Loading...
Report (48) RECEIVED OFFICE ,(P JUN 14 2018 CITY OF TIGARD BUILDING DIVISION 23-Mar-2018 r`14 Ua OW -TO•CAAC.,Tt Mezzanine for: DISCOUNT TIRE TIGARD, OR 125 psf Live Load Seismic per 2012 IBC Ss= 98.5 %g S1= 42.5 %g Soil Class "D" Use Grp "II" Design Cat "D" Cs= 0.208 30 ft Wide 26 ft Long 9.1 ft Top of Deck Deck: 1"x1/8" BAR GRATE (KLEMP 19-4-42 or Equal) 38 inch Span Cap= 288 psf 41c.. - oTZ 41 / U9 ` 0. ON r es�c,v. 3, lq'b �r e0V J. c EXP. DPT 3/23/2018 Design Maps Summary Report usGs Design Maps Summary Report User-Specified Input Building Code Reference Document 2012/2015 International Building Code tJSGS d7nrd dd*,:d 20f:.)8) Site Coordinates 45.4421°N, 122.7461°W Site Soil Classification Site Class D - "Stiff Soil" Risk Category j-f lit P out'a ti til e Beaverton • TI Il, ak (2) (lc) Tualattti 1 rir aeteal City USGS-Provided Output Ss = 0985 g Sms = 1.090 g S„ = 0.726 g S, = 0.425 g = 0.669 g = 0.446 g For information on how the SS and Si values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP"building code reference document. 'NICER Response Spectrum Desimt Response Spectrum t teeee'e .ettet lett! 47 ,r, It II II III I. 4 h. OW Ug, 1.4( 2,1) 3.415 1.4“ 1W IRO T Period,T tvec) .Aithd,lch this hforrilat.orl is a orod€1ct of the U.S. Geological Survey, we provide ro warranty, expressed or orrrnpied. as to the accorai:v of the data containea tnerrrn, T1,,s tool is not a substitute for technical subject-enatte: knowledce, https://earthquake.usgs.gov/cn1/designmaps/us/summary.php?template=minimal&latitude=45.4421&longitude=-122.7461&siteclass=3&riskcategory=0&edition=it IBC 2012 LOADING SEISMIC: Ss= 98.5 % g S1= 42.5 % g Soil Class D Modified Design spectral response parameters Sms= 109 %g Sds= 72.7 %g Sm1= 66.9 % g Sd1= 44.6 %g Seismic Use Group 2 Seismic Design Category D or D le = 1 R = 3.5 R = 3.25 Cs = 0.208 W Cs = 0.224 W Using Working Stress Design V= Cs*W/1.4 V= 0.148 W V = 0.160 W Steel Wide Flange Beams Fy = 50 ksi Dead A 1 Span = 9 ft 0 Partition Spacing = 2.2 ft oc 7 Deck 1.4 Joists Reduce Live Load? NO 0 Mech Live = 125 psf 0 Sprinkler R = 0 % 0 Insulation 0 Ceiling Assume Beam wt= 14 plf Total dead = 32.5 plf 8.4 Total Load Cond w V M Defl I req'd Defl Defl (plf) (kips) (k-ft) (L/?) (in4) (in) (L/?) Dead 33 0.1 0.3 180 0.3 0.00 57755 Live 275 1.2 2.8 360 4.7 0.02 6835 Dead+Live 308 1.4 3.1 240 3.5 0.02 6112 W 12x14 7% Bending 6.36 psf I = 88.6 in4 4 Steel Wide Flange Beams Fy= 50 ksi Dead Span = 9 ft 0 Partition 1 Spacing= 3.2 ft oc 7 Deck 1.4 Joists Reduce Live Load? NO 0 Mech Live = 125 psf 0 Sprinkler R = 0 % 0 Insulation 0 Ceiling Assume Beam wt = 14 plf Total dead = 41.0 plf 8.4 Total Load Cond w V M Defl I req'd Deft Defl (plf) (kips) (k-ft) (LI?) (in4) (in) (L/?) Dead 41 0.2 0.4 180 0.3 0.00 45873 Live 400 1.8 4.1 360 6.8 0.02 4699 Dead+Live 441 2.0 4.5 240 5.0 0.03 4263 W 12x14 10% Bending 4.38 psf I = 88.6 in4 Steel Wide Flange Beams Fy= 50 ksi Dead Span = 16.3 ft 0 Partition Spacing = 3.2 ft oc 7 Deck A° 1.4 Joists Reduce Live Load? NO 0 Mech Live = 125 psf 0 Sprinkler R = 0 % 0 Insulation 0 Ceiling Assume Beam wt = 14 plf Total dead = 41.0 plf 8.4 Total Load Cond w V M Defl I req'd Defl Defl (plf) (kips) (k-ft) (L/?) (in4) (in) (L/?) Dead 41 0.3 1.4 180 2.1 0.03 7722 Live 400 3.3 13.3 360 40.3 0.25 791 Dead+Live 441 3.6 14.6 240 29.6 0.27 718 W 12x14 34% Bending 4.38 psf I = 88.6 in4 2 Steel Wide Flange Beams Fy= 50 ksi Dead Span = 25.33 ft 0 Partition Spacing= 3.2 ft oc 7 Deck s 1.4 Joists Reduce Live Load? NO 0 Mech Live = 125 psf 0 Sprinkler R = 0 % 0 Insulation 0 Ceiling Assume Beam wt = 22 plf Total dead = 49.0 plf 8.4 Total Load Cond w V M Defl I req'd Defl Defl (plf) (kips) (k-ft) (L/?) (in4) (in) (L/?) Dead 49 0.6 3.9 180 9.3 0.10 3031 Live 400 5.1 32.1 360 151.3 0.82 371 Dead+Live 449 5.7 36.0 240 113.2 0.92 331 W 12x22 49% Bending 6.88 psf I : 156 in4 I Steel Wide Flange Beams Fy= 50 ksi Dead Span = 10.1 ft 0 Partition Spacing = 18 ft oc 7 Deck 7.0 Joists Reduce Live Load? NO 0 Mech A-C Live = 125 psf 0 Sprinkler R = 0 % 0 Insulation 0 Ceiling Assume Beam wt = 26 plf Total dead = 278.0 plf 14.0 Total Load Cond w V M Defl I req'd Defl Defl (plf) (kips) (k-ft) (L/?) (in4) (in) (L/?) Dead 278 1.4 3.5 180 3.3 0.01 11016 Live 2250 11.4 28.7 360 54.0 0.09 1361 Dead+Live 2528 12.8 32.2 240 40.4 0.10 1211 W 12x26 35% Bending 1.44 psf I = 204 in4 b Steel Wide Flange Beams Fy = 50 ksi Dead Span = 25.33 ft 0 Partition Spacing = 3.2 ft oc 7 Deck 1.4 Joists Reduce Live Load? NO 0 Mech { Live = 125 psf 0 Sprinkler R = 0 % 0 Insulation 0 Ceiling Assume Beam wt = 26 plf Total dead = 53.0 plf 8.4 Total Load Cond w V M Defl I req'd Def) Defl (plf) (kips) (k-ft) (L/?) (in4) (in) (L/?) Dead 53 0.7 4.2 180 10.0 0.08 3665 Live 400 5.1 32.1 360 151.3 0.63 485 Dead+Live 453 5.7 36.3 240 114.2 0.71 429 W 12x26 39% Bending 8.13 psf I : 204 in4 1 Steel Wide Flange Beams Fy = 50 ksi Dead Span = 14 ft 0 Partition Spacing= 13 ft oc 7 Deck 7.0 Joists Reduce Live Load? NO 0 Mech Live = 125 psf 0 Sprinkler R = 0 % 0 Insulation 0 Ceiling Assume Beam wt= 19 plf Total dead = 201.0 plf 14.0 Total Load Cond w V M Defl I req'd Defl Defl (pif) (kips) (k-ft) (L/?) (in4) (in) (L/?) Dead 201 1.4 4.9 180 6.4 0.05 3646 Live 1625 11.4 39.8 360 103.8 0.37 451 Dead+Live 1826 12.8 44.7 240 77.7 0.42 401 W 12x19 73% Bending 1.46 psf I : 130 in4 Steel Wide Flange Beams Fy= 50 ksi Dead Span = 10.1 ft 0 Partition VI Spacing= 13 ft oc 7 Deck 7.0 Joists Reduce Live Load? NO 0 Mech Live = 125 psf 0 Sprinkler R = 0 % 0 Insulation 0 Ceiling Assume Beam wt= 14 plf Total dead = 196.0 plf 14.0 Total Load Cond w V M Defl I req'd Defl Defl (plf) (kips) (k-ft) (LI?) (in4) (in) (L/?) Dead 196 1.0 2.5 180 2.4 0.02 6786 Live 1625 8.2 20.7 360 39.0 0.15 818 Dead+Live 1821 9.2 23.2 240 29.1 0.17 730 W 12x14 53% Bending 1.08 psf I : 88.6 in4 A-6;* COLUMN: HSS6x 6x 0.25 Trib: 5.4 ft x 13 ft Live: 125 psf Dead: 10 psf 0% Live load reduction Pmax= 9.5 kips Ht= 8.6 ft Pcap= 122.95 kips 8% stressed Seismic: R= 3.5 Cs= 0.208 25% Live+ Dead W= 2.9 kips V=Cs * W/1.4 V= 0.43 kips per column M= 1.85 k-ft Mcap= 25.71 k-ft 7% stressed Base Plate Design 04/27/18 Column Load 9.5 kips Allowable Soil 1500 psf basic Assume Footing 30.2 in square on side Soil Pressure 1500 psf Use 14 "square base plate w= 10.4 psi I = 8.08 in Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. M max = wl^2/3 Load factor= 1.67 M = 379 #-in 6 in thick slab f'c= 3500 psi s= 6.00 in3 fb= 63 psi Fb= 5(phi)(f'c^.5)= 192 psi OK !! Shear : Beam fv= 23 psi Fv= 101 psi OK !! Punching fv = 30 psi Fv= 201 psi OK !! Base Plate Bending Use 5/8 " thick 1 = 4.00 in w= 48 psi fb= 5941 psi Fb= 37500 psi OK !! COLUMN: HSS6x 6x 0.25 Trib: 10 ft x 18 ft Live: 125 psf Dead: 10 psf 0% Live load reduction Pmax= 24.3 kips Ht= 8.6 ft Pcap= 122.95 kips 20% stressed Seismic: R= 3.5 Cs= 0.208 25% Live+ Dead W= 7.4 kips V=Cs * W/1.4 V= 1.10 kips per column M = 4.73 k-ft Mcap= 25.71 k-ft 18% stressed Base Plate Design 04/27/18 Column Load 24.3 kips Allowable Soil 1500 psf basic A 7 Assume Footing 48.3 in square on side Soil Pressure 1500 psf Use 22 "square base plate w= 10.4 psi 1 = 13.15 in Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax= wl^2/3 Load factor= 1.67 M = 1003 #-in 6 in thick slab f'c= 3500 psi s = 6.00 in3 fb = 167 psi Fb= 5(phi)(f'c^.5) = 192 psi OK !! Shear : Beam fv = 38 psi Fv= 101 psi OK !!! Punching fv= 30 psi Fv = 201 psi OK !! Base Plate Bending Use 5/8 " thick 1= 8.00 in w= 50 psi fb = 24678 psi Fb = 37500 psi OK !! 9 • COLUMN: HSS6x 6x 0.25 e. Trib: 5.4 ft x 18 ft i 4. Live: 125 psf Dead: 10 psf 0% Live load reduction Pmax= 13.1 kips Ht= 8.6 ft Pcap= 122.95 kips 11% stressed Seismic: R= 3.5 Cs= 0.208 25% Live+ Dead W= 4.0 kips V=Cs * W/1.4 V= 0.59 kips per column M = 236 k-ft Mcap= 25.71 k-ft 10% stressed Base Plate Design 04/27/18 Column Load 13.1 kips Allowable Soil 1500 psf basic Assume Footing 35.5 in square on side Soil Pressure 1500 psf Use 14 "square base plate w= 10.4 psi I = 10.75 in Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax= w1^2/3 Load factor= 1.67 M = 670 #-in 6 in thick slab f'c = 3500 psi s = 6.00 in3 fb= 112 psi Fb= 5(phi)(fc^.5) = 192 psi OK !! Shear : Beam fv= 31 psi Fv= 101 psi OK !! Punching fv= 30 psi Fv = 201 psi OK !! Base Plate Bending Use 5/8 " thick I = 4.00 in w= 67 psi fb= 8227 psi Fb= 37500 psi OK !! COLUMN: HSS6x 6x 0.25 7 Trib: 12 ft x 13 ft Live: 125 psf Dead: 10 psf 0% Live load reduction Pmax= 21.1 kips Ht= 8.6 ft Pcap= 122.95 kips 17% stressed Seismic: R= 3.5 Cs= 0.208 25% Live+ Dead W= 6.4 kips V=Cs * W/1.4 V= 0.95 kips per column M= 4.10 k-ft Mcap= 25.71 k-ft 16% stressed Base Plate Design 04/27/18 Column Load 21.1 kips olg7 Allowable Soil 1500 psf basic Assume Footing 45.0 in square on side Soil Pressure 1500 psf Use 18 "square base plate w= 10.4 psi I = 13.48 in Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax= wl^2/3 Load factor= 1.67 M = 1054 #-in 6 in thick slab f'c = 3500 psi s = 6.00 in3 fb= 176 psi Fb= 5(phi)(fc^.5) = 192 psi OK !! Shear : Beam fv= 39 psi Fv = 101 psi OK !! Punching fv= 30 psi Fv = 201 psi OK !! Base Plate Bending Use 3/4 " thick 1 = 6.00 in w= 65 psi fb= 12480 psi Fb = 37500 psi OK !! Ifi 10/6 (,z. CS) f /5) (3e17/)( 4.')/,,,,,p,i 0./48( 4,i) N (" )cc6? Z Q4$1VcoLt .v c:4 ` e,s9 (a,, c) s- S,S t- r /)/PeAe Z.( Z. `4 6,64--(9 t P� o, sff / *) !, 14 ( ) /3.� 6i 5- V /17(2 z) /7. 1Z% Afe4 /470.4 _ / , /k 94X oar '.s' (37t -ter 4 ! 31/ /, � K PDA Powers Design Assist' Company name: Project: Date: 4/21/2016 Version: 2.2.5543.30490 Project number: Page: 1/4 SUMMARY: Selected anchor: Power-Stud+SD2 5/8"0;hnom 3-7/8"(98mm),Grade 2 t,h -h"°"' Effective embedment depth: het= 3.250 inch C..)71linii11 da ; J dbit Approval: ESR-2502 `J'�' no— ;— ` n, Issued:5/1/2014 Basic principles of Design: Design method: ACI 318-11 (Appendix D) Concrete: Normal weight concrete cracked concrete f'c =3000 psi Load combination: taken from Section 9.2 Factored loads 0= User enters load Anchor Parameters: cmin = 4.25 inch smin = 4.25 inch hmin = 5.75 inch cac= 8.00 inch scs = 9.75 inch Anchor Ductility: Yes Reinforcement: none edge reinforcement or<#4 bar Tension: Condition B Shear: Condition B Stand-off: not existent Seismic Loads: Yes Tension load Yes(D.3.3.4.3(d)) Shear load Yes(D.3.3.5.3(c)) Resulting anchor forces/load distribution:: Anchor No. Tension load Shear load 01 o2 #1 250 lb 250 lb Y #2 250 Ib 250 lb #3 250 lb 250 Ib X II' #4 250 lb 250 lb 04 03 Maximum 250 lb 250 lb Max.concrete compression strain: 0.00 %, Max.concrete compression stress: 0 psi ., Resulting tension force: 1000 lb ACII .1 eltle' Resulting compression force: 0 lb ....-0"" Calculations: Design proof: Demand Capacity Status Tension load 1000 lb 8814 lb '0.11<_1.0 Shear load 250 lb 4401 lb 0.06<1.0 OK Interaction - - - - 0.14 s 1.0 10 Anchor plate: Material: fyk = 36000 psi 6:15\4� Length x width: 14.00 inch x 14.00 inch _/, I Actual plate thickness: 0.394 inch v (CAlif ttk ut" Calculated plate thickness: inch not calculated 0 f r 1'CP Profile: none selected Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. www.powers.com-Powers Fasteners(see website for regional contact information). if I PDA Powers Design Assist` Company name: Project: Date: 4/21/2016 Version: 2.2.5543.30490 Project number: Page: 2/4 DESIGN PROOF TENSION LOADING: Reference Steel strength: Nsa =13080 lb D.5.1 * Nsa = m * Nsa D.5.1.2 =0/5*13080 lb=9810 lb Nua =250 lb Design proof: Nua/(4)* Nsa) = 250 lb/9810 lb= 0.03 s 1.00 Concrete Breakout Strength: het =3.250 inch kc =17.0 Nb = kc * f'co.5* Aa * heft& D.5.2.2 = 17.0* 54.77* 1.00* 5.859= 5456 lb ANcO =95.06 inch ANc =315.06 inch2 Wec,N,x =1.000 D.5.2.4 Wec,N,y =1.000 D.5.2.4 Wed,N =1.000 D.5.2.5 Wc,N =1.00 D.5.2.6 Cac =8.00 inch Wcp,N =1.000 D.5.2.7 * Ncbg = 4 seis * 1:13 * (ANc/ANcO) * Wec,N,x * Wec,N,y * Wed,N * Wc,N * Wcp,N * Nb 0.5.2.1 =0.75*0.65*(315.06/95.06)*1.000*1.000*1.000*1.00*1.000*5456 lb =8814 lb Nua =1000 lb Design proof: Nua/(4)* Ncbg) = 1000 lb/8814 lb= 0.11 <_ 1.00 DESIGN PROOF SHEAR LOADING: Reference Steel strength(without lever arm): Vsa,eq =6770 lb D.6.1 m*Vsa,eq = * Vsa,eq 0.6.1.2 =0.65*6770 lb=4401 lb Vua =250 lb Design proof: Vua * Vsa,eq) = 250 lb/4401 lb= 0.06<_ 1.00 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. www.powers.com-Powers Fasteners(see website for regional contact information). PDAPowers Design Assist' Company name: Project: Date: 4/21/2016 Version: 2.2.5543.30490 Project number: Page: 3/4 Pryout strength: het =3.250 inch kc =17.0 Nb = kc *f'c0.5* Aa* hef1.5 D.5.2.2 = 17.0* 3000 0.5* 1.00* 3.250 1.5= 5456 lb ANc =315.06 inch' ANcO =95.06 inch' Wec,N,x =1.000 D.5.2.4 wec,N,y =1.000 D.5.2.4 wed,N =1.000 D.5.2.5 Wcp,N =1.000 D.5.2.7 Wc,N =1.000 D.5.2.6 kcp =2.0 D.6.3.1 43 * Vcpg = Oseis* 43* (ANc/ANcO) * WecN,x * Wec,N,y * Wed,N * Wcp,N * Wc,N * Nb* kcp =1.0*0.70*(315.06/95.06)*1.000*1.000*1.000*1.000*1.000*5456 lb*2.0 =25313 lb Vua =1000 lb Design proof: Vua/(43*Vcp) = 1000 lb/25313 lb= 0.04<_ 1.00 COMBINATION TENSION/SHEAR LOAD: Reference Interaction: Design proof: = Nu/(43* Nn) + Vu/(4)* Vn)/1.2 D.7.3 =(0.11 +0.06)/1.2=0.1451.0 Fastening ok! Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility. www.powers.com-Powers Fasteners(see website for regional contact information).