx=8 ft
Unbraced length in y-axis Ly= 1 ft
Effective length factor in y-axis Ky= 1
Effective length in y-axis Ley= Ly x Ky= 1 ft
Section properties
Cross sectional area of member A= N x b x d= 19.25 in2
,4ifiug./1A. Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 70 of 78
Section modulus Sx=N x b x d2/6= 17.65 in3
Sy=dx(Nxb)2/6= 11W23in3
Second moment of area lx= N x b x d3/12 =48.53 in4
ly=d x (N x b)3/12= 19.65 in4
Adjustment factors
Load duration factor-Table 2.3.2 Co= 1.60
Temperature factor-Table 2.3.3 Ct= 1.00
Size factor for bending-Table 4A CFb= 1.30
Size factor for tension-Table 4A CFt= 1.30
Size factor for compression-Table 4A CFc= 1.10
Flat use factor-Table 4A Cfu= 1.05
Incising factor for modulus of elasticity-Table 4.3.8
C;E= 1.00
Incising factor for bending, shear,tension&compression-Table 4.3.8
G=1.00
Incising factor for perpendicular compression-Table 4.3.8
Cic_perp=1.00
Repetitive member factor-c1.4.3.9 Cr= 1.00
Bearing area factor-c1.3.10.4 Cb= 1.00
Adjusted modulus of elasticity for column stability Emin'=Emin x CME x Ct x CIE=580000 lb/in2
Reference compression design value Fc* = Fc x Co x CMC x Ct x CFc x C;=2376 lb/in2
Critical buckling design value for compression FcE=0.822 x Emin/(Lex/d)2=1565 lb/in2
c=0.80
Column stability factor-eq.3.7-1
CP=(1 + (FCE/Fc*))/(2 x c)-A/[((1 + (FCE/Fc*))/(2 x c))2- (FcE/Fc*)/Oj=0.54
Depth-to-breadth ratio dnom/(N x bnom) = 1.50
-Beam is fully restrained
Beam stability factor-c1.3.3.3 CL= 1.00
Strength in compression parallel to grain -cI.3.6.3
Design compressive stress Fo'= Fo x Cox Ct x CFc x C; x CP= 1272 lb/in2
Applied compressive stress fc=P/A=419 lb/in2
fc/Fc'=0.330
PASS-Design compressive stress exceeds applied compressive stress
Use 4x6 DF/L#2
IP / f+ „eti,y t't'r' Project New Addition Job# 180145
•
Address 11958 SW 125th Ct., Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr,#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 71 of 78
BEAM #2 SUPPORT FOOTING ANALYSIS & DESIGN (ACI318)
FOUNDATION ANALYSIS& DESIGN (ACI318)
In accordance with ACI318-14
Tedds calculation version 3.2.07
FOOTING ANALYSIS
Length of foundation Lx=225 ft
Width of foundation LY=2.5 ft
Foundation area A= Lx x LY=6.25 ft2
Depth of foundation h = 10 in
Depth of soil over foundation hsoll=0 in
Density of concrete yconc= 150.0 lb/ft3
1.2ksf '----- --.____----------__....... .._.1. _----..-,.., 1.2ksf
I
Y
I x
12 ksf J T Ti 1 T IT f T 1.2 ksf
�
�
Column no.1 details
Length of column lx1 =4.00 in
Width of column lyl =6.00 in
position in x-axis x1= 15.00 in
position in y-axis yi = 15.00 in
Soil properties
Gross allowable bearing pressure gallow_Gross= 1.5 ksf
Density of soil Tsai=120.0 ib/ft3
Angle of internal friction db=30.0 deg
AL-1LS' C', «f'tbi,i'i'i' . Project New Addition Job# 180145
I Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)7374344 1 By R.P. Date 5/7/2018 Page 72 of 78
Design base friction angle 5bb=30.0 deg
Coefficient of base friction tan(8bb)=0.577
Self weight Fswt=h x yconc= 125 psf
Column no.1 loads
Dead load in z FDz1 =334 kips
Live load in z FLz1 =009 kips
Snow load in z Fszi =3_1 kips
Wind load in z Fw71 =00.6 kips
Footing analysis for soil and stability
Load combinations per ASCE 7-10
1.0D(0.447)
1.0D+ 1.0L(0.547)
1.0D+ 1.0S (0.779)
1.0D+0.75L+0.75Lr(0.522)
1.0D'+0.75L+0.75S (0.771)
1.0D +0.6W(0.485)
i 1.0D+0.75L+0.75Lr+0.45W(0.551)
1.00 +0.75L+0.75S+0.45W(0.800)
1.00 +0.75L+0.75R +0.45W(0.551)
0.6D+0.6W(0.307)
Combination 12 results: 1.0D+ 0.75L+0.75S +0.45W
Forces on foundation
Force in z-axis Fdz=yD x A x Fswt+yD x FDz1 +YL X FLz1 +ys x Fszi +yw x Fwzi =7_5 kips
Moments on foundation
Moment in x-axis, about x is 0 Mdx=yD x A x Fsw(x LX/2 +yD x (FDz1 x xi)+yL x (FLz1 x x1)+ys x (Fszi x
xi) +yw x (Fwzi xxi) =994kip_ft
Moment in y-axis, about y is 0 Mdy=yD X A x Fswc x Ly/2+yo x (FDz1 x yi) +yi_x (FLz1 x yi) +ys x (Fszi x
yi)+yw x (Fwzi x yi) =9_4 kip_ft
Uplift verification
Vertical force Fdz=7.503 kips
PASS-Foundation is not subject to uplift
Bearing resistance
Eccentricity of base reaction
Eccentricity of base reaction in x-axis edx=Max/Fdz- L/2=0 in
Eccentricity of base reaction in y-axis edy= Mdy/Fdz- Ly/2 =0 in
Pad base pressures
q1 = Fdz X (1 -6xedx/LX-6xedv/Ly)/(Lx XLy)= 1.2ksf
q2= Fdz X (1 -6xedx/Lx+6xed /L L =
v v)/(L X xy) 1_2 ksf
q3= Fdz x (1 +6xedx/Lx-6xedy/Ly)/(Lx xLy) = 1_2ksf
q4= Fdz x (1 +6xedx/Lx+6xedyl Ly)/(Lx x Ly) = 11.22ksf
Minimum base pressure groin=min(g1,g2,q3,q4) =1.22 ksf
=l` Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard, OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 73 of 78.
Maximum base pressure qmax= max(g1,g2,q3,q4) = 1.22 ksf
Allowable bearing capacity
Allowable bearing capacity gaoow=ganow_cross=1.55 ksf
qmax/gauow=0.800
PASS-Allowable bearing capacity exceeds design base pressure
FOOTING DESIGN (AC1318)
In accordance with AC1318-14 •
Material details
Compressive strength of concrete fo=3000 psi
Yield strength of reinforcement fy=60000 psi
Cover to reinforcement cnom=3 in
Concrete type Normal weight
Concrete modification factor = 1.00
Column type Concrete
Analysis and design of concrete footing
Load combinations per ASCE 7-10
1.4D (0.079)
1.2D+ 1.6L+0.5Lr(0.092)
1.2D+ 1.6L+0.5S(0.118)
1.2D+ 1.0L+ 1.6S (0.166)
1.2D + 1 6Lr+0.5W(0.073)
1.2D + 1.6S+0.5W(0.155)
1.2D + 1.6R +0.5W(0.073)
1.2D+ 1.0L+0.5Lr+ 1.0W(0.093)
1.2D+ 1.0L+0.5S+ 1.0W(0.119)
1.2D+ 1.0L+0.5R+ 1.0W(0.093)
0.9D+ 1.0W(0.066)
Combination 6 results: 1.2D+1.0L+ 1.6S
Forces on foundation
Ultimate force in z-axis Fuz=yo X A x Fswt+yD x FDz1 +YL X FLz1 +ys x Fszi = 11.0 kips 11
Moments on foundation
Ultimate moment in x-axis, about x is 0 Mux=yD x A x Fswt x Lx/2+yo x (FDzt x xi) +yL x (FLz1 x xi) +ys x (Fszi x
xi) = 13.7kip_ft
Ultimate moment in y-axis, about y is 0 Muy=yD x A x Fswt x Ly/2 +yo x (FDz1 x yi) +yL x (FL21 x yi) +ys x (Fszi x
y1)= 13.7 kip_ft
Eccentricity of base reaction
Eccentricity of base reaction in x-axis eux= Mux/Fuz- Lx/2=0 in
Eccentricity of base reaction in y-axis euy=Muy I Fuz-Ly 1 2=0 in
Pad base pressures
qui = Fuz x (1 -6xeux/Lx-6xeuy/Ly)/(Lx xLy) = 1.753 ksf
qu2= Fuz x (1 -6xeux/Lx+6xeuy/Ly)/(Lx xLy)= 1.753ksf
144E.11z9 I'!'/' Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 74 of 78
qua= Fuz x (1 +6 x eux/Lx-6xeuy/Ly)/(Lx x Ly) = 1.753 ksf
qua=Fuzx (1 +6xeux/Lx+6xeuy/Ly)/(Lx xLy)=1.753ksf
Minimum ultimate base pressure qumin= min(qul,qu2,qu3,qua) = 1.753 ksf
Maximum ultimate base pressure qumax= max(qul,qu2,qu3,qua) =1.753 ksf
Shear diagram,x axis(kips)
5
0
-5
Moment diagram,x axis(kip_ft)
° o
3.1
Moment design,x direction, positive moment
Ultimate bending moment Muxmax=2.352 kip_ft
Tension reinforcement provided 3 No.5 bottom bars(11.6 in c/c)
Area of tension reinforcement provided Asx.bot.prov=0.93 in2
Minimum area of reinforcement(8.6.1.1) As.min=0.0018 x Ly x h=0.54 in2
PASS-Area of reinforcement provided exceeds minimum
Maximum spacing of reinforcement(8.7.2.2) Smax=min(2 x h, 18 in) =18 in
PASS-Maximum permissible reinforcement spacing exceeds actual spacing
Depth to tension reinforcement d=h-cnom-(1)X.bot/2=6.688 in
Depth of compression block a=Asx.bot.prov x fy/(0.85 x fc x Ly) =0.729 in
Neutral axis factor 81 =0.85
Depth to neutral axis c=a/131 =0,858 in
Strain in tensile reinforcement(8.3.3.1) st=0.003 x d/c-0.003=0.02038
PASS- Tensile strain exceeds minimum required,0.004
Nominal moment capacity Mn=Asx.bot.prov x fy x (d-a/2) =29.401 kip_ft
Flexural strength reduction factor (i)f=min(max(0.65+(et-0.002) x (250/3),0.65), 0.9)=0.900
Design moment capacity 4/Mn=4/f x Mn=26.461 kip_ft
Mu.x.max/4/Mn=0.089
PASS-Design moment capacity exceeds ultimate moment load
One-way shear design,x direction
Ultimate shear force Vu.x=2.317 kips
Depth to reinforcement dv=h-Cnom-4x.bot/2=6.688 in
Shear strength reduction factor (1)v=0.75
Nominal shear capacity(Eq. 22.5.5.1) Vn=2 x x 'I(fc x 1 psi) x Ly x dv=21.977 kips
Design shear capacity (I)Vn=(1)v x Vn= 16.483 kips
c 1 rr iliiny L/'2 Project New Addition Job# 180145
v. Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 75 of 78
Vux/4Vn=0.141
PASS-Design shear capacity exceeds ultimate shear load
Two-way shear design at column 1
Depth to reinforcement dv2=6.688 in
Shear perimeter length (22.6.4) Ixp= 10.688 in
Shear perimeter width (22.6.4) lyp= 12.687 in
Shear perimeter(22.6.4) bo=2 x lxp+2 x lyp=46.750 in
Shear area Ap=Ixp x lyp=135.598 in2
Surcharge loaded area Asur=Ap-Ix, x ly, = 111.598 in2
Ultimate bearing pressure at center of shear area qup.av9= 1.753 ksf
Ultimate shear load Fup=yo x Foz1 +71 x FLz1 +ys x Fszi +yo x Ap x Fswt-qup.av9 x Ap=8.509
kips
Ultimate shear stress from vertical load vu9=max(Fup/(b0 x dv2),0 psi) =27.217 psi
Column geometry factor(Table 22.6.5.2) (3=ly1 /Ix1 = 1.50
Column location factor(22.6.5.3) as=40
Concrete shear strength (22.6.5.2) vcpa= (2+4/(3) x x 1I(fc x 1 psi) =255.604 psi
vcpa= (as x dv2/bo+2) x x 4(f0 x 1 psi) =422.947 psi
vcpc=4 x .x'J(f0 x 1 psi) =219.089 psi
v00= min(vcpa,vcpb,vcpc)=219.089 psi
Shear strength reduction factor (1)v=0.75
Nominal shear stress capacity(Eq. 22.6.1.2) vn=vcp=219.089 psi
Design shear stress capacity(8.5.1.1(d)) =(l)v x vn= 164.317 psi
vu9/4vn=0.166
PASS-Design shear stress capacity exceeds ultimate shear stress load
Shear diagram, y axis (kips)
5
0
0
-5
Moment diagram,y axis(kip_ft)
0 0
3.1
Moment design,y direction, positive moment
Ultimate bending moment Mu.y.max=2.006 kip_ft
Tension reinforcement provided 3 No.5 bottom bars (11.6 in c/c)
Area of tension reinforcement provided Asy.bot.prov=0.93 int
Minimum area of reinforcement(8.6.1.1) As min=0.0018 x Lx x h =0.54 in2
PASS-Area of reinforcement provided exceeds minimum
cJ Jvj ��,,,/E,.,,z 1�'(' Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 76 of 78
Maximum spacing of reinforcement(8.7.2.2) smax=min(2 x h, 18 in) = 18 in
PASS-Maximum permissible reinforcement spacing exceeds actual spacing
Depth to tension reinforcement d=h-Cnom-ttx.bot-ty.bot/2=6.063 in
Depth of compression block a=Asy.bot.prov x fy/(0.85 x fc x Lx) =0.729 in
Neutral axis factor 131 =0.85
Depth to neutral axis c=a/131 =0.858 in
Strain in tensile reinforcement(8.3.3.1) Et=0.003 x d/c-0.003=0.01819
PASS- Tensile strain exceeds minimum required, 0.004
Nominal moment capacity Mn=Asy.bot.prov x fy x (d-a/2)=26.495 kip_ft
Flexural strength reduction factor = min(max(0.65+ (Et-0.002) x (250/3), 0.65), 0.9)=0.900
Design moment capacity 4Mn=4t x Mn=23.845 kip_ft
Mu.y.max/4/Mn=0.084
PASS-Design moment capacity exceeds ultimate moment load
One-way shear design, y direction
Ultimate shear force Vu.y= 1.985 kips
Depth to reinforcement dv= h-Cnom-ttx.bot-4 y.bot/2=6.063 in
Shear strength reduction factor (I)v=0.75
Nominal shear capacity(Eq. 22.5.5.1) Vn=2 x x i(fc x 1 psi) x Lx x dv= 19.923 kips
Design shear capacity 0/0=4v x Vn= 14.943 kips
Vu.y/4Vn=0.133
PASS-Design shear capacity exceeds ultimate shear load
Two-way shear design at column 1
Depth to reinforcement dv2=6.375 in
Shear perimeter length (22.6.4) lig)= 10.375 in
Shear perimeter width (22.6.4) lyp= 12.375 in
• Shear perimeter(22.6.4) bo=2 x lxp+2 x lyp=45.500 in
Shear area Ap=lxp x I
yp=128.391 in2
Surcharge loaded area Asu,=Ap-1.1 x ly1 =104.391 in2
Ultimate bearing pressure at center of shear area qup.avg= 1.753 ksf
Ultimate shear load Fup=yo x Foz1 +yL X FLz1 +ys x Fszi +yo x Ap x Fswt-qup.avg x Ap=8.589
kips
Ultimate shear stress from vertical load vug=max(Fup/(bo x dv2),0 psi)=29.612 psi
Column geometry factor(Table 22.6.5.2) 13 =ly, /lx1 = 1.50
Column location factor(22.6.5.3) as=40
Concrete shear strength (22.6.5.2) vcpa= (2 +4/13)x ti x 4(fo x 1 psi) =255.604 psi
vcpb= (as x dv2/bo+2) x x Al(fc x 1 psi) =416.510 psi
vcpc=4 x x J(fc x 1 psi) =219.089 psi
vcp= min(vcpa,vcpb,vcpc) =219.089 psi
Shear strength reduction factor (1)v=0.73
Nominal shear stress capacity(Eq. 22.6.1.2) vn=vcp=219.089 psi
Design shear stress capacity(8.5.1.1(d)) 4vn=¢v X vn= 164.317 psi
vug/4vn=0.180
Project New Addition
Job# 180145
Address 11958 SW 125th Ct., Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 5/7/2018 Page 77 of 78
PASS-Design shear stress capacity exceeds ultimate shear stress load
3 No.5 bottom bars(11.6 in c/c)
A ,
3 No.5 bottom bars(11.6 in c/c)
1
CfeeN `af; yrti,ay-Lee Project New Addition Job# 180145
Address 11958 SW 125th Ct.,Tigard,OR 97223
RNS Consulting LLC Client Chris&Jessica Anderson
11611 NE Angelo Dr.#17
Vancouver,WA 98684 (503)737-4344 By R.P. Date 51712018 Page 78 of 78
r --
I- 1T
ms o
E
i:-Fa
GARAGEi
10-8 1/2"
r— —i-
I ----J �
fu 1° I Ik1 9 Q
POWDER t UNDRY a Cr M .�
._'\ ., ROOM 7-Lt% Si) Darn Orn
fi1, DINING ENTRY V A
f V I I } 'I•o
Y AREA 1 BEDROOM 4 1„ f rorn�0 wm° - H �6 4.
J'1 HALL ,,m Flx @y ,8'-3•x i0'-,D• nFM1N F �,o
'i - iA,02,TaWOR 7-11' Wul p w 30 .oa
irt
la
f � -•� CLOSET. 1 y 4. ma .7_aNig
R... tr-°•' B_„WR `,.v "
. " °, +` s
gl
.o
Z .I I ' , BATH 2
f ¶
_ li
u�,I-RWGE 'GRR°(a) NRRO or 'Rork 4, .A,' / - Z G
lirilgor t i r- °D° K$ Z 4
KITCHEN 17 H1 R2YOvf➢ W n�
Y� -._� ,Y-e',%,,-t0 —' PLA O O &" `
I
LIVING E 11,x I (n U N
--t FAMILY ROOM -4—__ P - 63
I I•" I a,'-9.x,r-o^ v•, +r}-C _'•f W m II-
I 1 _.�I Ct N o 0
f� � � cm2 >L
I I ( 12/�1 1 RRFMME/N + I I o f in F }-..
I 1 L_-I 0 r t.¢,; z-a%et10/° ' /`7 w °i Pt,.
QST', 1 4 I ' 4 --- --' �
I/ OW I Q u
CfOIWOR MO 210.2120 PS I( V
MIL K2.0231010 I PATIO -
,r-41f.t ir tY-10'x ss'-s' aE-ca
fL I xRO101 UYOR%mu FOR MOO RME O rri:.
PURPOSES OL°.1KIT15 ROUGH-O eR Fx61MG°!MR
LOSSICOS TO RE
ORROTER-1.0R la 0.141.20011
DA,[: 4/I2/I6
REV:
("1- FIRST FLOOR PLAN -- SHEET
SCALE: 1/4"w t'-0'.. vol. 2 OF S ..
s
Te 1°
i,
8 In _
Z
Isa•k i
r- i 2 - r
b- - —
1a m j
i g
s-r s-r r r f si.:=xf. ,s ;43 V1 8 r - - - -
---'-D-- �' �T
--
4.
5 =A go 13S010
�.-t 4Fy Z' - Na �g "-! "J, O f
gYo
1
Wo fi A ,
W ' - PAIGE TAYLOR �} T(� yT�
PROPOSED SECOND FLOOR PLAN 8435 SW 7ERNfLLIGER 81V0 PAIGG£:TAYLOR
11958 SW 12511-1 COURT PORTLAND.OR 97219
TIGARD, OR 97223 PHONE.503-209-92011111111111."'"---''''''.1:=71,1b'
M EMAIL: Paige6PaigeTaytorDesign.corn i
SECONP FLOOR PLAN