Report (48) RECEIVED
OFFICE ,(P JUN 14 2018
CITY OF TIGARD
BUILDING DIVISION
23-Mar-2018 r`14 Ua OW -TO•CAAC.,Tt
Mezzanine for:
DISCOUNT TIRE
TIGARD, OR
125 psf Live Load
Seismic
per 2012 IBC Ss= 98.5 %g
S1= 42.5 %g
Soil Class "D" Use Grp "II" Design Cat "D"
Cs= 0.208
30 ft Wide
26 ft Long
9.1 ft Top of Deck
Deck: 1"x1/8" BAR GRATE (KLEMP 19-4-42 or Equal)
38 inch Span Cap= 288 psf
41c..
-
oTZ 41
/ U9 `
0. ON
r
es�c,v. 3, lq'b �r
e0V J. c
EXP. DPT
3/23/2018 Design Maps Summary Report
usGs Design Maps Summary Report
User-Specified Input
Building Code Reference Document 2012/2015 International Building Code
tJSGS d7nrd dd*,:d 20f:.)8)
Site Coordinates 45.4421°N, 122.7461°W
Site Soil Classification Site Class D - "Stiff Soil"
Risk Category
j-f lit
P out'a ti
til e
Beaverton
•
TI Il,
ak (2) (lc)
Tualattti
1 rir aeteal City
USGS-Provided Output
Ss = 0985 g Sms = 1.090 g S„ = 0.726 g
S, = 0.425 g = 0.669 g = 0.446 g
For information on how the SS and Si values above have been calculated from probabilistic (risk-targeted) and
deterministic ground motions in the direction of maximum horizontal response, please return to the application and
select the "2009 NEHRP"building code reference document.
'NICER Response Spectrum Desimt Response Spectrum
t teeee'e
.ettet
lett!
47 ,r,
It II II III I. 4
h. OW Ug, 1.4( 2,1) 3.415 1.4“ 1W IRO
T Period,T tvec)
.Aithd,lch this hforrilat.orl is a orod€1ct of the U.S. Geological Survey, we provide ro warranty, expressed or orrrnpied. as to the
accorai:v of the data containea tnerrrn, T1,,s tool is not a substitute for technical subject-enatte: knowledce,
https://earthquake.usgs.gov/cn1/designmaps/us/summary.php?template=minimal&latitude=45.4421&longitude=-122.7461&siteclass=3&riskcategory=0&edition=it
IBC 2012 LOADING
SEISMIC: Ss= 98.5 % g
S1= 42.5 % g
Soil Class D
Modified Design spectral response parameters
Sms= 109 %g Sds= 72.7 %g
Sm1= 66.9 % g Sd1= 44.6 %g
Seismic Use Group 2
Seismic Design Category D
or D
le = 1
R = 3.5 R = 3.25
Cs = 0.208 W Cs = 0.224 W
Using Working Stress Design
V= Cs*W/1.4
V= 0.148 W V = 0.160 W
Steel Wide Flange Beams Fy = 50 ksi
Dead A 1
Span = 9 ft 0 Partition
Spacing = 2.2 ft oc 7 Deck
1.4 Joists
Reduce Live Load? NO 0 Mech
Live = 125 psf 0 Sprinkler
R = 0 % 0 Insulation
0 Ceiling
Assume Beam wt= 14 plf
Total dead = 32.5 plf 8.4 Total
Load Cond w V M Defl I req'd Defl Defl
(plf) (kips) (k-ft) (L/?) (in4) (in) (L/?)
Dead 33 0.1 0.3 180 0.3 0.00 57755
Live 275 1.2 2.8 360 4.7 0.02 6835
Dead+Live 308 1.4 3.1 240 3.5 0.02 6112
W 12x14 7% Bending 6.36 psf I = 88.6 in4
4
Steel Wide Flange Beams Fy= 50 ksi
Dead
Span = 9 ft 0 Partition 1
Spacing= 3.2 ft oc 7 Deck
1.4 Joists
Reduce Live Load? NO 0 Mech
Live = 125 psf 0 Sprinkler
R = 0 % 0 Insulation
0 Ceiling
Assume Beam wt = 14 plf
Total dead = 41.0 plf 8.4 Total
Load Cond w V M Defl I req'd Deft Defl
(plf) (kips) (k-ft) (LI?) (in4) (in) (L/?)
Dead 41 0.2 0.4 180 0.3 0.00 45873
Live 400 1.8 4.1 360 6.8 0.02 4699
Dead+Live 441 2.0 4.5 240 5.0 0.03 4263
W 12x14 10% Bending 4.38 psf I = 88.6 in4
Steel Wide Flange Beams Fy= 50 ksi
Dead
Span = 16.3 ft 0 Partition
Spacing = 3.2 ft oc 7 Deck A°
1.4 Joists
Reduce Live Load? NO 0 Mech
Live = 125 psf 0 Sprinkler
R = 0 % 0 Insulation
0 Ceiling
Assume Beam wt = 14 plf
Total dead = 41.0 plf 8.4 Total
Load Cond w V M Defl I req'd Defl Defl
(plf) (kips) (k-ft) (L/?) (in4) (in) (L/?)
Dead 41 0.3 1.4 180 2.1 0.03 7722
Live 400 3.3 13.3 360 40.3 0.25 791
Dead+Live 441 3.6 14.6 240 29.6 0.27 718
W 12x14 34% Bending 4.38 psf I = 88.6 in4
2
Steel Wide Flange Beams Fy= 50 ksi
Dead
Span = 25.33 ft 0 Partition
Spacing= 3.2 ft oc 7 Deck
s
1.4 Joists
Reduce Live Load? NO 0 Mech
Live = 125 psf 0 Sprinkler
R = 0 % 0 Insulation
0 Ceiling
Assume Beam wt = 22 plf
Total dead = 49.0 plf 8.4 Total
Load Cond w V M Defl I req'd Defl Defl
(plf) (kips) (k-ft) (L/?) (in4) (in) (L/?)
Dead 49 0.6 3.9 180 9.3 0.10 3031
Live 400 5.1 32.1 360 151.3 0.82 371
Dead+Live 449 5.7 36.0 240 113.2 0.92 331
W 12x22 49% Bending 6.88 psf I : 156 in4
I
Steel Wide Flange Beams Fy= 50 ksi
Dead
Span = 10.1 ft 0 Partition
Spacing = 18 ft oc 7 Deck
7.0 Joists
Reduce Live Load? NO 0 Mech A-C
Live = 125 psf 0 Sprinkler
R = 0 % 0 Insulation
0 Ceiling
Assume Beam wt = 26 plf
Total dead = 278.0 plf 14.0 Total
Load Cond w V M Defl I req'd Defl Defl
(plf) (kips) (k-ft) (L/?) (in4) (in) (L/?)
Dead 278 1.4 3.5 180 3.3 0.01 11016
Live 2250 11.4 28.7 360 54.0 0.09 1361
Dead+Live 2528 12.8 32.2 240 40.4 0.10 1211
W 12x26 35% Bending 1.44 psf I = 204 in4
b
Steel Wide Flange Beams Fy = 50 ksi
Dead
Span = 25.33 ft 0 Partition
Spacing = 3.2 ft oc 7 Deck
1.4 Joists
Reduce Live Load? NO 0 Mech {
Live = 125 psf 0 Sprinkler
R = 0 % 0 Insulation
0 Ceiling
Assume Beam wt = 26 plf
Total dead = 53.0 plf 8.4 Total
Load Cond w V M Defl I req'd Def) Defl
(plf) (kips) (k-ft) (L/?) (in4) (in) (L/?)
Dead 53 0.7 4.2 180 10.0 0.08 3665
Live 400 5.1 32.1 360 151.3 0.63 485
Dead+Live 453 5.7 36.3 240 114.2 0.71 429
W 12x26 39% Bending 8.13 psf I : 204 in4
1
Steel Wide Flange Beams Fy = 50 ksi
Dead
Span = 14 ft 0 Partition
Spacing= 13 ft oc 7 Deck
7.0 Joists
Reduce Live Load? NO 0 Mech
Live = 125 psf 0 Sprinkler
R = 0 % 0 Insulation
0 Ceiling
Assume Beam wt= 19 plf
Total dead = 201.0 plf 14.0 Total
Load Cond w V M Defl I req'd Defl Defl
(pif) (kips) (k-ft) (L/?) (in4) (in) (L/?)
Dead 201 1.4 4.9 180 6.4 0.05 3646
Live 1625 11.4 39.8 360 103.8 0.37 451
Dead+Live 1826 12.8 44.7 240 77.7 0.42 401
W 12x19 73% Bending 1.46 psf I : 130 in4
Steel Wide Flange Beams Fy= 50 ksi
Dead
Span = 10.1 ft 0 Partition VI
Spacing= 13 ft oc 7 Deck
7.0 Joists
Reduce Live Load? NO 0 Mech
Live = 125 psf 0 Sprinkler
R = 0 % 0 Insulation
0 Ceiling
Assume Beam wt= 14 plf
Total dead = 196.0 plf 14.0 Total
Load Cond w V M Defl I req'd Defl Defl
(plf) (kips) (k-ft) (LI?) (in4) (in) (L/?)
Dead 196 1.0 2.5 180 2.4 0.02 6786
Live 1625 8.2 20.7 360 39.0 0.15 818
Dead+Live 1821 9.2 23.2 240 29.1 0.17 730
W 12x14 53% Bending 1.08 psf I : 88.6 in4
A-6;*
COLUMN: HSS6x 6x 0.25
Trib: 5.4 ft x 13 ft
Live: 125 psf Dead: 10 psf
0% Live load reduction
Pmax= 9.5 kips
Ht= 8.6 ft Pcap= 122.95 kips
8% stressed
Seismic:
R= 3.5
Cs= 0.208
25% Live+ Dead W= 2.9 kips
V=Cs * W/1.4
V= 0.43 kips per column
M= 1.85 k-ft
Mcap= 25.71 k-ft
7% stressed
Base Plate Design 04/27/18
Column Load 9.5 kips
Allowable Soil 1500 psf basic
Assume Footing 30.2 in square on side
Soil Pressure 1500 psf
Use 14 "square base plate
w= 10.4 psi I = 8.08 in
Bending:
Assume the concrete slab works as a beam that is fixed against rotation
at the end of the base plate and is free to deflect at the extreme
edge of the assumed footing, but not free to rotate.
M max = wl^2/3
Load factor= 1.67 M = 379 #-in
6 in thick slab f'c= 3500 psi
s= 6.00 in3 fb= 63 psi
Fb= 5(phi)(f'c^.5)= 192 psi OK !!
Shear :
Beam fv= 23 psi Fv= 101 psi OK !!
Punching fv = 30 psi Fv= 201 psi OK !!
Base Plate Bending Use 5/8 " thick
1 = 4.00 in w= 48 psi
fb= 5941 psi Fb= 37500 psi OK !!
COLUMN: HSS6x 6x 0.25
Trib: 10 ft x 18 ft
Live: 125 psf Dead: 10 psf
0% Live load reduction
Pmax= 24.3 kips
Ht= 8.6 ft Pcap= 122.95 kips
20% stressed
Seismic:
R= 3.5
Cs= 0.208
25% Live+ Dead W= 7.4 kips
V=Cs * W/1.4
V= 1.10 kips per column
M = 4.73 k-ft
Mcap= 25.71 k-ft
18% stressed
Base Plate Design 04/27/18
Column Load 24.3 kips
Allowable Soil 1500 psf basic
A 7
Assume Footing 48.3 in square on side
Soil Pressure 1500 psf
Use 22 "square base plate
w= 10.4 psi 1 = 13.15 in
Bending:
Assume the concrete slab works as a beam that is fixed against rotation
at the end of the base plate and is free to deflect at the extreme
edge of the assumed footing, but not free to rotate.
Mmax= wl^2/3
Load factor= 1.67 M = 1003 #-in
6 in thick slab f'c= 3500 psi
s = 6.00 in3 fb = 167 psi
Fb= 5(phi)(f'c^.5) = 192 psi OK !!
Shear :
Beam fv = 38 psi Fv= 101 psi OK !!!
Punching fv= 30 psi Fv = 201 psi OK !!
Base Plate Bending Use 5/8 " thick
1= 8.00 in w= 50 psi
fb = 24678 psi Fb = 37500 psi OK !!
9
•
COLUMN: HSS6x 6x 0.25
e.
Trib: 5.4 ft x 18 ft i 4.
Live: 125 psf Dead: 10 psf
0% Live load reduction
Pmax= 13.1 kips
Ht= 8.6 ft Pcap= 122.95 kips
11% stressed
Seismic:
R= 3.5
Cs= 0.208
25% Live+ Dead W= 4.0 kips
V=Cs * W/1.4
V= 0.59 kips per column
M = 236 k-ft
Mcap= 25.71 k-ft
10% stressed
Base Plate Design 04/27/18
Column Load 13.1 kips
Allowable Soil 1500 psf basic
Assume Footing 35.5 in square on side
Soil Pressure 1500 psf
Use 14 "square base plate
w= 10.4 psi I = 10.75 in
Bending:
Assume the concrete slab works as a beam that is fixed against rotation
at the end of the base plate and is free to deflect at the extreme
edge of the assumed footing, but not free to rotate.
Mmax= w1^2/3
Load factor= 1.67 M = 670 #-in
6 in thick slab f'c = 3500 psi
s = 6.00 in3 fb= 112 psi
Fb= 5(phi)(fc^.5) = 192 psi OK !!
Shear :
Beam fv= 31 psi Fv= 101 psi OK !!
Punching fv= 30 psi Fv = 201 psi OK !!
Base Plate Bending Use 5/8 " thick
I = 4.00 in w= 67 psi
fb= 8227 psi Fb= 37500 psi OK !!
COLUMN: HSS6x 6x 0.25
7
Trib: 12 ft x 13 ft
Live: 125 psf Dead: 10 psf
0% Live load reduction
Pmax= 21.1 kips
Ht= 8.6 ft Pcap= 122.95 kips
17% stressed
Seismic:
R= 3.5
Cs= 0.208
25% Live+ Dead W= 6.4 kips
V=Cs * W/1.4
V= 0.95 kips per column
M= 4.10 k-ft
Mcap= 25.71 k-ft
16% stressed
Base Plate Design 04/27/18
Column Load 21.1 kips olg7
Allowable Soil 1500 psf basic
Assume Footing 45.0 in square on side
Soil Pressure 1500 psf
Use 18 "square base plate
w= 10.4 psi I = 13.48 in
Bending:
Assume the concrete slab works as a beam that is fixed against rotation
at the end of the base plate and is free to deflect at the extreme
edge of the assumed footing, but not free to rotate.
Mmax= wl^2/3
Load factor= 1.67 M = 1054 #-in
6 in thick slab f'c = 3500 psi
s = 6.00 in3 fb= 176 psi
Fb= 5(phi)(fc^.5) = 192 psi OK !!
Shear :
Beam fv= 39 psi Fv = 101 psi OK !!
Punching fv= 30 psi Fv = 201 psi OK !!
Base Plate Bending Use 3/4 " thick
1 = 6.00 in w= 65 psi
fb= 12480 psi Fb = 37500 psi OK !!
Ifi
10/6
(,z. CS) f /5) (3e17/)( 4.')/,,,,,p,i 0./48( 4,i)
N (" )cc6? Z Q4$1VcoLt .v
c:4
` e,s9 (a,, c) s- S,S t- r
/)/PeAe Z.( Z.
`4 6,64--(9 t
P� o, sff / *) !, 14 ( ) /3.�
6i 5- V /17(2 z) /7. 1Z%
Afe4 /470.4 _ / , /k 94X
oar '.s' (37t -ter
4 ! 31/ /, � K
PDA Powers Design Assist' Company name:
Project: Date: 4/21/2016
Version: 2.2.5543.30490 Project number: Page: 1/4
SUMMARY:
Selected anchor: Power-Stud+SD2
5/8"0;hnom 3-7/8"(98mm),Grade 2 t,h -h"°"'
Effective embedment depth: het= 3.250 inch C..)71linii11 da ; J dbit
Approval: ESR-2502 `J'�' no— ;— `
n,
Issued:5/1/2014
Basic principles of Design:
Design method: ACI 318-11 (Appendix D)
Concrete: Normal weight concrete cracked concrete f'c =3000 psi
Load combination: taken from Section 9.2
Factored loads
0= User enters load
Anchor Parameters: cmin = 4.25 inch smin = 4.25 inch hmin = 5.75 inch
cac= 8.00 inch scs = 9.75 inch Anchor Ductility: Yes
Reinforcement: none edge reinforcement or<#4 bar
Tension: Condition B Shear: Condition B
Stand-off: not existent
Seismic Loads: Yes
Tension load Yes(D.3.3.4.3(d))
Shear load Yes(D.3.3.5.3(c))
Resulting anchor forces/load distribution::
Anchor No. Tension load Shear load
01 o2 #1 250 lb 250 lb
Y #2 250 Ib 250 lb
#3 250 lb 250 Ib
X II' #4 250 lb 250 lb
04 03
Maximum 250 lb 250 lb
Max.concrete compression strain: 0.00 %,
Max.concrete compression stress: 0 psi .,
Resulting tension force: 1000 lb ACII .1 eltle'
Resulting compression force: 0 lb ....-0""
Calculations: Design proof: Demand Capacity Status
Tension load 1000 lb 8814 lb '0.11<_1.0
Shear load 250 lb 4401 lb 0.06<1.0 OK
Interaction - - - - 0.14 s 1.0 10
Anchor plate: Material: fyk = 36000 psi 6:15\4�
Length x width: 14.00 inch x 14.00 inch _/, I
Actual plate thickness: 0.394 inch v
(CAlif ttk
ut"
Calculated plate thickness: inch not calculated
0 f r 1'CP
Profile: none selected
Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility.
www.powers.com-Powers Fasteners(see website for regional contact information).
if I
PDA Powers Design Assist` Company name:
Project: Date: 4/21/2016
Version: 2.2.5543.30490 Project number: Page: 2/4
DESIGN PROOF TENSION LOADING: Reference
Steel strength:
Nsa =13080 lb D.5.1
* Nsa = m * Nsa D.5.1.2
=0/5*13080 lb=9810 lb
Nua =250 lb
Design proof: Nua/(4)* Nsa) = 250 lb/9810 lb= 0.03 s 1.00
Concrete Breakout Strength:
het =3.250 inch
kc =17.0
Nb = kc * f'co.5* Aa * heft& D.5.2.2
= 17.0* 54.77* 1.00* 5.859= 5456 lb
ANcO =95.06 inch
ANc =315.06 inch2
Wec,N,x =1.000 D.5.2.4
Wec,N,y =1.000 D.5.2.4
Wed,N =1.000 D.5.2.5
Wc,N =1.00 D.5.2.6
Cac =8.00 inch
Wcp,N =1.000 D.5.2.7
* Ncbg = 4 seis * 1:13 * (ANc/ANcO) * Wec,N,x * Wec,N,y * Wed,N * Wc,N * Wcp,N * Nb 0.5.2.1
=0.75*0.65*(315.06/95.06)*1.000*1.000*1.000*1.00*1.000*5456 lb
=8814 lb
Nua =1000 lb
Design proof: Nua/(4)* Ncbg) = 1000 lb/8814 lb= 0.11 <_ 1.00
DESIGN PROOF SHEAR LOADING: Reference
Steel strength(without lever arm):
Vsa,eq =6770 lb D.6.1
m*Vsa,eq = * Vsa,eq 0.6.1.2
=0.65*6770 lb=4401 lb
Vua =250 lb
Design proof: Vua * Vsa,eq) = 250 lb/4401 lb= 0.06<_ 1.00
Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility.
www.powers.com-Powers Fasteners(see website for regional contact information).
PDAPowers Design Assist' Company name:
Project: Date: 4/21/2016
Version: 2.2.5543.30490 Project number: Page: 3/4
Pryout strength:
het =3.250 inch
kc =17.0
Nb = kc *f'c0.5* Aa* hef1.5 D.5.2.2
= 17.0* 3000 0.5* 1.00* 3.250 1.5= 5456 lb
ANc =315.06 inch'
ANcO =95.06 inch'
Wec,N,x =1.000 D.5.2.4
wec,N,y =1.000 D.5.2.4
wed,N =1.000
D.5.2.5
Wcp,N =1.000
D.5.2.7
Wc,N =1.000
D.5.2.6
kcp =2.0 D.6.3.1
43 * Vcpg = Oseis* 43* (ANc/ANcO) * WecN,x * Wec,N,y * Wed,N * Wcp,N * Wc,N * Nb* kcp
=1.0*0.70*(315.06/95.06)*1.000*1.000*1.000*1.000*1.000*5456 lb*2.0
=25313 lb
Vua =1000 lb
Design proof: Vua/(43*Vcp) = 1000 lb/25313 lb= 0.04<_ 1.00
COMBINATION TENSION/SHEAR LOAD: Reference
Interaction:
Design proof: = Nu/(43* Nn) + Vu/(4)* Vn)/1.2 D.7.3
=(0.11 +0.06)/1.2=0.1451.0
Fastening ok!
Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines and must be checked for plausibility.
www.powers.com-Powers Fasteners(see website for regional contact information).