Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (53)
N\ apt coc fi. ...T [(3-c C i.1;; i'.+1.. �-.!'�..��+. `� Ct GREEN MOUNTAIN 'RECEIVED structural engineering MAR ?..018 Cil` ` OF Ii ;®AJ 3LIILDING DIVISION Lateral Analysis For Riverside Homes - Plan 2885 B Progress Landing Lot 11 Tigard, OR March 16,2018 ��tp PR°ices Q 49 8PE y. OREGON 0lAt 0, 'INA MU (0. Expires: 1%•d51•�S JOB NO: 17485 ***LIMITATIONS*** ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMAION PROVIDED BY THE CLIENT,WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME.NO RESPONISBILTY AND/OR LIABILITY IS ASSUMED BY OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS. Table of Contents Design Criteria Lateral Analysis L-1 -L-15 greenmountainse.com-info©greenmountainse.com-4857 NW Lake Rd.,Suite 260,Camas,WA 98607 or r' t'll,, ¢ GREEN MOUNTIIIN iiiistructural engineering STRUCTURAL DESIGN INFORMATION GOVERNING CODE: 2015 International Residential Code(IRC) 2015 International Building Code(IBC) This engineering pertains to the design of the Lateral Force Resisting System and a review of the home designer's framing and foundation plans. The home designer is responsible for making any necessary changes as required by these calculations to their framing and foundation plans. 1. Dead Load: A. Roof 15 psf B. Floor 10 psf C. Exterior walls 10 psf D. Exterior walls with veneer 50 psf E. Interior walls with gypboard each side 5 psf 2. Live load: A. Floor 40 psf B. Decks&Balconies 60 psf 3. Snow load: A. Uniformly distributed snow load on roof 25 psf 4. Wind load-based on ASCE 7-10 CH 27 MWFRS Directional Procedure: A. 3 Second Gust Wind Speed V=126 mph B. Exposure B C. Importance factor I=1.0 D. Topographical Factor Kzt=1.0 E. Wind Directional Factor Kd=0.85 F. Structure classified as enclosed 5. Seismic load-based on ASCE 7-10 Section 12.14: A. Mapped Spectral Acceleration for short periods Ss=1.0 B. Mapped Spectral Acceleration for 1 second period S1=0.34 C. Soil Site Class D D. Ductility coefficient R=6.5 E. Seismic Design Category D 6. Foundation Soil Properties: A. Undisturbed sandy silt per IBC 2015 Table 1806.2 Soil Class#5 B. Maximum vertical bearing pressure 1500 psf 7. Retaining wall lateral loads: A. Walls free to displace laterally at top 40 pcf B. Walls restrained against lateral displacement at top 45 pcf 8. Concrete: A. 28 day design strength F'c 3000 psi B. Reinforcing bars ASTM A615,Grade 60 Pli greenmountainse.com-info©greenmountainse.com-4857 NW Lake Rd.,Suite 260,Camas,WA 98607 1 GREEN MOUNTII IN PROJECT: Riverside - 2885 %le structural engineering DATE: 12/4/2017 BY: CM JOB NO: 17485 SHEET: L-1 LATERAL SEISMIC DESIGN BASED ON ASCE-7-10 1617.5 Simplified analysis procedure for seismic design of buildings 1.2•SDs SEISMIC BASE SHEAR V:_ •W (EQ.2.14-11 with F=12) SS mapped spectral acceleration for S 1.00 := short periods(Sec.11.4.1) from USGS web site SS mapped spectral acceleration for SI:= 0,34 1 second period(Sec.11.4.1) Fa Site coefficient(Table 11.4-1) Fa'- 1'1 Based on Soil F„ Site coefficient(Table 11.4-2) Site Class D F�:= 1.8 SMS Fa Ss SMs= 1.1 (Eq.11.4-1) Smi:= F„•S1 SM1= 0.61 (Eq.11.4-2) 11.4.43 Design spectrum response acceleration parameters 2 SDs:= 3—•SMs SDs= 0.73 > 0.50g SEISMIC 2 CATEGORY Srn 3•SM1 SDI= 0.41 > 0.20g D per Table 11.6-1 1.2 SDs WOOD SHEAR PANELS V W R:= 6.5 Table 9.52.2 R 1.2.0.73 V:= 65 W V:= 0.135-W 12.4 Seismic Load Combinations E:= 1.3•V (Eq.12.4-3 with redundancy factor=1.3 per 12.342) WSD:= 0.7•E 0.7.1.3.O.135•W 0.123-W WOOD SHEAR PANELS 11 GREEN MOUNTIIIN PROJECT: Riverside - 2885 ilhiestructural engineering DATE: 12/4/2017 BY: CM JOB NO: 17485 SHEET: L-2 LATE RAL SIMPLIFIED WIND AND SEISMIC COMPARISON WIND "—* AM- -4 EL 11 --t. 1111 7.4 ps f psf Wind base Shear Length L:= 52•ft Height Ht:= 24•ft WIND:= L•Ht.(11.psf+7.4•psf) SEISMIC WIND= 22963.2Ib Fr Wroof F2 — Wfloor — Wwall Seismic base Shear Aroof:= 52•ft•40•ft Aroof= 2080ft2 door 43•ft•40•ft Afloor= 1720ft2 Wwalls 4.52•ft•20•ft Wwaiis=4160ft2 SEISMIC:= (Ar 15•psf+ Aryoor•15•psf+Wwalls'10•p5f)•0.123 SEISMIC= 12127.8 lb WIND GOVERNS DESIGN II . GREEN MOUNTnIN PROJECT: Riverside - 2885 VOP structural engineering DATE: 12/4/2017 BY: CM JOB NO: 17485 SHEET: L-3 LATERAL WIND DESIGN IS BASED ON ASCE 7-10 CH 27 MWFRS DIRECTIONAL PROCEDURE VELOCITY PRESSURE qZ:= .00256•K •Krt•Kd•V2•I (Eq.6-15) EXPOSURE B WIND SPEED(3 second gust) V35:— 126 mph IMPORTANCE FACTOR I := 1.0 TOPOGRAPHICAL FACTOR Kit:= 1.0 WIND DIRECTIONAL FACTOR Kd:= 0.85 (Table 6-4) EXPOSURE COEFFICIENT 0'-15' KZ:= 0.57 qz:= .00256•KZ•Kit•Kd•V3s2•I qz= 19.69 (varies/height) 15'-20' KZ:= 0.62 qZ:= .00256•KZ•Kit•Kd-V3s2.1 qZ= 21.42 20'-25' K2:= 0.66 qz:= .00256.1c.KA•Kd•V3,2•1 qZ= 22.8 25'-30' KZ:= 0.70 qZ:= .00256•KZ•Kit•Kd•V3s2•I qz= 24.18 II � S GREEN MOUNTAIN PROJECT: Riverside - 2885 VOP structural engineering DATE: 12/4/2017 BY: CM JOB NO: 17485 SHEET: L-4 LATERAL WIND DESIGN IS BASED ON ASCE 7-10 CH 27 MWFRS DIRECTIONAL PROCEDURE cont. WIND PRESSURE P:= ck•G•CP G:= 0.85 Gust factor CP pressure coefficient AT WALLS For Working Stress Design Multiply WIND PRESSURE by 0.6 per IBC 1605.3.1 0'-15' WINDWARD Pw:= 12.4•psf•0.85.0.8 P,y= 8.43 psf LEEWARD PL:= 12.4•psf•0.85.0.5 PL= 5.27 psf 15'-20' WINDWARD Pw:= 13.49•psf•0.85.0.8 PW=9.17 psf LEEWARD PL:= 13.49•psf•0.85.0.5 PL= 5.73 psf 20'-25' WINDWARD Pw:= 14.36•psf•0.85.0.8 Pw= 9.76psf LEEWARD PL:= 14.36•psf•0.85.0.5 PL= 6.1 psf AT ROOF 0'-15' WINDWARD P,y:= 12.4•psf•0.85.0.3 Pw= 3.16 psf LEEWARD PL:= 12.4•psf•0.85.0.6 PL= 6.32 psf 15'-20' WINDWARD Pw:= 13.49.psf•0.85.0.3 Pw= 3.44 psf LEEWARD PL:= 13.49•psf•0.85.0.6 PL= 6.88psf 20'-25' WINDWARD P,:= 14.36•psf•0.85.0.3 Pw= 3.66psf LEEWARD PL:= 14.36•psf•0.85.0.6 PL= 7.32 psf -30WINDWARD Pw:= 15.23•psf•0.85.0.3 Pw= 3.88 psf LEEWARD PL:= 15.23•psf•0.85.0.6 PL = 717 psf GREEN MOUNTIAIN PROJECT: Riverside - 2885 Ibil, structural engineering DATE: 12/4/2017 BY: CM Jog NO: 17 4 8 5 SHEET: L-5 LATERAL WIND DESIGN IS BASED ON ASCE 7-10 CH 27 MWFRS DIRECTIONAL PROCEDURE cont. Assume 4-0.3 psf psf 8 := 35 si p--0.6 aft 9.17 psf IIIIIIII 6., psf Mean Roof Height 4".177," 18+ 22 = 20 2 Loads at Roof roof-ave Windward 3.44•psf•5.5•ft= 18.92 plf Leeward 6.88•psf•5.5•ft= 37.84 plf Wall loads at upper level at main level Windward 8.43psf•4•ft= 33.72plf 8.43•psf.8.5•ft= 71.66plf Leeward 5.73•psf•4•ft= 22.92p1f 5.73•psf•8.5•ft=48.71 plf Voti4r, Imvs Roof A( 1 V for r' rr - n ll + 1 L-6 t 1 i I yir 1Ill 1 01 II 1 u Ii In c I J �I LU 1 I I PRE. MFG. TRU 8 0 24' O.C. `� TRUSS id r ♦♦ 1'1111'1'11♦•`-��•-�`�1'111 1�1�1111'1" 1111►111141+•-1t.--=►A•.•1111111111 ♦♦♦♦ ♦1♦4:tlE1' 1'►4l•••trl=I.7.' iii1i1i/i ♦11 <►*+�11. ♦♦t11111/1'4'i t•1P1'.41/11/ 111/ - 1t4t;1�1�►� .. 41►.1•1��11'! M�1�1�1*1�1+1.1�1•14.1_�� �111111111111111��' ►'<�l►•1jI�111j1j/111/j11111111•/ 6.••44;t11/11111111/1111/,►f:�11t4P►1111/1111111111111•/ 'e '� 14 �1�,1�1�1114,1y1,+►moi.,1�1 •i 11♦11111// + , 11tO': �: i111111111 1/ H `•14v1.•'•11111111•►11/1/1 ♦1111••••41 11111♦ e 111•••11 ►111141 .— ,t•1111' ,1t1'41' o,'11/1111, . Q Q ® `�♦1111414111111, 11111♦•♦'► 1 �0 1111114*1 X11111/ ..5° L4>,t111111�1�`!•1111/,. ........... X11111111••1•ii.1• --" $! c •11•••1111 j1� ] 40. 0 RIME - /111111 /1114►1/ \ 11111111. _.I /114 1 4 11114►����1�i1`_. —' a`111 ►111• •-••-•- -\ ® - /1111•4111g►11• �+//111t♦♦♦•►1114 1/1o�i1111�\ /114+11 ►1111H- 1111 a�/11111.114/11•"1111'• V /11♦411 ►♦ ♦11/1111 V /111111111/1111111 /1111411►•v•11111/ 1 /1111♦ 1.1t‘4►111111111 ►� /111114/*+• I ♦111♦ 11•• /111111111P�i/111111111 M11� - /1/1111111 1.44,11111111141 ♦1• f 1111111111"..1'•�►a a �1/111a1A1.11111i►11111�� //1111/1111/11111''.P►1/14►►111114 X111♦14111111\ /1111111111"•1114►111•- 111' 1111. /�1/11.1.1111�T11 ►1.4•* ,.0 a 4!11,• •4Rk►k1111IN ❑ _--0�-- PRE UFO. - S 0 24' O.C. mit .., 4,...k„ . i --I ./ O �4.. - ic. SSS 0 24` (3.0„... AW 1'-AT 6` RPOAISRCHED ' -- f® ilel ROOF ((O10UC-ST•DO d) AT JACKS I, TRU UFO. :Z 1 6 R ,k MEI RAISED , ® a O 240'0.. h 111 W[ 1'-6 RAISED1:1 OQp 114 r • ....ii, ,,,„„ . L-7 L �- �� Wii r' i 0......... a �,io 11 Ill I I .A. /� .I 1T �...�r .gym ( r� I,t III MASTER BEDROOM SEDT O X . � �� ��dI 1 .."---'S 0 111 !11 111 t� _ 4--:- II Ir Q-3 ._ 0 SARI -�-� L.--) : 1 I Y-1 NOR 21 ini V ' il Egli[ i k 1 ra I . /!P' Pecs .4_ b Y i lb PMS V I I —J1.\\...„.7,...) . .. 0 ,te 1 4,...1 �,�....,... 7-- s' •$,i PLIES • LOFT 0 011 BEDROOM BEDROOM THREEEFOUR I L 1—......4 ' 1 • t . C , . lid '2 eNeb ii- tiii 6046 X0 UDR. (EGRESS) 6048 0 SLOB. 2030 e030 RM. � n 'W41.17. TPS @,i _. 141-4 t4Ligt_d -J L_ ,D L-8 16 PA110 eel 140 titrb wilariffliffik.= ....,.."ft."40/Rez..- I "".".. . a. __ , . . ._,-, ,, 1.m.mo~ DINING ROOM GREAT ROOM POCKET R== D oFricE \ II \s, II I 1 �" v I VSTAIRII1 —.,I 1 DETAIL - li 1 II �r—T ` II >< O1 I - l 11 KITCHEN � I i ....L. -- r 14 I I I1 I I i' I -i---74 l� ! d i l l , I n Il 1 11111 I i 4 ou,01 16 i r _ TAIL CCTAll, II W.I.C. GARAGE I I I lit1 O O FOYER it 16 ---rte/ 1 ....7\_ ___ff t..... _ I__ II I ill �1i pary UI 14, 215 I- 11 u, 1I�� ,1 ill IU 11 ammr 1 1.11j. i '43 a 0 rtt,, 4 *4 GREEN MOUNTVIIN PROJECT: Riverside - 2885 10111, structural engineering DATE: 12/4/2017 BY: CM Joe No: 17485 SHEET: L-9 LATERAL SHEAR WALL DESIGN Pdl Pd I Wdl I P:= wind V:= seismic h 1t=Holdown V Force Based on 2012 IBC Basic Load Combinations 1605.3.1 0.6D+ W (Equation 16-11) 0.6•D+ 0.7•E (Equation 16-12) Overturning Moment: Mme:= P•h (2 L2 Resisting Moment: Mr:= 0.6•(Wdi + WWai�)• + 0.6 PdI Mot— Mr Holdown Force R L 11111 ^". �± GREEN MOUNThIM PROJECT: Riverside - 2885 Mir DATE: 12/4/2017 structural engineering BY: CM JOB NO: 17485 SHEET: L-10 LATE RAL Left Elevation Exterior Wal Is Second Level Wind Force P:= 2260.1b P= 2260lb Length of wall L:= 5•ft+4•ft+19•ft L= 28ft P Shear v:= L v= 80.71 plf A 5 Overturning Mot:= P•8•ft 28 Mot= 322857 lb-ft Moment (5.ft)2 Resisting Mr:= 0.6•(15•psf•2.ft+ 10•psf•8•ft)• 2 + 0.6.600•Ib•5•ft Moment Mr= 2625lb•ft Mat— Mr Holdown = 120.71 lb Force 5-ft Main Level Wind Force P:= 4660•Ib P=466016 Length of wall L:= 14•ft+10•ft+ 8•ft L= 32ft P Shear v:= L v=145.63plf S 8 Overturning Mot:= P•9•ft. Mot= 10485Ib•ft 32 Moment (8.ft)2 Resisting Mr:= 0.6•(15•psf•2•ft+10•psf.17•ft)• 2 + 0.6.800•Ib•8•ft Moment Mr= 76801b•ft Mot— Mr Holdown = 350.63 lb 8'ft Force 11 Y GREEN MOUNTMIN PROJECT: Riverside - 2885 Virstructural engineering DATE: 12/4/2017 BY: CM JOB NO: 17485 SHEET: L-1 LATERAL Front Elevation Exterior Walls Second Level Wind Force P:= 2373.1b P= 2373 lb Length or wall L:= 3.5•ft+ 3•ft+ 3.5•ft+ 3.5•ft L= 13.5ft P Shear v:= L v=175.78p1f B 3.5 Overturning Mot.:= P•8•ft•— Mot= 4921.78lb•ft Moment 13.5 (3.5•ft)2 Resisting Mr:= 0.6•(15•psf•4•ft+10.psf•8•ft)• 2 + 0.6.600•Ib•3.5•ft Moment Mi.=1774.5Ib•ft Mot— Mr Holdown = 899.22 lb Force 3.5 ft MSTC48B3 Maln Level Wind Force P:= 2988,lb P= 2988 lb Length of wall L:= 2.25-ft+ 2.25•ft+ 1.5•ft+1.5•ft L= 7.5ft 2.25.3.5= 7.88 P Shear Wind v:= L v= 398.4 pif 0 2.25 Overturning Mot:= P•7.88•ft• 7.—5 M�= 7063.63lb.ft Moment (2.25.ft)2 Resisting Mr.:= 0.6•(15.psf•4•ft+10•psf•8•ft)• 2 + 0.6.800•lb•2.25•ft Moment Mot— Mr Mr=1292.631b•ft Holdown = 2564.89 lb Force 2.25•ft HITS IA GREEN MOUNThIIN PROJECT: Riverside - 2885 structural engineering DATE: 12/4/2017BY: CM JOB NO: 17485 SHEET: L-12 LATE RAL Right Elevation Exterior Walls Second Level Wind Force P:= 2260•lb P= 2260 lb Length of wall L:= 8•ft+ 5•ft+ 4•ft L=17ft P Shear v:= — v= 132.94plf A 4 Overturning Mot:= P•8•ft•17 Mpt= 4254.121b•ft Moment (4.ft)2 Resisting Mr:= 0.6.(15psf•2•ft+10•psf•8•ft)• 2 + 0.6.600.1b•4•ft Moment Mr= 1968lb•ft Mot— Mr Holdown = 57153 lb Force Oft Main Level Wind Force P:= 4660-lb P=4660 lb Length of wall L:= 15•ft+ 8•ft+ 3•ft L= 26ft P Shear v:= L v= 179.23pIf 6 8 Overturning Mot:= P•9•ft•26 Mot= 12904.62lb•ft Moment (8•ft)2 Resisting Mr:= 0.6 (15•psf•2.ft+ 10•psf•17•ft)• 2 + 0.6.800•Ib•8•ft Moment Mr= 7680lb•ft Mat— Mr Holdown = 653.08 lb 8ft Force II • GREEN MOUNTVIIN PROJECT: Riverside - 2885 nir structural engineering DATE: 12/4/2017 BY: CM JOB NO: 17485 SHEET: L-13 LATERAL Rear Elevation Exterior Walls Second Level Wind Force P:= 2373•Ib P= 2373 lb Length of wall L:= 7.5•ft+ 11•ft+4•ft L= 22.5ft P Shear v:= — v=105.47p1f A 7.5 Overturning Ma:= P•8•ft•— Ma= 6328lb•ft Moment 22.5 (7.5•ft)2 Resisting Mr:= 0.6•(15•psf•2•ft+ 10•psf•12•ft)• 2 + 0.6.600•lb•7.5•ft Moment Mr= 5231.25lb•ft Mot— Mr Holdown =146.23 lb Force 7.5•ft Main Level Wind Force P:= 3813-lb P= 3813 lb Length of wall L:= 6•ft+ 7•ft+4•ft L= 17ft P Shear Wind v:= — v= 224.29pIf S 4 Overturning M�:= P•9•ft•17 M�= 8074.59lb•ft Moment (4•ft)2 Resisting Mr:= 0.6•(15•psf•4•ft+10•psf•8•ft)• 2 + 0.6.800•lb•4•ft Moment Mot— Mr Mr= 25921b-ft Holdown =1370.65 lb Force Oft HITS II GREEN MOUNTVIIN PROJECT: Riverside - 2885 Mir structural engineering DATE: 12/4/2017 BY: CM JOB No: 17485 SHEET: L-14 LATERAL Interior Shear Walls at back of Garage Ma/n Level Wind Force P:= 4069•Ib P=4069lb Length of wall L:= 18•ft L= 18ft P Shear Wind v:= — v= 226.06plf Overturning Mot:= P•9•ft Mat= 36621lb•ft Moment (18•ft)2 Resisting Mr:= O.6 (10 psf.12•ft+10•psf•9•ft)• 2 + 0.6.1200•Ib•18•ft Moment Mot— Mr= 333721b•ft Holdown =180.5 lb 18ft Force • GREEN M0UNTVIIN PROJECT: Riverside - 2885 Iiie structural engineering DATE: 12/4/2017 BY: CM JOB NO: 17485 SHEET: L-15 LATERAL WIND ON PORCH ROOF 126 MPH,EXP B w:= 6•ft•(4.43•psf+ 8.86•psf) w= 79.7 plf D nn } II 11 II w I 1) M II L I II II `s v 11 II II v I ill II 111111111111=11111 DESIGN ROOF TO CANTILEVER FROM HOUSE L:= 10.ft D:= 11.ft w•L2 M:= 2 M= 39871bft support beam on post in wall at house with M Simpson HUCQ-SDS C:= — T:= C C= 398.71b L 12 SDS 1/4x21/4 screws(min)x172 lbs=2064 in combined withdraw w•L Nall top and bottom chord of first truss to wall with v:= p v= 72.49 plf (2)16d nails at 16"o.c.(web to studs)