Loading...
Plans RECEIVED JAN 0 3 2013 CITY OFTIGARD BUILDING DIVISION Westside Christian High School Tigard, Oregon Site & Structural Package Structural Calculations KPFF Project No. 209512.01 - 2Oc�--��5-� ��cr is _core) January 3. 2013 City of Tigard l A. •roved Plans B Date( t Submitted to: Dull Olson Weekes—IBI Group Architects 907 SW Stark Street OFFICE COPY Portland, OR 97205 Submitted by: KPFF Consulting Engineers 111 SW Fifth Avenue, Suite 2500 Portland, Oregon 97204-3628 Consulting Engineers January 3, 2013 Karina Ruiz AIA LEED AP BD+C Associate Principal Dull Olson Weekes- IBI Group Architects, Inc. 907 SW Stark Street Portland, OR 97205 RE: Westside Christian High School Site and Structural Package Dear Karina: Attached please find calculation sheets 1 through 213, dated December 14, 2012, which verify the structural adequacy of the Westside Christian High School project, as shown on drawings S0.01 through S7.02 dated January 3, 2013. Design is based on the requirements of the 2010 Oregon Structural Specialty Code(OSSC), based on the 2009 International Building Code. If you have any questions or need further information, please call me. Sincerely, A061.,d /Ace:cc/49- _sicao. „44 Michael Arellano, P.E. PRO �• b 15 3 * 951 /� 20 209512 01/talcs 01-03-13 v 0?*M11 t!: '4k21 ti° qCD L. �g0 EXPIRES: 12-31-« I 111 SW Fifth Avenue, Suite 2500 Portland, Oregon 97204-3628 (503)227-3251 Fax (503)227-7980 Seattle Tacoma Portland Eugene San Francisco Sacramento Los Angeles Irvine San Diego Phoenix Denver St. Louis New York EffigProject By Sheet No. WESTSIDE CHRISTIAN HIGH SCHOOL MAA 1 Location TIGARD, OR Date Job No. Client DOWA- IBI GROUP 12/14/12 209512.01 Project: Westside Christian High School Principal: Jerry Abdie, P.E., S.E. Project Manager: Aaron Burkhardt, P.E. Project Engineer: Michael Arellano, P.E. KPFF Job No.: 209512.01 STRUCTURAL CALCULATIONS INDEX Page Number Description From To Structural Design Criteria 1 5 Gravity Design 6 65 Lateral Design 66 213 Project By Sheet No. WESTSIDE CHRISTIAN HIGH SCHOOL MAA 2 Location TIGARD, OR Date Job No. Client DOWA- IBI GROUP 12/14/12 209512.01 Structural Design Criteria Building Code: 2010 Oregon Structural Specialty Code, based upon 2009 International Building Code Reference Documents: ACI 318-08, Building Code Requirements for Structural Concrete ACI 530-08, Building Code Requirements for Masonry Structures AF&PA, NDS 2009, National Design Specification for Wood Construction AISC Steel Construction Manual 2008, 13th Edition AISI S100-08 Cold-Formed Steel Design Manual AISC 341-08, Seismic Provisions for Structural Steel Buildings ASCE 7-08, Minimum Design Loads for Buildings and Other Structures AWS D1.1-04, D1.3-98, D1.4-09, Structural Welding Codes Snow Load Analysis for Oregon 2007, with January 2011 White Paper and June 2011 Snow Load Tables, by SEAO k% Live Loads: Roof 27 psf+snow drift Lateral Loads: Seismic Ss= 1.06g, S, =0.37g Fa= 1.08, Fy= 1.66 Site Class D Seismic Design Category D Sos= 0.76g, Sot =0.41g Importance Factor, IE = 1.25 Wind Basic Wind Speed=95 mph(3-second gust) Exposure Category B Enclosure Classification= Fully Enclosed Importance Factor, Iw= 1.15 Snow: Design Roof Snow Load =27 psf(incl. 5 psf rain-on-snow surcharge) Flat Roof Snow Load, Pf=7 psf Importance Factor, Is= 1.1 t�X. Project By Sheet No. WESTSIDE CHRISTIAN HIGH SCHOOL MAA 3 Location TIGARD, OR Date Job No. Client DOWA- IBI GROUP 12/14/12 209512.01 Structural Design Criteria(cont.) Foundations: Geotechnical Engineer GeoDesign, Inc. Report No./Date FoundRED-2-01/October 3, 2005 Foundation Bearing Material Native Soils or Engineered Fill as noted Spread Footing Allowable Bearing Pressures Dead +Live 3500 psf Dead +Live+Wind or Seismic 7000 psf EffilProject By Sheet No. WESTSIDE CHRISTIAN HIGH SCHOOL MAA 4 Location TIGARD, OR Date Job No. Client DOWA- IBI GROUP 12/14/12 209512.01 Structural Materials Concrete: ACI 318-08 Element fc at 28 days Footings 3000 psi All Uses Unless Noted Otherwise 4000 psi Reinforcing Steel: ACI 318-08 #4 and Larger: ASTM A615, Grade 60 including Supplementary Requirements S1, Fy=60 ksi Welding: AWS D1.4-98 Structural Steel: AISC Manual, 14th Edition Welding: AWS D1.1-04 Element ASTM No. Fy ksi Beams,Girders, Columns A36 36 A572,Grade 50 50 Tube Steel A500,Grade B 46 Pipe A53, Grade B 35 Plates A36 36 Connection Bolts A325-SC 92 Anchor Bolts F1554, Grade 36 36 Masonry: ACI 530-08 Reinforced Concrete Masonry: fR,= 1,500 psi, fully grouted Special Inspection: Yes Element ASTM No. 28 Day Strength Hollow CMU C90, Grade N-1 1,900 psi Mortar C270,Type S Grout C476 _ 2,000 psi Light Gauge Metal Studs:AISI S100-08 Metal Studs: C-Studs with a minimum yield strength of 33,000 psi for 33 and 43 mils. and 50,000 psi for 54, 68, and 97 mils. Screws: Elco Dril-Flex, or Hilti Kwik Flex(ICC ER-4780) Welding:AWS D1.3 Project By Sheet No. WESTSIDE CHRISTIAN HIGH SCHOOL MAA 5 Location TIGARD, OR Date Job No. Client DOWA- IBI GROUP 12/14/12 209512.01 Design Loads: New Addition Roof(psf) Typical Staff/Work Room Roofing 1.0 1.0 Insulation 3.0 3.0 Sheathing 2.0 2.0 Decking 4.0(1-1/2" 31.0(w/2"conc. Metal Deck) Topping) Framing 6.0 6.0 Ceiling 1.0 1.0 Mechanical and Electrical 1.0 1.0 Fire Sprinklers 1.0 1.0 Misc. 1.0 1.0 Dead Load 20.0 47.0 Snow Load 27.0 27.0 Total Load 47.0 74.0 Existing Roof(psf) [FOR SEISMIC DESIGN CALCULATIONS] Roofing 1.0 Insulation 1.0 Concrete Deck 23.0 Framing 4.0 Dead Load 1 29.0 GRAVITY Pra¢eci ti G f` ev Rh-A-- sneer No. "MEI C ci �0 �i - Dore atila Clent A ' T GAT Job No. •_.. Prr/fanC. —.__-- Date G.110#4 (4t,.l t1Lkr;a.f S 1%0 ktOM 4O0f" Ln A 4&(,-^ k?N;M UM goo it- i4.1 toe-- IC , -AJ Cw Cr-- P-t lu:0lJMMM P`,. - b eel Z + P6, 4-P-1`4) one �,,,vae� P S Ao t�?� : P4r c 'r C 1. ! ) 5 P w P.SF I. Pr Ofeet 14.XT BY R-474 Sheet I4o. EffElConsulting Engineers ilLocation MS" Date Cent Job No. • Porlicand.°ream Date 1 201512.0/ Oa C4.4.f,irolle■. 1ø - t . Dive- R:-0" cJ/ f S. .5PA-AJ hi 7- Pis.tc- 014., (Aro 4/6(4_ ) 44 .4- wt.# cAo 5 / m14, or 4 491c_if 0-04) e-f■rx, PA W A (=sic ( ' 4.p.t...)) 7 4;- P`a÷ 'S Type PLBTM -36 or SB®-36 eJ ,rle 11/2' Deep Roof Deck a A' 4 • Primer Painted or Galvanized .,:fit e. . • "4 Allowable Uniform Loads (psf) •..4 SPAN(ft-in.) SPAN GAGE 4'-0" 5%0" 5'-6" 6'-0" 6'-6" 7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-0" 10'-0"10'-6"11'-0" 11'-6" 12'-0" Stress 185 118 98 %2 70 60 53 46 41 37 33 30 "„2 22 11240 185 95 71 55 43 34 28 23 19 16 14 12 ,.. W 20 Stress 223 149 123 104 88 76 66 58 52 46 41 37 34 31 28 26 :4 . 11240 229 117 88 68 53 43 35 29 24 20 17 15 13 11 10 8 Z Stress 300 204 168 141 120 104 90 80 70 63 56 51 46 42 38 35 in 18 0240 ••• 160 120 93 73 58 47 39 33 27 23 20 17 15 13 12 :`,2 Stress 300 259 214 180 153 132 115 101 89 80 72 65 59 53 49 45 3 1 6 U240 ••• 200 150 116 91 73 59 49 41 34 29 25 22 19 16 14 ', Stress 194 124 103 86 73 63 55 49 43 38 34 31 lR 1j 22 11240 ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• 30 4,1111111110 LLI Stress 244 156 129 108 92 80 69 61 54 48 43 39 35 32 30 27 m20 11240 ••• ••* ••• ••• ••• ••• ••• ••• ••• ••• 43 37 32 27 24 21 �•7 O Stress 300 212 175 147 125 108 94 83 73 65 59 53 48 44 40 37 in 18 L/240 ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• 56 48 42 36 32 28 -:.3 Stress 300 262 217 182 155 134 117 103 91 81 73 66 60 54 50 46 16 U240 ••• ••• ••• ••• ••• ••• ••• ••• ••• ••• 70 60 52 45 40 35 `,3 Stress 243 155 128 108 92 79 69 61 54 48 43 39 22 11240 ••• ••• ••• ••• 86 69 56 46 39 33 28 24 Stress 300 195 161 136 116 100 87 76 68 60 54 49 44 40 37 34 '-, W 20 0 U240 ••• ••• ••• 132 104 83 68 56 47 39 33 29 25 21 19 17 p Stress 300 265 219 184 157 135 118 103 92 82 73 66 60 55 50 46 '.� 18 11240 ••• ••• ••• 175 138 110 90 74 62 52 44 38 33 28 25 22 f Stress 300 300 271 228 194 167 146 128 113 101 91 82 74 68 62 57 3 16 U240 ••• ••• ••♦ 218 172 137 112 92 77 65 55 47 41 35 31 27 ` otea: Stress= Uniform load which produces maximum allowable stress in deck. . U240=Uniform load which produces 11240 deflection in deck. 1 3 3. Self-weight of the deck should be included when determining dead load. 4. The symbol•••indicates allowable uniform load based on deflection exceeds allowable uniform load based on stress. c� i ( A WWW VPMn/1Pr k rnm trr_n"n nr."enun non "—,- -- 0 0 57 r S .1.....-e" 1 • • , • _, . i 1 i 1 , : : 11- 1- 1- t : - I 1 I : , 1 i '1 1 • ! ■ i 1 . . 1 I t " . i , I : , 1 I 1, i t : , : 1 11- 1 1 ; i 1 1 I i I ' 1 : 7--1— i : 1 t W18428 CI) g1! . WISAS w> '" b € is ®-' I (.0 SHEARMEARING ... WALL BELOW W166 . . ... . .. - i Wi8,26(8) 1 ® ! I ..- . I • . . Witbrt2 B W1846 W1805 i il I C-)$11 g ip 7 fp a 1 1 1 1 11 : 17, 1 Wleal 110 w 3 .3- (..wi ox1 5 I I t. I I E31)5-3 .I WW1 pi. W1826 1 W1005 t 6"NLING I wMisaow I Li i ... t , OD is % 31 1 i 84-1EAR/BEARINO WALL BELOW ii i I I ip W10x15 MIA° . I I 4- 1 I C) W11335.314', 1 +Next() ', 1 : ® g t: - i 1 4 i i W1846 43/4°. i r I w81° 1 i WIR35<Yr> I 1 7 3 AEI i I f4.4 ES It WIlal0 ' . 3 I bo ;rn. t W135.3#4 I : E, 1 0 rite. i i w..„,0 i I I /111 W11145 4/4. t 1 A .i 1 3 , 1 TYP a i I INWO ! I . 5 1 I 11 W1llx36 4301.2. 11 1 1 11 1 I Ali WaX10 1 i VD' . 1YP MS46 3/42• ............. .... .... .. ... 4 • 0 i I ,..-,........._ _ 1 0 SHEARfirJAING WAU. 1 ROOF FRAMING PLAN SECTOR A S3.01 vEr=1.4. ri1Gravity Beam Design RAM SBeam v5.0 RAMWSCH -Science Classroom Roof 12/14/12 13:42:27 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End(0.00,0.00) J-End (43.00,0.00) Beam Size(User Selected) = W18X35 Fy = 50.0 ksi Total Beam Length(ft) = 43.00 Mp(kip-ft) = 277.08 Top flange braced by decking. LINE LOADS (k/ft): Load Dist(ft) DL LL 1 0.000 0.035 0.000 43.000 0.035 0.000 2 0.000 0.135 0.183 43.000 0.135 0.183 SHEAR: Max Va(DL+LL)= 7.59 kips Vn/1.50= 106.20 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/S2 kip-ft ft ft kip-ft Center Max+ DL+LL 81.6 21.5 0.0 1.00 1.67 165.92 Controlling DL+LL 81.6 21.5 0.0 1.00 1.67 165.92 OD REACTIONS(kips): Left Right DL reaction 3.66 3.66 Max +LL reaction 3.93 3.93 Max +total reaction 7.59 7.59 DEFLECTIONS: Dead load(in) at 21.50 ft = -0.884 L/D = 583 Live load(in) at 21.50 ft = -0.952 L/D = 542 Net Total load(in) at 21.50 ft = -1.836 L/D = 281 Gravity Beam Design RAM SBeam v5.0 WSCH-Library Low Roof Beam • Ca-sric4L 12/14/12 13:43:11 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End(0.00,0.00) J-End(43.00,0.00) Beam Size(User Selected) = W18X35 Fy = 50.0 ksi Total Beam Length(ft) = 43.00 Mp(kip-ft) = 277.08 Top flange braced by decking. LINE LOADS(k/ft): Load Dist(ft) DL LL 1 0.000 0.035 0.000 43.000 0.035 0.000 2 0.000 0.160 0.216 43.000 0.160 0.216 SHEAR Max Va(DL+LL)=8.84 kips Vn/1.50= 106.20 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb f2 Mn/S2 kip-ft ft ft kip-ft Center Max+ DL+LL 95.0 21.5 0.0 1.00 1.67 165.92 Controlling DL+LL 95.0 21.5 0.0 1.00 1.67 165.92 0110 REACTIONS(kips): Left Right DL reaction 4.19 4.19 Max+LL reaction 4.64 4.64 Max+total reaction 8.84 8.84 DEFLECTIONS: (Camber=3/4) Dead load(in) at 21.50 ft = -1.014 L/D = 509 Live load(in) at 21.50 ft = -1.123 L/D = 459 Net Total load(in) at 21.50 ft = -1.388 L/D = 372 FMGravity Beam Design RAM SBeam v5.0 ( RANWSCH - Science Classroom Critical Girder GI �^ -r"'C4L_ 12/14/12 13:47:27 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End (0.00,0.00) J-End (27.00,0.00) Beam Size(Optimum) = W18X35 Fy = 50.0 ksi Total Beam Length(ft) = 27.00 Mp(kip-ft) = 277.08 Top flange braced by decking. LINE LOADS (k/ft): Load Dist(ft) DL LL 1 0.000 0.035 0.000 27.000 0.035 0.000 2 0.000 0.520 0.702 27.000 0.520 0.702 SHEAR: Max Va (DL+LL)= 16.97 kips Vn/1.50= 106.20 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/Q kip-ft ft ft kip-ft Center Max + DL+LL 114.5 13.5 0.0 1.00 1.67 165.92 Controlling DL+LL 114.5 13.5 0.0 1.00 1.67 165.92 ft REACTIONS (kips): Left Right DL reaction 7.49 7.49 Max +LL reaction 9.48 9.48 Max +total reaction 16.97 16.97 DEFLECTIONS: Dead load(in) at 13.50 ft = -0.449 L/D = 722 Live load(in) at 13.50 ft = -0.568 L/D = 571 Net Total load(in) at 13.50 ft = -1.016 L/D = 319 • Gravity Beam Design Al RAM SBeam v5.0 3 RAMWSCH - Science Classroom Girder 12/14/12 13:51:53 fA STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End (0.00,0.00) J-End (27.00,0.00) Beam Size (User Selected) = W18X35 Fy = 50.0 ksi Total Beam Length(ft) = 27.00 Mp(kip-ft) = 277.08 Top flange braced by decking. LINE LOADS (k/ft): Load Dist(ft) DL LL 1 0.000 0.035 0.000 27.000 0.035 0.000 2 0.000 0.440 0.594 27.000 0.440 0.594 SHEAR: Max Va(DL+LL)= 14.43 kips Vn/1.50= 106.20 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb SZ Mn/S2 kip-ft ft ft kip-ft Center Max + DL+LL 97.4 13.5 0.0 1.00 1.67 165.92 Controlling DL+LL 97.4 13.5 0.0 1.00 1.67 165.92 la REACTIONS (kips): Left Right DL reaction 6.41 6.41 Max+LL reaction 8.02 8.02 Max +total reaction 14.43 14.43 DEFLECTIONS: Dead load(in) at 13.50 ft = -0.384 L/D = 844 Live load(in) at 13.50 ft = -0.480 L/D = 675 Net Total load(in) at 13.50 ft = -0.864 L/D = 375 Gravity Beam Design El RAM SBeam v5.0 I `f RAM WSCH -Library 16 ft Girder 12/14/12 13:53:54 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End (0.00,0.00) J-End (16.00,0.00) Beam Size(User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length(ft) = 16.00 Mp (kip-ft) = 138.33 Top flange braced by decking. POINT LOADS (kips): Flange Bracing Dist(ft) DL LL Top Bottom 8.000 4.32 5.83 Yes No LINE LOADS(k/ft): Load Dist(ft) DL LL 1 0.000 0.022 0.000 16.000 0.022 0.000 SHEAR: Max Va (DL+LL)=5.25 kips Vn/1.50=63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn in kip-ft ft ft kip-ft Center Max+ DL+LL 41.3 8.0 0.0 1.00 1.67 82.83 Controlling DL+LL 41.3 8.0 0.0 1.00 1.67 82.83 REACTIONS (kips): Left Right DL reaction 2.34 2.34 Max+LL reaction 2.91 2.92 Max+total reaction 5.25 5.25 DEFLECTIONS: Dead load(in) at 8.00 ft = -0.116 L/D = 1655 Live load(in) at 8.00 ft = -0.149 L/D = 1289 Net Total load(in) at 8.00 ft = -0.265 L/D = 725 FRIGravity Beam Design RAM SBeam v5.0 /7 RAM WSCH - Library Girder 12/14/12 13:45:46 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End (0.00,0.00) J-End (30.50,0.00) Beam Size(Optimum) = W18X35 Fy = 50.0 ksi Total Beam Length(ft) = 30.50 Mp(kip-ft) = 277.08 Top flange braced by decking. LINE LOADS (k/ft): Load Dist(ft) DL LL 1 0.000 0.035 0.000 30.500 0.035 0.000 2 0.000 0.400 0.540 30.500 0.400 0.540 SHEAR: Max Va (DL+LL)= 14.87 kips Vn/1.50= 106.20 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/S2 kip-ft 11 ft kip-ft Center Max+ DL+LL 113.4 15.3 0.0 1.00 1.67 165.92 Controlling DL+LL 113.4 15.3 0.0 1.00 1.67 165.92 4* REACTIONS (kips): Left Right DL reaction 6.63 6.63 Max +LL reaction 8.23 8.23 Max+total reaction 14.87 14.87 DEFLECTIONS: Dead load(in) at 15.25 ft = -0.573 L/D = 639 Live load(in) at 15.25 ft = -0.711 L/D = 515 Net Total load(in) at 15.25 ft = -1.284 L/D = 285 roar ft?r,ra ,l: FMGravity Beam Design RAM SBeam v5.0 ii✓ RAM WSCH - Library High Roof Beam 12/14/12 13:55:59 =y' STEEL CODE: AISC 360-05 ASD SPAN INFORMATION (ft): I-End (0.00,0.00) J-End (40.00,0.00) Beam Size(Optimum) = W16X26 Fy = 50.0 ksi Total Beam Length(ft) = 40.00 Cantilever on right(ft) = 8.00 Mp(kip-ft) = 184.17 Top flange braced by decking. LINE LOADS (k/ft): Load Dist(ft) DL LL 1 0.000 0.026 0.000 32.000 0.026 0.000 2 0.000 0.160 0.216 32.000 0.160 0.216 3 32.000 0.026 0.000 40.000 0.026 0.000 4 32.000 0.160 0.216 40.000 0.160 0.216 SHEAR: Max Va (DL+LL)=6.84 kips Vn/1.67=70.51 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb SZ Mn/SZ kip-ft ft ft kip-ft Center Max+ DL+LL 48.5 15.5 0.0 1.00 1.67 110.28 Max - DL+LL -12.9 32.0 32.0 1.22 1.67 16.64 Right Max- DL+LL -12.9 32.0 8.0 1.00 1.67 86.15 Controlling DL+LL -12.9 32.0 32.0 1.22 1.67 16.64 REACTIONS(kips): Left Right DL reaction 2.79 4.65 Max+LL reaction 3.46 5.40 Max -LL reaction -0.22 0.00 Max +total reaction 6.25 10.05 DEFLECTIONS: Center span: Dead load(in) at 15.84 ft = -0.428 L/D = 898 Live load (in) at 15.84 ft = -0.584 L/D = 658 Net Total load (in) at 15.84 ft = -1.012 L/D = 380 Right cantilever: Dead load (in) = 0.283 L/D = 678 Pos Live load(in) -0.139 L/D = 1385 =Neg Live load(in) 0.467 L/D = 411 Neg Total load (in) - 0.750 L/D = 256 Gravity Beam Design RAM SBeam v5.0 RAM WSCH -Library Group Room Beam 11110 re; 12/14/12 13:57:45 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End (0.00,0.00) J-End (14.00,0.00) Beam Size(User Selected) = W 10X 15 Fy = 50.0 ksi Total Beam Length(ft) = 14.00 Mp(kip-ft) = 66.67 Top flange braced by decking. LINE LOADS(k/ft): Load Dist(ft) DL LL 1 0.000 0.015 0.000 14.000 0.015 0.000 2 0.000 0.160 0.216 14.000 0.160 0.216 SHEAR: Max Va(DL+LL)=2.74 kips Vn/1.50=46.00 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/S2 kip-ft ft ft kip-ft Center Max + DL+LL 9.6 7.0 0.0 1.00 1.67 39.92 Controlling DL+LL 9.6 7.0 0.0 1.00 1.67 39.92 REACTIONS (kips): Left Right DL reaction 1.23 1.23 Max +LL reaction 1.51 1.51 Max+total reaction 2.74 2.74 DEFLECTIONS: Dead load(in) at 7.00 ft = -0.076 L/D = 2219 Live load(in) at 7.00 ft = -0.093 L/D = 1798 Net Total load(in) at 7.00 ft = -0.169 L/D = 993 ,i ly mi 0jull ::;;AcirSeam vs r V. ST N'Library Group 1 t 8ea111 j3es. I EEL roDE. °Om Girder � SPAN Bean/ $�3�0 ps Asb C� atn SYZe Tjp�, rota/gem tirnu�)«}� LEdd p 4 p0,p.Length SOP flange b �ft� W 12�4 "1 End�z p 12/14112 LIj� .raced by 2.50 2p pp,p.pp) 13:S9 49 Load D s(ft/ft}; Y deck�nb' t ) Y 1 0000 DL P \ 50.0 ksi 2 20.000 0.414 LL O 000 0.014 0.000 S 20000 0280 0.000 SI EAR: .A�,�a Va 0280 -378 Span E1 ' S, �L+LL),6'72 �8 Land Ps V�'1.67.. Center Load d°m 42 kips qtControlling Max+ bo REACTIONS g DL+ "fa {GPs}. DL+LL 31'` @ Lb DLreaction 334 100 ti. Cb 10 0 0.0 S2 max tLL reaction Left 0.0 1.00 In/i2 DEFLECTIONS: 2.94 Right 1.40 1.67 3 4 Dead to NS 3.�8 2.94 43 Live aal din) 6�2 3 �g 41 Net Total lay at 6 72 d�'n} at 1040 It ` at 1000 fi -0.41 0 ,053 100 2 ,--..0942 �✓D 582 L✓D 453 2SS 1 • Project 0.504_ Dv 114.4- Sheet No. 0 ——, L Date . I Consulting Engineers ocatlan �«")CAL' CYeht YIou 3 A. _ T L r Revised Dare -- COLA AO 4400.646- she.fAietki cG2-4 r4.46L for Ncr- 6-114'p /,z / 1, P24 411-6-A- -Yac,' M994407( jP- epL = c4 00)/(.000 /2.0 Kc, (2, -) (100p = 16. I 2$. t if gx g x ? K L Y perdu = t4-4- k >> 28.1 k c_flLJ k As 1 �.t'r? t3 "ID `i em-A e..1-e4 14.i&t+ 4 F1 1.© powil-fz. 442411, , &A_ gxrAG. .a) yam - Qv►i K 1 l 1-4-1[K p � 1-11-40r4-47.41 A-x-11- 01-1 x ' = 61I$ 02- PDT 6 (24D)b b e 648 (Z4.-)/moo = (� S >3.1r JH,u r��2OU ter- . 4-1-x4 x',/4- KL = 1 5 30,4-k — L( c � foOr t,- ( 6 04.5.- krriptC..tl ? rt pt- 6 3' x x tr '. Vgr 0 S 0 KPFF Consulting Engineers MM 12/14/2012 KPFF Consulting Engineers MAA 12/14/2012 West Side Christian High School IV.On.-way Shear Check ACI 11.11.1.1 Vu Footing Design ACI 318-05 Critical Library Footing Shear Area 1 1.00 f12 4.5 k I.INPUT Shear Area 2 1.00 ft2 4.5 k Column Loads Conc.Col./base plate dims. ASTM Standard Reiff Bars Bar size Die.(In.) Area(in.2) DL 12 k L 12 in. 3 0.375 0.11 a) IVc•1•2•SORT(fc)•bw'd bw footing width LL 16.1 k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.625 0.31 IVc 1 27 k OK Pu 40.16 k 6 0.75 0.44 7 0.875 0.8 IVc 2 27 k OK Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick. R 11 1.41 1.58 a)Critical section for moment occurs fa face of cot/base plate pier dims ft X ft 14 1.693 2.25 soil depth 0 R 18 2.257 4 footing width•moment arm'/2 Mu B•ARK:"2 1.5 7 k-ft moment about long direction Soil Properties Concrete Strength WI 3.5 ksf fc 4000 psi L•ARM2/2 1.5 7 k-ft moment about short direction II.Trial Footing Dimensions b)Area of stoat required, •0.9 Required Area L ACI Min• •code minimum for gross concrete area eq 3 R 8 ML 0.21 in2 0.78 in2 B 3R 8.54 R2 H 1 R MB 0.21 1n2 0.78 in2 lit.Two-way Shear Chock ACI 11.11.1.2 c)Trial Reinforcement Effective depth d 8 in. Direction No.Bars Bar Size As pn2) Factored Net Soil Pressure Shear Area L 4 5 1.24 gnu 4.5 kit 8.222222 ft2 B 4 5 1.24 Vu 27.8 k a) IVc•4(2+4/Oc)SORT(fc)•bo•d gc 1 long:short col.dim. bo 80 in 1Vc 182 k OK b) 1Vc•1(as•d/bo•2)SORT(fc)•bo•d as 40 for concentrically loaded footings IVc 182 OK w c) IVc•I.4•SORT(fc)•bo•d 1Vc 121 OK 1of2 2of2 U 9 1111 0 KPFF Consulting Engineers MM 12/14/2012 KPFF Consulting Engineers MM 12/14/2012 West Side Christian High School IV.One-way Shear Check ACI 11.11.1.1 • Vu Footing Design ACI 318-05 Critical Science Classroom Shear Area 1 1.00 ft2 4.8 k I.INPUT Shear Area 2 1.00 ft2 4.8 k Column Loads Conc.Cot./base plate dims. ASTM Standard Relnf Bars Bar size Die.(In.) Area On 2) DL 12.9 k L 12 in. 3 0.375 0.11 a) 4Vc•4•2•SORT(fe)*bw•d bw footing width LL 17.5 k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.825 0.31 4Vc 1 27 k OK Pu 43.48 k 6 0.75 •0.44 7 0.875 0.6 4Vc 2 27 k OK Info for Surcharge Loads B 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wall thick. ft 11 1.41 1.58 a)Critical section for moment occurs.face of col./base plate pier dims ft X ft 14 1.693 2.25 soil depth 0 ft 18 2.257 4 footing width•moment arm?/2 Mu B•ARM12/2 1.5 7 k-ft moment about long direction Soil Properties Concrete Strength qa 3.5 ksf fc 4000 psi L•ARM2/2 1.5 7 k-ft moment about short direction II.Trial Footing Dimensions b)Area of steel required,i'0.9 Required Area L 3 R 9 ACI Min' •code minimum for gross concrete area B 3 R ML 0.22 in2 0.78 In2 9.20 ft2 H 1 R MB 0.22 1n2 0.78 1n2 III.Two-way Shear Check ACI 11.11.1.2 c)Trial Reinforcement Effective depth d 8 in. Direction No.Bars Bar Size As(in2) Factored Net Soil Pressure Shear Area L 4 5 1.24 ur qnu 4.8 kid 6,222222 f12 Vu 30.1 k B 4 5 1.24 a) 4Vc•4(2•4/6c)SORT(fc)•bo•d pc 1 long:short col.dim. bo 80 m 4Vc 182 k OK b) 4Vc.4(as•d/bo*2)SORT(fc)•bo•d as 40 for concentrically loaded footings 4Vc 182 OK c) 4Vc*4.4•SORT(fc)•bo•d 4Vc 121 OK 1of2 2of2 ri) s 8 00 ..,, 21•11' 22,1 1/2" 212•I 1,2" 0 e F ... ..........................--......-...........■......... ...„—..—............——........ ........ — W14.22 N N C) ./..... ■ 11,12e14 W1S • 77P • @ 1 CV . W12,14 WIODS 1 2 5 il TIP. r IV WIWI 0 1 , I 1 I YAW. I • . b I • i 1 ' Ark 1 rig T" W12.14 I " 1 I .1.1ZIF 0 ..m.::1y III I'VP I 1. l' I C) qt Ir. C'' A MAO r. I i Si D 1 I -..—.... 110 . • $ 2 $ $ 1 • .1 ,..—; ' 1 wsdo I I i 1 I i 1 (CD 140122 IA 1 W114 wil.14 li l 0 IP , NI EV 4 TV. (1) 3 Lxix(c. I Lou.k.fc b: Ani V wtz...•TIL. 1 ‘117 1 1 4....)t2itic (....:1Zr c ,..... 0 :I , • 0 1 ROOF FRAMING PLAN SECTOR B S3.02 yr=1.-O• Gravity Beam Design RAM SBeam v5.0 2-3 WSCH- Staff&Work Room Roof lyt'• {- '41 12/14/12 13:16:04 • STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End(0.00,0.00) J-End (21.00,0.00) Beam Size(User Selected) = W12X16 Fy = 50.0 ksi Total Beam Length(ft) = 21.00 Mp(kip-ft) = 83.75 Top flange braced by decking. LINE LOADS(k/ft): Load Dist(ft) DL LL 1 0.000 0.016 0.000 21.000 0.016 0.000 2 0.000 0.376 0.216 21.000 0.376 0.216 SHEAR: Max Va(DL+LL)=6.38 kips Vn/1.50=52.80 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/12 kip-ft ft ft kip-ft Center Max+ DL+LL 33.5 10.5 0.0 1.00 1.67 50.15 Controlling DL+LL 33.5 10.5 0.0 1.00 1.67 50.15 • REACTIONS(kips): Left Right DL reaction 4.12 4.12 Max+LL reaction 2.27 2.27 Max+total reaction 6.38 6.38 DEFLECTIONS: Dead load(in) at 10.50 ft = -0.574 L/D = 439 Live load(in) at 10.50 ft = -0.316 L/D = 796 Net Total load(in) at 10.50 ft = -0.891 L/D = 283 FMGravity Beam Design RAM SBeam v5.0 r� RAN Staff Room Girder Grid 9 r� 12/14/12 13:17:18 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End (0.00,0.00) J-End (24.00,0.00) Beam Size(User Selected) = W16X26 Fy = 50.0 ksi Total Beam Length(ft) = 24.00 Mp(kip-ft) = 184.17 Top flange braced by decking. POINT LOADS(kips): Flange Bracing Dist (ft) DL LL Top Bottom 8.000 3.95 2.27 Yes No 16.000 3.95 2.27 Yes No LINE LOADS(k/ft): Load Dist(ft) DL LL 1 0.000 0.026 0.000 24.000 0.026 0.000 SHEAR: Max Va (DL+LL)=6.53 kips Vn/1.67=70.51 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/i2 kip-ft ft ft kip-ft Center Max + DL+LL 51.6 12.0 0.0 1.00 1.67 110.28 Controlling DL+LL 51.6 12.0 0.0 1.00 1.67 110.28 REACTIONS(kips): Left Right DL reaction 4.26 4.26 Max+LL reaction 2.27 2.27 Max+total reaction 6.53 6.53 DEFLECTIONS: Dead load(in) at 12.00 ft = -0.406 L/D = 709 Live load(in) at 12.00 ft = -0.220 L/D = 1306 Net Total load(in) at 12.00 ft = -0.627 L/D = 460 • Gravity Beam Design LRAM SBeam v5.0 2 ' Work Room Girder Grid 9 0 12/14/12 13:16:53 • STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End(0.00,0.00) J-End (20.00,0.00) Beam Size (User Selected) = W14X22 Fy = 50.0 ksi Total Beam Length(ft) = 20.00 Mp(kip-ft) = 138.33 Top flange braced by decking. POINT LOADS (kips): Flange Bracing Dist(ft) DL LL Top Bottom 6.670 3.29 1.89 Yes No 13.330 3.29 1.89 Yes No LINE LOADS(k/ft): Load Dist(ft) DL LL 1 0.000 0.022 0.000 20.000 0.022 0.000 SHEAR: Max Va (DL+LL)=5.40 kips Vn/1.50=63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb 0 Mn/0 • kip-ft ft ft kip-ft Center Max+ DL+LL 35.7 10.0 0.0 1.00 1.67 82.83 Controlling DL+LL 35.7 10.0 0.0 1.00 1.67 82.83 REACTIONS(kips): Left Right DL reaction 3.51 3.51 Max+LL reaction 1.89 1.89 Max+total reaction 5.40 5.40 DEFLECTIONS: Dead load(in) at 10.00 ft = -0.294 L/D = 817 Live load(in) at 10.00 ft = -0.161 L/D = 1493 Net Total load(in) at 10.00 ft = -0.454 L/D = 528 IP or, Gravity Beam Design RAM SBeam v5.0 2`t RA Work Room Girder Grid G 12/14/12 13:16:30 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION (ft): I-End (0.00,0.00) J-End (21.00,0.00) Beam Size (Optimum) = W14X22 Fy = 50.0 ksi Total Beam Length(ft) = 21.00 Mp(kip-ft) = 138.33 Top flange braced by decking. LINE LOADS(k/ft): Load Dist(ft) DL LL 1 0.000 0.022 0.000 21.000 0.022 0.000 2 0.000 0.440 0.594 21.000 0.440 0.594 SHEAR: Max Va (DL+LL)= 11.09 kips Vn/1.50=63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/S2 kip-ft ft ft kip-ft Center Max+ DL+LL 58.2 10.5 0.0 1.00 1.67 82.83 Controlling DL+LL 58.2 10.5 0.0 1.00 1.67 82.83 REACTIONS (kips): Left Right DL reaction 4.85 4.85 Max+LL reaction 6.24 6.24 Max +total reaction 11.09 11.09 DEFLECTIONS: Dead load(in) at 10.50 ft = -0.350 L/D = 719 Live load(in) at 10.50 ft = -0.450 L/D = 560 Net Total load(in) at 10.50 ft = -0.801 L/D = 315 Gravity Beam Design I RAM SBeam v5.0 2 RAWSCH -Commons Roof Beam 12/14/12 13:19:39 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION (ft): I-End(0.00,0.00) J-End (43.00,0.00) Beam Size(User Selected) = W18X35 Fy = 50.0 ksi Total Beam Length(ft) = 43.00 Mp(kip-ft) = 277.08 Top flange braced by decking. LINE LOADS(k/ft): Load Dist(ft) DL LL 1 0.000 0.035 0.000 43.000 0.035 0.000 2 0.000 0.160 0.216 43.000 0.160 0.216 SHEAR: Max Va(DL+LL)=8.84 kips Vn/1.50= 106.20 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/S2 kip-ft ft ft kip-ft Center Max+ DL+LL 95.0 21.5 0.0 1.00 1.67 165.92 Controlling DL+LL 95.0 21.5 0.0 1.00 1.67 165.92 • REACTIONS (kips): Left Right DL reaction 4.19 4.19 Max+LL reaction 4.64 4.64 Max +total reaction 8.84 8.84 DEFLECTIONS: (Camber=3/4) Dead load(in) at 21.50 ft = -1.014 L/D = 509 Live load(in) at 21.50 ft = -1.123 L/D = 459 Net Total load(in) at 21.50 ft = -1.388 L/D = 372 r Gravity Beam Design RAM SBeam v5.0 24 Commons Girder Grid E Willi @ 12/14/12 13:19:59 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION (ft): I-End (0.00,0.00) J-End(42.00,0.00) Beam Size(Optimum) = W24X55 Fy = 50.0 ksi Total Beam Length(ft) = 42.00 Mp(kip-ft) = 558.33 Top flange braced by decking. LINE LOADS (k/ft): Load Dist (ft) DL LL 1 0.000 0.055 0.000 42.000 0.055 0.000 2 0.000 0.440 0.594 42.000 0.440 0.594 SHEAR: Max Va(DL+LL)=22.87 kips Vn/1.67= 167.46 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/Sl kip-ft ft ft kip-ft Center Max + DL+LL 240.2 21.0 0.0 1.00 1.67 334.33 Controlling DL+LL 240.2 21.0 0.0 1.00 1.67 334.33 0 REACTIONS(kips): Left Right DL reaction 10.40 10.40 Max+LL reaction 12.47 12.47 Max+total reaction 22.87 22.87 DEFLECTIONS: Dead load(in) at 21.00 ft = -0.885 L/D = 569 Live load(in) at 21.00 ft = -1.062 L/D = 474 Net Total load(in) at 21.00 ft = -1.948 L/D = 259 • 0 Gravity Beam Design RAM SBeam v5.0 WSCH - Fitness Roof Beam 12/14/12 13:18:24 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End (0.00,0.00) J-End (36.00,0.00) Beam Size(Optimum) = W16X26 Fy = 50.0 ksi Total Beam Length (ft) = 36.00 Mp(kip-ft) = 184.17 Top flange braced by decking. LINE LOADS (k/ft): Load Dist(ft) DL LL 1 0.000 0.026 0.000 36.000 0.026 0.000 2 0.000 0.160 0.216 36.000 0.160 0.216 SHEAR: Max Va (DL+LL)=7.24 kips Vn/1.67= 70.51 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/S2 kip-ft ft ft kip-ft Center Max + DL+LL 65.1 18.0 0.0 1.00 1.67 110.28 Controlling DL+LL 65.1 18.0 0.0 1.00 1.67 110.28 • REACTIONS (kips): Left Right DL reaction 3.35 3.35 Max +LL reaction 3.89 3.89 Max +total reaction 7.24 7.24 DEFLECTIONS: Dead load(in) at 18.00 ft = -0.806 L/D = 536 Live load(in) at 18.00 ft = -0.935 L/D = 462 Net Total load(in) at 18.00 ft = -1.741 L/D = 248 Gravity Beam Design RAM SBeam v5.0 RAM WSCH - Fitness Hall Roof Beam 12/14/12 13:19:01 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End (0.00,0.00) J-End (20.00,0.00) Beam Size(User Selected) = W12X14 Fy = 50.0 ksi Total Beam Length(ft) = 20.00 Mp(kip-ft) = 72.50 Top flange braced by decking. LINE LOADS(k/ft): Load Dist(ft) DL LL 1 0.000 0.014 0.000 20.000 0.014 0.000 2 0.000 0.160 0.216 20.000 0.160 0.216 SHEAR: Max Va (DL+LL)=3.90 kips Vn/1.67=42.75 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/Q kip-ft ft ft kip-ft Center Max + DL+LL 19.5 10.0 0.0 1.00 1.67 43.41 Controlling DL+LL 19.5 10.0 0.0 1.00 1.67 43.41 REACTIONS (kips): Left Right DL reaction 1.74 1.74 Max+LL reaction 2.16 2.16 Max+total reaction 3.90 3.90 DEFLECTIONS: Dead load(in) at 10.00 ft = -0.244 L/D = 984 Live load(in) at 10.00 ft = -0.303 L/D = 793 Net Total load(in) at 10.00 ft = -0.547 L/D = 439 Gravity Beam Design RAM SBeam v5.0 3 RAM WSCH - Fitness Girder Grid 11 12/14/12 13:17:54 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION (ft): I-End (0.00,0.00) J-End (32.00,0.00) Beam Size(Optimum) = W21X44 Fy = 50.0 ksi Total Beam Length(ft) = 32.00 Mp(kip-ft) = 397.50 Top flange braced by decking. LINE LOADS(k/ft): Load Dist(ft) DL LL 1 0.000 0.044 0.000 32.000 0.044 0.000 2 0.000 0.560 0.756 32.000 0.560 0.756 SHEAR: Max Va(DL+LL)=21.76 kips Vn/1.50= 144.90 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/SZ kip-ft ft ft kip-ft Center Max + DL+LL 174.1 16.0 0.0 1.00 1.67 238.02 Controlling DL+LL 174.1 16.0 0.0 1.00 1.67 238.02 REACTIONS (kips): Left Right DL reaction 9.67 9.67 Max +LL reaction 12.10 12.10 Max+total reaction 21.76 21.76 DEFLECTIONS: Dead load(in) at 16.00 ft = -0.583 L/D = 659 Live load(in) at 16.00 ft = -0.730 L/D = 526 Net Total load(in) at 16.00 ft = -1.313 L/D = 293 r XGravity Beam Design RAM SBeam v5.0 2 WSCH - Fitness Girder Grid 13 10 Ash i 12/14/12 13:17:42 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION (ft): I-End (0.00,0.00) J-End(32.00,0.00) Beam Size(Optimum) = W 18X35 Fy = 50.0 ksi Total Beam Length(ft) = 32.00 Mp(kip-ft) = 277.08 Top flange braced by decking. LINE LOADS (k/ft): Load Dist(ft) DL LL 1 0.000 0.035 0.000 32.000 0.035 0.000 2 0.000 0.360 0.486 32.000 0.360 0.486 SHEAR: Max Va(DL+LL)= 14.10 kips Vn/1.50= 106.20 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/0 kip-ft ft ft kip-ft Center Max + DL+LL 112.8 16.0 0.0 1.00 1.67 165.92 Controlling DL+LL 112.8 16.0 0.0 1.00 1.67 165.92 0 REACTIONS(kips): Left Right DL reaction 6.32 6.32 Max +LL reaction 7.78 7.78 Max+total reaction 14.10 14.10 DEFLECTIONS: Dead load(in) at 16.00 ft = -0.630 L/D = 609 Live load(in) at 16.00 ft = -0.775 LID = 495 Net Total load (in) at 16.00 ft = -1.405 LID = 273 • Gravity Beam Design Fil RAM SBeam v5.0 RAM WSCH - Fitness Roof Beam Grid C 3 12/14/12 13:18:48 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION (ft): I-End (0.00,0.00) J-End (28.00,0.00) Beam Size(Optimum) = W14X22 Fy = 50.0 ksi Total Beam Length(ft) = 28.00 Mp(kip-ft) = 138.33 Top flange braced by decking. LINE LOADS(k/ft): Load Dist(ft) DL LL 1 0.000 0.022 0.000 28.000 0.022 0.000 2 0.000 0.160 0.216 28.000 0.160 0.216 SHEAR: Max Va (DL+LL)=5.57 kips Vn/1.50=63.02 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/S2 kip-ft ft ft kip-ft Center Max+ DL+LL 39.0 14.0 0.0 1.00 1.67 82.83 Controlling DL+LL 39.0 14.0 0.0 1.00 1.67 82.83 REACTIONS(kips): Left Right DL reaction 2.55 2.55 Max+LL reaction 3.02 3.02 Max +total reaction 5.57 5.57 DEFLECTIONS: Dead load(in) at 14.00 ft = -0.436 L/D = 770 Live load(in) at 14.00 ft = -0.518 L/D = 649 Net Total load(in) at 14.00 ft = -0.954 L/D = 352 Prclect sheet No. lam!" III Consulting Engineers I i T�J cot care d I ..� ent ow4+- -mar-y i Revised .bb No. 20%1401' Dote Cot,a H. o , ;4h6-s'i ----- Ch rC-AL (.4:, -Pity • 6-449 /0/6- r>7.-tip 4&);`A-ea-ti -05f t4;G-+Je- 20o F r (14P)z-)(44/2-) eLtyaf- 41-1 soot, 4g4-(20 + Pc.` + 41 )(z4- ) = r43 k. - Gc+t 6-01- 14 Al P4-ov2 l+14 Vt- x'/c k L = /S` Pc-1( -= SP k 7 Zh le- - vie6_ e ?k'S►'x i ' r,f kr • • 0 0 0 KPFF Consulting Engineers MM 12/14/2012 KPFF Consulting Engineers MM 12/142012 West Side Christian High School IV.One-way Shear Check AC111.11.1.1 Vu Footing Design ACI 318-05 Critical Commons Shear Area 1 1.00 62 4.1 k I.INPUT Shear Area 2 1.00 62 4.1 It Column Loads Conc.Col./base plate dims. ASTM Standard Reinf Bars Bar size Dia.(In.) Area(in.') Di. 11.7 k L 12 in. 3 0.375 0.11 a) +Vc•+•2•SQRT(f c)•bw•d bw footing width LL 14.3 k B 12 in. 4 0.5 0.2 E 0 k 1.00 5 0.825 0.31 (A/c 1 27 k OK Pu 38.92 k 8 0.75 0.44 7 0.875 0.8 +Vc 2 27 k OK Into for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 V.Reinforcement Design slab thick. 4 in. ft 10 1.27 1.27 wait thick. ft 11 1.41 1.58 a)Critical section for moment occurs @ face of col./base plate pier dims ft X ft 14 1.893 2.25 soil depth 0 R 18 2.257 4 footing width•moment'me/2 Mu B•ARMS'/2 1.5 8 k-ft moment about long direction Sal Properties Concrete Strength qa 3.5 ksf fc 1000 psi L•ARM'/2 1.5 8 k-ft moment about short direction ii.Trial Footing Dimensions b)Area of steel rsquirod,)'0.9 ACI Min' •code minimum for gross concrete area Required Area l 3 ft 9 Asl 0.19 1n2 0.78 in2 8 3 f 7.94 rt2 N 1 H AsB 0.19 1n2 0.78 102 III.Two-way Shear Cheek ACI 11.11.1.2 c)Trial Reinforcement Effective depth Direction No.Bars Bar Size As(in2) 0 8 in. Factored Net Soil Pressure Shear Area I. 4 5 1.24 gnu 4.1 kit 8.222222 ft2 B 4 5 1.24 Vu 25.5 k a) We•+(2+4/8c)SORT(fc)•bo•d gc 1 long:short col.dint bo 80 In +Vc 182 k OK b) 4Vc=4(a.•d/bo+2)SORT(fc)•bo'd as 40 for concentrically loaded footings +Vc 182 OK c) 4Vc=••4•SORT(Ic)•bo•d +Vc 121 OK 1of2 2of2 \fJ n 0 0 0 8 ,z ,3 ,4f.,• r'2• IO'd 7t'-II' 21'-z 2r.e• f.P I I 1 I I r I I I 0 win we.w I� °� l� --i I � Q■ L1W i i 0r0 B lit I Or r, we... 000 �I I I Orr ii V215.12 t I 1 15"10 '; b i i—'r 1,10512_ r wrn 1 I I W10.12 ot.r I I J, 1, w101f 1 1 , 11 , ( - WWII r Hi: ' n it a _____.1 .1_ __ 1MTp1 L/IEREF e��t ■ 1 ROOF FRAMING PLAN SECTOR C 0 s3.01 ,ro.,,.-0. e • I"il Gravity Beam Design RAM SBeam v5.0 7,7 RAN WSCH - Locker room beam 17 ft �' 12/14/12 14:04:41 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End (0.00,0.00) J-End (17.00,0.00) Beam Size(User Selected) = W10X12 Fy = 50.0 ksi Total Beam Length(ft) = 17.00 Mp(kip-ft) = 52.50 Top flange braced by decking. LINE LOADS (k/ft): Load Dist(ft) DL LL 1 0.000 0.012 0.000 17.000 0.012 0.000 2 0.000 0.160 0.216 17.000 0.160 0.216 SHEAR: Max Va (DL+LL)=330 kips Vn/1.50=37.51 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb 0 Mn/0 kip-ft ft ft kip-ft Center Max+ DL+LL 14.0 8.5 0.0 1.00 1.67 31.21 Controlling DL+LL 14.0 8.5 0.0 1.00 1.67 31.21 0 REACTIONS(kips): Left Right DL reaction 1.46 1.46 Max+LL reaction 1.84 1.84 Max+total reaction 3.30 3.30 DEFLECTIONS: Dead load(in) at 8.50 ft = -0.207 L/D = 984 Live load(in) at 8.50 ft = -0.260 L/D = 784 Net Total load(in) at 8.50 ft = -0.467 L/D = 436 Gravity Beam Design RAM SBeam v5.0 RAM WSCH -Locker room beam 10 ft 12/14/12 14:04:21 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End (0.00,0.00) J-End (10.00,0.00) Beam Size (Optimum) = W8X10 Fy = 50.0 ksi Total Beam Length(ft) = 10.00 Mp(kip-ft) = 36.96 Top flange braced by decking. LINE LOADS(k/ft): Load Dist(ft) DL LL 1 0.000 0.010 0.000 10.000 0.010 0.000 2 0.000 0.160 0.216 10.000 0.160 0.216 SHEAR: Max Va (DL+LL)= 1.93 kips Vn/1.50=26.83 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/Q kip-fl ft ft kip-ft Center Max + DL+LL 4.8 5.0 0.0 1.00 1.67 21.87 Controlling DL+LL 4.8 5.0 0.0 1.00 1.67 21.87 REACTIONS(kips): Left Right DL reaction 0.85 0.85 Max+LL reaction 1.08 1.08 Max+total reaction 1.93 1.93 DEFLECTIONS: Dead load(in) at 5.00 ft = -0.043 L/D = 2801 Live load(in) at 5.00 ft = -0.054 L/D = 2205 Net Total load (in) at 5.00 ft = -0.097 L/D = 1234 Gravity Beam Design ' RAM SBeam v5.0 RAMWSCH - Locker room girder 12/14/12 14:05:24 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION(ft): I-End (0.00,0.00) J-End (21.00,0.00) Beam Size(User Selected) = W 12X 16 Fy = 50.0 ksi Total Beam Length(ft) = 21.00 Mp(kip-ft) = 83.75 Top flange braced by decking. LINE LOADS(k/ft): Load Dist(ft) DL LL 1 0.000 0.016 0.000 21.000 0.016 0.000 2 0.000 0.170 0.230 21.000 0.170 0.230 SHEAR: Max Va (DL+LL)=437 kips Vn/1.50=52.80 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb S2 Mn/S2 kip-ft ft ft kip-ft Center Max+ DL+LL 22.9 10.5 0.0 1.00 1.67 50.15 Controlling DL+LL 22.9 10.5 0.0 1.00 1.67 50.15 REACTIONS(kips): Left Right DL reaction 1.95 1.95 Max+LL reaction 2.41 2.41 Max+total reaction 4.37 4.37 DEFLECTIONS: Dead load(in) at 10.50 ft = -0.273 L/D = 925 Live load(in) at 10.50 ft = -0.337 L/D = 748 Net Total load (in) at 10.50 ft = -0.609 L/D = 413 Gravity Beam Design FM RAM SBeam v5.0 RAM WSCH - Locker room edge beam 10 12/14/12 14:07:44 STEEL CODE: AISC 360-05 ASD SPAN INFORMATION (ft): I-End (0.00,0.00) J-End(27.50,0.00) Beam Size(Optimum) = W12X14 Fy = 50.0 ksi Total Beam Length(ft) = 27.50 Mp(kip-ft) = 72.50 Top flange braced by decking. LINE LOADS (k/ft): Load Dist(ft) DL LL 1 0.000 0.014 0.000 27.500 0.014 0.000 2 0.000 0.080 0.108 27.500 0.080 0.108 SHEAR: Max Va(DL+LL)=2.78 kips Vn/1.67=42.75 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb 0 Mn/ 1 kip-ft ft ft kip-ft Center Max + DL+LL 19.1 13.8 0.0 1.00 1.67 43.41 Controlling DL+LL 19.1 13.8 0.0 1.00 1.67 43.41 REACTIONS(kips): Left Right DL reaction 1.29 1.29 Max+LL reaction 1.48 1.48 Max+total reaction 2.78 2.78 DEFLECTIONS: Dead load(in) at 13.75 ft = -0.472 L/D = 700 Live load(in) at 13.75 ft = -0.541 L/D = 610 Net Total load(in) at 13.75 ft = -1.012 LID = 326 Oct BY '144" Sheet No Consulting Engineers Location ritypip DCIte I kbia- II I I Job No. Cent :kJ.) I Revised Amik P0(110nef Oregon - ! 1 Date tocr5-12.0 1 c>15,4;6-4 -t syq do/4'r P -a at,o),;6A9g--P. 1-04 )(r- 1.14% 304'4r) f ` 2.4 e44r-- F-02 ic T - e4-A) A-Footoy.. , ii4 ato"pke_e 1,,,044-9/A/Cr- ft-4"f o' f- 10/Arc (24) +22* )( g ') "e?14, e t • Go 40 2-4 ( 16) pt &-yAr 09e-04;44,- 2-" 4c4 co/0,6(AL 240 614, fOlt, (r/1 ; Ptt--) 0+- L c(2., ee-,-g- .7 4 L•t- el$'.4- 24- 19,t, 049 • STANDARD LOAD TABLE/DEEP LONGSPAN STEEL JOISTS, DLH-SERIES Ir Based on a Maximum Allowable Tensile Stress of 30 ksi 7y I Joist Approx.Wt Depth SAFE LOAD- T c •nation in Lbs.Per in in lbs. CLEAR SPAN IN FEET Linear Ft 'inches Between IC Joists• 70-99 100-104 105 106 l 107 108 109 110 111 112 113 114 115 116 117 115 119 1., f 6001H12 29 80 31100 Km lkl:Bli allakk:n 'J LE- mar_ Isc.a1KCJs11•r aars..WAaMuitwitlMIiK.i le 6001)113 35 60 37800 27800 ,,• HHH 333 327 327 367 163 HHHH 143 e ? le 1 6001)114 40 60 42000 47000 216 3111 ERR 193 180 EIRE' 170 HIRIHRIR 145 t 6001)115 43 60 48300 48000 268 QB r A 216 412 405 206 'r 194 190 .. 373 357 301 175 171 1 6001)116 46 60 54200 '54300 Pi 277 FIHH®H Imo.. 477 �la 414 44 40 :) 190 3 IC 6001)117 52 60 82300 02 MEI J00 HHHHH 261 254 �® 235 r+:•] IR X17 le 6001)116 59 60 71900 71900 af"itr Ir 1fr°«'•7�`•:i 71"'•7 nirT. nerreimiL'imsrg'•1R1<!7 .... 1 31100 75-99 100-112® ■ UI®®®RiIJ 110 ® 122 ®®E I® 126 64131H12 31 64 30000' +, ■ IM,•��Illi+'-•- �::1r�e:.atlrs�•�-•••�1 faf[SS�aEa1.1L•s11Y16s1i1t111A �r 13401 M13 34 64 38400 36400 321 313 310 a. 300 295 156 ��� � 2163101 T.Ell 186 161 176 tab 163 6401114 40 64 41700 41700 IR 193 HIRE' 337 332 321 316 306 301 1 296 140 136 C 64011115 43 64 47800 47600 ©N 407 400 Ei 367 351 341 � � 347 341 336 331 . © 223 217 �IgliEl 182 177 173 170 165 161 ' 6401118 46 64 53800 63500 426244 � - 242 229 224 . 213 208 203 198 193 159 H 370 80 6400417 52 64 82000 82000 ; 3.76 527 s16 © 488 161 454 440 OE 432 426 . 290 283 275 EI 237 231 226 220 210 ys,„. I 64DLH18 59 64 71600 71600 •r r iM »t1"'i7t'7 1 fitrI7ac YVI7C►Titral f . 6040 100120 IIIE II 123 ifJmm® 128 E.I 130 ® 132 133 11911E9111131 6801)113 37 68 36000 , 68011-114 40 1 68 40300 40300 184 179 175 317 71 167 163 109 - 148 • 11441 HeNc 130 6801)115 44 68 45200 45200 m 366 360 FIB 343 337 332 327 322 317 312 306 303 Iii 294 206 201 196 182 175 174 170 186 162 156 155 152 145 $204 199 190 195 880111113 49 68 53603 93600 680U-117 55 68 60400 60400 � 460 4700 225 219 480 •• 440 4351 427 420 414 406 4W 397 i 1 275 286 •' 256 249 244 232 226 222 217 212 . 205 203 199 194 - 6801)118 81 68 89900: 69900 575 586 549 540 i 537 516 , 506 TT 501 493 456 f 479 479 472 405 468 ; ' i 311 304 289 253 775 263 1 257 25.1 241 240 234 230 • 225 219 6801)119 67 68 80500 ' 80500 l _;• . s .. :■l !r -7 84-99 100128 129 130 1111 132 133 liallailliEllaillE111101 140 1111 142 E I I 72017414 41 72 39200 ' "i' ttttaT —.._#i; - 7201.)115 44 72 44900 44900 1y17 342 336 331 till 322 317 312 i 308 303 i 299 296 1 291 286 292 279 191 i 187 183 178 171 157 183 180 156 152 150 i 147 " 143 140 137 72011116 50 72 51900 51900 ( 401 f 3916 390 364 1 373 373 1 366 383 i 353 346 343 l 335 ; 334 329 323 225 219 214 . 209 205 200 ! /98 191 183 4. 179 j 175 l 171 ! 169 ! 165 161 J 72011117 56 72 58400 58400 451 445 438 432 1 426 ' 420 - " . _- 1 391 385 1 361 1 376 1 371 366 1_258 250 245 239 1 233 1 228 . i 4. " r 198 1 191 188 164 72013418 59 72 68400 68400 1 526 1 520 512 505-.4iF4• - .. - 444 435 x432 426 799 , 4:7 7 r 2 . -- 2 217 1 212 2099., 1 7201)119 70 72 80250 - 80200 1 619 ' r 1 573 ', _ - 4 511 504 497 i '1 , 293 o: a 263 . 257 151 l 247 : 741 , 236, The safe uniform load for the dear spans shown in the Safe • To solve for j&e loads for clear spans shown in the Sate Load Column is equal to(Safe Loady(Clear span+0.67). Load Column(or lesser clear spans),multiply the live load 10 (The added 0.67 feet(8 inches) is required to obtain the of the shortest clear span shown in the Load Table by(the Proper length on which the Load Tables were developed), shortest clear span shown in the Load Table +0.67 feet)' In no case shall the safe uniform bad,for dear spares less and divide by(the actual clear span+0.67 feet)=.The live ; than the minimum dear span shown in the Safe Load Col- load shall n t exceed the safe uniform load. I umn, exceed the uniform load calculated for the mini- mum dear span listed in the Safe Load Column. 48 1121(;)mw M 1,t 1p ��pp p }.� p mm p m I1 p O ��pp .; g _. S > Y 3,no 2 2 H ? 8`' R R G r O 2 2 N S 2_h r 2 2 V N v, x = s g O V M § .,•I N p n N N N h W Y ^ 0 u 8 d• 3 $ 0 J hECON ia 1 va � 4i28R � & 2 : nN s4E- nS : Am7 � : RN : nt RpizR9iR � eRm k : g o i ' R i W ., i t r 7 & Q , 2 2 4 ? 2 R 2 4 2 m : R 01 A p N R $ A ° r r m r 2 .1 Y C 2 = n t t I- i 3 J a i1e 11 ; 11°,ib i % ' ler b $ A3l g 'g ' i- ua2Y § 44. < Y2 rHb .E ' „ R; FRr ° R : RS3C j )) , R ± o n . a ''a g s ” 4 1 2 Of D i Oillg g . 5 R : 22 : 2 : Sfmn „ RR fi a z; lis Oh i Q l. zA h , : nn� : 3m & X `' ftt^- sag ${ r .7,- 4Y3Vi- snF � 1p p� Y j� .y v ; i > oJ u G Fj � ^ 9 T p M b Y h � O! H y� .�l Hfj R N § N R ill 1 . 1 -a t b / § ii C A � � sbx : Is9AP. . : e1u � � 1 � SR � 2R : np = RR § « ° � Ru � a = ILA 2 s LL y 0 c 4 t y,y rc { •3 L e e f J $ o Q H ; C L 4 R8 !B < offi c m33 : n3 R °a, Hi HR � 2 ; R °_ RmUR4, ,§� or2 f.,, :0. < Z e o W 4 ! oo : ar Y € it c Q x I . 22 mom : 2Y{ 3 Y47-1A : RrR -= StnSR. R $ S1 ° 8r E E E y� • S g ' � s 1 : mY . r ° R lip A n g R � * g zc m S n ° ^ . .7. a v - � A � ° g � a 5a o � So s ! IIt K eP.t C < c ' - e g i p u t a Q ! $ .4 o 2 .- M o u. v. _ _ � ,� o � e o R . r n n n 2 .4c-- E g D a o i i e li _ l _ li 3 €II i iii llu ll 8 n + I3 4 I J Ji !i i Jl 'i i J GG Ji l l J i l Jl J J i V „0 . — J— — l — — O IiI1 - 4,1 -‘ 4a -' 4,a - X E J §,s - p O J 4a - Q S J Y E J J , Q C J E J 4 E J Y E J o E m ° O cV • ( o _ .a 8 3 4R : : • n i c b b L b m b L b L b b b 6 b L a s _ E . ta4F!1 Yr ?"p KPFF Consulting Engineers Westside Christian High School 12/14/2012 DESIGN OF TILT-UP WALL PANELS WITHOUT OPENINGS: I I PANEL ID: Typical East Wall Panel 1. Input Panel Information Height,L= 26.00 ft Width= 20.00 ft Thickness,t= 8.00 in Reveal Strip= 1.50 in No.of Reinf.Layers: 1 {1=Single Layer,2=Two Layers} Effective Thick.,tof= 6.50 in {t, =t-reveal strip} Clear Cover= 1.00 in Effective Cover y= 3.25 in {center of wall for single layer of reinforcing} Depth to Reinf.,d= 3.25 in (d=teff/2) 2. Input Concrete Properites f<= 5,000 psi Unit Weight= 145 pcf E= 4,074,000 psi (E=33 w'3S os} f,= 353.6 psi (f,=5f 05) f;,= 0.800 { =0.85 for f<<4 ksi and 0.65 for f,>8 ksi. Interpolate inbetween n= 7.118 {n= /E,,„<,e,. E„n,=29,000,000 psi.} pe= 0.0335 {Pb=0.85b,(f',/ff)•{87,000/(87,000+10)} 3. Input Gravity and Out-of-Plane Loads on Panel ct, Unfactored Distributed Roof DL= 80lb/h Eccentricity of roof loads,e= 6.75 in Unfactored Self Weight @ Midheight= 1257 lb/ft Total Unfactored DL @ Midheight= 1337 lb/ft Unfactored Distributed Roof SL= 108 lb/ft Factored Seismic Out-Of-Plane Load,F,= 36.7 lb/ft {Fp=0.40.S6,.I.Ww but not less than 0.10ww} {Note that Fp is a factored load.} 4.Load Combinations for Strength Design: IBC Combination: (1.2 +0.25D5)D+1.0E+L+0.2S Sos= 0.76 g Thus,Governing Comb.Becomes 1.35 DL +1.00 Fp +0.20 S 5. Calculate Service Level and Factored Loads. Service Level Loads Factored Loads Proof= 188 lb/ft P, ,= 130 lb/ft P, = 1445 lb/ft P mw= 1831 lb/ft w= 26.2 lb/ft w,= 36.7 lb/ft East Wall Panel Page 1 of 3 KPFF Consulting Engineers Westside Christian High School 12/14/2012 6. Input_Reinforcing Information Vertical Reinforcing: f„,= 60,000 psi Bar Size= tt 5 Spacing= 12.00 in A,= 0.310 in•2 per toot Width p= 0.00795 (p=k/(12"•d)} Horizontal Reinforcing: Bar Size= #4 Spacing= 16.00 in A,= 0.300 in•2 in'per foot width total. p= 0.00385 (p=A,/(12"•ten)} Weight of Vert.Reinf.= 1.04 psf Weight of Horz.Reinf.= 0.50 psf Total= 1.54 psf Add 5%to total weight for splices= 1.62 psf 7. Calculate Tilt-Up Panel Section Properties: Ig= 512.0 in^4 {Ig=bd3/12} Sr g 128.0in^3 (Sg=bd2/6} Ax= 0.341 in^2 {Ax=(P and+A,f,,}/ } a= 0.401 in {a=A,.fy/0.85f,b} c= 0.501 in {c=a 41} l,,= 18.8in^4 {Io=nA,•(d-c)2 + bc3/3} MQ= 45,255 lb-in {Mo= 8. Calculate the Nominal Moment Capacity,M.,and the Reduced Moment Capacity,fMn. M„= 62,310 lb-in {M„=A,•f (d-a/2)} fM„= 56,079 lb-in 9.Verify that Requirements of Section 14.8.2(Alternate Design of Slender Walls)are met. The following 5 requirements must be met so that the slender wall design procedure may be used. 1.Tension-Controlled Section Check: 0.15 in < c/dt< 0.375 for Gr 50 Reinf.Steel OK 2. Axial stresses from vertical,service level,loads are less than 0.04 fc. OK 0.04fc= 200 psi Pmb/Ag= 15 psi 3. The reinforcement ratio,p,is less than 0.6 Pb. Also check that p>pm„. OK pm„,= 0.00333 {Pm„=200/f�} p= 0.00795 (See above.} 0.6 pb=Pm,.= 0.02012 {See above.) East Wall Panel Page 2 of 3 KPFF Consulting Engineers Westside Christian High School 12/14/2012 4. Reinforcement is such that:4M„>Mc,. t 0.4„= 56,079 lb-in {See above.} OK Mc,= 45,255 lb-in {See above.} 5. Distribution of concentrated loads does not exceed the width of bearing OK plus a width increasing at a slope of 2 vertical to 1 horizontal down to the design flexural section. 10.Determine M„by the Iteration Method. f,Mn M. ACI 318-05 EQ 14-3 where, M„=Mu.+P„•4, M„,=M„_w+M..“ {Out of Plan Loading Moment and Vertical Eccentricity Loading Moment} =w„L'/8 + P.,,00t e/2 + P„,mid Au {A„is unknown} Au=(5-Mu.L2)/(0.75.48.1,,)} For iteration 1,assume D„= 8.00 in Assumed Calc'd Calc'd Mu D„ Iteration Au M„ Du Converg. Converg. 1 8.00 in 52,304 lb-in 9.22 in --- 2 9.22 in 54,541 lb-in 9.62 in -4.1% -4.1% 3 9.62 in 55,263 lb-in 9.74 in -1.3% -7.0% 4 9.74 in 55,496 lb-in 9.78 in -0.4% -0.8% 5 9.78 in 55,572 lb-in 9.80 in -0.1% -0.1% 6 9.80 in 55,596 lb-in 9.80 in 0.0% 0.0% 7 9.80 in 55,604 lb-in 9.80 in 0.0% 0.0% }" 8 9.80 in 55,606 lb-in 9.80 in 0.0% 0.0% 9 9.80 in 55,607 lb-in 9.80 in 0.0% 0.0% 10 9.80 in 55,607 lb-in 9.80 in 0.0% 0.0% 11. Verify that the Flexural Strength of the Wall is Adequate. M.= 55,607 lb-in {See Iteration 8 10 from above} 4M„= 56,079 lb-in {See above} M„/(OM„= 0.99 {Mu/4Mn<1.0,OK.) Flexural Strength is OK 12. Verify that the deflections due to service level loads are acceptable. A,shall be less than L/150= 2.08 in For"P,,.. .1"term,assume the maximum A= 2.08 in Proof= 188 lb {Unfactored gravity load at roof. See above.} P,,,id= 1831 lb {Unfactored gravity load at mid height of panel. See above.) w= 26.2 lb/ft M,= 31,025 lb-in {M,=w 12/8 + P,0,,e/2 + P,,b,\ [k,= 0.22 in (A,,=(5M.,L2)/(48E IQ)} A„= 5.98 in (An=(5MnL2)/(48E1„)} := -4.59 in {-N.= k,+((M.-M,)/(Mn-M,,)•(An-.))) Service Level Deflection is OK W East Wall Panel Page 3 of 3 DESIGN OF TILT-UP WALL PANELS WITH OPENINGS L 1 PANEL IO: +lSSt Panel with Door Opente ` 1. Input Panel Information Out-of-Plane Loads: Height,I.= 26.00 ft SO= 0.76 g Panel Width= 22.50 ft Seismic Fp= 23.7 kips Wind Pressure= 20.00 psf Design Width= 16.00 ft Wind Fw= 20.2 kips Opening Width= 6.50 ft Seismic 0 (governing load case) Opening Height= 7.50 ft Thickness,t= 8.00 in Design Summary: Reveal Strip= 1.50 in Vertical Reinforcing= 1 Layers of*5 0 8 o.c No.of Reinf.Layers: 1 {1=Single Layer,2=Two Layers) Horizontal Reinforcing= 1 Layers of*4 16 o.c Effective Thick.,tN= 6.50 in {t,,,=t-reveal strip} Tilt-Up Panel Design is OK Clear Cover= 1.00 in Effective Cover y= 3.25 in {center of wall for single layer of reinforcing) Depth to Reinf.,d= 3 25 in {d=teff/2) 2. Input Concrete Properites f,= 5,000 psi Unit Weight= 145 pcf E= 4,074,000 psi (E=33 wr.s fca.s) f,= 353.6 psi ft=5f,°S} = 0.8 {Sr=0.85 for f,c4 ksi and 0.65 for f,>8 ksi. Interpolate inbetween n= 7.118 (n= E,,,,,, . =29,000,000 psi.) Pe= 0.0335 {pb=0.85b.,(f,/(5)•(87,000/(87,000+fr))) 3. Input Gravity and Out-of-Plane Loads on Panel Unfactored Distributed Roof DI.= 8018/ft Eccentricity of roof loads,e= 6.75 in Total Unfactored Roof DI.= 1540 lb l,L nfactored Self Weight @ Midheight= 25448 lb Total Qrtfactored DL$1 Midheight= 26988 lb Unfactored Distributed Roof SL= 108 lb/ft Total Unfactored Roof 51= 2079 lb Factored Seismic Out-Of-Plane Load Fp= 595.5 lb/ft .-at design strip (F =0.40.Sa,.l.W„but not less than 0.10w„) Factored Seismic Out-Of-Plane Load Fp= 125.1 lb/ft ..at strip above opening (Note that Fp is a factored load.} 4. Determine Out-of-Plane Loading Moment M„: Reaction at Grade= 8436 lb Rection at Roof= 9173 lb Point of zero shear/maximum moment x= 12.73 ft M,,,,,= 700,591 lb-in 4.Load Combinations for Strength Design: IBC Combination: (1.2 +0.25US)0+1.0E+1+0.25 Sos= 0.76 g Thus,Governing Comb.Becomes 1.35 DL 1.0 E +0.20 S 5. Calculate Service Level and Factored Loads. Service Level Loads Factored Loads P„o,- 3619 lb P ,= 1498 lb 29067 lb P. = 36903 lb 6. Input Reinforcing Information Vertical Reinforcing: f,= 60,000 psi Bar Size= X 5 ( " • Spacing= 8.00 in A,= 0.465 in•2 per foot Width p= 0.01192 {p=A,/(12"•d)) Horizontal Reinforcing: Bar Size= #4 Spacing= 16.00 in A,= 0.300 in^2 in'per foot width total. p= 0.00385 (p=A,/(12"•t,,,) Weight of Vert.Reinf.= 1.56 psf Weight of Horn.Reinf.= 0.50 psf Total= 2.07 psf Add 5%to total weight for splices= 2.17 psf 7. Calculate Tilt-Up Panel Section Properties: I,= 8192.0 in•4 (I =bd'/12) a 5�= 2048.Oin^3 {S,=bd'/6} A,•= 8.055 in^2 (A =(P„,„,tl+A,fy)/f,.} a= 0.592 in {a=A„fy/0.85P,b} r= 0.740 in (c=a/13,) lo= 387.1 in^4 {I,,=nA,.(d-c)' +bc /3) M,,= 724,077 lb-in (M,,=f,Sr) 8. Calculate the Nominal Moment Capacity,M„and the Reduced Moment Capacity, M,= 1,427,608 lb-in {M„=A,,f (d-a/2)) diM„= 1,284,848 lb-in C^” 9.Verify that Requirements of Section 14.8.2(Alternate Design of Slender Walls)are met. The following 5 requirements must be met so that the slender wall design procedure may be used. 1 Tension-Controlled Section Check: 0.228 in < c/dt< 0.375 for Gr 60 Reinf.Steel OK 2. Axial stresses from vertical,service level,loads are less than 0.04 f',. OK 0.04f,= 200 psi P,„b/A,= 19 psi 3. The reinforcement ratio,p,is less than 0.6 pb.Also check that p>p,,,`,. OK p„,„= 0.00333 p= 0.01192 {See above.) 0.6 pb=p,„„= 0.02012 (See above.) 4. Reinforcement is such that:4M,>M,,. OM,. 1,284,848 lb-in (See above.) OK My= 724,077 lb-in {See above.). 5. Distribution of concentrated loads does not exceed the width of bearing OK plus a width increasing at a slope of 2 vertical to 1 horizontal down to the design flexural section. 10.Determine M.by the lte tion Method. 4,M,2 M„ ACI 318-05 EQ 14-3 where. Mu,=Mu„„e+M„„� {Out of Plan Loading Moment and Vertical Eccentricity Loading Moment) =M„„o+ Pw,,,e/2 + P,,mid A„ (A,is unknown) a=(5.M„.0)/(0.75.48.I,,)) 1 For iteration 1,assume D,= GOO in Assumed Calc'd Calc'd M„ D„ Iteration 4, M„ 0„ Converg. Converg. 1 6.00 in 930,439 lb-in 7.98 in - - 2 7.98 in 1,003,377 lb-in 8.60 in -7.3% -7.3% 3 8.60 in 1,026,452 lb-in 8.80 in -2.2% -2.2% 4 8.80 in 1,033,752 lb-in 8.86 in -0.7% -0.7% 5 8.86 in 1,036,062 lb-in 8.88 in -0.2% -0.2% 6 8.88 in 1,036,792 lb-in 8.89 in -0.1% -0.1% 7 8.89 in 1,037,024 lb-in 8.89 in 0.0% 0.0% 8 8.89 in 1,037,097 lb-in 8.89 in 0.0% 0.0% 9 8.89 M 1,037,120 lb-in 8.89 in 0.0% 0.0% 10 8.89 in 1,037,127 lb-in 8.89 in 0.0% 0.0% 11.Verify that the Flexural Strength of the Wall Is Adequate, . M.= 1,037,127 lb-in {See Iteration 410 from above) •M,= 1,284,848 lb-in {See above} M./4M,= 0.81 {Mu/4•Mn<1.0,OK.) Flexural Strength is OK 2.V,m •.i tL o,L s'•.r �_ _ .tee ,A A,shall be less than L/150= 2.08 in For'P„d A"term,assume the maximum A=2.08 in Proof.. 3619 lb (Unfactored gravity load at roof.See above.) P„„= 36903 lb (Factored gravity load at mid height of panel. See above.} M,= 589,3941b-in (M.=w Lt/8 + P,,,,e/2 + P„„A) 8,v= 0.220h (A„=(S M=L=)/(48E4)) 4= 8.18 in (4.=(5M„L2)/(48El,)} A,= -1.50 in (4=4.+((M.-M.,)/(M.411a)•(4-4,))) Service Level Deflection is oK im•.u! of•i I 0•_i. ..---u.... r Factored Seismic Out-Of-Plane Load Fp= 32.0 lb/ft Effective Depth d'= 1.88 in Mu=Fp.(Opening Width)2/8= 2,028 lb-in M,,=As fy(d-a/2) 16,0811b-in OK itiM„= 14,473 lb-in As= 0.150in^2 a= 0.176 c= 0.208 cleft= 0.111 < c/dt<0.375 for Gr 60 Reinf.Steel OK s, • 4 - . : : . • 4 rr- PANEL ID: I North Panel with Door 1. input Panel Information Out-of-Plane Loads; Height,L= 26.00 ft S,,= 0.76 g Panel Width= 20.00 ft Seismic Fp= 21.5 kips Wind Pressure= 20.00 psf Design Width= 13.00 ft Wind Fw= 18.4 kips Opening Width= 7.00 ft Seismic 0 (governing load case) Opening Height= 7.50 ft Thickness,t= 8.00 in Design Summary: Reveal Strip= 1.50 in Vertical Reinforcing= 2 Layers of*5 @ 12 o.c No.of Reinf.Layers: 2 {1=Single Layer.2=Two Layers) Horizontal Reinforcing= 2 Layers of a 4 @ 16 o.c Effective Thick.,t..ff= 6.50 in (t^=t-reveal strip) Titt-Up Panel Design is 01( Clear Cover= 1.00 in Effective Cover y= 1.31 in (Distance from center of vertical bar to nearest face of concrete) Depth to Reinf.,d= 5.19 in (d=teff-y) 2. Input Concrete Properites = 5,000 psi Unit Weight= 145 pd E= 4,074,000 psi {E=33 w1s fco.s) f,= 353.6 psi {f,=Sf,as) Bt= 0.8 (9,=0.85 for f,<4 ksi and 0.65 for f,>8 ksi. Interpolate inbetween) n= 7.118 (n=E /Ems,,. E =29,000,000 psi.) Pb 0.0335 {Pi,=0.85b1(f /fr)'(87,000/(87,000+fr))) 3. Input Gravity and Out-of-Plane Loads on Panel Unfactored Distributed Roof DL= 1100 lb/ft Eccentricity of roof loads,e= 6.75 In Total Unfactored Roof DL= 18150 lb Unfactored Self Weight @ Midheight= 22088 lb Total Unfactored DL @ Midheight= 40238 lb Unfactored Distributed Roof SL= 1485 lb/ft Total Unfactored Roof SL= 24503 lb Factored Seismic Out-Of-Plane Load Fp= 483.8 lb/ft .-at design strip (F --0.40.Sw.I.W„but not less than 0.10w,,,) Factored Seismic Out-Of-Plane Load Fp= 134.8 lb/ft ..at strip above opening (Note that F,is a factored load.) 4. Determine Out-of-Plane Loading Moment M.,: Reaction at Grade= 7039 lb Rection at Roof= 7831 lb Point of zero shear/maximum moment x= 12.66 ft M,, = 594,910 lb-in 4.Load Combinations for Strength Design: IBC Combination. (1.2 40.2505)D+1.0E+La0.2S 50,= 0.76g Thus,Governing Comb.Becomes 1.35 DL 1.0E •0.20 S 5. Calculate Service Level and Factored Loads. Service Level Loads Factored Loads - 4265316 P ,= 29439 lb PT„= 64741 lb P„min= 59303 lb 6. input Reinforcing Information vertical Reinforcing: f,= 60,000 psi Bar Size= 85 F._,. Spacing= 12.00 in A,= 0.310 in^2 per foot width per face. p= 000498 (p=A,/(12"•d)) Horizontal Reinforcing: Bar Size= 44 Spacing= 16.00 in A,= 0.300 In in'per foot width total. p= 0.00385 {p=A,/(12"•t,,,)) Weight of Vert.Reinf.= 2.09 psf Weight of Horz.Reinf.= 1.00 psf Total= 3.09 psf Add 5%to total weight for splices= 3.24 psf 7. Calculate Tilt-Up Panel Section Properties: ix= 6656.0 in^4 (I =bd3/12) 5�= 1664.Oin^3 (5,=bd2/6) A„= 5.018in^2 (A.=1P ,a+A,f,) a= 0.454 in (a=A„f,/0.85f,b) c= 0.568 in {c=a/00 I,= 771.9in^4 (I==nA„(d-c)'+bc'/3) M,= 588,313 lb-in (Mr=f,Sg) 8. Calculate the Nominal Moment Capacity,M",and the Reduced Moment Capacity,,bM". M,= 1,493,597 lb-in {M„=A„f,(d-a/2)) = 1,344,237 lb-in 9.Verify that Requirements of Section 14.8.2(Alternate Design of Slender Walls)are met. The following S requirements must be met so that the slender wall design procedure may be used. 1.Tension-Controlled Section Check: 0.109 in c/dt<0.375 for Gr 60 Reinf.Steel OK 2. Axial stresses from vertical,service level,loads are less than 0.04 f, OK 0.04 f',= 200 psi P,",a/Ar= 52 psi 3. The reinforcement ratio,p,is less than 0.6 p,. Also check that p>p„, OK = 0.00333 {pm,,,=200/f,) p= 0.00498 {See above.) 0.6 pe=p,"+,= 0.02012 (See above.) 4. Reinforcement is such that:¢M,>Me,. ¢M„= 1,344,237 lb-in (See above.) OK M== 588,313 lb-in (See above.) 5. Distribution of concentrated loads does not exceed the width of bearing OK plus a width Increasing at a slope of 2 vertical to 1 horizontal down to the design flexural section. 10.Determine M_by the Iteration Method. M„i M„ ACI 318-05 EQ 14-3 where, M,= +P,.A„ M,,,=Mu M„„, {Out of Plan Loading Moment and Vertical Eccentricity loading Moment) =M„,,,+ P,,•,,,, e/2 + P,,,mid 1 (.a,is unknown} // A„=(S.M„.L7)/(0.75.48.10)} `'? For Iteration 1,assume 0„= 6.00 in /C . 4 Assumed Cak'd Calc'd M„ D, Iteration ik, M„ 0„ Converg. Converg. 1 6.00 in 1,050,084 lb-in 4.51 in -- - 2 4.51 in 961,987 lb-in 4.14 in 9.2% 9.2% 3 4.14 in 939,526 lb-in 4.04 in 2.4% 2.4% 4 4.04 in 933,8001b-in 4.01 in 0.6% 0.6% 5 4.01 in 932,3401b-in 4.01 in 0.2% 0.2% 6 4.01 in 931,968 lb-in 4.01 in 0.0% 0.0% 7 4.01 in 931,8731b-in 4.01 in 0.0% 0.0% 8 4.01 in 931,849 lb-in 4.01 in 0.0% 0.0% 9 4.01 in 931,1143 lb-in 4.01 in 0.0% 0.0% 10 4.01 in 931,841 lb-in 4.01 in 0.0% 0.0% 11. Verify that the Flexural Strength of the Wall is Adequate. M,= 931,841 lb-in (See Iteration#10 from above} 4'M,= 1,344,237 lb-in (See above) M./1,M,= 0.69 (Mu/4)Mn<1.0,OK.} Flexural Strength is OK 12. Verify that the deflections due to service level loads are acceptable. A,shall be less than L/150= 2.08 in For"P,,,,A"term,assume the maximum A= 208 in P,,,,= 42653 lb (Unfactored gravity load at roof. See above,} P,,,a= 59303 Ib (Factored gravity load at mid height of panel. See above.) M,= 692,2371b-in (M,=w L7/8 * P,,,,e/2 + P,,,A) tE�,T•,,�a��r�a�? q,= 0.220 in (A,=(S M,L7)/(48 E 1„)) t"=^1' A„= 4.82 in (A,=(5Mn 17)/(48=10)) A.= 075 in !A.=A,*l PA.-Mel/(M,-M. )•la.-4,)1) service Level Deflection is OK 13. Horizontal Reinforcing Above Opening(Assuming Single Layer): Factored Seismic Out-Of-Plane Load Fp= 32.0 lb/ft Effective Depth d'= 1.88 in Mu=Fp.(Opening Width)?/8= 2,352 lb-in M,=As fy(d-a/2) 16,081 lb-in OK tbM,= 14,473 lb-in As= 0.150 in^2 a= 0.176 c= 0.208 c/dt= 0.111 < c/dt< 0.375 for Gr 60 Reinf.Steel OK RESIGN OF TILT-UP WALL PANELS WITH OPENINGS: PANEL ID: I North Panel with Windows ] 1. Input Panel Information Out-of-Plane Loads: Height,L= 26.00 ft So,= 0.76 g Panel Width= 20.00 ft Seismic Fp= 22.2 kips Wind Pressure= 20.00 psf Design Width= 12.00 ft Wind Fw= 18.8 kips Opening Width= 8.00 ft Seismic 0 (governing load case) Opening Height= 5.00 ft Thickness,t= 8.00 in Design Summary: Reveal Strip= 1.50 in Vertical Reinforcing= 2 Layers of It 5®12 o.c No.of Reinf.Layers: 2 (1=Single Layer,2=Two Layers) Horizontal Reinforcing= 2 Layers of 1 4 @ 16 o.c Effective Thick.,t,,,= 6.50 in (t„ =t-reveal strip) Tift-Up Panel Design is OK Clear Cover= 1.00 in Effective Cover y= 1.31 in (Distance from center of vertical bar to nearest face of concrete) Depth to Reinf.,d= 5.19 in (d=teff-y 2. Input Concrete Properites f = 5,000 psi Unit Weight= 145 pcf E= 4,074,000 psi (E-33 wss f,°s) f,= 353.6 psi (f,=5f,°5) = 0.8 (13,=0.85 for f,c4 ksi and 0.65 for f?8 ksi. Interpolate inbetween) n= 7.118 (n=E /E,o,,. E ,=29,000,000 psi.) Pb 0.0335 (pb=0.85b,(f,/f,)•(87,000/(87,000+fyp) 3. Input Gravity and Out-of-Plane Loads on Panel Unfactored Distributed Roof DL= 1100 lb/ft Eccentricity of roof loads,e= 6.75 in Total Unfactored Roof DL= 17600 lb factored Self Weight @ Midheight= 22620 lb Total Unfactored DL @ Midheight= 40220 lb Unfactored Distributed Roof 51= 1485 lb/ft Total Unfactored Roof SL= 23760 lb Factored Seismic Out-Of-Plane Load Fp= 446.6 lb/ft ..at design strip (F,=0.40.Sa,.I.W„but not less than 0.10w, Factored Seismic Out-Of-Plane Load Fp= 154.0 lb/ft ..at strip above opening (Note that F,is a factored load.) 4. Determine Out-of-Plane Loading Moment M„: Reaction at Grade= 6932 lb Rection at Roof= 7683 lb Point of zero shear/maximum moment x= 12.79 ft M„wp= 589,645 lb-in 4.Load Combinations for Strength Design: IBC Combination: (1.2 +0.25DS)D+1.0E+L+0,25 = 0.76 g' Thus,Governing Comb.Becomes 1.35 DL 1.0 E +0.20 S 5. Calculate Service Level and Factored Loads. Service Level Loads Factored Loads P,,= 41360 lb P ,= 28547 lb Pm,a= 63980 lb P m,a= 59129 lb .r s. 6. Input Reinforcing Information Vertical Reinforcing: f,4 60,000 psi Bar Size= 85 /! Spacing= 12.00 in A,. 0.310 in^2 per foot width per face. 0.•i.rti: p= 0.00498 (p=A,/(12"•d)) Horizontal Reinforcing; Bar Size= M 4 Spacing= 16.00 in A,= 0.300 in^2 ins per foot width total. p= 0.00385 4,=A,/(12"'t,,,)) Weight of Vert.Reinf.= 2.09 psf Weight of Horz.Reinf.= 1.00 psf Total- 3 09 p<-f Add 5%to total weight for splices= 3.24 psf 7. Calculate Tilt-Up Panel Section Properties: I, 6144.0 in^4 {I.=bd'/12) 51= 1536.0 in^3 (S1=bdz/6) A„= 4.705in^2 {A"=(P,,.,,,;a+A,frl/fr) a 0.461 in (a=A„f,/0.85 f,b) t= 0.577 in (c=a/(t,) I,,= 721.3 in^4 (I,,=nA„(d-c)' + bc'/3) lute= 543,058 lb-in (My=f,51) 8. Calculate the Nominal Moment Capacity,Me,and the Reduced Moment Capacity,¢M.. M„= 1,399,461 lb-in {M^=A„f,{d-a/1)) itM^= 1,259,515 lb-in 9.Verify that Requirements of Section 14.8.2(Alternate Design of Slender Walls)are met. The following 5 requirements must be met so that the slender wall design procedure may be used. 1.Tension-Controlled Section Check. 0 111 in < c/dt< C 375 for Gr 60 Reinf.Steel OK 2. Axial stresses from vertical,service level,loads are fess than 0.04 f',. OK 0.04 f,= 200 psi 56 psi 3. The reinforcement ratio,p,is less than 0.6 N. Also check that p>p,.,,,. OK PmM= 0.00333 (p,,, 200/f,) p= 0.00498 (See above.) 0.6 Pb=p,,,,,= 0.02012 (See above.) 4. Reinforcement is such that:4M^>Me. 4cM„= 1,259,515 lb-in (See above.) OK Ma= 543,058 lb-in (See above.) 5. Distribution of concentrated loads does not exceed the width of bearing OK plus a width increasing at a slope of 2 vertical to 1 horizontal down to the design flexural section. 10.Determine M„by the Iteration Method. 4 M„t M ACI 318-05 EQ 14-3 where, M,,,=M,,,,,+M,,,,, (Out of Plan Loading Moment and Vertical Eccentricity loading Moment) =M,,,,+P„.,,,, e/2 +P„mid 4, {A,is unknown) / 4._{5.M..0)/(0.75.48.1„,)) (5 • For iteration 1,assume D.= 6.00 in J Assumed Caic'd Calc'd M, D. Iteration A, M„ D„ Converg. Converg• 1 6.00 in 1,040,769 lb-in 4.79 in - - 2 4.79 in 969,127 lb-In 4.46 in 7.4% 7.4% 3 4.46 in 949,637 lb-In 4.37 in 2.1% 2.1% 4 4.37 in 944,335 lb-in 4.34 in 0.6% 0.6% 5 4.34 in 942,892 lb-in 4.34 in 0.2% 0.2% 6 4.34 In 942,500 lb-in 4.34 in 0.0% 0.0% 7 4.34 in 942,393 lb-in 4.34 in 0.0% 0.0% 8 4.34 in 942,364 lb-in 4.34 in 0.0% 0.0% 9 4.34 in 942,3561b-in 4.34 in 0.0% 0.0% 10 4.34 in 942,354 lb-in 4.34 in 0.0% 0.0% 11.Verify that the Flexural Strewth of the Wall Is Adeauate, M,= 942,354 lb-In {See Iteration 810 from above) *M„= 1,259,515 lb-in {See above) M,/4IM„= 0.75 {Mu/ •Mn c 1.0,OK.) Flexural Strength is OK A,shall be less than L/150= 2.08 in For"P„;e A"term,assume the maximum A=2.08 in P,,,,= 41360 lb {Unfactored gravity load at roof.See above.) P„,,,,,= 59129 lb {Factored gravity load at mid height of panel. See above.) M,= 683,754 lb-1n (M.=w 12/8 + P,,,,e/2 + P,,, A) 4„= 0.220fn (A,=(SM,L2)/148El.)} 6 = 4.83 in (A„=(5M„L2)/(48E lo/} A.= 0.98 in (4.=4.+I OA.-Me,)/(M,,-Me,)•(4,-4,))} Service Level Deflection is OK Factored Seismic Out-Of-Plane Load Fp= 32.0 lb/ft Effective Depth d'= 1.88 In Mu=Fp.(Opening Width)I/13= 3,072 lb-in M„=As fy{d-a/2) 16,081 lb-in OK aM„= 14,473 lb-in As= 0.150 in=2 a= 0.176 c= 0.208 c/dt= 0.111 < c/dt c 0.375 for Gr 60 Reinf.Steel OK 0 j?ESIGN OF TILT-UP WALL PANELS WITH OPENINGS; PANEL ID: I 7 South Panel with poor. al 1. Input Panel Information Out-of-Plane Loads: Height,L= 26.00 ft Sus= 0.76 g Panel Width= 20.00 ft Seismic Fp= 21.5 kips Wind Pressure= 20.00 psf Design Width= 13.00 ft Wind Fw= 18.4 kips Opening Width= 7.00 ft Seismic 0 [governing load case) Opening Height= 7.50 ft Thickness,t= &00 in Design Summary: Reveal Strip= 1.50 in Vertical Reinforcing= 2 Layers of 8 5 @ 12 o.c No.of Reinf.Layers: 2 {1=Single Layer,2=Two Layers) Horizontal Reinforcing= 2 Layers of C 4 @ 16 o.c Effective Thick.,t,,= 6.50 in (t.«=t-reveal strip) Tilt-Up Panel Design is OK Clear Cover= 1.001fn ._ Effective Cover y= 1.31 in {Distance from center of vertical bar to nearest face of concrete) Depth to Reinf.,d= 5.19 in i d=teff-y Input Concrete Pro rites P,= 5,000 psi Unit Weight= 145 pcf E= 4,074,000 psi {E=33 ws'fr°.5 f,= 353.6 psi {f,=5fr°') = 0.8 (13,=0.85 for fr<4 ksi and 0.65 for fc>8 ksi. Interpolate inbetween) n= 7.118 (n= / E... =29,000,000 psi. Pb= 0.0335 (pp=0.85 b,(f/fr(•(87,000/(87,000 F f.)) 3. Input Gravity and Out-of-Plane Loads on Panel Unfactored Distributed Roof DL= 1100 lb/ft Eccentricity of roof loads,e= 6.75 in Total Unfactored Roof DL= 18150 lb V.nfactored Self Weight @ Midheight= 22088 lb Total Unfactored DL @ Midheight= 40238 lb Unfactored Distributed Roof SL= 1485 lb/ft Total Unfactored Roof SL= 24503 lb Factored Seismic Out-Of-Plane Load Fp= 483.8 lb/ft as design strip (Fp=0.40.Sa.l.W„but not less than O.10w„} Factored Seismic Out-Of-Plane Load Fp= 134.8 lb/ft ..at strip above opening (Note that Fp is a factored load.) 4. Determine Out-of-Plane Loading Moment M.: Reaction at Grade= 7039 lb Rection at Roof= 7831 lb Point of zero shear/maximum moment s= 12.66 ft M,, = 594,910 lb-in 4.Load Combinations for Strength Design: BC Combination: (1.2 +0.2505)D+1.0E+L+0.25 Spy 0.76g Thus,Governing Comb.Becomes 1.35 DL 1.0 E +0,20 S 5. Calculate Service Level and Factored Loads. Service Level Loads Factored Loads Proof= 42653 ib P„,,,,,= 29439 lb P,,,,,= 64741 lb P„,,,,, 59303 lb • 6. Input Reinforcing Information Vertical Reinforcing: f,= 60,000 psi , / / Bar Size= f15 Spacing= 12.00 in A,= 0.310 in"? per foot width per face. p= 0.00498 (p=A,/(12"'d)} Horizontal Reinforcing: Bar Size= fl4 Spacing= 16.00 in A,= 0.300 in^2 in2 per foot width total. p= 0.00385 1p'AMU- Weight of Vert.Reinf.= 2.09 psf Weight of Horz.Reinf.= 1.00 psf Total= 3.09 psf Add 5%to total weight for splices= 3.24 psf 7. Calculate Tilt-Up Panel Section Properties: Ir= 6656.0 in^4 (I =bd3/12) 5r= 1664.Oin^3 (Sr=bd2/6) A, 5.018in^2 (A, =1Pw,,,e+A,f0 a= 0.454 in (a=A,.f,/0.85f,b) c= 0.568 in {c=a/0,) I,= 771.9 in^4 {I,,=nA,(d-c)z + bc3/3} Mo= 588,313 lb-in (M,,=f,S ) 8. Calculate the Nominal Moment Capacity,Ms,and the Reduced Moment Capacity bM.. M,= 1,493,597 lb-in {M_,=A„f,(d-a/2)) 4M.,= 1,344,237 lb-in 9.Verify that Requirements of Section 14.8.2(Alternate Design of Slender Walls)are met, The following 5 requirements must be met so that the slender wall design procedure may be used. 1.Tension-Controlled Section Check: 0.109 in c/dt<0.375 for Gr 60 Reinf.Steel OK 2. Axial stresses from vertical,service level,loads are less than 0.04 f, OK 0.04 f',= 200 psi = 52 psi 3. The reinforcement ratio,p,is less than 0.6 p,. Also check that p>p,,,,,,. OK p„,;„= 0.00333 1 pm„=200/f, p= 0.00498 {See above.} 0.6 px=p,,,,,= 0.02012 {See above.) 4. Reinforcement is such that:¢M,>M,,. = 1,344,237 lb-in {See above.) OK M,,= 588,313 lb-in {See above.) 5. Distribution of concentrated loads does not exceed the width of bearing OK plus a width increasing at a slope of 2 vertical to 1 horizontal down to the design flexural section. 10.Determine M.by the Iteration Method. m M„a M ACI 318-05 EQ 14-3 where, M,,,=M„„r+M.,, (Out of Plan Loading Moment and Vertical Eccentricity Loading Moment) =M„o„+ P„,,,,,,, e/2 . P„,mid 0,, (,3.is unknown) / A„_(S.M,.L2)/(0.75.48.10)) jlY aFor iteration 1,assume D„= 6.00 in Assumed Cak'd Cak'd M„ D„ Iteration A D„ Converg. Converg. 1 6.00 in 1,050,084 lb-in 4.51 in - - 2 4.51 in 961,987 lb-in 4.14 in 9.2% 9.2% 3 4.14 in 939,526 lb-In 4.04 In 2.4% 2.4% 4 4.04 in 933,800lb-in 4,01 in 0.6% 0.6% 5 4.01 in 932,3401b-in 4.01 in 0.2% 0.2% 6 4.01 in 931,968 lb-in 4.01 in 0.0% 0.0% 7 4.01 in 931,873 lb-In 4.01 in 0.0% 0.0% 8 4,01 in 931,8491b-in 4.01 in 0.0% 0.0% 9 4.01 in 931,843 lb-in 4.01 in 0.0% 0.0% 10 4.01 in 931,841 lb-in 4.01 in 0.0% 0.0% 11.Verify that the Flexural Strength of the Wall is Adequate, M„= 931,841 lb-in (See Iteration x 10 from above) mM„= 1,344,237 lb-in (See above) M„/¢M,= 0.69 (Mu/riMn<1.0,OK.) Flexural Strength is OK 12. Verify that the deflections due to service level loads are acceptable. A,shall be less than L/150= 2.08 in For"P,-,A.term,assume the maximum A=2.08 in P,,,,= 42653 lb (Unfactored gravity load at roof. See above.) P„„,= 59303 lb (Factored gravity load at mid height of panel. See above.) M,= 692,237 lb-in (M.=wl7/8 + P,,,,e/2 + P„„6) Av= 0.220 in (An,=(5M„L'1/(48E In)} e,- 1.82 in (4,=(5Mn I7)/(48E1„)} A.= 0.75 in (A A„+llM.-M„1/(Mn-fvb)'l4,-A„)ll Service Level Deflection is OK 1,3„._)forisontal Reinforcing Above Opening(Assuming Single Laver), Factored Seismic Out-Of-Plane Load Fp= 32.0 lb/ft Effective Depth d'= 1.88 in Mu=Fp.(Opening Width)2/8= 2,352 lb-in Mn=As fy Id-a/2) 16,081 lb-in OK skiM,= 14,473 lb-in As= 0.150 in^2 a. 0.176 c= 0.208 c/dt= 0.111 < c/dt<0.375 for Gr 60 Reinf.Steel OK KPFF Consulting Engineers MAA 12/14/2012 West Side Christian High School Wall Footing Design ACI 318-08 Typical Tilt Up wall footing dek INPUT WM/all Loads Wall Thickness ASTM Standard Reinf Bars Bar size Dia. (in.) Area (in.2) DL 2.72 klf tw 7.25 in. 3 0.375 0.11 LL 1.49 klf 4 0.5 0.2 E 0 klf 5 0.625 0.31 Pu 5.65 kif 6 0.75 0.44 7 0.875 0.6 Info for Surcharge Loads 8 1 0.79 basement height 9 1.128 1 slab thick. 4 in. ft 10 1.27 1.27 soil depth 0 ft 11 1.41 1.56 14 1.693 2.25 Soil Properties Concrete Strength 18 2.257 4 qa 3.5 ksf fc 3000 psi II.Trial Footing Dimensions Required Width Dimensions Provided B 2.5 ft 1.24 ft H 1 ft III.Shear Check ACI 11.11.1.1 •ffective depth d 8.5 in. Factored Net Soil Pressure Shear Area qnu 2.3 ksf 0.24 ft2 Vu 0.5 klf a) +Vc=+*2*SQRT(fc)*bw*d +Vc 8.4 k OK V. Reinforcement Design a)Critical section for moment occurs @ face of wall footing width *moment arm2/2 Mu B*ARML2/2 0.45 1.01 k-ft/ft b)Area of steel required,j=0.9 ACI Min* *code minimum for gross concrete area AsB 0.03 in2/ft 0.26 in2/ft c)Trial Reinforcement Bar No. Spacing As(in2) 5 12 0.31 1 of 1 1 Project WC/ 5 By 6.5ii Sheet No —1; _ '1 liffri Consulting Engineers) �� '�'�� '�� ate' Dare 12-/It_ 10 F;RCY.Crepon rtief, 0GK4 Job No i 0 Dote f+',L'�f�1� 1)2iECA-S 7 5 2 4t/ EC/4/ /4r r6{/ , s , +, r• ct✓v -ss - /L 1 _____/ DL = . /5x/,/3 l/ )f S )/ 3ô' / ' ) : 7- 3. 3l< j M 41 Lt7,/ Sail • 824 : 3500 .4'4 ,Sl?5.oltc. 4040 — --N- —-i ,EgoG 1 $) QEe)t-rr D Ad F A : 23. 3 k 6.•G 5 ft 2.- M • Fuv1iy4 E k E.y, DA-,e:A/ idv) Ff.)Q Tjil 6 Fle7EErlvre '. 76 EG.rt/ 4 s._57 /07,4 t.. Gel,eC! L/.LS 7V 3 ' u 3•r : /O.5ff z ! I I P '- iarsf = - 2. 2 ,i ,' ( 3 .5.es< d " `1 D: /2 " Gf_ l2 '- 3 '' - % 1 t w ; / 2 (Z3 -zr) _ ?7. 5k-c 7zc1,c/ 42,2 -[ ,4/f /1. >G • w = `-- - = 7 75r - V/ _1.:±t/2_!...'"-'/< ,.+.,-, 0 Z A ri-, bw (7'5) 2 glow(IZ) - 1 3/ i usb 8..5-mr,./ L - i V-Jeci WCH 5 - BY 54S41 Sheet 3. EMUConsulting Engineers 7:_r_4414 0019, Data 12 Client D 6 1., _024 Revised poi)No. 109S Date C4AIT• MLA/11 / 32 (101 ) 44 t4./3 1-c17 C c 0033 1(6. • ( si)(8.5), y P' 5 , 3/( o) e Y5 , g5 , 3 ovs , t> (6 , ms . 65 ( / e .) (6.s - 45) 6. s3 1-‹ >> ,, g2 '- t .5,402.r4/e/14L ta„trw... , 00le5 (/2)(12) , # .5e • ■ ---- Vropct 'WC /"LS —_— i 8y 5� ]Sheet No. Locatia, w 1 Dale / / 11 N Consulting fngineersI �'�� `'�'� ' _._.__._._. 2 /2 Job No._ /� CSent %}UK r Revised wmmd.brogon i /�✓ r• Date -- ---- 3157` tA/i7€y l/-� Job FOG/A/404 7:2-cyy A/14L ( 'z& ` L c 'W.O "/ /J L f SE'rs. re 5 F.5- p2t✓.rc..s CoLN%i7.t/ i3L (tznsA ' = - 3t M rz. Ot = ,111bl-5y ,x ) 3 . 75IL- f r/ �,�.� A -4- 5 , Fov f_Tal4 L�f07 N x5': .�'' S .e, >~ ( e 4vL)( l2'+ 2.1-5' ) : a- 4. _ tile= C 3a._ P,i 2 P I� oS KSr 3.S&s, ✓a'L 7R 1/ 5'X 5' x / ' a z2.vr� tx/ (() A5 4 1 Rheet No. EffigProtect IX/ C/7 J ey 65,..41 � –- - ---—1 Consulting Engineers 1DOa1 on 4 , �� Dote Z �7, Giant /'1`�pt �y Revised Job��NO, ` Dat /e Ze`Sl 2' c '�, ' /v4 = / y 005/sc / V7/e5� /-1444y sileov t :8, 5 ! 75 3 47; ( 8. 5)(40) s., .. zC "> e. t /eve / /14.( (/ U-/( 1' ) z)/ z ate =mot , 3 4 o)= /46?-4/4- > 14, 5C4X12) /1/1 iv- • t /�, 4)(t's - 'x)2/2 = //s i ')> S 68-'c /= 3.4 5E 5 X 5'x 4' ,c-oor.p.tif ,) fry F' Co-tie/167-6 4x/e/->o ,E : 01 ,-0 x q " e /s- c.E Ki, A/i, : -. t, (z, 3yK ) _ - / tA4 e7 ) , = / 21e flu /• �/ � . �1 K (i2'4 140) ► fvo13Q4, )/ (U) 5/4. x ti F I55 y C,r/. 34. ANC••ltd cad L 1.5 /5ho. C. J W. Page 1 of 2 Anchor Calculations Lh Anchor Selector(Version 4.10.0.0) Job Name:WCHS Date/Time:12/14/2012 8:34:23 AM Calculation Summary-ACI 318 Aooendix D For Cracked Concrete Der ACI 318-08 Anchor 'Anchor 3/4'Heavy Hex Bolt 'Steel F1554 GR.36 I4 of Anchors '9mgedment Depth(in) 'Category Concrete Concrete Cracked t'c(psi) c.v Normal weight Yes 4000.0 1.00 Condition (in) Suppl.Edge Reinforcement I B tension and shear !Thickness 12 No Anchor Layout Dimensions Cx1 Cx2 Sy1 cy2 bx1 bx2 by1 by2 sx1 Syt (in) (in) (in) (in) (in) (in) (in) (in) (in) (in) 22.5 22.5 22.5 22.5 1.5 1.5 1.5 1.5 15 15 Factored Loads Nua(Pb) IVuax(Pb) IVuay(lb) IMux(Ib11) IMuy Obit) -1400 0 1210 16100 0 lex(in) ey(in) Mod/high seismic Apply entire shear @ front row 0 0 Yes No • individual Anchor Tension Loads N N N ua3 N ua4 ual ua2 (Pb) (Ib) (Ib) (Pb) 0.00_0.00_5913.90 5913.90 e'Nx(in) e'rgy(in) 0.00 0.00 Individual Anchor Shear Loads V ua1 V vat V ua3 V ua4 (lb) (lb) (lb) (lb) 302.50 302.50302.50 302.50 e'vx(in) e'vy(in) 0.00 0.00 Tension Strengths Steel('P=0.75) IN"(Ib) �N�(Ib) rNua(Ib) N ua/43Nsa 19370 14527.50 5913.90 0.4071 Concrete Breakout(O.=0.70, =0.75) Ncbg(Ib) d)Ncg(Ib) E Nua(Ib) E Nua/4>Ncbe 57767.57 30327.97 11827.80 0.3900 Pullout(4 =0.70,cbseis=0.75) • Npn(Ib) 0Npn(Ib) Nua(lb) Nua/mNpn 29152.00 15304.80 5913.90 0.3864 about:blank 12/14/2012 Page 2 of 2 Side-Face Blowout does not apply i0.5"' Shear Strengths Steel(4)=0.65,419 pad=0.8) Vaq(Ib) 4)Veq(Ib) {Vua(lb) IV ua/�AVeq 11625 6045.00 1302.50 0.0500 Concrete Breakout(case 1)(cp=0.70,chseia=0.75) Vcbgx(ib) 4)Vcbgx(Ib) E Vuax(lb) E Vuax/d Vcbgx 32873.93 17258.81 0.00 0.0000 Vcpgy(lb) 4Wcbgy(Ib) E Vuay(b) E Vuay/4)Vcbgy E.Vua/4)Vcbg 32873.93 17258.81 605.00 0.0351 0.0351 Concrete Breakout(case 2)(4)=0.70,(Neis=0.75) Vcbgx(Ib) 4)Vcbgx(Ib) E.Vuax(lb)I2 Vuax/WVc6gx 32873.93 17258.81 0.00 0.0000 Vcbgy(Ib) 43Vcbgy(Ib) E Vuay(Ib)IE Vuay ADVcbgylI Vua/4)V09 32873.93 17258.81 1210.00 0.0701 0.0701 Concrete Breakout(case 3)(4)=0.70,Owls=0.75) 0x1 edge Vcbgy(Ib) 4)Vcb9Y(lb) E Vuay(lb) £Vuay/PVcb9Y 65747.86_34517.63 605.00 0.0175 cy1 edge Vcb9x(Ib) 4)Vcb9x(Ib) I Vuax(lb) E Vuax/PVcb9x 65747.86 34517.63 0.00 0.0000 cx2 edge Vcb9Y(Ib) 4)Vcbg,(lb) 2 Vuay(lb) E Vuay/0Vcbgy 65747.86 34517.63 605.00 0.0175 cy2 edge Vcbgx(Ib) )Vcbgx(Ib) 2 Vuax(Ib)1I Vuax/4)Vcbgx I Vua/@Vcb9 65747.86 34517.63 0.00 +10.0000 0.0175 Pryout(41=0.70,(Aseis=0.75) Vcp9(Ib) 4)Vcpg(Ib) I Vuax(Ib) E Vuax/4)Vcp9 185556.43 97417.13 0 0.0000 Vcpg(Ib) 4)Vcpg(Ib) I Vuay(lb) E Vuay/43Vcpg I Vua/DVcp9 185556.43 97417.13 1210 0.0124 0.0124 Interaction check Note:Ratios in the equation below have been divided by 0.4 factor for brittle failure. V.Max(0.18)<=0.2 and T.Max(0.98)<=1.0[Sec D.7.1] Interaction check:PASS Use 3/4"diameter F1554 GR,36 Heavy Hex Bob anchor(s)with 9 in.embedment 0 about:blank 12/14/2012 LATERAL . . _ . .. . . . i 140ect Vie EIS ; BY it()) ■Sheet No . ■ . . . EMU Consulting Engineers71ccalkIn 17 VM/14 I lit" Dore retilt ! ' 1-I .. ch.. Dow) evited • P.M:H.4J Oregon • • • /.01:':1 2•0 t • . . ... . 6-yfrt p..)454 L)hi ,..- . ,.- i,(, 14fr ,,, rzeL,c-vv7.4-:--5( -: r - r -1 . ( 1,-160'v\ tilattelkof :1, 4, 1 ' 1 . + 1 . A) r ..,- 1... (...1C F 4(.34.7 goei . 4.4)0i- 25 - 1 +is 1 1-o cue-ft.. 4.001-i,b +14, +14) ...,. 7 ,. :., .. , . — - , ...:,_ 4 fp k_ --- csAlt o.3 4.. .... .,.... ....- . - ! • . •'. '. , ' • .. 05 ( r-- 14 0,44, Ny.i,tiw Mec61 PiP0f - /21 A Putp(A 1 aryl , cmo Stuttv Kim!,c, I*,F209ke fA,I., -- Kilo riittein.vo,\tl, - Co-:. ti S1/..1.4.i WA.,-Q.c N t\titA. ;'''itA- - -Pi..e,i;',04, j>.ti pk 431.'11 -- Sure Iltli,ifiet W Ski...A V(4.370A C • ‘.h 9 C'IS43 Ajt – P.a,V. it.(. 0 L A•V '• 4 L.,:4 i.'14. '‘' 04'1.i Siw,..v. tii-44) k ---),To-kit--%(e 4, Licy,? r ,..0•-rmo---) yo&A.t, feet)f eir, AYLit.fVY IVO/ — alvi WAS-:I. frIttlilskvq., fo Csij Ai vits 4 pfnu, •tiAt fl +o Wit/ tAik Ac 149.0-s.(et,v,4,,,, ,--,...."6,.,„, w4+ t.tro,,i: s 4-pol ric0.1 t° , (c...AE.:6.-err ii,ne...a.ra& art) — i,J5,-)(1.B Le—P$4et444041 A...e..44,..) -..1->"/1,54142. ArAtIv6 bi vte.tcti tv -kt, • 1';) nle,-,,,' ler()4 A- of 4%,t 1-Kt!tottArt 1 kt03 f-if. CoPez. etikrivA,),,y1 /0y. !/ o74.,1s ... .C6-At, flot.ii/c iil i 4ArAJA4 0- -Feat 6404),I. 1.0 ciefftziLdb (that a,* : V-00f isimAc? 6,....v's' :• Pie .-- .,.. 143nei i hetYkOfild, 14(4114'1 )4-i'Ll014-1 +0 47).--• .. . A; Clrf Aoli-et,),Y .%, r.1.(.ii., ij(J.. A'‘‘p i . A-, ..-.,-: 1.--/ 6 rt://e.tt•i,4 ;Aim) CA-0 t.--)A-Lk- ptc...0-A,,tif.0 tO C.01-20-41 Appil Noc4.44-k- LOA-0 A 7-C/I AAP,'1152-;,04. 5-)GO4---1 c'tf-vi Joe...1464. eix:44. — .(is-oC;at C...P;A-N.8-41,41 t4)/cAt 0 co4tA...6 A-44 5) 1.-.4e- 4.,44.4.,4. 0 "ect .114__ __C•4+- KA Sheet�. ETXRn Date t#� Consulting Engineers tl '� ��Q"� �� • vortKr,a,aepon C� 40.4) .�"�w.._- Revised Job No. r� • 2 tR2 Date i /4A4 J 2t if —1A1-140.0 - Aftl4Wgik7 ASC£ }-OS C ) 61544-454A4, cat n�.r4 `' .a 5a - O.;-(, ©uu eke4 W 6-641 . L .1-$P64-114,.)t f.„ s nartrt Ptev : tkil p *z`i tAi1'bft) F+tt. Dti / as- S .s.R. aAt 2b4^S fem(-6D • 4.0.0^1 ay :•tF4 W#44-1* • I vL; 5 w .SOU jJ ";irow isdo = / r2; i-, (v/r7.q (N1 h -� 1a'� i )✓lr')f i IA IMO 1. ('i) r 4 4 . ,-r r r? (Y( to i (f 4,f 50tril fti'1/u J f ( ) 411414 --)511 2'ai144 ( ) -j>hG = 4,4 r1) i4000bst1 Z 00Oizf 0O O 0 '1 , # 5,..4,- ' J O►`5i is ` • : '4 M • w rit i 1 i ©® oN qof 1J1 ON leers aino pes!nab tl)47. it 413. Z4aSt'SV --Q r -sJaaur!u3 5ui j nsuno fa ioefoi S 1 PrOleCt Witt-te) 4.71 Til i i 1 W MilConsulting Engineers�i-- j IANi i og- — —"`i Date— ii i nr�o. -- Ij acxncv.,a.Gega, 1.0,en,_ - -- itJ't 2_47_1_O ,• - - - ____1 __ _ _-- _-__1 .- - --I /11*;41 4J f" • 14/4- i, 446,606 avid Di r L 0/0 cron x y 1-4 W Vir lig; • . 34r 14 .141 _ 13- 415 g5(cs'_x. 5-)(tit) . 3CcK C,3- tJ4 -Nl 0 134 irk 15 5$ v Plt• to' 0 11°► lit Eik Mc, 124 0 I22 o2 — Ic l �� M c? 0 % Z ' G.3 nt5 'f b--- n 121- 41' _. .I . 51 , • , . ,e- }r tl)s 102 1'- 13 10 lit''4 31, rpv. 3,Po a 1-co 15 r4- 1t, hft, o ti4� 1� 4.1 Ev-i ,It - o 102 '1' 39, o 115' ,kr,; _ II- 34- 0 I5i? 2. - 11 g 1 t!'4- 0 W1 4t 1 20 5• 40 f.i r 1 ?)'' 1e 5.°1 1 10 0 I'4 °5') ._ `f ba--. Gi, 0 I.t)o) t ! /l� oll. , c/vv 3Qj 0 1611, 2S 15 55 I 14 tvi .7- r23 I4 11 93 - 2 2,b 3t •3- G3 2i IZ- 13 24' • 4 ., 265 k ----- -- - --- 191 Center of Mass of CMU Walls Calculation GRID DIR L %SOLID X Y H W Wt XWt Ywt B NS 118 0.35 134 162 17 93 36 4889 5911 iiYcU,;.na". t C.7 NS 96 1 134 126 15 58 42 5596 5262 = D NS 80 1 119 118 15 58 35 4141 4106 Ea NS 128 1 122 102 15 58 56 6793 5679 Eb NS 102 1 243 102 15 58 44 10782 4526 F.5 NS 70 1 143 63 15 58 30 4354 1918 G NS 63 1 242 56 15 58 27 6632 1535 G.3 NS 87 1 127 47 15 58 38 4806 1779 H NS 220 0.46 162 9 17 93 89 14484 805 SUM 398 62479 31521 2a EW 38 0.7 53 84 17 93 24 1246 1974 2b EW 38 0.7 53 28 17 93 24 1246 658 3a EW 36 1 76 143 15 58 16 1190 2239 3b EW 38 1 76 84 15 58 17 1256 1389 3c EW 38 1 76 28 15 58 17 1256 463 4.1 EW 47 1 102 91 15 58 20 2085 1860 4.5 EW 38 1 115 143 15 58 17 1901 2364 5 EW 38 1 133 28 15 58 17 2198 463 5.1 EW 47 1 141 91 15 58 20 2883 1860 5.3 EW 80 1 148 63 15 58 35 5150 2192 5.6 EW 40 1 171 83 15 58 17 2975 1444 5.9 EW 10 1 188 83 15 58 4 818 361 6a EW 50 1 193 131 15 58 22 4198 2849 6b EW 38 1 193 28 15 58 17 3190 463 SUM 265 31593 20580 Xbar= 142 FT >>>Location of Wall Center of Mass(CM) Ybar= 79 FT 0 12/22/2011 10:04 AM --i I 1_7:11€1.cilLjaiS ----i- 1 BY Ac?) —T-Sheet No. i . EffilConsulting Engineersi-L°catic'n 1714-46 0 C___ ___ 1 Date (141411 1 -7° --I I i i CSent rio La ick Revised -i-ob No j . • .1t- ; Date 19,01311.01 1 1 : CW k V 62,Wka_tc q ravd--.. v .,.... 5050(134) t r3sv(13q) .4- /5900(1S1q) 4 2.000(...3,q\)t 2:300(3-7, ) .:. 4I41-42 0 I ' I V,/(4,00 "2-Lt/011.0 i 11S0(110) +15'100(ST) 4-- '2.000(7-1?) -t. /,,?,)0(4)i) L 16,614C0 _ 1 I Vittfoo 26,i u00 f -,, ! ' ! 4. /4-0 ) I , 1 , , , 1-,---n o ..: 1 ___ _ ____ 155 ____ 1 * — -- - (13% ) 1/0 ) 1 2.000 . S'00 I 1 1 1 1 Oircvdti/ civl ' ; ; ! 1 i x , 04141 # 31s43 + 4167100(.021 ) _ 2,15-121- = 31 S' 4— Vo5 ÷ Vet(too (.°") ii LI- 1 1 510 4 114/4 00(. 0201) ,=., tof)Itl 2 v fif 31- 141:4 I- 1 1 , • — 1 Mr Ali ■ ! ! . 1 '7( . 0 ® 0 5 1 I I I ----T-'' 1 I _ . I I Lr._ ........ _ _. _... _ J _. ..._ ....... n. ........ 1 ' , I 1 1 . 1 ' 1,u,,,,, tau cArl-- o ,abt, ettwi v\Akkvk •Pg+. 11-v\-e-A- 0 • 0 \`i Q ° 0 0 5wn.. wxu tAvv+- 0 0 0 0 0 k f I 36i I I I OF . 0 CT r ,?3, tiistimit.kyku mini- 0 ( 0 (.73 0 0 514,600/ ViPtu. (,ai Iry 0 • ,.!S i Q 0 ED - G co I I I I I 0 --- , 0 I Lttipi1 , v • ci:4;:. 0 e o 0 0 C,--) , . _ 7 I 1 I 1 1 ______ __ _ . ..._-., _ 1 .......... -(D ! .._, ' ..®_ _ I • ---CF) I *---.lime asissowsr aims 1 -ii- - - (.6.) isimgmemp. ■Iumms I , ■ , _ ... 1 VINIIMMIMMT.M.70742........t.■ ■ilmlEliMiliiirs.. 11)U.C. \jirrkik 1.'45 k'. . VI C4A:VI 4 6)e'' 0 • -_N S--- 1 TP"ect 1/4e'J -it By itt,0 -114 Shee.t NO. 1 MgConsulting Engineer :1-c'ecIticn T11-A( i 0e- I Date 11424 ft /17 Client POW ck, Revised i Job No i • i_Dote 1/01s12- Ptinfreutim, StAt-A-v totS .A f-fti't stet v.A TA tr)$-, cm(14/,q4) • t,1 • I /4,01 otelliq)0 5tyv 1.2.01 510 - 152.'11-1 7%43 &i1 - 142; ?I' 61 s. )6( - Ys44 11511 4/2,im .21 ex4= W 3S' tjv e t1.4t3I 'E — 417,&31 F g OtH-4/0))- Wklitx.r. R0014. rAitiotkiAl tattVit's 741)(4 v.- 54vt, 2C/5" c. 14413 IC gooft 101(At 6176 r V.1-00 Cs="-rfkil e 0.19 0.11-1 61:4 O. T5 1.25 e SP! 1241(1.25) e ova T- 0.6c r01-4-) 0.igs5) (srosw) g x vv O. (9 (/4631' ) 412K • z Vei vt *et*12./l z V 6)( Relative Wall Rigidities and Center of Rigidity Calculation SHEAR WALL GRID DM X-COORD Y-COORD LENGTH HEIGHT H/L (H/03 A Rx Ry xRy yRx 3a Y 74.83 143.17 34.5 15 0.43 0.08 0.12 0 8.65 648 0 3b Y 72.5 81.58 39 15 0.38 0.06 0.10 0 9.91 719 0 3c Y 72.5 27 38 15 0.39 0.06 0.10 0 9.63 698 0 4.5 Y 114.83 142.75 34.5 15 0.43 0.08 0.12 0 8.65 994 0 5 Y 122.5 27 38 15 0.39 0.06 0.10 0 9.63 1180 0 6 V 1925 27 38 15 0.39 0.06 0.10 0 9.63 1854 0 10 Y 295.42 31 47.16 15 0.32 0.03 0.08 0 12.17 3594 0 C.7a X 10.75 125.33 21.17 23 1.09 1.28 0.38 2.64 0 0 331 c.7b X 44.67 125.33 15.83 23 1.45 3.07 0.62 1.62 0 0 203 C.7c X 74 125.33 26.33 23 0.87 0.67 0.27 3.65 0 0 458 C.7d X 120 125.33 34 15 0.44 0.09 0.12 851 0 0 1067 E X 122.5 101.75 18.67 15 0.80 0.52 0.24 4.10 0 0 417 Ga X 215.67 54.58 5.42 15 2.77 21.20 2.46 0.41 0 0 22 Gb X 230 5458 16.67 15 0.90 0.73 0.29 350 0 0 191 Gc X 253 5458 13 15 1.15 1.54 0.42 2.40 0 0 131 Gd X 268.75 54.58 6.58 15 2.28 11.85 156 0.64 0 0 35 G.3a X 72.5 46 24.67 15 0.61 0.22 0.17 5.86 0 0 269 G3b X 112.5 46 24.67 15 0.61 0.22 0.17 5.86 0 0 269 G.3c X 152.5 46 24.67 15 0.61 0.22 0.17 5.86 0 0 269 G.3d X 186.5 46 12.67 15 1.18 1.66 0.43 2.30 0 0 106 E 47 68 9687 3769 Xr= 142 ft »>Location of the Center of Rigidity Yr= 80 ft I CR 1 • 12/22/2011 10:03 AM --- Project in t.,(4.4 -A— - BY A O Sheet No. Location Consairing Engineers r 1�� -- � � Dote (�.}�j,� Portbn9.Orcyan I Client j�vo A Revised t Job No. — 1 • v v Dora 201512,.01 T = Z4-90K (-61,s`) k•-ft, ?�x = 24 +PS.d=) z. 2144 14.4-4-. Ty t. 201$x{ t!#') - 34 6.0 ic -{y 244( tom` ) - 4424 .R • Ii } • 1 0 a a S I Wall Shears for Seismic Forces in the NS Direction SHEAR WALL GRID Rx Ry X-COORD Y-COORD dx dy Rd Rd' Fvy Rd/ERd2 FM Fti2 F1 Fra,,2 Fd„ig„ 3a 0 8.65 74.83 143.17 -67 - -580 38884 31 -0.001120828 -4 -11 27 21 27 3b 0 9.91 72.5 81.58 -69 - -687 47679 36 -0.001328181 -5 -13 31 23 31 3c 0 9.63 72.5 27 -69 - -668 46340 35 -0.001290891 -5 -12 30 23 30 4.5 0 8.65 114.83 142.75 -27 - -234 6322 31 -0.000451951 -2 -4 30 27 30 5 0 9.63 122.5 27 -19 - -186 3610 35 -0.000360284 -1 -3 34 32 34 6 0 9.63 192.5 27 51 488 24706 35 0.000942565 4 9 39 44 44 10 0 12.17 295.42 31 154 - 1868 286890 44 0.003609571 14 34 59 78 78 C.7a 2.64 0 10.75 125.33 - 46 121 5525 0 0.000233461 1 2 1 2 2 C.7b 1.62 0 44.67 125.33 - 46 74 3380 0 0.000142791 1 1 1 1 1 C.7c 3.65 0 74 125.33 - 46 167 7634 0 0.000322555 1 3 1 3 3 C.7d 8.51 0 120 125.33 - 46 389 17804 0 0.000752249 3 7 3 7 7 E 4.10 0 122.5 101.75 - 22 91 2010 0 0.000175331 1 2 1 2 2 Ga 0.41 0 215.67 54.58 - -25 -10 255 0 -0.00002 0 0 0 0 0 Gb 3.50 0 230 54.58 - -25 -88 2192 0 -0.000169251 -1 -2 -1 -2 -1 Gc 2.40 0 253 54.58 - -25 -60 1504 0 -0.000116096 0 -1 0 -1 0 Gd 0.64 0 268.75 54.58 - -25 -16 402 0 -3.10557E-05 0 0 0 0 0 G.3a 5.86 0 72.5 46 - -34 -197 6613 0 -0.000380263 -2 -4 -2 -4 -2 G.3b 5.86 0 112.5 46 - -34 -197 6613 0 -0.000380263 -2 -4 -2 -4 -2 G.3c 5.86 0 152.5 46 - -34 -197 6613 0 -0.000380263 -2 -4 -2 -4 -2 G.3d 2.30 0 186.5 46 - -34 -77 2600 0 -0.000149523 -1 -1 -1 -1 -1 47 68 517576 Xr= 142 Yr= 80 it- 12/22/2011 10:04 AM 0 0 0 Wall Shears for Seismic Forces In the EW Direction SHEAR WALL GRID Rx Ry X-COORD Y-COORD dx dy Rd Rd2 F„. Rd/ERd2 Fed F0,2 F„,11 Fume Fk„ 3a 0 8.65 74.83 143.17 -67 - -580 38884 0 -0.001120828 2 -2 2 -2 2 3b 0 9.91 72.5 81.58 -69 - -687 47679 0 -0.001328181 2 -3 2 -3 2 3c 0 9.63 72.5 27 -69 - -668 46340 0 -0.001290891 2 -3 2 -3 2 4.5 0 8.65 114.83 142.75 -27 - -234 6322 0 -0.000451951 1 -1 1 -1 1 5 0 9.63 122.5 27 -19 - -186 3610 0 -0.000360284 1 -1 1 -1 1 6 0 9.63 192.5 27 51 - 488 24706 0 0.000942565 -2 2 -2 2 2 10 0 12.17 295.42 31 154 - 1868 286890 0 0.003609571 -6 8 -6 8 8 C.7a 2.64 0 10.75 125.33 - 46 121 5525 14 0.000233461 0 0 13 14 14 C.7b 1.62 0 44.67 125.33 - 46 74 3380 8 0.000142791 0 0 8 9 9 C.7c 3.65 0 74 125.33 - 46 167 7634 19 0.000322555 -1 1 19 20 20 C.7d 8.51 0 120 125.33 - 46 389 17804 45 0.000752249 -1 2 43 46 46 E E 4.10 0 122.5 101.75 - 22 91 2010 21 0.000175331 0 0 21 22 22 t Ga 0.41 0 215.67 54.58 - -25 -10 255 2 -0.00002 0 0 2 2 2 Gb 3.50 0 230 54.58 - -25 -88 2192 18 -0.000169251 0 0 19 18 19 Gc 2.40 0 253 54.58 - -25 -60 1504 13 -0.000116096 0 0 13 12 13 Gd 0.64 0 268.75 54.58 - -25 -16 402 3 -3.10557E-05 0 0 3 3 3 G.3a 5.86 0 72.5 46 - -34 -197 6613 31 -0.000380263 1 -1 31 30 31 G.3b 5.86 0 112.5 46 - -34 -197 6613 31 -0.000380263 1 -1 31 30 31 G.3c 5.86 0 152.5 46 - -34 -197 6613 31 -0.000380263 1 -1 31 30 31 G.3d 2.30 0 186.5 46 - -34 -77 2600 12 -0.000149523 0 0 12 12 12 47 68 517576 Xr= 142 Yr= 80 12/22/2011 10:04 AM • . 0 ALA:- it-06 F. cAtto L41bo 5. 4r.=, _ cow1C -ice L..)4-LL c kk-f-JL 0 0 © o o o H - — - -- B ion 41,_,:ii, ,-I--- 1 f ■ J K ' � I 4 1 1 i I -6)--- i i*i r �— �–_ - �-- I �0 -I 0 0 �6)gape- 4i �(Ai)= I 1 "4-"cow. to sit L T �f ` 2.61 ovfwL 1�(i DE[.K) tQ 5P_IwiC.Tvt, '' PrStY\Pvh;tvt - ctk y-stbsa.c.. 0 G ALP A-c.Z vs/ C".-' °'°`' t7�Jf/l I By ((//1/0 Sheet No. gar" Locaflon I pore Consulting Engineers n- -T =----.- �/� �" ]� Job No. Pang d.Qegcn IL---Client 7 VA �JAL. i -- - --- __--_ - - pate 5 r�tM�L S+e� A-Lo 6- � eD Cam) f Nom► 6964_ 1. 64-74 tab ' v 6_/Fr = 3 !, 7-0 k L G /, J-1 kLF- 11-44 u pox y 1+111e) k 70 CO-J g50A10 .00641 V 41 L (4 TrRUiC-o - 1/ iii PLF p vi . _ (N) e400-1- Z co•‘.. vim... ,o6.41%. 1 6-4, 4- !�f tJ 1."" 3" (s c 4-174C+4-- ) V/'.4-Lk = tg4 e - 7 /Z,o ItI AK/f II ESR-1967 I Most Widely Accepted and Trusted Page 5 of 6 TABLE 5-ALLOWABLE TENSION AND SHEAR VALUES FOR THREADED RODS INSTALLED 4( � USING HILTI HIT HY 150 MAX ADHESIVE IN GROUT-FILLED CONCRETE MASONRY CONSTRUCTION(pounds)1-2'3'4" t// Anchor diameter(inches) 3/6 1/2 5/6 314 ? Embedment(inches)5 33/6 4'/, 55/, 63/4 Minimum anchor spacing(inches)s.,,.„' 4 4 4 4 Critical anchor spacing(inches)se,' 8 8 8 8 Load direction Tension Shear' Tension Shear' Tension Shear' Tension Shear' Minimum edge distance,4 inches,c„„,6 880 1,055 1,745 1,370 2,120 1,580 2,205 1,135 Critical edge distance,20 inches,cn6 950 1,265 1,870 1,850 2,590 2,440 2,785 For SI: 1 inch=25.4 mm, 1 Ibf=4.45 N. 'Anchors are limited to one per masonry cell.Anchors in adjacent cells may be spaced apart as close as 4 inches with a load reduction of 30%.For anchors in adjacent cells spaced apart between 4 inches(s„.,)and 8 inches(s„),use linear interpolation. Anchors may be installed in any location in the face of the masonry wall(cell,bed joint,or web)as shown in Figure 1.except anchor must not be installed in or within 1 inch of a head joint. 'Allowable load values are for use in any masonry construction complying with Section 3.2.3 of this report. `When anchors are used to resist short-term loads such as wind or seismic,allowable loads must be adjusted in accordance with Section 4.1.3 and Table 3,of this report,but the loads cannot exceed 2,400 pounds for tension and 3,000 pounds for shear. SEmbedment depth is measured from the outside face of the masonry. 6Edge distances must be 4 inches minimum.Linear interpolation for edge distances between 4 inches(c„„,)and 20 inches(c,,,)is allowed. Edge distance to top of wall must be greater than 12 inches 'Allowable shear loads must be the lesser of the adjusted masonry or bond tabulated values and the steel values given in Table 7. 'The tabulated allowable loads have been calculated based on a safety factor of 5.0. 'Concrete masonry thickness must be equal to or greater than 1.5 times the anchor embedment depth.EXCEPTION:The 5/6-inch-and'/.- inch-diameter anchors may be installed in minimum nominally 8-inch-thick concrete masonry. TABLE 6-ALLOWABLE TENSION AND SHEAR VALUES FOR SILL PLATE AND OTHER ATTACHMENTS TO TOPS OF GROUT-FILLED MASONRY WALLS AT MINIMUM EDGE DISTANCES AND USING HILTI HIT HY 150 MAX ADHESIVE(pounds)''"'''S'6 ANCHOR EMBEDMENT EDGE TENSION SHEAR DIAMETER DEPTH DISTANCE Load Applied Perpendicular to Edge Load Applied Parallel to Edge (inch) (inches) (inches) 1/2 41/, 13/4 1,095 295 815 ti:iiii- 6/6 5516 1'/, 1,240 400 965 For SI:1 inch=25.4 mm,1 lbf=4.45 N,1 psi=6.89 kPa. 'Loads in this table are for threaded rod complying with Section 3.2.2 installed in the masonry at the edge distance shown in this table.No reductions for edge distance are required when anchors are installed with the minimum edge distance specified in the table.Capacity of attached sill plate or other material to resist loads in this table must comply with the applicable code. Edge distances are given in this table.Anchor spacing must conform to the dimensions given in Table 5. 'When anchors are used to resist short-term loads such as wind or seismic,allowable loads must be adjusted in accordance with Section 4.1.3 and Table 3,of this report. 'Masonry thickness must be equal to or greater than 1.5 times the anchor embedment depth. 5The tabulated values are for anchors installed in any masonry complying with Section 3.2.3 of this report. 6Aloowable loads calculated using a safety factor of 5.0. TABLE 7-ALLOWABLE TENSION AND SHEAR VALUES FOR THREADED RODS(pounds)'' TENSION SHEAR ANCHOR BASED ON STEEL STRENGTH BASED ON STEEL STRENGTH DIAMETER (inch) ISO 898 ASTM A ASTM 1 593 CW ISO 898 ASTM A ASTM 1 593 Class 5.8 193 B7 (316/304) Class 5.8 193 B7 CW(3161304) 3/6 2,640 4,555 3,645 1,360 2,345 1,875 1/2 4,700 8,100 6,480 2,420 4,170 3,335 6/e 7,340 12,655 10,125 3,780 6.520 5,215 3/4 10,570 18,225 12,390 5,445 9,390 6,385 For SI: 1 inch=25 4 mm.1 lbf=4.45 N. 1 psi=6.89 kPa_ 'Allowable load must be the lesser of bond values given in Table 5 and Table 6 and tabulated steel values. 'The allowable tension and shear values for threaded rods to resist short-term loads,such as wind or seismic,must be calculated in accordance with Section 4.1.3 and Table 3.of this report. " PL8TMor B FORMLOKrM wit A 31/2 in. TOTAL SLAB DEPTH t. ' .z•- j W O a Normal Weight Concrete (145 pcf) - - 1 ,'r fi . a 30.6 psf 7 Welds �'" mooGalvanized or Phosphatized/Painted 4 W€ d s ' ime Deck Weight and Section Properties we Weight(psf) Id for Deflection Moment Allowable Reactions per ft of Width(lb) NO Gage Galv Phos/ Single Multiple +Seff -SeH End Bearing Interior Bearing G60 Painted (in4/ft) (in.4/ft) (in.3Jft) (in.3/ft) 2" 3" 4" 3" 22 1.9 1.8 0.177 0.192 0.176 0.188 935 1076 1163 1559 1671 • 20 2.3 2.2 0.219 0.231 0.230 0.237 1301 1492 1609 2190 2340 Ole 18 2.9 2.8 0.302 0.306 0.314 0.331 2181 2484 2667 3714 3950 a 14 16 3.5 3.4 0.381 0.381 0.399 0.410 3265 3699 3955 5607 5938 Z iis Allowable Superimposed Loads (psf) *." Oa Gage Spans Max. Span(ft-in.) UCS 6'-0" 6'-6" 7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6" 10'-0" 10'-6 11'-0" 1 6'-6" 261 228 I 170 148 130 115 101 90 80 71 64 ofe 22 2 7'-8" 261 228 202 180 130 115 101 90 80 71 64 la 3 7'-9" 261 228 202 180 130 115 101 90 80 71 64 1 7'-9" 274 240 212 189 138 122 108 96 85 76 68 ■ 20 2 9'-1" 274 240 212 189 170 153 140 96 85 76 68 w e 3 9'-3" 274 240 212 189 170 153 140 96 85 76 68 WO 1 8'-10" 297 260 230 205 184 166 I 119 106 95 85 76 am. 18 2 10'-8" 297 260 230 205 184 166 151 138 127 117 I 76 3 11'-0" 297 260 230 205 184 166 151 138 127 117 108 Ile 1 9'-6" 297 260 230 205 184 166 151 138 p§-4-----64---7-75 16 2 11'-10" 297 260 230 205 184 166 151 138 127 117 108 m 3 11'-7" 297 260 230 205 184 166 151 138 127 117 108 1 Max.UCS=Maximum Unshored Clear Span(ft-in.) I Shoring required in shaded areas to right of heavy line. Allowable Diaphragm Shear Values, q(plf)and Flexibility Factors, F (in./lb x 106) a oft Gage Welds Span(ft-in.) - 6'-0" 6'-6" 7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6" 10'-0" 10'-6" 11'-0" Ile q4 1825 1787 1754 1726 1701 1679 1659 1642 1626 1612 1599 1 22 F4 0.45 0.46 0.47 0.48 0.48 0.49 0.50 0.50 0.51 0.51 0.52 q7 2035 1981 1934 1893 1858 1827 1799 1774 1752 1732 1713 F7 0.41 0.42 0.43 0.44 0.44 0.45 0.46 0.46 0.47 0.48 0.48 gill q4 1893 1847 1808 1773 1743 1717 1694 1673 1654 1637 1621 m 20 F4 0.40 0.41 0.42 0.42 0.43 0.44 0.44 0.45 0.45 0.46 0.46 me q7 2145 2079 2023 1975 1932 1895 1861 1832 1805 1780 1758 F7 0.35 0.36 0.37 0.38 0.39 0.40 0.40 0.41 0.42 0.42 0.43 q4 2046 1985 1932 1887 1847 1812 1781 1753 1728 1705 1684 a F4 0.32 0.33 0.34 0.35 0.35 0.36 0.37 0.37 0.38 0.38 0.39 18 q7 2381 2294 2219 2155 2098 2048 2004 1964 1929 1896 1867 lia F7 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.33 0.34 0.34 0.35 q4 2215 2138 2073 2016 1966 1922 1883 1848 1816 1788 1762 16 F4 0.26 0.27 0.28 0.29 0.30 0.30 0.31 0.32 0.32 0.33 0.33 q7 2634 2525 2432 2351 2280 2218 2162 2113 2068 2027 1991 • F7 0.22 0.23 0.24 0.25 0.26 0.26 0.27 0.28 0.28 0.29 0.29 t www.vercodeck.com VERCO DECKING, INC. VF4 ■ 37 le 9 I 0 .0 1 . . , I 1 • -1---- 101 ■ 1 12)4 K !I --- i i I I 1 0* 1 I I I L... I 1 i C' 2 14 k 41( 4 I „„iimamr_ mmir_am _ pi-- (.- k., i . '6 'IL ' M■lan IIIMIIIIIIIMIIIML . i ! , , , , , , . 1 . , _ _. .. 1 " H i 1 0 .e.kSvvvIci-F-Dre-c, pisly;vwfi;tir‘A Pv-,r, — E\iki v.- KPFF Consulting Engineers MAA 12/13/2012 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School c)Shear Reinforcement As 0.32 h"2 As•Vn/Fy distributed over height of wall Main Roof-Earthquake Design-CMU Shear Walls ACI 530.01-08 No.bars 2 Wall 3A Bar size 4 As 0.4 h"2 Spacing 48.0 in I.GENERAL Total 1.50 in"2 OK Pier fixity 0 1•fixed or 0=cantilever II.PROPERTIES AND GEOMETRY V.FLEXURAL CHECK ASTM Standard Rein(Bars Bar size Die.On.) Area(In!) section 1.8 a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 fm 1,500 pal E'm 1,350.000 psi ACI section Fs 24,000 psi n 21.5 4 0.5 0.2 Es 29,000,000 Ds! No.bars I 5 0.625 0.31 Br size 8 6 0.75 0.44 h 15 R v is - v As 0.44 h"2 7 0.875 0.8 1 7.625 in P 0.00014 p.p•As/teal 8 1 0.79 L 408 h * ^P 0.003 9 1.128 1 d 400.0 h 10 1.27 1.27 deft 400.0 in d•I.-8• C gin 11 1.41 1.56 I 43155792 h'4 UM a us kV aria M.hV 14 1.093 2.25 III.APPLIED LOADS 18 2.257 4 b)Calculate Coefficients V 19.3 k ►� w.v n M ~. . " Values of k• m ♦ q-m f Pa S k va `VII is v. VII m 0.009 q 0.003 Ajd I'LL 5 k �kw •enok2. sr v , k 0.072 Procedure:Compute m and n: MO 289.5 k-ft s.....nam..•1•a... ar•ww..w....VOW. of select k-valuesInwhich _f• k 1 Figure 2.Shear oved flx8les Location Compression Resultant t„,.121.\1-k/ N.SMEAR CHECK In•np r p'12n-I) (2n 1N1's/kbd 0.085 (k-d7d) d'/kd 0.279 d l' •2f a)Calculate Allowable Shear Stress 1-d'/kd 0.721 n' ^P•'P.t2n-11 d ' ' (1-kl M/(V'd) 0.44 For axed piers•h/2d For minelever piers•h/d z 0.327 _,___I.r ft A-, b .a, ± - i,.,,. For M/(V•d)c 1 Fv•(1/3)(4-(IrWM)•SORT(fm) pal ACI 2-21 c not to exceed Fv•80-45(Mild) psi Arm n f I t ` I.1-zk 0.977 • -'4- - For M/(V•d)>1 Fv•SORT(fm) pal ACI 2-22 a r not to exceed Fv•35 psi • NS ' • ter Fv' 81.3 si c)Calculate Blesses P Fv max" 80.2 psi **Includes 1/3 increase for wind and earthquake combinations Tensile Stress in Steel A..ON + .r., Fv 81.3 pal fs•M/(ArJ•d) b)Applied Shear Stress M=V11/2(fixed par)or M•V•h(can818ver pier) 8 (2 kbd A• x kd x \1 kd z• fv 6.2 psi tv•V/td OK M 289.5 k-ft 1; an•11 A'. x(1 _ d'1 fs 20213 psi OK 2 kind t kd J id3 2of 3 KPFF Consulting Engineers MAA 12/13!2012 Compressive Stress in Masonry tb=fsln•(kl1-k) r. A:•Pbd and lb 73 psi g Resultant or Fb" 658 psi OK Comnnuion Fprc•1 Fb=0.33*fm•1.33 ACI Section 2.3.3.2.2 • includes 1!3 increase for wind and earthquake combinations Figure 3.Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa=P.„,a,i A fa 17 psi Fa" 500 psi OK Fa=0 25 fm x 1.33 psi ACI 2-17 for non-slender piers "includes 1)3 increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb=Mo•chIn fb 16 psi Fb 658 psi OK VII.COMBINED STRESS CHECK fa/FA•fh/Fb<1 0 306 < 1.O OK 3 of KPFF Consulting Engineers MAA 12/13/2012 KPFF Consulting Engineers MM 12/13(2012 West Side Christian High School c)Sheer Reinforcement As 0.37 In"2 As=Vn/Fy distributed over height of well Main Roof-Earthquake Design-CMU Shear Walls ACI 530.01-08 No.bars 2 Wail 3B Bar size 4 As 0.4 In^2 Spacing 48.0 in I.GENERAL Total 1.50 IM2 OK Pier flxity 0 1•fixed or 0=cantilever II.PROPERTIES AND GEOMETRY V.FLEXURAL CHECK ASTM Standard Reinf Bars Bar size Die.On.) Area(m.') Fm i,b00 psi Ern 1,350,000 pal ACI section 1.8 a)Jamb Reinforcement and Steel Rados 3 0.375 0.11 Fs 24.000 psi n 21.5 4 0.5 0.2 Es 29.000,000 psi No.bars 1 5 0.625 0.31 Bar size 6 6 0.75 0.44 h 15 fl -.:-:�_-:_. v M -- -- v As 0.441n^2 7 0.875 0.6 1 7.825 in P 0.00013 p p•Ate/led 8 1 0.79 L 444 xi nP 0.003 9 1.128 1 dart 438.0 m d•L-8" ? d 438.0 m 10 1.27 1.27 I 55618994 m"4 M.rn 4v me d' 8 r 14 1.893 2.25 M ASV III.APPLIED LOADS 18 2.257 4 b)Calculate Coefficients V 22.1 k M HMV a ao ny m 0.008 Values of k...,/m+7+2q-m 1 M Pot 5 k v vi za V• w i - q 0.003 Aaid Pu 5 k M.,,,.r r..wr k 0.069 Procedure:Compute m and u; a=aar►wbona-. Mad bolasaMv. Mo 331.5 k-fl Slew..x taro-Noon. or.0 r e."+b..r mil. select k•veluat in which Location of Compression Resultant f.-rte k N.SHEAR CHECK Figure 2.Shear wail tribes m-np+.p'12n-11 n \T—k/ (2n-1)A's/kbd 0.081 a)Calculate Allowable Shear Stress d'/ltd 0.267 n w n d• rte-21 (k-did) 1-d'/ltd 0.733 D n'12n -In-- • it-ki d Mt(V'd) 0.41 For fixed piers•Pt/2d For cantilever piers=h/d z 0.328 t For M/N'd)c 1 Fv=(1/3)14-(M A/0 SORT(fm) psi ACI 2-21 }{ . ` -.F not to exceed Fr=80-45(MNd) psi Moment Arm 7! �; IT J=1-zk 0.978 For M/(V'd)>1 Fr=SORT(fm) psi ACI 2-22 - - s" a not to exceed Fr•35 psi • Fv" 81.9 psi e)Calculate Stresses , NM , . -' T !■ Fr max" 823 psi 'Includes 1/3 Increase for wind and earthquake combinations Tensile Stress in Steel '.h•ow Fv 61.9 psi fs•M/(As'J'd) 1 + (2n-I)A'a ...1.r x /1'd' \) b)Applied Shear Stress M•VT/2(fixed pier) an or M•VM(cantilever pier) 8 kbd lad ltd/ z- fv 8.5 psi lv=V/td OK M 331.5 k-ft 1 ; (2n-11 A', x(1 - d'1 fs 21212 psi OK 2 kPA ltd J 1 af3 2of3 • KPFF Consulting Engineers MAA 12/13/2012 Compressive Stress in Masonry fb=fs/n•(k/1-k) a b A:•o'bA fb 73 psi 2 --Resultant of FD•' 658 psi OK Compression forte Fb=0.33•fm•1.33 ACI Section 2.3.3.2.2 ••includes 1/3 Increase for wind and earthquake combinations • as Figure 3 Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fe=Prowl I A Is 17 psi Fa— 500 psi OK Fa=0.25 rm x 1.33 psi ACI 2-17 for non-slender piers ••includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to will panel overturning Po=Mo•c/In tb 18 psi Fb 858 psi OK VII.COMBINED STRESS CHECK fa/FA+fb/Fb<1.0 0.06 < 1.0 OK 3 013 . 0 0 KPFF Consulting Engineers MAA 12/132012 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School c)Shear Reinforcement As 0.38 InA2 As=Vn/Fy distributed over height of wall Main Roof-Earthquake Design-CMU Shear Walls ACI 530.01-08 No.bars 2 Wall 3C Bar size 4 As 0.4 inA2 Spacing 48.0 in I.GENERAL Total 1.50 r"2 OK Pier fluty 0 1=fixed or 0=cantilever II.PROPERTIES AND GEOMETRY V.FLEXURAL CHECK ASTM Standard ReM Bars Bar size Dee.(In.) Area(in 2) fm 1,500 psi E'm 1,350,000 pa ACI section 1.8 a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 Fs 24.000 psi n 21.5 4 0.5 0.2 Es 29.000,000 psi No.bars 1 5 0.825 0.31 Bar size 8 6 0.75 0.44 v ° _ v As 0.44 in.2 7 0.875 0.6 h 15 fl = ._. t 7.825 in - - p 0.00013 P`P` /bd 8 1 0.78 L 456 in _ nP 0.003 9 1.128 1 deft 448.0 In d=L-8• d 448.0 In 10 1.27 1.27 I 60249458 In"4 arm u.u:nv a 8 In 14 1.693 2.25 M-kV M.APPLIED LOADS 18 2.257 4 b)Calculate Coefficients V 21.4 k .r µv n M Pa 5 k - r . rev. _ •n m 0.008 Values of k=�/;Trail q m r+...._._- va va se vs va a q 0.003 A•)d Pu 5 k raaa•v awe wet* Mowwv rhea.ru k 0.068 Procedure:Compute m and q: War w•• Mow.e, Oral to bets.a•v. MO 321 k-ft Stye/.wwWarn*Soon. One'wry errur.w..n, select k•values in which f• k Location of Compression Resultant t,..•- N.SHEAR CHECK Figure 2.Shear wall flxRiea m-rep+p'12n-1) n 1-k (2n-1)A'alkbd 0.080 r.'21.---- (k-a'/d) a)Calculate Allowable Shear Stress d ldkd p, q•• nP+P'(2n-1 i G 11-k) M/(V•d) 0.39 For fixed peers•h/2d } ri. For cantilever piers=h/d z 0.328 t i w'. b t t f"y 4.. For M/Ord)A 1 Fv=(1/3)(4-(MNd))•SORT(Pm) psi ACI 2-21 o not to exceed Fv=80.45(MNd) psi Moment Arm 7 t "" For M/(V•d)>1 Fv•SORT(fm) )•1-zk 0.978 • ( ) Psi ACI M Ill not to exceed Fv=35 psi a .. ° Fv 62.1 psi C)Calculate Stresses ,->• . P # r -1 Fv max" 63.0 psi 'includes 113 increase for wind and t rn • earlhquake combinations Tensile Stress in Steel ..•er Fv 82.1 psi fs=M/(Asl d) d 1 b)Applied Shear Stress 6 ' (2 kbd s s kd " t kd M=V11/2(fixed pier)or M=VT MantRever pier) z• fv 6.2 psi fv=V/td OK M 321 k-fl 1 . (2n-11 A', ( _ d' fs 19984 psi OK 2 kid x 1 kd 1of3 2of3 ---0 KPFF Consulting Engineers MAA 12/1312012 Compressive Stress in Masonry Mm _WOW l rte fb 68 psi 2 ReI utent of Fb•• 858 psi OK ACI Section 2.3.3.2.2 •'includes 1/3 increase for wind and earthquake combinations Figure 3.Design Coertldents and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa=Pro-AL/A is 17 psi Fa** 500 psi OK Fa=0.25 fm x 1.33 psi ACI 2-17 for non-slender piers includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb=Mo'c/In fb 15 psi Fb 658 psi OK VII.COMBINED STRESS CHECK fa/FA+fb/Fb<1.0 0.06 < 1.0 OK 3of3 KPFF Consulting Engineers MAA 12/13/2012 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School c)Shear Reinforcement As 0.38 in=2 As=VnIFy distributed over height of wad Main Roof-Earthquake Design-CMU Shear Weis ACI 530.01-08 No bars 2 Wall 4.5 Bar size 4 As 0.4 In"2 Spacing 48.0 in L GENERAL Total 1.50 in"2 OK Pier fixity 0 1=fixed or 0=cantilever II.PROPERTIES AND GEOMETRY V.FLEXURAL.CHECK ASTM Standard Reim n Ba Bar size Dia.(in.) Area On!) rm 1,500 psi E'm 1,350,000 psi ACI section 1.8 a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 Fs 24,000 psi n 21.5 4 0.5 0.2 Es 29.000,000 psi bars 1 5 0.825 0.31 Bar size 6 8 0.75 0.44 v M v As 0.44ln"2 7 0.875 0.8 h 1511 — l 7.625 in p 0.00014 p•p•Aa/bd 6 1 0.79 L 408 in np 0.003 9 1.128 1 deft 400.0M d=L-8" d 400.D in 10 1.27 1.27 I 43155792 OM M-ii:nv . d 6 In 14 1.893 2.25 M-"v Ill.APPLIED LOADS 16 2.257 4 b)Calculate Coefficients V 21.4 k M v"v n M "� • M Pa 5 k ro ve �e w ve m 0.009 Values of k•�/m q—m 1,.�. q 0.003 A1d Pu 5 k M.,wv===,,=, awwwv evw was k 0.072 Procedure:Compute m and o. fixed top and Metem, Nod w Imam air. Mo 321 k-ft saw raft bender deem Odd dedv e•„dever•dd. MIeCt k•valun in which k Location of Compression Resultant t,.0.1:1 N.SHEAR CHECK Figure 2.Sher wall1Wties m•np•p'12n-11 n f-k (2n-1)A's/kbd 0.085 a)Calculate Allowable Shear Stress d/dkd 0.721 q' rep••p'12n- I t d (1-kI MIOrd) 0.44 For fixed piers=h/2d For cantilever piers=h/d z 0.327 . - t For M 1(V'd)<1 Fv=(1/3)(4-(MNd))•SORT(Fm) psi ACI 2-21 � c_ not to exceed Fs=80-45(MNd) psi Moment Arm 7 i ' I/ )=1-zit 0.977 For M I(V•d)>1 Fv=SORT(fm) psi ACI 2-22 IN _ ,' 1 v not to exceed Fv•35 psi MI c)Calculate Stresses , IIIII Fv'• 61.3 psi -r- r , Fs max" 80.2 psi "includes 1/3 increase for wind and earthquake ��^ mmquMcs combkretkma Tensile Stress In Steel . ti•�+ Fv 91.3 psi fs•M/(Aa •d) / d b)Applied Shear Stress I + (2kbd)A' a Ik1 x (\t-.ltd M=V1V2(fixed pier)or M=V•h(cantilever pier) z- Iv 8.9 psi fv=V/td OK M 321 k-ft 1 • (2n-II A'F 1 - 11"2 khd a ltd} is 22412 psi OK 1of3 2of3 ---..1 KPFF Consulting Engineers MM 12/13/2012 Compressive Stress In Masonry lb=fs/n•(k/1-k) b Ai•ube Ib 80 psi 3 Powteet of Fb" 858 psi OK Commisdon Forces Fb=0.33•rm•1 33 ACI Section 2.3.3.2.2 "includes 1/3 increase for wind and earthquake combinations Figure 3.Design Coefldents and 0iagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa=PTOTAL/A fa 17 psi Fa" 500 psi OK Fa=0.25 Pm x 1 33 psi ACI 2.17 for non-siender piers '•includes 1/3 increase for wind and earthquake combinations b)Axial Stress duo to wall panel overturning fb=Mo'c/In fb 18 psi Fb 858 psi OK VII.COMBINED STRESS CHECK fa/FA fb/Fb<1.0 0.08 < 1.0 OK 3of3 0 KPFF Consult ng Engineers MAA 12/13/2012 KPFF Consulting Engineers MM 12113/2012 West Side Christian High School c)Shear Reinforcement As 0.41 in 42 As•Vn/Fy distributed over height of wall Main Roof-Earthquake Design-Chill Shear Walls ACI 530.01-08 No.bars 2 Wall 5 Bar size 4 As 0.4 1n 52 Spacing 48.0 In I.GENERAL Total 1.50 in"2 OK Pier fixity 0 1•fixed or 0=cantlever II.PROPERTIES AND GEOMETRY V.FLEXURAL CHECK ASTM Standard Rein(Bars Bar size Die.(In.) Nee On!) fm 1,500 psi Ern 1,350,000 psi ACI section 1.8 a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 Fs 24,000 psi n 21.5 4 0.5 0.2 Es 29.000,000 psi No.bars 5 0.625 0.31 Bar size 8 8 0.75 0.44 h 15 fl v a v As 0.44 In"2 7 0.875 0.8 t 7.625 in = p 0.00013 p=p A3/bd 8 1 0.79 L 458 in x = np 0.003 9 1.128 1 deft 448.0 In d•L-8" d 448.0 In 10 1.27 1.27 I 60249458 in"4 d' 8 M 11 1.41 1.56 e hit-1rthv leilla PA.to; 14 1.893 2.25 III.APPLIED LOADS 18 2.257 4 b)Calculate Coefficients V 24.3 k M +rwv n M �` e M POL 5 k va vs 2d yr• w m 0.006 Values of k+�m q-m I... . q 0.003 A,id PLL 5 k e batons, k 0.068 Procedure:Compute m and o. nod n Wend..a id, MO 364.5 k-R $t. r Inhumes loon, o.snw eaur..w n.+. select k-values in which 1+ k Location of Compression Resultant f ,-- IV.SHEAR CHECK Figure 2.Shear well Rtdlfee m+np+p'(2n-f) n 1-k (2n 1)A's/kbd 0.080 (k-J,d) d'/kd 0.263 d a)Calculate Allowable Shear Stress 1-d'/ltd 0.737 ci' ^P P'f 2n-I t- Ys+�' {t- kJ M/(V'd) 0.39 For fixed piers•h/2d e„ For cantilever piers•h/d z 0.326 -1,1- .,. For M/Md)<1 Fv•(1/3)I4-(MNd)1•SORT(fm) psi ACI 2-21 , 1 1 r not to exceed Fv c 80-45(MNd) psi Moment Arm It For M/(V'd) •1 Fv•SORT(fm) psi ACI 2-22 1=1-zk 0.978 • : ,.. not to exceed Fv•35 psi = I s NI Fv" 62.1 sl e)Calculate Stresses M .' r Fv max"' 83.0 psi "krekWes 1/3lncreaseferwindend I 1y� • earthquake combinations Tensile Stress In Steel A.-ww Fv 62.1 psi fs•M/(Asy'd) I (2n-1}A', x d x t-d' ) b)Applied Shear Stress M•V'h/2(fixed pier)or M•V'h(cantilever pier) 8 ktsd ltd \ ltd/ z- f v 7.0 psi fv•V/td OK M 384.5 k-ft t • (2n•11 A'r It fs 22692 psi OK 2 kit x 1 _ ltd 1 of3 2of3 Co ngEnUineers i 16:fs,^ ( stress`n Mas4MY f t6 k� Plr- 77 Psi tib=033,r 658 psi .-aes to ocre for an sO Secti�? (,. f n' ��.,o Oft wind °nh9trake cow ne} s / -7 rya 14.4Xfp(CHECK > ^***tors a' '��An Coey°j Sfgssdu snb and Programs to gravity loads t p, ,, a Fa, Fa_ Spp PS, p?SP Psi ..mCl.de3 1 3xn�_3 Psi OK AC 2 e°S lb M Axial Streyd tloe to wd hnd en e°h4uak�^On slender tb c i In Pane d vertornina co_ Pb 1?PSi 858 Psi 111.COMA, OK fA+f4 Fb` 1 p TRESS CHECK O pe 1 pOk 3of 3 Jl a KPFF Consulting Engineers MM 12/13/2012 KPFF Consulting Engineers MM 12/13/2012 West Side Christian High School c)Shear Reinforcement As 0.52 h"2 As•Vn/Fy distributed over height of well Main Roof-Earthquake Design-CMU Shear Walls ACI 530.01-08 No.bars 2 Wall 6 Be/size 4 As 0.4 in'2 Spacing 48.0 In I.GENERAL Total 1.50 h"2 OK Pier fixity 0 1=fixed or 0=cantilever II.PROPERTIES AND GEOMETRY V.FLEXURAL CHECK ASTM Standard Reiff Ben Bar size Dia.(In.) Area(in.) rm 1,500 psi E'm 1.350,000 psi ACI section 1.8 a)Jamb Reinforcement and Steel Rados 3 0.375 0.11 Fs 24,000 psi n 21.5 4 as 02 Ea 29,000,000 psi No bars 7 1 5 0.825 0.31 Bar size 7 8 0.75 0.44 h 15 fl v u h v As 0.6 "2 7 0.875 0.8 t 7.615 11 p 0.00018 p=p•Aa/bd 8 1 0.79 L 458 h n np 0.004 9 1.128 1 Leff 448.0 h d•L-8• .?. �' ,. d 448.0 in 10 127 1.27 y: d 8 h I 60249456 h^4 11 1.41 1.58 M.lrznv Ma m-kV 14 1.693 2.25 III.APPLIED LOADS 18 2.257 4 b)Calculate Coefficients V 31.4 5 k VI VI ]e m 0.011 Value/of k*J m p-m f‘. r :12- M yr ve R.I. k rreMr u..w w.a q 0.004 Avid n..a w•MMnw. - • + w•+„h,, k 0.078 Procedure:Compute m and o: al bonen Mo 471 k-fl tam..alt u•a+.+ham. o.e.wv=rww••••5 select k•valuesinwhich f+ k Location of Compression Resultant fn. — IV.SHEAR CHECK Figure 2.Shear wall fickle. in-rep+p'12n-1) n 1-k� (2n-1)A's/kbd 0.095 (k-d'/d) d/kd 0.229 q np*p'(2n-1) a)Calculate Allowable Shear Stress 1-d'/kd 0.771 d f+'�' I1-k) M/(V•d) 0.39 For fixed piers•h/2d For cantilever piers•h/d z 0.320 , '' (1 0.320 1----t For M/(V•d)<1 Fv•(1/3)]4-(MNd)]•SORT(fm) psi ACI 2-21 not to exceed Fv•80.45(MNd) psi Moment Arm p, 7 J•1-zk 0.975 • r re. _ l For M/(V•d)>1 Fv•SORT(fm) psi ACI 2-22 w III i not to exceed Fv•35 psi e)Calculate Stresses OS " 62.1 psi Fv r Fv max" 83.0 psi 'Includes 1/3 increase for wind and earthquake combinations Tensile Stress In Steel -♦-.++ ■ 'r^ • Fv 62.1 psi fs•M/(A11 d) b)Applied Shear Stress 1 ; (2n-1)A'L x d' x rl-d M• V•h/2(fixed pier)or M•V•h(candever pier) 8 kbd kd ` kd J/ z- fv 9.0 psi Iv•V/td OK M 471 k-ft 1* (2n•11 A'+ _ d' fs 21585 psi OK 2 kbd x(1 kd) 1of3 2of3 ----.) • KPFF Consulting Engineers MM 12/132012 Compressive Stress in Masonry Arose fb•fs/n•(k/1-k) I 1 i— �rte lb 85 psi 2 Peswnnt or Fb" 658 psi OK Co Stan Fb=0.33•rm•1.33 ACI Section 2.3.3.2.2 ••includes 1/3 increase for wind and earthquake combinations Fpura 3.Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity toads fa /A fa 17 psi Fa" 500 psi OK Fa•0.25 fm x 1.33 psi ACI 2-17 for non-slender piers **includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to will panel overturning lb•Mo•c/In ib 21 psi Fb 658 psi OK VII.COMBINED STRESS CHECK fa/FA+fb/Fb<1.0 007 < 1.0 OK 30(3 * 0 9 KPFF Consulting Engineers MAA 12/13/2012 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School c)Shear Reinforcement As 1.00 In"2 As•Vn/Fy distributed over height of wall Main Roof-Earthquake Design-CMU Shear Walls ACI 530.01-08 No.bars 2 Wall 10 Bar size 4 As 0.4 I1'02 Spacing 48.0 h I.GENERAL Total 1.50 in"2 OK Pier flinty 0 1•used or 0•canaever V.FLEXURAL CHECK ASTM Standard Reim/Bars II.PROPERTIES AND GEOMETRY Bar size Dh (in.) /Yea(in.') rm 1,500 psi E'm 1,350,000 psi ACI section 1.8 a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 4 0.5 0.2 Fs 24,000 psi n 21.5 No.bars 2 5 0.25 0.31 Es 29,000,000 pal Bar size 7 8 0.75 0.44 h 15 ft v " - v As 1.21n"2 7 0.875 0.8 - t 7.625 In P 0.00039 p e p•As/bd 8 1 0.79 L 408 M .00 np 08 9 1.128 1 den 400.0 N d•L-8• d 400.0 h 10 1.27 1.27 I 43155792 in"4 • w-v2%V 8 14 1.893 2.25 III.APPLIED LOADS 18 2.257 4 b)Calculate Coefficients P 60 k • w wv- " r _ - " m 0.025 Values of k•s./m7 t2-m f M Pm 18.5 k Vii-•v� is v v 4 q 0.009 I. NO Pi. 9.5 k ..am•r Awe•.• k 0.110 Procedure:Compute m and q: ri.w tap u•a►w.... /W ass •�ewN. MO 900 101 a"...••*Mum.anon. Os*Aim sw.w.rr w1 select k-values in which Figure 2.Shear wall ftxitles Location of Compression Resultertt tm_f n (I k k) N.SHEAR CHECK m•np.�.p'12n- I) (2n-1)A's/kbd 0.150 (k-d'fid) d'/kd 0.182 q• nP•I 12n-I1 d' 1.•21 a)Calculate Allowable Shear Stress 1-d'/kd 0.818 d I I-k} M/(V•d) 0.44 For fixed piers•h ad For Cantilever piers•h/d z 0.303 I f!"'..4 .1 ...4+ f . 1r,')., For M/(V•d)<1 Fv•(113)[4-(Mid))•SORT(I'm) psi ACI 2-21 T _ not to exceed Fv•80-45(MNd) psi Moment Arm 7, For M I(V•d)•1 Fv•SORT(fm) psi ACI 2-22 )•1- 0.987 ,.., ' a not to exceed Fv•35 psi • Fv•• 81.3 psi c)Calculate Stresses , ' 0 Fv max•• 80.2 psi 'Includes 1/3 Increase for wind end earthquake combinations Tensile Stress In Steel h ar-o r rY" • Fv 81.3 psi le•M!(Asy'd) 8 + (2n-II IA', x kd x (1-d/ b)Applied Shear Stress M•V•11/2(fixed pier)or M•V•h(cantilever pier) z• lv 19.3 psi fv•V/td OK M 900 k-ft 1 + (2n•11 A' _ fa 23278 psi OK 2 'did r x 1 d'kd) 1of 3 2of3 KPFF Consulting Engineers MM 12/13/2012 Compressive Stress in Masonry fm Ib=fair•(k/1-k) oed red fb 134 psi � atewrwn of Fb• 658 psi OK Camomile= Farm Fb=0.33•t m•1 33 ACI Section 2.3.3.2.2 ; ••includes 1/3 increase for wind end earthquake combinations Figure 3.Design Coeflidents and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa=ProT,q/A fa 22 psi Fa— 500 psi OK Fa=0.25 rm x 1.33 psi ACI 2-17 for non-slender piers '•includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb=Mo•c/In lb 51 psi Fb 658 psi OK VII.COMBINED STRESS CHECK fa/FA+Ib/Fb<1.0 0.12 < 1.0 OK 3 of 3 0 �sc:v r 0 • KPFF Consulting Engineers MAA 12/13/2012 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School c)Shear Reinforcement As 0.26 in^2 As=VMFy distributed over height of wall Main Roof-Earthquake Design-CMU Shear Walls AC)530.01-08 No.bars 2 Wall C.7C Bar size 4 As 0.4 In"2 Spacing 48.0 in I.GENERAL Total 1.50 in^2 OK Pier fixity 0 1=fixed or 0=cantilever 11.PROPERTIES AND GEOMETRY V.FLEXURAL CHECK ASTM Standard Reinf Bars Bar size Dia.(in.) Area(in 2) Pm 1,500 psi Ent 1,350,000 psi ACI section 1.8 a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 Fs 24,000 psi n 21.5 4 0.5 0.2 Es 29,000.000 psi No.bars 2 5 0.825 0.31 Bar size 7 6 0.75 0.44 V 'd v As 1.2 in"2 7 0.875 0.8 h 15R t 7,825 in P 0.00118 D=p'=As/bd 8 1 0.79 L 144 in • nP 0.025 9 1.128 1 deft 136.0 in d=L-8" d 138.D let 10 1.27 1.27 I 1897344 let^4 d' 8 11 1.41 1.56 u at.rrz„V in RI M-hV 14 1.693 2.25 III.APPUED LOADS 18 2.257 4 b)Calculate Coefficients V 15.7 k M unv n M nv ^ Values of k= m2+2 m t M Pa 5 k vu -Ga` id vd Ve - .a m 0.073 �/ 9-- FL: 5 lea r show=w q 0.028 A,jd 4nad.np andbent.. " In b"'w:=ii_s k 0.173 Procedure:Compute m and q: Mo 235.5 k-ft awe...Hi Urmap,Roan. on11 nsn,wpitihrw med. select k•valuas in which t,,,_ Location of Compression Resultant f� k IV.SHEAR CHECK Figure 2.Shear wall flxities m=np+p'12n 1) n I-k� (2n-1)A's/kbd 0.280 (k-WM) d'/led 0.340 d' tf,.•2f, a)Calculate Allowable Shear Stress 1-d'/led 0.880 q a no r p (2n..-11 d (1-lei M/(V'd) 1.25 For fixed piers=h/2d For cantilever piers=h/d z 0.335 0 fi =r For M/(rd) 1 Fv=(1/3)[4-(MNd))•SORT(fm) psi AC12-21 r __ c not to exceed Fv=80-45(MNd) psi Moment Arm ,: I 1=1-zk 0.942 • • r �..__ For M/(V'd)>1 Fv=SQRT(fm) psi ACI 2-22 >� ! not to exceed Fv=35 psi - ,/ ' & c)Calculate Strossss {.+y.^ Fit' 51.8 psi _ F Fv max** 48.7 psi ''includes 1/3 increase for wind and earthquake combinations Tensile Stress in Steel •-ow • Fv 48.7 psi Is=M/(Asl d) (i_d b)Applied Shear Stress 3 (2 kbd)A t x kd x kd M=WW2(fixed pier)or M=VII(cantilever pier) z fv 14.3 psi fv=V/td OK M 235.5 k-ft 1 a (2n-11 A'r _ d' fa 18383 psi OK 2 Old x 1 kd) 1of3 2of3 C :fir , kPFF Cons IA �Pressiv9 Sir�ylQ Fnpineers !s4 (k i t_k) Mesh A(M ::- t 79 Psr 0.33••P 658 Psi --00,3 i Cr 3J Ok ! 4'1. 1211 012 ! ^ 3 °ase t�Intl a^ ea h0 e� mD nat �°, has �R _r 15'4XIAL CHFCk f n: h Si Axisi Sirius !a,P ''''At rA doe i0 Gravity l0°as FOure 3 p°s On p fs. � Op�rs ark/aaG tams 23 Psi FeaO?5r Psi ~'^GUyes tk 1.3:asewarlS) OP( hj Asis!St'Ms Cro k'�d ana C/2-17 for '1)4 M0.c(!n bus 0 Ddriet 0y QartD4uake Ddb PMrs /D erturtit0d 3 Fp i0>Psi 658 Psi 151.C OP(lA Q� EO �D OTRESSCl1Epk 0.2i c 1.0 Ok 30,3 0 0 0 KPFF Consulting Engineers MM 12/13/2012 KPFF Consulting Engineers MM 12/13/2012 West Side Christian High School c)Shear Reinforcement As aim inn As=Vn/Fy distributed over height of wall Main Roof-Earthquake Design-CMU Shear Walls ACt 530.01-08 No.bars 2 Wall C.7D Bar size 4 As 0.4 nn Spacing 48.0 in Total 1.50lnA2 OK I.GENERAL Pier fixity 0 1=fixed or 0•cantilever V.FLEXURAL CHECK ASTM Standard Rent Bars II.PROPERTIES AND GEOMETRY Bar size Die.(in.) Area(in?) a)Jamb Reinforcement and Steel Rados 3 0.375 0.11 rm 1,500 psi Em 1.350,000 psi ACI section 1.8 4 0.5 02 Fs 24,000 psi n 21.5 No.bars 1 5 0.825 0.31 Es 29,000,000 psi Bar site 8 8 0.75 044 v w v As 0.79 n"2 7 0.875 0.6 h 15 p 1 P 0.00026 p= •As/bd 8 1 0.79 1 7.625 in np 0,006 9 1128 1 L 408 in " 3 d 400.0 in 10 1.27 1.27 deft 400.0 in d•L-6' «' _ d 8 n 11 1.41 1.56 I 43155792 nA4 41111111 r.+rz"v � rr-ry 14 1.693 2.25 18 2.257 4 M.APPLIED LOADS b)Calculate Coefficients - V 36.4 k ss +w.v_ " M M "v " m 0.016 Valuer of k=v mT�q-m is-A.d Poi 5 k v'u w Z7 VII vs - a 0.006 q Procedure:Compute m and o: I'LL 5 k as me awes ., Morn et button onl. k 0.092 f. k Mo 548 k-fl a.—^+i.°a'•••°"kart �+w•mallow 04111. select k-values in which Location of Compression Resultant t'"-— Figure 2.Shear wall flxtiles + (2n-11 n f-k N.SHEAR CHECK ( ) m'^D P 2n-1 A'a/kbd 0.118 (k-d'/d) a)Calculate Allowable Shear Stress d!kd 0,783 n* np a n'12n -t! d ra•2f t t_k) l - d M/(V•d) 0.44 For fixed piers•h/2d -)---4..-� For cantilever piers•h Id z 0.315 { ` t A'. e Z i----. ,....q., 1 .._..._...1- For M I(V'd)<1 Fv=(1/3)(4-(MNd))'SORT(rm) psi ACI 2-21 not to exceed Fv• Moment-45(MNd) psi MOent Arm z ; )•1-zk 0.971 . .. ^I. For M/(V'd)>1 Fv=SORT(fm) psi ACI 2-22 8111 OM , not to exceed Fv•35 psi IN di . y c)Calculate Stresses __....,..OP Fv" 81.3 psi - 1 'ya • Fv max" 80.2 pal *Includes 1/3 increase for wind end earthquake combinations Tensile Stress in Steel . .•"' Fv 81.3 psi fs•M/(AsTd) ( d')I 8 a (2 kbd)A• x kd x 1 � b)Applied Shear Stress M•V11/2(fired pier)or M•V'h(esrtltiever pier) z= Iv 11.7 psi tv=Vital OK M Me s-it 2 + (2n k1bd a x(1 kd� (a 21356 psi OK 1of3 2of3 ;"4, KPFF Consulting Engineers MM 12/13/2012 Compressive Stress in Masonry fT fb=?sin•(k/1-k) 's '�s•a'ea lb 101 psi ° F s jpnt of Fb" 658 psi OK Compression Form Fb=0.33•fm•133 ACI Section 2.3.3.2.2 "includes 1/3 increase for wind and earthquake combinations Figure 3 Design Cos6icients and Diagrams VI,AXIAL CHECK a)Axial Stress duo to gravity loads fe=P1OrAL I A Is 17 psi Fe" 500 psi OK Fa=0.25 fm x 1.33 psi ACI 2-17 for non-slender piers "includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb•Mo•c/In lb 31 psi Fb 658 psi OK VII.COMBINED STRESS CHECK fe/FA+fb/Fb•1.0 0.08 c 1.0 OK 3 of 3 0 0 11111) KPFF Consulting Engineers MM 12/13/2012 KPFF Consulting Engineers MM 12/13/2012 West Side Christian High School c)Shear Reinforcement As 0.29 in"2 Ae=Vn/Fy distributed over height of well Main Roof-Earthquake Design-CMU Shear Wails ACI 530.01-08 No.bus 2 Wail E Bar size 4 As 0.4 In"2 Spacing 48.0 in Total 1.501n"2 OK I.GENERAL Pier fixity 0 1=fixed or 0=cantilever V.FLEXURAL CHECK ASTM Standard Reinf Bars II.PROPERTIES AND GEOMETRY Bar size Die.(in.) Ares(h?) a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 I'm 1500 psi E'm 1,350,000 psi ACI section 1.8 4 as 0.2 Fs 24.000 psi a 21.5 No.bars 1 5 0.625 0.31 Es 29.000,000 psi Bar size 6 6 0.75 0.44 v y v As 0.44IN2 7 0.875 0.6 h 15ft -__-= 0.00014 p=p'=A$/bd 8 1 0.79 t 7.825 in np 0.003 9 1.128 1 L 432 in d 424.0 in 10 1.27 1.27 deft 424.0 In d=L-8" d' 8 in 11 1.41 1.56 1 $12282881n^4 Orli et-rnav _WM w-ev 14 1.693 2.25 18 2.257 4 111.APPLIED LOADS b)Calculate Coefficients M V 17.1 k a _wev n w . x e m 0.009 Vetoes of k �/m+�q-m fc• Pa 5 k ve 1 - 7d ve va a q 0.003 Avid Pu 5 k 4.m..arm raa waee.v era*ea k 0.070 Procedure:Compute m and u; need we all bona., riaw a bottom*ay. f, Mo 256.5k-ft ser.ex mew.!Mac Orawv atlr oww+at select k-valuesinwhich _ k Location of Compression Resultant f n 1-k Figure 2.Shear well fixlties m=np+ p'(2n-)1 N.SHEAR CHECK (2n-1)A's/kbd 0.082 (k-d'/d) d/ltd 0.271 q. nP+it't2n -•Il tl F'a�` a)Calculate Allowable Shear Stress 1-d'/kd 0.729 d (t-k) M/(V'd) 0.42 For fixed piers=h/2d -r^ For cantilever piers=h!d z 0.327 T e iA', . 1 r_. ;n•,b _ i _ . 1•For M/(V•d)<1 Fv=(113)[4-(MNd)1•SORT(fm) pie ACI 2-21 Moment inn 7• f not to exceed Fv=80-45(Mild) pal )=1-zk 0.977 .. ._.,. . For M/(V'd)5,1 Fv=SORT(fm) psi ACI 2-22 its an i e not to exceed Fv a 35 psi ea c)Calculate Stresses IN __.. -' r _ .__ _ Fv** 81.7 psi ` nee f n7n • Fv max"' 81.7 psi "ncludes 1/3 increase for wind and earthquake combinations Tensile Stress in Steel Fv 61.7 psi fs=M1(AsTel) d * (2-101'„ x dtl x `1-loot I b)Applied Sheer Stress M=V1112(fixed pier)or M=V'h(cantilever pier) z. fir 5.2 psi fv=V 1 Id OK M 2$8.5 k-ft 2 ♦ (2n.I a \t - An / fs 18883 psi OK 1of3 2of3 Q • KPFF Consulting Engineers MAA 12/13/2012 Compressive Stress in Masonry tin 1b•fafi'(k/1-k) Ai.ppy �eks fb 59 psi $ Rwiun[or Fb" 858 psi OK Companion Forms Fb=0.33'fm•1.33 ACI Section 2.3.3.2.2 ;? includes 1/3 increase for wind and earthquake combinations tf Figure 3 Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads Is•P10rk/A fa 17 psi Fa" 500 psi OK Fa=0.25 fm x 1.33 psi ACI 2.17 for non-slender piers includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb=Mo•c/In lb 13 psi Fb 858 psi OK VII.COMBINED STRESS CHECK fa/FA*fb/Fb<1.0 0.05 < 1.0 0K 3d3 0 0 0 KPFF Consulting Engineers MM 12/13/2012 KPFF Consulting Engineers MM 12/13/2012 West Side Christian High School C)Shear Ratnforc.m.nt As 0.02 in"2 As•Vn/Fy distributed over height of wall Main Roof-Earthquake Design-CMU Shear Walls ACI 530.01-08 No bars 2 Wall GA Bar size 4 As 0.4 in"2 Spadng 48,0 in I.GENERAL Total 1.50 h"2 OK Pier fixity 0 1•fixed or 0•cantilever II.PROPERTIES AND GEOMETRY V.FLEXURAL CHECK ASTM Standard ReiM rs Bin Bar size Die.(In.) Area(in.') a)Jamb Rslnforc.msM and Steel Ratios 3 0.375 0.11 fm 1,500 psi E'm 1.350,000 pal ACI section 1.8 Fs 24,000 psi n 21.5 4 0.5 02 Es 29,000,000 psi No.bars 1 5 0.825 0.31 Bar size 6 6 0.75 0.44 h 15 ft V Pi - v As 0.44 in"2 7 0.875 0.6 t 7.825 In = P 0.00111 p=p'•As/bd 8 1 0.79 I.. 80 in np 0.024 9 1.128 1 deft 52.0 in d•L-B' d 52.0 In 10 1.27 1.27 I 137250 in"4 d 8 in 11 1.41 1.56 = era-t/2sv MI. M-•V 14 1.693 2.25 III.APPLIED LOADS 18 2.257 4 b)Calculate Coefficients V 1.4 k M vnv n M py- n Values of k m . M Poi 5 k va'vs-— 2a w v e` m 0.070 � Q-m 1,...._ q 0.031 A.Id Pu 5 it k 0.188 Procedure:Compute in and q; MO 21 k-ft ss...•=x s"x=w„soon. O"...w or•%.•w,v. select k-valuer in which 1r k Location of Compression Resultant f„, - IV.SHEAR CHECK re 2.Shear wall fixttlss m•rep r p 12n-t) n t-k (2n-1)A's/kbd 0.247 (k-d'/d) d/lid 0.817 d' r.•N. a)Caulate Allowable Shear Stress 1-d'/lid 0.183 q ” ^P•P'12n -11- I 1-k) k: d M/(V'd) 3.00 For fixed piers•h/2d i� For cantilever piers•h/d z 0.373 } • !! Focht/(V•d)<1 Fv•(1/3)(4-(MNtl))•SORT(fm) psi ACI 2-21 _y.-__. .-4. not to exceed Fv•80-45(Hied) psi Moment Arm z i ': r J•I-zk 0.930 • ,•, m..._1' _._� .. For 1(V'd)7.1 Fv•SORT(fm) psi Ad!2-22 a gr M not to exceed Fv•35 psi s c)Calculate Stresses Fv" 51.6 psi Fv max** 48.7 psi "Includes 1/3 Increase for wind and earthquake combinations Tensile Stress in Steel ti•.a -r ry, Fv 48.7 psi fs•M/(As•J'd) I (2n-1)A', rr d b)Applied Shear Stress M•VW2(fixed pier)or M•V'h(cantilever pier) 8 { kbd x rd x 1-lid z• N 3.1 psi fv•V/td OK M 21 k-ft I. (2n-1)A', / _ d Is 11847 pal OK 2 kbd x 1 1 kd 1of 3 2of3 '«,' l KPFF Consulting Engineers MAA 12/13/2012 Compressive Stress in Masonry I,,, .Ai fb•fain'(k/1-k) - rxd fb 128 psi • Rssuftanc of Fb" 658 psi OK Compression Forces Fb 0 33'fm'1 33 ACI Section 2.3.3.2.2 includes 1/3 increase for wind and earthquake combinations tr_+- Figure 3 Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa•P.,-. /A fa 36 psi Fe" 500 psi OK Fa=0 25 fm x 1.33 psi ACI 2-17 for non-slender piers includes 1/3 Increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb=Mo'c'In ib 55 psi Fb 658 psi OK VII.COMBINED STRESS CHECK fa/FA•fb/Fb<1.0 0 15 < 1.0 OK 3of3 0 0 0 KPFF Consulting Engineers MAA 12/13/2012 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School c)Shear R.+t[brc.m.[[t As 0.24 n"2 As=Vn/Fy dtstrlbuted over height of wall Main Roof-Earthquake Design-CMU Shear Walls AC1530.01-08 No.bars 2 Wall GB Bar size 4 As 0.4 n"2 Spacing 48.0 In I.GENERAL Total 1.50 n"2 OK Pier fixity 0 1=fixed or 0•cantilever If.PROPERTIES AND GEOMETRY V.FLEXURAL CHECK ASTM Standard Renf Bars j Bar size Dia.(In.) Area(in.a) I'm 1,500 psi Em 1,350,000 pal ACI section 1.8 a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 4 0.5 0.2 Fa 24.000 psi n 21.5 No.bars 1 5 0.825 0.31 Es 29,000,000 psi Bar size 7 8 0.75 0.44 v w v As 0.8 inA2 7 0.875 0.8 h 15 11 t 7.825 In _ p 0.00041 p=p•As/bd 8 1 0.79 L 200 k, Y - d rep 0.009 9 11 28 1 d 1929 n 10 1.27 1.27 deft 192.0 n d=L-B" - d 8 In 11 1.41 1.56 I 5083333.3 n"4 • r-1/2 kV WM U•kV 14 1.693 2.25 111.APPLIED LOADS 18 2.257 4 b)Calculate Coefficients V 14.3 k w ww n ter dv . m 0.026 V anus[01 k=y/mT -.m t M Pa 5k ve•va Vd. Ve d q 0.010 A'ld wrwa..•w k 0.114 Procedure:Compute m and q: u S k 1......,..d belt*, e+r n tendon*My. r. k Mo 214.5 k-fl sm..mak Ironwood doom orr dwr addeMru wood Location of Compression Resultant select k.values in which ton_-{/_ n \1_k Figure 2.Shear wall Pxlties m•nP f p'12n-11 N.SHEAR CHECK (2n-1)A's/kbd 0.150 (k-d'/d) d d/kd 0.384 4= np4-P•12n-11- r'•21, 11_1) a)Calculate Allowable Shear Stress 1-d/kd 0.838 d M/(V'd) 0.90 For Poled piers•h ad t„ For miaow piers=h/d z 0.338 • 1- ' t t A'. a Z. r.. ,.,,,. For M/(V•d)<1 Fv=(1/3)(4-(MNd)(•SORT(fm) pat ACI 2-21 4__......_.. not to exceed Fv•80.45(MNd) psi Moment Arm 7 i Y, t j=1-zk 0.981 = .r='.. } -!/'For M/(V•d)>1 Fe=SORT(Fm) psi AC1 2-22 In �� 1 not to exceed Fv•35 psi i e)Calculate Stresses .,,_ IN t . . _._.. . t __.....r Fv" 53.4 psi �° �ti Y, Fv max"' 52.7 psi "Includes 1/3 increase for wind and earthquake combinations Tensile Stress in Steel y-au! Fv 52.7 psi to=M/(Ash•d) b)Applied Shear Stress M=V'1V2 fixed a (2 kbd)A d •kd x (1-Mai PP ( pier)or M=VT(cantilever pier) z= fv 9.4 psi M=V/td OK M 214.5 k-ft 1 2 +.(2n-11l A'„ x r 1 _ ka l fs 23243 psi OK ` I 1of3 2of 3 • S KPFF Consulting Engineers MAA 12/13/2012 Compressive Stress in Masonry fn. A; wbo .. I!ins fb 140 psi .� pylon fb•' 858 psi OK torus Fb=0.33'fm'1 33 ACI Section 2.3.3.2.2 includes 1/3 increase for wind and earthquake combinations Figure 3.Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa=PTOTAL/A is 20 psi Fa' 500 psi OK Fa=0.25 fm x 1.33 psi ACI 2-17 for non-slender pis inclNdes 1/3 Increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb=Mo'c/In ib 51 psi Fb 858 psi OK VII.COMBINED STRESS CHECK fatFA•lb/Fb<1.0 0.12 < 1.0 OK 3of3 C • 0 0 KPFF Consulting Engineers MAA 12/13/2012 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School c)Shear RSlnforcamaM As 0.17 i0'2 As=Vn/Fy distributed over height of wall Main Roof-Earthquake Design-CMU Shear Walls ACI 530.01-08 No.bars 2 Wall GC Bar size 4 As 0.4 W2 Spacing 48.0 In Total 1.50 M^2 OK I.GENERAL Pier fixity 0 1=fixed or 0=cantilever V.FLEXURAL CHECK ASTM Standard Reinf Bars 11.PROPERTIES AND GEOMETRY Bar size Dia.(In.) Area(In 2) fm 1,500 psi Em 1.350,000 al ACI section 1.8 a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 p 4 0.5 0.2 Fs 24,000 psi n 21.5 Es 29,000,000 psi Bar 7 ban 5 0.625 0.31 Bar size 7 6 0.75 0.44 h 15 ft v M __ v As 0.8 inn 7 0.875 0.8 t 7.625 In - P 0.00053 p ap=As/bd 8 1 0.79 np 0.011 9 1.128 1 L 158 in Is d 148.0 In 10 1.27 1.27 deft 148.0 In d=L-tC d' 8 i 11 1.41 1.56 I 2412306 in^4 NCI. r•1n=v iris M-wv 14 1.693 2.25 18 2.257 4 M.APPLIED LOADS b)Calculate Coefficients V 10k w sev n u • V - M Pa 5 k ve..Z7. L vi. w . s m 0.034 Values o4 k=�/m 4-m t`.Avid 0.013 Pu. 5 k Www ever ma k 0.129 Procedure:Compute m end a: ahiN as sal ban., Omuta Imam err, Mo 150 k-ft we.mall Mrwn Lea. OAS aav emilevw we,. select k vsluat in wtncfi f Ni Location of Compression Resultant t..,_ • n k k 1-k 1V.SHEAR CHECK �2.Shear waft MU.a (2n 1)A's l kbd 0.173 m=rip+p'12n-11 d'/ltd 0.420 d' f'.=2t. (k d'. _ a)Calculate Allowable Shear Stress 1-d'/ltd 0.580 a - np•p'(2n-• k{ d M/(V'd) 1.15 For Posed piers•h/2d r_ For cantilever piers•h/d z 0.348 `T- t For M/(V-d)<1 Fv•(113)(4-(MNd))•SORT(hen) psi ACI 2-21 I _.._•` not to exceed Fv•80.45(MNd) psi Moment Arm I i I i=1-zk 0.955 r_ For M/(V'd)>1 Fv=SORT(Fm) psi ACI 2-22 V not to exceed Fv=35 psi Ill IIIII c)Calculate Stresses • ' r - _._. r Fv" 51.8 psi - t rye • Fr max" 46.7 psi "Includes 1/S Increase for wind and earthquake combinations Tensile Stress in Steel h a+ Fr 48.7 psi to=M 1(Aayd) j l a' 2 kbd A x ltd x \1 ltd/ b)Applied Shear Stress . M=V•-F2(Posed pier)or M=V•h(cantilever pier) z. fv 8.4 psi tv•V F td OK M 150 k-ft 1+ (2n•11 A', x I _ d' Ts 21220 psi OK 2 ktxt ltd) 1of3 2of3 KPFF Consulting Engineers MM 12/13/2012 Compressive Stress in Masonry Ib•fs/n•(k/1-k) b w+•s'sa t fb 146 psi • 4- Awltentor Fb" 658 psi OK Camonnelen Foam Fb•0.33'rm'1 33 ACI Section 2.3.3.2.2 "includes 1/3 increase for wind and earthquake combinations Figure 3.Design CoNadenta and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity bads fa•P.or,1 A fa 22 psi Fe" 500 psi OK Fa•0.25 rrn x 1.33 psi ACI 2-17 for non-slender piers includes 1/3 increase for wind end earthquake combinations b)Axial Stress due to wall panel overturning lb•Mo'c/In lb 58 psi Fb 658 psi OK VII.COMBINED STRESS CHECK fa/FA•fb/Fb<1.0 0.13 < 10 OK 3 of 3 KPFF Consulting Engineers MAA 12/13/2012 KPFF Consulting Engineers MM 12/13/2012 West Side Christian High School c)Shear Reinforcement As 0.05 In"2 Aa•Vn/Fy distributed over height of wall Main Roof-Earthquake Design-CMU Shear Walls ACI 530.01-08 No.bars 2 Walt GD Bar size 4 As 0.4 in"2 Spacing 48.0 in I.GENERAL Total 1.50 kM2 OK Pier fixity 0 1•fixed or 0•cantilever V.FLEXURAL CHECK ASTM Standard ReW Bars h.PROPERTIES AND GEOMETRY Bar size firs.(in) Area(in.) fm 1,500 psi Ern 1,350,000 psi ACI section 1.8 a)Jamb Reinforcement and Steel Rados 3 0.375 0.11 4 0.5 Fs 24.000 psi n 21.5 Es 29.000.000 pal No.size 1 5 0 0.,41 31 0.75 Bar size 8 8 0.75 0.44 h 15 R v Y — v As 0.44 In"2 7 0.875 0.8 t 7.625 in = P 0.00090 P=P•As/bd 8 1 0.79 rip 0.019 9 1.128 1 L 72 m h d 84.0 In 10 1.27 127 doff 646 in d=L•8" ` -• d' 8 i 11 1.41 1.58 I 237188 lee M•+nbv Ira M•sv 14 1.893 2.25 18 2.257 4 III.APPLIED LOADS b)Calculate Coefficients M V 2.9 k M vwv n M _ "v " m 0.057 Values of k irli3_m 1a•_— Pot 5 k Vdd .vs . '!d VI VI e q A.W 0.024 Pik. 5 k Mew.rboor WI MMa•,y••a•W k 0.170 Procedure:Compute m and Q; fixed ree and bottom. saw M Imam aey. Mo 43.5 k-ft sbw..e e++aaaa%oft oa..w,y i mam,wait, f. k NI Location of Compression Resultant select k-valves.n which +�w_{/ Figure 2.Sheer wall Indies n \1-k N.SHEAR CHECK (2n-1)A's/kbd 0.223 m•rep y p 12n-1) d/In/ 0.737 q„ reprp'(2n--11 d T. 2f' (1-k) a)Calculate Allowable Shear Stress 1-IT/lid 0.283 d /(V'd) 2.50 For fixed piers•h/2d s.., For cantilever piers•h/d z 0.376 r • • -1—.._,t r i For M/(V•d)r 1 Fv•(1/3)(4-(MNd))•SORT(fm) psi ACI 2-21 *• t ' -`- not to exceed Fv=80-45(Mild) psi Moment Ann . i•1-zk 0.936 . r +w a _ .. For M/(V'd)>1 Fv•SORT(fin) psi ACI 2-22 e 1 not to exceed Fv-35 psi gm c)Calculate Stresses • e Fv" 51.8 psi OM -i rain ' Fv max*" 48.7 psi "includes 1/3 increase for wind and earthquake combinations Tensile Stress in Steel ".'Oww Fv 48.7 psi fs.141/(Asl•d) d b)Applied Shear Stress hi•V11/2(fixed pier)or hi•Vii(cantilever pier) 8 kbd led s i T 2. Is 5.3 psi fv•V lid OK hi 43.5 k-11 1 + (2n 11 A', x i _ tl" fs 19799 psi OK 2 kbd led) 1of 3 2of3 Y KPFF Consulting Engineers MAA 12/13/2012 Compressive Stress in Masonry { fm fb=fs/n•(k/1-k) l '�'�0� } I rke ro 168 psi nesmtant of Fb" 658 psi OK Compression Gares% • Fb=0 33 fm•1.33 ACI Section 2.3.3.2.2 ••includes 1/3 increase for wind and earthquake combinations Figure 3.Design Coefficients and Diagrams Vl.AXIAL CHECK al Axial Stress due to gravity loads fa=P._•. IA fa 32 psi Fa'• 500 psi OK Fa=C 25 fm x 1 33 psi AC12.17 for non-slender piers • **includes 113 increase for wind and earthquake combinations b)Axial Stress due to well panel overturning fb=Mo•c/In Ib 79 psi Fb 658 poi OK VII.COMBINED STRESS CHECK fa/FA•Ib/Fb<1.0 018 < 10OK 3of3 KPFF Consulting Engineers MM 12/13/2012 KPFF Consulting Engineers MM 12/13/2012 West Side Christian High School e)ShesrRelnforcamsnt As 0.41 in'2 As=Vn/Fy distributed over height of wan Main Roof-Earthquake Design-CMU Shear Walls ACI 530.01-08 No.bars 2 Wall G.3A,G.38,and G.3C Bar size 4 As 0.4 inn Spacing 48.0 in Total 1.50InA2 OK I.GENERAL Pier fixity 0 1=fixed or 0=cantilever V.FLEXURAL CHECK ASTM Standard Rein(Bars II.PROPERTIES AND GEOMETRY Bar size Die.(in.) Area(in.) rm 1.500 psi Em 1,350,000 psi ACI section 1.8 a)Jamb RNnforesmsnt and Steel Ratios 3 0.3075 0.11 Fs 24,000 psi n 21.5 No.bars 1 5 0.825 0.31 Es 29,000.000 psi Bar size 8 6 0.75 0.44 V la V As 0.79 in>2 7 0.875 0.6 h 15 ft t 7.825 In P 0.00037 p=p'=As/led 8 1 0.79 L 288 In 1 dp 0.006 9 1.128 1 deft 280.0 in d=L-8" d 280.0 In 10 1.27 1.27 d 6 in 11 1.41 1.56 1 15178752 In'4 I If2RV WO r.hV 14 1.693 2.25 9I.APPLIED LOADS 18 2.257 4 b)Calculate Coefficients V 24.3 k r vtiv n _ M '! "v " m 0.023 Values of k=J mT+2q-m fs- Pa S k Vd .Vd - 7i ve ve - a` q 0.008 As id PO. S k Manson oird is w.em Procedure:Compute m and a. aw eRp and wxae, Meal of w w�..�*+Y. k 0.108 Mo 364.5 k-ft abet e=n Mewae Rena. One navy eentdaw err. fe k Location of Compression Resultant tatect lc-values in which r---l/ n \1-k Flours 2.Shear wall flxi0es m-rep t te(2n-11 N.SHEAR CHECK (2n-1)A's/kid 0.144 d r e-21e (k-• d7d) d ad 0264 0- np'p'12n--II- 11-kl a)Calculate Allowable Shear Stress 1-d'/kd 0.738 d M/(V'd) 0.83 For fixed piers=h!2d I., For cantilever piers=h/d z 0.321 j a fa: a 1 r + N For M/Md)<1 Fv=(1/3)(4-(M/Vd)1•SORT(Cm) psi ACI 2-21 ' '- f not to exceed Fv=80.45(M/Vd) psi Moment Arm 1 i I' J=1-zk 0.96$ For M!(V'd)>1 Fv=SORT(fm) psi ACI 2-22 - .A s not to exceed Fv=35 psi • e)Calculate Stresses >• ' * Fv" 58.1 pal -'- ar , r, • Fv max" 69.2 psi 'includes 1/3 Increase for wind and earthquake combinations Tensile Stress in Steel a.-"e Fv 58.1 psi h=M/(As)'d) d+ (2n liA•r "dal x I'kd/ b)Applied Shear Stress M=V'11/2(fixed pier)or M=V'h(cantilever pier) hr 11.1 psi tv=V/td OK M 384.5 k-R 1+ (2n.11 A', x!1 _ A:Ni fa 20486 psi OK 2 kid t kd l 1of3 2of3 KPFF Consulting Engineers MAA 12/13/2012 Compressive Stress in Masonry f,„ fb=fs/n•(kf1-k) � `y �- 11•ries fb 118 psi p _snlnnt of Fb" 858 psi OK Garierasslan Passes Fb=0 33•fm•1 33 ACI Section 2.3.3.2.2 r ^includes 1/3 increase for wind and earthquake combinations Figure 3.Demgn Coeffioents and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads 1a•PTOTAi.!A fa 18 psi Fa" 500 psi OK Fa=0 25 fm x 1 33 psi ACt 2.17 for non-slender piers **includes 1/3;ncrease for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb=MD•c In tb 41 psi Fb 858 psi OK VS.COMBINED STRESS CHECK fa/FA•fb/Fb<1 0 010 LOOK 3of3 0 0 KPFF Consulting Engineers MAA 12/13/2012 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School c)Shaer R.infbrcement As 0.16 in"2 As=Vn/Fy distributed over height of well Main Roof-Earthquake Design-CMU Shear Walls ACI 530.01-08 No.bars 2 WaII G.30 Bar size 4 As 0.4 in"2 Spacing 48.0 in I.GENERAL Total 1.50 In"2 OK Pier fixity 0 1=fixed or 0=cantilever II.PROPERTIES AND GEOMETRY V.FLEXURAL CHECK ASTM Standard Relnf Bars II. Bar size Die.(In.) Area fill.2) fm 1,500 psi Ern 1,350,000 Dal ACI section 1.8 a)Jamb Reinforcement end Steel Ratios 3 0,375 0.11 4 0.5 0.2 Fs 24,000 psi n 21.5 Es 29,000,000 psi No.bare 1 5 0.625 0.31 Bar size 7 6 0.75 0.44 h 15 ft -- _ v M , v As 0.6 inn 7 0.875 0.6 1 7.625 1n P 0.00058 p e p=As/led 8 1 0.79 rep 0.012 9 1.128 1 L 144 In " i d 138.0 in 10 1.27 1.27 dell/ 138.0 in d=l-8" -- - d' Bin 11 1.41 1.56 I 1897344 In"4 M _ M-crthv !is M-hV 14 1.693 2.25 18 2.257 4 III.APPLIED LOADS b)Calculate Coefficients V 9.3 k M Woo h by " Values of k m • M Pa 5 k ve Vii". 7.e ve ve - e' m 0.037 � 4-m I. A,)d q 0.014 Procedure:Compute m and o; PIA 5 k •v wd Imam. M k 0.134 }. k Mc 139.5 k-ft Shoo wW Mh we M en. One eery esonamor..Mr. Location of Compression Resultant *skeet k•values in which }� _/ Figure 2.Sher wall flxltles n \1-k IV.SHEAR CHECK (2n-1)A'a/kbd 0.182 ern=^p p (2n-11 d'/lid 0.440 d' f,"_21, (k-d'Jd) Q- rep+p'12n-ii- 11-kI a)Calculate Allowable Shear Stress 1-d/ltd 0.560 d M/(V•d) 1.25 For fixed piers=h/2d 1._..!- . For cantilever piers•h/d z 0.351 f " #A' e 1.. }r..rw y_..._.. •_ . For M I(V'd)<1 Fv=(1/3)(4-(MNd))'SORT(fm) psi ACI 2-21 : • °- not to exceed Fv=80.45(MNd) pal Moment Arm 7 i % =1-zk 0.953 For M 1(V'd)x 1 Fv=SORT(fm) psi ACI 2-22 I i s not to exceed Fv=35 psi i c)Calculate Stresses --,„• i ____, ,+_ _,_ . _ Fv 51.6 psi -4 .r, • Fv max" 48.7 psi **Includes 1/3 increase for wind and earthquake combinations Tensile Stress In Steel -h'°°" Fv 48.7 psi fa=M/(AMl•d) \] p 8+ 2kbdA x d" (1 d/ b)Applied Shear Stress M=V'h/2(fixed pier)or Al=V•h(cantilever pier) z fv 8.5 psi N.V ltd OK M 139.5 k-fl 1 * (2n•I I A', x 1 - d- 2 kbd ltd) fa 21526 pal OK 1of3 2of3 KPFF Consulting Engineers LISA 12/13/2012 Compressive Stress In Masonry f� fb=fain•(k/1-k) •Wed 155 psi nese tun Fb•• 658 psi OK Caeuiun Forces Fb•0.33•fm•1.33 ACI Section 22.3.2.2 ••includes 1/3 Increase for wind and earthquake combinations • Figure 3.Design Coalition%and Diagrams VI.AXIAL CHECK M Axial Stress due to gravity loads fa•Prork/A fa 23 psi Fa— 500 psi OK Fe•0.25 fm x 1.33 psi AC1 2-17 for non-slender piers ••includes 1/3 Increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb•Mo•c/in 84 psi Fb 858 psi OK VIt.COMBINED STRESS CHECK ta/FA*fb/Fb<1.0 0.14 < 1.0 OK 3 0f3 KPFF Consulting Engineers MAA 12/13/2012 1101 West Side Christian High School Main Roof- Earthquake Design ORITICAL CMU Shear Wall Footings Wall 3B I. INPUT Roof Load DL 29 psf LL 27 psf Tributary Width 4 ft Seismic Load Shear,Ve 31 k Elevations T/Footing 0 ft OA 15 ft T/WaII 15 ft RA 17 ft 13/Roof Deck 15 ft Wall Dimensions Footing Dimensions Slab Length 34 ft Width 1.5 ft Width 8 ft MU thickness 8 in Depth 1 ft Thick 6 in eight 15 ft w Soil Properties •0 __ rnvwLL D+L EQ qa 3.5 7 ksf II.OVERTURNING CHECK Dead Loads w Roof 3.9 k Wall 42.84 k Slab 20.4 k Footing 7.65 k R A TIFOOTING • TOTAL 74.8 k ' - Overturning Moment 465.0 k-ft Restoring Moment 1145.0 k-ft OK III. SOIL BEARING CHECK Footing section 289 ft"3 • roof 0.15 ksf q wall+footing 1.39 ksf q overturning 1.13 ksf TOTAL 2.67 ksf OK 1 of 1 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School Main Roof - Earthquake Design CRITICAL CMU Shear Wall Footings Wall 6 I. INPUT Roof Load DL 29 psf LL 27 psf Tributary Width 4 ft Seismic Load Shear, Ve 44 k Elevations T/Footing 0 ft OA 15 ft T/Wall 15ft RA 19ft B/Roof Deck 15 ft Wall Dimensions Footing Dimensions Slab Length 38 ft Width 1.5 ft Width 8 ft ( F , MU thickness 8 in Depth 1 ft Thick 6 in Height 15 ft vu Soil Properties •° __ T"VA" D+L EQ qa 35, 7 ksf II. OVERTURNING CHECK Dead Loads W Roof 4.4 k Wail 47.88 k Slab 22.8 k Footing 8.55 kA T FOOTING • • --- TOTAL 83.6 k -_- Overturning Moment 660.0 k-ft Restoring Moment 1430.2 k-ft OK III. SOIL BEARING CHECK Footing section 361 ft^3 roof 0.15 ksf q wall+footing 1.39 ksf q overturning 1.28 ksf TOTAL 2.82 ksf OK 1 of 1 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School Main Roof- Earthquake Design `:RITICAL CMU Shear Wall Footings Wall 10 I. INPUT Roof Load DL 47 psf LL 27 psf Tributary Width 11 ft Seismic Load Shear, Ve 85.7 k Elevations T/Footing 0 ft OA 15 ft T/WaII 15ft RA 19ft B/Roof Deck 15 ft Wall Dimensions Footing Dimensions Slab Length 38 ft Width 2 ft Width 8 ft :MU thickness 8 in Depth 1 ft Thick 6 in "Height 15 ft Vu Soil Properties 0 -- T WALL • D+L EQ - qa 3.5 7 ksf II. OVERTURNING CHECK Dead Loads Roof 19.6 k lw Wall 47.88 k Slab 22.8 k Footing 11.4 k •a •A T%FOOTING TOTAL 101.7 k ' -- Overturning Moment 1285.5 k-ft Restoring Moment 1739.5 k-ft OK III. SOIL BEARING CHECK Footing section 481 3333 ft^3 roof 0.41 ksf q wall+footing 1.08 ksf q overturning 1.87 ksf TOTAL 3.36 ksf OK 1 of 1 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School r2 Main Roof - Earthquake Design ti ;RITICAL CMU Shear Wall Footings Wall G.3A, G.3B, G.3C I. INPUT Roof Load DL 29 psf LL 27 psf Tributary Width 4 ft Seismic Load Shear, Ve 34 k Elevations T/Footing 0 ft OA 15 ft T/Wall 15ft RA 12ft B/Roof Deck 15 ft Wall Dimensions Footing Dimensions Slab Length 24 ft Width 1.5 ft Width 8 ft 1_,AFMU thickness 8 in Depth f ft Thick 6 in Height 15 ft Soil Properties •0 -- TWA" D+L EQ qa 3.5 7 ksf H. OVERTURNING CHECK Dead Loads Roof 2.8 k Wall 30.24 k Slab 14.4 k Footing 5.4 k R A T TOOTING • TOTAL 52.8 k --- Overturning Moment 510.0 k-ft Restoring Moment 570.5 k-ft OK III. SOIL BEARING CHECK Footing section 144 ft^3 (4-4 roof 0.15 ksf q wall+footing 1.39 ksf q overturning 2.48 ksf TOTAL 4.02 ksf OK 1 of 1 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School Main Roof- Earthquake Design .RITICAL CMU Shear Wall Footings Wall G I. INPUT Roof Load DL 29 psf LL 27 psf Tributary Width 4 ft Seismic Load Shear, Ve 40 k Elevations T/Footing 0 ft OA 15 ft T/Wall 15 ft RA 29 ft B/Roof Deck 15 ft Wall Dimensions Footing Dimensions Slab Length 58 ft Width 1.5 ft Width 8 ft °'-v'. MU thickness 8 in Depth 1 ft Thick 6 in f;_ ''`Height 15 ft v. 0 iWAIL Soil Properties --> • --- D+L EQ qa 3:5 7 ksf II. OVERTURNING CHECK Dead Loads w Roof 6.7 k Wall 73.08 k Slab 34.8 k Footing 13.05 k • R •A -- T FOOTING TOTAL 127.7 k --- Overturning Moment 600.0 k-ft Restoring Moment 3331.9 k-ft OK III. SOIL BEARING CHECK Footing section 841 ft^3 roof 0.15 ksf q wall+footing 1.39 ksf q overturning 0.50 ksf TOTAL 2.04 ksf OK 1 of 1 Sheet No. I Location I Dote 441/ M � Consulting Engineers - ��,02 1 � �2, _� Orient /o Revised f Job No. • �Dote -1 5 12.0' • I N f, Qor Zh+Q)Mr —__k - 2' A t.1.- -05 1. c_) 6-6,444.44_ ch2,‘. Pr I t r{(a-A- til4-uCL.• 444t2,4.- , .Z& t,ZS' 2 15.r sE- rt °cd0+o4 -+'bn... , 4,.= 5 SPA.. 4.._ -/ r..c>•t. v. s2 PIA-1.0410y Oita. w Ls, h) -, ;L -.f. .►J r G., r- bft . ©.ate -.-- O.i ci 4.4 1,1-" L e-f'Ff--GA J -$ '..aitik, Gar . 0 -7 ' 0 • L ' ._ -- - --- - ,-Q.c>fl F- 1 Ili► +�BF s i Cl�ui) 2 IA3-it" �- 1— — I 4 L 4,0 27.74- 1 442penl,tiZt I .,-,. ,- w 7 - 3 2-42=3(.2-el 5 = i 4,2. L..S w AAA, w .vo 2ni 4 „art+ w =(2-)C43. 3}(g3}Czs/4k /0O 742 L 3 'wpT it c.46-4.- --- w = (2-X45")C 9�x2-5/L) _ { , 3ls Lis • _ .4.A f f.A..3.;415_ . 15.11--.„tc:c____ .....rr i 5-5) . N--S I y 4 992. L¢ i 6-a • - K! '- :GSA 6Z L. I Pro Oct wc, H.e,. By 1 8, 1.040 !Sheet No I : /MR Consulti• i Lc.ccr"°n -rio-44.9 _toil_ ng Engineers 1-- Date Job No I Chen? kw A. _sT434..... Reveled • i Portland Oregon i Date ,20 572 0 1 1111F -- - ak3A44-. /404144-Y41I" t--6 ) z-- 1 ! I C.D—It-1 I 1 1 , 60dc..a.ic. 1 , I‘rZ I i I 1 t 5 f 1 151 in 81 Ili 'OW tAd 41 IS Ato.06-rth‘S L...Sv. , ie..6-e- re roof. it so/• 1 VP 4 VD (e ' ) ; 2'fl 1 *5-1 1 oic- 154-arr-t.4164.1" st444.t. Alikl (1b--- el gip e ) ...>64-et I'c.. Ata4..40_.0.LiSails'ar.4 I /V-•°. a A2.6.-Cri'o e■J I - c-ml-t L. A1. -44_._ •&44117 ..r, , 1- a 2.(5-1 k) 1 - .6--c t-t-4 1-4 4( 7 ._4.-i- :,--4.-,> 07 e'-62.P ,a'c JtAit. V i,g 1--- •13 z.. /. ( o k) i3'/Z - F')/(7s '-icf` -- /6.2_ k_. pie..._ir ! 6- -IAJ P.‘,24i4 i 4-or 6-441/4 /. 5- 1. 3 ( 25 ' 4 ii6A )/7' ' (57 k) - Lk,4.-tk..._ ii-r 6-4..`.r, 3 Vs --,- /.S ( 14‘/ ) /7-5- (,3-/ k. ) z.. -‘74)* .? k to 01-0 r-ait/ Af4.110 ,2001-- 2.4 K 0 , I r.3. k ityriet- f , 1 0 0 0 KPFF Consulting Engineers MAA 12/13/2012 KPFF Consulting Engineers MM 12/13/2012 West Side Christian High School `)Shear Reinforcement As 0.55 1;02 As•Vn#Fy distributed over height of wall NE Roof-Earthquake Design-CMU Shear Walls ACI 530.01-08 No.bars 2 Wall Grid 1.5 Bar size 4 As 0.4 in"2 Spacing 48.0 in Total 2.30102 OK I.GENERAL Pier fixity 0 1•fixed or 0•cantilever V.FLEXURAL CHECK ASTM Standard Rear Bars It.PROPERTIES AND GEOMETRY Bar size Die.On.) Area(n.) a)Jamb Reinforcement fin 1.500 psi E'm 1.350.000 psi ACI section Reinforcement and Steel Ratios 3 0.375 0 0.5 0.2 Fs 24,000 psi n 21.5 No.ban 2 5 0.625 0.31 Es 29.000.000 psi Bar size 7 6 0.75 0.44 v at v As 1,2 W2 7 0.875 0.6 t 7.625 n p 0.00034 p■p'•As/bd 8 1 0.79 L 468 in • �, rep 0.007 9 1.128 1 Jeff 480,0 n d•L-8" d 460.0 n 10 1.27 1.27 d 8In 11 1.41 1.58 I 85132262 in"4 Ore ..in•v in• r-•v 14 1.893 2.25 18 2257 4 Ill.APPUED LOADS b)Calculate Coefficients M V 32.9 k Resultant w xhv h w - El. h m 0.022 Values of k•J m + q-m t,• Pot 5 k vs •w • ad yr vs e` q 0.008 A,)d Pu. 5 It we,ewe ant v I k 0.103 Procedure:Compute m and u. Mad sod and banns. Wood A Mo 756.7 k-ft P.m••Ma=r••ga=rs. Or*WV aah•[w IOW. (• k Location of Compression Resultant aNece k•valuaa in which fm•_ n �}-k Figure 2.Shearwslllxltles m•np r p'i2n-11 IV.SHEAR CHECK - (2n-1)A1/kbd 0.139 lk-(rYd d'/kd 0.168 dr Y,-2t, ) a)Calculate Allowable Shear Stress 1-r)/kd 0,832 q•' nP• I2n-11 d (1-k) M/(V•d) 0.59 For fixed piers.11/2d r- For cantilever piers•h/d z 0.302 • For /(V•d)•1 Fv•(1/3)14•(MNd))•SORT(f m) psi ACI 2-21 4 ~__..Y '` M Ann to exceed Fv•80.45(MNd) psi Moment n 7: %, )•1-zk 0.969 • we For M/(V•d)>1 Fv•SORT(fm) psi ACI 2-22 r MI ` s not to exceed Fv•35 psi an • e)Calculate Stresses -Y al - ._..- _ ' r _i -_y_ Fit* 58.7 psi -1 rYn t Fv max" 71.3 psi "includes 1/3 increase for wind end earthquake combinations Tensile Stress In Sleet - N-••• Fv 58.7 psI ts•M/(As7'd) / d t 4 (2n-11A'• x x I- 1 b)Applied Shear Stress M•V•ti/2(fixed pier)or M•V•h(cantilever pier) 6 kbd kd kit z• iv 9.2 psi fv•V/td OK M 758.7 k-ft 14 (2n 11 A', It 1 _ d' lcd fs 18981 psi OK 2 kixr 1of 3 2of3 C-- C rte al' KPFF Consulting Engineers MAA 12/13/2012 Compressive Stress in Masonry { en E Ai•o'e,7 71 rtef tb 91 psi Rssuttsnt of Fb" 658 psi OK y I �,.,p,ntion } Forces Fb=0.33-fm•1 33 ACI Section 2.3.3.2.2 "includes 1/3 increase for wind and earthquake combinations • Figure 3 Design Coefioents and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa=P.,I A fa 24 psi Fa" 500 psi OK Fa=0.25 fm x 1.33 psi ACI 2-17 for non-slender piers "includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning lb=Mo-c l In ib 33 ps Fb 658 psi OK VI1,COMBINED STRESS CHECK fa/FA•fb/Fb<1 0 010 < 10OK 3of3 9 0 0 KPFF Consulting Engineers MM 12/13/2012 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School c)Shear Reinforcement As 0.76 m"2 As:VrVFy distributed over height of wall NE Roof-Earthquake Design-CMU Shear Walls ACI 530.01-08 No,bars 2 WaY!Grid D As ear size 0.4 ki"2 Spacing 48.01n Total 2.30 in"2 OK I.GENERAL • Pier flxily 0 1•fixed or 0•cantilever V.FLEXURAL CHECK ASTM Standard Reinf Bars II.PROPERTIES AND GEOMETRY Bar size Dia.(m.) Area(in)) a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 fm 1,500 psi E'm 1,350,000 psi ACI section 1.8 4 0.5 0.2 Fs 24,000 psi n 21.5 No.bars 4 5 0.825 0.31 Es 29.000,000 psi Bar size 7 8 0.75 0.44 v sr v As 2.4 m"2 7 0.875 0.8 h 23 ft p 0.00089 ped'As/bd 8 1 0.79 t 7-825 m op 0.019 9 1.128 1 L 380 M - " 3 d 352.0 in 10 1.27 1.27 deft 352.0 in d•L-8" ' d 8 in II 1.41 1.56 I 29646000 m^4 w-,nsV ins ra-ev 14 1.693 2.25 18 2.257 4 I9.APPLIED LOADS b)Calculate Coefficients M V 45.3 k w _ssv " w _ t•w s m 0.057 Values of k•\/m=•2q-m to•- Ppt 10.44 k ve SCT ' 3d v4 vs "■ q 0.020 A,ld PrL 9.72 k shawv dve.,s.0 un•err flew eye k 0.151 Procedure:Compute m and q; Mb w and Mew+. Mee w serer ewe. Mo 1041.9 k-ft pew oven Whose+s,,.. ONO Obey aaer.r..n1. t• / k • Location of Compression Resultant sstett k•wlun in which f s_-1 n \1-k Figure 2.Sheer wa11lbdtles in-op+P 12n-It IV.SHEAR CHECK (2n-1)A's/kbd 0248 d' e e 2f� Ik-d/d) d lkd 0.150 0- IV•Wan- It- a)Calculate Allowable Shear Stress 1-d'/kd 0.850 d 11-kl M/(V'd) 0.77 For fixed piers•h/2d e^ For cantilever piers•h/d z 0.279 1 a f a 3 µ-- FaM a(V'd)<1 Fv•(1/3)(4•(MNd)).SORT(fm) psi ACI 2-21 PI ..1' r c not to exceed Fv•80-45(MNd) psi Moment Arm j•1-zk 0.958 SO } . For M/(V•d)x 1 Fv•SORT(fm) psi ACI 2-22 NI • [ not to exceed Fv•35 psi as c)Calculate Stresses am ___.. r �.. Fv" 55.7 psi -e '1," , Fv max" 60.7 psi "includes 1/3 increase for wind and earthquake combinations Tensile Stress In Steel • Fv 55.7 psi fs•M/(As'j•d) 1 ' -2n I I A' d' x `(/)_ b)Applied Shear Stress M•V h/2(fixed pler)or M•V h(cantilever pier) z 6 kbd kd kd tv 18 5 psi Iv•V/td OK M 1041.9 k-fl 1 ; (2n•11 A'• x 1 _ d' Is 15453 psi OK 2 kd - 1of3 2of3 ■ +5.°;F1r3 KPFF Consulting Engineers MAA 12/13/2012 Compressive Stress in Masonry f� fb=fshl'fk/1-k) b 'n+'o� rye fb 128 psi Resultant of Ft,'" 658 psi OK Comp-two. —�--- Forcae Fb=0.33'fin'1 33 ACI Section 2.3.3 2.2 includes 1/3 increase for wind and earthquake combinations Figure 3 Design Coeflioents and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads be 28 psi Fa— 500 psi OK Fa=0.25 fm x 1 33 psi ACI 2-17 for non-slender piers includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to wall panel overtuming fb=Mo c/In fb 76 psi Fb 658 psi OK VII.COMBINED STRESS CHECK fa/FA-fb/Fb<1 0 017 c 1OOK 3 of 3 - KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 111 SW 5th Ave,Suite 2500 Dsgnr: MAA • Portland,OR 97204 Project Desc.: Calculations ) 30 (503)227 3251 Project Notes Coesulting€ngineers ' PmteQ 13 DEC 2012 6:25P1,1 Ot'1Cr @t@ Shear Wall 1Userslmaretano.KPFF-PD1nDocumentsll currentProjects+209512.01 WSCHICalculatonsrwalcafculabonsec6 ENERCALC,INC.1983-2911,Buld:6.11.7.11,Yen6.113.11 Lit.#:KW-06000870 Licensee:kpff consulting engineers Description NE Roof Shear Wall-Grid 3 General Information . . . Calculations per ACI 318-08,IBC 2009,CBC 2010,ASCE 7-05 Wall Material : Concrete Material Properties Default Rebar Sizes&Spacing Sds 0.760 fc 4.0 ksi Vert Bar Size 1< 4.0 Vert.Bar Spacing 12.0 in fy 60.0 ksi Horiz Bar Size 4 4 Horiz.Bar Spacing 12.0 in Wall Length 38.0ft Density 150.0 pcf Min.Bar Cover 1.50 in Wall Height 23.0ft Wall Thickness 6.0 in Ec 3.0 ksi Lateral Shear Distribution Pier Ev 1,248.0 ksi Flexibility Method : Piers Rigid,Using Relative Stiffness Phi-Shear 0.650 Opening ID Dist to Opening Dist to Opening Left Edge Width Bottom Height I y' -� �s r � \ T .+y y t f . am .4,10- � li, All units : ft , - `", ` : ° Q ,,,R s- .—_ NW It Applied Concentrated Lateral Loads Load Magnitude (kips) Load*V"Location (ft) Wind Load Seismic Load 23.0 0.0 47.30 Pier Force Distribution 8.Reinforcing Summary Load Combination Pier Info Shear Values (k)&(psi) Reber Reqd in Pier ID for Maximum Shear Height Length Group Vu vu phi*vc Note As-Horiz As-Vert P1 +1.20D+0.50L+0.20S+E 22.99 38.00 1 47.30 21.61 82.22 Vu<PhiVc/2,Min Only 1744>3.31 in2 1744>3.28 in2 Detailed Pier Analysis Pier Pier Pier Vu Vu Vu From Govern Pier Nu Nu From Govern ID Group %V Applied Self Wt Above Vu Total LoadComb %Axial Applied Self Wt Above Nu Total LoadComb P1 1 1.000 47.30 0.0 0.0 47.30 +1.20D+0.50L+0.20S 0.000 0.0 91.724 0.0 91.724 +1.40D • - j KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 W111 SW 5th Ave,Suite 2500 Dsgnr: MAA j Portland,OR 97204 Project Desc.: Calculations (503)227 3251 Project Notes: Consulting Eng,neers Prow!13 DEC 2012.6 25PM °'- `concrete Shear Wall 1USers4nereNeno.KPFF-PDO,Cocumentsa Current 1209512.01 WS nC cul wall cakuI ons.ec6 ' ENERCALC,INC.1983-2011,8u8d:6.11.7.11.Ver6,11.7.11 Lic.#:KW-06000870 Licensee:kpff consulting engineers Description NE Roof Shear Wall-Grid 3 Footing Information Footing Dimensions Dist.Left 0.0 ft Pc 3.0 ksi Rebar Cover 3.0 in Wall Length 38.0 ft Fy 60.0 ksi Footing Thickness 12.0 in Dist.Right 0.0 ft Width 2.0 ft Total Ftg Length 38.0 ft Max Factored Soil Pressures Max UNfactored Soil Pressures @ Left Side of Footing 1,416.90 psf @ Left Side of Footing 1,012.07 psf ....governing load comb +1.40D ....governing load comb +D @ Right Side of Footing 8,870.22 psf @ Right Side of Footing 8,635.16 psf ....governing load comb +0.90D+E ....governing load comb +0.60040.70E Footing One-Way Shear Check... Overturning Stability... @ Left End of Ftq Right End of Ftq vu @ Left End of Footing 0.0 psi Overturning Moment 794.64 k-ft 794.64 k-ft vu @ Right End of Footing 0.0 psi Resisting Moment 876.86 k-ft 876.86 k-ft vn*phi:Allowable 93.113 psi Stability Ratio 1.103 :1 1.103:1 ...,governing load comb +0,60D+0.70E +0.60D+0.70E Footing Bending Design... @ Left End @ Right End Mu 0.0 k-ft 0.0 k-ft Ru 0.0 psi 0.0 psi As%Req'd 0.00180 inA2 0.00180 inA2 As Req'd in Footing Width 0.3888 inA2 0.3888 inA2 `,- KPFF Consulting Engineers AMA 12/13/2012 West Side Christian High School NE Roof- Earthquake Design RITICAL CMU Shear Wall Footings Wall DI I. INPUT Roof Load DL 29 psf LL 27 psf Tributary Width 12 ft Seismic Load Shear, Ve 63.4 k Elevations T/Footing 0 ft OA 23 ft T/Wall 23 ft RA 18.5 ft B/Roof Deck 23 ft Wall Dimensions Footing Dimensions Slab Total Coupled Length 37 ft Width 3 ft Width 8 ft MU thickness 8 in Depth 1 ft Thick 6 in iglu 23 ft 0 T WALL Soil Properties • D+L EQ qa 3 _ 7 ksf N.OVERTURNING CHECK Dead Loads lby Roof 12.9 k Wall 71.484 k Slab 22.2 k Footing 16.65 k A A T.'FOOTING • • --- TOTAL 123.2 k - --- Overturning Moment 1458.2 k-ft Restoring Moment 2051.4 k-ft OK III. SOIL BEARING CHECK Footing section 684.5 ftA3 roof 0.22 ksf q wall+footing 0.99 ksf q overturning 1.49 ksf TOTAL 2.71 ksf OK 1 of 1 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School NE Roof - Earthquake Design CRITICAL CMU Shear Wall Footings Wall D I. INPUT Roof Load DL 29 psf LL 27 psf Tributary Width 4 ft Seismic Load Shear, Ve 46 k Elevations T/Footing 0 ft OA 23 ft T/Wall 23 ft RA 19.5 ft B/Roof Deck 23 ft Wall Dimensions Footing Dimensions Slab Length 39 ft Width 3 ft Width 8 ft : ;MU thickness 8 in Depth 'tft Thick 6 in Height 23 ft vu Soil Properties 0 __ T'""« D+L EQ qa 3.5 7 ksf II. OVERTURNING CHECK Dead Loads w Roof 4.5 k Wall 75.348 k Slab 23.4 k Footing 17.55 k •N A T'FOOTING IP TOTAL 120.8 k Overturning Moment 1058.0 k-ft Restoring Moment 2120.4 k-ft OK III. SOIL BEARING CHECK Footing section 760.5 ftA3 E roof 0.07 ksf q wall+footing 0.99 ksf q overturning 0.97 ksf TOTAL 2.04 ksf OK 1 of 1 i r I efciec? W iaCA+ :Bv 14144 ?he'''. Effa Consulting Engineers Location in 6.04.0 ,,, .. - I Date 11420112., 1 1314 i Job No 1 aiera POWIN -..162 Revised ! jai. Poeiond.Oregon ZO`N 5(j,c 1 ' Date Auprott:out-t - 6.41,24t1-0,m•cf_ 4.ts,4Lye7x.. Ae-it, i ! c..- Crt4.44-e.A.L. caC1-,F—tal A- ! •i 's>des. =-. 0.4-6) es , ! oce-Aa FA-Nil-AI c4ii-dreal -Da- 1 , -T-ti et)ar-tracf_ f-Acian.... 1 I 6-.---I.25 1 r/1-4 S r 0..)e,f... tiz.P:'-04c6rjro.--; fAue.a , 2= 5 . e.f 44 4-t. el-e---14e-Eva-c-C—P sDet_ N.A-60,0t4 P-1 s f4.6.44._ 1 17) f.le. s-kt(..., ar„e,,Pc■AA4-,E., cc . ; c„.;4_,4 r I , et::.•4- .. 0. (9 .. C) 6-C- i-LAW"E #>f:S,K;C tdkir 0 I I 6rittiv4 ;v1-1 Ce.f._ &-y/.1 cAtctic44-);c4s) I fsi I 41--- W fx-xi.L.34Li 101 I , 4-ve,oer2.4. r ,r 1 ie r--- 1 1 Z.Of ''.\<..--f AU ibr2.!01.-.) / [..... ...Ht, k 64 .6-Xr cual-i4.10+05,46.114. q s P4F- I 410' I ,i/ — iw.............j_ _____ i — L4 PO f -2? .5F- -. (200.1, 417- 4 =--- 11300 142- e Of wu r= 113,00 (Set t ) .::, /7 4 goo 1.s • — Wil-t.,■.. V4Tea. Itio.t.r>#,I *pant viz. (a.)(4c,)(cts)( A ,,_04...,r ,..) t.- (' oKett4z4.11-2.).4-(1(o)(ss)( Islz.. — I B - 1440 ..1 Sheet No. —1 1 1 Location -6 644-40_,_t ea_ ;fate /2.41/CZ_ 41 V.3C j fiffri C o n s u 1 ti n g Engineers 1 I i-- I Job No. lnt 4 R./tr. . Date 7C - f A-opitroal'ut4 - rwii•e-r14-aNkat‹.' .e., OW44It-Yit' 1 ! i k V'''''Cap • `44 -r (9141( tri/,h90 6,6) l'''' 36>.3 k_ N- -, .-..-... 5-4,0 k.. .E-v..1 44 T 1 6,.ifirA.10evot 0 i __. (,,,,,,,04.5,:-, , 1 1 1 1 1 . vc_ , 71------ a." 77,5CX. e-Ift) I I -.4.—-. I i (..-) G i./4-tt- A v at_ gel.147- --7(-- i .....,--..r-.,--....--.—...------ ..- - - Ar I 1 ltalit Ai 4-%..0,1 6,4401f1 1 149 1 111.111 1 \Ito i I • ---- ----- frig---* 1 c.,_ f-c,..A.-t,6_, ,„1, zo-TY2--; 9.-0 ri-adv Ai- P,`"?---4-.T1''c & ! ! i 1 — (,--rn A-)4-... on 0A-cc- ei,•ii... 45.0; r-- /co/ 14 SC"/- /41).4-12- 1 , /3 (34.3 ) , i 1 – 0-41_,F-Arra-kz 1-47 e_t_. 1-.,-,rez...9 „ y extruc., (.44u_,.-- A,.2-icwb.) i ..;_- v ‘. =-- f. 3(36. 3 14- )(4c:A- lots : 4 4 k_ , i , 1 — Is i4-M'2- 4-1942.44._ T.,4 e_coJ utle-re- 1 k- I i v,e,, 1.-- CI,1t.)C":"/ /0 ' ) (5-14-14. ) _.. et k.. i 1 i 0 f . i 1 I t i 1 1 1 KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 111 SW 5th Ave,Suite 2500 Dsgnr: MAA • Portland,OR 97204 Project Desc.: Calculations (503)227 3251 Project Notes: 1 J(g C0nsuttrnp Engineers ------- ------- -- - -- ---2 0 1 2 12-A6PM ;:1llsersUnarefano.KPFF-PDX\Documents11Current Proiects120951201WSCH1CalcuIationslwaIcalculations.ec6 oncrete Shear Wall ENERCALC,INC.1983-2011,Build:6.11.7.11,Ven6.11.7.11 Lic.#:KW-06000870 Licensee:kpff consulting engineers Description: Auditorium Shear WaN-Grid 6 General Information Calculations per ACI 318-08,IBC 2009,CBC 2010,ASCE 7-05 Wall Material : Concrete Material Properties Default Rebar Sizes&Spacing Sds 0.760 fc 4.0 ksi Vert.Bar Size# 4.0 Vert.Bar Spacing 12.0 in fy 60.0 ksi Horiz Bar Size# 4 Horiz.Bar Spacing 12.0 in Wall Length 26.0ft Density 150.0 pcf Min.Bar Cover 1.50 in Wall Height 17.50 ft Wall Thickness 6.0 in Ec 3.0 ksi Lateral Shear Distribution Pier Ev 1,248.0 ksi Flexibility Method : Piers Rigid,Using Relative Stiffness Phi-Shear 0.650 Dist to Opening Dist to Opening — Opening ID Left Edge Width Bottom Height -1 it • All units: ft Pt' --- — — — Applied Distributed Vertical...Loads Load Location (ft) Load Magnitude (kips) Start Location End Location Height of Application Dead Load Roof Live Load Live Load Snow Load 26.0 1.860 Applied Concentrated Lateral Loads Load Magnitude (kips) — — — — Load"Y"Location (ft) Wind Load Seismic Load 17.50 38.30 —._. Pier Force Distribution&Reinforcing Summary Pier Load Combination Pier Info Shear Values (k)&(psi) Rebar Reqd in Pier ID for Maximum Shear Height Length Group Vu. vu phi*vc Note As-Horiz As-Vert P1 +1.20D+0.50L-0 20S--E 17.50 26.00 1 38.30 25.57 82.22 Vu<PhiVc/2,Min Only 1344>2.52 in2 12-#4>2.25 in2 Detailed Pier Analysis Pier Pier Pier Vu Vu Vu From Govern Pier Nu Nu From Govern ID Group %V Applied Self Wt Above Vu Total LoadComb %Axial Applied Self Wt Above Nu Total LoadComb P1 1 1.000 38.30 0.0 0.0 38.30 +1.20040.5000.20S 0.000 0.0 47.775 0.0 47.775 +1.400 • KPFF Consulting Engineers Title: Westside Christian High S:cool Job# 209512.01 111 SW 5th Ave,Suite 2500 Dsgnr: MAA • Portland,OR 97204 Project Desc.: Calculations (503)227 3251 Project Notes• Consi,' ,1g i:rng1neets --_—.-- —__.--- Nit Mt 9OEC 2012 12.48PM "` Concrete Shear Waft :'',UseS\Jna sio.KPFF-PDX∎Documents;1 Current Pr ects!20951201 WSCH1Calcutationshrafcacul�ions.ec6 ' ENERCALC.!NC.1983-2011,&eid:6.11,7.11,Ve6.11.7.11 lc.#:KW-06000870 Licensee:kpff consulting engineers Description: Auditorium Shear Waft-Grid 6 Footing Information Footing Dimensions Dist.Left • ft Pc 3.0 ksi Rebar Cover 3.0 in - Wall Length 26.0 ft Fy 60.0 ksi Footing Thickness 12.0 in Dist Right ft Width 2.0ft Total Ftg Length 26.0 ft Max Factored Soil Pressures Max UNfactored Soil Pressures @ Left Side of Footing 2,430.75 psf @ Left Side of Footing 1,736.25 psf ...,governing load comb +1.400 ....governing load comb +D @ Right Side of Footing 6,328.27 psf @ Right Side of Footing 4,697.35 psf ....governing load comb +0.90D+E ....governing load comb +0.600+0.70E Footing One-Way Shear Check... Overturning Stability... @ Left End of Ftg _a,Right End of Ftq vu @ Left End of Footing 0.0 Psi Overturning Moment 495.99 k-ft 495.99 k-ft vu @ Right End of Footing 0.0 psi Resisting Moment vn'phi'Allowable 93.113 psi g 704.22 k-ft 704.22 k-ft Stability Ratio 1.420 :1 1.420:1 ' ....governing load comb +0,600+00.70E +0.60D+0.70E Footing Bending Design... A Left End p Right End Mu 0.0 k-ft 0.0 k-ft Ru :.0.0 psi 0.0 psi • As%Req'd 0.00180 inA2 0.00180 inA2 As Req'd in Footing Width - 0.3888 inA2 0.3888 inA2 . • • • F r _ - KPFF Consulting Engineers Title: Westside Christian High School Job# 20(•512.01 i l 111 SW 5th Ave,Suite 2500 Dsgnn MM • . Portland,OR 97204 Project Desc.: Calculations 138 l (503)227 3251 Project Notes: r Consulting Eagineers L..._^__.- - _.:_• ___. Pri,W:9 DEC 2012.1246Pr! - • •ncrete Shear Wall - 4 Ciei' a. 09512QI aaartss.o6 PERCALC•1NC 19812011.Butd6 11.711.10,!11.711 KW-:- -7O L■censee: kpN consurbnp engineers Deaaiption: Auditorium Shear Wall-Grid 10 Ganaral Information Calculations per ACI 318-08,IBC 2009,CBC 2010,ASCE 7-05 Wall Material : Concrete Material Properties Default Rebar Sizes&Spacing Sds 0.760 t'c 4.0 ksi Vert Bar Size# 4.0 Vert.Bar Spacing 12.0 in fy 60.0 ksi Horiz Bar Size# 4 Horiz.Bar Spacing 12.0 in Wall Length 40.0 ft Density 150.0 pcf Min.Bar Cover 1.50 in Wall Height 17.50 ft Wall Thickness 6.0 in Ec 1,243.0 ksi Lateral Shear Distribution Pier E Flexibility Method : Piers Rigid,Using Relative Stiffness Phi-Shear 0.650 Opening ID Dist to Opening Dist to Opening Left Edge Width Bottom Height r . ____ 7 Pt Y " � 1 ,- All units: ft Applied Distributed Vertical Loads Load Location (ft) Load Magnitude (kips) Stan Location End Location Height of Application Dead Load Roof Live Load Live Load Snow Load -- -- 22.0 1.860 _..-- Applied Concentrated Lateral Loads Load Magnitude (kips) Load"Y'Location (ft) Wind Load Seismic Load 17.50 31.90 Pia Force Distribution&Reinforcing Summary Pier Load Combination Pier Info Shear Values (k)&(psi) Reber Regd in Pier ID for Maximum Shear Height Length Group Vu vu phi*vc Note As-Horiz As-Vert P1 +1.20D+0.50L+0.20S+E 17,50 40.00 1 31.90 13.85 140.04 Vu<PhIVc/2,Min Only 13#4>2.52 in2 18-#4>3.46 in2 Detailed Pier Analysis Pier Pier Pier Vu Vu Vu From Govern Per Nu Nu From Govern ID Group %V Applied Self Wt Above Vu Total LoadComb %Axial Applied Self Wt Above Nu Total • LoadComb P1 1 1.000 31.90 0.0 0.0 31.90 +1.20D+0.50L-0.20S 0.000 0.0 73.50 0.0 73.50 +1.40D III KPFF Consulting Eng r ors Title: Westside Christian High School Job# 209512.01 111 SW 5th Ave,Suite 2500 Dsgnr: MM 0 Portland,OR 97204 Project Desc.: Calculations 261 r (503)227 3251 Project Notes: Consuming Engoters Pnr*O P DEC.Q12 'ac?;., . oncrete Shear Wall :` m.KP -PO)OOocume"t"' ' 9'2.o1WSC c lalkohvall ca ed ENERCALC.INC,1983-2011,Solt6.11.711,Ver:6.11.7.11 `. to.#:KW-06000870 Licensee:kpff consulting engineers Description: Auditorium Shear Wall-Gnd'0 Footing Information Footing Dimensions Dist.Left ft fc 3.0 ksi Rebar Cover 3.0 in Wall Length 40.0 ft Fy 60.0 ksi Footing Thickness 12.0 in Dist.Right ft Width 1.50 ft Total Ftg Length 40.0 ft Max Factored Soil Pressures Max UNfactored Soil Pressures @ Left Side of Footing 3,678.78 psf @ Left Side of Footing 2,627.70 psf ....governing load comb +1.40D ....governing load comb +D @ Right Side of Footing 2,418.94 psf @ Right Side of Footing 1,819.06 psf ....governing load comb +1.20D+0.50L+0.20S+E ....governing load comb +D+0.70E Footing One-Way Shear Check... Overturning Stability... al-eft End of Ftg @ Right End of Ftg vu @ Left End of Footing 0.0 psi Overturning Moment 413.11 k-ft 413.11 k-ft vu @ Right End of Footing 0.0 psi Resisting Moment 1,008.07 k-ft 1,450.01 k-ft vn•phi:Allowable 93.113 psi Stability Ratio 2.440 :1 3.510:1 ....governing load comb +0,60D+0.70E +0.600+0.70E Footing Sending Design... it)Left End 11 Right End Mu 0.0 k-ft 0.0 k-ft Ru 0,0 psi 0.0 psi As%Req'd 0.00180 inA2 0.00180 in^2 As Req'd in Footing Width 0.2916 inA2 0.2916 inA2 P"'et v4.)07 C.-i-f- By 1..{ z., Sheet No. 14° 1 Mgt Consulting Engineersrcati°n -r)‘&442-4:5 1 e ft- Date 1 1 . 1 JOID NO ■ i Client Pcto A- -.I-am Revised i . .0.9. , ;Date i A9957).Di i (Ai A0 OftAMIt'L'YIA-'t c'..4.) 4..)! 1 0 Irl.4" frt.,f 4.--€-- e _- /co.& P 'F JP rans.0$4-4-47 t..04t.u.. 4,26-A"- 0 I • 1 . ; I 1 1 1 944.2,4-Pir •+i— 1 1 I 3.0 f 1 %Si 1 1 4 4i • '! i i 4 7-- -30 x /4,S 1 1 - vv hi r., 6--w c•ilat5-c4N`csAd Ho --= 3300 I i 1 C- , 1 -) everiat- " 1406,...44.— — AJ - ta C?I'/-4.‘Crie)0%) NI";- (243151( 1 4 • )/MO 0 Z- A€, 1 te.- 1 - 1 1 0 I Woiect N A(AQ-+7' I Sheet No. . i Location �� 1 Date `i Consulting Engineersi-atian -- - .;- -------.-----._ 111ZG�'2 1 Job No. ;i Client PaMand.Oregon ----- --'- !POW ---...-------... i_ — L-- t Date #209512,01 i 67KA ,M - , 11+QLj1- i c._.) G Wit~ La 7.6.41`4 I Otaots PA-.4 c.y c 4- /a1 Z1 c10#21 404 tom.. ,44+ a'L. , Z.4... .1 1. Z.5- j n► K91 ' u4na^a fit- 1. /Ls5 'f `Wit Z6'qf c4rC�tf 02 MA4 o ii2j gt 4L t.J.4tt, 1 i b) '6.1444t114-- � � ,gs �er 1 c4 p.t if �.} 4-F-f4401NE. 4)1 c_ w ;�47- r 1 0 D c-.0*-1C-• 0 1 0 -17 CoA+C. •g"Gp,vc,,. I 14 i A I ......t...........f _ ` J do of FLA-NJ -._._ I _ .26,47>.� A-&L /0C/544 z f- w = /0 G r4--- (1..0 (0'f) Lr 2,;01.3 L.e! — w4tt_ w 1 ..- N-S c; '26 c i'$oni /00 �s A- (Z(01 IF -yn.1 D.'n6-t_4-0 Ni /00 Pyf (2(0 + Al')(Po' ) 4-- 1 ro4 P4F�2104 -,f 1.0)610' ) 391,Ii o L3 1 0 . -- J 0 -S !h`2 ...c c`i 44 N ._._.. 03-40,0.--lc f - ry pi �nbti w 545. 8 ■ liTheet No Proiect Itj 4.. AAA- I • I 141 frifi Consulting Engineers;-1-c'cat'°n r402..- iDate •1 Portland.°moor, C"ent POr4 Revised Date pob No. 1009512,0 gr'"A‘ - '144.714-0,O $b")A-Lys7c. 01) aoh-Sof-- C4, v1/41 - P.Ne1-6 t-r*tV iJ 1 V 17. ( /oz 4. k - 0,t9 (.9f3.-Fs /12. 8 i AP v . 15-414.-Pftw4gt-- eife4-2.`5,0,4 41%Al 6e2 0.7 qe.1 — vJ 04.4-4.2iet kr:gig #54 , r-D.P- 44. ErovEadd • ay r.( sheet No MR Consulting Engineers Lccciticn 1.4�•'D!O� DOfe 1E Iz.4ilz 143 rcrrlm�,Raga, dent IP ow A-,X-Q„T Revised Job No. Dote 2tJ X2.Of J do vA 0 �✓-s p -�t�o� L PLA-e4 A- !OZ. 5/ 4 l_ 402 ep. N6 kL - e 2- • VG = l__ k S µ4 02 49.116 26' �4ff + A-,3p4'fb12 J v`.'w4: =j K= vg.z- E. 02 0, got, --w N D.`/�761.�'r o .• = 112- S k = -6,4 k 42 0.S84 AfiF 411110 IConsulting Engineers i T�'A . t a�" Dote lk I • a- Jct. + �^t Q% �-�Z ,Revised bb No Voma,c.C regon F e , J I Date ?CA 51Z MI 1 t-Y#d Pi 441770 y -PA?>rAA-Q Pak_ 44tf 4;5 1 Pw N I f W A-U..? 1\ Al/Woe —II F i Tl � _ __ _ d coNC. . Th-T-�P oo et* 2.12 V4.=si,µ� , � j � t ark).../ �E OD to*'? C..) A. (L+')(0.0 At.F-) - BO tLF- =. (.,W )(Z 429f ) /0 ' Pnt- 44)4t..l._ LO4j _ 3e0 'C/oo A4,-} = PL& 0 - GI B f-V ''''ir '--b" L......'.91! c'QO60(r ,vt- #t c.. �S S.._ _ /5 5-5 P - G 3 ::.04..4,f- 6),<_// 2.5 9.0. = /10 .. bG.y _.. (45 )0/0..” so<42 1_4'3 S ro G c- 6- = 14 33 G .140C) . Z66- f f r-JOML T Tcn4c. _ /55.5- e'g f-- +2 F*�r. 1$Zp F4.4e loco P1:.,F- ace -- C....(41-4...e. o(f_a z u r z 4 0�...►/0- (As« P ..S c pi me -) ©f't = //334o k- - i Ai — O. / (8 kt.F-)(//o' )0(01/2. } .= i6) 335 k- FTr '7 > t t 3.. 14.. F-; NIP i shee No. ' 8Y 14 4-4 ,--- , EMI Consulting Engineers ___2 _49._ ! rkite 11127//i I _4 —I- 1 client .gpcs,A ... ..r Revised I Job No. 1 pc:diono 0,coon 1 I Date 10015/2.0f I 1 i 6-yH 14.,01-4-.?;,04 -,6-412-114--OLJ AV& ! n c„)4-kk.__ f-oo I..>2.4-71 o pa(.., W too - T — — Z-Do f- 12;I f."4-Y 6,449.)tit, T/40.0:74001 — — -- — • t 7,(0' to.3,4-at el or-.• 118 t /01t .1' / /fp' i / 1-1-141 A-D`o fo t20 OF L D Ø L. e_ =-- giD NJ-- 1013 a fr 12-0 et f' • — "4-("IC" L e-16444` P3 cr- 1.13'f f C41 flP6.- hoon'Aier (566- il-TrAti+4_0) -1- I. , q6., -.:,._ Pt_ /66 t..- 6/,di (2,i,) -1,- 43.4-(as) .•- 2.4-V k--E-r S , ,Foitz I,4-3. 4i 1 4,--,& 5100 2— 1.-rorik L. ::- '2 61S-4- 0E4 4 101 (4.0- - ci+c-,,....v._ 00 ) , J&- - - zogc. k-- - (3 .11.)(_1(0' )C1 (01/ ) .: /6 qgek-lcT ,, Z-44$ k-fr 014-// _ --- - KPFF Consulting Engineers MM 12!1312012 KPFF Consulting Engineers MAA 12/13(2012 West Side Christian High School c)Shear Reinforcement As 1.13 In^2 As•Vn!Fy distributed over height of wall Gym-Earthquake Design-CMU Shear Walls ACI 530.01-08 No.bars 2 Wall Grid C Bar size 5 As 062 in'2 Spacing 48.0 In I.GENERAL Total 4.03 In'2 OK Per fixity 0 1•Used or 0•cantilever II.PROPERTIES AND GEOMETRY V.FLEXURAL CHECK ASTM Standard Relnl Bars Bar size DIa.(In.) Area(In.2) fm 1,500 psi a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 fro 21,500 psi Ern 1.350.000 psi ACI section 1.8 4 0.5 0.2 D n 21.5 No.bars 2 5 0.825 0.31 Es 29,000000 psi Bar size 8 8 0.75 0.44 n 28 R v _ As 0.88 In"2 7 0.875 0.8 t 11.825 M 0.00007 p•o'•As 7 bd 8 1 0.79 L 1080 in " "0 0.002 9 1.128 1 cleft 1072 0 In d=L-8 d 1072.0 In 10 1.27 1.27 { 1.22E♦091n"4 d' 8ln 11 1.41 1.58 xi, er-in nV d re.IN 14 1.893 2.25 Ill APPLIED LOADS I 18 2.257 4 b)Cak:ulats Coefficients V 88 k Resultant w wv . M Pa 7.2k va "ae - 7a w- va - a in 0.004 Valun ofk��/m ♦ p-m 1,.....-�d q 0.002 Aeld Pu 9.7 k row.,*kw,yr. wwvr awr.w k 0.051 Procidure:Compute in and g. s.ed.e•and bed., hind•Swum wr Mo 1788 k-fl Brae.rail e..w•door. Ode Mot w.•b.ern.•. select K•vsiusa In which t,,.•- f• k Location of Compression Resultant Figure 2.Shear wall flxitles m•np♦P'{2n-11 n �1-k 1V.SHEAR CHECK (2n-1)A's/kbd 0.058 {k-d'/d) a)Calculate Allowable Sheer Stress d!kd 0.148 0. np•p•12n-1) d f 3f (1-' ' 1- d/kd 0.954 d IM M!(V•d) 0.29 Foc fixed piers•h/2d For cantilever piers•hid z 0.318 .it., , A' r�.. '�-�-P{rt For M I(V•d)<1 Fv•(1/3)14-(MNd)J•SORT(fm) psi ACI 2.21 "' �-t not to exceed Fv•80.45(MNd) psi Moment Arm Z (•1-zk 0.984 • �._._ -.�..-- For M I(V'd),1 Fv•SORT(fm) pal ACI 2-22 t� 1111 �� a not lo exceed Fv•35 pal •c)Calculate Str ` N `^T Fv" 83.9 psi -y.- -._.t Fv max** 89.3 psi "includes 1/3 increase for wind and earthquake combinations Tensile Stress M Steel ' ti•.ed 'f 'r" • Fv 83.3 psi fs•M I(As•J•d) 1 1 (2n-11A', d' d b)Applied Shear Stress d i kbd x kd • (I-kd l M•Vii./2(fixed pier)or M•VII(cantilever pier) z• N S4 psi fv•V/td OK M 1768k-ft 1 .. an-1I A', xrl _ d'1 fs 22860 psi OK 2 kind . kd J 1of3 2of3 t. KPFF Consulting Engineers MAA 12/13/2012 Compressive Stress in Masonry fm Woo fb 57 psi 3 I Rssulrrn of Fb** 858 psI OK Como,enlan Farces Fb•0.33*fin•133 ACI Section 2.3.3.2.2 **Includes 1/3 increase for wind and earthquake combinations 1'1 Figure 3.Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa•PTOTAL/A Is 25 psi Fa— 500 psi OK Fa•0.25 rm x 1.33 psI ACI 2-17 for non-slender piers includes 1/3 Increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb•Mo•c/In 10 9 psi Fb 858 psi OK VII.COMBINED STRESS CHECK fa/FA+lb/Fb<1.0 0.06 < 1.0 0K 3of3 KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 111 SW 5th Ave,Suite 2500 Dsgnr: MAA • Portland,OR 97204 Project Desc.: Calculations 4-8 (503)227 3251 Project Notes: Consult,ig Engineers Ponied.9 DEC 2012. 1 J5P61 i asonry Slender Wall -"sir' no.' -PDx'Do�nenbil (%r a o95tzm ws« ,l .ece ENERCALC,INC.1983-2011,Bulld:6.11.7.11,Vec6.11.7.11 tic..a KW-06000870 1.,reny e h{,11 r cr suI r `1 ener noers Description: Gym Wall-Grid C-12'CMU General Information Calculations per ACt 530.08/MSJC 2009 Sec.3.3.5,IBC 2009,CBC 2010,ASCE 7-05 Construction Type:Grouted Hollow Concrete Masonry Fm = 1.50 ksi Nom.Wall Thickness 12 in Temp Diff across thickness = deg F Fy-Yield = 60.0 ksi Actual Thickness 11.625 in Min Allow Out-of-plane Defl Ratio= 150.0 Fr-Rupture = 120.0 psi Rebar'd'distance 9.0 in Minimum Vertical Steel% = 0.0020 Em=fm* = 900.0 Lower Level Reber... Max%of p bal. = 0.50 Bar Size # 5 Grout Density = 140 pcf Bar Spacing 48.0 in Block Weight Normal Weight Wall Weight = 133.0 psf Wall is Solid Grouted One-Story Wall Dimensions A Clear Height = 26.0 ft B Parapet height = 4.0 ft B Wall Support Condition Top&Bottom Pinned _. A • Vertical Loads Vertical Uniform Loads... (Applieed per foot of Strip Width) DL:Dea L d oad Lr:Roof Live JAW Lf:Floor Live Load S:Snow Load Ledger Load Eccentricity 8.0 in 0.080 0.1080 k/ft Concentric Load k/ft Lateral Loads _ Full area WIND load 20.0 psi Wail Weight Seismic Load Input Method: ASCE seismic factors entered Fp=Wall Wt• 0.380 = 50.540 psf SDS Value per ASCE 12.11.1 S DS = 0.950 DESIGN SUMMARY - _ Results reported for"Strip Width"of 12.0 in Governing Load Combination... Actual Values Allowable Values... PASS Moment Capacity Check Maximum Bending Stress Ratio = 0.8508 +0.90D+E Max Mu 4.408 k-ft Phi'Mn 5.180 k-ft PASS Service Deflection Check Min.Deft.Ratio 162.61 Max Allow Ratio 150.0 D+L+S+ E/1.4 Max.Deflection 1.919 in Max.Allow.Defl. 2.080 in PASS Axial Load Check Max Pu/Ag 22.416 psi 0.06'ft 300.0 psi +1.20D+1.60Lr+0.80W at 12.13 to 13.00 PASS Reinforcing Limit Check Controlling As/bd 0.000718 As/bd= 0.50 rho bal 0.005345 +1.40D PASS Minimum Moment Check Wracking 2.703 k-ft Minimum Phi Mn 3.086 k-ft +1.40D Maximum Reactions... for Load Combination.... Top Horizontal E Only 0.8747 k Base Horizontal E Only 0.6415 k 411 Vertical Reaction D+L+Lr 4.178 k KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 111 SW 5th Ave,Suite 2500 Dsgnr: MAA • Portland,OR 97204 Project Desc.: Calculations 1 111 Q1 (503)227 3251 Project Notes: " Consuiting Engtnters Punted.9 DEC 2012. 1-30Pl1 WsersVnareilano.KPFF.PDXtOowments11 Current Projects\209512.01 VV 6CHICaladatianswrail calculatiau.ec6 � * asonry Slender Wall ENERCALC.INC.1963-2011,Bude:6.11-7.11,Ver:6.11.7.11 'Lic.#:KW-06000870 Licensee:kpff consulting engineers Description: Gym Wall-Grid C•12'CMU Design Maximum Combinations•Moments Axial Load Moment Values 0.6' Load Combination Pu 0.06'fc'b't Mcr Mu Phi Phi Mn As As Eff As Ratio rho bal k tt ---11 K-it k-b in"2 inn_ +1.400 at 25.13 to 26.00 0.000 41.760 2.70 0.07 0.90 3.09 0.078 0.078 0.0007 0.0053 +1.200+0.50Lr+1.60L at 25.13 to 26.00 0.000 41.760 2.70 0.10 0.90 3.09 0.078 0.078 0.0007 0.0053 +1.200+1.60L+0.50S at 25.13 to 26.00 0.000 41.760 2.70 0.06 0.90 3.09 0.078 0.078 0.0007 0.0053 +1.20D+1.60Lr+0.501 at 25.13 to 26.00 0.000 41.760 2.70 0.18 0.90 3.09 0.078 0.078 0.0007 0.0053 +1.20D+1.60Lr+0.80W at 12.13 to 13.00 3.120 41.760 2.70 1.55 0.90 6.31 0.078 0.130 0.0007 0.0053 +1,200+0.50L+1.605 at 25.13 to 26.00 0.000 41.760 2.70 0.06 0.90 3.09 0.078 0.078 0.0007 0.0053 +1.200+1.60S+0.80W at 12.13 to 13.00 2.948 41.760 2.70 148 0.90 6.14 0.078 0.127 0.0007 0.0053 +1.200+0.50Lr+0.50L+1.60W at 12.13 to 13. 3.002 41.760 2.70 2.96 0.90 6.20 0.078 0.128 0.0007 0.0053 +1.200+0.50L+0.50S+1.60W at 12.13 to 13.0 2.948 41.760 2.70 2.93 0.90 6.14 0.078 0.127 0.0007 0.0053 +1.20D+0.50L+0.20S+E at 12.13 to 13.00 2.947 41.760 2.70 4.61 0.90 6.14 0-078 0.127 0.0007 0.0053 +0.900+1.60W at 12,13 to 13.00 2.211 41.760 2.70 2.86 0.90 5.39 0.078 0.114 0.0007 0.0053 +0.900+E at 12.13 to 13.00 2.211 41.760 2.70 4.50 0.90 5.39 0.078 0.114 0.0007 0.0053 Design Maximum Combinations-Deflections Axial Load Moment Values Stiffness Deflections Load Combination Pu Mcr Mactual I gross I cracked I effective Deflection Defl.Ratio A 1..-ft le-ti t 0,'4 in^4 m^4 in D+L+Lr at 14.73 to 15.60 2.218 2.70 0A8 1,571.00 150.68 150.680 0.052 5,965.1 D+L+W at 13.00 to 13.87 2.341 2.70 1.84 1,571.00 153.00 152.997 1.073 290.9 el+L+W+S/2 at 13.00 to 13.87 2.341 2.70 1.84 1,571.00 153.00 152.997 1.073 290.9 D+L+S+W/2 at 13.00 to 13.87 2.341 2.70 0.93 1.571.00 153.00 152.997 0.547 570.1 D+L+S+E/1.4 at 13.00 to 13.87 2.341 2.70 3.29 1,571.00 153.00 152.996 1.919 162.6 D+0.5(L+4.r)+0.7W at 13.00 to 13.87 2.395 2.70 1.32 1,571.00 154.01 154.015 0.769 405.8 0+0.5(L+Lr)+0.7E at 13.00 to 13.87 2.395 2.70 3.25 1,571.00 154.01 154.014 1.887 165.3 Reactions-Vertical&Horizontal Load Combination Base Horizontal Top Horizontal Vertical `Wall Base D Only 0.0 an 0.00 lbs 4.070 k S Only 0.0 lbs 0.00 ibs 0.000 k W Only 0.3 tbs 0.35 lbs 0.000 k E Only 0.6 ibs 0.87 tbs 0.000 k D+L+Lr 0.0 ibs 0.00 lbs 4.178 k D+L+S 0.0 its 0.00 ibs 4.070 k D+L+W+S/2 0.2 sbs 0.35 :bs 4.070 k D+L+S+W/2 0.1 lbS 0.17 lbs 4.070 k D+L+S+FJ1.4 0.4 lbs 0.64 lbs 4.070 k S KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 111 SW 5th Ave,Suite 2500 Dsgnr: MAA • Portland,OR 97204 Project Desc.: Foundation Calculations )C Q r (503)227 3251 Project Notes: Consulting Engineers Pnn ed 27 NOV 2612.2.29PM ;u 15ersYneroaeno.KPFF-Porpowmentsl Current WSCtCalculaUasla ecalculamafse6 all Footing ENERCALC,INC.1983-2011,Build:6.11.7.11,Ver:6.11.7.11 Li: sr KW 06000870 L I,Prrsee Inpff con'.ii t.119( 19 r t,o.r-, Description: Gym-Wa8 C-Eccentric Wall Footing General Information Calculations per ACI 318-08,IBC 2009,CBC 2010,ASCE 7-05 Material Properties Soil Design Values fc:Concrete 28 day strength = 3.0 ksi Allowable Soil Bearing = 3,500.0 ksf fy Rebar Yield = 60.0 ksi Increase Bearing By Footing Weight = No Ec:Concrete Elastic Modulus = 3,122.0 ksi Soil Passive Resistance(for Sliding) = 250.0 pcf Concrete Density = 145.0 pcf Soil/Concrete Friction Coeff. = 0.350 cp Values Flexure = 0.90 Shear = 0.750 Increases based on footing Depth Analysis Settings Reference Depth below Surface = 2.0 ft Min Steel%Bending Reinf. = 0.00140 Allow.Pressure Increase per foot of depth = ksf Min Allow%Temp Reinf. = 0.00180 when base footing is below = ft Min.Overturning Safety Factor = 1.0 :1 Increases based on footing Width Min.Sliding Safety Factor = 1.0 :1 Allow.Pressure Increase per foot of width = ksf AutoCalc Footing Weight as DL : Yes when footing is wider than = ft Dimensions Reinforcing Footing Wldt = 3.0 ft Footing Thicknes = 12.0 in Bars along X-X Axis Wall Thickness = 12.0 in Rebar Centerline to Edge of Concrete.. Bar spacing = 12.00 Wall center offset at Bottom of footing = 3.0 in Reinforcing Bar Size = # 5 from center of footing = 10.5 in v.v. x: x •.....:. .... ... ... ....... ,,. .., •• .. Applied Loads D Lr _ L S W H P:Column Load = 3.20 0.1080 k OB:Overburden = ksf V-x = k M-zz = k-ft Vx applied = in above top of footing DESIGN SUMMARY Min.Ratio Item Applied Capacity Governing Load Combination PASS 0.9721 Soil Bearing 3.402 ksf 3.50 ksf +D+S+H -- PASS n/a Overturning-Z-Z 0.0 k-ft 0.0 k-ft No Overturning PASS n/a Sliding-X-X 0.0 k 0.0 k No Sliding PASS n/a Uplift 0.0 k 0.0 k No Uplift PASS 0.003060 Z Flexure(+X) 0.03713 k-ft 12.131 k-ft +1.400 PASS 0.06459 Z Flexure(-X) 07835 k-ft 12.131 k-ft +1.400 PASS n/a 1-way Shear(+X) 0.0 psi 82.158 psi n/a PASS 0.2397 1-way Shear(-X) 19.696 psi 82.158 psi +1.400 • KPFF Consulting Engineers Title: Westside Christian High School Job#209512.01 111 SW 5th Ave,Suite 2500 Dsgnr. MAA • Portland,OR 97204 Project Desc.: Foundation Calculations ,S (503)227 3251 Project Notes: Consulting Engineers Printed.27 NOV 2712.2:20PM ::1Usets4naellaio.KPFF-P12Xibocumentsl1 Current Prolect81209512.01 WSCH1Caiculafions�rail calwlations.ec6 all Footing ENERCALC,INC.1963.2011,Budd:6.11a.11.Ver.6.117.11 `Lic.#:KW-06000870 Licensee: kpff consulting engineers Description: Gym-Wall C-Eccentric Wall Footing Detailed Results -_-- Soil Bearing --- -- Rotation Axis& Actual Soil Bearing Stress Actual I Allowable Load Combination... Gross Allowable Xecc Zecc +Z +Z -X •X Ratio +0 3.50 ksf 9.24,3 in 0.0 ksf 3.291 ksf 0.940 +D+S+H 3.50 ksf 9.280 in 0.0 ksf 3.402 ksf 0.972 .+D+0.750L+0.750S+H 3.50 ksf 9.271 in 0.0 ksf 3.374 ksf 0.964 ...0+0.750L+0.750S+0.750W+H 3.50 ksf 9.271 in 0.0 ksf 3.374 ksf 0.964 .+0+0.750L+0.750S+0.5250E+H 3.50 ksf 9.271 in 0.0 ksf 3374 ksf 0.964 Overturning Stability Units:k-ft Rotation Axis& Load Combination... Overturning Moment - Resisting Moment Stability Ratio Status Footing Has NO Ovettuming Sliding Stability Force Application Axis Load Combination... Sliding Force Resisting Force Sliding SafetyRatio Status Footing Has NO Sliding Footing flexure Flexure Axis&Load Combination Mu Which Tension @ Bot As Req'd Gym.As Actual As Phi'Mn k-ft Side? or Top? iM'2 inA2 inA2 k-ft Status .+1.40D 0.7835 -X Bottom 0.0258 Calc'd Bendina 0.31 12.131 OK .+1.400 0.03713 +X Bottom 0.0012 Calc'd Bending 0.31 12.131 OK +1.200+1.60L+0.50S+1.60H 0.6733 -X Bottom 0.0222 Calc'd Bendina 0.31 12.131 OK .+1.20D+1.60L+0.50S+1.60H 0.03225 +X Bottom 0.0011 Calc'd Bending 0.31 12.131 OK • .+1,200+0.50L+1.60S 0.6773 -X Bottom 0.0223 Calc'd Bending 0.31 12.131 OK .+1.20D+0,50L+1.605 0.0332 +X Bottom 0.0011 Calc'd Bending 0.31 12.131 OK +1,200+1.605+0.80W 0.6773 -X Bottom 0.0223 Calc'd Bendina 0.31 12.131 OK .+1.200+1.605+0.80W 0.0332 +X Bottom 0.0011 Calc'd Bendina 0.31 12.131 OK .+1.20D+0.50L+0.50S+1.60W 0.6733 -X Bottom 0.0222 Calc'd Bendina 0.31 12.131 OK .+1.20D+0.50L+0.50S+1.60W 0.03225 +X Bottom 0.0011 Calc'd Bendina 0.31 12.131 OK .+1.200+0.50L+0.20S+E 0.6723 -X Bottom 0.0221 Calc'd Bendina 0.31 12.131 OK ,+1.200+0.50L+0.20S+E 0.03199 +X Bottom 0.0011 Calc'd Bendina 0.31 12.131 OK One Way Shear Units:k Load Combination... Vu @-X Vu @+X Vu:Max Phi Vn Vu I Phi`Vn Status +1.400 19.696 osi 0 osi 19.696 osi 82.158 osi 0.2397 OK +1.200+1.60L+0.50S+1.60H 17.069 osi 0 osi 17.069 psi 82.158 osi 0.2078 OK +1.20D+0.50L+1.60S 17.479 osi 0 osi 17.479 osi 82.158 osi 0.2128 OK +1.230+1.60540.80W 17.479 osi 0 osi 17.479 psi 82.158 osi 0.2128 OK +1.20D+0.50L+0.505+1.60W 17.069 osi 0 osi 17.069 psi 82.158 osi 0.2078 OK +1.20D+0.50L+0.20S+E 16.957 osi 0 psi 16.957 osi 82.158 osi 0.2064 OK , Protect BY 11$44 Sheet No Consulting Engineers fer= I Dare 1 Job No Cent P9t4)4 es,t. • Pvilcrici C>Ponn I 269512 IDote 6A-4-rt+- A-vt- 410 C0A-LL 419J N 9 4,-1s ot eQ, (A)4 'I 7-/advi _ r:;‘,,t1-14. C-04-1C pst-r-u Z191 .6,s ..1-145t/A1Ami 11__OC4- LOAK) ( 40"Pt-)(SS* 1100 et'e- LOLL .4t.)4t.L. 1-0A-p 3o' ( 10 ) 3cloo eLA- S-5-$05- ft_e- P 13,41 :1) fteyte- C44/7 Z ' Le- (1..5 G. 4, P {6- 4-6 *CO(24') z I 4 66 4co Le r • 400 3 sso -/-r L Z 734- -4- SIR 2_1.. (2- t •.‘ < -÷0Co C-14*--c-44 vdizit)(2.4 1'4 tr 044.ff Prat By Shear No. i Loci, E Consulting Engineers r—-.-----__.-_. --,_.e 2... I Date III 42_ Portland. //yy - 'Revised • fir-—.. ©�.1�►F J�No. —.. f Date 20 21512•0 GT f Nor*M. Fi 'QJ 4,041/414(2,'‘.., _ u4-1-10 .. 4045 t- • /1'4-X. Y 4 ,F pt-t_04 tr b-rai>S I - c c,44- s -fq -8 '-o" 1 .' 62-1"0. c , Hbv, 1 0.':;45 (1 ie ) = 02-1- 5g4 0144, Gtinp r4-go. .:N rh- JP f4"14-4-‘ !fir (4,2 Z 4g1 ( 'io ) _ 15*3/ 425- - -g 16.5° (/Z0 v;Q . (2) fig'9 Ga)r, r 44do VT". e) ( ok�•Z)(Z�&(0.2 a Zt k 7 7.? ►.c. 4-/ C 1 _ _ _ .. .. . • a iris iii II i 6 i I ii fa LII is '� I Pfd EPIC METALS CORPORATION 2009 Factors of Salety and Resistance Factors for Diaphragms Product ER2R 6 Tons" '_Shear Strength Panel Buckling Load Type Conn.Type ASDi) LRF0-4 ASD-Il LRFD-G Support ConnectionlPatlem:314"Arc Puddle Weld,Pattern(see below) Side Lap Connection: 1.5'Fillet Weld Eanh uake Welded 3.00 0 55 Span Condition: Tnple Span 4 Methan■cal 2.50 0 65 Wind NWlded 2.75 0 70 2 00 0 80 Mechanical 235 0.70 Nominal Diaphragm Shear Strength,(plf) AM Others Mechanical 250 " 065 Side Lap ER2R ER2R Tons Gage Fastener Span in Feet(Center to Center of Supports) &Tons Y Spacing(in) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Ki K2 K, D K, D upQo onnec on "3'em:a.1 12 2477 2402 ' 2347 2304 '2270 2243 - 2220 2201 2185 2171 2159 2148 2138 _ 2130 2.879 1056 - 4.853 - 8713 ' 5,287 12880 20 18 2006 1913 1845 1793 1751 1718 1690 1667 1647 1630 1615 1602 1591 1580 3 972 1056 4 853 8713 5 287 12880 24 1674 1630 1511 1498 1418 1416 1357 1361 1315 1321 1283 1291 1259 1267 5.143 1056 4.853 8713 5.287 12880 36 1404 1285 1207 1149 1103 1067 1037 1012 991 973 957 943 931 921 6.402 1056 4 853 8713 5.287 12880, 1 12 3327 3223 3146 ' 3087 3040 3002 2971 2944 2922 2902 2885 2870 2857 2845 3.313 1398 4.853 5719 5.287 8454 18 18 2692 2564 2470 2398 2341 2295 2257 2225 2198 2175 2154 2137 2121 2107 4.571 1398 4 853 5719 5.287 8454 24 2247 2185 2024 2004 1896 1892 1813 1817 1754 1762 1711 1721 1678 1689 5.918 1398 4 853 5719 5,287 8454 36 1901 1726 1614 1534 1472 1423 1382 1349 1320 1296 1275 1256 1240 1225 7.366 1398 4.853 5719 5 287 8454 12 4177 ' 4049 3954 3881 3823 3777 3738 3705 3678 3654 3633 3614 3598 3583 3.728 1770 4.853 4016 5 287 5936 16 18 3382 3223 3107 3018 2947 2890 2843 2803 2770 2741 2716 2693 2674 2656 5.142 1770 4.853 4016 5.287 5936 24 2822 2746 2545 2521 2386 2383 2283 2289 2211 2221 2157 2170 2116 2130 6.659 1770 4.853 4016 5.287 5936 36 2407 2189 2033 1932 1855 1793 1743 1701 1665 1635 1608 1585 1564 1546 8.266 1770 4.853 , 4016 5.287 5936 Support Conn_ectfon f?_atfem:3414 12 2684 2589 2519 2466 2424 2390 2362 2339 2319 2302 2287 T 2274 2263 2252 2.837 1056 4.853 1252 5 287 1806 20 18 2123 2014 1934 1874 1826 1788 1756 1730 1708 1688 1672 1657 1644 1632 3.892 1056 4.853 1252 5.287 1806 24 1724 1675 1541 1533 1445 1448 1384 1391 1341 1351 1310 1320 1286 1297 5.010 1056 4.853 1252 5.287 1806 36 1429 1306 1225 1164 1117 1079 1048 1022 1000 982 965 951 939 928 6.196 1056 4.853 1252 5.287 1806 1 12 3596 3465 3369 3296 3238 3191 3153 3121 3094 3070 3050 3032 3016 3002 3.264 1398 4.853 822 5 287 1185 18 18 2845 2695 2586 2503 2438 2386 2343 2307 2276 2250 2227 2207 2189 2173 4.478 1398 4.853 822 5.287 1185 24 2326 2242 2057 2044 1926 1929 1842 1852 1784 1797 1742 1755 1710 1723 5.764 1398 4.853 822 5.287 1185 36 1935 1754 1638 1555 1491 1440 1398 1363 1333 , 1308 1286 1266 1249 1234 7.129 1398 4 853 822 5.287 1185 12 4521 4359 4240 4149 4078 4020 3973 3933 3899 3870 3845 3823 3803 3785 3.673 1770 4.853 577 5287 832 16 18 3576 3391 3255 3152 3072 3007 2953 2908 2870 2837 2809 2784 2762 2742 5.038 1770 4.853 577 5 287 832 24 2944 2842 2593 2577 2428 2433 2324 2337 2252 2268 2199 2217 2159 2177 6.485 1770 4 853 577 5.287 832 36 2449 2224 2062 1958 1678 1814 1762 1718 1681 1649 1622 , 1598 1577 1558 . 8.021_ 1770 4.853 577 5 287 _ 832 Suppad-Connection r_attern:2716 12 3109 2957 - 2846 2761 2695 2642 2598 2561 2530 2503 2480_ 2460 2442 2426 2.642 1056 4 853 1252 5.287 1806 20 18 2475 2300 2183 2094 2026 1971 1926 1888 1857 1830 1806 1785 1766 1749 3.535 1056 4.853 1252 5.287 1806 24 2032 1931 1761 1725 1616 1602 1523 1519 1459 1460 1412 1416 1376 1382 4.433 1056 4.853 1252 5.287 1806 36 1736 , 1562 1444 1356 1287 1232 1188 1150 1118 1091 1068 1047 1029 1013 5.337 1056 4.853 1252 5.287 1806 12 4166 3957 3804 3689 3598 3525 3465 3415 3372 3336 3304 3276 3251 3229 3.040 1398 4.853 822 5.287 1185 18 18 3327 3081 2915 2795 2702 2627 2566 2515 2472 2435 2403 2375 2351 2329 4.067 1398 4.853 822 5 287 1185 24 2745 2592 2357 2306 2159 2138 2033 2026 1946 1946 1882 1886 1833 1840 5.101 1398 4.853 822 5.287 1185 36 2354 2103 1938 1818 1724 1650 1589 1538 1495 1458 1426 1398 1373 1351 6.141 1398 4.853 822 5.287 1185 12 5238 4978 4789 4645 4533 4442 4368 4306 4253 4207 4168 4133 4102 4075 3.421 1770 4.853 577 5.287 832 16 18 4179 3896 3673 3522 3406 3313 3236 3173 3119 3073 3033 2998 2967 2938 4.576 1770 4 853 577 5.287 832 24 3466 3277 2966 2903 2718 2694 2561 2554 2453 2455 2373 2380 2313 2322 5.739 1770 4.853 577 5.287 832 36 2971 2658 2435 2284 2168 2075 1999 1935 1882 1836 1796 1761 1730 , 1703 6.910 , 1770 4.853 577 5.287 832 ForAlFConn_ection TXpes 20 ER2R 5262 3654 2685 2056 1624 1316- 1087 914 778 671 585 514 455 406 18 Panel Buckling 7942 5515 4052 3102 2451 1985 1641 1379 1175 1013 882 776 687 613 16 11266 7824 _ 5748 4401 3477 2817 2328 1956 1667 1437 1252 1100 975 869 20 Tons 7365 5115 3758 2877 2273 1841 1522 1279 1089 939 818 719 637 568 18 Panel buckling 11142 7738 5685 4352 3439 2786 2302 1934 1648 1421 1238 1088 964 860 16 15789 10965. 8056 6168 4873 3947 3262 2741 , 2336 , 2014 1754 1542 1366 1218 60105 1 ASO Requxed Strength(Sews.Appied Load)<=Murunum INormN Shear Strength/l'MO or NAND).Normal Panel Bucking Strength/ ,lBur0Lng)L 2.LRFD Requited Strength.F xclured Appked Load)x=Mmmtum l'r(BO or NAND)x Nonnnai Shear Strength. (Buckling)x Nominal Panel Buckling Slrengtht. 3.Slydness(0'.lupslml u equal to K r lb,•p0/L a K.)where p=t ror simple and double spans and as cellular decks and p•.9 for PI M spans.L=x0501 length in Inches Zee 4 'P or arousln deck.reduce the Sheer Sllengi bads m the above aide by 20%. 30 CEngineers O'L- I Sheer No Location � Date 9 G s...------ r --- -- { 0/ --/i ' - CIient 1 A _ I Job No. Portland.Ckogai ! aW T--- .--------...--- R6vi50d-- ---------' ------- 0 I ——_ ■ Dare ,I1N47r' 'i1 77i-7--OP Calk, }hvLbt92A1 120`i51.0/ fl I co .0 e I , I].4___=.0 , ■ i j Ice - (9.4• '4 • IA J 2 _ • ,4 (o.4)(/oc)((,ZS' } :..--- 8 F's - j I 1 ✓ el_ :_-__ (At' +24/Z) (38) = 6sap PLF • Q W T P4c A--r- S'-a'' D. c . 'rte f:4 crit1 3o+`.. c. weakc_.rioni rota ffi,._:,-.-.. (5e) Cs ) _ ' co L, ! f �vDvI212X,I*47- to 4; t. t ;n, 471b JS j A- , / 2- O - & /, Z 0 * 1,0 6 4--co.2 0 = ( °/? ( ') (2c P _ $.8k i eOt t-t L �� A 29, g 24 -- f; --„. .� 2tf 734 '4 y Le I gi I i , (.._. .64.- Lt , C.4.1-LtOL/1.40.3 co. I i Hf' � B K Sheet No. LoCOtIOn JV MR Consulting Engineers fl i f1_ _ !Dare II(242„ i lob No.Client 90001,..r L Revised • aonora Ofepor Dote 2015*, f�t G;!it f A jk' ;riot 774,i- P Auc fjt?AGc, r2 — (r-Lc;/2. )( g. ) _ 444- PLf tom. - 4 c,. .1 ( 0.2.)(40)(1-4/4„ ) ,_ B { kL 14414 • 0: www.lillfi.us _ PROFIS Anchor 2.2.0 •"-e- Company: KPFF Consulting Engineers Page: 1 Specifier: Project: WCHS Address: Sub-Project I Pos.No.: Critical Gym OWJ Phone I Fax: -1- Date: 12/14/2012 E-Mail: Specifler's comments: Embed Connection n 1. Input data S� 1.1ra. Anchor type and diameter: AWS 131.1 GR.8,314 Effective embedment depth: h„=5.000 in. Material: Proof: design method ACI 318/CIP Stand-off installation: e,=0.000 In.(no stand-off);t=0.500 in.;countersunk anchorplate Anchor plate: I,x I,x t=24.000 x 29.000 x 0.500 in.(Recommended plate thickness:not calculated) Profile S shape(AISC);(L x W x T x FT)=3.000 in.x 2.330 in.x 0.170 in.x 0.260 in. Base material: cracked concrete,5000,f,,=5000 psi;h=8.000 in. Reinforcement: tension:condition A,shear:condition A; edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F): yes(0.3.3.6) Geometry(in.1&Loading[lb,In.-IN Z S of dQ r__, 13 ' 1 Q. \\\ % y 4. 1/ . x L Input data and results must bur ducked ix apsernsot with the existing conditions and for plausiblIIt l PROFIS Anchor(c 1 2001-2008 flee AG.FL-9494 Schaan Hit Is a regulated Trademark of His! G.Schoen F11I111:rI www•,Itf.us _ PROFIS Anchor 2.2.0 • Company: KPFF Consulting Engi neem Page. 2 Specifier Project: WCHS Address: Sub-Project I Pos.No.: Critical Gym OWJ Phone I Fax: -I- Date: 12114/2012 E-Mail: 2. Load case/Resulting anchor forces Load case(governing): Anchor reactions[lb] Tension force:(*Tension.-Compression) Anchor Tension force Shear force Shear force x Shear force y 9 9 , 1 1 836 3285 3285 0 y 2 404 3285 3285 0 3 0 3285 3285 0 Tension Compree nion 4 836 3285 3285 0 5 404 3285 3285 0 ! 6 0 3285 3285 0 7 836 3285 3285 0 9 4 3 8 404 3285 3285 0 9 0 3285 3285 0 max.concrete compressive strain(%o): 0.02 max.concrete compressive stress[psi]:83 resulting tension force in(x/y)=(-5.39410.000)[Ib]:3721 resulting compression force in(x4)=(10"498/0.000)[lb]:3721 3.Tension load Proof Load IJ,.[lb] Capacity 4N„fib] Utilization 9e[14]=N„/$N. Status Steel Strength' ngth' 836 21547 4 OK Pullout Strength' 836 6594 13 OK Concrete Breakout Strength" 3721 11410 33 OK Concrete Side-Face Blowout, N/A N/A N/A N/A direction" anchor having the highest loading "anchor group(anchors In tension) Steel Strength Equations N. =n A..N Ct. ACI 318-08 Eq.(D-3) 4 hi,..,z N,. AC 1 318-08 Eq.(D-1) Variables n As.,N[in.2] fn.[Psi] 1 0.44 65000 Calculations N„[lb) 28730 Results N.a[lb] f[i.t..l V N,.(ib) N„,[lb] 28730 0.750 21547 836 Input data and results must be checked for agreement with the existing conditions and for plausibility) PROFIS Anchor(c)2007-2009 HNti AG,FL-9494 Schwan HIP Is s registered Trademark of KM AG,Schaan www.hilti.us PROFIS Anchor 2.2.0 r t; ,. Company: KPFF Consulting Engineers Page: 3 Specifier. Project: WCHS Address: Sub-Project I Pos.No.: Critical Gym OWJ Phone I Fax: -I- Date: 12/14/2012 E-Mail: Pullout Strength Equations NPN =ty,Np ACI 318-08 Eq.(D-14) Np =8 Apr4 f ACI 318-08 Eq.(D-15) 4,Np,,,t N„ ACI 318-08 Eq.(D-1) Variables . 1.000 0.79 5000 Calculations Np[lb1 31400 Results Non lib] --- mi. 'ie ttnonducter 0 Np„[lb] Na,[lb] 31400 0.700 0.750 0.400 6594 836 Concrete Breakout Strength Equations Nrou =( )Wsc,N Wed,N We.N Wop.N Nb ACI 318-08 Eq.(0-5) b No,q t Na, ACI 318-08 Eq.(D-1) ANc see ACI 318-08,Part 0.5.2.1,Flg.RD.5.2.1(b) Asko =9 hef ACI 318-08 Eq.(D-6) fi. s 1 `, W°`N = (—Ts;-.1.1+ / S 1.0 ACI 318-08 Eq.(D-9) 3hf Wed,N =0-7+0.3(.751•1:)S 1.0 ACI 318-08 Eq.(0-11) ix( 1 ca 10 Ww+ = , . )5 . ACI 318-08 Eq.(0-13) Nb =kb X h ACI 318-08 Eq.(D-7) Variables 011•1 — se w Pm] earl Pct.]-.— `....*E 1 -T5.1. elm Pm)_ ke x 5.000 1.392 0.000 3938.969 1.000 - 24 1 f.ID•9 5000 CaleWstlons ham Il_21 Arse[!n. —W"'A At --- Y.tit — emu _.Wwtt — lee PI 713.00 225.00 0.843 1.000 1.000 1.000 18974 Results 141,4,i1[lb] Oconcrets eP.eismic ©npnducte. •Nob(P I _ Kf.nb] 50712 0.750 0.750 0.400 11410 3721 Input data and resuil,must be checked for agreement with the existing conditions and for piaueibilityl ------ - PROFIS Anchor(c)2003-2009 Hilh AG,FL-9494 Scheel HIM is a registered Trademark of HIP AG,Schaan 110111.111r1 PROFIS Anchor 2.2.0 .. Company: --- KPFF Consulting Engineers — Page: ' y'p Specifier: Project: WCHS Address: Sub-Project I Pos.No.: Critical Gym OWJ Phone I Fax: -[- Date: 12/14/2012 E-Mail: 4. Shear load Proof Load V.[Ib] Capacity+V,[lb] Utilization g„[96]=V„/+V, Status Steel Strength' 3285 18674 18 OK Pryout Strength** 29568 34036 87 OK Concrete edge failure in N/A WA N/A N/A direction" anchor having the highest loading "anchor group(relevant anchors) Steel Strength Equations V,e =n A„ .f ACI 318-08 Eq.(D-19) d Vs,,,„,,z V,, ACI 318-08 Eq.(D-1) Variables n Afe.v(in.2] f„w[psi] 1 0.44 65000 Calculations V,a(lb] 28730 Results V,a[Ibl +w+ — +V Pb] Vim,[lb] 28730 0.660 18674 3285 Input data and results must be checked kw agreement with the existing oonditlons and for plauelbllkyl PROFIS Anchor(c)2003-2009 Hdt AG,FL-9494 Schaan HIS is a registered Trademark et Hilt AG,Schaan www.hiiti.us PROFIS Anchor 2.2.0 =z. Company: KPFF Consulting Engineers Page: 5 Specifier: Project: WCHS Address: Sub-Project I Pos.No.: Critical Gym OWJ Phone I Fax: -)- Date: 12/14/2012 E-Mail: Pryout Strength(Concrete Breakout Strength controls) Equations V, -kg,[(pew) hngh Wed N tygN ttfop,N Nb] ACI 318-08 Eq.(D-31) •Vc,„,z V,,, ACI 318-08 Eq.(D-1) A,,. see ACI 318-08,Part D.5.2.1,Fig.R0.5.2.1(b) ANw =9 h;, ACI 318-08 Eq.(D-6) 1 W�N = (2eN}5 1.0 ACI 318-08 Eq.(D-9) 1 +3ha Wea.N =0.7+0.3(1 aher)s 1.0 ACI 318-08 Eq.(0-11) =MAX(Ce•'"'" 1.5110_ s)5 1.0 ACI 318-08 Eq.(D-13) Wcp.N c., CK Nb =k X 1((h,5 ACI 318-08 Eq.(0-7) Variables kcp her I •1--- ect.N tin.) ea.N fin.) --._--csLis M•1 --- r4!--- �"[M�1-------k----- 2 5.000 0.000 0.000 - 1.000 - 24 X 4 1 .. 5000 .. Calculations 981.00 225.00 1.000 1.000 1.000 1.000 18974 Results Vwg[lb) t »ref!- 4�± _—. 4 vm3 tlbl V.pal _. 162077 0.700 0.760 0.400 34036 29568 5.Combined tension and shear loads Pe=N j N, 13,=V,/+V, { Utilization )3„„t%) Status 0.326 0.889 5/3 95 OK 6.Warnings •Condition A applies when supplementary reinforcement is used.The 0 factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condttion B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to ACI 318,Part D.4.4(c). •Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACt318 or the relevant standard, •The anchor plate is assumed to be sufficiently stiff in order to be not deformed when subjected to the actions! •An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-08 Appendix D,Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.In lieu of D.3.3.4 and D.3.3.5,the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains"Exceptions” that may be applied in lieu of D.3.3 for applications involving"non-structural components"as defined in ASCE 7,Section 13.42. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains"Exceptions" that may be applied in lieu of D.3.3 for applications involving"wall out-of-plane forces"as defined in ASCE 7,Equation 12.11-1 or Equation 12 14-10. rs. •It is the responsibility of the user when imputing values for brittle reduction factors(p, )different than those noted in ACI 318-08,Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08,ASCE 7 and the governing building code. Selection of 4.a.m.=1.0 as a means of satisfying ACI 318-08,Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level‹=the design strengths calculated per ACI 318-08.Part D.3.3.3. Input Ms and rewarmed be checked for agreement with the existing rordhbna and for plauelbllityl PROFIB Anchor(c)2003 410e HIS AG,f1.-9494 Scheer, Hill,a a registered Trademark of Huh AG,Schaal' 110•11111.:11r1 VinNW.hi I ti.us PROFIS Anchor 2.2.0 Company: KPFF Consulting Engines' Page: 8 ..! Specifier Project: WCHS Address: Sub-Project I Pos.No.: Critical Gym OWJ Phone I Fax: Date: 12/14/2012 E-Mail' Fastening meets the design criteria! Input data and results must be checked for agreement with tie existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 HIM AG FL-9494 Schrum Hilb 0 a registered Trademark of Hilti AG,Schaan 1(.93 www.hilU t15 PROFIS Anchor 2.2.0 r Company: KPFF Consulting Engineers Page: 7 WV" Specifier: Project: WCHS Address: Sub-Project I Pos.No.: Critical Gym OWJ Phone I Fax: -i- Date: 12/14/2012 E-Mail: 7.installation data Anchor plate,steel:- Anchor type and diameter:AWS 01.1 GR.B,3/4 Profile:S shape(AISC),3.000 in.x 2.330 in.x 0.170 in.x 0.260 in. Installation torque:0.000 in.-lb Hole diameter in the fixture:- Hole diameter In the base material:- Plate thickness(input):0-500 in. Hole depth in the base material:- Recommended plate thickness:not calculated Minimum thickness of the base material:6.875 in. Ay 0 • • LI III 7 9 9 io i x 4 5 ----- B ■ I 0 0 • • 1 2 3 = 4.0000 - 4.0000 12.0000 12.0000 t .- Coordinates Anchor)in.) Anchor x y ca c„ c, c, Anchor x y ca c, c c„ 1 -8.000 -8.000 - - - - 6 8.000 0.000 F 2 0.000 -8.000 - - 7 -8.000 8.000 - - 3 8.000 -8.000 - - - - 8 0.000 8.000 - - - - 4 -8.000 0.000 - - - - 9 8.000 8.000 - - - 5 0.000 0.000 - - - - Input data and results must be checked for agreement with the existing conditions and for plausibility! --PROFIS Anchor(c)2003-2009 Hilt AG,FI.-9494 Schwan Hilt is a registered Trademark of HIS AG.Schaan I L`-1 F■i1&TIII w'nv.hila.us PROFIS Anchor 2.2.0 • Company: KPFF Consulting Engineers Page: ——— 1 Specifier. Project WCHS Address: Sub-Project I Pos.No.: Critical Gym OWJ Phone I Fax: -I- Date: 12/14/2012 E-Mail: Specifiers comments: Embed Connection D +L + E- t Input data 1" fin. Anchor type and diameter: AWS D1.1 GR.B,3/4 Effective embedment depth: h,=5.000 in. Material: Proof: design method ACI 3181 CIP Stand-off installation: e,=0.000 In.(no stand-off);t=0.500 In.;countersunk anchorplate Anchor plate: I x I,x t=20.000 x 20.000 x 0.500 in.(Recommended plate thickness:not calculated) Profile S shape(AISC);(L x W x T x FT)=3.000 in.x 2.330 in.x 0.170 in.x 0.260 in. Base material: cracked concrete,5000,f;=5000 psi;h=8.000 in. Reinforcement: tension:condition A,shear.condition A; edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F): yes(D.3.3.8) Geometry[ln.J&Loading[lb,In.-114 Z • 1 ea 8 B _ k---- t k- 14 03 al p . \` ? \,�._ \ - ',x 0 Input data and rsaulb must be checked for agreement of lb.existing conditions and for pWrlballyt PROFIS Anchor(c)2003-2009 Hliti AG.FL-9494 Selman HMI is a registered Trademark of HMI AO,Schoen IV Fi1LITI www.hilt.us PROFIS Anchor 2.2.0 Company: KPFF Consulting Engineers Page: 2 Sped1tef Protect WCHS Address: Sub-Project I Pos.No.: Critical Gym OM Phone I Fax: -I- Date: 12/14/2012 E-Mail: 2.Load case/Resulting anchor forces Load case(governing): Anchor reactions(Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 9 9 0 1 1392 2415 2415 0 Ay 2 699 2415 2415 0 , = 3 6 2415 2415 0 Tension 4 1392 2415 2415 0 4 (Sf s - x a" 5 699 2415 2415 0 6 6 2415 2415 0 7 1302 2415 2415 0 8 699 2415 2415 0 9 6 2415 2415 0 Q S max.concrete compressive strain(%eJ: 0.01 max.concrete compressive stress[psi):57 resulting tension force In(x/y)=(-5.276/0.000)(IbI:6290 resulting compression force in(x/y)=(9.358/0.000)(lb):1091 • 3.Tension load Proof Load N.pi)) Capacity 4N,[lb] Utilization s„(161=NAN, Status Steel Strength' 1392 21547 6 OK Pullout Strength' 1392 6594 21 OK Concrete Breakout Strength' 6291 10696 59 OK Concrete Side-Face Blowout N/A N/A N/A N/A direction" •anchor having the highest loading "anchor group(anchors in tension) Steel Strength Equations N. =n A..,N f„„ ACI 318-08 Eq.(D-3) 4 No"2 N. AC1318-08 Eq.(0-1) Variables n Awe Cn•21 f t.Ipsil 1 0.44 65000 Calculations N.jib) 28730 Results N.(lb) 4•••t 4 N..[lb) K.jib) 28730 0.750 21547 1392 • Input data and mauls mutt be checked fat agreement watt the uYWg eadeonn and for pbu.eRMN PROFIS Anctar(c 1 2003.2009 Nitl AG.FL-9494 Sateen Mg Is a spurned Tradsres of lild AG,Solemn N1`..Tl www.hifti.us PROFIS Anchor 2.2.0 Company: KPFF Consulting Engineers Page: 3 r.; .-- Specifier: Project: WCHS Address: Sub-Project I Pos.No.: Critical Gym OWJ Phone I Fax: -]- Date: 12/14/2012 E-Mail: Pullout Strength Equations Na., =Wc.p N, ACI 318-08 Eq.(D-14) Np =8 Ain f, ACI 318-08 Eq.(D-15) 0 Nye 2 N,,, ACI 318-08 Eq.(D-1) Variables 4/.4,p ____Nis PL __yy 7a,a J - _ { [psi] 1.000 0.79__ 5000 Calculations Np[lb] 31400 Results Npn[lb] +concrete -._. Onooducne 4,N1,[ib1_ Nlt.l!1 3 400 0.700 0.750 0.400 6594 — — 1392 Concrete Breakout Strength Equations Ncbp =(A )Wec.N Wed,N Wc.N Wcp.N Mb ACI 318-08 Eq.(D-5) 0 Nob,=Nw ACI 318-08 Eq.(D-1) AN, see ACI 318-08,Part 0.5.2.1,Fig.RD.5.2.1(b) A,.,co =9 h;, ACI 318-08 Eq.(D-6) F�a„ ( 3;741 1 W.c.N = 2 5 1.0 ACI 318-08 Eq.(D-9) 3 her We0.N =0.7+0.3(1 5h.r)s 1.0 ACI 318-08 Eq.(D-11) WwN =M (c,,,„ 1.5h,�)51.0 ACI 318-08 Eq.(D-13) ce, ' c„ J Nib =kc i.A he16 ACI 318-08 Eq.(D-7) Variables he[in.] ed.N[n.].._..----,Flew In — —c..e,:,[in.] Wc.N c,c[in.] kc a 5.000 5.285 0.000 3936.969 1.000 - 24 1 fc[psi] 5000 Calculations ANC[in.2] ANc0(in-21 wt•N _ailtN---- .. ~ 11!IP•n ---N►@b1_---- 961.00 225.00 0.587 1.000 1.000 1.000 18974 Results Nebu[Pb] +co crete — -- !b .. w +Nth,[Ib] N1e[Ib) 47540 0.750 0.750 0.400 10696 6291 0 ^is 2YrL` Input data and results must be checked for agreement with the existing conditions and for plausibility' PROFIS Anchor(c)2003-2009 Hai AG.FL-9494 Schaan HIS is a registered Trademark of HIS AG.Schaan www.hilti.us PROFIS Anchor 2.2.0 Company: KPFF Consulting Engineer. Page: 4 Specifier. Project: WCHS Address: Sub-Project I Pos.No.: Critical Gym OWJ Phone 1 Fax: -]- Date: 12/14/2012 E-Mail: 4.Shear load Proof Load V.lib] Capacity 4V-[1b] Utilization ft,(%]=V„/4V, Status Steel Strength' 2415 18674 13 OK Pryout Strength" 21736 34036 64 OK Concrete edge failure in N/A N/A N/A WA direction" •anchor having the highest loading "anchor group(relevant anchors) Steel Strength Equations V„ =n A,.v f„t, ACI 318-08 Eq.(D-19) V,,,,,,z V,„, ACI 318-08 Eq.(D-1) Variables ^ass PO fur[Peg 1 0.44 65000 Calculations Vea pi 28730 Results Vr Pb) — — •Vaa lbJ V„Pb] 28730 0.850 18674 2415 Input data and mufti must be docked Ow g.ert4nt with the existing wnddione and for plawlbiflyl PROFIS Anchat(c)2003-2009 Hilt AG.FL-9494 Schaan Hile a a registered Trademark of Hilt AG,Schaan 1.11111.11191 www.hilti.us PROFIS Anchor 2.2.0 Company. KPFF Consulting Engineers Page: 5 Specifier: Project: WCHS Address: Sub-Project I Pos.No.: Critical Gym OWJ Phone I Fax: -)- Date: 12/14/2012 E-Mail: Pryout Strength(Concrete Breakout Strength controls) Equations Vwy =lc,[(ANSI weer.tyw.N wc.N 4k-oh NhJ ACI 318-08 Eq.(D-31) 4 V�z V,. ACI 318-08 Eq.(D-1) Aw see ACI 318-08,Part D.5.2.1,Fig.RD.5.2.1(b) Awe =9 h:f ACI 318-08 Eq.(D-6) 1 ty.c,N = (1 2+ e,,,)5 1.0 ACI 318-08 Eq.(D-9) 3 h wed,N =0.7+0.3(1%.—'4:1')5 1.0 ACI 318-08 Eq.(D-11) tycp,N =MAx( ,16ft.f)5 1.0 ACI 318-08 Eq.(D-13) Nib =14 x VT,fyis ACI 318-08 Eq.(D-7) Variables kse- IL •1--—sbt.N Pn- - eez,N[in.] _.—.comb Ih•I Wc.N cac[in.j lc 2 5.000 0.000 0.000 - 1.000 - 24 x 4 EPA 1 5000 Calculations ANC[in.2) Anko[in.21 ••star �'ra!!._—.-.. _Twt-------Yar•N _ Ns PM 961.00 225.00 1.000 1.000 1.000 1.000 18974 , Results V,,,,,,[Ibl iliceecne. -fin+'— — —4SCA M'— . 4 Viw pb1 Ito pbi 162077 0.700 0.750 0.400 34038 21736 5.Combined tension and shear loads p.is N./+N. fr a>;V./+V. C Utilization o,u,I%1 Status 6.iss 0.839 5/3 89 OK • 13M =p»+p;<=1 6.Warnings •Condition A applies when supplementary reinforcement is used.The cb factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to ACI 318,Part 0.4.4(c). •Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI318 or the relevant standard! •The anchor plate is assumed to be sufficiently stiff in order to be not deformed when subjected to the actions! •An anchor design approach for structures assigned to Seismic Design Category C,D,E or F is given in ACI 318-08 Appendix D,Part 0.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.In lieu of D.3.3.4 and D.3.3.5,the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains'Exceptions' that may be applied in lieu of 0.3.3 for applications involving"non-structural components'as defined in ASCE 7,Section 13.4.2. An alternative anchor design approach to ACI 318-08,Part D.3.3 is given in IBC 2009,Section 1908.1.9.This approach contains'Exceptions' that may be applied in lieu of D.3.3 for applications involving"wall out-of-plane forces'as defined in ASCE 7.Equation 12.11-1 or Equation 12.14-10. ( •It is the responsibility of the user when inputing values for brittle reduction factors(4.,., , )different than those noted in ACI 318-08,Part t:-i.' D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08,ASCE 7 and the governing building code. Selection of 4qs...=1.0 as a means of satisfying ACI 318-08,Part 0.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level<=the design strengths calculated per ACI 318-08,Part D.3.3.3. Input dale and results muat be cracked for agreement with the existing conditions and for ptausibilityf PROFIS Anchor(c)2003-2009 Hilt AG,FL-9494 Scnaan HA a a registered Trademark of Haiti AG.Schwan 10114111601111.11 www.hilti.us PROFIS Anchor 2.2.0 r•77";,,,, Company: KPFF Consulting Engineers Page: 6 Specifier: Project: WCHS Address: Sub-Project I Pos,No.: Critical Gym OWJ Phone I Fax: Date: 12/14/2012 E-Mail: Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Huth AG,FL-9494 Schaan t is a registered Trademark of Huts AG,Schaan 1111■iIL. I www.hliN•us PROFIS Anchor 2.2.0 Company: KPFF Consulting Engineers Page: 7 P.Ar<w Specifier: Project: WCHS Address: Sub-Project I Pos.No.: Critical Gym OWJ Phone I Fax: -I- Date: 12/14/2012 E-Mail: 7. Installation data Anchor plate,steel:- Anchor type and diameter:AWS 01 1 GR B,3/4 Profile:S shape(AISC),3.000 in.x 2.330 in.x 0.170 in.x 0.260 in. Installation torque:0.000 in.-lb Hole diameter in the fixture:- Hole diameter In the base material:- Plate thickness(input):0.500 in. Hole depth in the base material:- Recommended plate thickness:not calculated Minimum thickness of the base material:6.875 in. n y I 0 0 o Air 7 a 2 • 0 S % O _ :: p > 4 5 i. 6 1 0 i i (ji)2 3 1 frrr 2.0000 a 10.0000 10.0000 Coordinates Anchor[In.] Anchor it y c, c„ c., c., Anchor x y c, c, c, c, 1 -8.000 -8.000 - - - - 6 8 000 0.000 - - - r 2 0,000 -8.000 - - - - 7 -8.000 8.000 - - ``R,. 3 8.000 -8.000 - - - - 8 0.000 8.000 - - - - 4 -8.000 0.000 - - - - 9 8.000 8.000 . - 5 0.000 0.000 - - - _ Input data and results must be checked for agreement with the existing condition and for plaueibilityi PROFIS Anchor(c)2003-2009 Hite AG,FL-9494 Schaan Hilb is a registered Trademark of Hilt AG,Schaal, RoJecr _ � G r .-._._l'l44 Sheet No. Consulting EngineersL-..--- nU ?®j- DOfe tI6�►Z —� C t PitoLJ l4 - Revaed Job No. • Porbonci.Oregon t _ Date 2095/2,Q 1 i 4/0277-- /fic iritw - wl^'P 4' 4CY 4 . Nit- o t 1'r 0.0025t, tel 144 kd V Z 44, 6-I6 r�lifiJ %L d - ,>0'4.2 A c x tb.44-U r1 f�4i-ba. = 0.435 k - 4f%t.cL.4 t1''y`J elf-404f,01- Doi,-f: ( cam 6,-3, a-r A(i441.o) Tbeo 6piaf►i+'c. F,4t ro4 - i. 0 N Ail aoo. 1+; - L; n-ari-y - Lit °'' 1<e - o vJ p SPED C �- [cN� Es ��iT � R 5 ~LP } d�G f-;&.0 >2.6- 164 -XPoss/26. G4t_., croe7l _r K Po 2 - = I. IS- ( &A-P.6-6641 ]71 ) 0,0oz510(0, )(7.o )(0.85)(y6)2 ( Lis) , rs,q 1T , "'/ ...o a ON r44 W D fo2c,6.... 444 4.71"ekr- H QJ f') - tow-fug 4.4):1-1"(T'S , 04.5 , d am 6.s , 12 • P = �4 C CGCr - (Gcp1)] fa . S r(rC r. ) - -6-rC nc.. P .,6. 4.oec. i O-v rod_ e-E o) C&-GP;- ) - -3-‘,11"6-9m1 - e4.14-4,*,) e-GE- - s ) L Ce-) gLDG. ?0•' 41.# t 1143' so' ICJ -}1S' ivo2 Pralect (4)4 G q" By M44 Sleet No. itrrni F Location 7 G4o/ im- Date l , / ; Consulting Engineers f I Lr Client 96 W — gZ Revised Job No. G • Pomand 0,49on Date {z0`�SiZ ,mil No R•-17f 490i149.4 - k4 JD 444t-Y 4;e> k4C4- -0S- C.) P4.31-'rf ,at_. p = o. Hn (..v`A0920 &ab-b-10 - -O 29 w4a.o tJ•-t' j &Cps _ ± o. , 00.+-p"ao-s 1 041 6- 5 - Ad pc..)4/24, 6.)k-o- p = !c. $ rep-o- ( o,ei o +-t 7.2. r'- - 0 140 -r - - t(.+%AQ -NI D.r,2,6 o-io 4 A = (z4 ,044 4P -) ) (15'4Z` PAwAF -)( yi ' /bss1-+z t-O# ts- FQt Cam -- t�a;a, N-4 p< i tAio nr A - (2J+' -1- 1) P 3-) (30, s' ) .+ ( t s'+ ` p44246-Pair) -vv jV ..$onl V (ro5 " f` ((f.Z4-a-,' ) /1.5 k /©00 -- w - s V .c.no V. ( y~r) f-11')(1.24-*.4t) : 3;,# /000 j - i Pro,eot W 4G - - -- BY HMI- sheet No. ---- =El wc-- �•'�n ��_, T Date 11/44,2 4 ► 1 7 3 Consulting Engineers i----- L� ckent 12o war - L I. Revised Job No. IOW � I Date 261512.c,t] OA-ant-6W MAL rtij-ft_ -DS- G.) 6 -k r S;re__ CI- S C> (f G-4v C2[ t 4.4 R C2T SS 1.®G 9 5, = 0.31- 5 fiw = Log Sy4 , =4.111 5 cer_o e4-#4c1 G4 -6o2y - 1 $ _Z M�t92c c.� f�kt. 3•+ ,T a. Jr. I.LS krgo Ge- 7' aeh P®ov 5f P G P�' L44`s'S+••► F4-t..72' 1 (2„._ 4,.S C 4 c 't' g4 t 2 2.- ) 1.--;o+.0-►-F 244'1 Div 1...44+I L 604--Q.At ,'f4, u 2000. ,LS 2.6.4"6-1/1 KA- s.r, Jy 0/74642 (.../4ti b) f au;�r a t r j t kAt., ,'vr -- -- [-4c G+L4 & PA-H +;-A-L. of . ' / 1`=T., L i Z. 6, i ) TG. CA. ‘A _ o.02 0.3-5 1 = 75' 11,-000.r 1-64/04- ' 10rx—)t1a-. 1-e- = C0,01)(25')1).45. ,oz)(2')1).45. a 0.22_4 Gs • W (MS[ t2 .8- 1 ) C4.)(44,--z4- G, 5 sw`c - c • — f eu-,.rte 4, 4mortic P�.2. 12.*, L —� � L✓�`i t 4 /4Se- fPi i.i tt.) Gw = ` 0.fit. D.1 Cs "-'...t-c to a r r c. c) C.46-= tea+ 67, 4 p, 4 G� r(2/3) m.u(sj,:2s G s m,t ci C.9-O4.642.rt s Sh No —1 ee+ EMULocation r 8 2 -- +I Dote I !6/i Consulting Engineers I ----• ---- ( f I i-----I br, i Client POW A. -Lea. RRevised I Job No • Porta.Oregon r Date 12095►?.01', ,v©21)t �...4'2,.M.QvA-1 A+N4Gyh:5 -o�c> . 1-ois 1 —/ I 57v,PwliGC-/ _ C41,0-7*-;ev c,..".41.,L /5 r". - I C 3!DG. 3D5 _1 'I$! +rvow4 I I-- A Ye lv 50 fr-rA 0 l' 52.--sa" ---t A/0217/ 101/2 -!LDO, , g - Gar= 6 (2.e, a..F-) /20,afro £3 _. t+Ff.C. Lti Og17f 5 • 71.)..Q G.4tt- 444416"d 4✓'4-f f =- ZS 9 ' 1/f240664 w/'/uo 6/1-t k--Lit' //g , £( ((.. w '4 T (15'/2 12 1(223' )./S ) + (f5 A. fit )018' )(SoAsf- ) = 24Tpi L3 16f-1`15. T) ..fit ►i c.._ w i = 2 04 r$Le z tt, e v G.s • w .. 0.14 (zD T/ ag,//oop = Vt.s 1,, 1 %%/4-/o._ Ait Sheet No. 1 Project \kJ (..."4 l Consulting Engineers■---H 1-ccatl°n 6.4444' VI" ic Jcb No Client 00t4 A - Revised • Porhonci"..ireyor, t Dote ZO4i512 .0 Ajo44711- 4170, o&) \No 14.0 Cotte.412-Z4=.0 4 - f--- v c -E-c..r bif<7.f.- A.}.0 Ogatentel..skt 0.* U41(1.- (90 v4.k) - pv.4_4_1-1014 kit)■•-r9 k4e-11.14■34V- - 6.4- S 1 a a 0 . _ . T D W@!M U i 4:-(1' I ` WALL BELOW !.'A,, W16.26(A! © yyTn.4± ItA t...,4'-L ___ wtnnz, • wte 26 W10x16 ; (a'`-i`L 4r t '`_ ti qr40 Caw too,- as A e E 3 4-2 t sf 3 rS 1 W10,12 ' widr26 W16.16 ; S •lf/ mIALL i6 L.i'gAA-c- 3 30-ILO i F .) ""611- - - - -vtl 4 fN - - - - f f(�T.Ilk .._.._ _ - 0 w' 4-ru,7 LoCJ .Q--0,D'' l'-it" pa-A-6- A (b-/ SHEARIBEAR1NG WALL BELOW \ • W10 _. I 0 1,41(.4.. _. I , 1 , , . z z„:::;.=:.,===F 16e_ coLL45.4-7b2s . y • 1131 la a w VP TYP a ; © A . VP 3i TVP. 5 Ali P. WAN r 0 TYP W�RBEAR 4,14.1, ,, 3 \ 1 3 1 NORTH ADDITION - LATERAL DESIGN + L- rth— i&-1' J t*-•7 4142r ? , ( 1 i (---2---) \_......, • 1 Q.P.-s" - �rl,- r - f i !b-pn SHEAR/SEARING WALL BELOW r - W16ae iN "4"-4 f - C ��f�. .�_. W16ide IB) � C 5 N I g ¢ %. 7 i w1O.124 W 1e,M W1005 --. ► WAU EL WALL 8 � BELOW OW -5l14444. w 4t.4- ; 3¢T� M' " - - - -"Dee • - _ - - / - . © IA-41-LE__.. 4-0.1.0 1.4(....) /2-0bre- I —/,M i \ O z;r•'"-----wAU BE�ow { 15 1nr`i P44I 4414- ---1---a , 72' 7 r- 1-2` 1 ' L }z , a- / 1 So TYP. jtee 1y4.2r 1 a IS A 4 TYP V AI EC/ t - –- H rYP Wat L, 7 O --.. WALL EARIBEAAING i J Qo 3 NORTH ADDITION - LATERAL DESIGN D—ate tM�1 ! � "3 L 11 Ty * 4 I sheet No. Elffirilt� h1 dConsultingEngineers! fO'L Job No.i Client row r^e z Revised• Porhand,Oregon Z Off 5 .D� Dote • 44)4474— A IA'revo-J G 4- Gv,'N9 P 4.6 ' 'V.S A cri -,1,145.-4,1, L4.) Pf2,-,‘G-14 tA..) I-161 f i� f = (� )(Z44 f-,')(/6.4 3 = 3z9 Lg • v , 0.06+i = (f ' 1(i S% +z ')(i..4 PT.$ ) = 252 58/4 L 3 dot-Pst .J f-6tL T = V• k _ 5g/4 (4') 622.9 L 6 V q9i - Is" PLC - G t-1e- 6044+231) 41412- -4_, Z.IND 1 4, W /!o (y/5' Pc,- ) -- a4* dote- 7-47, 1SG . 14,r/i+40a45-v ,5i 6, 6 ,c_ V -L,_ - 4.55 (p/DT f ) 7*3, Ptf 7 61di Pt..f O - // mit ill i - ct wyGtf B k M4. I st,ee,nb. • Location 7����n f Dote 11/4/12, C o n s u l t i n p Engineers _._ I t1 PO(...)4 zbl.. Revised ►+o. —. • pornand.Orego, Date �'e�p�►}2 6 4-41 fit r)‘01.1 -. l'I414-4,4 (N:u9 P01014'6"00 — $i—S phzetr a G 0.6.-G IC— u fit:.`Pr 4-11)6,, 19614) t.61"p - ®f = Cs' )(a!')(Z.o e44-) z # /-g (;.5')(P4')(/5P1rf-) -. /SE'S L g I UPC f T = 6,2„29 c 3 - D.*( 38K )(,q /Z ) ems.,; o /N-v v 4 ,..)1 (t ) I$t5 3 4J ern) g 6/is t_e, > s 1KL 3, • f--W 0,,c.„t+ I Sheet No. .1‘4.14.. ito 13111Consulting Engineers' -_ r"6442-1> 62 _ I Dote I 1 71/Z 1 D !Client �{eht �.4`w r T Rev sed Job No. Doti e NO 2.r1+ A-py; L A-t _.R.M. t,.,:N 9 plt' t)-0 N-5 P,2Gc esf1/41 • t/f J .t7 goof = (36.s 2y' V tOCO stOe' = (' ;/2 ) C/511.42' (16.6 P ) /231 L$ 4S3a� . _ 14-f t_p ow n1 ft442.t- T - y �` w5s 3(15') _ <1• 4$ `t3 - v►� 52. ir 4 48}d 31)9 f ,f Li 4-t.taw A4 L i- Lylo aap s,--&-(,4--i& Z-4 c t, IA-) = 1. 6 ( ) / 6,4 . 4n)P.> ref G&42N ,-'r' (o 'r C,.. 94 II L - o.S' ( Nor- ) el"- 7 5-5+ rif- D kc f 6.14._C..v_ Jet;FT /4.14..+ 'AC,6. UPL�•c-i fb'2 L.. T = iii8-$ 3 A.(..(3815104'4.) = 373 LL /5►' ',`/ (.4 ( Ie . s��A > D S -r,01 ot75- L > LA eitif I sheet No - - ' c'ject \N t4- 1 BY H4-4 IF! IligliConsulting Engineersl-L°cati°" _n1/46.44-c>4_0_4_ rate 11/4/#2,. F nt Job No. Clie A/W 4 Revised Pcationd.Oregon Date i Z05512 ft)0 4'1)4. r AWk. 1; 12 $9,491 6."/ PO'‘ 4i _- 14..) A-Lk— (.7— / /5 1/3' 5-63g us 14otave.,..w T V• 1"-- 6636 (/ ' 1q6,7- LS 4 37--- v ;T .1-- = 54 g, i11 cv4.4,r_ A,tkowskisic_ "442-p 2.90 /, co LA1 /to ( /3 ) XitO ft# le 6-if-. 7-1)0', to/tr-it-Aore.e4es, 00"0,c_ 9(44_0_ ,5-s-(140-3-- ) 1P 240 et e- owi Cte_ if ft..3("tutu,CAL le-OOF (414-Lt- PC, 113 X7,-49 fab. ) 4- 05 9 .)kr3+1')-=- /6 493-5- NTS -3cce) Lez. q ' o efoL POLO Ai Nor 4642'C> i — TProiect By #4 44§.- i Sheet 14°. 1 F_ _____■,..J .(4- i D I I 7Z 1 Consulting Engineers 1-±-c'ca 1'1's-6 tk)n 16444/ O& at 1 e--jj141/1- 1 1 cien• t jowl° — ----i • Portland.Oregon I-- I I Date 1,Z01512,,ot : - 1-4N-e-A-t A./o ofi-424'6,-1•J 4.)- 0 26-c-rton../ — w A-t..k_ 7- i V i,.. i i . - / 1 . i r I , i 1 , 1 — get pot...14 F04.4...4._ iiT -, ,ILL.-_ _ ii3V-Co. -Lp;') -,_.„. 1524- tG .. I- 43., • N'- 1 — ti 0 r •i! i1 -4& Atbett,f_ 1 1 1 - 102 focr. I. - I , 1 ! i ---- CI36.4.4c 4tl0(--)44C6_. 4t+r›Ata. - tia.(- 03142-0 •412..1E-4 Z-C`O 1 1, (p W .='' f.00 ( /02-) = /CS ftl- I /g 6-4 ■ rt),pe., 0 5 c-(flics-) -: *1-4 • /63 r.-e- li 1 - C- ; 1441-4."--- OPC1-r ii-ox-441:1,2AC..f_ itoo - 4- L,)A-1., 0 k = (4i )(43`)(2--o e--,f-) + ( 11)0Z1s- Asf )7.--- /3 Ms- ! i ueLIF-z- f-t)4-c-f -2 161-1- - ,(. ( 13( s )(0 /.2..) ..,-_. -24:37- z.. • 11.3 I 0 1 i — _— — sneer nun. liffil Consulting Engineers( T G' D/ 0� Date h lila, 183 Job oar I Cren, POW a .w,2.�t.,xL -- Rem' 1120J • Portland Date ,)oa.nf A-pin 6c)A) — c.4- _.. W 4lL i 1't ' i a 2001 North American Specification 4 k}L4 Project: WSCH , Date: 12/14/2012 7Vlodel: Wall 2-Critical Jamb lir 16 R1 R2 14.00 ft Section : (2)600S162-54 Back-to-Back C Stud (X-X Axis) Fy= 50.0 ksi Maxo= 4626.7 Ft-Lb Moment of Inertia, I= 5.721 inA4 Va= 5645.8 {b Loads have not been modified for strength checks Loads have not been modified for deflection calculations Flexural and Deflection Check Mmax Mmax/ Mpos Bracing Ma(Brc) Mpos/ Deflection Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma(Brc) (in) Ratio Center Span 0.0 0.000 0.0 Full 4626.7 0.000 0.000 L/0 Combined Bending and Web Crippling Reaction or Load Bmg Pa Mmax Intr. Stiffen Pt Load P(Ib) (in) (Ib) (Ft-Lb) Value Req'd? R1 0.0 1.00 2860.0 0.0 0.00 No R2 0.0 1.00 2860.0 0.0 0.00 No Combined Bending and Shear Reaction or Vmax Mmax Va Intr. Intr- 1 Pt Load (lb) (Ft-Lb) Factor VNa M/Ma Unstiffen Stiffen R1 0.0 0.0 1.00 0.00 0.00 0.00 NA R2 0.0 0.0 1.00 0.00 0.00 0.00 NA Combined Bending and Axial Load Axial Ld Bracing (in) Max Allow Ld Intr. Span (Ib) KyLy KtLt KL/r (Ib) P/Pa Value Center Span 4653.0(c) Sheathed Sheathed 74 4990.3(c) 0.93 0.93 Member Interconnection Spacing=4 in See NASPEC C4.5 for add'nl interconnection requirements +""Ct tAf 644- sneer nis,. eY KA�4- EMllConsulting Engineers! °rte, n4'I pI- -- °e 11/2112-` C —� pod..of... II Client }[ti w A .r-61 sewed Job No.• ' - —._. — 1 — -- — — --- --- — — Dare ZbS►2.04 J084„11+ rsoGt' 1a -- L Or;s%..rk L.: -A-'4-t-t /. g r k ' A- 13.5 .� ---4 11 ror4-L_ �- (sq.sic) _ /// ;81 �C V'r .. Vd, -- ( ) (,g, . i) _ 5761- 6 V' 1,6 ( _ (t$ 1345s (� Ito — Nflt.Peat )4%) C 4-C.F_. i I - _ d5/6 (135) G341/ L it U u; r v _ V _ 5/6 I- r 410 /E.44 L it co-_.cx_ 4-ttow a s -8► ,°, c Z i'g (r� StUOS 41 4 -e.5. 44.G, V 4-_ 0,5 (!V's') = 441 PLF M?O f't-,F ©44 J/ p. GtG-�C r o c_ A�Ltfi C.� A-44'f PG ,'F'1‘6.-1..--, t+Bt.-A J -Fa zc J = 3 T 3(634t1 ) _ 0, 02-3 LS • Pa..0•, S/1+9 1 Li`( ) g (, c A446 P S T 2ow��c,.� = 2 t o L 2 1 g ...� > q,a23 L-12-- Ov-/f c(4,404._ (4.0 o Loft.) Pal i IProject N4.1C.,14` BY M4-/- Sh44et No. ■ I ; Lcation 7-4,-44.42_1_0 el,. mill Consulting EngineersH o Date , Job No. client POW A --T-Sa Revised Aish. 1 Pcrt•oncl 0,ecro i ZOel 512•Ci 1 1p [. i Date 1 Aro 2no- Appii*AJ - /4.tr2-tzAi_ 1 1 45912-r4"0-0444A---- 014,16-4 t•--KJ Orngtrterki 1 1 ! . . i — 14-0%-po,..),,..) -63:02.4..k_ T f. 1.,_ :.-.. f*55 0151 .„,.. 639/ t& 1 i 1 , . S225.1 ...... *fo Por- i L__ /g 1 _ c..‘fct,),_ A-tt,ot,J494.4._. ...e7-A4,6-tot -,1)(24.- a D Ag2P Aft-thotz. t90 ! i i ,c 0 0 4,-,,... , 0,5-s-- (,40, ) ...--- 44--S , Alo 0,L.F ! CO-F,6,44, tiet:pr i A4-fet.`(--115,9 /401.449W A.) FOW SL ,-- 3. o 1 T 3 (tp”, ..7.. (4/C2-3L6 1 1 104,0v ott_, . 11-1-OU 1 wi(z-) /g Cr4-. 3 AkiS '7.1UP 1 , 1 11 - C (4,5(-k-- i P4-Chr ,c3t... LA 6w -6 I? L4fii.f.... A-Trsre.t+ft-o) I I ■ i 1 ! ! i i i I1 ak , w ; 1 , ! , i 1 1 , ___, 2001 North American Specification Project: WSCH Date: 12/14/2012 s „ 7 Model: Wall 1.8-Critical Jamb R1 R2 13.50 ft Section : 600S250-68 Built-Up C Stud (X-X Axis) Fy= 50.0 ksi Maxo= 3462.4 Ft-Lb Moment of Inertia,I= 4.722 inA4 Va = 5350.3 lb Loads have not been modified for strength checks Loads have not been modified for deflection calculations Flexural and Deflection Check Mmax Mmaxl Mpos Bracing Ma(Brc) Mpos/ Deflection Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma(Brc) (in) Ratio Center Span 0.0 0.000 0.0 Full 3462.4 0.000 0.000 LJ0 Combined Bending and Web Crippling Reaction or Load Bmg Pa Mmax Intr. Stiffen Pt Load P(Ib) (in) (Ib) (Ft-Lb) Value Req'd? R1 0.0 1.00 914.4 0.0 0.00 No R2 0.0 1.00 914.4 0.0 0.00 No Combined Bending and Shear Reaction or Vmax Mmax Va Intr. Intr. Pt Load (Ib) (Ft-Lb) Factor VNa M/Ma Unstiffen Stiffen R1 0.0 0.0 1.00 0.00 0.00 0.00 NA R2 0.0 0.0 1.00 0.00 0.00 0.00 NA Combined Bending and Axial Load Axial Ld Bracing(in) Max Allow Ld Intr. Span (Ib) KyLy KtLt KL/r (lb) P/Pa Value Center Span 1187.9(c) Sheathed Sheathed 68 5295.5(c) 0.22 0.22 .Pt t V3G 14` By 0 A sn""a 1 Consulting Engineers location----- TG Q •, 61... � DOfe!t 1 !iZ FS . ,r No. �«na a aega FClient — - pow A- -_S_ Revised .. — Date 00.T_ t4P��a ^- F. -1 4c.A.1 A-t 4 ,ot ; t-w o '6...1 1 — W4LL t 1 I 1 A I [S] c..,.. -----:), A- o i 136 !I / , 1 / / / / / / I -b" 7-' y'c' 5' Ni.6 - :, ' z. ( f \(3gs k) /� �l- �b lbooel - v4.) r ,f ,.r4'2_ • _ W._._ 7... 1?3$ 0 PL- IS L. 2L,. -- c r tx Art to w Pre. _ 4.0-6. - �04e... 6041,24, . . zoo I$ (r . '1)o cr tJ/f-+*h 1:60. f-rZ'- e Ar_"0.G , 0v....,%_ 0.55 ( 1k2-51 r- 1051 Pc_t<- ? 9-,o pct ©mot? 1 -- Rtn-PO c...) Fo f-- "/ 4,,\625--, P i-fire. o 1 T = yL '° ( .g}.(f3,5') /0665- LS 1 — L144-1..e. uPC;Pr A-4G,.4 A4 ..,. ■ iik-KPL i•f-e3 HOLPOt..)NI 'f'3+2[.+...- r2.-- = 3, o T= 3(.161‘45- ) 31, 445" L._a-, 0 ' KO-x,KKK R Pot.J J f-0#2.1-£.. iice- a04-1 p 5i+•..11:41-1-}4.4C. C Ac...,../; -i" _ {9 7.- -.(Z.5)(13•51/2,e5 f = ZSfg? L 6 Sheet No. 1 Project vi5c14 BY /4 A-4 1:11rJfligir Consulting Engineers, ation 644.424, otz.: Date Spel I Job No. client pow zjibx. Revised ■ °Mond, OFOQ0f, - bate 2ocr--;12J), Naar* APP■ Ni 64€.11Visia Pb*;&-N) 6.1 1v264.rl'a r.) — 464k_ rivi-P6LO 7 =- zs,cogg L Pc04-f"Pit x_44-x. i. sI w j '-------- y . -E Sheet y� .P Project �BI4401- ERB Consulting EngineersLxotb T O pate 'f/ i i_. ° Job No.CMerrt Alt o 1i~ZS L Portland.• Or . --_-_- Revaen pate 1 Z0,4/? 'a l V R t'J _ 4p b n/ f--W PP014- Tt®+J r W 4-14-- 1 (No PotJC.Aft .344 ttty. 6 P11bN v ro l-A-,._ 34. ( ( ,e- �) r�+�34- t 3• 4,4.).0 o 1 — UN _ J _ 1;-38 - _ 41;- pLf 35' C! -C.LC DLO kJ RISC F 14454+2_. - e 44G '`•. 4 s 71 Pl. 7 4cl PI f ©k# (-3 1t l_p *A tit en r.L-F T+►) P�`'�-�Q t_ ' _ L�4-K CX. +.)Pc_, F e AM C-t . A-G-F kH PL r,' ,?,. 0 T >- 2 (64/o a Z� l0 t.t3 1044 .4.446 .1.27up7 T rem w. :44..1 = 2 PO i_i, } 20//30 t t7 K-// • ESER-5762 LEGACY REPORT Reissued July 1, 2003 BusinesslReglonal Officer 5360 Workman Mdl Road,Whttber,California 90601 r(562)699-0543 ICC Evaluation Service, Inc. Regional Officer 900 Montclair Road.Suite A.Birmingham,Alabama 35213 S(205)599-9800 www.icc-es.org Regional Office a 4051 West FlossmoorRoad,Country Club Hills.Illinois 60478 r(708)799-2305 Legacy report on the 1997 Uniform Building Code'",the 2000 International Building Codes, and the 2000 International Residential Codes'(IRC) DIVISION: 09—FINISHES 2.2.3 Steel Framing: In this report,gage numbers for steel Section:09260—Gypsum Board Assemblies framing members refer to the following minimum design base- metal thicknesses: SURE-BOARD SERIES 200 STRUCTURAL PANELS No. 16 gage :0.054 inch (1.37 mm) INTERMAT No. 18 gage :0.043 inch(1.09 mm) 2045 PLACENTIA AVENUE No.20 gage :0.033 inch(0.84 mm) COSTA MESA, CALIFORNIA 92627 Steel studs for shear walls must be C-shaped, with a 1.0 SUBJECT minimum depth of 31/2 inches(89 mm)and a minimum flange Sure Board Series 200 Structural Panels. width of 15/8 inches (41 mm), with a 3/s-inch(9.5 mm)return lip.Tracks shall be a minimum of 31/2 inches(89 mm)wide, 2.0 DESCRIPTION with minimum 11/4-inch(31.7 mm)flanges.No. 16 gage steel 2.1 General: members must comply with ASTM A 653 SS Grade 50,with minimum yield and tensile strengths of 50 ksi(340 MPa)and Sure-Board Series 200 Structural Panels are panels attached 65 ksi(450 MPa), respectively.The No.18 and No.20 gage to light-gage steel framing for shear wall applications. The members must comply with ASTM A 653 SS Grade 33,with panels are limited to applications where there is no direct minimum yield and tensile strengths of 33 ksi(230 MPa)and exposure to the weather or damp environments. 45 ksi(310 MPa),respectively. Structural properties shall be ,1^ The shear walls are an alternative to steel stud shear wall determined in accordance with Chapter 22,Division VII,of the systems described in Division VIII, Chapter 22, of the 1997 UBC or Section 2205 of the IBC. Uniform Building Code" (UBC), or cold-formed steel light- 2.3 Shear Wall Design: framed shear walls described in Section 2211 of the 2000 International Building Code'(l8C).The shear walls may also Shown in Table 1 are nominal shear values for wind or be used where an engineered design is submitted in earthquake forces, and approximate deflections at the accordance with Section R301.1.2 of the 2000 International nominal and design loads for shear walls using the Sure- Residential Codes (IRC) Board Series 200 Structural Panels attached to light-gage 2.2 Materials: steel studs. Nominal shear values shall be multiplied by the appropriate strength reduction factor to determine design 2.2.1 Sure-Board Series 200 Structural Panels: Sure- strength, or divided by the appropriate safety factor to Board Series 200 Structural Panels consist of/,-or 5/8-inch- determine allowable shear values in accordance with footnote thick (12.7 or 15.9 mm), tapered-edged, Type X gypsum 4 to Table 1, as set forth in Section 2219.3 of the UBC and wallboard complying with ASTM C 36-97, or water-resistant Section 2211.6 of the IBC. The maximum shear-wall height- core gypsum sheathing complying with ASTM C 79-97, to-width ratio is 2'/e:1.Panels must be fastened in accordance laminated with a water-soluble adhesive to sheet steel.The with Table 1. sheet steel is No 22 gage[0.027 inch(0.686 mm)base-metal thickness]complying with ASTM A 653 SS,Grade 33,and is Design of shear wall connections,such as uplift holddowns, provided with a G40 hot-dipped galvanized coating shear to base anchorage,and shear transfer from horizontal conforming to ASTM A 924. Available dimensions include elements, are beyond the scope of this report. The widths of 48 inches(1219 mm)and lengths of 8,9 and 10 feet connection design shall comply with the UBC or IBC and be (2438,2743 and 3048 mm). sized to exceed the loads resisted by the shear wall. 2.2.2 Fasteners:The fasteners used for attaching the Sure- Steel framing design for out-of-plane and axial loads shall Board Series 200 Structural Panels to steel framing are self- comply with the UBC or IBC. For installations in Seismic drilling/self-tapping bugle head screws, No. 6 minimum Zones 3 and 4, additional requirements in Section 2220.1 of diameter[0.138 inch(3.5 mm)],with a minimum 0.3145-inch the UBC apply.For installation in Seismic Design Category D, (8.0 mm) head diameter and 1.25 inches (31.7 mm) long, E,or F,additional requirements in Section 2211.7 of the IBC complying with SAE J78 and ASTM C 954. apply. • JCC-ES legacy reporn are not to be construed as representing aesthetics or any other attributes not sperifiea9e addressed.nor are they to be,onsrrued as ANSI on endorsement of the subject of the report or a retom rue',dation for its use.There is no warranty by ICC Eraluatton Sert it r.lnt__express or tntp lied,as to any Ending or other matter to this report.or as to any product emvred by the report. -.wane arum.," Copyright 0 2003 Page 1 of 2 Page 2 of 2 ER-5762 7. 2.4 Installation: 4.0 FINDINGS Installation must be in accordance with this report and the That the Sure-Board Series 200 Structural Panels, manufacturer's published installation instructions.Sure-Board described in this report, comply with the 1997 Uniform Series 200 Structural Panels are placed with the long Building Coder" (UBC),the 2000 International Building dimension parallel to stud framing.The steel face must be in Code*(IBC)and the 2000 International Residential Codes contact with the framing. All panel edges must be fully (IRC), subject to the following conditions: blocked by framing studs and are doubled (back-to-back)at 4.1 Panels are manufactured,identified and installed in shear wall ends,which must be interconnected to develop the accordance with this report. shear values. Maximum framing spacing is 24 inches (610 mm)on center.Screws attaching panels are installed in one 4.2 Nominal shear values for shear walls are limited to operation through the panels into the framing. Screw heads the values noted in Table 1. To determine the must be flush with the panel surface and penetrate into the allowable shear values or design strength values, cold-formed steel framing member by at least three exposed the appropriate safety factor or strength reduction threads. Minimum edge distance for fasteners attaching factor,in accordance with Section 2219.3 of the UBC panels to steel members is 3/8 inch(9.5 mm). or Section 2211.7 of the IBC,must be applied. 2.5 Identification: 4.3 Plans and calculations demonstrating compliance with the code and this report are submitted to the The Sure-Board Series 200 Structural Panels are identified by building official for approval. a label located on the top right and bottom left hand corner of 4.4 Applied loads are adjusted in accordance with the metal facing. The label notes the Intermat company name, product name, the ASTM C 79 designation when Sections 1612.3 and either Section 2210 or 2213.5.1 gypsum sheathing is used,and the evaluation report number of the UBC or Section 1605 and 2211.7.2 of the IBC. (ER-5762). Calculations shall demonstrate,in addition to other requirements as stipulated by the building official, 3.0 EVIDENCE SUBMITTED that the applied loads are less than the design loads Data in accordance with the ICC-ES Interim Criteria for Cyclic described in the UBC, IBC or IRC and this report. Racking Tests for Metal-Sheathed Shear Walls with Steel 4.5 The panels are produced at the CEMCO facilities Framing (AC154), dated March 2000, and a quality control located to 263 Covina Lane, City of Industry, manual. California. This report is subject to re-examination in one year. n,. TABLE 1-NOMINAL SHEAR RESISTANCE TO WIND OR EARTHQUAKE FORCES AND DEFLECTION(inches) FOR SHEAR WALLS WITH SURE-BOARD SERIES 200 STRUCTURAL PANELS ATTACHED TO LIGHT GAGE STEEL STUDS WITH SCREWS(pounds per foot)'"' FRAMING FASTENER SPACING AT PANEL EDGES(inches)" Minimum 6 4 3 2 Gage' Load A, A, Load An A. Load An A, Load A. A, (lb/linear (inch) (inch) (lb/linear (inch) (inch) (Ib/linear (inch) (inch) (lb/linear (inch) (Inch) foot) foot) foot) foot) 20 (0.033 1,085 0.55 0.10 1.545 0.70 0.11 1,730 0.70 0.14 1,915 0.70 0.12 inch) 18 (0.043 1,405 0.82 0.11 1,925 0.97 0.13 2,145 0.97 0.16 2,360 0.83 0.13 inch) 16 (0.057 - - - - - - 2,895 1.01 0.20 3,460 1.24 0.18 inch) • For SI:1 inch=25.4 mm, 1 lb/linear foot=0.0146 N/mm. 'These values are for short-term loads due to wind or earthquake. The screws are as described in Section 2.2.2,and are installed in accordance with Section 2.4. 'Tabulated values are for panels applied to one side of a wall Values cannot be increased for panels attached to both sides of the wall. 'For allowable stress design(ASD)loads,the tabulated load values must be divided by the safety factor 0=2.5. For load and resistance factor design(LRFD)loads,the tabulated load values must be multiplied by the resistance factor 4i=0.55. `Section 2.2.3 describes minimum base-metal thickness associated with gages. 'Alt panel edges must be bbcked.Panels are installed vertically.Fasteners must be spaced a maximum of 12 inches on center along intermediate framing members 'A,=approximate deflection at nominal load.A,=approximate deflection at design load. r�. Holdowns&Tension Ties SI M PSO N 1 f.% S/HDU Holdowns SthJ ltgrT#e • The S/HDU series of holdowns combines 2�`-1 performance with ease of installation.The f pre-deflected geometry virtually eliminates material ill stretch,resulting in low deflection under load Installation using self-drilling tapping screws into the I ! studs reduces installation time and saves labor cost. `I I `n Not tales tor 11 MATERIAL:118 mil(10 ga) mamdadunne• i 3E FINISH:Galvanized IFas u { t m INSTALLATION:•Use all specified fasteners. of Motored) H t i Ro See General Notes. / m • Use#14 screws to fasten to studs 4- ' y CODES:See page 8 for Code listing Key Chart Typieai SAIDU y1,,, _ SM InstalDU lation •3�1 �� k e . These products are available with additional corrosion protection Additional products on this page may also be available with this option,check with Simpson Strong-Tie for details. Fasteners ASD I LRFD I Nominal I Model H Fdn Stud Stud Member Deflection at i TS 4ii I Deflection at Tension Code Rel. Anchor Fasteners Thickness' Tension Load ASO Load' LAW 1 LRFD Load' Load' Dla' 2-33(2-200a) 2320 0.093 3705 0.149 5685 111 S/HDU4 7% '/e 6 y14 2-43(2-18ga) 3825 0.115 6105 0.190 `9365 2-54(2-16ga) 3970 0.093 6345 0.156 9730 Steel Fixture 4470 0.063 7165 0.103 12120 2-33(2-20ga) 4895 - 0.125 8495 0.250 10470 - S1HDU6 10% 5/i 12414 2-43(2-18ga) 6125 0.119 _9690 0.250 15460 2-54(2-16ga) 6125 0.108 978., 0.234 15005 Steel Fixture 5995 0.060 9580 0.136 14695 f 2-33(2-20ga) 6965 0.103 11125 0.189 13165 FC1 S/HDU9 12% /e 18414 2-43(2-18ga) 9255 0.125 15485 0.250 21810 2-54(2-16ga) 9990 0.106 15960 0.225 24480 Steel Fixture 12715 0.125 20510 0.177 31455 2-33(2-20ga) 6965 0.103 11125 i 0.189 13165 % 27414 2-43(2-18ga) 9595 0.096 15330 0.162 23515 2-54(2-16ga) 9675 0.110 15460 0.158 _ 23710 SMDU11 16% '/e 2-43(2-18ga)' 11100 0.125 _ 17'500_ 0.250 24955 _ w/heavy 27414 , 2-54(2-16ga)' 12175 , 0.125 i 19445 0.243 29825 hex nut Steel Fixture' 12945 0.111 1 20680 , 0.163 31715 1. Designer shall specify the foundation anchor material type,length,embedment and 6. Heavy hex nut is required to achieve the table loads for S/HDU1 1. configuration.Tabulated loads may exceed anchor bolt ASTM A36 or A307 tension 7. Deflection at ASD and LRFD Loads includes fastener slip,holdown elongation and capacities. anchor bolt elongation(L=41. 13 z 2. See pages 26-30 for anchor boll options. 8. Nominal Tension Load is based on the average ultimate(peak)load from tests.AISI 3. See page 21 for anchor bolt retrofit options. Lateral Design standard requires holdown to have nominal strength to resist lesser of z 4. Stud design by Specifier.Tabulated loads are based on a minimum studs thickness for amplified seismic load or the maximum force the system can deliver. fastener connection. 0 5. W self-drilling tapping screws can be substituted for 114. o 0 co z 0 0 1 o_ A 0 N 0 I 31 KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 111 SW 5th Ave,Suite 2500 Dsgnr: MAA • Portland,OR 97204 Project Desc.: Calculations (503)227 3251 Project Notes Consulting Esgiineers ...._... - - Prod 13 DEC 2012. 555.''f4 ombined Footing =:utsers4mareilano.IC -PDx1D�nke�u°Me1Projedst209512.01WSCMCalculationsbratcaicuIaios.ec6 9 ENERCALC,INC.19832011,Buitl 6.11.1.11,Vec6.11.7.11 sic.#:KW-06000870 Licensee:kpff consulting engineers Description: North Addition-Wall E Footing General Information ion . Calculations per ACt 318.08,IBC 2009,CBC 2010,ASCE 7-05 Material Properties AnaysisIDesign Settings fc:Concrete 28 day strength 3 ksi Calculate footing weight as dead load? Yes fy:Rebar Yield 60 ksi Calculate Pedestal weight as dead load? No Ec:Concrete Elastic Modulus 3122 ksi Min Steel%Bending Reinf(based on'd') 0.0014 Concrete Density 145 pd Min Allow%Temp Reinf(based on thick) 0.0018 :Phi Values Flexure: 0.9 Min.Overturning Safety Factor 1 :1 Shear: 0.75 Min.Sliding Safety Factor 1 :1 Soil Information Allowable Soil Bearing 3.5 ksf Soil Bearing Increase Increase Bearing By Footing Weight No Footing base depth below soil surface 2 ft Soil Passive Sliding Resistance Y50 pcf Increases based on footing Depth.... (Uses entry for`Footing base depth below soil surface'for f0rf:ei Allowable pressure increase per foot ksf when base of footing is below ft Coefficient of SoiVConcrete Friction 0.350 Increases based on footing Width... Allowable pressure increase per foot ksf when maximum length or width is greater than ft Maximum Allowed Bearing Pressure 10 ksf (A value of zero implies no limit) Adjusted Allowable Soil Bearing 3.50 ksf (Allowable Soil Beanng adjusted for footing weight and depth(4 width increases as specified by user.) Dimensions&Reinforcing Distance Left of Column#1 = 2.0 ft Pedestal dimensions... Col#1 Col#2 As As Between Columns = 14.0 ft Sq.Dim. = 12 12 in Bars left of Col#1 Count Size# Actual Req'd Distance Right of Column#2= 2.5 ft Height = in Bottom Bars 3.0 5 0.930 0.7776 inA2 Total Footing Length = 18.50 It Top Bars 2.0 4 0.40 0.7776 inA2 . ._ Bars Men Cols °" Footing Width = 3 ft Bottom Bars 3.0 5 0.930 0.8185 inA2 Footing Thickness = 12 in Top Bars 2.0 4 0.40 0.7776 inA2 Rebar Center to Concrete Edge Bars RightRight of Col#2 9@ Top = 3 in Bottom Bars 3 5 0.930 0.7776 inA2 Rebar Center to Concrete Edge @ Bottom = 3 in Top Bars 3.0 4 0.60 0.7776 inA2 Applied Loads Applied @ Left Column D _ Lr L S W E H Axial Load Downward = 1.120 1.510 -6.230 k Moment(+CW) = k-ft Shear(+X) = 2.910 k Applied @ Right Column Axial Load Downward = 1.120 1.510 6.230 k Moment(+CW) = k-ft Shear(+X) = 2.910 k Overburden = 0.150 . -- ------1-z-g-i:=11111 . rae • KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 111 SW 5th Ave,Suite 2500 Dsgnr: MAA Portland,OR 97204 Project Desc.: Calculations i(1.J (503)227 3251 Project Notes: Consulting Engineers - ------ - _.-- -- _ Pr d 13 DEC 2012.5.55Pr, i. ombined Footing ::'u ha�ano.KPFF-P°x`°o ' 1 Current r 120912.01 WSC .a,,+ 3l .ec6 ENERCALG INC.1963.2011,8ui 6.11.7.11,Ver.6.11.7.11 - Lic.#:KW-06000870 Licensee: kpff consulting engineers Description: North Addition-Wat E Footing DESIGN SUMMARY Design OK Ratio Item Applied Capacity Governing Load Combnation PASS 0.2907 Soil Bearing 2.035 ksf 7.0 ksf +0.60D+W-*4 PASS 1.128 Overturning 105.71 k-ft 119.21 k-ft 0.60+W PASS 1,708 Sliding 2.910 k 4.971 k 0.6D+W PASS 2.793 Uplift 6.230 k 17.398 k 0.6D+W PASS 0.2825 1-way Shear-Col#1 23.206 psi 82.158 psi +0.900+1.60W+1.60H PASS 0.5962 1-way Shear-Col#2 48.980 psi 82.158 psi +1.20D+0.50L+0.50S+1.60W PASS 0.07158 2-way Punching-Col#1 11,762 psi 164.32 psi +0.90D+1.60W+1.60H PASS 0.1003 2-way Punching-Col#2 16.477 psi 164.32 psi +1.200+0.50Lr+0.50L+1.60W PASS 0.007974 Flexure-Left of Col#1-Top -0.1273 k-ft 15.965 k-ft +1.40D PASS No Bending Flexure-Left of Col#1 -Bottom 0.0 k-ft 0.0 k-ft N/A PASS 0.6135 Flexure-Between Cols-Top -9.795 k-ft 15.965 k-ft +1.200+1.60S+0.80W PASS 0.8838 Flexure-Between Cols-Bottom 32.164 k-ft 36.393 k-ft +0.900+1.60W+1.60H PASS 0.005614 Flexure-Right of Col#2-Top -0.1334 k-ft 23.771 k-ft +1.400 PASS 0.5495 Flexure-Right of Col#2-Bottom 19.999 k-ft 36.393 k-ft +0.900+1.60W+1.60H Soil Bearing Eccentricity Actual Soil Bearing Stress Actual I Allow Load Combination... Total Bearing from Ftg CL @ Left Edge @ Right Edge Allowable Ratio +D 18.61 k -0.030 in 0.34 ksf 0.33 ksf 3.50 ksf 0.097 +D+S+H 21.63 k -0.061 in 0.40 ksf 0.38 ksf 3.50 ksf 0.114 +D+0.750L+0.750S+H 20.88 k -0.054 in 0.38 ksf 0.37 ksf 3.50 ksf 0.109 --;, +D+W+H 18.61 k 4.812 in 0.00 ksf 0.93 ksf 7.00 ksf 0.133 +0.0.70E+H 18.61 k 0.079 in 0.33 ksf 0.34 ksf 7.00 ksf 0.049 +D+0.750Lr+0.750L+0.750W+H 18.61 k 3.602 in 0.00 ksf 0.73 ksf 7.00 ksf 0.104 +D+0.750L+0.750S+0.750W+H 20.88 k 3.184 in 0.00 ksf 0.76 ksf 7.00 ksf 0.109 +D+0.750Lr+0.750L+0.5250E+H 18.61 k 0.052 in 0.33 ksf 0.34 ksf 7.00 ksf 0.049 +D+0.750L+0.750S+0.5250E+H 20.88 k 0.019 in 0.37 ksf 0.38 ksf 7.00 ksf 0.054 +0.600+W+H 11.17 k 8.041 in 0.00 ksf 2.03 ksf 7.00 ksf 0.291 +0.60D+0.70E+H 11.17 k 0.152 in 0.19 ksf 0.21 ksf 7.00 ksf 0.030 Overturning Stability Moments about Left Edge k-ft Moments about Right Edge k-ft Load Combination... Overturning -_Resisting Ratio Overturning Resisting Ratio D 0.00 0.00 999.000 0.00 0.00 999.000 0.6D+S+W/2 6.23 181.44 29.123 52.85 140.11 2.651 0.6D+W+S/2 12.46 219.14 17.588 105.71 133.56 1.263 0.60+S-10.7E 0.00 0.00 999.000 2.04 132.33 64.961 0.60+W 12.46 205.55 16.497 105.71 119.21 1.128 0.60+0.7E 0.00 0.00 999.000 2.04 103.64 50.876 Sliding Stability Load Combination... Sliding Force Resisting Force Sliding SafetyRatio D 0.00 k 7.53 k 999 0.6D+S+W/2 1.46 k 6.03 k -.142697594501' 0.60+W+S/2 2.91 k 5.50 k .889733676975! 0.6D+S+0.7E 2.04 k 6.03 k '.959069710358: 0.6D+W 2.91 k 4.97 k .708118556701( 0.6D+0.7E 2.04 k 4.97 k :.440169366715 One Way Shear Punching Shear Load Combination... Phi Vn vu @ Col#1 vu @ Col#2 Phi Vn vu @ Col#1 vu @ Col#2 +1.40D 82.16 psi 2.56 psi 2.05 psi 164.32 psi 0.23 psi 0.26 psi +1 200+1.60L+0.50S+1.60H 82.16 psi 0.75 psi 3.08 psi 164.32 psi 1.08 psi 1.12 psi +1.200+1.60Lr+0.80W 82.16 psi 7.09 psi 28.83 psi 164.32 psi 5.01 psi 7.66 psi ,max;:, +1 20D+0.50L+1.60S 82.16 psi 2.45 psi 5.99 psi 164.32 psi 3.01 psi 3.08 psi +1.200+1.60S+0.80W 82.16 psi 2.44 psi 33.06 psi 164 32 psi Z.20 psi 4.80 psi +1.20D+0.50Lr+-0.50L+1.60W 82.16 psi 20.69 psi 46.65 psi 164.32 psi 11.29 psi 16.48 psi +1,20D+0.50L+0 50S+1.60W 82.16 psi 18.36 psi 48.98 psi 164.32 psi 10.29 psi 15.37 psi KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 111 SW 5th Ave,Suite 2500 Dsgnr. MAA inlit. Portland,OR 97204 Project Desc.: Calculations (503)227 3251 Project Notes: Consu't=ng Erg need Printed 13 DEC 2012.5:55P,4 ersimeano.LF • DXVOaeS11 Current ProjecliA209512.01 NS ala�0onsWa1 colouta ix c6 rr ti +ombined Footing FNERCALC.INC.19$3-2o11OWt6.11.7.11,Vu6.f.7.11 Lic.#:KW-06000870 Licensee: kpff consulting engineers Description: North Addition-Wall E Footing One Way Shear Punching Shear Load Combination... Phi Vn vu @ Col#1 vu @ Col#2 Phl Vn vu @ Col#1 vu @ Col V2 +1.20D+0.50L+0.20S+E 82.16 psi 1.19 psi 2.76 psi 164.32 Psi 0.61 psi 0.53 psi +0.900+1.60W+1.60H 82.16 psi 23.21 psi 42.68 psi 164.32 psi 11.76osi 12.30 psi 40.901)+E+1.60H 82.16 psi 1.22 psi 1.79 psi 164.32 psi 0.21 psi 0.12 psi • KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 111 SW 5th Ave,Suite 2500 Dsgnr: MAA is ' 0 I Portland,OR 97204 Project Desc.: Calculations (3-7 '' (503)227 3251 t Project Notes• Consulting Engrnseifs - Prima 13 DEC 201.1 5:55PM „combined Footing luserstmaetiano.F xl0 F•PDocurnents1lCunentProiects120951 2.01 WSC H1Calcuiabonslwall caipdations.ec6 ENERCALC,INC.198-2011,Buiht6.11.7.11,Ver.6,11.7.11 `'`= KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 . 111 SW 5th Ave,Suite 2500 Dsgnr: MM • Portland,OR 97204 Project Desc.: Calculations 1 i W (503)227 3251 Consulting E n g-leers Project Notes ._.... _ Prr.i d 13 CvE.3 2Y2.5 55P ombined FOOL. ;A UsersVnarellano.KPFF-PDX10xtiments\1 Current Projects-239512.01 WSCH1Cala tations�2k`alc ns.ec6 9 ENERCALC,INC.1983-2011,Eludd 6.11.7.11:vec8.11.7-11 Lic.#:KW-06000870 Licensee:kpff consulting engineers Description: North Addition-Wad 1 Footing DESIGN SUMMARY Design OK Ratio Item--- Applied Capacity Governing Load Combination PASS 0.4354 Soil Bearing 3.048 ksf 7.0 ksf +0.60D+0.70E+H PASS 1.062 Overturning 47.058 k-ft 49.975 k-ft 0.6D+0.7E PASS 1.351 Sliding 2.436 k 3.292 k 0.60+0.7E PASS 2.357 Uplift 4.697 k 11.070 k 0.6040.7E PASS 0.1830 1-way Shear-Col#1 15.033 psi 82.158 psi 40.90D+E+1.60H PASS 0.3949 1-way Shear-Col#2 32.446 psi 82.158 psi +1.200+0.50L+0.20S+E PASS 0.05347 2-way Punching-Col#1 8.785 psi 164.32 psi +0.90D+E+1.60H PASS 0.07306 2-way Punching-Col#2 12.005 psi 164.32 psi +1.20D+0.50L40.20S+E PASS 0.01131 Flexure-Left of Col#1-Top -0.4116 k-ft 36.393 k-ft +1.40D PASS No Bending Flexure-Left of Col#1 -Bottom 0.0 k-ft 0.0 k-ft N/A PASS 0.01443 Flexure-Between Cols-Top -0.5250 k-ft 36.393 k-ft +1.40D PASS 0.3542 Flexure-Between Cols-Bottom 12.890 k-ft 36.393 k-ft +0.90D+E+1.60H PASS 0.01154 Flexure-Right of Col#2-Top -0.420 k-ft 36.393 k-ft +1.40D PASS 0.2846 Flexure-Right of Col#2-Bottom 10.357 k-ft 36,393 k-ft +0.90D+E+1.60H Soil Bearing Eccentricity Actual Soil Bearing Stress Actual I Allow Load Combination... Total Bearing from Ftg CL @ Left Edge @ Right Edge Allowable Ratio +D 10.62 k 0.000 in 0.30 ksf 0.30 ksf 3.50 ksf 0.084 +0+0.70E+H 10.62 k 3.325 in 0.00 ksf 0.88 ksf 7.00 ksf 0.126 +D+0.750Lr+0,750L+0.5250E+H 10.62 k 2.494 in 0.00 ksf 0.67 ksf 7.00 ksf 0.096 67. +D+0.750L+0.750S+0.5250E+H 10.62 k 2.494 in 0.00 ksf 0.67 ksf 7.00 ksf 0.096 +0.60D+0.70E+H 6.37 k 5.542 in 0.00 ksf 3.05 ksf 7.00 ksf 0.435 Overturning Stability Moments about Left Edge k-ft Moments about Right Edge k-ft Load Combination... Overturning Resisting Ratio Overturning Resisting Ratio D 0.00 0.00 999.000 0.00 0.00 999.000 0.60+0.7E 11.74 85.29 7.263 47.06 49.97 1.062 Sliding Stability .,,-`_r ``` ' 4` Load Combination... Sliding Force Resisting Force Sliding SafetyRatio D 0.00 k 4.74 k 0.6D+0.7E 2.44 k 3.29 k .35147783251Z One Way Shear Punching Shear Load Combination... Phi Vn vu @ Cot#1 vu @ Col#2 Phi Vn vu @ Col#1 vu @ Col#2 +1.400 82.16 psi 5.55 psi 0.69 psi 164.32 psi 1.49 psi 1.49 psi +1.200.0.50L+0.20S+E 82.16 psi 13.14 psi 32.45 psi 164.32 psi 8.76 psi 12.01 psi 40.9004E+1.60H 82.16 psi 15.03 psi 29.51 psi 164.32 psi 8.79 psi 9.22 psi KPFF Consulting Engineers Title: Westside Christian High School Job#209512.01 111 SW 5th Ave,Suite 2500 Dsgnr: MAA 0 Portland,OR 97204 Project Desc.: Calculations )(I(I 9 (503)227 3251 Project Notes: i Consulting Engineers .. .. ...-.. Printed 13 DEC 2012 5:56PA1 H1sers4nareilaraKPFF-PDX1Documentsll Curent Pnjeds12095,z.olwsCMCaiprtalorsraicalaYatiors ec6 ombined Footin g ENERCALC.INC.1983-2011,840:6.t1.7.11.Vei 6.11.7.11 _ic.#: KW-06000870 Licensee: kpff consulting engineers Description: North Addition-Wall 1.8 Footing General Information Calculations per ACI 318-08,IBC 2009,CBC 2010,ASCE 7-05 Material Properties Analysis/Design Settings fc:Concrete 28 day strength 3 ksi Calculate footing weight as dead load? Yes fy:Rebar Yield 60 ksi Calculate Pedestal weight as dead load? No Ec:Concrete Elastic Modulus 3122 ksi Min Steel%Bending Reinf(based on'd') 0.0014 Concrete Density 145 pct Min Allow%Temp Reinf(based on thick) 0.0018 4) :Phi Values Flexure: 0.9 Min.Overturning Safety Factor 1 :1 Shear 0.75 Min.Sliding Safety Factor 1 :1 Soil Information Allowable Soil Bearing 3.50 ksf Soil Bearing Increase Increase Bearing By Footing Weight No Footing base depth below soil surface 2 ft Sal Passive Sliding Resistance 250 pct Increases based on footing Depth.... (Uses entry for'Footing base depth below soli surface"for force) Allowable pressure increase per foot ksf when base of footing is below ft Coefficient of Soil/Concrete Friction 0.350 Increases based on footing Width... Allowable pressure increase per foot ksf when maximum length or width is greater than ft Maximum Allowed Bearing Pressure 10 ksf (A value of zero implies no limit) Adjusted Allowable Soil Bearing 3.50 ksf (Allowable Soil Bearing adjusted for footing weight and depth&width increases as specified by user.) Dimensions& Reinforcing Distance Left of Column#1 = 2.0 ft Pedestal dimensions... Col#1 Ca#2 As As Between Columns = 11.0 ft Sq.Dim. = 12 12 in Bars left of Col#1 Count Size# Actual Req'd Distance Right of Column#2= 2.0 ft Height = in Bottom Bars 3 5 0.930 0.7776 inA2 40 Total Footing Length = 15.0 ft Top Bars Bars C. . Cols 3 5 0.930 0.7776 inA2 Footing Width 3.0 ft Bottom Bars 3 5 0.930 0.7776 inA2 Footing Thicknes! = 12 in Top Bars 3 5 0.930 0.7776 inA2 Bars Right of Col#2 Rebar Center to Concrete Edge @ Top = 3 in Bottom Bars 3 5 0.930 0.7776 inA2 Rebar Center to Concrete Edge @ Bottom = 3 in Top Bars 3 5 0.930 0.7776 inA2 Applied Loads Applied @ Left Column 0 Lr L S W E H Axial Load Downward = -6.340 k Moment(+CW) = k-ft Shear(+X) = 2.590 k Applied @ Right Column Axial Load Downward = 6.340 k Moment(+CW) = k-ft Shear(+X) = 2.590 k Overburden = 0.15 4 4t II • 1114 7d _-- 11'4 ------------ 15,E —'-- • KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 MN. 111 SW 5th Ave,Suite 2500 Dsgnr: MM Portland,OR 97204 Project Desc.: Calculations ZOO(503)227 3251 Project Notes: Consulting Engineers Prhled 13 DEC 2012 5:56PM ..: 1Usersnareano.KPFF-PDxlDnen15 Current 209512.01 Wsa5Ca�t1 i sratcalwlationseo5 ombined Footing ENERCALC.INC.1963-2011,auld:&11.7.11,Var.6.11.7.11 "Lic.#: KW-06000870 Licensee:kpff consulting engineers Description: North Addition-Wall 1.8 Footing DESIGN SUMMARY Design OK Ratio Item Applied Capacity Governing Load Combination PASS 0.2736 Soil Bearing 1.915 ksf 7.0 ksf +0.60D+0.70E+H PASS 1.119 Overturning 61.320 k-ft 68.614 k-ft 0.6D+0.7E PASS 1.062 Sliding 3.626 k 3.850 k 0.6D+0.7E PASS 2.795 Uplift 4.438 k 12.404 k 0.6D+0.7E PASS 0.1840 1-way Shear-Col#1 15.120 psi 82.158 psi +0.90D+E+1.60H PASS 0.3611 1-way Shear-Col#2 29.665 psi 82.158 psi +1.20D+0.50L+0.20S+E PASS 0.05049 2-way Punching-Col#1 8.296 psi 164,32 psi +0.90D+E+1.60H PASS 0.07550 2-way Punching-Col#2 12.406 psi 164.32 psi +0.90D+E+1.60H PASS 0.008655 Flexure-Left of Col#1-Top -0.3150 k-ft 36.393 k-ft +1.400 PASS No Bending Flexure-Left of Col#1-Bottom 0.0 k-ft 0.0 k-ft N/A PASS 0.01154 Flexure-Between Cols-Top -0.420 k-ft 36.393 k-ft +1.40D PASS 0.4087 Flexure-Between Cols-Bottom 14.872 k-ft 36.393 k-ft +0.90D+E+1.60H PASS 0.008367 Flexure-Right of Col#2-Top -0.3045 k-ft 36.393 k-ft +1.400 PASS 0.1342 Flexure-Right of Col#2-Bottom 4.886 k-ft 36.393 k-ft +0.90D+E+1.60H Soil Bearing Eccentricity Actual Soil Bearing Stress Actual I Allow Load Combination... Total Bearing from Ftg CL @ Left Edge @ Right Edge Allowable Ratio +D 13.28 k 0.000 in 0.30 ksf 0.30 ksf 3.50 ksf 0.084 +13+0.70E+H 13.28 k 3.951 in 0.00 ksf 0.83 ksf 7.00 ksf 0.118 +D+0.750Lr+0.750L+0.5250E+H 13.28 k 2.963 in 0.00 ksf 0.65 ksf 7.00 ksf 0.093 k, +D+0.750L+0.750S+0.5250E+H 13.28 k 2.963 in 0.00 ksf 0.65 ksf 7.00 ksf 0.093 +0.600+0.70E+H 7.97 k 6.584 in 0.00 ksf 1.92 ksf 7.00 ksf 0.274 Overturning Stability Moments about Left Edge k-ft Moments about Right Edge k-ft Load Combination... Overturning Resisting Ratio Overturning Resisting Ratio D 0.00 0.00 999.000 0.00 0.00 999.000 0.6D+0.7E 8.88 121.06 13.639 61.32 68.61 1.119 Sliding Stability Load Combination... Sliding Force Resisting Force Sliding SafetyRatio D 0.00 k 5.67 k 999 0.6D+0.7E 3.63 k 3.85 k .0617071152781 One Way Shear Punching Shear Load Combination... Phi Vn vu @ Col#1 vu @ Col#2 Phi Vn vu @ Col#1 vu @ Col#2 +1.400 82.16 psi 5.51 psi 0.65 psi 164.32 psi 1.50 psi 1.55 psi +1.200+0,50L+0.20S+E 82.16 psi 13.64 psi 29.67 psi 164,32 psi 8.27 psi 12.23 psi +0.90D+E+1.60H 82.16 psi 15.12 psi 27.14 psi 164.32 psi 8.30 psi 12.41 psi KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 111 SW 5th Ave.Suite 2500 Dsgnr: MAA • Portland,OR 97204 Project Desc.: Calculations L f?Q 1 (503)227 3251 Project Notes: Consulting Engineers Pnn ed 13 DEC 2012. 5 56P ombined Footing =:\usersMarelta no.KPFF-PDXXDocuments\iCun t Pr ectst 2O9512.01WSC111calculaions\wancalculabons.ec6 ' ENERCALC,INC.1983.2011,&drd:6.11.7.11,Vec6.11.7.11 r Lic.#:KW-06000870 Licensee:kpff consulting engineers Description North Addition-Wall 2 Footing General Information .,. Calculations per AC1318.08,IBC 2009,CBC 2010,AsCE 7-05 Material Properties Analysis/Design Settings fc:Concrete 28 day strength 3 ksi Calculate footing weight as dead load? Yes fy:Rebar Yield 60 ksi Calculate Pedestal weight as dead load? No c:Concrete Elastic Modulus 3122 ksi Min Steel%Bending Reinf(based on'd') 0.0014 Concrete Density 145 pd Min Allow%Temp Reinf(based on thick) 0.0018 4, :Phi Values Flexure: 0.9 Min.Overturning Safety Factor 1 :1 Shear: 0.75 Min.Sliding Safety Factor 1 :1 Soil Information Allowable Soil Bearing 3.0 ksf Soil Bearing Increase Increase Bearing By Footing Weight No Footing base depth below soil surface 2 ft Soil Passive Sliding Resistance 250 pd Increases based on footing Depth.... (Uses entry for footing base depth below soil surface"for force) Allowable pressure increase per foot ksf when base of footing is below ft Coefficient o f Sod/Concrete Friction 0.350 Increases based on footing Width... Allowable pressure increase per foot ksf when maximum length or width is greater than ft Maximum Allowed Bearing Pressure 10 ksf (A value of zero implies no limit) Adjusted Allowable Soil Bearing 3.0 ksf (Allowable Soil Bearing adjusted for footing weight and depth&width increases as specified by user.) Dimensions 8 Reinforcing Distance Left of Column#1 = 1.0 ft Pedestal dimensions... Col#1 Col#2 As As Between Columns = 30.0 It Sq.Dim. = 12 12 in Bars left of Col#1 Count Size# Actual Req'd Distance Right of Column#2= 1.0 ft Height = in Bottom Bars 2.0 4 0.40 0.3888 inA2 Total Footing Length = 32.0 ft Top Bars 2.0 4 0.40 0.3888 inA2 Bars Btwn Cols . Footing Width = 1.50 ft Bottom Bars 2.0 4 0.40 0.3888 inA2 Footing Thickness Top 12 in Top Bars 2.0 4 0.40 0.3888 inA2 Bars Right of Col IP Rebar Center to Concrete Edge @ Top = 3 in Bottom Bars 2.0 4 0.40 0.3888 inA2 Rebar Center to Concrete Edge @ Bottom = 3 in Top Bars 2.0 4 0.40 0.3888 inA2 Applied Loads Applied @ Left Column D Lr L S W E H Axial Load Downward = -1.550 k Moment(+CW) = k-ft Shear(+X) = 1.670 k Applied @ Right Column Axial Load Downward = 1.550 k Moment(+CW) = k-ft Shear(+X) = 1.670 k OverbwNwt = 0.15 ----------- • KPFF Consulting Engineers Title: Westside Christian High School Job# 209512.01 • 111 SW 5th Ave,Suite 2500 Dsgnr: MAA i 0 Portland,OR 97204 Project Desc.: Calculations 7 0.• (503)227 3251 Project Notes: Consulting Eagin.ers ..- Pr:nled 13 DEC 2012.5 W :1Useslmreano.KF- DX1DxmentCu tPrgeast209512.01WSCt C a'nsnwaNc culaoau.ecs ombined Footing ENERCALC INC.19832011.Bui1d:6.11.7.11,Vec6.t1.7.11 ^`"` Li c.#: KW-06000870 Licensee:kptf consulting engineers Description: North Addition-Wall 2 Footing DESIGN SUMMARY Design OK Ratio item Applied Capacity Governing Load Combination PASS 0.09833 Soil Bearing 0.2950 ksf 3.0 ksf +1) PASS 3.809 Overturning 35.973 k-ft 137.02 k-ft 0.6D+0.7E PASS 1.486 Sliding 2.338 k 3.473 k 0.6D+0.7E PASS 8.831 Uplift 1.085 k 9.582 k 0.6D+0.7E PASS 0.1295 1-way Shear-Col#1 10.641 psi 82.158 psi +1.20D+0.50L+0.20S+E PASS 0.1523 1-way Shear-Col#2 12.514 psi 82.158 psi +0.90D-1E+1.60H PASS 0.01550 2-way Punching-Col#1 2.547 psi 164.32 psi +1.20D+0.50L+0.20S+E PASS 0.02349 2-way Punching-Ca#2 3.860 psi 164.32 psi +1.20D+0.50L+0.20S+E PASS 0.005696 Flexure-Left of Col#1 -Top -0.08960 k-ft 15.729 k-ft +1.40D PASS No Bending Flexure-Left of Col#1-Bottom 0.0 k-ft 0.0 k-ft N/A PASS 0.3208 Flexure-Between Cols-Top -5.045 k-ft 15.729 k-ft +1.20D+0.50L+0.20S+E PASS 0.3007 Flexure-Between Cols-Bottom 4.730 k-ft 15.729 k-ft +0.90D+E+1.60H PASS 0.005696 Flexure-Right of Col#2-Top -0.08960 k-ft 15.729 k-ft +1.40D PASS 0.0 Flexure-Right of Col#2-Bottom 0.0 k-ft 15.729 k-ft 4-1.20D+0.50L+0.20S+E Soil Bearing • Eccentricity Actual Soil Bearing Stress Actual I Allow Load Combination... Total Bearing from Ftg CL @ Left Edge @ Right Edge Allowable Ratio +D 14.16 k 0.000 in 0.30 ksf 0.30 ksf 3.00 ksf 0.098 +040.70E 4+1 14.16 k 2.464 in 0.16 ksf 0.43 ksf 6.00 ksf 0.072 +D+0.750Lr+0.750L+0.5250E+H 14.16 k 1.848 in 0.19 ksf 0.40 ksf 6.00 ksf 0.066 al +D+0.750L+0.750S+0.5250E•+i 14.16 k 1.848 in 0.19 ksf 0.40 ksf 6.00 ksf 0.066 +0.60D+0.70E+H 8.50 k 4.106 in 0.04 ksf 0.31 ksf 6.00 ksf 0.052 Overturning Stability Moments about Left Edge k-ft Moments about Right Edge k-ft Load Combination... Overturning Resisting Ratio Overturning Resisting Ratio D 0.00 0.00 999.000 0,00 0.00 999.000 0.6D+0.7E 1.09 171.91 158.441 35.97 137.02 3.809 Sliding Stability Load Combination... Sliding Force Resisting Force Sliding SafetyRatio D 0.00 k 5.41 k 999 0.6D+0.7E 2.34 k 3.47 k 1.48550042771E One Way Shear Punddng Shear - - Load Combination... Phi Vn vu @ Col 81 vu @ Col#2 Phi Vn vu @ Col#1 vu @ Col#2 +1.40D 82.16 psi 5.63 psi 1.26 psi 164.32 psi 1.35psi 1.35 psi +1.20D+0.50L+0.20S+E 82.16 psi 10.64 psi 12.24 psi 164.32 psi 2.55psi 3.86 psi +0.90D+E+1.60H 82.16 psi 9.43 psi 12.51 psi 164.32 Psi 2.26psi 3.57 psi R .-..' ki•Jxc± ay h444._ Sheet No. Consulting Engineers L canon+ -_..14&4r24), 0,1 °a"° N16/2. Z..03 Caere vksd I Job No. bnt . a 34J Dare Z�E74'7!� ,a GDcktaL 5/ i'r a s - z +0,3)Acct_ .4#.%4t y4 A-4 C61- 1 -05 6..} CR+rex..t A- OGG.1 P • i./ G.A-p.fvot-7 Ss ettiatt c--- + rt-rn'. � s. -74,25- rL s 5PC 4 ►2�i' c�.o ff -tPly cv44 6cr■pc,c.. •e,, EV.JL Gs = ©.t°1 • Cry i I gvi; rn 3y f N - 04. / A- tF9o}- 14-1- W a«,. - 40 t-b _ GvA-(L L mS V J6.{-4- 1 Z Z � ~ C74(c) - Go G (,4 P- 1111 go cut) 4_ v.6.06.6.0... at, APO'ex 6,444_ (r s j,)( o) s- 60(15/2.4(24-) 4- -S7-405�.?)(ice ) /09', to -- .E-Fftt.146- 4.$ 'v•c C.. W a = l 9 , o. to L. oject Bv Keik I Sheet No. fagConsulting EngineersatiM "6644247 t Date It (4 fa, 1 DA Client - TRevised Job No Adh Poeiana.Oregon 1001951i t 0 I Date 44:140•447/F4rAw=4t - fedi A.,‘)A1 :4- A-c--d• 8) a (4-6.441- \ 6,,, vJ are? (I% o3•0 )- 2 Fro eat.f.- PPc.rei.1 l'S'Ab-r.3 4OciTh 11- Aet, 7,07;444-4- /7- cl 4-71.44ty Fate- 644 77.44- 4.411e1 1 1 lek3 IDP 3it V "36 C.-14 r) oitt. a Pc-,if VC44 r- 4ft, I 5- V, -•=-- (44#1z-)/ (S7.1-- id ) 6.1 lc S &L4 L,&-Wtd 6474- 2 2; CA- Or.4--‘- -Or 15 rate- i'rrritt-144.0 1124.- CA)44 . %1/4)0,- 0 * KPFF Consulting Engineers MAA 12/14/2012 KPFF Consulting Engineers MM 12/14/2012 West Side Christian High School C)SheerR.lnfureement As 0.10 n"2 As•VnJFy distributed over height of wall Lockers/Fitness-Earthquake Design-CMU Shear Walls ACI 530.01-08 No.bars 1 N-S EQ-Critical 8"Wall Bar size 5 As 0.31 n"2 Spacing 48.0 In I.GENERAL Total 1.18 n"2 OK Pier fusty 0 1•fixed or 0•cantilever II.PROPERTIES AND GEOMETRY V.FLEXURAL CHECK ASTM Standard Reinf Bars Bar size Din.(n.) Area(In.) fm 1.500 psi E'm 1.350,000 psi ACI section 1.8 a1 Jamb Reinforcement and Steel Ratios 3 0.375 0.11 Fs 24,000 psi n 21.5 4 0.5 0.2 Es 29,000,000 psi No.bars 1 5 0.825 0.31 Bar size 8 6 0.75 0.44 h 1511 v re V As 0.31 n"2 7 0.875 0.8 t 5.825 n P 0.00022 p•p`As/bd 8 1 0.79 L 284 n • np 0.005 9 1.128 1 deft 258.0 in d•L-8" d 258.0 n 10 1.27 1.27 I 8824880 le4 u d' 8 n 14 1.693 2.25 M.1/2.V hi M.APPLIED LOADS 18 2.257 4 b)Calculate Coefficients V 6.2 k w _+w1v . .1 h_v M Pot 4.4 k va va " 2a Tr ve e m 0.014 Values f q 0.005 A.id PIA 5.9 k Mame,'Mow mil M...1,"Per••e k 0.088 Procedure:Compute mends: IM.tl 1N end Y.11o... Moll w tenon Oft. Mo 93 k-It sew..e1twwwwo1.. Oft.l.ry o..M1..Y..u. select kyalues in which t”,.. Location of Compression Resultant f� k IV.SHEAR CHECK FIgure 2.Shear wall 8xltbs m•rip+p'12n-1) n 1-k� (2n1)A's/kbd 0.105 I r f 2. k-dyd) a)Calculate Allowable Shear Stress d/kd 0.332 q, np«p'(2n- II (1 1-d Jkd 0.638 d -k) M/Ord) 0.88 For fixed piers•h/2d For cantilever piers•h/d + ^- z o.337 -f - f ..}A. L is r....i1'.'x. For M f(V•d)c 1 Fv•(1/3)(4-(MNd))•SORT(Tm) psi ACI 2-21 , ; r c not to exceed Fv•80.45(MNd) psi Moment Arm •,. I I. I.1-zk 0.971 • .....i.Mi �. . For M (V / 'd)e 1 Fv•SORT(Tm) psi ACI 2-22 a • ,, F y not to exceed Fv•35 psi _ IS Fv" 57.1 psi c)Calculate Stresses _,_Se. _._._ r��r �. ...-r- p /yn • Fv max" 65.8 psi "includes 1/3 increase for wind and earthquake combinations Tensile Stress In Steel "•.ao Fv 57.1 psi fs•M/(AS •d) + 12 '-1)A, x d' x (1_kd) 1 b)Applied Sheer Stress M•VIV2(fixed pier)or M•VII(cantilever pier) 2• fv 4.2 psi 1v•V/id OK M 93 k-11 1+ (2n.11 A'. x/1 _ Cl fs 14484 psi OK 2 kbrt ` kd) 1of3 2of3 C z • 9 KPFF Consulting Engineers MAA 12/14/2012 Compressive Stress in Masonry fT Ai•ete tb•fa/n'(k!1-k) -1 ive lb 64 psi ? Rseuttrn of Fb" 858 psi OK CoiFOrasien Fb•0.33'I'm•1 33 ACI Section 2.3.3.2.2 • "includes 1/3 increase for wind and earthquake combinations Figure 3.Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads fa•PTOTAL!A fa 21 psi Fa•• 500 psi OK Fa•0.25 fm x 1 33 psi ACI 2-17 for non-slender piers •'includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to will panel overturning fb•Mo•CIIn fb 17 psi Fb 658 psi OK VII.COMBINED STRESS CHECK fa/FA•fb/Fb<1.0 0.07 < 1.0 0K 3of3 0 e KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School '101 Lockers and Fitness - Earthquake Design RITICAL CMU Shear Wall Footings Wall D I. INPUT Roof Load DL 20 psf LL 27 psf Tributary Width 4 ft Seismic Load Shear, Ve 6.9 k Elevations T/Footing 0 ft OA 15 ft T/Wall 15 ft RA 19 ft B/Roof Deck 15 ft Wall Dimensions Footing Dimensions Slab Length 38 ft Width 3 ft Width O ft thickness 8 in Depth 1 ft Thick 4 in `c< Heiht 15 ft 9 w Soil Properties •0 -- ,WALL D+L EQ qa 3.5 7 ksf II. OVERTURNING CHECK Dead Loads w Roof 3.0 k Wall 47.88 k Slab 0 k Footing 17.1 k R A T'FOOTING TOTAL 68.0 k ---- Overturning Moment 103.5 k-ft Restoring Moment 1163.1 k-ft OK III. SOIL BEARING CHECK Footing section 722 ftA3 roof 0.06 ksf q wall+footing 0.57 ksf q overturning 0.10 ksf TOTAL 0.73 ksf OK 1 of 1 KPFF Consulting Engineers MAA 12/13/2012 West Side Christian High School -LOe Lockers and Fitness - Earthquake Design `" ,RITICAL CMU Shear Wall Footings N-S EQ - Critical 6" Wall I. INPUT Roof Load DL 20 psf LL 27 psf Tributary Width 10 ft Seismic Load Shear, Ve 8.7 k Elevations T/Footing 0 ft OA 15 ft T/Wall 15 ft RA 11 ft B/Roof Deck 15 ft Wall Dimensions Footing Dimensions Slab Length 22 ft Width 1.5 ft Width 0 ft MU thickness 6 in Depth 1 ft Thick 4 in ''°M1°'Height 15 ft v. 0 T WALL Soil Properties —* • --- D+L EQ qa 3.5 7 ksf U. OVERTURNING CHECK Dead Loads w Roof 4.4 k Wall 20.79 k Slab 0 k Footing 4.95 k R A TFOOTING •TOTAL 30.1 k - --- Overturning Moment 130.5 k-ft Restoring Moment 298.4 k-ft OK III. SOIL BEARING CHECK Footing section 121 ftA3 .1 roof 0.31 ksf q wall+footing 0.78 ksf q overturning 0.75 ksf TOTAL 1.85 ksf OK 1 of 1 ----- r By ii,44.4_ Sheet No 1_Project WSCA-1— 1 Mil Consulting Engineers Wcatbn TI."6-4"2-0/012... I Date 014/4z, 109 1---;Chent 1 s I Pornone,°moon 1 Date ZMCOZ.0 I 1 ii 4,004412.• Mcsi•le-rfrerrics - 4 441i47ie-, C) .e. --1-€. 1.44.... foizz4..... P;sra;So rizw 0 r•-•,, (-7\ Qa...„! .,.........) a. (2-) VO Lfrbb.4 c-> e no 1-4- 644-1 t. i 1 Ilit 1 ! I , 1,0-1 1 60tic , 444f-4n. / f • r fc,4- "ruP:it vLioi----; ype 4' 1 4 ...fr / 4._ , -PI i. ■ , i 1 I 1 ■ -■ A' i L , ...x., y.77., _.+. . ( 314 ' .4.-;,f')(/0-,4 PA ) ., 2,(43 p-1- , ,__ (,,„f-2,/d3,,,,)( .2.. le- ) - lig.i k , (,,,t_t_ ik-rr-A-L. D .(s).02,_. t.,,j44.4... A tc-oer)'+%A.r.- .0 4120 1 131,1 PI (30`1 /43o )(3 . )/j , 4 0 (.. -54- 6:=A—Loc.....11`,4 Cr r46 0... 4s...2... L)A.L.L. elf*c.,14. AVOTSKI4V4 lisr3.01-4-- Ceas4A.L. , "A:r):2:rk4A-4•41, 1•04 > ib ■i..- driS44.;rp,rt7:::,.,12 e.-ro A-c.)pr'f t)alt.,0,1 c,.144- V to Arogt -r- 3*-.2 k —1 g,ci k — Li Sheet No. LP"ect v‘i 14,44- 11 0 ; lairffp Consulting Engineers Lccati'3n Tik.644.44)/e1.1"- Date Vella Job No. — • Client pixtJ434 Revised-Portland.OTegor 20.‘512 1 Date acon.e2ir-A) 7 -_64 .47i4t-ty .4 -v) *,94444p VO, r5 - J#JT 40,6-44— rz. "90t2 etc- - c ik.u.ochooatt.,-- 4.44- (...)frire? 64.9. e 19.4-15-(Now * # " PL .fr-r ‘1,t-w_po 4 ) k L.- 2O. A4f44W44) tiet-POt.O.J -T--" S.0 it: 04) P24) .57/ht-19 a 4)/(2-) ie ci A-ttf react ottej / '4%0 L. > 2,7 3.0 S 0 0 . KPFF Consulting Engineers MAA 12/14/2012 KPFF Consulting Engineers MAA 12/14/2012 West Side Christian High School e)Shear Reinforcement As 0.23 h"2 As•Vn/Fy distributed over height of wall Lockers/Fitness-Earthquake Design-CMU Shear Walls ACI 530.01-08 No.bars 1 E-W EQ-Critical 6"Wall ear size 5 As 0.31 in•2 Spacing 48.0 in I.GENERAL Total 1.18 h"2 OK Pier fixity 0 1•fixed or 0•cantilever h.PROPERTIES AND GEOMETRY V.FLEXURAL CHECK ASTM Standard Reinf Bars Bar size Die.(in.) Area(in 2) fm 1.500 psI Ern 1,350.000 psi ACI section 1.8 a)Jamb Reinforcement and Steel Ratios 3 0.375 0.11 Fs 24,000 psi n 21.5 4 0.5 0.2 Es 29.000.000 psi No.bars 1 5 0.625 0.31 Bar size 5 6 0.75 0.44 h 15 ft v M - v As 0.31 In"2 7 0.875 0.8 I 5.825 in _ P 0.00008 p=p•AS/bd 8 1 0.79 L 720 in rep 0.002 9 1.128 1 d 712.0 in 10 1.27 1.27 den 7/2.0 in d•L-8" d 8 in 10 1.41 1.58 I 174900000 in•4 11111111 M•+rt eV Ida M..•V 14 1.693 2.25 M.APPUED LOADS 18 2.257 4 b)Calculate Coefficients V 13.5k M 4•V n M M "= ° m 0.005 Values of k"�/m . q in f Poi C4 k ve "va • id- y•• vs a q O.t>02 r•A+Mf MO 5.9 k M.w.rrn..rw.0 k 0.054 Procedure:Compute m and a: r/wM asp and Yana , NMI rr• aft, Mo 202.5k-R Owes well 0••..nneon. 0..•pnrw••w•rvolt select k•wlussinwhich f+ k li Location of Compression Resultant l,.- N.SHEAR CHECK Figure 2.Shear wall fixltbs m•rep i p•12n- 11 n l-k (2n 1)A'a/kbd 0.061 (k-dvd) d'/ltd 0.210 n- nP•P'12n-11� r'."21, a)Calculate Allowable Shear Stress 1-d' 11-k) M/(V'd) 0.25 For fixed piers•h/2d •. For cantilever z 0.323 - T" piers __.•.. __f iA..; .....N.k t_ For Al/(V•d)<1 Fv=(1 r3)14-(MNd)1•SORT(fm) psi ACI 2-21 1 -F not to exceed Fv•80-45(MNd) psi Moment Arm I 7, 1•1-zk 0.983 For M/(V•d) •1 Fy•SORT(fm) psi ACI 2-22 SE '''' not to exceed Fv•35 psi 111• MI e)Calculate Stresses S /' T Fv' 64.5 psi + " v-__� Fv max" 91.7 psi "includes 1/3 Increase for wind and earthquake -1 ryn - aMquake combinations Tensile Stress in Steel A.•a.. Fv 64.5 psi fs•M/(Asi'd) 1 (2n-1)A', d' _d 1 b)Applied Shear Stress M•V•h/2(fixed pier)or M•V'h(cantilever pier) 8 kbd x ltd x 1 ltd/ z.. Iv 3.3 psI fv•V/td OK M 202.5 k-ft 1 a (2n•11 A', x 1 _ d' Is 11203 psI OK 2 kbd ltd 1of3 2of3 KPFF Consulting Engineers MAA 12/14/2012 Compressive Stress In Masonry (T Ned b 30 psl Q Resultem of Fb" 058 psi OK Compression • Forges Fb•0.33•fm•1.33 ACI Section 2.3.3.2.2 "includes 1/3 Increase for wind and ee thquake combinations Figure 3.Design Coefficients and Diagrams VI.AXIAL CHECK a)Axial Stress due to gravity loads Is•P,0-i/A Is 18 psi Fs" 500 psi OK Fa•0.25 fm x 1.33 psi ACf 2-17 for non-slender piers "Includes 1/3 increase for wind and earthquake combinations b)Axial Stress due to wall panel overturning fb•Mo•c/In lb 5 psi Fb 858 pal OK VII.COMBINED STRESS CHECK fa/FA+lb/Fb<1.0 0.04 < 1.0 OK 3013 KPFF Consulting Engineers MAA 12/14/2012 West Side Christian High School Lockers and Fitness - Earthquake Design CRITICAL CMU Shear Wall Footings E-W EQ - 6" Wall I. INPUT Roof Load DL 20 psf LL 27 psf Tributary Width 13.5 ft Seismic Load Shear, Ve 18.9 k Elevations T/Footing 0 ft OA 15 ft T/Wall 15 ft RA 30 ft B/Roof Deck 15 ft Wall Dimensions Footing Dimensions Slab Length 60 ft Width 1.5 ft Width 0 ft MU thickness 6 in Depth 1 ft Thick 4 in eight 15 ft Vu Soil Properties —� •0 Twnu D+L EQ qa 3.5 7 ksf II. OVERTURNING CHECK Dead Loads w Roof 16.2 k Wall 56.7 k Slab 0 k Footing 13.5 k R A T FOOTING •TOTAL 86.4 k - --- Overturning Moment 283.5 k-ft Restoring Moment 2332.8 k-ft OK III. SOIL BEARING CHECK Footing section 900 ft^3 q roof 0.42 ksf q wall+footing 0.78 ksf q overturning 0.22 ksf TOTAL 1.42 ksf OK 1 of 1