Loading...
Specifications \\(\-\ -OLS- 'm cc1 \- 11 t • PWU ENGINEERING INC. Ph: (503) 810-8309 Email: pwuengineering@comcast.net RECEIVED Partial Lateral Structural Analysis Calculations Only: AUG 1 2417 Job #: SUN1784 Date: 7/03/17 CITY OF TIGARD Client: Suntel Design Inc. BUILDING DIVISION Project: Willow Lot 22 Annand Hill, Tigard, OR <C�`� PRO e coi sce 19421Ptair GAN 3 /LI P Expires.. OVA/293 The following calculations are for a lateral wind and seismic engineering only and are associated with a conventional foundation system. The complete vertical engineering package, which includes the foundation design, is outside the scope of our services and done by others. The lateral design is based on information provided by the client who is solely responsible for its accuracy. The engineering represents the finished product. Discrepancies from information provided by the client invalidate this design. PWU Engineering shall have no liability(expressed, or implied), with respect to the means and methods of construction workmanship or materials. PWU Engineering Inc. shall have no obligation of liability,whether arising in contract(including warranty), Tort(including active, passive, or imputed negligence) or otherwise, for loss or use, revenue or profit, or for any other incidental or consequential damage. _—,PWU ENGINEERING INC. Ph: 503 810-8309, Email: pwuengineering@comcast.net The following calculations are for Willow Partial Lateral Engineering for front elevation Only. Vertical engineering is outside the scope of work. Wind Loading: Per ASCE 7. Fig 6-2 See attached elevations for wind loading breakdown per level. 123mph Ultimate 3-sec gust Exposure B for Category I and II structure, Which is equal to 95mph ASD per the 2012 IBC and IRC with state amendments The mean roof height of the house h =28' approximately. MFRS 1 Direction End Zones \ ,44k ' 2a 4004 1 JRS Direction 2a ' End Zones Note: End zone may occur at any corner of the building. a = .10*34' =3.4' or for h =28' a = .4(h) = .4(28') = 11.2' a=3.4' controls a must be larger than .04(34') = 1.4' and 3' Therefore: 2a = 6.8' see Fig 6-2 ASCE 7, and Figure above. Seismic Loading: Dl seismic design category per O.R.S.C. SDs= .76, R= 6.5, W=weight of structure V = [SDs/(R x 1.4)] W V = .0835 W Roof Dead load= 17 psf Floor Dead load = 15 psf Interior Wall Dead load= 6 psf Exterior Wall Dead load= 12 psf Wind per ASCE 7 ---,PWU ENGINEERING INC. Project Willow Direction Side to Side 3s Gust Roof Least ',� Speed Exp. Angle A W(ft) hAVG(ft) 95mph B 33.7 1.00 34.0 28.0 ``�'l %� *-� 8:12. ��. NI a= 3.4 ft Diredion RS \w End Zones . ,` A 16.1 psf or = 11.2 ft ..,� r/ B 11.1 psf Check 10psf min and a> 1.4 ft ` j �R� C 12.9 psf load across all and a> 3.0 ft 2:(-- End Zones D 8.9 psf zones. 2a 6.8 ft Nde:End zone may occur at any corner of the Il building. WR L(ft) 6.8 24.4 6.8 hA(ft) 4.0 8.5 hB(ft) 7.0 he (ft) 8.5 hp(ft) 2.5 W(pif) 0.0 141.8 131.4 136.9' 0.0 0.0 0.0 0.0 0.0 0.0 150.0 � WR AVG 134.2 plf 100.0 ,.£ 10psf min load: 105.5 plf 50.0 Governing value: 134.2 plf 0.0 _ W2 L(ft) 4.0 6.8 24.4 6.8 hA(ft) 6.0 9.5 9.5 hB (ft) 2.5 he (ft) 9.5 hp (ft) W(plf) 124.2 153.0 122.1 153.0 0.0 0.0 0.0 0.0 0.0 0.0 200.0 W2 AVG 132.3 plf 1 10psf min load: 94.0 plf 100.0 Governing value: 132.3 plf 0.0 __ __---__T.__ W1 L(ft) hA(ft) ha (ft) he (ft) hp(ft) W(plf) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 - W1 AVG #DIV/0! 10psf min load: #DIV/0! 0.5 - Governing value: #DIV/0! 0.0 PWU Engineering Inc.02014,Software v0.10,7/05/16 r 31 ill 1111 [41; I Ria f p !le S k1111, if ss it 1r0101111 Jodi A Al di riIi.' tip \WV ir Fr /2) r / 8 s1111 -1:111 ;11 !ii I: 1; 1; 54 g I 411 Illy WA _ — Aell War =...41. — ....-iiii.. dig , , i •te." la 1:1,.. . , I 1=' 11 _te:::' t ic I 1 wap I I I iI!i, \ 1 1 Adii11111 it rk gt Iti iiill e -.t • 311 ttdit $� s I '' : I ► iI it:i 1-.. N.,. 41 :dii ii §! I iii— A I ' iIiIII Il'�jl►; i1i !IIII'III!i! 11 III HI I I i!1 �1 l IIl 1 i 1 1' 111 i11 1'0 11 l ' { 1 11 III ,111 1111 tt {1 : 1 11i11I ; III { t 1; i 1111 ,; III � ii11 I. 11t1 111 ill; Il; Ii , , 111 111111 1' 1"11111'111 11 I IIIIII { IIS , � 1,.11111 '11111 . , 1� , 11111t1111111111I !111 Ii 11.1 III' 1 I I ��' � {III 11111 �'' � ' I lit 1 I � I i;;111 itI! IlllII ' liII {111I' 111 '1 II li 11 1 1. I 111 ! Ii 111‘1M11111MMI-111111111111 Dili VIIIIIc:! ;IIII '1 ' I EIM is 1� (1111 '111 ' 11 i 111 11!1{III { I' j11141 '!' , ',I , i III II i I 11 1' 11'111, l iIlliI' 'II111111j1' '!' 111 ' �L 1 1 11!1I 1.11 1, 1 L-.11I11 1 IIIl! I ' 'll�ll►11111i� 11 � I'i{ I�' '1' 11111 �I1'111.I,1'.�IIiI .'II IiiI, c i lli 11 :,IIII_ti llll11 'lll1111111{'i 1111!11 { . __� 1 . , it1IIIII'IIII 11III ilII1111 i 'lljllllIllI i,IIIIIII!IIII!1 it II IIII I 1 ,11" 1,' ,''1'I1lI �ll' II ;11! 11 I I pllii d i1 ! 1' I li 1111 ll ill 1 111 .1111111111 i'lI I. 111111 i li i,I .I I II 11111 14 Seismic & Governing Values �PWU ENGINEERING INC. Project Willow Seismic Loading per latest edition of O.S.S.C. and O.R.S.C. V= CS*W Design Cs = (Sps)/(1.4R/le) Category R SDS le k D1 6.5 0.76 1.00 1.00 Roof Dead Load: 17psf Floor Dead Load: 15psf V=I 0.0835*W I Interior Wall Dead Load: 6psf Exterior Wall Dead Load: 12psf Buidling Weight per Level PSF Front to Back Length Side to Side Length Weight Height WR= (17+5+3) * 38.0 ft 34.0 ft 32.30 k 8.00 ft W2= (15+5+3+4) * 42.0 ft 34.0 ft 38.56 k 9.00 ft W� = (15+5+3+4) * 0.00 k Total W: 70.86 k Total V: 5.92 k Vertical Distribution of Seismic Forces Fx= Cv*V Cy);= (Wxhxk)/(FWihik) Wx hxk Wx*hxk Wx*hxk EW;hik Cvx WR*hRk= 32.30 k 17.00 549.1 CvR= 549.1 896.1 0.613 W2*h2k= 38.56 k 9.00 347.0 C„2= 347.0 896.1 0.387 W1*h,x= 0.00 k 0.00 0.0 C,1 = 0.0 896.1 0.000 FW;h;k= 896.1 Check Seismic Front to Back vs Wind Front to Back direction brace panels are by other. Check Seismic Side to Side vs Wind Seismic Wind FR= 95.4 plf+ 0.0 plf= 95.4 plf < 134.2 plf Wind Governs F2 = 54.6 plf+ 95.4 plf= 150.0 plf < 266.5 plf Wind Governs F1 _ #DIV/0! 150.0 plf= #DIV/0! #DIV/0! #DIV/0! #DIV/0! Redundancy factor= 1.0 per ASCE 7 section 12.3.4.2 PWU Engineering Inc.©2014,Software v0.10,7/05/16 Line Loads ENGINEERING INC. Project Willow `v High Roof Diaphragm -Upper Floor Walls Line A Line B Brace Panels by other. Brace Panels by other. Line 1 Line 2 Brace Panels by other. Brace Panels by other. Line 3 P = 1.61 k LTOTAL = 16.6 ft v = 1.61 k / 16.6 ft = 97 plf Type A Wall h = 8.0 ft LWORST = 3.5 ft MOT = 97 plf * 8.0 ft * 3.5 ft = 2.72 kft MR = (15 psf * 2.0 ft + 12 psf * 8.0 ft) * (3.5ft)2 / 2 * 0.6 = 0.46 kft + (0lb * 0.0 ft) + (0lb * 0.0 ft) = 0.00 kft + 0.46 kft = 0.46 kft T = (2.72kft - 0.46kft) / 3.5 ft = 0.65 k + 0.00 k = 0.65 k No hd req'd See FTAO Calc Low Roof/Upper Floor Diaphragm -Main Floor Walls Line A Line B Brace Panels by other. Brace Panels by other. Line 1 Line 2 Brace Panels by other. Brace Panels by other. Line 3 P = 3.46 k LTOTAL = 8.0 ft v = 3.46 k / 8.0 ft = 433 plf Type B Wall h = 5.3 ft LWORST = 1.5 ft MOT = 433 plf * 5.3 ft * 1.5 ft = 3.41 kft MR = (15 psf * 2.0 ft + 12 psf * 5.3 ft) * (1.5ft)2 / 2 * 0.6 = 0.06 kft + (0 lb * 0.0 ft) + (0 lb * 0.0 ft) = 0.00 kft + 0.06 kft = 0.06 kft T = (3.41 kft - 0.06kft) / 1.5 ft = 2.23 k + 0.00 k = 2.23 k Use type 12 hd See FTAO Calc, Use type C wall at FTAO Use type 1 hd at FTAO -*PwU ENGINEERING INC. Force Transfer Around Opening (FTAO) Diekmann Technique @ Upper Floor Line 3 L1 = 2.0 ft Lo= 6.0 ft L2= 2.0 ft V= 0.39 k VA= -19 plf vp= 78 plf vF= -19 plf hu = 1.0 ft F1 = 0.23 k F2= 0.23 k vB= 97 plf vG= 97 plf ho= 4.0 ft F� = 0.23k F2 = 0.23k - -* h�= 3.0 ft vo_ -19 plf vE= 78 plf vH = -19 plf T H = 0.31k H = 0.31k H= ( 0.39k * 8.0ft ) / 10.0ft= 0.31 kl H:W Ratios 4.0 ft : 2.0 ft = 2.0 : 1 vh = 0.39 k/ 4.0 ft= 97 plf 4.0 ft : 2.0 ft = 2.0 : 1 v„= 0.31 k/ 4.0 ft= 78 plf Use: Type A Wall F= 78 plf* 6.00 ft= 0.47 k F1 = ( 0.47k* 2.0 ft ) / 4.0 ft= 0.23 k F2 = ( 0.47 k* 2.0 ft )/ 4.0 ft= 0.23 k Use: (1) Bays BLKG T+C Couple after Dead Load is applied for holdown requirements MR= [( 15psf* 2 ft+ 12psf* 8.O ft) * (10.0 ft)^2 * 0.6/2 ] + ( 0.0ft *5001b) = 3.78 kft T= 0.31 kft- ( 3.78 kft / 10.0 ft) = 0.00 k +0.00k= 0.00 kl No hd req'd -.Force Transfer Around Opening (FTAO) PwU ENGINEERING INC. Diekmann Technique @ Main Floor Line 3 L� = 2.5 ft Lo= 5.0 ft L2= 2.5 ft V= 2.17k vA= -217 plf vo= 650 plf vF = -217 plf hu = 1.0 ft 4- F� = 1.62 k F2= 1.62 k v8= 433 plf vG= 433 plf ho= 6.0 ft F� = 1.62k F2 = 1.62k - hL= 2.0 ft vc= -217 plf vE= 650 plf vH = -217 plf H = 1.95k H = 1.95k H= ( 2.17k * 9.0ft) / 10.0 ft = 1\.95k H:W Ratios 6.Oft : 2.5ft = 2.4 : 1 vh = 2.17 k/ 5.0 ft= 433 plf 6.0 ft : 2.5 ft = 2.4 : 1 v„= 1.95 k/ 3.0 ft= 650 plf Use: Type C Wall F = 650 plf* 5.00 ft= 3.25 k F1 = ( 3.25k* 2.5ft )/ 5.Oft= 1.62k F2 = ( 3.25 k* 2.5 ft)/ 5.O ft= 1.62 k Use: (2) Bays BLKG T+C Couple after Dead Load is applied for holdown requirements MR = [( 15psf* 2ft+ 12psf* 9.Oft) * (10.0 ft)^2 * 0.6/2 ] + ( 10.0ft *5001b) = 9.14 kft T= 1.95 kft- ( 9.14kft / 10.0ft) = 1.03 k +0.00k= 1.03 kl Use type 1 hd OSHEAR BRACE PANELS AT OI SHEAR LME I DESIC1ED PRESCRIPTIVELY BY OTHER LJ 0 L__/ C= 'kO SHEAR BRACE PANELS AT SHEAR LME 2 DESIGNED }= -.-PTIVELY BY OTHER a41 o [ ' Hy O r O Wwgm ❑ I 2 TiElr I0 ,- T A A I _ O i1 `'4' _ `'� 3'-100 _ 10.-0. ENTIRE WALL ELEV OF FT•. TO BE SHEATHED USE 0877 COIL STRAP e e / • L SEGMENT ACROSS ENTIRE LENGTH O OF R PER DED IO/84 4 FOR FIAR FTAO METHOD MANJFACTURER TO DESIGN END TRUSS TO MATCH PROFILE OF vAULTED TRUSSES OvER ROOM. PARTIAL LATERAL DESIGN BALLOON FRAME WALL UP 18 FOR FRONT ELEVATION TO VAULTED BOTTOM OF HOUSE ONLY. ALL CHORD OF END TRUES. OTHER SHEARUALL BRACE PANELS ARE BY OTHER UPPER FLOOR PARTIAL LATERAL PLAN 0 0 0 SHEAR BRACE PA1,ELS AT 0 51-LAR LE I DESIGNED PRESCRIPTIVELY BY OTHER 0 C SHEAR BRACE PANELS AT SHEAR LNE 2.17E5IGNED PRESCRIPT/4Y.BY 911-IER . . -,, . . . . . •ti 11 4)>- W El , LILii ul 112 0_....,.. ,.. pi..Th. ?.i . . , . .1,• 77.1 . w_ ,__,____ . •• • ,,. • • •L :,f.L %al :ap tiT • i 4 IF _,:.,...-, 'I -10- 0 OP AC , •.i T 76“ -,-,.... 0 <> 0 i tki RE WALL ELEV , TO BE 64.1F,ATHED - e EXTEND HEADER USE C622 COIL STRAP OVER TOp OF GARAGE > ACROSS ENTIRE LENGTH - PIER POUR STEM WALL OF SHEARWALL PER DET - UP SO WALL WEIGHT 10/64 FOR FTAD METHOD - BEIUEEN TOP OF STEM PARTIAL LATERAL DESIGN WALL AND BOTTOM OF 16 FOR FROM ELEVATION HEADER IS scr MAX OF NOUSE CNLY. ALL , PER DETAIL 11/64 011-ER SHEARAIALL BRACE _ ror_t_s AlM 51-011-ER __ MAIN FLOOR PARTIAL LATERAL PLAN kv.t..0. SHEAR WA L L SCHEDULE (a-n) SEE NOTE(n)BELOW FOR CLIP REQUIREMENTS MARK REF NOTES:(a,i) Note: (b) EDGE NAILING FEILD NAILING SILL TO CONCRETE SILL TO WOOD SHEAR TRANSFER CAPACITY CAPACITY NUMBER SHEATHING NAIL SIZE SPACING SPACING CONNECTION.Note:(c) CONNECTION.Note(g) CLIPS(h) Lb/Ft(SEISMIC;Lb/Ft(WIND) A s"OSB(1)SIDE 8d 6" 12" ?"Dia.A.B.@ 30"o/c 16d @ 4"o/c A35 @ 24"o/c 255 357 B s"OSB(1)SIDE(f) 8d 4" 12" 4'Dia.A.B.@ 18"o/c(m) 16d @ 2z"o/c A35 @ 15"o/c 395 553 C is"OSB(1)SIDE(e,f) 8d 3" 12" 2"Dia.A.B.@ 12"o/c(m) 16d @ 2"o/c A35 @ 12"o/c 505 707 D js"OSB(1)SIDE(e,f) 8d 2" 12" 2"Dia.A.B.@ 11"o/c(m) 16d @ 2"o/c A35 @ 9"o/c 670 938 E 6"OSB(2)SIDE(d,e,f) 8d 6" 12" Z"Dia.A.B.@ 12"o/c(m) 16d @ 2"o/c A35 @ 12"o/c 510 714 F 6"OSB(2)SIDE(d,e,f) 8d 4"Staggered 12" 'Dia.A.B.@ 8"o/c(m) 16d @ 3"o/c(2)rows staggered A35 @ 6"o/c 790 1106 G 6'OSB(2)SIDE(d,e,f) 8d 3"Staggered 12" 2"Dia.A.B.@ 7"o/c(m) 16d @ 2"o/c(2)rows staggered HGA1OKT @ 8"o/c 1010 1414 H 6'OSB(2)SIDE(d,e,f) 8d 2"Staggered 12" Z"Dia.A.B.@ 5z"o/c(m) 16d @ 1z'o/c(2)rows staggered HGA1OKT @ 6"o/c 1340 1876 Notes: a) All wall construction to conform to SDPWS Table 4.3A. b) Use Common Wire Nails for all wood sheathing and cooler nails for gypboard sheathing. c) A.B.minimum 7"embed into concrete.3"x3"xY4"plate washers req'd at all shear wall A.B.in seismic zone D,E,and F;not req'd in seismic zone A,B,or C. d) Panel joints shall be offset to fall on different framing members or framing shall be 3x or thicker and nails on each side shall be staggered. e) 3x or Dbl 2x framing at all panel edges and nails shall be staggered. f) All edges blocked. g) Common Wire Nails. h) Clip to be attached from continuous blocking to top of continuous top plates. Clips are not required at Gyp Bd walls but blocking is attached per the toenailing schedule. i) See attached typical shearwall details. j) Sheathing to be Structrual I Sheathing. k) Values are for framing of H-F. m) 3x,Dbl 2x,or 2x Flat at panel edges. Stagger nails. See note C for plate washers and details for plate washer edge distance. On sill plates of all walls use a single 2x sill and 2x blocking in between the studs for plywood edge nailing surface. n) Clips are only required on interior shearwalls unless otherwise noted on plans and details. HOLDOWN SCHEDULE MARK Boundary Tension of DF Tension of HF Anchor Anchor Anchor Tension NUMBER HOLDOWN Studs Allowable Lbs Allowable Lbs Mono Pour Two Pour End Corner CL Dim. 1 HDU2-SDS2.5 (2)2x 3075 2215 SSTB16 SSTB2OL S=2550, S=2550, 15/ „ w=3610 w=3610 2 HDU4-SDS2.5 (2)2x 4565 3285 SB%X24 SB%X24 S=si0, w=56763705' 156„ 3 HDU5-SDS2.5 (2)2x 5645 4065 SB5/8X24 SB5/8X24 S=570, S=5730' 1546„ 4 HDU8-SDS2.5 (3)2x 7870 5665 8SSTB28"MINS(NOTETEMWALL 6.) 8"SSTB34MINS(NOTETEMWALL 6.) S=w=63957615, Sw==73158710, 1 y8„ PAB8-36,10"min PAB8-36,10"min S=16435, S=16435, g 8 HDU11-SDS2.5 (1)6x 9535 6865 embed into bottom embed into bottom w=17080 w=17080 1 „ of 32”min width of 32"min width S=16435, S=16435, g „ 9 HDU14 SDS2.5 (1)6x 14445 10350 footing.If at retaining footing.If at retaining w=17080 w=17080 1/16 wall lap anchor with wall lap anchor with vert reinf bar hooked vert reinf bar hooked to Ftg. to Ftg. 5 MST37 (2)2x 2710 2345 N/A N/A 6 MST48 (2)2x 4205 3640 N/A N/A 7 MST60 (2)2x 6235 5405 N/A N/A Notes: 1. Install all holdowns per manufacturer specification per C-C-2015 Simpson Strong Tie catalog. 2. Match studs on schedule for walls below on all wall to wall holdowns. 3. (2)2x studs nailed together with (2) rows of 16d @ 3" o.c. staggered. Trimmer stud may be used as part of boundary member. 4. Refer to shearwall schedule and typical shearwall details for wall locations and configurations. 5. Refer to Simpson catalog for minimum embed of anchors into concrete. 6. Increase footing depth or stemwall height as required for 28%" minimum embedment depth. 3