Loading...
Specifications (26) .* Pis RECEIVED SEP 20 2018 ' CITY Ofi� �itzAt�D Stance - Washington Square BUILDINGDi 08N Tenant Improvements Space A-15 9455 S.W. Washington Square Road Tigard, OR 97223 Calculations Lc/ 79562PE OREGON OFF10E C OP' i/4/ LEE Exp. 12/31/2018 September 19, 2018 • Site Location: Washington Square 9455 S.W. Washington Square Road, Space A-15 Tigard, OR 97223 Client: RTA Inc. PO Box 1512 Newport Beach, CA 92659 www.rta-inc.net Kevin Lee McCoy Job No. M18-006 ' CCOY CONSULTING ENGINEER 8425 E.AMETHYST LN. TUCSON,AZ 85750 TEL (714)423-2636 FAX:(520)432-5584 1 STANCE — WASHINGTON SQUARE — TIGARD, OR 9/18/18 KLM M18-006 2014 Edition of Oregon Structural Specialty Code I 1 -11,1-1/.11---` �,'" - 11,1! . `$�"'k" r "r` ,% l,�'t'_ ',.1 `°` -, k r 'il:t . ' -c ' L i V �f�`- 1,--0t-, ';('', ) , , I '-( 'C'-iv'---/''---. , a D7.1116- . -i t- is Vis' : I t ; i_.- /L ii, ; "-- IK'i r T' `.l r 1 i ,,,,,--v-- 6.. ':. . �Fii p,tx� _ t t i E .1,t z r 2.. ...'...,� t 1 `i irr r .L s ''' a.: .i/ \f: . _t t Vl ti J\c ,r-�, ;1-/ATx c , Detail Not Use . , r 4 � � �A 1.—,_ s,, (" L" itS x 4 y 7, 1 ' )Yid , /11C ¢, 11C" , �`, .� ��� ,f, t`7. �; J Z �e —�t .uq f jA'�-"�' €i}F'`°g r4w, w�; 1� , z+' f i Is 4 t - 0,,1 _ ft X444' K > '£ :, 5,A "s tat -7, s r 1k I,--) AI1t' �" 5 , l— iiia .. ` - € i I- R ) ' 7 "—t-Le--7-1.--- (:C• ;:A t _r.., /11C-'' tic '} ,H i STANCE - WASHINGTON SQUARE - TIGARD, OR 9/18/18 KLM M18-006 9i-it:i..V1I 7 ., ` ,\-° = F� "� 1 (1 ,. -- )'-1.1' ‘.-1 T, 51-2 -1 ci'"°_ S 1 ".., 1 `� ".. -- Y.-.". t p '.. ___--- -. *,....r.. _vi, '` /, 4 i.: { 'I C)111 1.'F 1( ) - *-- / 1-''' i "-1-Y)‘-; 7--'--7;°'1•(.1-1/t. .- 1-'1'1T I Z I411r1,,. f .,i I'1 I. :- ' 1 � `` °C r°°` -' - (' I II O ` ti rt r�1 -- c'fi°mri I 3`I`_ 1\ 1° - s 1.. 1; i „ r' ' - Ar� r a1-. 1 -' :11' `= - 1 °/ j 1 t ;yr (stir ' _� ' , clic'? .. "�9 1 - ( �N lr IC) '* ii 1 f ,rt i `i t) c.. It r te` r a ,. tt Note:Where diagonal 1x6 cedar planking is used i'nstea o plywood use 2- 10 sts�is per * "" - I'{ °e,,„ (f I `�""I y ° stud per board and limit end length to no more than 6"past last stud. I' $ 1 kk) _ i i ._ [�_.. 1 3 i f € 1 1 3 S r ,7 f I�'�� art {p+r�g j rp��,,�jig`/f.;n j� € y ;' t E 3 t j" £4 s --_......_.-$11111111 ,fit..,.,. .. .._ ,:�, - 1".,\,\41, gj"}✓ F F I �° _ . . 1 e �-� ' �. � i r. 144 ° fiF rq ...1.:+,,,11.'''.,;,, ' l'A - �'_ '-'1 . ii 1,Akicio _4 (:‘,7 P 1 i r.--\- --..1) 2 - 1 i 3 ).-Ay --A•ii)''''It .t, , -, ., S A 'g.J i j Stance - Washington Square - Tigard, OR 9/18/18 KLM M18-006 Codes&Standards > Calculators&Software > Maximum Span Calculator for Wood Joists and Rafters • 5eaa' �rt< 1iemin-t Calculate ttaxlmssm Hareecn,:ai Span ,c Cary^03..,_ L e Fi" The Maximal 1'lor?c rffaL Span 1s 20 ft. 8 in. a a trinki:^um bearing length nf 0,17 in, Ta it mc:at each f sht r:c,^?tser PropertyValue • all _.... IIMMO* i5-,3V 'z,Fnn ra,Ilene IMO&-c S elitne ex"aevsi€aca rxftho info:S u i.;3tc r-cial effort SV.va tSV S.ataa$e tt rcflcet,`Fx zia:r'of,t<VSeear neither frit,All ,.ar W=====,3 n== ac=xtum ac?- tes att+ .}fi`^„.arpnme,.'no empared from. OnlarzSpa€ t3 ^g than'Ynliec Spas Ca ztlatr fSan3ii.Y from sty usc. Cc ;L infoifawc- ClarkWestern Building Systems 44104411° CW Tech Support: (888)437-3244 clarkwestern.com 2007 North American Specification ASD DATE:6/24/2016 Stance Seattle SECTION DESIGNATION: 362S162-43 [331 Single Section Dimensions: Web Height= 3.625 in - Top Flange= 1.625 in Bottom Flange= 1.625 in Stiffening Lip= 0.500 in Inside Corner Radius= 0.0712 in Punchout Width= 1.500 in Punchout Length= 4.000 in Design Thickness= 0.0451 in Steel Properties: Fy= 33.000 ksi Fu= 45.000 ksi Fya= 33.000 ksi ALLOWABLE WALL HEIGHTS-LATERAL LOAD ONLY INPUT PARAMETERS Lateral Load=5.0 psf Load Multiplier for Strength Checks = 1.00 Load Multiplier for Deflection = 1.00 Shear and Web Crippling Capacity Based on Unpunched Web End Bearing Length for Web Crippling = 1 in K-phi for Distortional Buckling= 0.00 Ib'inlin ALLOWABLE SPANS-SIMPLE SPAN STUD DEFLECTION LIMIT SPACING U120 U240 U360 12 in 2616" 21'0" 18'4" 16 in 24'0" 19' 1" 16' 8" 24 in 21'0" 16'8" 14'7" NOTE: Wall Heights Assume Full Support of the 9PP Compression Flange, (Sheathing or Mechanical Bracing). -C LARK ' STEEL FRAMNNIS SYSTEMS HOW TO READ CLARK'S NEW STEEL FRAMING, INDUSTRY-STANDARD NOMENCLATURE hiIP 600 S 162 -54 - DEPTH OF MEMBER--I MINIMUM META(THICKNESS(mils) TYPE OF MEMBER RANGE WIDTH - 1.The first set of numbers represents the depth of the member to two (2)decimal places without the use of a decimal paint.le:600=6.00', 1000=10-00',550=5.50",362=3.62" 2.The alpha charter represents the type of member.There ore only four alpha characters used,they are 5="C"member,T=Truck, F=Furring channel and U="U'channel. 3.The second set of numbers represents the members flange width to two (2)decimal places without the use of a decimal point. ie: 162=1.62", 200=2.00",125=1.25' 4.The last set of numbers is the minimum uncoated metol thickness expressed in mils(0.001 in).These thicknesses correspond to reference gauges as follows:-18(25GA),-27 (226A) -33 (206A),-43 (18GA),-54 (16GA),-68 (146A) 8-97(126A).The mils define the minimum allowable uncoated metal thickness and are 5%less than the Design Thickness.The 5%variance in metal thickness is permitted per section A 3.4 of the AISI Specification. 600 S 162 -54 DEPTH-J 1 1 METAL THICKNESS MEMBER TYPE I FLANGE WIDTH EXAMPLES: NOMENCLATURE DEPTH MEMBER. FLANGE THICKNESS 6005162-54 6.00(6") [Member 1:62(1 5/B') 0.054'(16GA) 6001200-54 6.00(6') Trak 200(2') 0.054"(16GA) 3625162-43 3.62(3-5/8') CMember 1.62(1-5/8") 0.043`(16GG) 3621125.43 3.62(3-5/81 Track 1.25(1-1/4") 0.043'(18GA) 4005200-33 4.00(41 C Member 2.00(2") 0.033'(206A) 40012.50-33 4.00(41 Track 2.50(2-1/21 0.033"(206.0) 9255250-68 9.25(9-1/4') C Member 2.50(2-1/2') 0.068`(14GA) 922125-68 9.25(9-1/4') Track 1.25(1.1/4') 0.068`(14CA 12005200-97 12.00(12') C Member 2.00(21 0.097'(12GA) 12001200-97 12.00(121 Track 2.00(21 0.097'(12GA). 14005162-68 14.00(14") C Member 1.62(1-5/B') 0.066"(14GA) 13505200-54 1350(13.1/2') C Member 2.00(2") 0.054'(166A) 2505162-33 2.50(2-1/2") C Member 1.62(1-5/8') 0.033'(20GA) 10001125-97 10.00(10') Track 1.25(1-1/4') 0.097"(126.0) 1625125-18 1.62(1-5/81 C Member 1.25(1-1/4') 0.01B"(25GA) 1621125.18 1.62(1-5/81 Trak 1.25(1-1/41 0.018"(256A) 3625125-27 3.62(3-5/8") C Member 1.25(1.1/4') 0.027'(22GA) 6001125-33 6.00(6')- Track 1.25(1-1/4'} 0.033'(206M) • 3625125-33 3.62(3.5/8') C Member 1.25(1-1/4") 0.033"(206A) 3621125-33 3.62(3-5/81 Track 1.25(1-1/41 0.033"(206A) 4 III STEEL F General Information CM jeglet; AINAilUNf-t:.ti%-- ICC-ES Evaluation Report ESR-2196 Reissued October 1, 2010 This report is subject to re-examination in one year. www,icc-es,orct I (800)423-6587 ] (562)699-0543 A Subsidiary of the International Code Council® DIVISION:05 00 00—METALS designations, sizes and descriptions of head styles, point Section:05 05 23—Metal Fastenings styles,drilling ranges and coatings.Screws are supplied in boxes of individual screws,or in collated plastic strips.See DIVISION:06 00 00—WOOD,PLASTICS AND Figures 1 through 7 for depictions of the screws described COMPOSITES in Sections 32 through 3.8,respectively. Section:06 05 23—Wood,Plastic,and Composite 3.2 HWH and HHWH Screws: Fastenings The #8, #10, #12 and 1/4-inch HWH and HHWH screws DIVISION:09 00 00—FINISHES comply with ASTM C 1513 and SAE J78 and have Hex Section:09 29 10—Gypsum Board Accessories Washer or High Hex Washer head styles,respectively.The 1/4-inch HWH screws have a larger diameter than #14 REPORT HOLDER: screws complying with ASTM B18.6.4, and may be used where generic #14 self-drilling tapping screws are HILTI,INC. specified. The screws have an electroplated zinc coating 5400 SOUTH 122ND EAST AVENUE complying with the minimum corrosion resistance TULSA,OKLAHOMA 74146 requirements of ASTM F 1941,or a proprietary coating,as (800)879.8000 indicated in Table 1. www.us.hilti,cor HNATechnicalServices t hilti.com 3.3 PPH Screws: The #8 and #10 PPH screws comply with ASTM C 1513 EVALUATION SUBJECT: and SAE J78 and have a Phillips Pan head style. The screws have an electroplated zinc coating complying with HILTI SELF-DRILLING SCREWS the minimum corrosion resistance requirements of ASTM F 1941. 1.0 EVALUATION SCOPE 3.4 PPFH SD Framer Screws: Compliance with the following codes: 2009 International Building Code (2009 IBC) and #7 PPFH SD Framer screws comply with the material st and performance requirements of ASTM C 1513. The in 2009 international Residential Code (IRC) dimensions of the screws comply with the manufacturer's r 2006 International Building Code(2006 IBC)' quality documentation. The screws have a Phillips Pan Framing head style and have an electroplated zinc coating *Codes Indicated with an asterisk are addressed in Section complying with EN/ISO 4042 A3F or a proprietary black 8,0. phosphated coating,as indicated in Table 1. Property evaluated: 3,5 P811 SD Drywall Screws: Structural The #6 PBH SD,and #8 P811 SD screws comply with 2,0 USES ASTM C 954.The screws have a Phillips Bugle head style and have an electroplated zinc coating complying with The Hilti Self-drilling Screws are used to connect EN/ISO 4042 A3F or a proprietary black phosphated cold-formed steel members together and to connect coating as indicated in Table 1. gypsum wall board, cement board,wood or other building materials to cold-formed steel. The screws are used in 3.6 PWH SD CMT 8D Drywall Screws: engineered connections of cold-formed steel and The #8 PWH SD CMT BD screws comply with ASTM C connections prescribed by the code for cold-formed steel 954. The screws have a Phillips Wafer head style and framing and for sheathing to steel connections. have a proprietary coating. 3.0 DESCRIPTION 3,7 PPCH SD Framer Screws: 3,1 General: The #10 PPCH SD Framer screws comply with ASTM C The Hilti Self-drilling Screws are self-drilling tapping 1513.The screws have a Phillips Pancake head style and screws, case-hardened from carbon steel conforming to an electroplated zinc coating complying with the minimum ASTI*A 510,Grade 1018 to 1022.Table 1 provides screw corrosion resistance requirements of ASTM F 1941. ICC-ES Evaluation Reports are not to he construed as representing aesthetics or mn'other attributes not specified!)addressed,nor are they to be construed {� as nn endorsement of the stthjert of the report or a recommendation for its use There is no warranty=by ICC Evaluation Service,LLC,(-guess or implied,as l ANSI to anifinding or othermatter in this tapor a,'as to any product ca,ered by the report Copyright C 2010 Page 1 or 8 ESR-2196 I Most Widely Accepted and Trusted Page 2 of 8 3.8 PFTH SD Framer Screws: 4.2 Installation; The #10 PFTH SD Framer screws comply with ASTM C Installation of the Hilti Self-drilling Screws must be in 1513.The screws have a Phillips Flat Truss head style and accordance with the manufacturer's published installation an electroplated zinc coating complying with the minimum instructions and this report. The manufacturers published corrosion resistance requirements of ASTM F 1941, installation instructions must be available at the jobsite at all times during installation. 3.9 Cold-formed Steel; The screws must be installed perpendicular to the work Cold-formed steel material must comply with Section A2 of surface using a variable speed screw driving tool set to not AISI 5100. exceed 2,500 rpm. The screw must penetrate through the 4.0 DESIGN AND INSTALLATION supporting steel with a minimum of three threads . protruding past the back side of the supporting steel. 4.1 Design; 1 5.0 CONDITIONS OF USE 4.1.1 General: Screw thread length and point style must be selected on the basis of thickness of the fastened The Hail Self-drilling Screws described in this report material and thickness of the supporting steel,respectively, comply with, or are suitable alternatives to what is in accordance with the manufacturer's published specified in,those codes listed in Section 1.0 of this report, installation instructions, subject to the following conditions: 4.1.2 Prescriptive Design: The HMI HWH and HHWH 5.1 Fasteners must be installed in accordance with the manufacturer's published installation instructions and screws, PPH screws,PPCH SD Framer screws and PFTH SD Framer screws described in Sections 3.2, 3.3,3.7 and this report. If there is a conflict between the 3.8, respectively, are recognized for use where ASTM C manufacturer's published installation instructions and 1513 screws of the same size are prescribed in AISI this report,this report governs. Standards referenced in IBC Section 2210, 5,2 The allowable loads specified in Section 4.1 are not to The Hilti PBH SD screws and PWH SD CMT BD screws be increased when the fasteners are used to resist wind or seismic forces. described in Sections 3.4 and 3.5, respectively, are recognized for use in fastening gypsum board to 5.3 The utilization of the nominal strength values cold-formed steel framing 0.033 inch to 0.112 inch (0.8 to contained in this evaluation report, for the design of 2.8 mm) thick, in accordance with IBC Section 2506 and cold-formed steel diaphragms, is outside the scope of IRC Section R702.3.6.They are also recognized for use in this report. Diaphragms constructed using the Hilti attaching gypsum board sheathing to cold-formed steel self-drilling screws must be recognized in a current framing as prescribed in Section C2.2.3 of AISI S 213, ICC-ES evaluation report based upon the ICC-ES which is referenced in IBC Section 2210.6. Acceptance Criteria for Steel Deck Roof and Floor 4.1.3 Engineered Design; The Hilti HWH and HHWH Systems(AC43). screws, PPI-1 screws, PPCH SD Framer screws and PFTH 5.4 Drawings and calculations verifying compliance with SD Framer screws described in Sections 3.2, 3.3, 3.7 and this report and the applicable code must be submitted 3.8, respectively, are recognized for use in engineered to the code official for approval. The drawings and connections of cold-formed steel light-framed construction, calculations are to be prepared by a registered design Design of the connections must comply with Section E4 of professional when required by the statutes of the AISI S100, using the nominal and allowable fastener jurisdiction in which the project is to be constructed. tension and shear strengths for the screws,shown in Table 5. Allowable connection strengths for use in Allowable 5.5 The rust-inhibitive (corrosion-resistant)coating on the Strength Design (ASD) for pull-out, pull-over, and shear screws must be suitable for the intended use, as (bearing)capacity for common sheet steel thicknesses are determined by the registered design professional. provided in Tables 2, 3 and 4, respectively, based upon 6.0 EVIDENCE SUBMITTED calculations in accordance with AISI 5100. Instructions on how to calculate connection design strengths for use in Data in accordance with the ICC-ES Acceptance Criteria Load and Resistance Factor Design (LRFD) are found in for Tapping Screw Fasteners(AC118),dated June 2010. the footnotes of these tables. For connections subject to 7.0 IDENTIFICATION tension, the least of the allowable pull-out, pullover, and tension fastener strength of screws found in Tables 2, 3, Hilti Self-drilling Screws are marked with an'11"on the top and 5, respectively, must be used for design. For of the heads, as shown in Figures 1 through 7. Packages connections subject to shear, the lesser of the allowable of Hilti Self-drilling Screws are labeled with the report shear (bearing) and fastener strength found in Tables 4 holder's name (Hitti, Inc.), the fastener type and size, and and 5, respectively, must be used for design.Connections the evaluation report number(ESR-2196). subject to combined tension and shear loading must be 8.0 OTHER CODES designed in accordance with Section E4.5 of AISI S 100. 8.1 Scope: The values in Tables 2,3 and 4 are based on a minimum spacing between the centers of fasteners of three times In addition to the codes listed in Section 1.0,the products the diameter of the screw, and a minimum distance from described in this report were evaluated for compliance with the center of a fastener to the edge of any connected part the requirements of the 2006 International Building Code of 1.5 times the diameter of the screw.When the distance (2006 IBC). The products comply with the 2006 IBC as to the end of the connected part is parallel to the line of the noted below. applied force, the allowable connection shear strength 8.2 Uses: determined in accordance with Section E4.3.2 of Appendix A of AISI S100 must be considered. See Section 2.0. ESR-2196 ( Most Widely Accepted and Trusted Page 3 of 8 8.3 Description: shear strengths for the screws, shown in Table 5, See Section 3.0. Allowable connection strengths for use in Allowable Strength Design (ASD) for pull-out, pull-over, and shear 8.4 Design and Installation: (bearing)capacity for common sheet steel thicknesses are 8.4.1 Design: provided in Tables 2, 3 and 4, respectively, based upon calculations in accordance with AISI—NAS.Instructions on 8.4.1.1 General:See Section 4,1.1, how to calculate connection design strengths for use in 8.4.1,2 Prescriptive Design: The Hilti HWH and HHWH Load and Resistance Factor Design (EKED) are found in screws,PPH screws,PPCH SD Framer screws and PFTH the footnotes of these tabes. For connections subject to SD Framer screws described in Sections 3.2,3.3, 3.7 and tension, the least of the allowable pull-out, pullover, and 3.8, respectively, are recognized for use where ASTM C tension fastener strength of screws found in Tables 2, 3, 1513 screws of the same size are prescribed in AISI• and 5, respectively, must be used for design. For standards referenced in 2006 IBC Section 2210, connections subject to shear, the lesser of the allowable shear (bearing) and fastener strength found in Tables 4 The Hilti PBH SD screws and PWH SD CMT BD screws and 5, respectively, must be used for design.Connections • described in Sections 3.4 and 3.5, respectively, are subject to combined tension and shear loading must be recognized for use in fastening gypsum board to designed in accordance with Section E4.5 of AISI—NAS. cold-formed steel framing 0.033 inch to 0,112 inch(0.8 to 8.4.2 Installation:See Section 4.2. 2.8 mm)thick,in accordance with 2006 IBC Section 2506. They are also recognized for use to attaching gypsum 8.5 Conditions of Use: board sheathing to cold-formed steel framing as prescribed See Section 5.0. in Section C2,2.3 of AISI—Lateral, which is referenced in 2006 IBC Section 2210.5. 8.6 Evidence submitted: 8.4.1.3 Engineered Design:The Hilti HWH and HHWH Data in accordance with the ICC-ES Acceptance Criteria screws, PPH screws, PPCH screws and PFTH screws for Tapping Screw Fasteners (AC118), dated November described in Sections 3.2,3,3, 3.7 and 3.8, respectively, 2009. are recognized for use in engineered connections of 8.7 Identification: cold-formed steel light-framed construction. Design of connections must comply with Section E4 of AISI—NAS, See Section 7.0. using the nominal and allowable fastener tension and ESR-2196 I Most Widely Accepted and Trusted Page 4 of 8 TABLE 1-HILTI SELF-DRILLING SCREWS Nominal Nominal Drilling Description Designation Diameter Screw Head Style' Point Capacity(in.) Coating' Length (Number) (in,) (in.) Min. Max, S-MD 10-16 X 5/8 HWH#3 #10-16 0.190 '/s HWH 3 0.110 0.175 Zinc-1 S-MD 10-16 X 3/4 HWH#3 #10-16 0.190 '/4 HWH 3 0.110 0.175 Zinc-1 S-MD 10-16 X314 HHWH#3 #10-16 0.190 3/4 HHWH 3 0.110 0,175 Zinc-1 S-MD 10-16 X 1 HWH#3 #10-16 0,190 1 HWH 3 0.110 0.175 Zinc-1 S-MD 10-16 X 11/4 HWH#3 #10-16 0.190 11/4 HWH 3 0.110 0.175 Zinc-1 S-MD 10-16 X 1'/2 HWH#3 #10-16 0.190 11/2 HWH 3 0.110 0.175 Zinc-1 S-MD 12-14 X2/4 HWH#3 #12-14 0.216 2/, HWH 3 0.110 0.210 Zinc-1 S-MD 12-14 X 1 HWH#3 #12-14 0.216 1 HWH 3 0.110 0.210 Zinc-1 S-MD 12-14 X11/2 HWH#3 #12-14 0.216 11/2 1-IWH 3 0,110 0.210 Zinc-1 S-MD 12-14 X 2 HWH#3 #12-14 0.216 2 HWH 3 0.110 0.210 Zinc-1 S-MD'/4-14 X 3/4 HWH#3 1/4-14 0.250 314 HWH 3 0.110 0.220 Zinc-1 S-MD1/4-14 X 1 HWH#3 1/4-14 0.250 1 HWH 3 0.110 0.220 Zinc-1 S-MD 1/4-14 X 02 HWH#3 1/4-14 0.250 11/2 HWH 3 0.110 0-220 Zinc-1 S-MD 1/4-14 X 2 HWH#3 1/4-14 0.250 2 HWH 3 0.110 0.220 Zinc-1 S-MD 10-16 X5/4 PPH#3 #10-16 0.190 'Itl PPH 3 0.110 0.175 Zinc-1 S-MD 10-16 X3/4 PPH 43 #10-16 0.190 214 PPH 3 0.110 0.175 Zinc-1 S-MD 10-16 X 1 PPH#3 #10-16 0.190 1 PPH 3 0.110 0.175 Zinc-1 S-MD 12-24 X'/8 HWH#4 #12-24 0.216 7/4 HWH 4 0.175 0.250 Zinc-1 S-MD 12-24 X 04 HWH#4 #12-24 0.216 11/4 HWH 4 0.175 0.250 Zinc-i S-MD 12-24 X 11/4 HWH#5 #12-24 0.216 11/4 HWH 5 0.250 0.500 Zinc-1 S-MD 12-24 X 11/4 HWH#5 Kwik Cole #12-24 0.216 11/4 HWH 5 0.250 0.500 Kwik-Cote S-MD 12-24 X 04 HWH#5 Kwik Cole #12-24 0.216 11/4 HWH 5 0.250 0.500 - Kwik-Cole with Bond Washer S-MD 12-24 X 2 HWH 45 Kwik Cote #12-24 0.216 2 HWH 5 0.250 0.500 Kwik-Cote S-MD 12-24 X 3 HWH 45 Kwik Cote #12-24 0.216 3 HWH 5 0.250 0.500 Kwik-Cote S-MD 10-16 X'/e M HWH Collated #10-16 0.190 '!e HWH 1 0.028 0.120 Zinc-1 S-MD 12-14 X 1 M HWH Collated #12-14 0.216 1 HWH 1 0.028 0.120 Zinc-1 S-MD 10-16 X2/4 M HWH3 Collated #10-16 0.190 2/4 HWH 3 0.110 0.175 Zinc-1 4 S-MD 12-24 X'/e M HWH4 Collated #12-24 0.216 7/4 HWH 4 0.175 0.250 Zinc-1 S-MD 10-16 X'/8 HWH Pilot Point #10-16 0.190 'le HWH 1 0.028 0.120 Zinc-1 S-MD 12-14 X 1 HWH Stitch #12-14 0.216 1 KWH 1 0.028 0.120 Zinc-1 S-SLC 02 M HWH #12-14 0,216 1 HWH 1 0.028 0.120 Zinc-1 S-MD 2/4-14 X'/8 HWH Stitch Kwik Seal 1/4.14 0.250 7/e HWH 1 0,028 0.140 Kwik-Cote S-MD 8-18 X'/2 HWH#2 #8-18 0.164 '12 11WH 2 0,035 0.100 Zinc-1 S-MD 8-18 X'/4 HWH#2 #8-18 0,164 3 14 HWH 2 0.035 0.100 Zinc-1 S-MD 8-18 X'/2 PPH#2 #8-18 0.164 1/2 PPH 2 0.035 0.100 Zinc-1 S-MD 8-18 X2/,PPH#2 #8-18 0.164 3/4 PPH 2 0.035 0.100 Zinc-1 S-MD 10-18 X'/2 HWH#2 #10-16 0.190 '/2 HWH 2 0.035 0.110 Zinc-1 ESR-2196 I Most Widely Accepted and Trusted Page 5 of 8 TABLE 1-HILTI SELF-DRILLING SCREWS(Continued) l Nominal Drilling Nominal Screw 1 Point Capacity(in.) Description Designation Diameter Length Head Style (Number) (in.) (in) Min. Max. S-MD 10-16X3/4 HWH#2 #10-16 0.190 3/4 HWH 2 0.035 0.110 Zinc-1 S-MD 10-16 X 1 HWH#2 #10-16 0.190 1 HWH 2 0.035 0.110 Zinc-1 S-MD 12-14 x 3/4 HWH#3 Kwik Seal #12-14 0.216 3/4 HWH 3 0.110 0.210 Kwik-Cote S-MD 12-14 x 1 HWH#3 Kwik Seal #12-14 0.216 1 HWH 3 0.110 0.210 Kwik-Cote S-MD 12-14 X 11/4 HWH#3 Kwik Seal #12-14 0.216 11/4 HWH 3 0.110 0,210 Kwik-Cote S-MD 12-14 X 11/2 HWH#3 Kwik Seal #12-14 0.216 11/2 HWH 3 0.110 0-210 Kwik-Cate S-MD 12-14 X 2 HWH#3 Kwik Seal #12-14 0.216 2 HWH 3 0.110 0.210 Kwik-Cote S-MD 114-14 X 314 HWH#3 Kwik Seal 1/4.14 0.250 3/. HWH 3 0.110 0.220 Kwik-Cote S-MD 114-14 x 1 HWH#3 Kwik Seal 1),-14 0.250 1 HWH 3 0.110 0.220 Kwik-Cole S-MD 1/4-14 X 11/ HWH#3 Kwik Seal 1/4-14 0.250 11/ HWH 3 0.110 0.220 Kwik-Cote z x 6 X 1 PBH SD #6-20 0,138 1 PBH 1 0.035 0.075 BP 6 X 1 PBH SD Zinc #6-20 0.138 1 PBH 1 0.035 0.075 Zinc-2 6 X 11/8 PBH SD #6-20 0.138 11/8 PBH 1 0.035 0.075 BP 6 X 1118 PBH SD Zinc #6-20 0.138 11/8 PBH 1 0.035 0.075 Zinc-2 6 X12/4 PBH SD #6-20 0,138 11/4 PBH 1 0.035 0.075 BP 6 X 11/4 PBH SD Zinc #6-20 0.138 11/4 PBH 1 0.035 0.075 Zinc-2 6 X 15/8 PBH SD #6-20 0.138 15/8 PBH 1 0.035 0-075 BP 6 X 15/8 PSI-I SD Zinc #6-20 0.138 18/4 PBH 1 0.035 0.075 Zinc-2 6 X 13/e PBH SD #6-20 0138 1'18 PBH 1 0.035 0.075 SP 6 X15/8 PBH SD Zinc #5-20 0.138 1'/8 PBH 1 0.035 0.075 Zinc-2 8 X 23/8 PBH SD #8-18 0,164 23//4 PBH 1 0.035 0.075 BP 8 X 23/,PBH SD Zinc #8-18 0.164 23/8 PBH 1 0.035 0:075 Zinc-2 8 X 2510 PBH SD #8-18 0.164 25/8 PBH 1 0,035 0.075 BP 8 X 25/8 PBH SD Zinc #8-18 0.164 25/8 PBH 1 0.035 0.075 Zinc-2 - 8 X 3 PBH SD #8-18 0.164 3 PBH 1 0.035 0.075 BP 8 X 3 PBH SD Zinc #8-18 0.164 3 PBH 1 0.035 0.075 Zinc-2 7 X'/,s PPFH SD Framer #7-18 0.151 '/,8 PPFH 2 0.035 0.100 BP 7 X 7/is PPFH SD Framer Zinc #7-18 0.151 71,8 PPFH 2 0.035 0.100 Zinc-2 10-16 X 5/8 PPCH SD Framer #10-16 0.190 5/8 PPCH 3 0.110 0.175 Zinc-1 10-12 X3/,PFTH SD Framer #10-12 0:190 3/4 PFTH 3 0.110 0.175 Zinc-1 8 X 11/4 PWH SD CMT BD #8-18 0.164 11/4 PWH 1 0.035 0.075 Tufcoat 8 X 1518 PWH SD CMT BD #8-18 0.164 15/8 PWH 1 0.035 0.075 Tufcoat For SI:1 inch 25.4 mm. 'Refer to Section 3.0 of this report for head configuration abbreviations. 3For coaling abbreviations,BP=Black phosphated per EN ISO 3892;Zinc-1=ASTM F 1941;Zinc-2=EN/ISO 4042 A3F;Kwik-Cote= Proprietary organic zinc coating;Tufcoat=Tufcoat forest green similar to ISO 10683. ESR-2196 I Most Widely Accepted and Trusted Page 6 of 8 TABLE 2-ALLOWABLE TENSILE PULLOUT LOADS(Pnortf)),pounds-force a' Steel F„=45 ksi Applied Factor of Safety,fl=3.0 Nominal Design thickness of member not in contact with the screw head(in.) Screw Diameter Designation (in) 0.036 0.048 0.060 0.075 0.090 0.105 0,135 #6-20 0.138 63 84 106 132 158 185 238 #8-18 0.164 75 100 125 157 188 220 282 #10-12,#10-16 0.190 87 116 145 182 218 254 327 • #12-14,#12-24 0216 99 132 165 207 248 289 373 4/4-14 0.250 115 153 191 239 287 333 430 For 5k 1 inch=25.4 mm,1 lbf=4.4 N,1 ksi=6.89 MPa. 'For tension connections,the lower of the allowable pull-out,pullover,and tension fastener strength of screw found in Tables 2,3,and 5, respectively must be used for design. 2ANSIIASME standard screw diameters were used in the calculations and are listed in the tables. 3The allowable pull-out capacity for other member thicknesses can be determined by interpolating within the table, `To calculate LRFD values,multiply values in table by the ASD safety factor of 3,0 and multiply again with the LRFD+p factor of 0.5. 5For FL,>_65 ksi steel,multiply values by 1,44. TABLE 3—ALLOWABLE TENSILE PULL-OVER LOADS(P„avtf2),pounds-force',2'2.4.5 Steel F„=45 ksi Applied Factor of Safety,f2=3.0 Washer or Design thickness of member in contact with the screw head(in.) Screw Head Designation Diameter 0.030 0.036 0.048 0.060 0.075 0.090 0.105 0.135 (in.). Hex Washer Head(HWH)or High Hex Washer Head(HHWH) #8-18 0.335 225 271 363 453 567' 680 790 1020 #10-16 0.399 268 323 430 540 673 807 943 1210 #12-14,#12-24 , 0.415 279 337 447 560 700 840 980 1260 '14-14 0.500 336 407 540 677 843 1010 1180 1520 Phillips Pan Head(PPH) #8-18 0.311 210 252 336 420 525 630 735 945 #10-16 0.364 246 295 393 491 614 737 860 1106 Phillips Truss Head(PTH) #8-18 0.433 I 292 351 468 565 731 877 1023 1315 Phillips Pan Framing Head(PPFH) #7-18 0.303 205 245 327 409 511 614 716 920 Phillips Pancake Head(PPCH) #10-16 I 0.409' 276 331 442 552 690 828 966 1242 Phillips Flat Truss Head(PFTH) #10-12 0.364 246 295 393 491 614 737 860 1106 For SI:1 inch=25.4 mm,1 lbf=4.4 N,1 ksi=6.89 MPa. `For tension connections,the lower of the allowable pull-out,pullover,and tension fastener strength of screw found in Tables 2,3,and 5, respectively must be used for design. 2ANSUASME standard screw head diameters were used in the calculations and are listed in the tables. /The allowable pull-over capacity for other member thicknesses can be determined by interpolating within the table. 4To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD 9)factor of 0.5. 5For F„ 65 ksi steel,multiply values by 1.44. ESR-2196 I Most Widely Accepted and Trusted Page 7 of 8 TABLE 4-ALLOWABLE SHEAR(BEARING)CAPACITY OF SCREW CONNECTIONS OF COLD-FORMED STEEL,lb''23,4,5 Steel F4 45 ksi` Applied Factor of Safety,n=3.0 Design thickness of Design thickness of member not in contact with the screw head(in.) Screw Nominal member in Diameter' Designation (i ) contact with screw head; 0.036 0.048 0.060 0.075 0.090 0.105 0.135 (in.)` 0.036' 174 239 239 239 239 239 239 0.048 174 268 319 319 319 319 319 0.060 174 268 373 400 400 400 400 #8-18 0.164 0.075 174 268 373 497 497 497 497 0.090 174 268 373 497 597 597 597 0.105 174 268 373 497 597 697 697 0.135 174 268 373 497 597 697 897 0.036 188 277 277 277 277 - 277 277 0.048 188 289 370 370 370 370 370 #10-12 0.060 188 289 403 463 463 463 463 0.190 0.075 188 289 403 563 577 577 577 #10-16 0.090 188 289 403 563 693 693 693 0.105 188 289 403 563 693 807 807 0.135 188 289 403 563 693 807 1040 0.036 200 309 315 315 315 315 315 0.048 200 308 420 420 420 420 420 #12-14 0.060 200 308 430 523 523 523 523 0.216 0.075 200 308 430 600 657 657 657 #12-24 0.090 200 308 430 600 787 787 787 0.105 200 308 430 600 787 920 920 0.135 200 308 430 600 787 920 1180 0.036 215 340 363 363 363 363 363 0.048 215 331 467 487 487 487 487 0;060 215 331 463 607 607 607 607 1/4-14 0.250 0.075 215 331 463 647 760 760 760 0.090 215 331 463 647 850 910 910 0.105 215 331 463 647 850 1060 1060 0.135 215 331 463 647 850 1060 1370 For SI:1 inch=25.4 mm,1 lbf=4.4 N,1 ksi=6.89 MPa. 'The lower of the allowable shear(bearing)and the allowable fastener shear strength found in Tables 4 and 5,respectively must be used for design. 2ANSIIASIVME standard screw diameters were used in the calculations and are listed in the tables 3The allowable bearing capacity for other member thicknesses can be determined by interpolating within the table. 4To calculate LRFD values,multiply values in table by the ASO safety factor of 3.0 and multiply again with the LRFD cla factor of 0.5. 5For F,;z 65 ksi steel,multiply values by 1.44. ESR-2196 1 Most Widely Accepted and Trusted Page 8 of 8 TABLE 5--FASTENER STRENGTH OF SCREW NOMINAL FASTENER STRENGTH a SCREW DIAMETER DETERMINED BY TESTING ALLOWABLE FASTENER STRENGTH DESIGNATION (IN.) Tension,P;; Shear,P. Tension(P,JO)1 Shear(Pan)23 (Ib) (Ib) (lb) (Ib) #6-20 0.138 1000 890 335 295 #7-18 0.151 1000 890 335 295 #8-18 0.164 1000 1170 335 390 • #10-12 0.190 2170 1645 720 550 #10-16 0.190 1370 1215 455 405 #12-14 0.216 2325 1880 775 625 • #12-24 0.216 3900 2285 1300 760 '4-14 0.250 4580 2440 1525 815 For SI:1 inch=25.4 mm,1 lbf=4.4 N,1 ksi=6.89 MPa. 'For tension connections,the lower of the allowable pull-out,pullover,and tension fastener strength of screw found in Tables 2,3,and 5, respectively must be used for design. 2For shear connections,the lower of the allowable shear(bearing)and the allowable fastener shear strength found in Tables 4 and 5, respectively must be used for design. 3See Sections 4.1.3 and 8.4.1.3,as applicable,for fastener spacing and end distance requirements. `To calculate LRFD values,multiply the nominal fastener strengths by the LRFD 4 factor of 0 5. i70 I Pk 1 1'it 1 , -,,, .---- ii 11 IRV,'IQ\III'.111111-1--11ff ./ ®i FIGURE 1—HEX WASHER HEAD(HWH)AND HIGH FIGURE 2—PHILLIPS PAN HEAD(PPH)SCREW HEX WASHER HEAD(HHWH)SCREW ''- --'7:;\ ' 11.'4100 FIGURE 3-PHILLIPS PAN FRAMING HEAD(PPFH)SCREW FIGURE 4—PHILLIPS BUGLE HEAD(PBH)SCREW FIGURE 5—PHILLIPS WAFER HEAD(PWH)SCREW '„� t1t1tt� % 111,tailft.t FIGURE 6—PHILLIPS PANCAKE HEAD(PPCH)SCREW FIGURE 7—PHILLIPS FLAT TRUSS HEAD(PFTH)SCREW f,;4;14refit,42A34;:4;:w4t,, ,,,V ova (;• molattlz„pp AA, - • :‘,011,..4v.,;,•.. -.4 iiESRAhttynwAt tuft,cfpu.'„,z,-, f,„1"K . 111011er° 4',: ": 1=41;': = x'3 • , ,„ edandTrt L'AL44r:4"4*,'ke4 '4111k*,; ICC-ES Evaluation Report ESR-2196 Supplement Issued October 1, 2010 This report is subject to re-examination in one year. www.icc-es.orq I (800)423-6587 I (562) 699-0543 A Subsidiary of the International Code Council® — , DIVISION:05 00 00—METALS Section:05 05 23—Metal Fastenings DIVISION:06 00 00—WOOD,PLASTICS AND COMPOSITES Section:06 05 23—Wood,Plastic and Composite Fastenings DIVISION:09 00 00—FINISHES Section:09 29 10—Gypsum Board Accessories REPORT HOLDER: HILTI,INC. 5400 SOUTH 122ND EAST AVENUE TULSA,OKLAHOMA 74146 (800)879-8000 www.us,hilticom HNATechnicalServicesfahilti.com EVALUATION SUBJECT: HILTI SELF-DRILLING SCREWS 1.0 EVALUATION SCOPE Compliance with the following codes: n 2007 Florida Building Code—Building • 2007 Florida Building Code—Residential Property evaluated: Structural 2.0 PURPOSE OF THIS SUPPLEMENT This supplement is issued to indicate that the Hilti Self-drilling Screws described in Sections 2.0 through TO of the master report comply with the 2007 Florida Building Code—Building and the 2007 Florida Building Code. Residential when designed and installed in accordance with the master evaluation report. For products falling under Florida Rule 9B-72,verification that the report holder's quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity(or the code official when the report holder does not possess an approval by the Commission). This supplement expires concurrently with the master report issued October 1,2010. LCC-ES Ei¢rluoti©n Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed,nor are they to he construed RI as an endorsement of the subject of the report ot a recommendationfat its nor.Their is no worranO•Si ICC Eialuotion Sen ice,LLC,express or implied,as to any finding or other mailer in this report.or its to one product carried b)the report. Copyright 2010 Page 1 of 1 t't;'‘AtCEVALUATKIINK*Y:z :A'n4.,k*-MtzP4W:',.',:is'**Alt.set'',Ortik;Eig*,,: S •• "-•• f4.an •••A.•' . '1ERVICE"14,1tri$55n: ::i0k114..Ni„ :''e,VrtiVtOriaifjlWKO;4*rid :4414464iik":,; • '2 ',/.0;FiNtiketzWzik%q> i•-••*50M4.41411C4t • ICC-ES Evaluation Report ESR-2196 Reissued October 1, 2010 This report is subject to re-examination in one year. www.icc-es.org 1 (800)423-6587 1 (562)699-0543 A Subsidiary of the International Coda Councila DIVISION:05 00 00—METALS designations, sizes and descriptions of head styles, point Section:05 05 23—Metal Fastenings styles,drilling ranges and coatings. Screws are supplied in boxes of individual screws,or in collated plastic strips.See DIVISION:06 00 00—WOOD,PLASTICS AND Figures 1 through 7 for depictions of the screws described COMPOSITES in Sections 3.2 through 3.8,respectively. Section:06 05 23—Wood,Plastic,and Composite 3.2 HWH and HHWH Screws: Fastenings The #8, #10, #12 and 1/4-inch HWH arid HHWH screws DIVISION:09 00 00—FINISHES comply with ASTM C 1513 and SAE J78 and have Hex Section:09 29 10—Gypsum Board Accessories Washer or High Hex Washer head styles,respectively.The 1/4-inch HWH screws have a larger diameter than #14 REPORT HOLDER: screws complying with ASTM B18.6.4, and may be used where generic #14 self-drilling tapping screws are HiLTI,INC. specified. The screws have an electroplated zinc coating 5400 SOUTH 122ND EAST AVENUE complying with the minimum corrosion resistance TULSA,OKLAHOMA 74146 requirements of ASTM F 1941,or a proprietary coating,as (800)879-8000 indicated in Table 1. www.us-hilthcom HNATechnicalServicesahilti.com 3,3 PPH Screws: The#8 and #10 PPH screws comply with ASTM C 1513 EVALUATION SUBJECT: and SAE J78 and have a Phillips Pan head style. The screws have an electroplated zinc coating complying with HILTI SELF-DRILLING SCREWS the minimum corrosion resistance requirements of ASTM F 1941. 1.0 EVALUATION SCOPE 3.4 PPFH SD Framer Screws: Compliance with the following codes: The#7 PPFH SD Framer screws comply with the material u 2009 International Building Code (2009 IBC) and performance requirements of ASTM C 1513. The la 2009 International Residential Code°(IRC) dimensions of the screws comply with the manufacturer's quality documentation. The screws have a Phillips Pan • 2006 International Building Code°(2006 IBC)* Framing head style and have an electroplated zinc coating 'Codes indicated with an asterisk are addressed in Section complying with EN/ISO 4042 A3F or a proprietary black 8.0. phosphated coating,as indicated in Table 1. Property evaluated: 3.5 PBH SD Drywall Screws: Structural The #6 PBH SD and #8 PBH SD screws comply with 2.0 USES ASTM C 954.The screws have a Phillips Bugle head style and have an electroplated zinc coating complying with The Hilti Self-drilling Screws are used to connect EN/ISO 4042 A3F or a proprietary black phosphated cold-formed steel members together and to connect coating,as indicated in Table 1. gypsum wall board, cement board,wood or other building materials to cold-formed steel. The screws are used in 3.6 PWH SD CMT BD Drywall Screws: engineered connections of cold-formed steel and The #8 PWH SD CMT BD screws comply with ASTM C connections prescribed by the code for cold-formed steel 954. The screws have a Phillips Wafer head style and framing and for sheathing to steel connections. have a proprietary coating. 3.0 DESCRIPTION 3.7 PPCH SD Framer Screws: 3.1 General: The #10 PPCH SD Framer screws comply with ASTM C The Hilti Self-drilling Screws are self-drilling tapping 1513.The screws have a Phillips Pancake head style and screws, case-hardened from carbon steel conforming to an electroplated zinc coating complying with the minimum ASTM A 510,Grade 1018 to 1022.Table 1 provides screw corrosion resistance requirements of ASTM F 1941. ICC-ES Evaluation Reports ate not to he construed as representing aesthetics or am'albar ow dimes not specifically addressed,nor ate they to be construed ie an endorsement of the sirMect of the report or 0 recommendation for its use There Is no wart 1411t1its ICC Evaluation Service,LLC,exptess or implied,as toast k, to oneli»d/ng or other 55011m in this report,or as to any product catered h_t tin'report Copyright 2010 Page 1 of 8 ESR-2196 I Most Widely Accepted and Trusted Page 2 of 8 3.8 PFTH SD Framer Screws: 4.2 Installation: The#10 PFTH SD Framer screws comply with ASTM C Installation of the Hilti Self-drilling Screws must be in 1513.The screws have a Phillips Flat Truss head style and accordance with the manufacturer's published installation an electroplated zinc coating complying with the minimum instructions and this report. The manufacturer's published corrosion resistance requirements of ASTM F 1941. installation instructions must be available at the jobsite at all times during installation, 3.9 Cold-formed Steel: The screws must be installed perpendicular to the work Cold-formed steel material must comply with Section A2 of surface using a variable speed screw driving tool set to not AISI S100. exceed 2,500 rpm. The screw must penetrate through the 4.0 DESIGN AND INSTALLATION supporting steel with a minimum of three threads • protruding past the back side of the supporting steel. 4.1 Design: 5.0 CONDITIONS OF USE 4.1.1 General: Screw thread length and point style must • be selected on the basis of thickness of the fastened The Hilti Self-drilling Screws described in this report material and thickness of the supporting steel,respectively, comply with, or are suitable alternatives to what is in accordance with the manufacturer's published specified in,those codes listed in Section 1.0 of this report, installation instructions, subject to the following conditions: 4.1.2 Prescriptive Design: The Hilti HWH and HHWH 5.1 Fasteners must be installed in accordance with the screws, PPH screws, PPCH SD Framer screws and PFTH manufacturer's published installation instructions and SD Framer screws described in Sections 3.2,3.3, 3.7 and this report. If there is a conflict between the 3.8, respectively, are recognized for use where ASTM C manufacturer's published installation instructions and 1513 screws of the same size are prescribed in AISIthis report,this report governs. Standards referenced in IBC Section 2210. 5.2 The allowable loads specified in Section 4.1 are not to be increased when the fasteners are used to resist The Hilti PBI-1 SD screws and PWH SD CMT BD screws wind or seismic forces. described in Sections 3.4 and 3.5, respectively, are- recognized for use in fastening gypsum board to 5.3 The utilization of the nominal strength values cold-formed steel framing 0.033 inch to 0.112 inch (0.8 to contained in this evaluation report, for the design of 2.8 mm) thick, in accordance with IBC Section 2506 and cold-formed steel diaphragms,is outside the scope of IRC Section R702.3.6.They are also recognized for use in this report. Diaphragms constructed using the Hilti attaching gypsum board sheathing to cold-formed steel self-drilling screws must be recognized in a current framing as prescribed in Section C22.3 of AISI S 213, ICC-ES evaluation report based upon the ICC-ES which is referenced in IBC Section 2210.6. Acceptance Criteria for Steel Deck Roof and Floor 4.1.3 Engineered Design: The Hilti HWH and HHWH Systems(AC43). screws,PPH screws, PPCH SD Framer screws and PFTH 5.4 Drawings and calculations verifying compliance with SD Framer screws described in Sections 3.2, 3.3, 3.7 and this report and the applicable code must be submitted 3.8, respectively, are recognized for use in engineered to the code official for approval. The drawings and connections of cold-formed steel light-framed construction. calculations are to be prepared by a registered design Design of the connections must comply with Section E4 of professional when required by the statutes of the - AISI S100, using the nominal and allowable fastener jurisdiction in which the project is to be constructed. tension and shear strengths for the screws,shown in Table 5. Allowable connection strengths for use in Allowable 5.5 The rust-inhibitive(corrosion-resistant)coating on the Strength Design (ASO) for pull-out, pull-over, and shear screws must be suitable for the intended use, as (bearing)capacity for common sheet steel thicknesses are determined by the registered design professional. provided in Tables 2, 3 and 4, respectively, based upon 6,0 EVIDENCE SUBMITTED calculations in accordance with AISI S100, Instructions on how to calculate connection design strengths for use in Data in accordance with the ICC-ES Acceptance Criteria Load and Resistance Factor Design (LRFD) are found in for Tapping Screw Fasteners(AC118),dated June 2010. the footnotes of these tables. For connections subject to 7.0 IDENTIFICATION tension, the least of the allowable pull-out, pullover, and tension fastener strength of screws found in Tables 2, 3, Hilti Self-drilling Screws are marked with an 11"on the top and 5, respectively, must be used for design. For of the heads, as shown in Figures 1 through 7. Packages connections subject to shear, the lesser of the allowable of Hilti Self-drilling Screws are labeled with the report shear (bearing) and fastener strength found in Tables 4 holder's name(1-lilli, Inc.),the fastener type and size, and and 5, respectively,must be used for design.Connections the evaluation report number(ESR-2196). subject to combined tension and shear loading must be 8'0 OTHER CODES designed in accordance with Section E4.5 of AISI S 100. 8.1 Scope: The values in Tables 2,3 and 4 are based on a minimum spacing between the centers of fasteners of three times In addition to the codes listed in Section 1.0,the products the diameter of the screw, and a minimum distance from described in this report were evaluated for compliance with the center of a fastener to the edge of any connected part the requirements of the 2006 international Building Code of 1.5 times the diameter of the screw.When the distance (2006 IBC). The products comply with the 2006 IBC as to the enctof the corinstled fipattirieralk3illek the the of the noted below. applied force, the allowable connection shear strength 8.2 Uses: determined in accordance with Section E4.3.2 of Appendix A of AISI 8100 must be considered. See Section 2.0. ESR-2196 j Most Widely Accepted and Trusted Page 3 of 8 8.3 Description: shear strengths for the screws, shown in Table 5. See Section 3.0. Allowable connection strengths for use in Allowable Strength Design (ASD) for pull-out, pull-over, and shear 8.4 Design and Installation: (bearing)capacity for common sheet steel thicknesses are 8.4.1 Design: provided in Tables 2, 3 and 4, respectively, based upon calculations in accordance with AISI NAS.Instructions on 8.4.1.1 General:See Section 4.1,1, how to calculate connection design strengths for use in 8.4.1.2 Prescriptive Design:The Hilti HWH and HHWH Load and Resistance Factor Design (LRFD)are found in screws,PPH screws,PPCH SD Framer screws and PFTH the footnotes of these tables. For connections subject to SD Framer screws described in Sections 3.2,3.3, 3,7 and tension, the least of the allowable pull-out, pullover, and 3.8, respectively, are recognized for use where ASTM C tension fastener strength of screws found in Tables 2, 3, 1513 screws of the same size are prescribed in AISI and 5, respectively, must be used for design. For standards referenced in 2006!BC Section 2210. connections subject to shear, the lesser of the allowable shear (bearing) and fastener strength found in Tables 4 The HU PSH SD screws and PWH SD CMT BD screws and 5,respectively,must be used for design.Connections described in Sections 3.4 and 3.5, respectively, are subject to combined tension and shear loading must be recognized for use in fastening gypsum board to designed in accordance with Section E4.5 of AISI–NAS. cold-formed steel framing 0.033 inch to 0,112 inch (0.8 to 8.4.2 Installation:See Section 4.2. 2.8 mm)thick,in accordance with 2006 IBC Section 2506. They are also recognized for use to attaching gypsum 8.5 Conditions of Use: board sheathing to cold-formed steel framing as prescribed See Section 5.0. in Section 02.2.3 of AISI—Lateral, which is referenced in 2006 IBC Section 2210.5. 8.6 Evidence submitted: 8.4.1.3 Engineered Design:The Hilti HWH and HHWH Data in accordance with the ICC-ES Acceptance Criteria screws, PPH screws, PPCH screws and PFTH screws for Tapping Screw Fasteners (AC118), dated November described in Sections 3.2, 3.3, 3.7 and 3.8, respectively, 2009. are recognized for use in engineered connections of 8.7 Identification: cold-formed steel light-framed construction. Design of connections must comply with Section E4 of AISI –NAS, See Section 7.0. using the nominal and allowable fastener tension and ESR-2196 I Most Widely Accepted and Trusted Page 4 of 8 TABLE 1-1-1ILTI SELF-DRILLING SCREWS Nominal Nominal Drilling ScrewPoint Capacity(in.) z Description Designation Diameter Head StyleCoating Length (Number) (in.) (in.) Min. Max, S-MD 10-16 X 5/8 HWH#3 #10-16 0.190 '!e HWH 3 0.110 0.175 Zinc-1 S-MD 10-16 X3/4 HWH#3 #10-16 0.190 3/4 HWH 3 0.110 0.175 Zinc-1 S-MD 10-16 X31,HHWH#3 #10-16 0.190 "/4 HHWH 3 0.110 0.175 Zinc-1 * S-MD 10-16 X 1 HWH#3 #10-16 0.190 1 HWH 3 0.110 0.175 Zinc-1 S-MD 10-16 X11/4 HWH#3 #10-16 0.190 11/4 HWH 3 0.110 0.175 Zinc-1 S-MD 10-16 X 11/2 HWH#3 #10-16 0.190 11/2 HWH 3 0.110 0.175 Zinc-1 S-MD 12-14 X3/4 HWH#3 #12-14 0.216 3/4 HWH 3 0.110 0.210 Zinc-1 S-MD 12-14 X 1 HWH#3 #12-14 9.216 1 HWH 3 0.110 0-210 Zinc-1 S-MD 12-14 X 11/2 HWH#3 #12-14 0.216 11/2 1-IWI1 3 0.110 0.210 Zinc-1 S-MD 12-14 X 2 HV/H#3 #12-14 0.216 2 HWH 3 0.110 0.210 Zinc-1 S-MD'/4-14 X'14 HWH#3 1/4-14 0.250 2/4 HWH 3 0.110 0.220 Zinc-1 S-MD'/4-14 X 1 HWH#3 1/4-14 0.250 1 HWH 3 0.110 0,220 Zinc-1 S-MD'/,-14 X 11/2 HWH#3 1/4-14 0.250 12/2 HWH 3 0.110 0.220 Zinc-1 S-MD 1/4-14 X 2 HWH#3 1/4-14 0.250 2 HVVH 3 0.110 0.220 Zinc-1 S-MD 10-16 X 2/4 PPH#3 #10-16 0.190 518 PPH 3 0.110 0.175 Zinc-1 S-MD 10-16 X313 PPH#3 #10-16 0.190 2/4 PPH 3 0.110 0.175 Zinc-1 S-MD 10-16 X 1 PPH#3 #10-16 0.190 1 PPH 3 0.110 0,175 Zinc-1 S-MD 12-24 X'/e HWH#4 #12-24 0.216 7/8 HWH 4 0.175 0.250 Zinc-1 S-MD 12-24 X11/4 HWH#4 #12-24 0.216 11/4 HWH 4 0.175 0.250 Zinc-1 S-MD 12-24 X 1'/4 HWH#5 #12-24 0.216 11/4 HWH 5 0.250 0.500 Zinc-1 S-MD 12-24 X11/2 HWH#5 Kwik Cote #12-24 0.216 11/4 HWH 5 0.250 0.500 Kwik-Cole S-MD 12-24 X 11/4 HWH#5 Kwik Cole with Bond Washer #12-24 0.216 11/4 HWH 5 0.250 0.500 Kwik-Cole • S-MD 12-24 X 2 HWH#5 Kwik Cote #12-24 0.216 2 HWH 5 0.250 0.500 Kwik-Cote S-MD 12-24 X 3 HWH#5 Kwik Cote #12-24 0.216 3 HWH 5 0.250 0.500 Kwik-Cote S-MD 10-16 X7/8 M HWH Collated #10-16 0.190 7/8 HWH 1 0.028 0.120 Zinc-1 S-MD 12-14 X 1 M HWH Collated #12-14 0.216 1 HWH 1 0.028 0.120 Zinc-1 S-MD 10-16 X 314 M HWH3 Collated #10-16 0.190 3/4 HWH 3 0,110 0.175 Zinc-1 S-MD 12-24 X'/8 M HWI-M Collated #12-24 0-216 7/4 HWH 4 0.175 0.250 Zinc-1 S-MD 10-16 X 7 HWH Pilot Point #10-16 0.190 7/4 HWH 1 0.028 0.120 Zinc-1 S-MD 12-14 X 1 HWH Stitch #12-14 0.216 1 HWH 1 0.028 0.120 Zinc-1 S-SLC 02 M HWH #12-14 0.216 1 HWH 1 0.028 0.120 Zinc-1 S-MD 1/4-14 X'/8 HWH Stitch Kwik Seal '/4-14 0.250 7/8 HWH 1 0.028 0.140 Kwik-Cote S-MD 8-18 X'/2 HWH#2 #8-18 0.164 7/2 HWH 2 0,035 0.100 Zinc-1 S-MD 8-18 X3/2 HWH#2 #8-18 0.164 3/4 HWH 2 0.035 0.100 Zinc-1 S-MD 8-18 X'/2 PPH#2 #8-18 0.164 1 /2 PPH 2 0.035 0.100 Zinc-1 S-MD 8-18 X'/4 PPH#2 #8-18 0.164 3/4 PPH 2 0.035 0.100 Zino-1 S-MD 10-16 X1/2 HWH#2 #10-16 0.190 1/2 HV4'H 2 0.035 0.110 Zinc-i ESR-2196 I Most Widely Accepted and Trusted Page 5 of 8 TABLE 1-HILTI SELF-DRILLING SCREWS(Continued) Nominal Drilling Nominal Screw , Point Capacity(in.) 2 Description Designation Diameter Length Head Style (Number) Coating (in.) (in.) Min. Max. S-MD 10-16 X 314 HW N#2 #10-16 0.190 1/4 HW ii 2 0.035 0.110 Zinc-1 S-MD 10-16 X 1 HWH#2 #10-16 0.190 1 HWH 2 0.035 0.110 Zinc-1 S-MD 12-14 x3/4 HWH#3 Kwik Seal #12-14 0.216 3/4 HWH 3 0.110 0.210 Kwik-Cote S-MD 12-14 x 1 HWH#3 Kwik Seal #12-14 0.216 1 HWH 3 0.110 0.210 Kwik-Cote S-MD 12-14 X 1'/4 HWH#3 Kwik Seal #12-14 0.216 11/4 HWH 3 0.110 0.210 Kwik-Cote - S-MD 12-14 X 1112 HWH#3 Kwik Seal #12-14 0.216 11/2 HWH 3 0.110 0.210 Kwik-Cote S-MD 12-14 X2 HWH 43 Kwik Seal #12-14 0.216 2 HWH 3 0.110 0.210 Kwik-Cote S-MD 1/4-14 X 3/4 HWH#3 Kwik Seal '/4-14 0.250 3/4 HWH 3 0.110 0.220 Kwik-Cote S-MD'/4-14 x 1 HWH#3 Kwik Seal 1/4-14 0.250 1 HWH 3 0.110 0.220 Kwik-Cole S-MD'/4;14 X 11/2 HWH#3 Kwik Seal 1/4-14 0.250 11/2 HWH 3 0.110 0.220 Kwik-Cote 6 X 1 PBH SD #6-20 0.138 1 PBH 1 0.035 0.075 BP 6 X 1 PBH SD Zinc #6-20 0.138 1 PBH 1 0.035 0.075 Zinc-2 6 X11/8 PBH SD #6-20 0.138 1'/a PBH 1 0.035 0.075 BP 6 X 1'/8 PBH SD Zinc #6-20 0.138 11/8 PBH 1 0.035 0.075 Zinc-2 6 X 1'/4 PBH SD #6-20 0.138 11/4 PBH 1 0.035 0.075 BP 6 X11/4 PBH SD Zinc #6-20 0.138 11/4 PEN 1 0.035 0.075 Zinc-2 6 X 1518 PEN SD #6-20 0.138 15/8 PBH 1 0.035 0.075 BP 6 X 1518 PBI-ISD Zinc #6-20 0.138 1574 PEN 1 0.035 0.075 Zinc-2 6 X17/8 PEN SD #6-20 0.138 1'/8 PBH 1 0.035 0.075 BP 6 X17/8 PEN SD Zinc #6-20 0.138 17/8 PEN 1 0.035 0.075 Zinc-2 8 X 23/8 PEN SD #8-18 0.164 2318 PBH 1 0.035 0.075 BP 8 X 23/8 PBH SD Zinc #8-18 0.164 23/8 PBH 1 0.035 0.075 Zinc-2 8 X 28/8 PBH SD #8-18 0.164 25/8 PBH 1 0.035 0.075 BP 8 X 25/E PEN SD Zinc #8-18 0.164 25/8 PBH 1 0.035 0.075 Zinc-2 - 8 X 3 PBH SD #8-18 0.164 3 PBH 1 0.035 0.075 BP 8 X 3 PBH SD Zinc #8-18 0.164 3 PBH 1 0.035 0.075 Zinc-2 7X3/isPPFH SD Framer #7-18 0.151 'i,8 PPFH 2 0.035 0.100 BP 7 X77,6 PPFH SD Framer Zinc #7-18 0.151 7/,8, PPFH 2 0.035 0.100 Zinc-2 10-16 X 5/8 PPCH SD Framer #10-16 0.190 4/8 PPCH 3 0.110 0.175 Zinc-1 10-12 X 3/4 PFTH SD Framer #10-12 0.190 3/4 PFTH 3 0.110 0.175 Zinc-1 8 X13/4 PWH SD CMT BD #8-18 0.164 11/4 PWH 1 0.035 0.075 Tufcoat 8 X 15/8 PWH SD CMT BD #8-18 0.164 1518 PWH 1 0.035 0.075 Tufcoat For Si:1 inch=25.4 mm. 'Refer to Section 3.0 of this report for head configuration abbreviations. 2For coating abbreviations,BP=Black phosphated per EN ISO 3892;Zinc-1 =ASTM F 1941;Zinc-2=EN/ISO 4042 A3F;Kwik-Cote=- Proprietary Proprietary organic zinc coating;Tufcoat=Tufcoat forest green similar to ISO 10683. ESR-2196 I Most Widely Accepted and Trusted Page 6 of 8 TABLE 2—ALLOWABLE TENSILE PULL-OUT LOADS(P4IIrt42),pounds-force'.z'''4'6 Steel F.=45 ksi Applied Factor of Safety,f2=3.0 Nominal Design thickness of member not in contact with the screw head(in.) ScrewDiameter Designation (in.) 0.036 0.048 0.060 0.075 0.090 0.105 0,135 #6-20 0.138 63 84 106 132 158 185 238 #8-18 0.164 75 100 125 157 188 220 282 #10-12,#10-16 0:190 87 116 145 182 218 254 327 #12-14,#12-24 0216 99 132 165 207 248 289 373 1t4-14 0250 115 153 191 239 287 333 430 For SI:1 inch=25.4 mm,1 lbf=4.4 N,1 ksi=6.89 MPa. 'For tension connections,the lower of the allowable pull-out,pullover,and tension fastener strength of screw found in Tables 2,3,and 5, respectively must be used for design. 2ANSIJASME standard screw diameters were used in the calculations and are listed in the tables. 3The allowable pull-out capacity for other member thicknesses can be determined by interpolating within the table, 4To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD W factor of 0.5. 'For F.a 65 ksi steel,multiply values by 1.44. TABLE 3—ALLOWABLE TENSILE PULL-OVER LOADS(P140vtf2),pounds-force''2.3.4.5 Steel F„=45 ksi Applied Factor of Safety,f2=30 Washer or Design thickness of member in contact with the screw head(in.) Screw Head Designation Diameter 0.030 0.036 0.048 0.060 0.075 0.090 0.105 0.135 (in.) Hex Washer Head(HWH)or High Hex Washer Head(HHWH) #8-18 0.335 225 271 363 453 567 680 790 1020 #10-16 0.399 268 323 430 540 673 807 943 1210 #12-14,#12-244 0.415 279 337 447 560 700 840 980 1260 514-14 0.500 336 407 540 677 843 1010 1180 1520 Phillips Pan Head(PPH) - #8-18 0.311 210 252 336 420 525 630 1 735 945 #10-16 0.364 246 295 393 491 614 737 860 1106 Phillips Truss Head(PTH) #8-18 0.433 292 351 468 565 731 877 1023 1315 Phillips Pan Framing Head(PPFH) #7-18 0.303 205 245 327 409 511 614 716 920 Phillips Pancake Head(PPCH) #10-16 l 0.409 1 276 331 442 552 690 828 966 1242 Phillips Flat Truss Head(PFTH) #10-12 0.364 246 295 t 393 491 614 737 860 1106 For SI:1 inch=25.4 mm,1 lbf=4.4 N,1 ksi=6.89 MPa. 'Por tension connections,the lower of the allowable,pull-out,pullover,and tension fastener strength of screw found in Tables 2,3,and 5, respectively must be used for design. 2ANSI/ASME standard screw head diameters were used in the calculations and are listed in the tables. 3The allowable pull-over capacity for other member thicknesses can be determined by interpolating within the table. 'To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply aga€n with the LRFD cf factor of 0.5. 'For F. 65 ksi steel,multiply values by 1.44. ESR-2196 I Most Widely Accepted and Trusted Page 7 of 8 TABLE 4-ALLOWABLE SHEAR(BEARING)CAPACITY OF SCREW CONNECTIONS OF COLD-FORMED STEEL,lb 1'2'3'4'5 Steel F...=45 ksi Applied Factor of Safety,t:2=3.0 Design Nominal thickness of Design thickness of member not in contact with the screw head(in.) Screw member in Diameter Designation (in.) contact with screw head, 0.036 0.048 0.060 0.075 0.090 0.105 0.135 (in.) 0.036 174 239 239 239 239 239 239 0.048 174 268 319 319 319 319 319 0.060 174 268 373 400 400 400 400 #8-18 0.164 0.075 174 268 373 497 497 497 497 0.090 174 268 373 497 597 597 597 0.105 174 268 373 497 597 697 697 0.135 174 268 373 497 597 697 897 0.036 188 277 277 277 277 277 277 0.048 188 289 370 370 370 370 370 #10-12 0.060 188 289 403 463 463 463 463 0.190 0.075 188 289 403 563 577 577 577 #10-16 0.090 188 289 403 563 693 693 693 0.105 188 289 403 563 693 807 807 0.135 188 289 403 563 693 807 1040 0.036 200 309 315 315 315 315 315 0.048 200 308 420 420 420 420 420 #12-14 0.060' 200 308 430 523 523 523 523 0.216 0.075 200 308 430 600 657 657 657 #12-24 0.090 200 308 430 600 787 787 787 0105 200 308 430 600 787 920 920 0.135 200 308 430 600 787 920 1180 0.036 215 340 363 363 363 363 363 0.048 215 331 467 487 487 487 487 0,060 215 331 463 607 607 607 607 114-14 0.250 0.075 215 331 463 647 760 760 760 - 0.090 215 331 463 647 850 910 910 0.105 215 331 463 647 850 1060 1060 0.135 215 331 463 647 850 1060 1370 For SI:1 inch=25.4 mm,1 Ibf=4.4 N,1 ksi=6.89 MPa. 'The lower of the allowable shear(bearing)and the allowable fastener shear strength found in Tables 4 and 5,respectively must be used for design. `ANSI/ASME standard screw diameters were used in the calculations and are listed in the tables 'The allowable bearing capacity for other member thicknesses can be determined by interpolating within the table. 'To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD c#factor of 0.5. 5For F. 65 ksi steel,multiply values by 1.44. ESR-2196 1 Most Widely Accepted and Trusted Page 8 of 8 TABLE 5—FASTENER STRENGTH OF SCREW NOMINAL FASTENER STRENGTH 4 SCREW DIAMETER DETERMINED BY TESTING ALLOWABLE FASTENER STRENGTH DESIGNATION (IN.) Tension,Pts Shear,Ps, Tension(P, O)' Shear(pan)73 (Ib) (Ib) (Ib); (tb) #6-20 0.138 1000 890 335 295 #7-18 0.151 1000 890 335 295 #8-18 0.164 1000 1170 335 390 . #10-12 0.190 2170 1645 720 550 #10-16 0.190 1370 1215 455 405 #12-14 0.16 2325 1880 775 625 #12-24 0.216 3900 2285 1300 760 1/4-14 0.250 4580 2440 1525... 815 For SI:1 Inch 25.4 mm, 1 tbf=4.4 N,1 ksi=6.89 MPa. tFor tension connections,the lower.of the allowable pull-out,pullover,and tension fastener strength of screw found in Tables 2,3,and 5, respectively must be used for design. `For shear connections,the lower of the allowable shear(bearing)and the allowable fastener shear strength found in Tables 4 and 5, respectively must be used for design. 'See Sections 41.3 and 8.4.1.3,as applicable,for fastener spacing and end distance requirements. `To calculate LRFD values,multiply the nominal fastener strengths by the LRFD 4 factor of 0.5. frili‘j‘ MI Kit IlVtifttullh. FIGURE 1—HEX WASHER HEAD(HWH)AND HIGH FIGURE 2—PHILLIPS PAN HEAD(PPH)SCREW HEX WASHER HEAD(HHWH)SCREW 7.-- r--- C1:;) 4tAagaiM 1: ' ----' ' q-L-i) 41\114S FIGURE 3—PHILLIPS PAN FRAMING HEAD(PPFH)SCREW FIGURE 4—PHILLIPS BUGLE HEAD(PSH)SCREW l FIGURE 5—PHILLIPS WAFER HEAD(PWH)SCREW , +I ' 1 KIM W.---- ) j14)1114 l' lal Itt 0 FIGURE 6—PHILLIPS PANCAKE HEAD(PPCH)SCREW FIGURE 7--PHILLIPS FLAT TRUSS HEAD(PFTH)SCREW SERvttrtfe,M1.14ZttRlt7:''.''':4:' .4etafx4is, • ' ICCES Evaluation Repot t ESR-2196 Supplement Issued October 1, 2010 This report is subject to re-examination in one year. wwwice-es.arq I (800)423-6587 (562)699-0543 A Subsidiary of the International Code Council® • DIVISION:05 00 00—METALS Section:05 05 23—Metal Fastenings • DIVISION:06 00 00—WOOD,PLASTICS AND COMPOSITES Section:06 05 23—Wood,Plastic and Composite Fastenings DIVISION:09 00 00—FINISHES Section:09 29 10—Gypsum Board Accessories REPORT HOLDER: HILTI,INC. 5400 SOUTH 122ND EAST AVENUE TULSA,OKLAHOMA 74146 (800)879-8000 www.us.hiltIcom HNATechnicalServicesAhilti.com EVALUATION SUBJECT: HILTI SELF-DRILLING SCREWS 1.0 EVALUATION SCOPE Compliance with the following codes: n 2007 Florida Building Code—Building E 2007 Florida Building Code—Residential Property evaluated: Structural 2.0 PURPOSE OF THIS SUPPLEMENT This supplement is issued to indicate that the Hilti Self-drilling Screws described in Sections 2.0 through 7.0 of the master report comply with the 2007 Florida Building Cods—Building and the 2007 Florida Building Code—Residential when designed and installed in accordance with the master evaluation report. For products falling under Florida Rule 9B-72,verification that the report holder's quality assurance program is audited by a quality assurance entity approved by the Florida Building Commission for the type of inspections being conducted is the responsibility of an approved validation entity(or the code official when the report holder does not possess an approval by the Commission). This supplement expires concurrently with the master report issued October 1,2010. ICC-ES Ei aloonon Reports are not to he construed as representing aesthetics or one other attributes not specifically addressed nor are they to be consulted as on entforwarent of the sulvect of the report In a recommendation jai as tree There is no wan anty by ICC Et oblation Serilee,LLC,express or implied,as Pi- to any finding or other matter in this report,or as to any prodnef covered b)the report. ra.ti Copyright 2010 Page 1 of 1 Fastenals SIM DRIVE°AO� .Screw Driving$y$t$ ..�..1 � ..1IUU1IPI1` _ e Quik Drive Fasteners:Minimum Coating or Material Recommendation t, rz,rpm-7,-----.._:,,,-..ryzi--:-.2..mp.A,ti.,_--wiA.-- ---.T.1.4.......... ,....„... .....A....Nite,,,:agi.; 'Cr 0 a v re0 Interior Dry I Low 1 Low Low Med Med High Exterior Med N/A Med Med High High • Higher Exposure High N/A High High High High Low-Heavy zinc electroplate,yellow zinc dichromate,gray phosphate,C-3 mechanically galvanized, ClimaseaP,TufGoten,clear zinc,410 stainless steel Med-N20000,Quilt Guard' • High-305/316 stainless steel . 1.Use 305/316 stainless steel with any treatment chemical not listed above or in uncertain environmental exposure conditions, 2.For wood with actual retention levels higher than 0.10 pcf(above ground)for CA-B and 0.20 pcf for CBBA A,or 0.25 pct(above ground)for ACO-D,ACO-C and MCD 305/316 stainless steel fasteners are recommended,Verify actual retention level with wood treater, 3.Borate treated woods are not appropriate for outdoor use, 4,Test results indicate that N2000 and Guilt Guard will perform adequately,sublect to regular maintenance and periodic,inspection.However, the lest protocol followed was a modified version of the nationally recognized fest method AWPA E12-94.This test method is an accelerated test.so data over an extended period of time is not available.Also noteworthy is that tests run in a laboratory may not correlate to service conditions.If uncertain,use 305/316 stainless steel. 5.Some treated wood may have excess surface chemicals making it potentially more corrosive.If you suspect this or are uncertain,use 303/316 stainless steel. 6.Ammonia is typically used as a chemical carder for difficult to treat wood species,such as,but not exclusive to,Douglas Fir and Hem Fir, which are usually found is the lVestem United States.lupine carriers are used in some of the Eastern species,such as Southern Yellow Pine. If uncertain,verify chemical chemical with wood treater. For the latest Simpson Strong-Tie*Quik Drive coating information and additional technical information on this topic,visit our website at www.strongtie,comllnto. SCREWS Selrimig fasrene = ° q 2. k To achieve the loads shown in this catalog,the Designer must verify that #8 x 314^ #10 x 3/4" #14 x 1" the self-tapping screws used have an allowable load capacity equal to or _ greater than those shown in the table below, iIli kmI I4 Hex head screw sizes shown are required for connectors in this catalog. s _ Where sheathing or finishes will be applied over the screws and low profile s : heads are needed,such as with bracing connectors,hurricane ties,and , ` Shawn stud-plate ties,the Designer is to ensure that the minimum screw head ! ! Actual Size diameter complies with ASME 818.6.4. e a, Minimum ASD Loads for C-CFS70 Connector Screws Shear- i Tension z Nominal Washer Shear P. 52.P.f t Tension:Pull-Out(P,,,,dS2,P>s/sz) 'crew No. Diameter Diameter Steel Thickness:mil t a Steel Thickness:mil(pa) o Designation d, d Ps,,/l' 33-33 43-433 54-54 168-68 97.97 Pin 33 43 54 68 97 (20-201 (18-18) (16-16) (14-14) (12-12) , (20) (18) (16) (14) , 112) #8 0.164 0.318 335 165 245 335 335 — 655 70 95 145 150 — .77 110 0.190 0,375 555 175 265 535 555 555 880 1 85 110 180 220 355 gl 714' 0.242 0.500 810 200 295 605 810 810 1225 I 80 140 185 200 320 1. The tabulated loads may be multiplied by a Factor of Safety It))of 3 to determine the 4. Minimum base metal thickness is based on AISI General Provisions Standard Table screw nominal strength.The LRFD load may be determined by multiplying the nominal A5.1-1.Design thickness shall be the minimum base metal thickness divided by screw load by a Resistance Factor(4>)of 0.50. 0,95. Design thickness for the steel sheets are:33 mil-0.0346',43 mi1=1.0451",54 2. Self-tapping screw fasteners for steel-to-steel connections used for connectors in this mil=.0566',68 mil=0.0713',and 97 mil=0.1017'. catalog shall be in compliance with ASTM 01513. 5. Minimum required screw length is the greater of 3/4"and the minimum length 3. Values are based on cold-formed steel(CFS)members with a minimum yieldetrength, required for the screw to extend through the steel connection a minimum of(3) Fy.of 33 eel and tensile sfrengtit,Fu of 45 tel for 43 mils 08 Oa)and thinner and a exposed threads per AISI General Provisions Standard Section D1.3. minimum yield strength of 50 lest and tension strength of 65 est for 54 mils(16 ga) 6. Screw diameters per 2001 AtSt NAS Commentary Table C-f4.1. and thirtcer. 7. W self-tapping screws may be substituted for#14 screws. 15 x.: 'yam• Fasteners SON ! P. • Quik Drive auto-feed screw driving systems Quik Drive Screw Strength offer a labor saving method for instating toad Resistance • specialty fasteners engineered for a wide range Nemfnai Siren tic FactorUas n Allowable Stress y of cold-formed steel commercial and residential Model Screw p e Design(ASO) (LRFD) I4 construction applications. M0' size Shear Tension Shear Tension Shear Tension offer several easy-to-use Ps, Ps,_ +pPg *Ps, PS2 P,�sa The systems Steel to Slee attachments that bring speed and reliability to pit s03450,518 #8xi:.' 1495 1810 750 905 600 605 applications that require the fastening power of TRS034S1016 110 x 444' 1885 2120 945 1060 . 630 705 screws. X1S1016 #10x1' 1835 2885 920 1145 , 610 960 X0151016 #10:x1' 1835 2865 920 1145 610 960 Featuring patented collation technology,Quik X1S1214 #12 xi' 2485 4045 1240 2020 830 1350 Drive fasteners are designed to meet or exceed X0151214 #12x'1' 2485 4045 1240 2020 830 1350 Steel Decking industry standards for strength and longevity X7851224 #12 x TN 2665 4680 - - - - 1. Quik Drive screws haw - while offering easy-to-load strips for efficient X07851224 #12 x W 2800 4260 , 1400 2130 935 1420 been tested per AISI performance in auto-feed systems, X011451224 #12 x 1W 2800 4260 1400 2130 935 1420 Standard Test Method X011251224 112 x1/a• 2800 4260 1400 2130 935 1420 TS-04, Some applications include; Metal-Nop�ln Clio to Steel 2. Factor of Safety(ii),and . Pp PCS0151016 #10 xI' 11705 I 2380 850 1190 570 795 PCSDiS12t4 4112 x 1' 1 1760 t 3180 880 1590 585 1060 Resistance Factor(tp) •Subfiooring,sheathing,wallplates andelat-Roofing Silo tQ Wood are determined per 2001 stalrtreads PC1851012 #10-12 x 1' 1 1415 2080 710 1040 470 695 APSI NAS&2004 NAS •Decks and docks PC18S1211 112-11 x 1' 11 1715 3080 860 1540 570 1025 Supplement Chapter F. •Drywall PCULP18S1012 110-12 x1' 1625 2215815 1140 540 760 3 Pm and Pas are nominal •Fiber cement siding and backerboard Orvwafl shear strength and •Composite wood and a menu DWF114PS #6 x 1/, 1255 1575 630 790 420 525 nominal tension strength Y DPIF158PS #6 x 1W 1255 1575 630 790 420 525 valaes for the screw •Metal roofing and siding DWFSD114PS #6xe'!,' 1260 1720 630 860 420 575 itself respectivelyand •InciroofingDWF301SSPS fax 135' 1260 1720 630 860 420 575 are also known as the •Steel to FiberCeme4t Baird C838LG112S 110 x 1 1515 2045 �_755 1020 ,..505 6$0 average(vkimate)values 0838101345 #10 x 114' 1540 2030 770 1015 515 675 of all tests determined by See www.stronptla.com or Qulk Drivee catalog Wood to Steel Independent laboratory C-QD08 for more detailed information. P250115165 I #8 x 1,v. i 1565 12160 1 785 I 1080 I 520 I 720 testing. Screws far Cold-Formed Steel Screws for Other Applications X Series DWF Series PCSD Series #12 and#10 hex head screws,Vis'drive #6 drywall screw,fine thread,sharp point,bugle #10 and#12 metal roofing-to-steel,#2 square dr ue head,gray phosphate finish. -BIT2S,coarse threads,drill point,pancake head, �.._ available In clear zinc and Qulk Guard°coatings. X1S1214 X01S1214 IIlNF114PS QWF158PS L ...-•.-,i. i' (Blue Zinc) (QuikGuard) 1W(32mtn) 1W(411rtm) PCS01S1016 PCSD01S1016 12 x 1'(25mm) 12 x l'(25mm) #3 drill point,14 tpi #3 drill point,14 tpi CBSBLG Series (Clear Zinc) (Oulk6uard) #10 fiber cement board screw,coarse thread,type 10,x 1' i0 x 1" X(Blue Zinc) X uikGua6 #3 drill point,16 tpi 13 drill point,16 tpi (Quik6vard) 17 point,bugle head,C3 mechanical gahianized 10 x 1'(25mm) 10 x 1'(25mm) corrosion protection. PCSDIS1219 PCSDQI$1219 „. • 3 drill point,l6 tpi #3 drift point t6 tpi -r1-1„.,;. 2..-.1%,...-,-. �7 (Clear Zinc) (QuikGuard)iv 12 x 1' 12 x1" 1 .•. CB3BWC134S CB3BLG112S #3 drill point,14 tpi #3 drill point,14 tpi 1W(45mm) 11/5'(38mm) DWFSD Series X78S1224 X078512240WFand 083810 Series for application attaching to #6 drywall screw,fine thread,#2:drill point,bugle a (ClimaseaaP) (Qulksuard) CFS with thickness of 33-18 mil(20-25 ga). head yellow into coating z i2 x la'(21mm) 12 x rW(21rnm) 1g. #4 drill point,24 tpi #4 drill point,24 tpi PC Series ER-1976 PF #10 and#12 metal roofing-to-wood,#2 square i9WFSf)1S8PS f14YFSD114PSI drive-BIT2S,coarse threads,type 17 point, 1us'(4lmrrf CIWFZSII114PS o XQ114S1224 X0112S1224 pancake head,clear zinc coating ) L7(cW FZSzinccoatirar� (Qulk6uard) (Quik6uard) DWFSG1I4P6 , 1Y�(32mm) a 12 x 1W(32 mm) 12 x 1W(38 mm) !...1,1.1.t..1.1.1„,= (N2000 Coating) ER 5623 2 #5 drill point,24 tpi i5 drill point,24 tpi` PC1851012 PC18S1211 1Y4'(32mm) ra TRSD Series (Clear Zinc) (Clear Zinc) PPSD Series s #10 screw,#3 drill point,truss head, 10 x 1(25 mm) 12 x 1'(25 mm) #8 wood to steel straw,#2 drill point,flat head, ,g)clear zinc coating. Type 17 point,12 tpi Type 17 point,11 tpi yellow zinc coating. U ,, ”, PCULP Series v "• � #10 metal roofing-to-wood,#2 square drive- i` .� 'i,"�us"" ..- TRSD34S1016 8IT2S,coarse threads,type 17 point,ultra-low PPS011516S 44'(19mm) profile pancake head,clear zinc coating 11b',•(49mm) 1. DWFSD and Pi}SD Series for application attaching to PHSD Series t, ,i i,t S.tw Cis with thickness of 54.43 mil(15-18 gra), #8 screw,#2 drill point,pan head,clear zinc coating. PCULPIBS 1012 Design values for shearwalls and diaphragms baits with the PPSD,DWF or DWFSD series screws used to attach (Clear Zinc) the structural sheathing to the framing;and in accordance PHSD34S0818 10 x 1"(25 mm) with the A181 Lateral Standard are foundin shearwall W(19mm) Type 17 point,12 tpi Tables C2.2-1 to C2.1-3 and diaphragm Table 02.1 of that 14 document Fasteners rig/1K:OltInfle gSy uta a tJrrvtri ms NIUIUIN Quik Drive Fasteners:Minimum Coating or Material Recommendation wLL • ilk • r ,ter: saatie ee !he• Interior Dry I Low I Low Low Med Med High Exterior Med N/A Med Med High High Higher Exposure High N/A High High High High Low—Heavy zinc electroplate,yellow zinc dichromate,gray phosphate,C-3 mechanically galvanized, Clirnasee,TutCote,clear zinc,410 stainless steel Med—142000°,Quik Guard' High—305/316 stainless steel 1.Use 3051316 stainless steel with any treatment chemical not listed above ear in uncertain environmental exposure conditions, 2.For wood with actual retention levels higher than 0.10 pcf(above ground)for CA-8 and 0.20 pcf for CBA-A,or 0.25 pct(above ground)1w ACO-O,400-0 and MCD 305/316 stainless steel fasteners are recommended.Verity actual retention level with wood treater, 3,Borate treated woods are not appropriate for outdoor use, 4.Test results indicate that N2000 and Ouik Guard will perform adequately,subject to regular maintenance and periodic inspection.However, the lest protocol followed was a modified version of the nationally recognized test method AWPA E12-94.This lest method is an accelerated test,so data over an extended period of time is not available.Also noteworthy is that tests run in a laboratory may not correlate to service conditions.If uncertain,use 305/316 stainless steel. 5.Some treated wood may have excess surface chemicals making it potentially more corrosive,If you suspect this or are uncertain,use 305/316 stainless steel. 6.Ammonia is typically used as a chemical carrier far orbiteult to treat wood species.such as,but not exclusive to,Douglas Fir and Hem Fir, which are usually found in the Western United States.Amine carriers are used in some of the Eastern species,such as Southern Yellow Pine. If uncertain,verity chemical chemical with wood treater, For the latest Simpson Strong-Tie Quik Drive coating information and additional technical information on this topic,visit our website at www.etrongtie.corniinfo. a wSCREWS-se-prom�,� ., -,..�� To achieve the loads shown in this catalog,the Designer must verify that #8 x 314„ #10 x 3/4" #14 x 1" the self-tapping screws used have an allowable load capacity equal to or greater than those shown In the table below. liall Hex head screw sizes shown are required for connectors in this catalog. ii Where sheathing or finishes will be applied over the screws and low profile , heads are needed such as with bracing connectors,hurricane ties,and Shawn stud-plate ties,the Designer is to ensure that the minimum screw head 1,$:. Actual Size diiametercomplies with ASME 818.6.4. LILi e- Z Q Minimum ASD Loads tar C-CFS10 Connector Screws Shear Tension ZNominal Washer Shear(F„dS2.P«/i2) Tension:Pull-Out(P„„df2,P,t/f3) fr Screw No. Diameter Diameter Steel Thickness:rail(ea) Steel Thickness:mil(gal Designation d , 1 P, ”" 33.33 4343 54-54 i 68-68 97-97 Pllit3 33 43 54 68 97 (20-20) (18-18) (16-16) (14-14) (12-12) (20) (18) (16) (14) (12) t #8 0.164 0.318 335 165 245 335 335 — 655 70 95 145 150 — ee #10 0.190 0.375 555 175 265 535 555 555 880 I 85 110 180 220 355 #14r 0.242 0.500 810 200 295 605 810 810 1225 I 80: 140 185 200 320 0 e. 1. The tabulated loads may be multiplied by a Factor of Safety(t2)of 3 to determine the 4. Minimum base metal thickness is based on A1Sf General Provisions Standard Table screw nominal strength.The LRFD load may be determined by multiplying the nominal A5.1-1,Design thickness shall be the minimum base metal thickness divided by screw load by a Resistance€actor(/3)of 0.50. 0.95. Design thickness for the steel sheets are;33 mil=0.0346',43 htil 0.0451',54 2. Self-tapping screw fasteners for sleet-to-steel connections used for connectors in thin mit-4.0566',68 mil=0.0713',and 97 mil=0.1017'. catalog shell be in compliance with ASTM C15t3. 5. Minimum required screw length is the greater of 3/4"and the minimum length 3. Values are based on cold-formed steel(CFS)members with a minimum yield strength, required for the screw to extend through the steel connection a minimum of(3) Fe,of 33 ksi and tensile strength.Fu of 45 ksi for 43 mils(18 ga)and thinner and a exposed threads per 4151 General Provisions Standard Section D1.3. minimum yield strength of 50 list and tension strength of 65 bsi fm 54 mils(1t ga) 6. Screw diameters per 2001 4151 NAS Commentary Table C-E4-i. and thicker 7. W sell-tapping screws may be substituted for 114 screws. 15 FastenersLSI SO$ QUI DRIVE Aid l riving �� # Quik Drive auto-feed screw driving systems Quik Drive Screw Strength gl offer a labor saving method for installing Coag Resistance •4 specialty fasteners engineered for a wide range Nominal Strength Factor Design AliowabEe SVess "f of cold-formed steel commercial and residential Msdsl 'crew Oestgn(Astrj {tRFOj Lle construction applications. No. Size Shear,Tension Shear Tarleton Shear Tension The systems offer several easy-to-use Ps, PM *P (rink Ps,/S2 %Ka o Mee attachments that bringspeed and reliabilityto5te41 f1810 PiiSD34S081$ d$a'/.' 1495 1810 I 750 I 905 500 605 applications that require the fastening power of T8S034S1016 #10 x ' 1885 2120 I 945 1060 630 705 screws. X1S1016 110 x 1'' 1835 2885 1 920 1145 610 960 • X0151016 €10 x 1' 1835 2885 1 920 1145 610 960 Featuring patented collation technology,Quik X1S1214 €12,X1' 2485 4045 1 124Q 2020 830 1350 Drive fasteners are designed to meet or exceed X01S1214 €12 x 1' 2485 4045 t 1240 2020 830 1350 industryeeldng standards for strength and longevity Steel D650 g g 7 X7 1224 #12 x LF' 2665 4880 i 1. Quik Drive screws have while offering easy-to-load strips for efficient X07851224 #12 x Vit` 2800 42 1 1400 2130 935 1420 been tested per AISI performance in auto-teed systems. X011481224 - #12 x l W 2800 4260 1400 2130 935 1420 Standard Test Method X011251224 €1 2 x 1 h' 2800 4260 1400 2130 935 1420 TS-04. Mell-Ro''g Clio tip Steel ,2• FadforolSate S3 and Some applications Include: ._P1S01Sl016 /10 x1" _1 1705 2380 850 1190 570 795 ly( )' PCSD 131214 #12 x1" 1 1760 3180 880 1590 585 1060 Resistance Factor(0) •Sobtlooring,sheathing,watlplates and alai-Roofing Clio to Wood are determined per 2001 stalrtreads PC 851012 #10-12 x 1' 1415 2084 710 1040 470 695 AMSI NAS&2004 NAS •Decks and docks P01651211 #12-11 x l' 1715 3080 860 1540 570 1025 Supplement Chapter F. •Drywall PCULP1081012 €10.12 x 1' - 1625___2275 815 1140 540 760 3.P50 and Pu are nominal •Fiber cement siding and backerboard 114" Dmsall- shear strength and •Composite e ng and t DWF114PS #6 x 14 1255 1575 630 790 420 525 nominal tension strength y DWF158PS #6.x155' 1255 1575 630 790 420 525 values ter tare screvr •Metal roofing and siding DWFS0114PS #6x1/' 1260 1720 630 860 420 _ 575 itself respective„art,, *Tile roofiDWFSO158PS #6x13' 1260 " 1720 630 860 420 575 Fiber cement Board are also known as the I •Steel to steel 08381_61123 €10 x t W 1515 2045 755 1020 505 080 average(ultimate}values C639LG134S #10 x 144* 1540 2030 770 1015 515 675 of all tests determined by See www"shongtia.comm or Qulk(Drivel catalog Wood to Steel independent laboratory G-QD08 for more detailed information. PPSDit516S l #8 x 1%7 l 1565 12160 I 785 ] 1080i 520 I 720 testing. Screws for Cold-Formed Steel Screws for Other Applications X Series DWF Series PCSD Series #12 and#10 hex heed screws,vie drive #6 drywall screw,fine thread,sharp point,bugle #10 and#12 metal roofing-to-steel,#2 square drive head,gray phosphate finish, —BIT2S,coarse threads,drill point,pancake head, mow_ t„ available in clear zinc and Quik Guatd°coatings. X1S1214 X01S1214 1z :;;- . (Blue Zinc) (iauik6uard' DWF114PS DWF15BPS 12 x 1'(25mm) 12 x 1'(25mm) 11/4'(32mm) 1%'(41mrrt) PCSD1S1O16 PCSDDIS1O16 #3 drill point;14 tpi #3 drill point,14 tpi CB3BLG Series (Clear Zinc) (DuikGcard) 110 fiber cement board screw,coarse thread,type 10 x 1' 10 x.1' in XD151far 17 point,bugle head,03 mechanical galvanized /3 drill point,16 tpi #3 drill point,16 tpi (Blue Zinc) (Dulk8card) 10 x 1'(25mm) 10 x 1`(25mm) corrosion protection. PCSD1S1214 PCSDQ1S1214 • #3 drill point,16 Ipi /3 drill point,16 tpf7 (Clear Zinc) (DuikGuard) 12xl' 12x1' 1 0838LG134S C83BLB1123 #3 drill point,14 tpi #3 drill point,14 tpi 135'(45min) 1�h'(38mm) DWFSD Series X7851224 X078S1224 DWF and 003810 Series for application attaching tp #6 drywall screw,fine thread,#2 drill point,bugle (Cfimaseat=') (QufkGuard) CFS with thickness of 33-18 m8(20-25 ga). head,yellow zinc coating. z 12xYe'(21mm) 12xria'(21mm) PC Series ),- ...T.,.,.... #4 drill point,24 tpi #4 drill point,24 tpi t • • ... o ER 1976 #10 and#12 metal roofing-to-wood,a2 square drive-8IT22S,coarse threads,type 17 point, DWFS0158PS DWFSD114PS/ F X011451224 X011251224 pancake head,dear zinc coating 1W43'(41mm) DWFZSD114PS a (QuikGuard) (QuikGoard) DWFSG114PS (clear zinc coating) {., 12 x 11/4'(32 mm) 12 x 1 Y(38 mm) ::iliis,ia`r=,, 11h'(32mm) x2000 Coati ) ER-5623 #5 drill point,24 tpi #5 drill point,24 tpi PC1BSfD12 PC1Ba1211 .'(32mm) y y TESD Series (Clear Zinc) (Clear Zinc) PPSD Series o #10 screw,/3 drill point,truss head, 10 x 1'(25 mm) 12 x 1'(25 mm) #8 wood to steel screw,#2 drill point,€et head, clear zinc coating. Type 17 point,12 tpi Type 17 point,11!pi yellow zinc coating; i . •¢,- PCULP Series r y #10 metal roofing-to-wood,#2 square drive— l TRSD34S1016 81T2S,coarse threads,type 17 point,ultra-low PPSD11516S (19mm) profile pancake head,clear zinc coating 1144."(49mm) PHSD Series DWFSD and PPSD Series for application attaching to , 1rt.0 a3 '`' CFS with thickness of 54-43 mil(15-18 ga). #8 screw,#2 drill point,pan head,clear zinc coating. PCULPJBS1O12 Design values for shearwalls and diaphragms built with °'^^^ (Clear,Zinc) the PPSD,DWF or DWFSD series screws used to attach the structural sheathing to the framing;and in accordance P14SD3450818 10 x 1'(25 mm) with the AI81 Lateral Standard are found In shearwall 3f4'(19mm) Type 17 point,12 tpi Tables 02.2-1 to 02:1-3 and diaphragm Table D2.1 of that 14 document „J sit, U N I STRUT •�' ig` Yg µ „ Nuts &Hardwarei_ '°7`” R,sex . ® Steel Threaded Rod i n ^ y Wt/100 Ft. . d� . s(kg) _, HTHR025 1/4"x 20 13 5.9 HTHR031 5/16"x 18 20 9.1 HTHR037 3/6"x 16 30 13.6 HTHR044 '/16"x 14 30 13.6 HTHR050 1/3 x 13 53 24.0 HTHR062 5/6"x 11 84 38.1 HTHR075 3/4 x 10 124 56.2 HTHR087 '/6"x 9 170 77.1 HTHR100 1"x 8 223 101.2 ® Load Carrying Capacity Of Threaded Hot Rolled Steel Conforming To Astm A575 & A576 1..,,:,. .--&-,:,--,-,:.--:--!- -94,,,f,:, axjmetrt,Sate, t d a 4,9 „,,,:,,-,-,4- i i��E"co Safe Load �. =g Numina Root R 1°F(3.13ni;) `s �..meter rR �) Dr ". .. {m. .S{k9) /e 0.068 610 1% 0.889 8,000 43.9 277 573.5 3,629 / 0.126 1,130 1% 1.053 9,470 81.3 513 679.4 4,296 5/6 0.202 1,810 11/2 1.293 11,630 130.3 821 834.2 5,275 3/4 0.302 2,710 15/6 1.515 13,630 194.8 1,229 977.4 6,182 7/3 0.419 3,770 13/4 1.714 15,690 270.3 1,710 1,105.8 7,117 1 0.552 4,960 1'/6 2.048 18,430 356.1 2,250 1,321.3 8,360 1% 0.693 6,230 2 2.292 20,690 447.1 2,826 1,478.7 9,385 "Extracted from American Standard Code for pressure piping(ASA 831.1-1973,with permission of the publisher,the American Society of Mechanical Engineers,United Engineering Center,345 E.47th Street,New York,New York)." MATERIAL Unistrut channel nuts are manufactured from mild steel bars,and after machining operations are completed,they are case hardened,assuring positive biting action FINISHES into the inturned edge of the Unistrut channel. Nuts,bolts and washers are electro-galvanized(EG), The standard channel nut conforms to ASTM A576 GR 1015 modified and ASTM B633 Type Ill SC1 finish,unless otherwise noted. A1011 SS GR 45. Many hardware items are also available in stainless steel.Consult factory for Screws conform to SAE J429 GR 2(also meets and exceeds ASTM A307). ordering information. _ .,,Li... c.4rt� _ -,«n r .' ., .�44.a.._,... -'.i Project: Approval Stamp: Architect/Engineer: Date: Phone: Contractor: Address: Notes 1: Notes 2: Swivel Hangers & In-Channel Joiners UNI STRUT® P3116-125 P2552 POLYPROPYLENE WIRE RETAINER - P2904 — - ai FIXTURE STUD NUT sA P3300 P4000, as 11k" 11k" V (38.1) 1) -e- 1A" �1A"x 20-rm. (30.2)1 3716" r+ M /:-: N 3/8"-16 x1/4"Socket Cup Point 12 Retainer may be easily pushed into Set Screws Included channel to support wires until a) closure strip is installed. Extruded Aluminum • 3 12 es Wt/100 pcs:11 Lbs(5.0 kg) Wt/100 pcs:.30 Lbs(.1 kg) Wt/100 pcs:12 Lbs(5.4kg) as P2900 RI AL P2901 P2902 gi AL P2903 z ots.V.N. Iiiiiiii,/, SPSP P1000 SA C SR , 1 d P1000 � P1000 N 0 3/8"-16 x 1/4"Socket Cup Point 3/8"-16 x 1/4"Socket Cup Point 3/s"-16 x V4"Socket Cup Point 3/s"-16 x 1/4"Socket Cup Point Set Screws Included Set Screws Included Set Screws Included Set Screws Included Q Material:Cast aluminum. Material:Cast aluminum. Material:Cast aluminum. Material:Cast aluminum. 3 CO Wt/100 pcs:20 Lbs(9.1 kg) Wt/100 pcs:35 Lbs(15.9 kg) VVI/100 pcs:27 Lbs(12.2 kg) Wt/100 pcs:45 Lbs(20.4 kg) o M2037, M2050 SWIVEL HANGERS M2250 SWIVEL HANGER m a. A 'a • Design Load 3/a":::: . a) 600 Lbs(2.67 kN) 1 3A" c (44.5) ail_ _____11:[r 3it"(9.5)DIA. d Design Load a Part "A E 600 Lbs(2.67 kN) A No. In in(mm) is M2037 W-16 231/22 23 75.4 10.4 5 42, M2050 1/2"-13 23/4 32 W 69.9 14.5 Wt/100 pcs:18 Lbs(8.2 kg) w M2137, M2150 SWIVEL HANGERS M2350 -t•SWIVEL HANGER c A d 1.......______3/4") 3/8"(9.5)DIA. V(4.5C ak"(9.5)DIA. Design Load600 Lbs(2.67 kN) 1"\(25. `Ili 1° tiiO (25.4) 1"-13 THD. CO Part "A" "B" Wt1100 pcs A I. In In(mm) Lbs( "f . Design Load 225h2 27 600 Lbs(2.67 kN) .91 M2137 W-16 74 12.2 C M2150 1h"-13 23/4 45 69.9 20.4 Wt/100 pcs:20 Lbs(9.1 kg) `« (� �1`� �',,,,,, �k c � �,2' ', � �� `' . (�CORE PRODUCTS•TYPICALLY AVAILABLE FROM STOCK El Channel Nuts With and Without Spring U N ISTRUT CHANNEL NUT WITH SPRING Q EG,HGF CHANNEL NUT WITHOUT SPRING IE EG,HG m c Part Nut Size Wt/100 pcs" part Nut Size Wt/100 pcs .� Number Thread Lbs(kg) Use With Number Thread Lbs(kg) Use With 9 P1006-0832 #8 -32 7(3.2) P3016-0632 #6 -32 2(0.9) "� P1006-1024 #10 -24 7(3.2) Yf- P3016-0832 #8 -32 2(0.9) r : Any 3 P1006-1420 14" -20 7(3.2) P1000, P3016-1024 #10 -24 4(1.8) Channel .F P1100, . P1007 5/s" -18 6(2.7) P1100, P3016-1420 %4" -20 4(1.8) To P1008 3/e" -16 10(4.5) P3000 - - E - t"" P1009 /1s" -14 9(4.1) Nu � � * " P1010 1/2" -13 12(5.4) P3006-0832 #8 -32 6(2.7) 12 par Nut Size Wt1100 pcs P30061024 #10 -24 6(2.7) 2 Number Thread Lbs(kg) Use With P3006 1420 /a" -20 6(2.7) Any o� 111 P1012S 5/s" -11 21(9.5) P1000, P3007 5/16" -18 6(2.7) Channel N P1023S 3/4" -10 21(9.5) P1100, P3008 3/b" -16 9(4.1) Z P2000, Obi P1024S 7/s" -9 21(9.5) ! P3000 P3009 /s" -14 9(4.1) co c "rr • Nut Size IIt1100 pcs Any Channel Thread bs(kg) Use With P3010 1/2" -13 11(5.0) Except P3300, i.: P4000,P4400, P4006-0832 #8 -32 7(3.2) P4520,P4100 y P4006-1024 #10 -24 7(3.2) P3300, 0 CD P4006-1420 /4" -20 7(3.2)IRO P3300, P3013 -13 8(3.6) P4000,P4400, P4000, P4520,P4100 y P4007 %s" -18 6(2.7) P4400, .- C P4008 3/e" -16 9(4.1) P4520, Part NutS - Wt1100 pcs Q P4100 Number re,(kg) Use With g P4009 '/s" -14 9(4.1) lb P1012 %s" -11 20(9.1) An Channel to P4010 Y" -13 8(3 6) P1023 3/4" -10 20(9.1) Except P3300, Ms P4000,P4400, c Part Nut Size Wt1100 pcs,-,_ 0P1024 /3" -9 20(9.1) P4520;P4100 Number Thread Lbs(kg) - Use Withr. U Nut Size Wt11 E#1prx, P5506-0832 #8 -32 7(3.2) =Thread Lbs(kg) Use With i. P5506-1024 #10 -24 7(3.2) lib P4012 m5/8" -11 11(5.0) P3300,P4000, i P5506-1420 /a" -20 7(3.2) P4400,P4520, P4023 3/4" -10 11(5.0) P4100 co = P5507 5A6" -18 6(2.7) p 0 , 50 ?art Nut Size a 4t P5508 3/4" 16 10(4.5) Number l Thread f.:- use With co P5509 7As" -14 10(4.5) P1006T1420 1/4" -20 7(3.2) o" Any P5510 Yz" -13 12(5.4) II P1008T %" -16 10(4.5) Channel is 0 i Any Channel P1010T 1" -13 12(5.4) kept 00, d P4000,p4444Q0, W P4520,P4100 co P3300,P4000, d P4010T 1/2" -13 8(3.6) P4400,P4520, 1H P4100 co . -part Nut Size Wt/100 pcs i Number Thread Lbs(kg) Use With v 1� . -`'" '4908 %s" -16 17.5(7.9) Any V Channel ` eS Double Conveyor Adjusting Nut tO s E iip f '' k E P1016 %s" -16 17.5(7.9) AChanneldo. .... c Missing Link Multi-Purpose Strut Fastener .. if_,!,.3 ws a: .,, .. IQ CARE PRODUCTS-TYPICALLY AVAILABLE FROM STOCK 73 jar U N I STRUT r A '#:1 ',.4.11.41:-.1 158" Channel ��� ' .:F ■ P3300 Wt/100 Ft:135 Lbs(201 kg/100 m) Allowable Moment 1,810 In-Lbs(200 N•m) 12 Gauge Nominal Thickness.105'(2.7mm) –�1 5/e" 41.3 /8' 9.5 22.2 +9.5 9/32" 7.1 • 517" i 13.1 Channel Finishes: 1 + /a" 1 ___41_ ,22.2 PL,GR,HG,PG; Standard Lengths: • T— /— 10'&20' .358" 2 9.1 2 COLUMN LOADING - P3300 BEAM LOADING - P3300 ' Maximum ;' Max Deft.at Unbraced Allowable Load Maximum Column Load Applied at C.G. Allowable Uniform Uniforit_ Height at Slot Face K=0.65 K=0.80 K=1-0 K=1-2 , 5. Uniform Load Load Spann`..111''';-'.-2'.-7`-';-:-::--' �, • In' Lbs; Lbs Lbs Lbs Lbs tftrfti . Lbs Lbs N ` 24 2,120 7,710 7,190 6,410 5,440 24 600 0.10 600 600 400 36 1,760 6,520 5,440 4,030 2,830 36 400 0.22 360 270 180 48 1,380 4,960 3,590 2,290 - 1,590 48 300 0.40 200 150 100 60 1,060 3,480 2,290 1,470 ** 60 240 0.62 130 100 60 72 840 2,410 1,590 ** ** 72 200 0.90 90 70 40 84 ** 1,770 ** ** ** 84 170 1.22 70 50 30 96 150 1.59 50 40 30 108 130 2.02 40 30 20 120 120 2.49 30 20 20 MATERIAL Unistrut channels are accurately and carefully cold formed to size from low-carbon strip steel.All spot-welded combination members, except P1001T,are welded 3'(76 mm)maximum on center. STEEL: PLAIN 12 Ga. (2.7 mm), 14 Ga.(1.9 mm)and 16 Ga. (1.5 mm) FINISHES ASTM A1011 GR33 All channels are available in: STEEL: PRE-GALVANIZED • Perma Green II(GR) 12 Ga. (2.7 mm), 14 Ga. (1.9 mm)and 16 Ga. (1.5mm) • Pre-galvanized(PG),conforming to ASTM A653 G90 ASTM A653 GR 33 • Hot-dipped galvanized(HG),conforming to ASTM A123 For other materials,see Special Metals or Fiberglass sections. • Plain(PL) Project: Approval Stamp: Architect/Engineer: Date: Phone: Contractor: Address: Notes 1: Notes 2: P3300 & P3301 Channels UNISTRUT P3300 ©DF GR PG PL m c = en s v -1 5A"- ---41.3-- W� 7�" -3/47" 9.5— 22.2 -t9.5 ii4ftl u0 .515" 9li" 13.1 ^ I,— r 1�— + ��/s" , - 22.2 .360" �---2 9� 22..J Wt/100 Ft:134 Lbs(200 kg/100 m) Cn ` Allowable Moment 1,800 In-Lbs(200 N•m) 12 Gauge Nominal Thickness.105"(2.7mm) F" P3301 ©DF GR PG 0 P. as 15/3" �41.3� `',_ �' = to _ z 1 3/4 I 44-1-:-5H1 4.5 fj3 ..i CPI2 C r+ rr Wt/100 Ft:269 Lbs(400 kg/100 m) u' Allowable Moment 5,060 In-Lbs(570 N•m) i 12 Gauge Nominal Thickness.105"(2.7mm) a) a) is P3300 HS ©GR PG j P3300 T I[ DF GR PG Slots are C0. 9/s"(14.3)Dia.Holes 1W(28.6)x 9/is"(14.3) C 2"(50.8)on Centers Cl') 1 rib"(47.6)on CenterIt. OPP (30.2) 0 (22.2) U CD cm !z Wt/100 Ft:130 Lbs(193 kg/100 m) Wt/100 Ft:130 Lbs(193 kg/100 m) y P3300 SL ©GR PG P3300 WT Ni DF GR HG PG PLc Slots are 6 Slots are 2" "'/s"(17.5) Ga 3"(76.2)X 13,, "(10.3) 'L 4"(101015:4) 6)on Center 3"(76.2)on Center 4- CI 1%" IiJ (38.1) 1" (17) (25.4) "V7 H C Wt/100 Ft:130 Lbs(193 kg/100 m) Wt/100 Ft:130 Lbs(193 kg/100 m) i CHANNEL NUTS(REFER TO PAGES 73,74 FOR DETAILS) f SEE PAGE 73,74 0 v P4006-0832 4P4010T P4012 diem, P3006-0832 P3016-0632 Igo P4006-1024 MN P4023 IOW P3006-1024 P3016-0832 P4006-1420 P3006-1420 P3016-1024 ea P4007 P3007 P3016-1420 e0 P4008 P3008 P4009 P3009 P4010 P3013 {a i N .Q Channel Finishes:DF,PL,GR,HG, PG,ZD; Standard Lengths:10'&20' 1 S/s"Framing ,m * ✓ „' - ©CORE PRODUCTS-TYPICALLY AVAILABLE FROM STOCK 39 V N STRUT` ® P3300 & P3301 Channels rD P3300-BEAM LOADING P3301 -BEAM LOADING C R VMax Oefl at uniform Loading at Deflection max r Uniform Deflection Allowable Uniform - Aflowabie s, u� Span Uniform Load Load span/180 Span/240 Spani360 ' Span Uniform toad Span1180 -.''''''''''.7-11:::;:' r + Spanf360 In Lbs In Lbs Lbs Lbs In lbs Lbs - Lbs 4.0 24 603 0.10 600 600 400 24 1,690 0.06 1,690 1,690 1,690 L 36 400 0.22 360 270 180 36 1,130 0.13 11436840:613213900000 ,130 1146237:6142239000000 ,130 860 11) 48 300 0.40 200 150 100 48 840 0.23 840 720 480 'y 60 240 cis 0.62 130 100 60 60 680 0.37 620 460 310 72 200 0.89 90 70 40 72 560 0.52 430 320 210 84 170 1.20 70 50 30 84 480 0.71 310 240 160 6"" 96 150 1.59 50 40 30 96 420 0.93 240 180 120 so 108 130 1.96 40 30 20 108 380 1.20 190 140 100 cz 120 120 2.48 30 20 20 120 340 1.47 150 120 80 144 280 2.09 110 8012 50 oo to Z to coC Li- 17-3 i- i P3300-COLUMN LOADING P3301 -COLUMN LOADING C 1 Maximum _f µ Allowable Maximum Column Load Applied at C G lump Load Applied at C.G. p Unbraced.. Load �: q . Hegtu- at Slot Face K-0.65 K-0.80 K-1,Q # ' 1.80 K-1A K=1.2 C CL I r Lbs Lbs Lbs Lbs ;h Lbs Lbs ��, 24 2,360 7.740 7,260 6,350 5,390 24 4,290 16,990 16,580 15,770 14,720 C 36 2,120 6,470 5,390 3,990 2,810 36 4,150 15,890 14,720 12,980 11,120 "C3 48 1,760 4,910 3,550 2,270 1,580 48 3,940 14,160 12,360 9,880 7,510 V 60 1,380 3,440 2,270 1,460 60 3,650 12,210 9,880 6,940 4,820 N 72 1,080 2,390 1,580 72 3,270 10,190 7,510 4,820 3,350 E. 84 2,800 8,220 5,530 3,540 ` 96 2,410 6,420 4,240 a 108 2,080 5 ,070 3,350 C ii. 11 .i CA W P3300/P3301 -ELEMENTS OF SECTION _ s� Notes: Area of Section 0 395 Int 0.790 In2 *Load limited by spot weld shear. to .,KL/r>200 Axis 1-1 NR=Not Recommended. Moment of Inertia(I) 0.037 In" 0.176 In" 1.Beam loads are given in rota/uniform load(W Lbs)not uniform load(w Ibs/ftor L Section Modulus(S) 0.072 In3 0.201 In, w lbs/in). C Radius of Gyration(r) 0.306 In 0.472 In 2.Beam loads are based on a simple span and assumed to be adequately laterally v Axis 2-2 braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 62 Moment of Inertia(I) 0.143 In" 0.285 In" for reduction factors for unbraced lengths. ,. 3.For pierced channel,multiply beam loads by the following factor: tG Section Modulus(S) 0.176 Ina 0.351 In' "KO"Series 95% "T"Series 85% CO Radius of Gyration(r) 0.601 In 0.601 In "HS"Series 90% "SL"Series 85% "WT"Series 85% t4.Deduct channel weight from the beam loads. ?� 5.For concentrated midspan point loads,multiply beam loads by 50%and the C. corresponding deflection by 80%.For other load conditions refer to page 18. 6.All beam loads are for bending about Axis 1-1. i ! t 40 :. m P3300 & P3301 Channels UNI STRUT- P3300 -BEAM LOADING(METRIC) P3301 -BEAM LOADING(METRIC) D = ca 1' Max Deft.at Max Defl.at ._ Uniform Loadingat Deflection -- Uniform Loadingat Deflection V Allowable Uniform Allowable, Uniform - Span Uniform Load Load Span/180 Span/240 Span/360 Span Uniform Load`- Load Span/180 Span/240 Span/36i mm kN mm kN kN kN mm! kN mm kN kN kN 1- 500 2.7 2 2.7 27 7.5 600 76 7.6 7.6 7.6 750 2.2 4 2.2 1.8 1.2 750 6.1 2 6.1 6.1 5.6 A L 1,000 1.6 7 1.3 1.0 0.7 1,000 4.6 4 4.6 4.6 3.2 cu -1,250 1.3 10 0.8 0.6 0.4 1,250 3.6 6 3.6 3.1 2.0 q� 1,500 1.1 15 0.6 0.4 0.3 1,500 3.1 9 2.8 2.1 1.4 ~ 1,750 0.9 21 0.4 0.3 0.2 1,750 2.6 12 2.1 1.6 1.0 G> Z000 0.8 27 0.3 0.3 0.2 2,000 2.3 16 1.6 1.2 0.8 2,500 0.7 43 0.2 0.2 0.1 2,500 1.8 25 1.0 0.8 0.5 1:1- 3,000 0.5 60 0.1 0.1 0.1 3,000 1.5 36 0.7 0.5 0.4 S 3,500 0.4 79 0.1 0.1 NR 3,500 1.3 48 0.5 0.4 0.3 oa 4,000 1.2 65 0.4 0.3 0.2 o Z N 0, 4-, Lt. P3300-COLUMN LOADING(METRIC) P3301 -COLUMN LOADING(METRIC) d C �, Maximum . _ u Maximum Column Load Applied at C.G. Allowable Max,mum C,= r • i. Unbraced_ Load ' : p K 0.65 K=0.80 K 1.0 . K-1.2 Height V t Slot Face K ._ . K r { E Q .?..::;.1.41.-17 kN kN kN , kN trim kN N 600 10.5 34.6 32.6 28.6 24.4 600 191 75.7 73.9 70.5 66.0 #, 750 10.1 32.3 28.6 23.3 18.2 750 189 73.8 70.5 64.7 58.4 = 1,000 9.1 26.9 21.6 15.0 10.5 1,000 182 68.6 62.7 53.9 44.8 1,250 7.6 21.2 15.0 9.6 6.7 1,250 174 62.1 53.9 42.6 31.9 N 1,500 6.3 15.8 10.5 6.7 " 1,500 16.4 55.0 44.8 31.9 22.2 Q d 1,750 5.1 17.6 7.6 1,750 15.0 476 36.0 23.4 16.3 2,000 13.3 40.3 28.0 17.9 «" ca CD 2,250 11.8 33.4 22.2 14.1 " = - 2,500 10.4 2Z2 17.9 «" " j,L 2,750 9.2 22.5 148 - ., Tii V .i 4.4v P3300/P3301 -ELEMENTS OF SECTION(METRrc) N� - Notes: yParameter r, _ c ., 3z Load limited by spot weld shear. Area of Section255 cm' 5.10 cm2 *,,KL/r>200 Ci) Axis 1-1 NR=Not Recommended. Moment of Inertia(I) 1.54 cm, 7.33 cm4 1.Beam loads are given in tots/uniform load(W Lbs)not uniform load(w lbs/ft or d Section Modulus(S) 1.18 cm' 3.30 cm' w lbs/in). v Radius of Gyration(r) 0.78 cm 1.20 cm 2.Beam loads are based on a simple span and assumed to be adequately laterally G Axis 2-2 braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 62 V Moment of Inertia(I) 5.94 cm4 11.87 cm4 for reduction factors for unbraced lengths. a 3.For pierced channel,multiply beam loads by the following factor: i Section Modulus(S) 2.88 cm3 5.75 cm ca Radius of Gyration(r) 1.53 cm 1.53 cm "KO"Series 95% "T"Series 85% p "HS"Series 90% "SL"Series 85% N "WT"Series.......85% 4.Deduct channel weight from the beam loads. t 5.For concentrated midspan point loads,multiply beam loads by 50%and thea) deflection by 80%.For other load conditions refer to page 18. M. .0 6.All beam loads are for bending about Axis 1-1. 'lye kiiii*" �:1 ', __. 41 t_J UNISTRUT` '-::1 P4000 & P4001 Channels 76 P4000 ©HG PG GR P4001 R GR PG c c ca CD -1%"-- --.--413--.-- o 41.3 3/8 �+ --3/8 9.5-'- -.-.-- .-i -9.5 I-..-Ti I-.-41.3-.-1 T. 13 /1q 6.4 /�� I�47,U" 20.-6-(}"- (�j(�'�11,.9 Ff"1 t- � 1 i ( 1 1 '' 1 8.71 1%. 1 41.3 co 11 2 343" 2 �J _L.1..J l 1- Wt/100 Ft:83 Lbs(123 kg/100 m) Wt/100 Ft:166 Lbs(246 kg/100 m) 0 Allowable Moment 1,230 In-Lbs(140 N•m) Allowable Moment 3,210 In-Lbs(360 N•m) 16 Gauge Nominal Thickness.060"(1.5mm) 16 Gauge Nominal Thickness.060"(1.5mm) as P4003 P4004 x oa rte+ 1....-1 5/3"- I-.-41.3--+-H M H-15/6"-H H-413 "-{ r T H Tj40" 3j.5✓� l• 27A81 61.9 --et1 3/- -I - 1tTT 82.6 7(3 1.198" 30.4 i is L � z 2 2 c _ C3 Wt/100 Ft 248 Lbs(370 kg/100 m) Wt/100 Ft:331 Lbs(493 kg/100 m) Allowable Moment 8,600 In-Lbs(970 N•m) Allowable Moment 13,650 In-Lbs(1,540 N•m) 0 16 Gauge Nominal Thickness.060"(1.5mm) 16 Gauge Nominal Thickness.060"(1.5mm) 0. cnn P4000 HS ©GR PG P4000 T ©GR PG C 3/16"(14.3)Dia.Holes Slots are V 1 7ik"(47.6)on Center 11A"(28.6)x 3/3"(14.3) N 2"(50.8)on Center O. }/ / • 1 3/16" 7/3" (30.2) _161) (22.2) Wt/100 Ft 79 Lbs(118 kg/100 m) Wt/100 Ft:79 Lbs(118 kg/100 m) Ts P4000 SL ©GR PG P4000 WT 'RI DF GR HG PG PL V. Slots are O 3"(76.2)x 1342"(10.3) - Slots are » 4"(101.6)on Center 2"(50.8)x 17/1d(17.5) W 3"(76.2)on Center 161) (.215.'4) iiii . 14" 4" (38.1) C (12.7) 1" (25.4) a Wt/100 Ft 79 Lbs(118 kg/100 m) Wt/100 Ft:79 Lbs(118 kg/100 m) C CHANNEL NUTS(REFER TO PAGES 73,74 FOR DETAILS) [ SEE PAGE 73,74 CD 7 P4006-0832 4P4010T P4012 P3006-0832 P3016-0632 VI P4006-1024 ilall P4023 MINA 22:1= P3016-0832 osi- P4006-1420 P3006-1420 P3016-1024 C P4007 P3007 P3016-1420 Cl) P4008 P3008 P4009 P3009 P4010 P3013 6 f Channel Finishes:P1_,OR MR,PG,2•D; Standard Lengths:10'&20' 42 rffl CORE PRODUCTS-TYPICALLY AVAILABLE FROM STOCK ... 1I,F,_ ';1514:5' System. P4000 & P4001 Channels UNISTRUI'* P4000-BEAM LOADING P4001 -BEAM LOADING y C C -+,.. §' ," .,arm ". ,4 F' y -- Ue8 ai Uniform Loading' Deflection `'m % v :4Allowable ----•-tinftm 1Iom Load Load Span/180 Span1240 Span/360 Span .41 "'` t;1 ,r i " Lbs 11°- Lbs Lbs Lbs In -i.,...,:•:,.... ..- f r 24 410 0.11 410 370 250 24 810* 0.05 810* 810* 810* .r.r 36 270 0.24 220 170 110 36 710 0.14 710 710 500 i 48 200 0.43 120 90 60 48 540 0.25 540 430 280 60 160 0.67 80 60 40 60 430 0.40 360 270 180 y 72 140 1.01 60 40 30 72 360 0.57 250 190 130 84 120 1.38 40 30 20 84 310 0.78 190 140 90 y - 96 100 1.72 30 20 20 96 270 1.02 140 110 70 CZ 108 90 2.20 20 20 10 108 240 1.29 110 80 60 -a 120 80 2.68 20 10 10 120 210 1.54 90 70 50 144 180 2.29 60 50 30 ca to S 2 In to C 32 u. UN G3 P4000-COLUMN LOADING P4001 -COLUMN LOADING (�I Cl) Maximum Maximum Allowable Maximum Column Load Applied at C.G. Allowable Maximum Column Load Applied at C G tinbraced Xad Unbraced Load K=O.fi5 K-0.80 K 1.0 K 12.....4] 2 to Height at of Face K 0.55 K=0 80 ,' =1.0 K 1.2 Height at Slot Face In ___:.;_abs Lbs Lbs Lbs Lbs In Lbs Lbs Lbs Lbs tbs .0 24 1,630 4.670 4.290 3,782 3,310 24 2,830 0. 90 0 000 9,470 8,960 C 36 1,450 3,840 3,310 2,460 1,730 36 2,740 9,530 8,960 7,870 6,700 �? 48 1,160 3,030 2,190 1,400 970 48 2,590 8,620 7,480 5,910 4,440cu sZ 60 870 2,120 1,400 900 ** 60 2,340 7,380 5,910 4,090 2,840 a- 72 670 1,470 970 `* * 72 2,020 4,440 2,840 1,970 84 1,700 46;8100 3,260 2,090 y lm 96 1,440 3,780 2,500 *" ** C 108 1,230 2,990 1,970 '* LL 115 C.) .L .i+ V CD P4000/P4001 -ELEMENTS OF SECTION W Notes: Area of Section 0.244 In **KL/r>200 g 0.487 Int *Load limited by spot weld shear. _ Axis 1-1 NR=Not Recommended. Moment of Inertia(I) 0.023 In' 0.104 In4 1.Beam loads are given in tots/uniform load ON Lbs)not uniform load(w lbs/ft or Section Modulus(S) 0.049 In, 0.128 Ina w lbs/in). v Radius of Gyration(r) 0.306 In 0.462 In 2.Beam loads are based on a simple span and assumed to be adequately laterally O Axis 2-2 braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 62 v for reduction factors for unbraced lengths. Moment of Inertia(I) 0.092 In4 0.183 In' 3.For pierced channel,multiply beam loads by the following factor. i Section Modulus(S) 0.113 Ina 0.225 Ina "KO"Series 95% "T"Series 85% Radius of Gyration(r) 0.613 In 0.613 In "HS"Series 90% "SL"Series 85% Cl) "WT"Series 85% 4.Deduct channel weight from the beam loads. - 5.For concentrated midspan point loads,multiply beam loads by 50%and the corresponding deflection by 80%.For other load conditions refer to page 18. ,C* �C 6.All beam loads are for bending about Axis 1-1. UNISTRUT° l '=erP4000 & P4001 Channels y P4000 -BEAM LOADING(METRrc) P4001 -BEAM LOADING(MerRIc) C L Max Defl.air Max Defl.at c) Uniform Loading at Deflection Uniform Loading at Deflection Allowable Uniform •� Allowable Uniformagy Span Uniform Load Load .Span/180 ..,Span/240_ Span/360 Span Uniform Load Load Span/180 Sr n1240 Sp mm kN; = mm " -kNkN kN mm kN mm kN 'eases._,....,„ 600 1.9 3 1.9 1.7 1.2 600 3.6' 7 3.6* 3.6* 3.6* 2 750 1.5 4 1.5 1.1 0.7 750 3.6* 2 3.6* 3.6* 3.3 d 1,000 1.1 8 0.8 0.6 0.4 1,000 2.9 4 2.9 2.8 1.9 CI, 1,250 0.9 12 0.5 0.4 0.3 1,250 2.3 7 2.3 1.8 1.2 H 1,500 0.8 17. 0.4 0.3 0.2 1,500 2.0 10 1.6 1.2 0.8 1,750 0,6 23 0.3 0.2 0.1 1,750 1.6 13 1.2 0.9 0.6 11 EL?. 2,000 0.5 29 0.2 0.1 0.1 2,000 1.5 17 0.9 0.7 0.5 -a 2,500 0.4 47 0.1 0.1 NR Z500 1.2 27 0.6 0.4 0.3 i4 3,000 0.4 65 0.1 0.1 NR 3,000 1,0 39 0.4 0.3 0.2 2 3,500 0.8 54 0.3 0.2 0.1 oaZ N Ca C W Ts dP4000-COLUMN LOADING(METRIC) P4001 -COLUMN LOADING(METRIC) tMax 33 F Q. Maximum Al- Maximum Column Load Applied at C.G. All` y..2.4Golumn Load Applied at C.G. Q Unbraced towable Load Unbrace .: L`. = Height at Slot Face K=0.65 K=0.80 K=1.0 K=1.2 Height' 'at SI = =0:80 K=1.0__ K L2 mm kN kN kN kN kN , G _ .. kN" kN kN = 600 Z2 20.9 19.2 17.0 14.9 600 12.6 46.3 44.6 42.3 40.0 C 750 6.9 19.1 17.0 14.4 11.3 750 12.4 44.5 42.3 39.5 35.4 V 1,000 6.1 16.1 13.3 9.2 6.5 1,000 12.1 41.3 38.2 32.6 26.9 1,250 5.0 13.0 9.2 5.9 4.1 1,250 11.4 37.8 32.6 25.4 18.8 >Z d 1,500 4.0 9.7 6.5 4.1 ** 1,500 10.5 33.3 26.9 18.8 13.0 1,750 3.2 72 4.7 -' " 1,750 9.4 28.6 21.3 13.8 9.6 H CO 2,000 8.1 24.1 16.5 10.5 2,250 7.1 19.8 13.0 8.4 'LL 2,500 6.2 16.0 10.5 .. .. to 2,750 5.4 73.2 8.7 *' t-) 0 041ELEMENTS OF SECTION(METRIc) -s - Notes: .Pari"-. r - i ' w--ii i t. • - *Load limited by spot weld shear. y Area of Section 1.57 cm2 3.14 cm2 **KL/r>200 0 Axis 1-1 NR=Nat Recommended. Moment of Inertia(I) 0.95 cm, 4,32 cm° 1.Beam loads are given in to/uniform load(W Lbs)not uniform load(w lbs/ft or v Section Modulus(S) 0.80 cm3 2.09 cm3 w lbs/in). 0 Radius of Gyration(r) 0.78 cm 1.17 cm 2.Beam loads are based on a simple span and assumed to be adequately laterally O C.) Axis 2-2 braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 62 Moment of Inertia(I) 3.81 cm, 7.62 cm' for reduction factors for unbraced lengths. 1. 3 3.69 cm3 3.For pierced channel,multiply beam loads by the following factor: 041 Section Modulus(S) 1.85 cm Radius of Gyration(r) 1.56 cm 1.56 cm "KO"Series 95% "T"Series 85% t� "HS"Series 90% "SL"Series 85% "WT"Series 85% f2- 4.Deduct channel weight from the beam loads. CL)d 5.For concentrated midspan point loads,multiply beam loads by 50%and the =. corresponding deflection by 80%.For other load conditions refer to page 18. 6.All beam loads are for bending about Axis 1-1. :tem. 44 .. ............_.. P4100 & P4101 Channels UNISTRUT® P4100 F DF GR PG P4101 [R DF GR PG a, c c ea --15/6"-- -41.3-.- V 4„..._ �'eq _a�" 9.5- 22.2 -9.5 13/6' 1---1 W--1 20.61--41.3-_1 7 6.4 12.1 r 1 � I14 1r I1 1 - 15/3" 1 --E4713 ism2 .336" 20.6 2 8f5 ( J r • 13/ 6" 2 20.6 2 Ca Ca 0D H Wt/100 Ft 98 Lbs(147 kg/100 m) Wt/100 Ft:197 Lbs(293 kg/100 m) • Allowable Moment 1,360 In-Lbs(150 N•m) Allowable Moment 3,610 In-Lbs(410 N•m) 14 Gauge Nominal Thickness.075"(1.9mm) 14 Gauge Nominal Thickness.075"(1.9mm) tis P4100 HS IE GR PG P4100 T 0 DF GR PG ccc s Slots are cit 116"(28.6)X9/6"(14.3) co 9/16"(14.3)Dia.Holes 2"(50.8)on Center O 17/41"(47.6)on Center Z 701 ._. Or en of 1 3/is' C (30.2) �" IL (22.2) O s.. Wt/100 Ft:87 Lbs(129 kg/100 m) Wt/100 Ft:87 Lbs(129 kg/100 m) C O P4100 SL ©GR PG P4100 WT I[ DF GR HG PG PL c.° co Slots are 0 Slots(76.2)x 13/32"(10.3) 2"(50.8)x 11As"(17.5) cr. 4"(101.6)on Center 3"(76.2)on Center Cl)/3 (38.1) 123C 1/Z" (25.4) (25.4) d (12.7) O" a .. Wt/100 Ft 87 Lbs(129 kg/100 m) Wt/100 Ft:87 Lbs(129 kg/100 m) y P4101 T P4101 WT © DF GR HG PG PL c Slots are - Slots are 2"(50.8)x 11/f6"(17.5) v 11/6"(28.6)x 9/16"(143) 3"(76.2)on Center •yam 2"(50.8)on Center -- v 0 O r W 0 13/i ' 1" CO) A„ (30.2) 1W (25.4) (22.2) (38.1) CD t/1 = Wt/100 Ft:174 Lbs(259 kg/100 m) Wt/100 Ft:174 Lbs(259 kg/100 m) O s.. � O C.; [`' CHANNEL NUTS(REFER TO PAGES 73,74 FOR DETAILS) SEE PAGE 73,74 C iipiP4006-0832 4P4010T P4012 P3006-0832 P3016-0632 P4006-1024 fira P4023 lib P3006-1024 wigigh P3016-0832 P4006-1420 P3006-1420 P3016-1024 co P4007 P3007 P3016-1420 0 P4008 P3008 CO) P4009 P3009 P4010 P3013 i co Cs• Channel Finishes:DF,PL,GR,HG,PG,ZD; Standard Lengths:10'&20' c its/s" Framing'.;Sµ , ,,�p; lq CORE PRODUCTS-TYPICALLY AVAILABLE FROM STOCK 45 -s UNISTRUT` ®'. ` P4100 &P4101 Channels 6 P4100-BEAM LOADING P4101 -BEAM LOADING C C Max Defl.at • Max' Defl.at C. Uniform Loading at De Uniform Loading aalefiection Allowable Uniform -: • towable Uniform .Span Uniform Load Load Span/180 Spanf240 a a . iform Load Load Span/180 Spant24 Spani360 • In' Lbs 11 _ Lbs Lbs - Lbs In Lbs Lbs Lbs 24 '53 011 450 420 280 24 1.090` 0.06 1,090* 1,090* 1,090* 2 36 300 0.24 250 190 130 36 800 0.14 800 800 570 d 48 230 0.44 140 110 70 48 600 0.25 600 480 320 �y 60 180 0.67 90 70 50 60 480 0.39 410 310 200 72 150 0.96 60 50 30 72 400 0.57 280 210 140 y 84 130 1.32 50 30 20 84 340 0.76 210 160 100 c 96 110 1.67 40 30 20 96 300 1.00 160 120 80 12 108 100 2.16 30 20 10 108 270 1.29 130 90 60 is 120 90 2.67 20 20 10 120 240 1.57 100 80 50 'X oa 144 80 4.09 20 NR NR 144 200 2.26 70 50 40 co 168 60 4.88 NR NR NR 168 170 3.05 50 40 30 r-, = 192 60 7.28 NR NR NR 192 150 4.02 40 NR NR Z 216 50 8.64 NR NR NR 216 130 4.96 NR NR NR co 240 50 11.85 NR NR NR 240 120 6.28 NR NR NR C 47* U. lisL d C C'i P4100-COLUMN LOADING P4101 -COLUMN LOADING co .._ . O aMaximum Maximum P Allowable. . Maximum Column Load Applied at C.G. Allowable Maximum Column toad Applied at C.G. to Unbraced Load Unbraced Load ++ Height at Slot Fa« "- =0.65 K=0.80 K 1.0 K=1.2 Height at Slot Fa+� K=0.65 K=0.80 K 1.0 K=1.2 0 ,#n Lbs - 'K Lbs Lbs Lbs Lbs In Lbs Lbs Lbs Lbs Lbs .0 C 24 1.840 5.610 5,210 4.570 3,850 24 3.240 12,370 11.950 11.370 10,540 O U 36 1,640 4,660 3,850 2,800 1,960 36 3,120 11,470 10,540 9,160 7,720 d a 48 1,310 3,490 2,480 1,590 1,100 48 2,940 10,090 8,680 6,770 4,980 E. 60 1,000 2,400 1,590 ** ** 60 2,680 8,560 6,770 4,590 3,190 72 770 1,670 1,100 ** ** 72 2,310 7,010 4,980 3,190 2,220 84 1,950 5,530 3,660 2,340 ** C 96 1,650 4,250 2,800 ** ** t% 108 1,410 3,360 2,220 - t1 '3 i V d W P4100/P4101 -ELEMENTS OF SECTION Notes: Parameter P4100 f": *Load limited by spot weld shear. CD CD Area of Section 0.290 In' 0.579 In2 **KL/r>200 Axis 1-1 • NR=Not Recommended. yMoment of Inertia(I) 0.026 In" 0.117 In" 1.Beam loads are given in tots/uniform load(1N Lbs)not uniform load(w lbs/ft or cc.)< Section Modulus(S) 0.054 Ina 0.143 In, w lbs/in). C) Radius of Gyration(r) 0.298 In 0.449 In 2.Beam loads are based on a simple span and assumed to be adequately laterally C) Axis 2-2 braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 62 for reduction factors for unbraced lengths. i Moment of Inertia(I) 0.107 In" 0.214 in° 3.For pierced channel,multiply beam loads by the following factor: Section Modulus(S) 0.132 In' 0.264 Ina "KO"Series 95% "T"Series 85% Cl) Radius of Gyration(r) 0.609 In 0.608 In "HS"Series 90% "SL"Series 85% "WT"Series 85% . 4.Deduct channel weight from the beam loads. 5.For concentrated midspan point loads,multiply beam loads by 50%and the .� corresponding deflection by 80%.For other load conditions refer to page 18. 6.All beam loads are for bending about Axis 1-1. '''%'r te S�tstem 46 �'rx��_ - �� ..� �� �. �.� tee. P4100 & P4101 Channels U N I STRUT® P4100 -BEAM LOADING(METRIC) P4101 -BEAM LOADING(METRIC) C C Max Defl:at Uniform Loading at Deflection r V ' Deft.at; iform Loading at Deflection C.) Allowable Uniform Uniform Span Uniform Load Load Span/180 Span/240 Span/360 Span - s y Load an/180 Span/240 Span/360 u mm kN mm kN kN kN mm--t.:;:;,...._::,-;"A .4 ,. x mm , .._, N kN kN r 600 2.0 2.0 2 0 7.3 600 4.8* 1 4.0' 4.8` 4.8' 750 1.6 4 1.6 1.2 0.8 750 4.4 2 4.4 4.4 3.7 p L 1,000 1.2 7 0.9 0.7 0.4 1,000 3.2 4 3.2 3.2 2.1 col cu 1,250 1.0 11 0.6 0.4 0.3 1,250 2.6 7 2.6 2.0 1.3 y 1,500 0.8 16 0.4 0.3 0,2 1,500 2.2 10 1.9 1.4 0.9 1,750 0.7 23 0.3 0.2 0.1 1,750 1.9 13 1.4 1.0 0.7 O 2,000 0.6 30 0.2 0.2 0.1 2,000 1.6 17 1.1 0.8 0.5 2,500 0.5 46 0,1 0.1 0.1 2,500 1.3 27 0.7 0.5 0.4 a 3,000 0.4 65 0.1 0.1 NR 3,000 1.1 38 0.5 0.4 0.2 2i 3,500 0.9 53 0.4 0.3 0.2 0,5 U) 4O-+ Z U) =1) = • U- 73 Y. CO = P4100-COLUMN LOADING(METRIC) P4101 -COLUMN LOADING(METRIC) LI us Maximum - Maximum` -' a Allowable f e tf Applied at t Allowable: Maximum Column Load Applied at C.G. = Unbraced Load - Unbraced Load Height at Slot Face- E � K=1.0 1.2 Height at Slot Face K=0.65 K=0.80 K 1.0 K 1.2 ++ _ mm kN =kN kN mm kN kN kN kN kN .21 600 8.2 25.1 23.3 20.6 17.4 600 74.4 55.1 53.3 50.8 47.2 O O 750 7.8 23.2 20.6 16.6 12.8 750 14.2 53.2 50.8 46.3 41.2 V 1,000 6.9 19.3 15.3 10.5 73 1,000 13.7 49.4 44.7 37.8 30.8 O Q 1,250 5.6 15.0 10.5 6.7 4.7 1,250 13.0 44.2 37,8 29.1 21.1 CL 1,500 4.5 11.0 7.3 4.7 ** 1,500 12.0 38,7 30.8 21.1 14.6 1,750 3.6 8.1 5.3 "- -.• 1,750 10.7 33.0 24.2 15.5 10.8 C 2,000 9.3 274 18.5 11.9 .. 2,250 8.1 22.2 14.6 9.4 " LV Ts w 'i 4- G3 O P4100/P4101 -ELEMENTS OF SECTION(METRIC) ill Notes: to Parameter -_ , 3! - t',x *Load limited by spot weld shear. t Area of Section 1.87 cm2 3.74 cm2 **KVr>200 0 Axis 1-1 NR=Not Recommended. Moment of Inertia(I) 1.07 cm, 4.85 cm" 1.Beam loads are given in total uniform load ON Lbs)not uniform load(w lbs/ft or 4.. 0) Section Modulus(S) 0.88 cm3 2.35 cm3 w lbs/in). Radius of Gyration(r) 0.76 cm 1.14 cm 2.Beam loads are based on a simple span and assumed to be adequately laterally O braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 62 0 Axis 2-2 for reduction factors for unbraced lengths. Moment of Inertia(I) 4.46 cm' 8.93 cm4 3.For pierced channel,multiply beam loads by the following factor: L. Section Modulus(S) 2.16 cm3 4.32 cm3 "KO"Series 95% "T"Series 85% p Radius of Gyration(r) 1.55 cm 1.55 cm "HS"Series 90% "SL"Series 85% CO) "WT"Series 85% 4.Deduct channel weight from the beam loads. t 5.For concentrated midspan point loads,multiply beam loads by 50%and the CD corresponding deflection by 80%.For other load conditions refer to page 18. Q' 6.All beam loads are for bending about Axis 1-1. lis 47 I -s UNISTRUT„ -.11' P4400 & P4401 Channels .r — P4400 R GR PG P4401 ©GR PG c c i —15/e"-.- r41.3--- 15/e"-- 41.3-y- d3/B"' x-3/8" 9.5 -.- 22.2_ r 9.5 3/8,L._ W ,...._%„ 95.E 22.2 ...„9.5 ,y 9/32 0.596" 6.4 15.1" I 1 1"vf 31 T.L.. i _25.4 03 -f LL2ff±3t' 25.4 CCI 2 oa Wt/100 Ft:144 Lbs(210 kg/100 m) Wt/100 Ft:289 Lbs(430 kg/100 m) Allowable Moment 2,300 In-Lbs(260 N•m) Allowable Moment 6,410 In-Lbs(725 Wm) S.Z 12 Gauge Nominal Thickness.105"(2.7mm) 12 Gauge Nominal Thickness.105"(2.7mm) a) P4400 HS I GR PG P4400 T I GR PG :�. 'u. L Slots are CD 9/l6"(14.3)Dia.Holes 1*/a"(28.6)X 9/6"(14.3) CO 2"(50.8)on Center CO /e"(47.6)on Center t" 31ligi - 0 00(3012 ) O Zit„ EL (22.2) O Cf) ZS o Wt/100 Ft:136 Lbs(201 kg/100 m) Wt/100 Ft:136 Lbs(201 kg/100 m) C-, E.' P4400 SL I GR PG P4400 WT 0 DF GR HG PG PL Cl) Slots are CO 3"(76.2)x 13/52"(103) Slots are „ 4"(101.6)on Center 2"(50.8)5 /,e"(17.5) 3"(76.2)on Cents N. 1%" �" (25^4) '^ (38.1) u.V (12.7) (25 4) 0 W Wt/100 Ft:136 Lbs(201 kg/100 m) Wt/100 Ft:136 Lbs(201 kg/100 m) r CD N CD y CHANNEL NUTS(REFER TO PAGES 73,74 FOR DETAILS) M SEE PAGE 73,74 Vi 0 P4006-0832 P4010T P4012 P3006-0832 P3016-0632 V 111911 P4006-1024 lib P4023 i P3006-1024 P3016-0832 P4006-1420 P3006-1420 P3016-1024 i P4007 P3007 P3016-1420 to P4008 P3008 O P4009 P3009 Cl) P4010 P3013 L a, Channel Finishes:PL,GR, HG,PG,ZD; Standard Lengths:10'&20' 44, . 0!x'4`System P4400 & P4401 Channels UNISTRUT P4400-BEAM LOADING P4401 -BEAM LOADING y C C = • - ca affiat DeFl.at Max Deft.at C Uniform Loading at Deflection Uniform Loading at Deflection C., allowable._ Uniform Allowable Uniform _ l Form Load Load Span/180 Span/240 Span/360 Span Uniform Lead Load Span/180 Span/240 Span/360 ,n Lbs In Lbs Lbs Lbs In Lbs In Lbs Lbs Lbs T- 24 770 0.09 773 770 580 24 2,140* 0.05 2,140' 2140' 2,140* 4.0 36 510 0.20 510 390 260 36 1,420 0.11 1,420 1,420 1,240 i y - 48 380 0.35 290 220 150 48 1,070 0.20 1,070 1,040 700 0 60 310 0.56 190 140 90 60 850 0.32 850 670 450 Fa. 72 260 0.80 130 100 60 72 710 0.46 620 460 310 a) • 84 220 1.08 90 70 50 84 610 0.63 450 340 230 ki 96 190 1.39 70 50 40 96 530 0.81 350 260 170 1a crs108 170 1.78 60 40 30 108 470 1.03 280 210 140 S ' 120 150 2.15 50 30 20 120 430 1.29 220 170 110 0RS co 144 130 3.22 30 20 20 144 360 1.86 150 120 80 168 310 2.54 110 90 60 Z 192 270 3.31 90 70 NR Ca 0 C 216 240 4.19 70 NR NR ;:, ++ 240 210 5.03 60 NR NR ii E2 cu C P4400-COLUMN LOADING P4401 -COLUMN LOADING c42'5 _ ) Maximum = Mutt/turnO Allowable Maximum Column Load Applied at Le.d.- .:_ Allowable Maximum Column Load Applied at C.G. 0 Unbraced Load ..: Unbraced Load CA Height at Slot Face K=0.65 K=0.80 K=1.0 K=1.2Height at Slot Face K=0.65 K=0.80 K 1.0 K=1.2 +-, nl Lbs Lbs Lbs Lbs Lbs In bs Lbs Lbs Lbs Lbs ,g 24 2,620 8,280 7,760 7,140 6,580 24 4,720 18.310 17.840 17,300 16,760 0 36 2,470 7,210 6,580 5,310 4,030 36 4,640 17,360 16,760 15,260 13,610 V 48 2,180 6,200 4,870 3,280 2,280 48 4,470 16,280 14,720 12,460 10,170 60 1,770 4,760 3,280 2,100 ** 60 4,230 14,590 12,460 9,610 6,980 Cl) 72 1,420 3,450 2,280 ** 72 3,930 12,750 10,170 6,980 4,840 C 84 1,150 2,530 1,670 *" ** 84 3,520 10,880 7,990 5,130 3,560 ._ 96 • ** 1,940 ** ** ., 96 3,070 9,050 6,130 3,920 ** ± 11 108 2,690 7,340 4,840 3,100 ** Ca 'L 120 2,360 5,940 3,920 ** ** •• P4400/P4401 -ELEMENTS OF SECTION LLi Parameter --404400 P4401 - Notes: H *Load limited by spot weld shear. t Area of Section 0.424 In' 0.849 In, **KL/r>200 a) Axis 1-1 NR=Not Recommended. Moment of Inertia(I) 0.053 In° 0.255 In' 1.Beam loads are given in total uniform load(IN Lbs)not uniform load(w lbs/ft or Section Modulus(S) 0.092 Ina 0.255 In' w lbs/in). Radius of Gyration(r) 0.354 In 0.548 In 2.Beam loads are based on a simple span and assumed to be adequately laterally C Axis 2-2 braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 62 c for reduction factors for unbraced lengths. Moment of Inertia(I) 0.161 In° 0.322 In° 3.For pierced channel,multiply beam loads by the following factor: - Section Modulus(S) 0.198 Ina 0.396 In' 0"KO"Series 95% "T"Series 85% O Radius of Gyration(r) 0.616 In 0.616 In "HS"Series 90% "SL"Series 85% C/3 "WT"Series 85% 4.Deduct channel weight from the beam loads. . 5.For concentrated midspan point loads,multiply beam loads by 50%and the corresponding deflection by 80%.For other load conditions refer to page 18. Cs 6.All beam loads are for bending about Axis 1-1. 1W Framing; .,, 74 _ .,. 49 UN I STRUT` ®_;r P4400 & P4401 Channels iv P4400 •BEAM LOADING(METRIC) P4401 -BEAM LOADING(METRIC) C C = Max Deft.at Max Deft,at V Uniform Loading at Deflection Uniform Loading at Deflection ;Allowable Uniform Allowable s-Uniform Span Uniform Load Load Span/180'' Span/240 Span/360 Span Uniform Load Load Span/180 Span/240 Span/360 mm kN' mm kN kN kN mm kN mm kN kN kN 500 3.5 2.2 3.5 3.5 2.7 600 9.7 7.2 9.7 .4.7 9.7 i 750 2.8 3.4 2.8 2.6 1.7 750 7.9 2.0 Z9 7.9 Z9 1000 2.1 6.0 2.0 1.5 1.0 1000 5.9 3.5 5.9 5.9 4.7 1� 1250 1.7 9.3 1.3 1.0 0.6 1250 4.7 5.5 4.7 4.5 3.0 1500 1.4 134 0.9 0.6 0.5 1500 3.9 7.9 3.9 3.1 2.1 as 1750 1.2 18.6 0.6 0.5 0.3 1750 3.4 10.6 3.1 2.3 1.5 2000 1.0 23.6 0.5 0.4 0.2 2000 2.9 14.0 2.4 1.8 1.2 L CS 2500 0.9 38.1 0.3 0.2 0.1 2500 2.4 21.8 1.5 1.1 0.8 X. ca 3000 0.7 55.5 0.2 0.2 0.1 3000 2.0 31.2 1.0 0.8 0.5 3500 0.6 71.6 0.2 0.1 0.1 3500 1.7 42.6 0.8 0.6 0.4 Z 4000 1.5 56.7 0.6 0.5 0.3 N 4500 1.3 70.9 0.5 0.4 0.2 CA = 5000 1.2 8Z2 0.4 0.3 NR LL. 6000 1.0 127.5 0.3 NR NR is 41)C P4400-COLUMN LOADING(METRIC) P4401 -COLUMN LOADING(METRIC) a> 44- r (I) Maximum Maximum G Allowable Maximum Column Load Applied at C.G. Allowable Maximum Column Load Applied at C.G. Q. Unbraced Load Unbraced Load ca Height at Slot Face K=0.65 K=0.80 K=1.0 K=1.2 Height at Slot Face K=0.65 K-0.80 K=1.0 K=1.2 U) mm kN kill kill kill kill mm "kN kN f kN kN = 600 17.9 37,7 354 32.6 30.1 600 21.4 83.2 81.1 78.7 76,4 'a = 750 11.6 35.2 32.6 29,5 24.5 750 21.2 81.0 78.7 75.4 69.8 U 1000 10.9 31.5 2Z9 21.3 15.3 1000 20.9 77.7 73.6 65.8 57.3 0> 0- 1250 9.7 2Z4 21.3 14.2 9.8 1250 20.2 73.1 65.8 55.2 44.5 G. 1500 8.2 22.1 15.3 9.8 *` 1500 19.3 66.8 5Z3 44.5 32.7 CS 1750 6.8 17.1 11.3 Z2 ** 1750 18.2 60.0 48.8 34,6 24.0 C 2000 5.7 13.1 8.6 ** ** 2000 16.8 53.1 40.5 26.4 18.4 6L 2500 ** 8.4 ** *» ** 2500 13.6 39.5 26.4 16.9 ** TCI" U 3000 10.9 27.9 18.4 ** ** yr V lap P4400/P4401 -ELEMENTS OF SECTION(METRIC) W H Notes: Pa c' P4100 P4101 amt Area of Section 2.74 cm' 548 cm' *Load limited by spot weld shear. m **KL/r>200 = Axis 1-1 NR=Not Recommended. 4..., Moment of Inertia(I) 2.21 cm° 10.61 cm" 1.Beam loads are given in tots/uniform load ON Lbs)not uniform load(w lbs/ft or i Section Modulus(S) 1.51 cm3 4.18' cm3 wibs/in). C Radius of Gyration(r) 0.90 cm 1.39 cm 2.Beam loads are based on a simple span and assumed to be adequately laterally CI !.2 Axis 2-2 braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 62 for reduction factors for unbraced lengths. L Moment of Inertia(I) 6.70 cm" 13.40 cm" 3.For pierced channel,multiply beam loads by the following factor: A Section Modulus(S) 3.24 cm3 6.49 cm3 "1(0"Series 95% "T"Series 85% cn Radius of Gyration(r) 1.57 cm 1.57 cm "HS"Series 90% "SL"Series 85% "WT"Series 85% V. 4.Deduct channel weight from the beam loads. G) 5.For concentrated midspan point loads,multiply beam loads by 50%and the Q • corresponding deflection by 80%.For other load conditions refer to page 18. = 6.All beam loads are for bending about Axis 1-1. 50 '. .. m Fra>€ system,'_. P4520 & P4521 Channels UNISTRUT P4520 ©GR PG P4521 [i1 GR PG 15 `'� c I- -1 --1 s/a"— —41.3-- i " 22.2 y 15/e"_ 413 a/a 3/a" 9.5 9.5 a) 3/8'= 2/B° fs/8" 9.5_.+R2 9.5 9/32" 13/16" 9/3i 492" 20.6 7111_ } IT IT • }�i��Tl � ,rf1J1 1s/1' 1 41� 1 F- 16" 2 .321" 22 2 2 P.. al Wt/100 Ft:131 Lbs(190 kg/100 m) Wt/100 Ft:262 Lbs(390 kg/100 m) _ Allowable Moment 1,615 In-Lbs(183 N•m) Allowable Moment 4,540 In-Lbs(513 N•m) °i 12 Gauge Nominal Thickness.105"(2.7mm) 12 Gauge Nominal Thickness.105"(2.7mm) co Z P4520 HS ©GR PG P4520 T [R GR PG N cm C w LL Slots are cC y 1'i"(28.6)X9/e"(14.3) p- /6'(14.3)Dia.Holes 1'A"(47.6)on Center 2"(50.8)on CenterCD 21" 0 ,��" (30.2) cm (22.2) Q. Q C/) rr Wt/100 Ft:120 Lbs(177 kg/100 m) Wt/100 Ft:120 Lbs(177 kg/100 m) 0 0 V P4520 SL IE GR PG P4520 WT © DF GR HG PG PL a Slots are Slots are 3"4"(101)6) 13 Center.3) 2"(50.8)X 11/16"6"(17.5) CCI 4"(101.6)on 3"(76.2)on Center LL (25�..4) 11/2" (12' 1" (38.1) (25.4) C3 W co) Wt/100 Ft 118 Lbs(175 kg/100 m) Wt/100 Ft:120 Lbs(177 kg/100 m) d G CD CHANNEL NUTS(REFER TO PAGES 73,74 FOR DETAILS) lq SEE PAGE 73,74 i V igiiP4006-0832 4P4010T P4012 x P3006-0832 ,h P3016-0632 O P4006-1024 MN P4023 P3006-1024 , P3016-0832 V P4006-1420 P3006-1420 P3016-1024 P4007 P3007 P3016-1420 i P4008 P3008 co P4009 P3009 Cl)0 P4010 P3013 i a) Q Channel Finishes:PL,GR,HG, PG,ZD; Standard Lengths:10'&20' _ _J U N 1 ST R U T* ®M P4520 & P4521 Channels -y P4520-BEAM LOADING P4521 -BEAM LOADING C C Lv s Max` Dell.at Max Defl.at ) CD Uniform Loading at Deflection Uniform Loading at Deflection i _ Allowable Uniform Allowable Uniform uSpan Uniform' Load Load Span/180. Span/240 Span/360 Span Uniform Load Load Span/180 Span/240 Span/360 *- In Lbs In Lbs Lbs Lbs In Lbs In Lbs Lbs Lbs 24 540 0.11 540 510 340 24 1:510 0.06 1,510 1,510 1.510 i 36 360 0.24 300 220 150 36 1,010 0.14 1,010 1,010 710 co 48 270 0.43 170 130 80 48 760 0.25 760 600 400 N 60 220 0.68 110 80 50 60 610 0.40 510 380 260 72 180 0.96 70 60 40 72 500 0.56 360 270 180 132 ttl 84 150 1.27 60 40 30 84 430 0.77 260 200 130 P 96 130 1.65 40 30 20 96 380 1.01 200 150 100 cC 108 120 2.16 30 20 20 108 340 1.29 160 120 80 S oa 120 110 2.72 30 20 NR 120 300 1.56 130 100 60 co)• 144 90 3.84 20 NR NR 144 250 2.25 90 70 40 Z 168 220 3.14 70 50 NR y 192 190 4.05 50 NR NR C 216 170 5.16 NR NR NR T. 240 150 6.24 NR NR NR Ti L. a) C G.f O P4520-COLUMN LOADING P4521 -COLUMN LOADING ' t f Maximum ' - =F mum Q - :wade - Allowable Maximum Column Load Applied at C.G Maximum Column Load Applied rA Unbraced Load UnbraceF load - Height at Slot Face K=0.65 K=0.80 K=1.0 K=1.2 Height "'l of Face K=0.65 K=0.80 K=1.0 K = In Lbs Lbs Lbs Lbs Lbs In m Lbs Lbs Lbs Lbs Lbs O 24 2.250 7,480 6,800 5.820 4,810 24 4,140 16,490 15,980 14,970 13.810 O 36 1,980 5,950 4,810 3,380 2,350 36 3,980 15,100 13,810 11,910 9,940 a) EL" 48 1,580 4,310 2,970 1,900 ** 48 3,730 13,190 11,260 8,650 6,270 60 1,210 2,880 1,900 ** , ** 60 3,390 11,090 8,650 5,780 4,010 co 72 950 2,000 ** ** ** 72 2,950 8,970 6,270 4,010 2,790 = 84 2,510 6,980 4,610 2,950 ** t.L. 96 2,130 5,340 3,530 ** ** S. y 108 1,820 4,220 2,790 ** ** .i d 120 ** 3,420 *" ** ** LY Notes: NP4520/P4521 -ELEMENTS OF SECTION *Load limited by spot weld shear. t/) , **KL/r>200 C 'r , k _! "-! z #r€g NR=Not Recommended. CD Area of Section 0.384 Int 0.770 In2 1.Beam loads are given in total uniform load ON Lbs)not uniform load(w lbs/ft or C3 Axis 1-1 w lbs/in). p Moment of Inertia(I) 0.031 Ino 0.146 In' 2.Beam loads are based on a simple span and assumed to be adequately laterally vbraced.Unbsaced spans can reduce beam load carrying capacity.Refer to Page 62 Section Modulus(S) 0.064 In' 0.180 In' for reduction factors for unbraced lengths. i Radius of Gyration(r) 0.283 In 0.436 In 3.For pierced channel,multiply beam loads by the following factor: to G Ams 2-2 "KO"Series 95% "T"Series 85% Cl) Moment of Inertia(I) 0.138 In^ 0.277 In' "HS"Series 90% "SL"Series 85% Section Modulus(S) 0.170 In3 0.340 In3 "WT"Series 85% . Radius of Gyration(r) 0.599 In 0.599 In 4.Deduct channel weight from the beam loads. 435.For concentrated midspan point loads,multiply beam loads by 50%and the -� corresponding deflection by 80%.For other load conditions refer to page 18. 6.All beam loads are for bending about Axis 1-1. 5217 ` Y :; .. 1W kaming System P4520 & P4521 Channels U N I STRUT P4520 -BEAM LOADING(METRIC) P4521 -BEAM LOADING(METRIC) 5 C Max Dell.at llax DO:at �I ` V Uniform Loading at Deflection ,, fi r owable Uniform :, C' t 1"jiPrmLoad Load Span/180 Span/240 Span/360 Span a:. s r .. z , , ,3 � kN mm kN ,kN kN mm � - } * � 600 2.5 2.6 2 2.4 1.6 600 7.0 1.6 7.0 7.0 7.0 750 2.0 4.1 2.0 1.5 1.0 750 5.6 2.4 5.6 5.6 4.8 i a.. 1000 1.5 7.3 •1.1 0.9 0.6 1000 4.2 4.3 4.2 4.0 2.7 (13 1250 1,2 11.3 0.7 0.5 0.4 1250 3.4 6.7 3.4 2.6 1.7 F� 1500 1.0 16.5 .0.5 0.4 0.3 1500 2.8 9.6 2.4 1.8 1.2 i " 1750 0.9 22.6 0.4 0.3 0.2 1750 2.4 13.3 1.8 1.3 0.9 CB 2000 0.7 28.4 0.3 0.2 0.1 2000 2.1 172 1.4 1.0 0.7 i 2500 0.6 45.0 0.2 0.1 0.1 2500 1,7 27.0 0.9 0.6 0.5 03 S 3000 0.5 65.8 0.1 0.1 NR 3000 1.4 39.1 0.6 0.5 0.3 o2S co 3500 0.4 855 0.1 0.1 NR 3500 1.2 52.0 0.5 0.3 0.2 = 4000 1.0 68.7 0.3 0.3 0.2 Z 4500 0.9 85.1 0.3 0.2 AIR co CO 5000 0.8 105.0 0.2 AIR AIR C 6000 0.7 151.2 AIR AIR AIR i1. To P4520-COLUMN LOADING(METRIC) P4521 -COLUMN LOADING(METRIC) co co Ca Maximum Maxima in Cl) AllowableMaximum Column Load Applied at C.G. Allowable _ Maximum Column Load Applied at C.G. p Unbraced Load Unbraced Load Q Height at Slot Face K=0.65 K=0.80 K=1.0 K=12 Height at Slot Face K=0.65 K=0.80 K=1.0 K=12 tS MM -�: kN kAl kN kN mm kN - a kN kN kill Cl) 600 10.3 34.1 31.1 26.8 22.2 600 78.8 74.9 72.8 68.3 63.1 13 750 9.7 30.9 26.8 21.1 15.8 750 18.5 72.5 68.3 61.8 54.7 C 1000 8.5 24.9 19.3 12.8 8.9 1000 178 66.2 59.5 49.8 40.1 U co 1250 6.9 18.9 12.8 8.2 1250 16.8 58.9 49.8 37.8 27.0Q C. 1500 5.6 13.5 8.9 '* 1500 15.5 51.1 40.1 27.0 18.8 1750 4.6 9.9 6.5 ** 1750 14.0 43.1 31.1 19.9 13.8 co >a C 2000 12.2 35.5 23.8 15.2 ** 2500 9.3 23.0 15.2 ** ** i . 3000 ** 16.0 ** ** ** to v i Ci co Notes: y� P4520/P4521 -ELEMENTS OF SECTION(METRIC) `Load limited by spot weld shear. **KVr>200 � a,_,.- P410 k NR=Not Recommended. y Area of Section 2.48 cm2 4.97 cm2 1.Beam loads are given in tots/uniform load(W Lbs)not uniform load(w lbs/ft or Axis 1-1 w lbs/in). 0 Moment of Inertia(I) 1.29 cm° 6.08 cm4 2.Beam loads are based on a simple span and assumed to be adequately laterally i Section Modulus(S) 1.05 cm' 2.95 cm3 braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 62 0 for reduction factors for unbraced lengths. p Radius of Gyration(r) 0.72 cm 1.11 cm 3.For pierced channel,multiply beam loads by the following factor: GA Axis 2-2 "KO"Series 95% "T"Series 85% Moment of Inertia(I) 5.74 cm4 11.53 cm4 "HS"Series 90% "SL"Series 85% t`o Section Modulus(S) 2.79 cm3 5.57 cm' "WT'S Series 85% N Radius of Gyration(r) 1.52 cm 1.53 cm 4.Deduct channel weight from the beam loads. 5.For concentrated midspan point loads,multiply beam loads by 50%and the corresponding deflection by 80%.For other load conditions refer to page 18. et 6.All beam loads are for bending about Axis 1-1. -, = 15/s"Framlin aint,' Ell -J U N I STR U T '''''..ii, . P5000&;P5001Channels as P5000 © DF GR PL PG C co 1 5/a' C.) W 413 3A3"- fes. r 3A" rn 9/32" 9.5_r22.2 _9.5 r } t 1 •., I 1.750" TT 7.11 44.5 i y 3 t/a" + ) 82.6-+--F 1 41 d 1.500" 38.1 IA= t 1 Wt/100 Ft:305 Lbs(454 kg/100 m) 2 2 Allowable Moment 15,770 In-Lbs(1,780 Wm) O 12 Gauge Nominal Thickness.105"(2.7mm) cC 4 P5001 ©DF GR PG i ca ozS 1 W 41.3 - , (., r Z N = 165.1- ----1 ISL 6 l z" J 1 tC ' L 0 C CD J V C7 2 (/) 2 WU100 Ft 610 Lbs(907 kg/100 m) o Allowable Moment 48,180 In-Lbs(5,440 N•m) C• 12 Gauge Nominal Thickness.105"(2.7mm) ct- c P5000 HS ©GR PG P5000 KO R GR PG I= 9/s"(14.3)Dia.Holes W i6 (22.2)Knockouts 11A3"(47.6)on Center 6"(152.4)on Center C.) Ct. a4/01° 40 H CD= Wt/100 Ft 300 Lbs(446 kg/100 m) Wt/100 Ft:305 Lbs(454 kg/100 m) iZ P5000 SL ©GR PG P5000 T ©DF GR PG) P5000 WT © DF GR HG PG PL To 0 Slots are Slots are .4... 3"(76.2)x 73/32"(10.3) 1W(28.6)0 9/e"(14.3) Slots are 0 4"(101.6)on Center 2"(50.8)on Center - 2"(50.8)x 7Ys"(17.5) LLI _ 3"(76.2)on Cente y 1 3/tfi i t'h" It.G1 1" �. (30.2) '" (38.1) (22.2) _ (12.7) (25.4) - (25.4) 0, +r C Wt/100 Ft:300 Lbs(446 kg/100 m) Wt/100 Ft:300 Lbs(446 kg1100 m) Wt/100 Ft 300 Lbs(446 kg/100 m) C CD CHANNEL NUTS(REFER TO PAGES 73,74 FOR DETAILS) © SEE PAGE 73,74 C) P5506-0832 P1006T1420 P1012 P3006-0832 P3016-0632 P5506-1024 P1008T P1023 lib P3006-1024 P3016-0832 as P5506-1420 P1010T P1024 P3006-1420 P3016-1024 0 tP5507 P3007 P3016-1420 P5508 P3008 P5509 P3009 IL P5510 P3010 ID .0. = Channel Finishes:DF,PL,GR,HG,PG,ZD; Standard Lengths:10'&20' .. 54 IE CORE PRODUCTS-TYPICALLY AVAILABLE FROM STOCK '_ ,,, ,IyaOra.,"..:E,. System P5000 &P5001 Channels UNISTRUT® P5000-BEAM LOADING P5001 -BEAM LOADING 75 C 1 Deft 4"01at Uniform Loading at Deflection n:. r C.) „ Uniform ` A1lowab e Umf[a qP= Span U r triad Load Span/180 Spanf240 Span/360 Span -kuform Lead € .3 '',11--:,,.„„, _ In s a In Lbs Lam,= Lbs In -ry Lbs �. -.__. . t._ . -..:' ---. _ ` - *- 24 5,260 0.03 5,260 5,260 5.260 24 6,890* 0.01 6.890* 6,890* 6,890* 36 3,500 0.07 3,500 3,500 3,500 36 6,890* 0.02 6,890* 6,890* 6,890* i 48 2,630 0.12 2,630 2,630 2,630 48 6,890" 0.05 6,890* 6,890* 6,890* tin 60 2,100 0.18 2,100 2,100 1,920 .60 6,420 0.10 6,420 6,420 6,420 72 1,750 0.26 1,750 1,750 1,330 72 5,350 0.14 5,350 5,350 5,350 1 52 84 1,500 0.36 1,500 1,470 980 84 4,590 0.19 4,590 4,590 4,590 a) * 96 1,310 0.47 1,310 1,120 750 96 4,020 0.25 4,020 4,020 4,020 CEI 108 1,170 0.59 1,170 890 590 108 3,570 0.32 3,570 3,570 3,360 a 120 1,050 0.73 960 720 480 120 3,210 0.39 3,210 3,210 2,720 144 880 1.06 670 500 330 144 2,680 0.57 2,680 2,680 1,890 oiri 168 750 1.43 490 370 240 168 2,290 0.77 2,290 2,080 1,390 c 192 660 1.88 370 280 190 192 2,010 1.01 2,010 1,590 1,060 O Z 216 580 2.35 300 220 150 216 1,780 1.27 1,680 1,260 840 240 530 2.95 240 180 120 240 1,610 1.58 1.360 1.020 680 rn sa C IL 75i P5000-COLUMN LOADING P5001 -COLUMN LOADING Pcn 3Maximum % Maximum Allowable ` _ Maximum Column Load Applied at 0. Allowable Maximum Column .. Q Unbraced load < ". toad _,,.11-- O Height at Slot Face a -K=0.65 K=0.80 K=1.0 _at Slot Face K 0.65 K-080 m co In Lbs ` Lbs :a Lbs Lbs a Lbs Lbs Lbs 24 5,650 16,870 15,180 12,850 10,600 24 10,670 39,230 38,030 36,210 34,240 2 36 4,690 13,140 10,600 7,650 5,660 36 10,350 36,450 34,240 31,200 28,260 0 48 3,560 9,550 6,860 4,790 3,660 48 9,940 33,220 30,200 26,430 23,190 60 2,730 6,680 4,790 3,450 2,710 60 9,290 29,950 26,430 22,470 19,380 tz 72 2,160 4,980 3,660 2,710 2,170 72 8,560 26,880 23,190 19,380 16,450 il. 84 1,760 3,950 2,960 2,240 1,820 84 7,860 24,140 20,520 17,040 12,090 to 96 1,500 3,270 2,500 1,930 1,580 96 7,220 21,790 18,370 13,330 9,250 as C 108 1,310 2,800 2,170 1,690 1,390 108 6,600 19,790 16,450 10,530 7,310 _ 120 1,170 2,450 1,930 1,510 ** 120 5,760 18,130 13,330 8,530 ** W 144 980 1,980 1,580 *' - ** 144 4,390 14,020 9,250 `* ** 733. 168 850 1,670 1,340 ** ** 168 3,420 10,300 6,800 ** ** .10 ty P5000!P5001 -ELEMENTS OF SECTION W Notes: rn �,'i . u 7.:; *Load limited by spot weld shear. Area of Section 0.897 In2 1.793 Inz `*KVr>200 = Axis 1-1 NR=Not Recommended. ap 1.Beam loads are given in lata/uniform load(W Lbs)not uniform load(w lbslft or Moment of Inertia(I) 1.098 In 6.227 In i w!Win). v Section Modulus(S) 0.627 Ina 1.916 Ina 2.Beam loads are based on a simple span and assumed to be adequately laterally = Radius of Gyration(r) 1.107 In 1.864 In braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 62 +� Axis 2-2 for reduction factors for unbraced lengths. Moment of Inertia(I) 0.433 In" 0.866 In' 3.For pierced channel,multiply beam loads by the following factor: a_ Section Modulus(S) 0.533 In' 1.066 Ina "KO"Series 95% "T"Series 85% p Radius of Gyration(r) 0.695 In 0.695 In "HS"Series 90% "SL"Series 85% Cl) "WT"Series 85% 4.Deduct channel weight from the beam loads. i 5.For concentrated midspan point loads,multiply beam loads by 50%and thea) deflection by 80%.For other load conditions refer to page 18. Q- C 6.All beam loads are for bending about Axis 1-1. 47, U N I ST R U T ®,z P5000 & P5001 Channels . P5000 -BEAM LOADING(maw) P5001 -BEAM LOADING(MErRic) C = Max Den.at T Defl, V Uniform Loading at Deflection �_� Uniforr -wading at Deflection Allowable Uniform (ile Uniform Span Uniform Load Load Span/180 Span/240 Span/369 Span: 1$hifor m Load Load Span/180' Span/240 Span/360 r mm kN mm kN kN kN mttt tct1:! Trim kN kN kN 600 23.S 7 23.8 23.8 23 8 600 30.6' 0 30.6' 30.6" 30.6` E 750 190 7 19.0 19.0 19.0 750 30.6' 0 30.6' 30.6' 30.6' y 1,000 14.2 2 14.2 14.2 14.2 1,000 30.6" 1 30.6* 30.6* 30.6` G. 1,250 11.4 3 11.4 11.4 11.4 1,250 30.6' 1 30.6* 30.6* 30.6'' � F 1,500 9.5 5 9.5 9.5 8.8 1,500 29.0 2 29.0 29.0 29.0 1,750 8.1 6 8.1 8.1 6.5 1,750 24.9 3 24.9 24.9 24.9 2,000 7.1 8 7.1 7.1 4.9 2,000 21.8 4 21.8 21.8 21.8 2,500 5.7 12 5.7 4.8 3.2 2,500 17.4 7 1Z4 17.4 17.4 12 3,000 4.8 18 4.4 3.3 2.2 3,000 14.5 10 14.5 14.5 12.5 Z 3,500 4.1 25 3.2 2.4 1.6 3,500 12.5 13 12.5 12.5 9.2 Oa 4,000 3.6 32 25 1.9 1.2 4,000 10.9 17 10.9 10.5 7.0 cn 4,500 3.2 40 2.0 1.5 1.0 4,500 9.7 22 9.7 • 8.3 5.6 Z 5,000 2.8 50 1.6 1.2 0.8 5,000 8.7 27 8.7 6.8 4.5 N 6,000 2.4 71 1.1 0.8 0.5 6,000 7.2 39 6.2 4.7 3.1 COC 4- LL R a) CD P5000-COLUMN LOADING(METRIC) P5001 -COLUMN LOADING(METRIC) ) C Maximum Maximum � = Allowable Allowable Q. Maximum Column Load Applied at C.G. x Maximum Column Load Applied at C.G. t «•. Load Unbrace Load v at Slot Face K=0.65 K 0.80 K=1.0 K=1.2 Height; at Slot Lace ,0.65 K=0.30 K=1.0 K=1.2 kN kN kN kN kN mm m_ kNkN kN kN kN - 600 25.2 75.5 68.1 58.0 48.0 600 475 174.9 169.7 161.7 153.2 p 750 23.5 67.5 58.0 45.7 35.0 750 46.8 169.2 161.7 150.9 139.8 N 1,000 19.4 53.7 41.9 29.3 21.8 1,000 45.6 158.2 147.2 132.6 118.8 E. 1,250 15.4 41.0 29.3 20.5 15.7 1,250 44.0 146.3 132.6 115.6 101.2 n- 1,500 12.4 30.5 21.8 15.7 12.3 1,500 41.6 134.3 118.8 101.2 87.4 1,750 10.2 23.8 17.3 128 10.2 1,750 38.9 122.9 106.6 89.4 76.8 an CU 2,000 8.5 19.3 14.4 10.8 8.7 2,000 36.3 112.5 96.2 80.0 61.2 C 2,250 7.3 16.3 123 9.4 7.6 2,250 33.9 103.2 87.4 69.6 48.4 i.L 2,500 6.5 141 10.8 8.3 6.9 2,500 31.6 95.0 80.0 56.4 39.7 13 2,750 5.8 12.4 9.6 7.5 6.2 2,750 29.3 87.8 72.9 466 32.4 O i CD Lia P5000/P5001 -ELEMENTS OF SECTION(METRIC) Notes: al) --- ", Paster x'''4 P5tf01 `Load limited by spot weld shear. co Area of Section 5.78 cm2 11.57 cm2 KL7r n 200 Axis 1-1 NR=Not Recommended. • y1.of Inertia(I) 45.70 cm, 259.17 cm" 1.Beam loads are given in Iota/uniform load(W Lbs)not uniform load(w lbs/ft or U Section Modulus(S) 10.28 cm3 31.40 cm3 w lbs/in). Radius of Gyration(r) 2.81 cm 4.73 cm 2.Beam loads are based on a simple span and assumed to be adequately laterally braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 62 Axis 2-2 for reduction factors for unbraced lengths. lin Moment of Inertia(I) 18.02 cm' 36.04 cm° 3.For pierced channel,multiply beam loads by the following factor: Section Modulus(S) 8.73 cm3 17.46 cm3 "KO"Series 95% "T"Series 85% Radius of Gyration(r) 1.77 cm 1.77 cm "HS"Series 90% "SL"Series 85% "WT"Series 85% g 4.Deduct channel weight from the beam loads. a) 5.For concentrated midspan point loads,multiply beam loads by 50%and the -Q- corresponding deflection by 80%.For other load conditions refer to page 18. -C 6.All beam loads are for bending about Axis 1-1. 56 n , r4,Z fmfn. m P5500 & P5501 Channels U N I STRUT P5500 J GR PG a, C c ev 1 3" 41.3 6 3/e"- I it1-3k" 9.51 i1 �9.5 �� -� l sem" 1.336" ��1 33.9 2'A6"-+-4 1 61.9-__+--1 44.0 102" L+r 28.0 y 1- O " 2 2 0, Wt/100 Ft: 247 Lbs(367 kg/100 m) 1. 00 Moment 9,820 In-Lbs(1,110 N"m) 12 Gauge Nominal Thickness.105"(2.7mm) y P5501 [-Q GR PG cl 5 ors 1 "� • 41.3 ^�,�,_ _ z 4'/a" - - 1 123.8- 1 en 11. 2 . 2 Wt/100 Ft: 494 Lbs(734 kg/100 m) C Allowable Moment 28,940 In-Lbs(3,270 N-m) 0, 12 Gauge Nominal Thickness.105"(2.7mm) P5500 HS pGR PG P5500 KO ©GR PG P5500 SL [R GR PG Q CL Slots are 9/6"(14.3)Dia.Holes W(22.2)Knockouts 3"(76.2)x 13/52"(10.3) te.., 1 7A"(47.6)on Center 6"(152.4)on Center 4"(101.6)on Center C O V 1" N (25.4) _Q (12.7) Wt/100 Ft:242 Lbs(360 kg/100 m) Wt/100 Ft 247 Lbs(368 kg/100 m) Wt/100 Ft 242 Lbs(360 kg/100 m) C P5500 T ©GR PG P5500 WT © DF GR HG PG PL ",-` 0 Slots are "L Slots are 11rk"(28.6)x9A6"(14.3) 2"(50.8)X111/5°(17.5) a) 2"(50.8)on Center 3"(76.2)on Center W • co / 1 3/is'` 1 1%z" = 7/8”• (30.2) (38.1) co y (22.2) (25.4) G, Wt/100 Ft:242 Lbs(360 kg/100 m) Wt/100 Ft:242 Lbs(360 kg/100 m) i v CHANNEL NUTS(REFER TO PAGES 7374 FOR DETAILS) © SEE PAGE 73,74 v P5506-0832 4P1006T1420 P1 01 2 P3006-0832 P3016-0632 P5506-1024 P1008T P1023 P3006-1024 + P3016-0832 P5506-1420 P1010T P1024 P3006-1420 P3016-1024 P5507 P3007 P3016-1420 cn P5508 P3008 P5509 P3009 P5510 P3010 e d c Channel Finishes:PL,GR,HG,PG.ZD; Standard Lengths:10'&20' "_ 7 vs".6.6minglitsterri,,, ,\ z _ p CORE PRODUCTS-TYPICALLY AVAILABLE FROM STOCK II UNISTRUT` r P5500 & P5501 Channels a, P5500-BEAM LOADING P5501 -BEAM LOADING C s) Max D 6efl at Uniform Loading at Deflection }Y Allowable Uniform= Alii n r�� . RQ. Span Uniform Load Load Span/180 : Span/240 S an/360& Span Unit e ,: . .i ✓ In Lbs In Lbs Lbs=4 'Lbs In e _ gT `�-' - FEa> 24 3,270 0.04 3270 3,270 3,270 24 5,220* 0.01 5,220* 5,220* 5,220* i 36 2,180 0.09 2,180 2,180 2,180 36 5,220* 0.04 5,220* 5,220* 5,220* co 48 1,640 0.15 1,640 1,640 1,420 48 4,820 0.08 4,820 4,820 4,820 y 60 1,310 0.24 1,310 1,310 910 60 3,860 0.13 3,860 3,860 3,860 ~ 72 1,090 0.34 1,090 950 630 72 3,220 0.19 3,220 3,220 3,220 84 940 0.47 930 700 470 84 2,760 0.26 2,760 2,760 2,500 a 96 820 0.61 710 530 360 96 2,410 0.34 2,410 2,410 1,920 12 108 730 0.78 560 420 280 108 2,140 0.42 2,140 2,140 1,510 cc 120 850 0.95 460 340 230 120 1,930 0.52 1,930 1,840 1,230 = 144 550 1.39 320 240 160 144 1,610 0.76 1,610 1,280 850 oa CI, 168 470 1.89 230 170 120 168 1,380 1.03 1,250 940 630 O 192 410 2.46 180 130 90 192 1,210 1.35 960 720 480 2 216 360 3.07 140 110 70 216 1,070 1.70 760 570 380 N D) 240 330 3.86 110 90 60 240 960 2.09 610 460 310 u. 76 1.- a) C P5500 COLUMN LOADING P5501 -COLUMN LOADING sn O Maximum s . Maximum s Q Allowable Maximum Column Load Applied at C.G. Allowable Maximum Column Load Applied at C.G. - O Unbraced Load Unbraced Load N Height at Slot Face K=0.65 K=0.80 K=1.0 K=1.2 Height at Slot Face K=0.65 K=0.80 K=1.0 K = In Lbs Lbs Lbs Lbs Lbs In Lbs Lbs Lbs Lbs LIMI c 24 4.643 13.840 12570 10,845 9190 24 8,580 .1.810 3.830 29,520 28,100 COj 36 3,970 11,050 9,190 7,030 5,370 36 8,350 29,700 28,100 26,000 24,070 Q 48 3,180 8,420 6,390 4,620 3,630 48 8,080 27,390 25,330 22,910 20,940 'p. 60 2,550 6,250 4,620 3,450 2,780 60 7,720 25,170 22,910 20,510 17,170 72 2,120 4,790 3,630 2,780 2,260 72 7,270 23,490 20,940 17,170 12,700 rn 84 1,810 3,890 3,010 2,330 1,910 84 6,780 21,510 18,740 13,430 9,330 CD C 96 1,580 3,290 2,580 2,020 1,650 96 6,130 20,110 15,630 10,290 7,150 108 1,400 2,860 2,260 1,770 1,440 108 5,450 17,750 12,700 8,130 5,650 120 1,270 2,530 2,020 1,580 ** 120 4,800 15,260 10,290 6,590 ** C2 144 1,060 2,070 1,650 ** ** 144 3,760 10,830 7,150 ** ** -, 168 920 1,750 1,380 ** ** 168 2,970 7,950 5,250 ** d W P5500/P5501 •ELEMENTS OF SECTION Notes: tE -._ ri k 4 ; *Load limited by spot weld shear. cc Area of Section 0.726 In2 1.452 Int **KL/r>200 Axis 1-1 NR=Not Recommended. q'i"'O, Moment of Inertia(I) 0.522 In, 2.805 Ina 1.Beam loads are given in rota/uniform load(W Lbs)not uniform load(w Ibslft or v Section Modulus(S) 0.390 In, 1.151 Ina w lbs/in). O Radius of Gyration(r) 0.848 In 1.390 In 2.Beam loads are based on a simple span and assumed to be adequately laterally +J Axis 2 2 braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 62 for reduction factors for unbraced lengths: Moment of Inertia(I) 0.334 In, 0.669 In4 >` 3.For pierced channel,multiply beam loads by the following factor: 03 Section Modulus(S) 0.411 In, 0.823 In' Radius of Gyration(r) 0.679 In 0.679 In "KO"Series 95% "T"Series 85% U) "HS"Series 90% "SL"Series 85% "WT"Series 85% L 4.Deduct channel weight from the beam loads. d 5.For concentrated midspan point loads,multiply beam loads by 50%and the _. ;i corresponding deflection by 80%.For other load conditions refer to page 18. 6.All beam loads are for bending about Axis 1-1. P5500 & P5501 Channels UNI STRUT` P5500 -BEAM LOADING(MuRic) P5501 -BEAM LOADING(MerRrc) y C C co Max DefLatI Max Defl.at Uniform Loading at DeflectionUniform Loading at Deflection caAllowable Uraforitt I Allowable Uniform' Span Uniform Load Loa Span/180 Span/240 Span/360 ' Span Uniform Load Load Span/180 Span/240 Span1360 r mm kN mnt j kN kN kN mm : kN mm kN" kN kN : •- 600 74.8 1 74.8 14.8 74.8 600 232' 0 23.2' 23.2, 23.2 w 750 11.8 1 11,8 11.8 11.8 750 23.2* 1 23.2` 23.2` 23.2' i 1,000 8.9 3 8.9 8.9 8.9 1,000 23.2* 1 23.2* 23.2* 23.2" us 1,250 7.1 4 7.1 7.1 6.1 1,250 20.9 2 20.9 20.9 20.9 0 1,500 5.9 6 5.9 5.9 4.2 1,500 17.4 3 174 174 174 I- 1,750 5.1 8 5.1 4.6 3.1 1,750 14.9 4 14.9 14.9 14.9 • 2,000 4.5 10 4.5 3.5 2.4 2,000 13.1 6 13.1 13.1 12.7 cbiS 2,500 3.6 16 3.0 2.3 1.5 2,500 10.5 9 10.5 10.5 8.1 3,000 3.0 24 2.1 1.6 1,1 3,000 8.7 13 8.7 8.5 5.6I. 3,500 2.5 32 1.6 1.2 0.8 3,500 7.5 18 7.5 6.2 4.1 Z 4,000 2.2 42 1.2 0.9 0.6 4,000 6.5 23 6.3 4.8 3.2 r 4,500 2.0 53 0.9 0.7 0.4 4,500 5.8 29 5.0 3.7 2.5 co 5,000 1.8 66 0.8 0.6 0.4 5,000 52 36 4.1 3.0 2.0 Z 6,000 1.5 94 0.5 0.4 0.3 6,000 4.4 52 2.8 2.1 1.4 to CD C ,w LL 1 i P5500-COLUMN LOADING(MerRrc) P5501 -COLUMN LOADING(MeTRic) CO Y x Maximum Maximum 0 Allowable, Maximum Column Load Applied at C.G. = ': Allowable Maximum Column Load Applied at C.G. a Unbraced Lo < ` '-_,,,44!4_,...44-4.,-,,,,.. Load p Height at Slot F K 0.65A: K=0.80 K=1.0 K 1.2erq ,at Slot Face K=0.65 K 0.80 K=1.0 K "1.2 U) mm kN 7 k11t•, -, kN kN kN ~,y. _ kN kN kN kN RN B- 600 20.7 61.9 56.4 48.8 41.6 600 38.2 141.5 137.4 131.3 125.0 '� C 750 19.6 55.9 48.8 39.8 31.9 750 37.1 132.1 125.0 115.6 107.1 0 U 1,000 16.7 45.7 37.0 27.4 21.0 1,000 35.9 121.8 112.7 101.9 93.1 0 1,250 13.8 36.4 27.4 19.9 157 1,250 34.3 112.0 101.9 91.2 76.4 C- 1,500 11.5 28.5 21.0 157 12.6 1,500 32.3 103.2 93.1 76.4 56.5 1,750 9.8 22.6 17.1 13.0 10.6 1,750 30.2 95.7 83.4 59.7 41.5 vs Z000 8.6 18.9 14.5 11.2 9.1 2,000 27.3 89.5 69.5 458 31.8 1:67) C 2,250 7.6 16.2 12.6 9.8 8.0 2,500 24.2 79.0 56.5 36.2 251 .10 2,500 6.9 14.2 11.2 8.7 7.2 3,000 21.3 67.9 45.8 29.3 ** V` Z750 6.2 12.7. 10.1 79 6.4 3,500 16.7 48.2 31.8 ** "* C3 V 4,000 13.2 35.4 23.3 - 0 0 P55001P5501 -ELEMENTS OF SECTION(METRIC) W Notes: . __..4tarrteter �' - ; 'E: *Load limited by spot weld shear. Area of Section 4.68 cm, 9.37 cm2 **KL/r>200 0 to Axis 1-1 NR=Not Recommended. Moment of Inertia(I) 21.71 cm4 116.76 cm4 1.Beam loads are given in total uniform load(W Lbs)not uniform load(w lbs/ft or co Section Modulus(S) 6.40 cm3" 18.86 cm3 w lbs/in). v Radius of Gyration(r) 2.15 cm 3.53 cm 2.Beam loads are based on a simple span and assumed to be adequately laterally C braced.Unbraced spans can reduce beam load carrying capacity.Refer to Page 62 v Axis 2-2 for reduction factors for unbraced lengths. Moment of Inertia(I) 13.91 cm4 27.83 cm4 3.For pierced channel,multiply beam loads by the following factor: Section Modulus(S) 6.74 cm3 13.48 cm' co "KO"Series 95% "T"Series 85% Radius of Gyration(r) 1.72 cm 1.72 cm "HS"Series 90% "SL"Series 85% y "WT"Series 85% 4.Deduct channel weight from the beam loads. 5.For concentrated midspan point loads,multiply beam loads by 50%and the a.) corresponding deflection by 80%".For other load conditions refer to page 18. .a 6.All beam loads are for bending about Axis 1-1. C i. t ` em ,.j� 59 Display Part P1000 http://www.unistrut.us/index.php?WP=cat_detail&S=S05&P=P100.._ A.poA .. ,Latkore Atkore Website I Join E-Notice Home About Us Literature Resources/Links Projects Contact Us Search Part No. CAD Files • Download Submittal(PDF) Add to cart View Cart Product Line Overview I- 1.5/8"Metal Framing R - 01000 - P1000 - 1-5/8" x 1-5/8", 12 Gage Channel, Solid 1-1/4"Metal Framing 13/16"Metal Framing lo- 7"'---.. Fiberglass Framing ,.,. Telestrut Tubing :': Prime Angle United Interlock®Grating Channel Selection Chart Related Channel Nuts Roofwaik Additional Specifications Seismic Support r Part No. Finish Length Weight P1000 DF 20 201.40 Unipier1 Supports r P1000 DF 10 201.40 P1000 GR 20 189.00 Commercial ► P1000 GR 10 189.00 P1000 PG 10 189.00 P1000 PG 20 189.00 Price Books I' P1000 HG 20 201.40 P1000 HG 10 201.40 Unistrut Defender P1000 ZD 20 189.00 _ P1000 ZD 10 189.00 P1000 PL 20 189.00 P1000 PL 10 189.00 P1000 EA 20 73.30 P1000 EA 10 73.30 P1000 SS 10 189.00 P1000 SS 20 189.00 P1000 ST 20 189.00 P1000 ST 10 189.00 1 ' i.41 1. r.:... 1) _. 1(1_.. .y 't- 10 .ri l, 7„1 !1 3 1 -- ,915" i '1 i _. ■ "� 4 1 r 1 i_ L •r`90°` 'j j ..._..„ )s Elements of Section - P1000 Area of Section 0.555 in2(3.6 cm2) Axis 1-1 Axis 2-2 Moment of 0.185 in4(7.7 cm4) 0.236 in4(9.8 cm4) Inertia(I) I of 3 6/27/18,12:44 PM Display Part P1000 http://www.unistrut.us/index.php?WP=cat_detail&S=S05&P=P100... Section 0.202 in3(3.3 cm3) 0.290 in3(4.8 cm3) Modulus(S) Radius Gyration(rr) 0.577 in(1.5 cm) 0.651 in(1.7 cm) Column Loading- P1000 Allowable Max Column Load Unbraced Load at Applied at C.G. Height Slot Face K=0.65 K=0.80 K=1.0 K=1.2 (in) (lbs) (lbs) (lbs) (lbs) (lbs) 24 3550 10,740 9,890 8,770 7,740 36 3,190 8,910 7,740 6,390 5,310 48 2,770 7,260 6,010 4,690 3,800 60 2,380 5,910 4,690 3,630 2,960 72 2,080 4,840 3,800 2,960 2,400 84 1,860 4,040 3,200 2,480 1,980 96 1,670 3,480 2,750 2,110 1,660 108 1,510 3,050 2,400 1,810 120 1,380 2,700 2,110 * * 144 1,150 2,180 1,660 * *KUr>200 Beam Loading - P1000 Max Uniform Loading Lateral Allow. Defi at at Deflection gracing Uniform Uniform Span Span Span Reduct. Span Load load /180 /240 /360 Factor (in) (lbs) (in) (lbs) (lbs) (lbs) 24 1,690 0.06 1,690 1,690 1,690 1.00 36 1,130 0.13 1,130 1,130 900 0.94 48 850 0.22 850 760 500 0.88 60 680 0.35 650 480 320 0.82 72 560 0.50 450 340 220 0.78 84 480 0.68 330 250 160 0.75 96 420 0.89 250 190 130 0.71 108 380 1.14 200 150 100 0.69 120 340 1.40 160 120 80 0.66 144 280 2.00 110 80 60 0.61 168 240 2.72 80 60 40 0.55 192 210 3.55 60 50 - 0.51 216 190 4.58 50 40 - 0.47 240 170 5.62 40 - - 0.44 Notes: 1.Above loads include the weight of the member. This weight must be deducted to arrive at the net allowable load the beam will support. 2. Long span beams should be supported so as to prevent rotation and twist. 3.Allowable uniformly distributed loads are listed for various simple spans,that is,a beam on two supports. If load is concentrated at the center of the span,multiply load from the table by 0.5 and corresponding deflection by 0.8. 4.The lateral bracing factor should be multiplied by the load to determine the load retained based on the distance between lateral braces. Bearing Load on Channel: WAD L:.aAD LOAD t � y • Max Load Max Load Max Load 5,000 Lbs 8,000 Lbs 3,500 Lbs 2,268 Kg 3,629 Kg 1,588 Kg of 3 6/27/18,12:44 PM Display Part P1000 http://www.unistrut.us/index.php?WP=cat_detail&S=S05&P=P100... • ©2018 Atkore International,Inc.All Rights Reserved.Privacy Policy I New Product Portal I Rep Central 3 of 3 6/27/18,12:44 PM 111 SA MYS° FOR WOOD II SAMMYS° FOR WOOD- Vertical Application Application Not less than Product Features wood Flooring 2'nominal width •No pre-drilling required. ♦ y ' µ •Quick to install using the Sammy Not less than ,', Nut Driver with an 18V cordless 3'nominal ° drill/driver. a i y €. thickness(2-1/2•) (depth or side hood �:a� of vertical member) �, •Saves time from traditional � _ .. ;3 methods. \ Doubts Sl ee coni, t For vertical use- t Ceitng t •Reduces installation costs. . install in center of lower face. Minimum 2"embedment into base ve) •Manufactured in the U.S.A. material for NFPA 13 compliance. x� Composite/Truss Consult truss manufacturer for vs recommended installation point = 'Pre-drilling maybe required for GST F. 25-380.Tool available on page 11. F I$,{_ wamn a omen oe,nonstaor at $ 'www.itwbuitdex.com Approvals Rod Part Model Screw Ultimate UL Test FM Test Box Case Size Number Descriptions Pullout(lbs) Load(lbs) Load(lbs) Qty Qty VERTICAL MOUNT 1/4" 8002957 GST 100 1/4 x 1" 267010 (7/1(3/4"Ply)6"OS ) 25 125 -.'1.T , rJ ° .. - - ' a.t4- x "' 25 4'„'v,,.” - 3/8" 8007957 GST 10 1/4 x 1" 267010 (7/1(3/4"P6"OlyB) 300 25 125 - � _ s Z_ - — = 4Th' 25'.` Tail _ €, _ . . . , _tea �3/8" 8068925 GST 20-SS 1/4 x 2" 1760 (Fir) 850 25 '25 #14 Black .57 €€h . F �mss Wil " 1:, 1500 '-F.;',"1-, 25 125-.:'', Nut Driver 3/8' 8010957 GST 30 1/4 x 3" 2060 (Fir) ' t, ' 1500 1475t.# 2� '25 Part#8113910 sp ����a ry �e g _ r i =azi .> r It: 25 125 _ 1/2 8013925 GST 2 1/4 x 2" 1760 (Fir) 2' 125 =, " "Igtrxrr +e. -i.,. € i - 25 125 Y" I #14 SW Red Nut Driver Part#8114910 � s .,7,7,7=,,s,. c.�wc�: SPECIAL NUT DRIVER SYSTEM:The nut drivers were designed with a unique spin-off feature which provides a fast and safe installation each time.When the face of the driver comes into contact with the material you are installing into,continue drilling until nut dnver spins free.Installation is then complete,Warranty requires the use of the appropriate nut driver for installations. For the most up to date information,visit www.itwbuildex.com 4 2C or- I 0 TABLE 4B SANDED GROUP Po PLYWOOD DESIGN CAPACITIES Nominal Thickness Stress Parallel to Strength Axis Stress Perpendicular to Strength Axis (in.) A-A,A-C Marine Other A-A,A-C Marine Other PANEL BENDING STIFFNESS,El(lb-in.2/ft of panel width) 1/4 15,000 15,000 15,000 700 980 700 11/32 34,000 34,000 34,000 1,750 2,450 1,750 3/8 49,000 49,000 49,000 2,750 3,850 2,750 15/32 120;000 120,000 120,000 11,000 15500 11,000 1/2 140,000 140,000 140,000 15500 21500 15500 19/32 205,000 205,000 205;000 37,500 52;500 37500 5/8 230,000 230,000 230,000 48,500 68,000 48,500 23/32 320,000 320,000 320,000 90,500 125,000 90,500 3/4 355,000 355,000 355,000 115.000 160,000 115,000 7/8 500,000 500,000 500,000 185,000 260,000 185,000 1 760,000 760,000 760,000 330,000 460,000 330,000 1-1/8 985,000 985,000 985,000 490,000 685,000 490,000 Structural I Multiplier 1.0 1.0 1.0 1.4 1.0 1.4 PANEL SENDING STRENGTH,FbS(lb-in./ft of panel width) 1/4 115 105 95 17 20 14 11/32 185 170 155 31 36 26 3/8 245 225 205 44 52 37 15/32 425 390 355 130 150 110 1/2 470 430 390 175 205 145 19/32 625 570 520 270 315 225 5/8 670 615 560 325 380 270 23/32 775 710 645 455 530 380 3/4 8.15 750 680 565 660 470 7/8 1,000 935 850 780 910 650 1 1,300 1,200 1,100 1,150 1,350 975 1-1/8 1400 1,500 1,350 1500 1,750 1,250 Structural I Multiplier 1.0 1.0 1.1 1.4 1.0 1.4 PANEL AXIAL TENSION,F,A(lb/ft of panel width) 1/4 1400 1,650 1450 660 990 550 11/32 1,800 1,650 1,650 840 1,250 700 3/8 2,350 2,150 2,150 1,250 1,900 1,050 15/32 3,500 3,200 3,200 2,400 3400 2,000 1/2 3500 3,200 3,200 2,450 3,700 2,050 19/32 4;400 4,000 4,000 2,750 4,150 2,300 5/8 4,500 4,100 4,100 3,000 4,500 2,500 23/32 5,100 4,650 4650 3,400 5,150 2,850 3/4 5;250 4,750 4,7.50 4,150 6,200 3,450 7/8 5,350 4,850 4,850 5,200 7450 4,350 1 6,750 6,150 6,150 6,250 9,350 5,200 1-1/8 7,000 6,350 6450 6400 9,450 5,250 Structural I Multiplier 1.0 1.0 1.0 1.7 1.0 1.8 (a)See Table 4C far multipliers for other species Groups. C a.� c r- 5 .. _ 6 02 5 t i 1 !,::- t 19 0 2008 APA-The Engineered Wood Associatloe -,--- TOGGLER®ANCHOR SYSTEM Technical Bulletin �.. The latest generation of the ever-evolving TOGGLER hollow-wall anchor technology... Benefits compared to wing toggles: The SNAPTOGGLE anchor is a heavy-duty hollow- • Holds up to 2x the load wall anchor for use in walls, ceilings, or floors of • Solid metal channel resists vibration & shock materials such as gypsum board, drywall with a steel stud, concrete block, tile over drywall, etc. • Pre-assembled and ready for immediate use The anchor is pre-assembled and ready for immediate • Pre-installs without fixture or bolt use.The ratcheting strap / locking cap assembly positions the one-piece zinc-plated (or stainless) • Installs in a significantly smaller hole steel anchoring channel flush against the rear of • Automatically adjusts to thickness of wall, ceiling, or floor the wall.The cap slides down the straps to lock flush against the front of the wall.The straps on • Does NOT spin—bolt installs with a screw gun the outside of the wall are then easily and quickly • Uses a shorter bolt—no need to carry a wing snapped off by hand flush with the surface of the . New plating is 7 times more corrosion resistant wall (no extra tools required). Holding is dependent only on a metal bolt to metal channel connection. • Does NOT fall behind wall when bolt is removed;fixture The SNAPTOGGLE anchor complies with all can be removed and reinstalled as often as desired existing fire codes for critical applications. ULTIMATE TENSILE PULL-OUT VALUES [Ib] Anchor UNC thread Drill dia. 1/2 5/8" *1/2" with 25 *5/8" with 25 Concrete 1/2" steel Stainless in Drywall Drywall gauge stud gauge stud block plate 1/2" steel3 BA 3/16"-24 1/2" 238 356 412 462 802 918' 1,193' BB 1/4"-20 1/2" 265 356 425 464 1,080 1,2882 1,735' r BE 5/16"-18 3/4" 270 480 439 477 1,400 1,680 2,118 • BC 3/8"-16 3/4" 275 576 466 488 1,745 1,692 2,523' BD 1/2"-13 3/4" 275 576 468 513 **2,0382 2,605 3,150 Failure measured as breakage of drywall portion ULTIMATE SHEAR [Ib] Failure of block Anchor UNC thread Drill dia. 1/2 5/8' 'Stainless steel bolts used Drywall Drywall 2 Hardened bolts used BA 3/16"-24 1/2" 247 298 3 Stainless steel channel tested with stainless bolts in 1/2"steel plate BB 1/4"-20 1/2" 241 324 BC 3/8"-16 3/4" 292 406 • Industry standards recommend 1/4 of ultimate test load. • Holding strength for a SNAPTOGGLE heavy-duty hollow-wall anchor varies directly with the strength and condition of the substrate and the bolt size—and inversely with variations in hole diameter and the distance of the load from the wall. •All figures in pounds.Pull-out values based on independent laboratory tests done according to U.S.Government standards. They should be used as guides only and cannot be guaranteed.The age, condition, and capacity of the substrate must be considered. ms. -'4,,VA.,z, . :' I !i ` Specifications- -- ------ Description—SNAPTOGGLE Heavy-Duty Hollow-Wall Anchors (Toggle Bolts) Material—zinc-plated 1010 cold rolled steel (or 300 series stainless steel) metal channel, high-impact polystyrene straps and handle,translucent polypropylene copolymer cap Screw specification—UNC-thread machine screw (bolt)to match thread in metal channel Minimum screw length—thickness of wall or ceiling +thickness of item being fastened + 1/2" Minimum clearance behind wall— 1'/a" Minimum drywall thickness— 3/8" Also available: • Maximum drywall thickness—35/8" for BA& BB anchors •metric-threaded channels[M5, M6, M8&M10] 21/2" for.BC, BD & BE anchors •RoHS-compliant channels 91/2"for BAL& BBL anchors •stainless steel channels The plastic straps and cap washer are positioning and retention elements only.They do not otherwise function as anchoring elements. Holding is dependent only on a metal bolt to metal channel connection. The SNAPTOGGLE anchor complies with all existing fire codes for critical applications. 1 a=anchoring channel/ d c b a zinc-plated cold rolled steel or 300 series stainless steel ������ � / b=straps/high-impact polystyrene/locking ratchet � ;; _ c=cap/translucent polypropylene copolymer '�� 1V6T'". ...,_._.__.________ ullimi O `r� d=ergonomic handle/same as straps Code Bolt thread Drill Diameter Grip Range BL =T +W + 1/2" BA 3/16"-24(#10-24) 1/2" 3/8" -3%" [For min.W & max. W., BB 1/4"-20 1/2" 3/8" 35/8" see "Grip Range" at left] BE 5/16"-18 3/4" 3/8"-2'/z' BL > C BC 3/8"-16 3/4" 3/8"-21/2" BD 1/2"-13 3/4" 3/8"-21/2" TW BAL* 3/16"-24(#10-24) 1/2" 2"- 9'h" BBL* 1/4"-20 1/2" 2" - 9'/2" + / , The same product codes with an"S"at the end indicate stainless steel,e.g., / :' BB= 1/4"-20 thread in the zinc-plated channel •Long straps(L)for roofing and for ��.'" BBS=1/4"-20 thread in a stainless steel channel very thick walls or ceilings I '` • •Gently hand engage at least one thread of bolt with channel before using screw gun 1' i1 �IONS ; to avoid cross threadingthe bolt. •For maximum shear holding,orient channels vertically to floor. �'� • •Use hardened or stainless bolts for maximum weight load. /r •Enlargement of specified insertion holes size will reduce anchor effectiveness. •Remove anchor by removing bolt, inserting screwdrive and popping channel behind "� wall off plastic straps with a sharp blow. •All SNAPTOGGLE anchors meet the requirements of Type V anchors in Federal C = 1 Ig" Specification FF-B-588-D (superseded). •All bolts and threaded rods used with SNAPTOGGLE anchors must meet ANSI or HR 3000 standards to ensure safety and effectiveness. , s �z r..5es" _ ## lre roR E g' i" Drill appropriate size hole.Hold metal Hold ends of straps together between Place thumb between straps at wall. Place item over flange.Insert bolt and channel flat alongside plastic straps& thumb&forefinger and pull toward you Push thumb side to side,snapping off tighten until snug against item,then stop. slide channel through the hole. until channel rests behnd wall.Ratchet straps level with flange of cap. Use machine screw or bolt to match Minimum clearance behind wall: cap along straps with other hand until thread in metal channel. only 17/e". flange of cap is flush with wall. 2 an . • Flat panel TV's • Hand rails • Partitions • Sinks •TV mounts • Grab bars • Cabinets • Heavy fans • Lighting fixtures • ADA hardware • Shelving • DSS antennas • Window treatments • Office furniture • Solar panels • Reinstallations • Marine applications • Heavy machinery • Garage doors • Roofs & decking • Cinder block •Tile over drywall • Greenboard • Plywood • • Concrete block • Plasterboard • Plaster • Steel plate `• Gypsum board • Composite panels • Stucco • Plastic • Drywall • Cement board • Fiberglass • Wood studs / beams • Strong—up to 2x the load of an old-fashioned wing toggle • Solid metal channel resists vibration and shock o bolt is centered in channel and positioned for precise installation o bolt threads never touch interior surface of hole and so can't saw through substrate • Save time—at least 6 minutes per anchor versus wing toggles • Can use a screw gun—anchor does not spin • Save money—turn a 2-person job into a 1-person job • Use a shorter bolt—no need to carrry a wing through the wall • New, patented strap design with sturdier straps and smaller ratchet interval: o adjusts more precisely and snaps off flush to wall, ceiling, or floor o does not break prematurely ° pushes aside insulation • Smallest installation hole for each bolt size— . ° maintains integrity of wall, ceiling, or floor, strengthening the anchoring o ends the need to patch an oversized hole [a 1/4" wing toggle requires a 3/4" diameter hole: 50% larger than the 1/2" diameter hole used by the 1/4" SNAPTOGGLE anchor] • New plating is 7x more corrosion-resistant than B633-85 Type III/SC 1 government spec high quality zinc plating [350 hours to red rust in salt spray test versus only 48 hours for government spec] • Pre-installs without the bolt to make handling of fixture easier • Reusable in the same hole—remove the bolt without losing the anchor • New ergonomic design—fingers grip straps more naturally and more easily with no slipping TOGGLER° TOGGLER Anchor System 800.544.2552 Toll-Free .SPC • Pq�•- .� F Z. ANCHOR SYSTEM Div. of Mechanical Plastics Corp. 914.347.2727 Phone •c,� �I�� t t 'i" ,��'�I mili P.O. Box 554 914.347.3634 Fax ;o rr. 444 Saw Mill River Road info@to ler.com Y_VV`k,m g9 Elmsford, NY 10523 USA www.toggler.com TOGGLER and typeface,logo symbol,and SNAPTOGGLE are wordiwide regisatered trademarks of Mechanical Plastics Corp.BA,BB,BC,BD,BE,BAL.BBL,BAS,BBS,BCS,BDS,BES,BALS.BBLS, BMS,BM6,BMB,BM10,BM5L,BM6L,BM5S,BM6S,BM8S,BM10S,BM5LS,and BM6LS are worldwide trademarks of Mechanical Plastics Corp.U.S.Patent no.7,144,212 and foreign counterparts thereof.Other patents pending.©2008 Mechanical Plastics Corp. SNAPTECH0408 S'.(NA` SliptrackSystems Construction Detail 2 1/4 IL a II1 IL , a'O.C. ., ,/.� 00,000 2 h�2" / -` IN 00''` '0 OR 0.14455'}EAD x1 POWER ACTUATED FASTENER U 12 0.C. (MN.) it'"�„�'I' - y REFERENCE FASTENER MANUFACTURER IMO FOR FASTENER aw J C'APACT Y OR PER ENGINEER OF RECORD : ` „N `,�$t g ��rf�401* 1 ^ If 1w Er TO 12' O.C. �-. v '�0 STAGGER. 1YP t�e �eyeljeelle I I 3! 'tc .;' r , It v ¢ \_� r ele ejeje1 UUU / �� F O J yi�f SET. E f'l,W e'�j1,'�• ii - OF SLOT ... �"<, e„N$ n J 0 `l , f4. HEAD OF WALL HORIZONTAL SLOTTED TRACK (OPTIONAL) MR.TO MTt.CONNECTION STANDARD OPTIONAL — PER ENGINEER OF RECORD HORIZONTAL SLOI I ED SLIDING CONNECTION — CBC 2001 Vol. 2 0 File Code - Date: 10/15/04 fu ;TM Trade-Friendly Products. 1 888 4SLPTRK [1-888-475-7875] www.sliptrack.com 5 % SliptrackSystems Submittal Sheet Nor Project: Architect: Spec. Ref.: Section [09110] [09111] [05400] Date: Sheet Title: Assembly Components: MTL to MTL Connection Standard Head-of-wall Track: / ,•• • Head of Wall Horizontal Slotted Track • Manufacturer: SlipTrack Systems �:.• 1`"'AR 4; ' • Model: SLP-TRK° / t' Optional %4 I./«. • Material: minimum 25 ga steel, Product: SLP TRK° slotted `Alit, ,;- Manufacturer: SlipTrack Systems • Width: to match steel stud • US Patent No. 5,127,760 Description: SLP-TRK Standard Detail SLP-TRK®Brand Slotted Top Track. Notes: • All connections to the structure shall Deflection - 1 inch be approved by the project engineer of record. 'r -'' , y 0o'` 2112" 4 * 1 t .,e:•-.- -''"'. 18 WAFERHEAD FRAMfNG SCREWS 0 12`ac. (MIN.) �'r/ a111. ' 11 OR 0.145'x9'POWER ACTUATED FASTENER 0 12'O.C.(MIN.) * ' R�FASTENER MANUFACTURER ICCO FOR FASTENER f 0';', CAPACITY OR PER ENGINEER OF RECORD �+,� �� j ' '` '� 1, / � or 8`TO t2"O.C. \, ,--'f °' 1 s - STAGGER, TV 1 lU3 f �11V -4' 0.0. I �a.41 D OF SLOT , fi lUi 11j1- �; [ , 35/8"-8` �t,4 I) tit File Code - Date: 10/15/04 M 1-888-4SLPTRK [1-888-475-7875] fir Trade-Friendly Products. p www.sli track.com wog SliptrackSystems Construction Detail • 18 SCREW (1w-) NO a [j s- Aiju CUT TRACKS AND INTERLOCK SPUCE g g INTERLOCK SPLICE DETAIL 14 MIL TO MTh CONNECTION STANDARD 01*a File Code - Date: 10/15/04 M 1-888-4SLPTRK [1-888-475-7875] Y Trade-Friendly Products. www.sliptrack.com S K SliptrackSystems Submittal Sheet Nor Project: Architect: Spec. Ref.: Section [09110] [09111] [05400] Date: Sheet Title: References: Notes: MTL to MTL Connection Standard • UL-2079 Cyclical Design • All connections to the structure shall R Interlock Splice Detail. • ICBO ER-5344 be approved by the project engineer • OSHPD R-0371-Fixed Equip. Anchorage of record. Product: SLP-TRK® • LA City No. RR25344 • • NY City- MEA 285-01-M ��psw/ Manufacturer: SlipTrack Systems • UL-R19236 I U0 L Description: Assembly Components: SLP-TRK Standard Detail Head-of-wall Track: .. SLP-TRK®Brand Slotted Top Track. • Manufacturer: SlipTrack Systems /,••• • Model: SLP-TRK° /°!t 4 "Si 1 gr Deflection - 1 inch • Material: minimum 25 ga steel, � /r"' slotted ` • Width: to match steel stud �l '� /it,. cA •y ` • US Patent No. 5,127,760 #8 SCREW I 0' .., ..- ..„-- iluk, ,„-ot„'',„-- -,-- ,g,, vij ii B 11 l>1. Ij 4 .� I�' "'\, X1111 yc '` 11111 / 11111 / 11111 ijnu , - 1/11 [ ,f ill ,, n, ii 1 l'�111 ���� a h°`i CUT TRACKS 11 u AND INTERLOCK SPLICE g U 14 a File Code -Date: 10/15/04 ` P M' 1-888-4SLPTRK [1-888-475-7875] a ra:..) Trade-Friendly Products. www.sliptrack.com sift SliptrackSystems Construction Detail 4" i i [1_0 0_13 v V *-Gap 1/2 Inch Maximum Varies Systems , Slp—Trk Brand Slotted Track 16 Ga. x4 Inch Long .1; 1t Stud Shoe Or Flat Plate 1 To Fit Inside Track Web Attach With Four (4) 118 Wafer Head Framing Screws Splice Detail (Optional) MTh TO MTL CONNECTION STANDARD 14 sor File Code - Date: 10/15/04 CoiTM / / Trade Friendly Products. 1-888-4SLPTRK [1-888-475-7875] • www.sliptrack.com s.PTRK SiiptrackSystems Submittal Sheet v Project: Architect: Spec. Ref.: Section [09110] [09111] [05400] Date: Sheet Title: References: Notes: MTL to MTL Connection Standard • UL-2079 Cyclical Design • All connections to the structure shall Splice Detail Optional • ICBO ER-5344 be approved by the project engineer • OSHPD R-0371-Fixed Equip.Anchorage of record. Product: SLP-TRK • LA City No. RR25344 Manufacturer: SlipTrack Systems • NY City MEA 285 01 M �� c�pssryFo • UL-R19236 0 ' uL Description: Assembly Components: SLP-TRK Standard Detail Head-of-wall Track: SLP-TRK®Brand Slotted Top Track. • Manufacturer: SlipTrack Systems • Model: SLP-TRK® �� aww•y� Deflection - 1 inch • Material: minimum 25 ga steel, ///� r' f♦ slotted �� �; ' • Width: to match steel stud 4r,... ;; lt, ch Ai • US Patent No. 5,127,760 4• i i [1 1_10 1 4 [i [1 -Gap 1/2 Inch Maximum f Varies SlipTrack Systems • Sip—Trk Brand ,�������������� Slotted Track 1� '1 �� it 16 Ga. x4 Inch Long ti 11 Stud Shoe IL J Or Flat Plate I To Fit Inside Track 1 Web Attach With Four (4) #8 Wafer 14A Head Framing Screws a File Code - Date: 10/15/04 / / TM 1-888-4SLPTRK [1-888-475-7875] i Trade-Friendly Products. www.sliptrack.com Sli tracks stems Construction DetailNor 1/4 • kJ} [1 [i • N \ • w SIDE VIEW VARIES (3W—$) z -� frillidil„.00-111)14 PI FRAMING SCREWS-WAF AD I (T` METAL STUD STUD WALL 1 WIDTH VARIES HEAD OF WALL ISOMETRIC AND SECTION DETAIL (STANDARDS) kin,.TO In.CONNECIlati SWARD Figure 1— SLP—TRK Slotted Top Track — Stud to Track Connection 0 46- File Code - Date: 10/15/04 r TM Trade-Friendly Products. 1-888-4SLPTRK [1-888-475-7875] www.sliptrack.com SK SliptrackSystems Submittal Sheet Project: Architect: Spec. Ref.: Section [09110] [09111] [05400] Date: Sheet Title: References: Notes: MTL to MTL Connection Standard • UL-2079 Cyclical Design • All connections to the structure shall Head of Wall Isometric and Section • ICBO ER-5344 be approved by the project engineer Detail Standards. • OSHPD R-0371-Fixed Equip. Anchorage of record. • LA City- No. RR25344 • NY City- MEA 285-01-M ��pssif,�o Product: SLP-TRK® • UL R19236 t Manufacturer: SlipTrack Systems U` Assembly Components: Description: Head-of-wall Track: SLP-TRK Standard Detail • Manufacturer: SlipTrack Systems ..• SLP-TRK®Brand Slotted Top Track. • Model: SLP-TRK® /''. '44' '�i ' • Material: minimum 25 ga steel, /// ;)a.41/ Deflection - 1 inch slotted '� "' 1`` • Width: to match steel stud `r'4�sNtcolvv` • US Patent No. 5,127,760 gyp) �or,) ,C\ �� p '° 0$% �J,�`�SCREWS/RO 11r i[i X1'2`--{ .- r [1 [1 METAL SKID _ - I SIDE NEW / STUD Wim' I OTO VM S HEAD OF WALL ISOMETRIC AND SECTION DETAIL (STANDARDS) 14Th TO 14Th CONNECTION STANDARD Figure 1— SLP—TRK Slotted Top Track — Stud to Track Connection a File Code - Date: 10/15/04 TM 1-888-4SLPTRK [1-888-475-7875] re, Trade-Friendly Products. www.sliptrack.com DROP-IN SIMPSON StrongTie Internally Threaded Expansion Shell Anchor emc aimEm6 Drop-in anchors are internally threaded deformation controlled expansion anchors with a preassembled expander plug,suitable for flush mount applications in solid base materials. ;,, - The anchor is set by driving the expansion plug towards the bottom of the anchor using the !'; setting tool.Drop-in anchors are also-available in coil-threaded versions for 1/2"and 3/<"coil ` g 1 threaded rod. The 3/e'Short Drop-In Anchor(DIA37S)is an internally threaded drop-in anchor for use ins, 1 solid and hollow concrete.The short length permits shallow embedment,thus avoiding drilling into rebar or prestressing strands.The wide surface flange allows the DIA37S to be installed in deep or bottomless holes. • MATERIAL: Carbon and stainless steel(DIA37S available in zinc plated carbon steel only). Short Drop-In FINISH: Carbon Steel:Zinc plated. F (Model DIA37S) INSTALLATION: •Drill a hole in the base material using a carbide tipped bit the same diameter as the nominal diameter of the anchor to be installed.Drill the hole to the specified embedment depth plus�/2"to allow room for the dust to settle.Alternatively,drill the hole to the Drop-In 3/4' 0 { specified embedment depth and blow it clean using compressed air.Overhead (19.1 mm) installations need not be blown clean. Caution:Oversized holes will make it difficult 4 Eilii—7 wit,to set the anchor and will reduce the anchor's load capacity. 112' 5/5' *Insert anchor into hole.Tap with hammer until flush against surface. (12,7mm) (15.9mm) •Using the Drop-in setting tool,drive expander plug towards the bottom of the i } anchor until shoulder of setting tool makes contact with the top of the anchor. Sort Drop-In CODES: ICBO ER-3631;City of LA.RR24682;Dade County,FL 01-0820.06; Dimensions Dfinensfans Factory Mutual 1M6AO.A1-1;Underwriters Laboratories File Ex3605.Meets requirements of Federal Specifications A-A-55614,Type I. Short Drop-In:Factory Mutal 1M6AO.AH&Underwriters Laboratories File Ex3605, The Load Tables list values based upon results from the most recent testing and Installation Sequence may not reflect those in current code reports.Where code jurisdictions apply, (Short Drop-In similar) consult the current reports for applicable load values. TEST CRITERIA: The Drop-in anchor has been tested in accordance with ICBO's P.%.5'''''.;(4, ••p, "ate:. a ': g ai Acceptance Criteria for Expansion Anchors in Concrete and Masonry Elements'(AG01). ICBG report ER-3631 recognizes the Drop-In anchor for the following: 4 as Pa .-1.-,7. 9ro o°F •Seismic/Wind Loading ao� , oi27. a . •Combination Tension and Shear Loads ` •Critical and Minimum Edge Distance and Spacing SUGGESTED SPECIFICATIONS: Drop-In anchors shall be internally threaded,expanding shell anchors.The anchor shell shall be zinc plated carbon steel with a minimum 70,000 psi The anchor is felt' zexpanded when the z )- tensile strength,type 303 or 316 stainless steel,as called for on the drawings.Drop-In anchors shoulder of the selling a shall meet Federal Specification A-A-55614,Type I.Anchors shall be Drop-Ins from Simpsontool makes contact with < Strong-Tie,a. ,Dublin,CA.Anchors shall be installed following Simpson Strong-Tie's instructions the top otthe anchor. o " for Drop-Ins. u Material Specifications N3 0 — Component Material Anchor ; _ �_ ____-- — — - _ o C Zinc Plated Type 303 Type 316 ; �" `° Component , , z g _ Carbon Steel I Stainless Steel ; Stainless Steen.. m o Anchor Meets minimum I AISt 303.Meets chemical Standard Setting Tool . Body 70,000 psi tensile I requirements of ASTM A-582 Type 316 a Expander Meets minimum A3St 303 Type 316 Drop-In Setting Tool Product Data m Plug 50.000 psi tensile — n S i Madel For use _Thread UNC 2B/Gciil Thread _ UNC 2B Type 316 No. I with Box lily Cil S 1. Zinc plating in accordance with ASTM 8633.Service Condition SCI,Type III. t__ E 2. DIA37S,DIA50C and DIA75C are not available in stainless steel. DIAST25 DlA25 1 C ,r, v DIAST37 T DIA37� i 10 T o Drop-In Product Data _ __ DIAST50 D1A50,DIA50C 10 Size I Carbon 3113 316 1 Drill Bit Bolt Body Quantity DtAST62 DIA63 . : __ '5 . (in) i Steel 'Stainless Stainless , Diameter Threads Length DIAST75 DiA75,DIA75C 5 Model Ho. Model No, Model No. (in) (per i (in) Box Gin 1/4 _ DIA25 DIA25SS 1 D1A25SSS 3/8 20 1 100 500 1. Setting Tools sold separately except for DIA37S. 318 DIA37 01A37S8 DIA376SS 1/2 16 1 1/2 50 250 DIA37S' - 1/2 16 3/4 100 500 1/2 DIA50 DIA5OSS DIA506SS 5/8 13 2 50 200 5/8 DIA62 DIA62SS 7/8 • 11 2 1/2 25 100 3/4 DiA75 DIA75SS - 1 10 31/8 20 80 1.A setting tool is included with each box 1/2 DIA50C2 - 5/8 6 2 50 200 of the DIA37S. 3/4 DIA75C? - 1 5 31/8 20 80 2.DIA50C and DIA75C accept+/2"and W coil thread rod, -__ - respectively, 2.. iO4M sinrmsoN Stx or gTie DINCNON SYSTEMS Internally Threaded Expansion Shell Anchor Tension Loads tor Drop-In Anchors in Normal-Weight Concrete Tension Load Size Drill Bit : Embed. Critical Critical • in. Dia. Depth Edge , Spacing t'c>=2000 psi(13.6 MPa) t'e>=3000psi t'c>=4000 psi(27.5 MPa} (mm) in. in. Dist In, Concrete (203 MPa)Concrete Concrete (mm) in. (mm) Ultimate Std.Dee, Allow. Allow. Ultimate Sid.Dev. Afilow, {mm} lbs.(kit) lbs.(kN) lbs.(tN) lbs.(kN) lbs.(tN) lbs.{1N) lbs.(kN} 1/4 3/8 1 3 4 1,400 201 350 405 1,840 451 46D • 6.4 (25 76, 1 02 (6.2] /0.9) (1.6) ,/1.8) (8.2) (2.0) (2.0) 3/8 112 1 1/2 4 1/2 6 "E 2,400 251 600 795 3,960 367 990 (9.5) l 38 114 1521_ 10.7 1.1 12.7) (3,5) (17.6) (1.6) /4.4) 1122 6 8 3,320 372 830 1,178 6,100 422 1,525 (12.7k 518 51 (152) (203) fl4.8) (1.7 (3.7 (5.2) (27,1) (1.9) {b.8� 5/8 7/8 2 1/2 7 1/2 ; 10 5,040 689 1,260 1,715 8,680 971 2,170 _115.9 64 I 191 254) (22.4 3.1 5.6 (7. (38.6) 14,3) _9.7Lr 3/4 1 3 9 12 8,160 961 2,04D 2,365 10,760 1,696 2,690 19.1 _ (76 229J___1305_) -(36.3 (4.3 _(_9 1) (10.5) (47.9) (7.5) (12.0) 1.The allowable loads listed are based on a safety factor of 4.0. 2.Allowable loads may be increased by 331/3 for short term loading due to wind or seismic forces. 3.Refer to allowable load adjustment factors for edge distance and spacing on page 107. 4.Allowable loads may be linearly interpolated between concrete strengths listed. 5.The minimum concrete thickness is 11/2 times the embedment depth. Shear Loads for Drop-in Anchors in Normal-Weight Concrete Shear Load Size Drill Bit Embed, ` Critical Critical in. Dia. Depth Edge Spacing ft>=2000 psi(13,8 MPa). t`c>=3000 psi 1'e>=4000 list (mm) I in. in. Din. Concrete (20.7 MPa}Concrete (27.6 MPa)Concrete (mm) in. (mm) Ultimate 'Std.Des. Allow, Allow. Allow. (mm} lbs.(Jill) lbs.(kN) lbs.(kN) lbs.()(N)' . lbs.(eN) 1/4 1 31/2 4 1,960 178 490 490 490 6.4 3/8 (25) _1_8_91_ 1112 (8.7) _ (0.8) (2, ) (2 (2.2) 3/8 1/2 f 1 1/2 5 1/4 6 3,240 351 810 925 1,040 - 9.5 38 13_31_ (152) (14.4 (1.6) (36) 4.i - 14.6) 1/27 8 7,000 562 1,750 1,750 1,750 12.7 5l8 178) 1203) (31.11 (2.5 7.8 ( $) (7.8) 6/8i 2 1/2 8 3/4 10 11,080. 923 2,770 2,770 2,770 15.9 7/$ (', (64) (222,) (254) (49.,?L__(4.1) (12.3) w (12.3) (12.3) o 3/43 10 1/2 12 13,800 1,781 3,450 3,725 4,000 19.1 1 (76) (26_7_)_ 1.The allowable loads listed are based on a safety tactor of 4.0. 2.Allowable loads may be increased by 16%for short term loading due to wind or seismic forces. 3.Refer to allowable load adjustment factors for edge distance and spacing on page 107. o 4.Allowable loads may be linearly interpolated between concrete strengths listed. 5.The minimum concrete thickness is 1/times the embedment depth. C p U 105 DRop„„iiN S:MPSON. Strang-Tie Internally Threaded Expansion Shell Anchor ASY Tension and Shear Loads for 3/9"Short Drop-In Anchor(DIA37S) in Normal-Weight Concrete and Hollow Gore Concrete Panel Size Drill Bit Embed, Tension Shear Critical in. Dia. Depth Critical Critical Spacing Tension Load Shear Load (mm) in. in. Edge Dist. Edge Dist. in. (mm) in. in. (mm) intimate Std.Dee. Allow. Ultimate Std.Dee. Allow. (mm) (mm) lbs.(#N) lbs.{1(N) lbs.(1(N) lbs.(IN) lbs.(1(N) lbs.(1(N) Normal-Wei ht Concrete,f`c>=2000 psi(13.8 MPa)_ 3/8 3/4 41/2 5 1/4 3 1,948 94 486: 2,274 374 570 9.5) 112 19 (114) (133) (76) > (8.7) (0.2) 2.2' 10.1 (1.7) 2.5 Hollow Core Concrete Panel,i c>=4000psi X27.6 M a 3/8 1/21 3/4 1 4 1/2 5 1J9 3 2,701 344 675 3,308 ' 210 825 L (19)_ 111 -(133) j761 Ai2.0) (1.5) ,(3 141 0.9 3.7 1 The allowable loads listed are based on a safety factor of 4.0. 2.Allowable loads may not be increased for short term loading due to wind or seismic forces. 3.Refe[to allowable load adjustment factors for edge distance and spacing on page 107. • � a o 3 0�° a' 4 O O �_o 0 a 0 yy m � o ° . 4 O f r v Hollow Core Concrete Panel (Anchor can be installed below web or hollow core) Tension and Shear Loads for Drop-In Anchors in Lightweight Concrete on Metal Deck I Tension Load ShearLoad - Size Drill Bit Embed. Tension Shear Critical (install through Metal Deck) (Install through Metal Deck) j in. Dia. Depth Critical Critical Spacing l's>=3000 psi,(20.7 MPa) is>=3000 psi(20.7 MPa) o (mm) . in. in, ' Edge;Dist. Edge Dist. in. Concrete Concrete (film), mm) in. in. (mm) Ultimate Std.Dev.i Allow. I Ultimate Std.Dev. Allow. {mm) {rnm) lbs.(1(N) lbs.(kN) lbs.(1N)�lbs.(1N) lbs.(i(N) lbs.(1N) 3/8 1 1/2 6 7 8 3,000 367 750 2,400 187 600 (9.5) ilz (38) L152) (178 (203) X1333) X1.6 (3.3) (10.7) . (0.8) (2.7) t/2= 5 2 8 9 3/8 10 5/8 .3,580. 861 895 5,600 200 1,400 (12.7) (51 _(203) , (238) 270 15.9 3.8 (4.0)= J24,p_)_ (0.9) (6.2 1.The allowable loads listed are based on a safety factor of 4.0. 2.Allowable loads may not be increased for short term loading due to wind or seismic forces. 3,Refer to allowable load adjustment factors for edge distance and spacing on page 108. 3 0 sn Light Weight Concrete _ On Metal Deck. • 20 Gauge Drop-1n Metal Deck Shown 106 SIMPSON DROP-IN StrongTate » oasYgYa .. Technical Information Load Adjustment Factors for Drop-in Anchors in Normal-Weight Concrete: • Edge Distance and Spacing,Tension and Shear Loads Load adjustment factors for critical and minimum edge distance and spacing have been determined by testing. The following tables have been created using linear interpolation. • How to use these charts: 4.The load adjustment factor(fc or fs)is the intersection of the row 1.The following tables are for reduced Edge Distance and Spacing. and column. 2. Locale the anchor size to be used for either a tension and/or 5. Multiply the allowable load by the applicable load adjustment factor. • shear load application. 6. Reduction factors for multiple edges or spacing are multiplied together. 3.Locate the edge distance(Caci)or spacing(Satj)at which the anchor is to be installed. Edge Distance Tension(lc) Spacing Tension and Shear(fs) Edge Size 114 3/8 1/2 5/8 3/4 Size 1/4 3/8' 3/8 1/2 5/8 3/4 Dist. C„ 3 41/2 6 71/2 9 Embed 1 3/4 11/2 2 21/2 3 Cast Cngn 1 3/4 2 5/8 31/2 4 3/8 51/4 S„, Sc, 4 3 6 B 10 12 (in) ixin 0.65 0.65 0.65 0.65 0.65 (in) mStern 2 11/2 3 4 5 6 1 3/4 0.65 tsmm 0.50 0.50 0.50 0.50 0.50 0.50 2 0.72 11/2 0:50 21/2 0.86 20.50 0.67 1 L 2 5/8 0.90 0 65 2 1/2 - _ 0.63 0.83 l 3 1.00 0.72 3 0.75 _1_110 0.50 31/2 0.81 0..65 31/2 :: 0.88 i 0.58 4 0.91 0.724 - 0.67 0.50 4 3/8 0.98 077 0.65i 4i 4 1/2 � -_ 0.75 0.56 1 41/2 i '.OQ 0.79 0.66 5 T_ -] __ 0.83 0.63 ' 0.50 . - 5 _j 0.86 0.72 _ 5 1/2 1 i 1 0:92 0.69 0.55 51/4 --1 1 0.90 0.75 0.65 6 I i 3 1.00 0.75 0.60 0.50 51/2 0.93 0.78 0.677 � 1----- 10.68 0.70 0.58 6 1 00 0.83 0.72 8 I -11.Q0 0.80 0.67 61/2 0.89 0.77 g t 1_____I 0.90 0.75 7 I 0.94 0.81 10 7 '_ £ - 1.00 0.83 71/2 T I 1 1.00 0.86 11 1_ -- i 0.92 8 i r 0.91 12 1 _l >1 1 1 1 1.00 81/2l 1.Sad=actual spacing distance at which anchors are installed(inches). 9 - I_ 1 jwµµj 11.00 2.Sr=critical Spacing distance for 100%load(inches). " See Notes Below 3.Sins,=minimum spacing distance for reduced load(inches). 4.fs=adjustment factor for allowable load at actual spacing distance. . 5.fscr=adjustment factor for allowable load at critical spacing distance. Edge Distance Shear(fc) Esc,is always=1.00. 6.icmin=adjustment factor for allowable load at minimum spacing distance. Edge Size 1/4 3/8 1/2 5/8 3/4 7.fs=fsrmn+[(1-icmin)(Sacs-Smin)/(Scr-Sin*)]. iT Dist. Cc, 31/2 51/4 7 8 3/4 101/2 *%"Shod Drop-In(01A37S) Can C, n 13/4' 2 5/8 3112 4 3/8 5 1/4 (1n) icmin 0.45 .45 0.45 0.45 0.45 z 1 3/4 1 0.45 _ co c 2 0.53 l h 3 1Fii' 21/2,' -S 0.69 .i___r_ 25/8 073 0.45 1 c' 3 0.84 0.53 31/2 1,00 0.63 0.45 4 0.74 0.53 Ni 4 3/8 0.82 0.59 0.45 8 41/2 1 0.84 0.61 0.47cJi 5 0.95 0.69 0.53 1 51/4 1.00 0.73 0.56 0.45 6 5'1/2 0.76 0.59 0.48 8' 6 0.84 0.65 0.53 i 61/2 1 1 0.92 0.72 0.58 7 J 1.00 0.78 0.63 71/2 j 0;84 0.69 8 j _~ 0.91 0.74 81/2 �� F" 0.97 0.79 t.Cacr=actual edge distance at which anchor is installed(inches). 8 3/4 1.00 0.82 2.Cu=critical edge distance for 100%load(inches). 9 ' 0.84 3.Ceara=minimum edge distance for reduced load(inches). 91/2 0 90 4 fs=adjustment factor for allowable load at actual edge distance. �- 5.t¢r=adjustment factor for allowable load at critical edge distance. f,sr is always=1.00. 10 I 0.95 6.fpniii=adjustment factor for allowable load at minimum edge distance. 101/2 1.00 7.fc=fomm+[(1-isatin)(Gam Gmin)/(Car-Drain)]. 107 DROP-INSIMPSON Strong-Tie Technical Information ANCHOR SYSTEMS Load Adjustment Factors for Drop-in Anchors in Lightweight Concrete; Edge Distance and Spacing,Tension and Shear Loads Load adjustment factors for critical and minimum edge distance and spacing have been determined by testing. The following tables have been created using linear interpolation. • How to use these charts: 4.The load adjustment factor(fe or fs)is The intersection of the row 1.The following tables are for reduced Edge Distance and Spacing: and column. 2.Locate the anchor size to be used for either a tension and/or 5.Multiply the allowable load by the applicable load adjustment factor. shear load application. 6.Reduction factors for multiple edges or spacing are multiplied together. 3. Locate the edge distance(Cast)or spacing(Sea)at which the anchor is to be installed. Edge Distance Tension(f5) Spacing Tension and Shear(1s) Edge Size - 3/8 1/2 Size 3/8 1/2 Dist. Cer 6 8 Sati Ser 8 10 5/8 C'aci £mon 31/2 43/4 (in) smin 4 .51/4 (in) fsmin 0.65 0.65 (Emir 0.50 0.50 31/2 0.65 4 0.50 4 0.72 41/2 0.56 41/2 0.79 5 - 0.63 43/4 0.83 0.65 51/4 0.66 0.50 5 0.86 0.68 6 0.75 0.57 51/2 0.93 0.73 61/2 0.81 0.62 1 6 1_ j 1 00 0.78 7 0.88 0.66 61/2 1 0,84 71/2 0.94 0.71 7 0.89 8 1.00 0.76 71/20.95 81/2 0.80 , 8 , _ 1.00 9 . 0.85 See Notes Below 9112 0.90 10 0,94 10'5/8 1.00 Edge Distance Shear(fc) 1.Sao=actual spacing distance at Edge Size 3/8 1/2 which anchors are installed(inches). e,=criticalDist. C„ 7 9 3/8 2.1100%toad(incches)distancesfor C Dim, 31/2 4 3/4 3.Smin=minimum spacing distance } (in) fcmtn 0.45 0.$5 far reduced load(inches). 4,is=adjustment factor for allowable 31/2 0.45 load at actual spacing distance. 0 4 0.53 5.fscr=adjustment factor for allowable 41/2 0.61 load at critical spacing distance. 4 3/4 0.65 0.45 fscr is always=1.00. 6.ft.*,=adjustment factor for allowable 5 0'69 0.48 load at minimum spacing distance. 51/2 0.76 0.54 7.is=fsm,n+[(1-fsmin)(Sur-S.44I 6 1 0.84 0.60 (Scr Smn)). 61/20.92 0:66 7 '_1 1 00 0.72 7.1/2 1 0.78 8 i _ 0.84 8 1/2 3_ 0.90 9 'Ili 0.96 9 3/8 "1 1.00 00, 1 Gast=actual edge distance at which anchor is installed(inches). • 2.Cs,=critical edge distance for 100%load finches). 3.Cmin=minimum edge distance for reduced load(inches). 4.fc=adjustment factor for allowable load at actual edge distance. 5 fccr-adjustment factor for allowable load at critical edge distance. fccr is always=1.00. 6.fcrr,in=adiustmentfactor for allowable load at minimum edge distance. 7.Ic=Iccac+[(1-femin)(Cast-Gm+)/ (Cci-Cmmn)l. 108 ��'7. SIMPSON Simpson Strong Tie=Anchoring and Fastening Systems for Concrete and Masonry ,a14v,.. , Titen HD® Heavy-Duty Screw Anchor 1 Strong-Tie The original high-strength screw anchor for use in cracked and uncracked concrete,as well as uncracked masonry.The Titen HD®offers low installation torque and outstanding performance. Designed and tested Cracked ;, in dry,interior,non-corrosive environments or temporary outdoor applications,the Titen HD®demonstrates Concrete_ industry-leading performance even in seismic conditions. CODE USTED J ".. Features • Code listed under IBC/IRC in accordance with ICC-ES AC193 for ; cracked and uncracked concrete per ICC ES ESR 2713 '' r • Code listed under IBC/IRC in accordance with ICC-ES AC106 for Grp ;- masonry per ICC-ES ESR-1056 t • Qualified for static and seismic loading conditions • Thread design undercuts to efficiently transfer the load to the base -0material • Standard fractional sizes . Q • Specialized heat-treating process creates tip hardness for better cutting without compromising the ductility •.No special drill bit required—designed to install using standard-sized '" V Cti ANSI tolerance drill bits '_ • Testing shows the Titen HD®installs in concrete with 50%less torque Cti than competitor anchors , .0 • Hex-washer head requires no separate washer and provides a cleanfit r;,,,, , 0 installed appearance C • Removable—ideal for temporary anchoring(e.g.,formwork,bracing) C or applications where fixtures may need to be moved(reuse of the f anchor to achieve listed load values is not recommended) Codes:ICC-ES ESR-2713(concrete); ICC-ES ESR-1056 Titen HD® NEW 1/4"Titen HD® (masonry); City of L.A. RR25741 (concrete),RR25560 Screw Anchor Screw Anchor (masonry); Florida FL-15730.6;FM 3017082,3035761 and U.S.Patents 5,674,035 ` U.S.Patents 5,674,035 3043442; Multiple DOT listings and 6,623,228 7 and 6,623,228 Material:Carbon steel Serrated teeth on the tip of the Titen HD®screw anchor facilitate cutting and Coating:Zinc plated or mechanically galvanized reduce installation torque. • Installation o z r. Holes in metal fixtures to be mounted should match the diameter specified in the table below. Q Use a Then HD®screw anchor one time only—installing the anchor multiple times may result in excessive thread wear and reduce load capacity. 0o Ez Do not use impact wrenches to install into hollow CMU. w ElCaution:Oversized holes in base material will reduce or eliminate the mechanical interlock of the threads with the F base material and reduce the anchor's load capacity. o 1.Drill a hole in the base material using a carbide drill bit the same diameter 2.Insert the anchor through the fixture and into the hole. v~, as the nominal diameter of the anchor to be installed.Drill the hole to the o specified embedment depth plus minimum hole depth overall(see table 3.Tighten the anchor into the base material until the hex-washer head d contacts the fixture. below right)to allow the thread tapping dust to settle,and blow it clean 0 using compressed air.(Overhead installations need not be blown clean.) o Alternatively,drill the hole deep enough to accommodate embedment depth and the dust from drilling and tapping. E Installation Sequence Additional Installation Information Titen HD Recommended Min.Hole .:p e. DiWrench Size ameter (in) Fixture Hole Depth Overdrill I i' I ' i (in.) Size(in.) (in.) q. • go 0 c R' • Oc° q -,,,,10, ® ° c 20, 1 1 �� `J _ pC° C Do O°Oo 1 �q� O�°O $Qoi , OO O •6° `L'°. QG°° , �QCO°, °'C� O pocG ! 3/8 %8 t��/i6 �/8 .00 `J Jr.. ,,,„.._70.,„9 o'GO O� O ,s O' ?Co O°GO % 9/16 i/2to9/16 ! 1/4 Vep moo. � �, po O ,p "po 0 0 °•O p 1 • p G O' C 01.0'9'' O ! 0:0'' o o C o o A °,°o 0 os `1,'- o°o o OOo00 0; 00 J 1/2 3/4 %t011/16 1/2 fj G v0 fr Q c °.G o c G O Do O ��o O G e'�D o°�°] ,.. 5/6 15/16 ( 3/4 to 13/16 1/2 ep o. - ff° 6 C o 6 <G ° 6 , .. 0 0�- v o° •.,o o' o ;=o o' o o° •,=o oh o° ;o°° 1 15 1 '. 0e �-� .� o._ 0o o�.0 o°. - Oe -O•o . Do � � 3/4 1/a /6 to /s h 1841 , Simpson Strong-Tie" Anchoring and Fastening Systems for Concrete and Masonry j . 'Ct.,.s ; SIMPSON Titen HD° Heavy-Duty Screw Anchor StrongTie Titen HD®Anchor Product Data — Zinc Plated Titen HD®Anchor Product Data — Drill Bit 11n, QuantityMechanically Galvanized Size rench Size Model No. Dia. (in.) in ! (in') Box Carton Drill Bit Wrench Quantity f ) Size Model Dia. Size r1/4 x 1�/s THDB251788 1/4 3/a 100 1 500 (in.) No. (in.) (in.) Box I Carton 1/a x 23/4 THDB25234H Ya 3/a 50 250 Q 1/4 x 3 THDB25300H 1/4 3/a 50 250 3/8 x 5 THD37500HMG 3/a s/6 50 100 — — , 0 1/4 x 31/2 THDB25312H 1/4 3/a 50 250 3/a x 6 THD37600HMG 50 100 * L 1/4 x 4 THDB25400H Y 3/8 { 50 250 1 x 5 THD50500HMG j 20 80 %x 1.34" THD37134H` /a /16 50 " m 25D Y x 6 THD50600HMG ' 1 :. 3 20 80 3 9 3/a x 21/ THD37212H* 3/e 9/i6 50 200 I Y x 61/2 THD50612HMG h /a 20 40 3/6 x 3 THD37300H 3/a 3/is 50 200 1 1 1/2 x 8 ' T1 50800HMG ;y20. .,� —3t 3/e x 4 THD37400H 3/8 9/16 50 200 1 %x 5 THD62500HMG 10 40 3/8 x 5 THD37500H % 94450 100 (/)5/s x 6 THD62600HMG 10 40 i %x 6 THD37600H ala 9/m 50 1005/a 15/i6 /2 x 3 THD50300H 5/a x 612 THD62612HMG 10 j 40 3 4 25 1/2 x 4 THD50400H % 3/a 20 100 %x 8 THD62800HMG 10 20 0 1/2 x 5 THD50500H 1h 3/a 20 80 %x 5 THDB62500HMG 10 40 E t 3 %x 6 THDB62600HMG 10 40 Q TH H 0 h x 6 D50600 � /z /a 20 � 8 % 1s/i6 1/2x 61/2 THD50612H 1/2 3/4 20 40 5/8 x 61/2 THDB62612HMG 10 40 1/2 x 8 THD50800H Y 3/a 5 25 5/8 x 8 THDB62800HMG 10 20 1/2 x 12 THD501200H j 1/2 3/4 5 25 3/4 x 81/2 THD75812HMG �- 10 1 1/2 x 13 THD501300H 1/2 3/4 5 25_ 3/4 x 10 THD75100HMG 3/a 11/8 10 ct 1 1/2 x 14 THD501400H 1/2 3/4 5 25 Mechanical galvanizing meets ASTM B695,Class 65,Type 1.Intended for 1/2 x 15 THD501500H 1/2 3/4 5 25 some pressure-treated wood sill plate applications.Not for use in other V %x 4 THDB62400H .18 15/18 j 10 -, 40 i corrosive or outdoor environments.See page 316 or visit { www.strongtie.com/info for more corrosion information. 5/ax5 r THDB62500H t t. :/a 15/16 40 %x 6 THDB62600H -.' `%'8 15/16 j 10 40 %x 61/2 ( THDB62612H 'q "^'s 13/48 j 10 40 j s/a x 8 j THDB62800H °3/4 151a 10 20 3/4 x 4 THD75400H 3A 11/8 10 40 3/4 x 5 THD7500H i 3/4 11/8 5 20 3/4 x 6 THDT75600H 3/a 11/8 5 1 20 3/4 x 7 THD75700H 3/4 11/8 5 10 3/4 x 81/2 THD75812H 1 3/4 11/2 5 10 . 3/4)(10 THD75100H 1 3/4 11/8 5 10 *These models do not meet minimum embedment depth requirements for strength design and require maximum installation torque of 25 ft.-lb.using a torque c5 wrench,driver drill or cordless 1/4"impact driver with a maximum permitted torque rating of 100 ft.-lb. i 2 Titen HD®Installation Information and Additional Data' 0 o I Nominal Anchor Diameter,d8(in.) u_iCharacteristic Symbol Units 4 1 s 4 IT - ; /4 3A, %/ 8 3/4 z Installation information "' _' o 1 • Drill Bit Diameter dhit in 1/4 - 3/8 12 5/8 3/4 ole Z BaseplateMaximum Instal Clearance Torque eter Tindrnax ftlnlbf 242 ! 502 H 652 _ 1002 1502 Maximum Impact Wrench Torque Rating Timaactmax ft.-lbf 1253 1 1503 3403 3403 3853 . Minimum Hole Depth hhoie in. 13/4 25/8 i 23/4 31/2 33/4 41/2 41/2 6 6 I 63/4 o Nominal Embedment Depth hnom in. 15/e 21 ' 2% 31 31/4 4 j 4 51 51/2 1 61/4 0 Critical Edge Distance cac in. 3 6 211/16 3% 39/16 41/2 41/2 6% 6% 1 75/16 o Minimum Edge Distance cin in. 1 Y2 13/4 o Minimum Spacing Smin in , 3 Minimum Concrete Thickness hm;4 in 31/4 L 31/2 4 5 1 5 61/4 6 ; 81 83/4 10 g Additional Data r Anchor Category Category , — 1 Yield Strength fva ' psi 100,000 97,000 Tensile Strength faro psi 125,000 110,000 _ Minimum Tensile&Shear Stress Area Ase in2 0.042 0.099 1 0.183 i 0.276 0.414 Axial Stiffness in Service Load Range Uncracked Concrete Runcr Ib./in. 202,000 715,000 Axial Stiffness.in Service Load Range Pcr Ib./in. 173,000 345,000 Cracked Concrete 1.The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D. 2.7-,„t,„is the maximum permitted installation torque for the embedment depth range covered by this table using a torque wrench. 3.rmpact,max is the maximum permitted torque rating for impact wrenches for the embedment depth range covered by this table. 4.Data for Ya"anchor is only valid for THDB25 series.Data for the 5/d"anchor is valid only for the THDB62 series. 1185 1 Simpson Strong-Tie Anchoring and Fastening Systems for Concrete and Masonry SIMPSON Titen HD® Design Information - Concrete Strong-Tie a Titen HD®Tension Strength Design Data' IBC s ""'> Characteristic Symbol ® Nominal Anchor Diameter,da(in) 3/4 Nominal Embedment Depth II km, in. 1% 21/2 I 21/2 31/4 314 ' 4 4 512 51 61/4 ZItil Tension Resistance of Steel N. Slb. Strength =' 5,195 lw 10,890 20,130 30,360 45,540 Strength Reduction Factor-Steel Failure I Oso - 0.652 • f., , „T ,r s.,.!t c, M Concrete Breakout Strength in Tension Effective Embedment Depth I he in. ( 1.19 1.94 1.77 2.40 2.35 1 2.99 ' 2.97 4.24 4.22 I 4.86 ' Critical Edge Distances cat in. .3 6 ` 211/46 3% 39/16 41/2 1 41 6 % 6% 75/,6 _ . Effectiveness Factor-Uncracked Concrete kung i - i 30 24 Cr) Effectiveness Factor-Cracked Concrete kcr 17 1 Modification FactorWnN - 1.0 0 - - c- Strength Reduction Factor-Concrete Breakout Failure 0 c - - 0 65' I U Pullout Strength in Tensions - - tree-" -s 3 4 -3 -3 _ -3 -3 9,8104 -3 3 Pullout Resistance,Uncracked Concrete(I',=2,500 psi) Np,una lb. 2,700 . � Q Pullout Resistance,Cracked Concrete(fc 2,500 psi) Np,c, lb. --3 1,9054 1,2354 2,7004 -3 -3 3,2604 5,5704 6,0704! 7,1954 I ""' Strength Reduction Factor-Concrete Pullout Failure ¢p - 0.655 Cri o B .far Seismic Nominal Pullout Strength for Seismic Loads f' psi)=2,500rN Pullout Strengthl . , in Tens 905 1,235' 1 2,7004 1 -3 -3 3,260'1 5,5704]6,0704"' 71954 9 ( c peg 4 Strength Reduction Factor-Breakout or Pullout Failure -¢e9 I - [ 0.655 1 r 1.The information presented in this table is to be used in conjunction with the (1)w N=1.0 if ca,min a_cagy or (2)Wrp,N=cc , 1.5h�if ce,min<cat cAec o design criteria of ACI 318 Appendix D,except as modified below. 2.The value of 4'applies when the load combinations of ACI 318 Section 9.2 are The modification factor,Wcp N is applied to the nominal concrete breakout 2 used.If the bad combinations of ACI 318 Appendix C are used,refer to Section strength,N,or N665 D.4.4 to determine the appropriate value of¢.Anchors are considered brittle 7.The value of¢applies when both the load combinations of ACI 318 Section steel elements. 9.2 are used and the requirements of Section D.4.3(c)for Condition B are 3.Pullout strength is not reported since concrete breakout controls.111 met.If the load combinations of ACI 318 Section 9.2 are used and the 4.Adjust the characteristic pullout resistance for other concrete compressive requirements of Section D.4.3(c)for Condition A are met,refer to Section strengths bymultiplying the tabular value byf' 2,500)°.5. 1.4.3 to determine the appropriate value of O.If the load combinations of ACI 9 P Y 9 ( c speciried/ 318 Appendix C are used,refer to Section D.4.4 to determine the appropriate 5.The value of¢applies when both the load combinations of ACI 318 Section value of¢. 9.2 are used and the requirements of Section D.4.3(c)for Condition B are 8.For sand-lightweight concrete,in lieu of ACI 318 Section D.3.6,modify the met.If the load combinations of ACI 318 Appendix C are used,refer to value of concrete breakout strength,Np cr,N,,,,,nc,and Nm by 0.6.All- Section D.4.4 to determine the appropriate value of 0. lightweight concrete is beyond the scope of is able. 6.The modification factor WcP N=1.0 for cracked concrete.Otherwise, 9.Data for 14"anchor is valid only for THDB25 series.Data for s/e"anchor is valid the modification factor for untracked concrete without supplementary only for THDB62 series. reinforcement to control splitting is either: *' i_. .- _. * 5 Titen HD®Shear Strength Design Data' � � `"' z Nominal Anchor Diameter,da(in.) a. Characteristic Symbol Units ,/as a� y2 sf$s s/4 0 ,, 0 Nominal Embedment Depth i hnon, in. 1% 212 212 31/4 21/4 4 4 512 51/2 61/4 , Steel Strength in Shear 1 .' z a. Shear Resistance of Steel Vw lb. 2,020 4,460 7,455 10,000 16,840 m Strength Reduction Factor Steel Failure t 0S3 - 0.602 I- Strength - 0 ,_ ,- - Concrete Bre Strep in Shear' co Outside Diameter da in. 0.25 I 0.375 0.500 0.625 0.750 > cTs Load Bearing Length of Anchor in Shear c 0 704 4.24 I 4.22 4.86 P m. 1. ya 77 2.40 2.35 2.99 2.97 Strength Redu,.ior]Factor--Concrete Breakout ,-,ii , �'_ :f U. Conr#p� ,ri S , s E ,<ear - Streng c ,,i�:a�� rP� " i1.: Ib. 0 2 0 Q .- � e 0.704 a . - 0 Steel Strength_in Shear for Seism_is Applications ,r77: Shear Resistance for Seism,c Loads Via lb. 1,695 2,855 4,790 8,000 , 9,350 Strength Reduction Factor-Steel Failure 'i Oep I _ __ 0.602 1.The information presented in this table is to be used in conjunction with the refer to Section D.4.4 to determine the appropriate value of 0. design criteria of ACI 318 Appendix D,except as modified below. 4.The value of 0 applies when both the load combinations of ACI 318 Section 9.2 2.The value of 4'applies when the load combinations of ACI 318 Section 9.2 am used. are used and the requirements of Section D.4.3(c)for Condition B are met.If the If the load combinations of ACI 318 Appendix C are used,refer to Section D.4.4 to load combinations of ACI 318 Appendix C are used,refer to Section 0.4.4 to determine the appropriate value of 0.Anchors are considered brittle steel elements. determine the appropriate value of b. 3.The value of 4)applies when both the load combinations of ACI 318 Section 9.2 5.Data for 1/4"anchor is valid only for THDB25 series.Data for%"anchor is valid are used and the requirements of Section D.4.3(c)for Condition B are met.If the only for THDB62 series. load combinations of ACI 318 Section 9.2 are used,and the requirements of 6.For sand-lightweight concrete,in lieu of ACI 318 Section D.3.6,modify the value Section D.4.3(c)for Condition A are met,refer to Section D.4.3 to determine the of concrete breakout strength by 0.6.All-lightweight concrete is beyond the appropriate value of A.If the load combinations of ACI 318 Appendix C are used, scope of this table. See page 12 for an explanation of the load table icons. 186 Simpson Strong-Tie Anchoring and Fastening Systems for Concrete and Masonry SIMPSON Titen HD® Design Information - Concrete StrongTie Titen HD®Tension and Shear Strength Design Data for the Soffit of Normal-Weight or IBC T ♦ r-; Sand-Lightweight Concrete over Metal Deck''es '-- ' Nominal Anchor Diameter,da(in.) Lower Flute Upper Flute Characteristic Symbol i Units Figure 2 Figure 1 Figure 2 Figure 1 1/48 % 1/2 .;1/48. 'VB 1/2.. Nominal Embedment Depth hnom ,,,,1%!--12-2A,,,. 11/2 21/2 2 31/2 1 1% 2113 %a 2 R Effect),'ue merit Depth he. 1' 1..23 1.77 1.29 2.56 1.19 1.94 1.23 1.29 Pullout Resistance,concrete on metal deck(clacked)2'` N±on k c, 16 __420 -F 53 ih 375 870 905 2 040 655 1,195 500 1 /00 Pv1 t1 ,•resat" a,ori metal:deck(uncracked)234 Np,deek,uncr . _ = 27 825 ' 1;905 1,295 2,910 1,555 2 850 1,095 2,430 r Steel Strength in Shear,concrete on metal deck- 2,n o;,ck lb ' 3" t� 2,240 2,395 2,435 -1,430 2,010 2,420 4.180 7,145 ~ e t?in r. eee/C t/sa,decked i f `1./02,,,,,_,,,,,,,,,. 1,434 1,556 2,846 1,305 1,575 2,676 4,591 1.The information presented in this table is to be used In conjunction with the shall be substituted for Na„Whore analysis indicates n.a cracking at service U) design criteria of ACI 318 Appendix D,except as modified below. loads,the normal pullout strength in uncracked concrete Np iec„w shall be o 2.Concrete compressive strength shall be 3,000 psi minimum.The substituted for Np wcn -C characteristic pullout resistance for greater compressive strengths shall be 5.In accordance with ACI 318 Section D.6.1.2(c),the shear strength for U increased by multiplying the tabular value by('c speared/3,000)05. anchors installed in the soffit of sand-lightweight or normal-weight concrete E 3.For anchors installed in the soffit of sand-lightweight or normal-weight over metal deck floor and roof assemblies Vw deck and Vw decke4 shall be Q concrete over metal deck floor and roof assemblies,as shown in Figure 1 substituted for Vw. and Figure 2,calculation of the concrete breakout strength may be omitted. 6.Minimum edge distance to edge of panel is 2her. CZ 4.In accordance with ACI 318 Section D.5.3.2,the nominal pullout strength 7.The minimum anchor spacing along the flute must be the greater of 3her,or (.) in cracked concrete for anchors installed in the soffit of sand-lightweight or 1.5 times the flute width. •� normal-weight concrete over metal deck floor and roof assemblies Np decker 8.Data for 1/4"anchor is valid only for THDB25 series. al Titen HD®Anchor Tension and Shear Strength Design 0Data in the Topside of Normal-Weight Concrete IBC t T * 0 or Sand-Lightweight Concrete over Metal Deck I-.. I 2 Nominal Anchor Diameter,da 1.For anchors installed in the topside of concrete-filled deck assemblies,as shown in Figures 2 and 3,the nominal Design Information Symbol Units Figure 3 Figure 2 concrete breakout strength of a single anchor or group of -1/4u 3/s" anchors in shear,Vdd or Vcb,respectively,must be calculated in accordance with ACI 318-D. 6.2,using the actual member Nominal Embedment Depth No, in. 1% 21/2 thickness,hmin,deck,in the determination of A,. 2.Design capacity shall be based on calculations accordingto Effectivetlment Depth in. 1:1 3 9 P tY values in the tables featured on pages 185 and 186. Minimum Concrete Thickness hmin,deck in. 21/4 3Ya ,3.Minimum flute depth(distance from top of flute to bottom of flute is 1 Yz inch see Figures 2 and 3). Critical Edge Distance cac,de kt in. 331a ( 7.:1);; 4.Steel deck thickness shall be minimum 20 gauge. Minimum Edge Distance 1 cmrgdecklop in- 31/2 3 5.Minimum concrete thickness(hm,,,deckl refers to concrete Minimum Spacing r tDv in. 3 ih 3 thickness above upper flute(see Figures 2 and 3). Z Z a_ Sand-lightweight Concrete 2 Min.114•for anchors installed in lower flute. or Normal-wetohi Concrete 8ve Mm.304 for anchors installed in upper flu r . Over Steel Deck P r h. On )M 2 500 pe) Min Y"Typ_ Min 3000ps No I IT Mr.1"Typ. Sand lghiwe ght Co tet 5 IT 4 � I � �s� RNr kk RRR_f MIn. o RMin. Cr) Max.3' i M n 414'_ M'n.415"_ s \ 2 Stee 9e Ogoe 2 Deage Max.1" \ Deck I Mn.'a"(+:-)Onset °., - -Mr OW Min 1W M i�' Deck k Offset,Typ.+ Min.12'Typ, 1 Flom Center w l j"� ED - f Max.1'offset.Typ, Flute Lower Mm.214' Lower Flute-HF Min.6'Typ. Lrw er O N Cr Figure 1.Installation of 3/e"and 1/2"Diameter Anchors in the Figure 2.Installation of 3/e"Diameter Anchors in the Topside and 1/4" E Soffit of Concrete over Metal Deck Diameter Anchors in the Soffit of Concrete over Metal Deck N a O Sand-Lightweight Concrete Or Normal-Weight Concrete ht„,,,deck (M2.500 n 254• Overm ..500P Deck • r s I 2 " c k 20 Gauge Ru@ I. Steel MIn.155` I Min.7°/s kl I ...-Min.314•-.- I \ Deck r Min.2l4°+ Min.6'Typ {I Lower Flute Figure 3.Installation of 1/4"Diameter Anchors in the Topside of Concrete over Metal Deck *See page 12 for an explanation of the load table icons. ' 1187 Simpson Strong-Tie'Anchoring and Fastening Systems for Concrete and Masonry ;$• . i,,. SIMPSON Titen HD® Design Information - Concrete strongTie a Titen HD®Tension Design Strengths in Normal-Weight Concrete(f c=2,500 psi) E1 Min. Critical Minimum Tension Design Strength(lb.) Nominal Concrete Edge Edge Edge Distances=cmin on one side Anchor Dia. Embed. Thickness Distance I Distance Edge Distances=cac on all sides and ca on three sides (in.) Depth 'I hmin cac 0min SDCA-B5 SDC C-F67 SDCA-BS � SDC C-F67 (in.) . (in.) (in.) I I (in) Uncracked I Cracked Uncracked i Cracked Uncracked Cracked I Uncracked Cracked 4 i 15/a 3% 1 3 112 1,265 715 i 950 540 660 630 495 470 I 21/2 31/2 6 11 r 2,110..._ 1,240 1,580 930 660 965 495 725 3 ;1°...1 211% '_ ' .1„= ,, 315 600 1,350 805 1� 3/e x314 a 11". 175 1.315 1810 1290 2 31/4 5 39/6 13/4 L; ;c r-05 1 A95 1 765 265 1,325 1 950 a 4 61/4 41/2 13/4 4 1' 7.11:=125 2140 2 285 F1,620 1 1,710 1,220 5/a '4 6 412 411141.,r47216 El Tif :95 1,480 2,250 1,610 1,690 1,210 , .., ?,:,1,.....,81/2.'r,...„,...,6% ,!„.:1,....°- ' "" X780 �- j15 3,390 2,405 2,540 1,805 0 3/4 51 83/4 63/a 13/4 6, .i 377- 5,070 2,960 3,355 2,395 2,515 1,795 _ 61/4 10 75/16 13/4 8,355 4,675 6,265 3,510 3,990 I 2,835 _ 2,990 2,125 0 1.Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D. E 2.Tabulated values are for a single anchor with no influence of another anchor. Q 3.Interpolation between embedment depths is not permitted. 4.Strength reduction factor,0,is based on using a load combination from ACI 318-11 Section 9.2. CtS 5.The tension design strength listed for SDC(Seismic Design Category)A-B may also be used in SDC C-F when the tension component of the strength-level 0 seismic design load on the anchor does not exceed 20%of the total factored tension load on the anchor associated with the same load combination. •E 6.When designing anchorages in SDC C-F,the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3. as 7.Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4. 0 CC) Titen HD®Allowable Tension Loads in Normal-Weight Concrete(f,=2,500 psi) - Static Load IBC G I Allowable Tension Load(lb.) Anchor Dia. Nominal Min.Concrete I Critical Edge Minimum Edge Edge Distances=cm;n on one side Embed.Depth Thickness hm;n I Distance cac Distance emir, Edge Distances=cac on all sides (in.) (in.) (in.) (in.) (in.) and cac on three sides Uncracked I Cracked Uncracked I Cracked 4 1 1% 31/4 3 11/2 905 ]_-_510 470 450 21/2 31/2 6 11 1,505 1 885_ 470 690 21 ! 4 `1 211x6 1 13/4 1,255 575, 965 ..,fit. 575 ala 31/4 -_-_ 5 a 35/e '' l3/a 2,070 1,255 1,295 920 2 314 5 39/,6 13/a I 2,005 420 260 905 4 614 4/ 13/4 2,880 2.040 1,630 1,155 4 i 6 41/2 1 13/4 2,850 1,410 1,605 1,13' t <. 51h 81/2 63/a i 1/ j 4,555 2,585 2,420 . 1,720 a 51 83/4 6% 1 13/4 4,830 2,820 2,395 1,710 /4 I 61/4 10 1 75/1s I 13/4 5,970 1 3,340 2,850 2,025 0 z 1.Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of a=1.4. z The conversion factor a is based on the load combination 1.2D+1.6L assuming 50%dead load and 50%live load:1.2(0.5)+1.6(0.5)=1.4. 0_ ,, 2.Tabulated values are for a single anchor with no influence of another anchor. o 3.Interpolation between embedment depths is not permitted. w IT cc z r Titen HD®Allowable Tension Loads in Normal-Weight Concrete(f'0=2,500 psi) - Wind Load IBC I z I i Allowable Tension Load(lb.) o CL Anchor Dia. Nominal Min.Concrete Critical Edge Minimum Edge Edge Distances=cm;n on one side Embed.Depth Thickness hon Distance cac Distance cat, Edge Distances=cac on all sides (in.) (in.) and c, on three sidesL. (in.) (in.) (in.) Uncracked Cracked Uncracked Cracked /4 1% 31/4 3 11 760 1 430 395 380 CD 21/2 31/2 6 11/2 1,265 I 745 395 580 2 ,per t I ( , :. `xi 1% 0554 -1--- 510 • c-5 4at".a�713/4 j ,740_ ,14,5' I 1,085 1h 3' 5 39/46 13/4 ! 1,685 1,195 1,060 7760 4 I 61/4 4/ I 13/4 1-- 2.420 1,715 1,370 970 fglittr4aSitatillfitallM‘Mttt 1;::-:c 1314 T 2,395 1,1851,350 :c9fi d 5° aF.aII10 ,t 34• :, ` ,', 1314 I 3,825 _ 2,170 � 2,035 14/4 51/2 1 83/4 63/s _ 13/4 1 4.055 2,365 2,015 1,435 6% 1 10 75/46 I 13/4 1 5,015 I 2,805 2,395 1,700 1.Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of a=1/o.s=1.67.The conversion factor a is based on the load combination assuming 100%wind load. 2.Tabulated values are for a single anchor with no influence of another anchor. 3.Interpolation between embedment depths is not permitted. *See page 12 for an explanation of the load table icons. 3 188 -y Simpson Strong-Tie Anchoring and Fastening Systems for Concrete and Masonry SIMPSON Titen HD° Design Information - Concrete Strong-Tie Titen HO®Allowable Tension Loads in Normal-Weight Concrete !8C t r - (f'c=2,500 psi) - Seismic Load. Min. Critical Minimum Allowable Tension Load(lb.) Nominal Concrete Ede Ede Edge Distances=curie on one side Anchor Dia. Embed. Thickness Distance Distance Edge Distances=cac on all sides and cac on three sides (in.) Depth hmin cac Cmin SDC A B4 SDC C F55 SDC A-134 SOC C-F5 (in.) (in.) (in.) (in.) Uncracked Cracked Uncracked Cracked Uncracked Cracked Untracked Cracked 1 1% 31/4 3 11/2 I 885 1 500 665 380 460 440 345 330 1/4 21/2 31 6 11 1,475 870 1,105 650 460 675 345 510 13/4 1,230 565 920 420 945 565 710 420 8/a 1 31/4 5 3% 134 2,030 1,230 1,525 920 1,265 905 950 680 I - + 31/4 5 33/46 134 1,965 1,395 1,475 1,045 1,235 885 930 665 1/2 4 61/4 41/2 134 2,825 2,000 2,120 1,500 1,600 1,135 1,195 855 0 5/e 4 6 41/2 134 2,795 1,385 2,095 1,035 1,575 1,125 1,185 845 • 51/2 81/2 6% 134 4,465 2,535 3,345 1,900 2,375 1,685 1,780 1,265 8 51 834 638 13/4 4,730 2,760 3,550 2,070 2,350 1,675 1,760 1,255 U /4 61/4 10 73/4e 134 5,850 3,275 4,385 2,455 2,795 1,985 2,095 1,490 C 1.Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion Q factor of a=1/0.7=1.43.The conversion factor a is based on the load combination assuming 100%seismic load. 2.Tabulated values are for a single anchor with no influence of another anchor. CO 3.Interpolation between embedment depths is not permitted. 0 4.The allowable tension load listed for SDC(Seismic Design Category)A-B may also be used in SDC C-F when the tension component of the strength-level C seismic design load on the anchor does not exceed 20%of the total factored tension load on the anchor associated with the same load combination. CO 5.When designing anchorages in SDC C-F,the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3. 6.Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4. • 0 a) 2 v U Z >- z a a 2 O 0 w f= O Z O N Z O a m 0 a 0 m 0 . U *See page 12 for art explanation of the load table icons. 189 4'' Simpson Strong-Tie'Anchoring and Fastening Systems for Concrete and Masonry �' -- . ° ' SIMPSON Titen HD° Design Information - Concrete ' Strong-Tie e Titen HD®Tension Design Strengths in Soffit of Normal-Weight or IBC t Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies(f'c=3,000 psi) 1) - Tension Design Strength(lb.) Nominal Minimum End Lower Flute Upper Anchor Dia. I Embed.Depth!Distance cmi� Flute (in.) (in.) (in.) I SDC A-B5 SDCC-Fa' SDC A-B5 SDCC-F" Uncracked Cracked ';Uncracked Cracked Uncracked Cracked Uncracked Cracked 5/a 21/2645 275 485 205 1,010 425 760 320 Y. I 1 21z 4 830 350. i 620 260 1,855 775 1,390 585 F1 ,7: 535 haiX20 185- v"' 0 � 4�"1 , � . a W 2' 5 ' 3/ 1,240 � � 0 i 425 = � ' 2 2% 840 590 I 630 440 1,580 1,105 1,185 830 '/z 31/2 5Ya j 1,890 1,325 1420 995 — — — CI) 1.Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D. 6- 2.Tabulated values are for a single anchor with no influence of another anchor. 3.Interpolation between embedment depths is not permitted. C.) 4.Strength reduction factor,¢,is based on using a load combination from ACI 318-11 Section 9.2. 5.The tension design strength listed for SDC(Seismic Design Category)A-B may also be used in SDC C-F when the tension component of the Q strength-level seismic design load on the anchor does not exceed 20%of the total factored tension load on the anchor associated with the same load combination. Tti 6.When designing anchorages in SDC C-F,the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3. o 7.Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4. 8.Installation must comply with Figure 1 on page 187. CO .0 Titen HD®Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight IBC t ' OConcrete-Filled Profile Steel Deck Assemblies(f',=3,000 psi) — Static Load 1. Allowable Tension Load lb. C Anchor Dia. I Nominal Embed. Minimum End ( ) c o) Depth Distance cmin Lower Flute Upper Flute (in.) (in.) Uncracked Cracked Uncracked Cracked Y. 1% 21/2 460 195 720 305 21/2 4 595 250 1,325 555 h 2 2% 600 420 1,130 790 31/2 514 1,350 945 — — 1.Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of a=1.4. The conversion factor a is based on the load combination 1.2D+1.6L assuming 50%dead load and 50%live load:1.2(0.5)+1.6(0.5)=1.4. 2.Tabulated values are for a single anchor with no influence of another anchor. 3.Interpolation between embedment depths is not permitted. Li z 4.Installation must comply with Figure 1 on page 187. >- z z 2 o Titen HD®Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight IBC t * w Concrete-Filled Profile Steel Deck Assemblies(f,=3,000 psi) — Wind Load I _ IT z Anchor Dia. Nominal Embed. Minimum End Allowable Tension Load(lb.) z m Depth Distance cm;n Lower Flute Upper Flute ( .) (in.) (in.) Uncracked Cracked Uncracked Cracked z a /4 _ 1% 21 385 165 r 605 255 21/2 4 500 210 1,115 465 .' 3/8 1 7/s 21 320 145 j' i' 5 195 2' tt 3% 1 745 " 340 — — 3 2 ;<� 2% 505 355 950 665 ,, /z 3' 514 , 1,135 795 — — o 1.Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of a=1/0.6=1.67.The conversion factor a is based on the load combination assuming 100%wind load. 2.Tabulated values are for a single anchor with no influence of another anchor. 3.Interpolation between embedment depths is not permitted. 4.Installation must comply with Figure 1 on page 187. *See page 12 for an explanation of the load table icons. 190 4 Simpson Strong-Tie'Anchoring and Fastening Systems for Concrete and Masonry �, _' n SIMPSON Titen HD° Design Information — Concrete StrongTie Titen HD®Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight IBC t Concrete-Filled Profile Steel Deck Assemblies(f'c=3,000 psi) — Seismic Load Nominal Minimum Allowable Tension Load(lb.) Anchor Dia. Embed. End Distance Lower Flute Upper Flute (in.) Depth Cmin SDC A-B° SDC C-Fsb SDC A-B4 SDC C-F5,6 (in.) (in.) Uncracked Cracked Uncracked, Cracked Uncracked Cracked Uncracked Cracked ° 1/a 2'/s 450 195 340 145 705 300 530 ! 225 5 212 r 4 580 245 435 180 1300 545 975 410 1'/a 2'/2 1„ 375 170 280 130 495 230 I 375 170 a/a '12 3% "870 395 650 = =300 I — 2 2% 590 415 440 310 1105 775 830 580 • '/z _. 31/2 51/4 1325 I 930 995 695 — _ — — 1.Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion Cl) factor of a=1/0.7=1.43.The conversion factor a is based on the load combination assuming 100%seismic load. 2.Tabulated values are for a single anchor with no influence of another anchor. 0 3.Interpolation between embedment depths is not permitted. 4.The allowable tension load listed for SDC(Seismic Design Category)A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20%of the total factored tension load on the anchor associated with the same load combination. 5.When designing anchorages in SDC C-F,the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3. 6.Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4. 7.Installation must comply with Figure 1 on page 187. (3 •C C.) a) 2 d Z } Z o_ 8 W H 2 0 F cc Z O o_ a 4) 0 N 0 U *See page 12 for an explanation of the load table icons. 191 Simpson Strong-Tie Anchoring and Fastening Systems for Concrete and Masonry s ' n-v3 •. SIMPSON Titen HD® Design Information - Concrete Strong-Tie t Titen HO®Allowable Tension Loads in Normal-Weight Concrete I. I Tension Load '- Critical Critical Edge Critical f' 2.3,000 psi Size Drill Bit Embed. Dist. Spacing f'c>_2,000 psi(13.8 MPa Concrete} (20.7MPa Concrete) f'c?4,000 psi(27.6 MPa Concrete) (in.) Dia Depth in. (in.) (mm) 10' in. Ultimate Std.Dev. Allowable Allowable Ultimate Std.Dev. Allowable (mm) (mm) lb.(kN) lb.(kN) lb.(kN) lb.(kN) lb.(kN) lb.(kN) lb.(kN) 11 6 4 ! 2,070 _ 520 635 2,974 _ 745 38 (152) (102) (9.2) (2.3) (2.8) (13.2) (3.3) % 23/4 4,297 _ 1,075 1,315 6,204 _ 1,550 1 (9.5) 3/e (70) 3 6 (19.1) (4.8) (5.8) (27.6) (6.9) 33/4 (76) (152) 7,087 347 1,770 2,115 i 9,820 1,434 2,455 (95) (31.5) (1.5) (7.9) (9.4) 1 (43.7) (6.4) (10.9) 23/44,610 _ 1,155 1,400 ; 6,580 i 1,645 Cf) ' (70) I (20.5) (5.1) (6.2) (29.3) (7.3) 0 I2' , 3% ) 4 ' 8 7,413 412 1,855 2,270 10,742 600 2,685 (12.7) /2 r-(92) (102) (203) (33.0) (1.8) I (8.3) (10.1) (47.8) (2.7) ( (11.9) 53 10,278 297 2,570 3,240 15,640 2,341 j 3,910 U (146) ( ., (45.7 (1.3): (11.4) (14.4) (69.6) (10.4) (17.4) C23/4 4,610 _ 1,155 1,400 6,580 _ 1,645 < (70) l (20.5) (5.1) (6.2) (29.3) (7.3) V (15.9) 5/a (105) 5 27) 10 254) 8742 (38 9) 615 (2.7) 2,185 2,630 (9.7) (11.7) 12,286 70 1 (54.7) 1(71) (13.7) I 53/4 1 12,953 1,764 3,240 3,955 18,680 _ 4,670 a (146) 1 (57.6) (7.8) (14 4) (17.6) (83.1) (20.8) RI 23/4 4,674 i _ 1,170 1,405 6,580 _ '11 A45 (70) (20.8) (5.2) _ (6.3) (29.3) .3) (,) 3/4 314 4% 6 12 10,340 1,096 2,585 3,470 17,426 1,591 4,355 0) (19.1 (117) (152) (305) (46.0) (4.9) j (11.5) (15.4) (77.5) (7.1) I (19.4) C „53/4 13,765 1,016 j 3,440 4,055 18,680 1,743 4,670 'C 4 146) )6 ; (4.5) (15.3) (18.0) (83.1) (7.8) (20.8) 1.The allowable loads listed are based on a safety factor of 4.0. 2.Refer to allowable load-adjustment factors for spacing and edge distance on pages 198 and 199. 3.The minimum concrete thickness is 11/2 times the embedment depth. 4.Tension and shear loads for the Titen HD anchor may be combined using the elliptical interaction equation(n=5/3). Allowable load may be interpolated for concrete compressive strengths between 2,000 psi and 4,000 psi. l Titen HO®Allowable Shear Loads in Normal-Weight Concrete Shear Load Size(in.) Dinh Bit Embed.Depth Critical Edge Spacing lin f'�>2,000 psi (13.8 MPa Concrete) (20.7 MP'a Concrete) f'�>-4,000 psi(27.6 MPa Concrete) Dia.(in.) in.(mm) Dist.in.(mm) (mm) Ultimate Std.Dev. Allowable Allowable Ultimate I Std.Dev. Allowable I lb.(kN) lb.(kN) lb.(kN) lb.(kN) lb.(kN) ! lb.(kN) lb.(kN) z 1 11/2 6 4 2,912 _ 730 825 3,668 4._ 915 1 z (38) (152) (102) (13.0) (3.2) (3.7) (16.3) (4.1) a % 3 23/4 6,353 _ 1,585 1,665 _ _ 1,740 (9.5) /B (70) 41/2 6 (28.3) (7.1) (7.4) (7.7) °° 33/4 (114) (152) 6,377 1,006 1,595 1,670 _ _ 1,740 i"'-- 95 (28.4) (4.5) (7.1) (7.4) T (�_�) z 6,435 ' 1,605 2,050 9,987 2,495cE (28.6) (7.1) (9.1) (44.4) (7.8) (n 1/2 , 33/s ) 6 8 9,324 1,285 ) .2,330 2,795 13,027 597 3,255 0 (12.7) /2 (92) , (152) i (203) (41.5) i (5.7) (10.4) (12.4) - (57.9) (2.7) ' (14.55 5/ 11,319 i 1,245 2,830 3,045 _ 3,255 144 '_ 1 (50.3) i (5.5) (12.6) (13.5) (14.5)..: 23/47,745 ' _ 1,940 2,220 9,987 - 2,495 ' (70) (34.5) (8.6) - (9.9) (44.4) (7.8) c%. 5/ 41/8 71 10 8,706 1,830 2,175 ' - 3,415 1 18,607 1,650 4,650 $ 3 (15.9) (105) (191) (254) (38.7) (8.1) (9.7) i (15.2) (82.8) (7.3) (20.7) 5 o 53/4 12,498 i 2,227 3,125 3,890 _ _ 4,650 (1 46) (55.6) ' (9.9) (13.9) ' (17.3) (207) 23/a ) 7,$32 1 / 1,960 2,4 t'' .._ 11,460 ,`865 7 (70) i (34.8) , r (8.7) (10.7) (51.0) - 1 ..12.7) 44% 9 j 12 11,222 2,900 -1- 2,805 4,490 24,680 2,368 6,170 (19.1) 3/4 . (117) (229) (305) (49.9) ' (12,9) . (12.5) (20.0) (109.8) (10.5) , (27.4) 53/4 19,793 3,547 I 4,950 5,560 24,680 795 6,170 L (146) (88,0) 1 (15.8) (22.0) (24.7) (109.8) (3.5) (27.4) 1.The allowable loads listed are based on a safety factor of 4.0. 2.Refer to allowable load-adjustment factors for spacing and edge distance on pages 198 and 199. 3.The minimum concrete thickness is 11/2 times the embedment depth. 4.Tension and shear loads for the Titan HD anchor may be combined using the elliptical interaction equation(n=5/3). Allowable load may be interpolated for concrete compressive strengths between 2,000 psi and 4,000 psi. See page 12 for an explanation of the load table icons. 192 i . Simpson Strong-Tie-Anchorinand Fastening Systems for Concrete and Masonry ' 1 SIMPSON Titen HD® Design Information - Concrete StrongTie Titen HD®Allowable Shear Loads in Normal-Weight Concrete, 0 ♦ <... * Load Applied Parallel to Concrete Edge 1' Minimum Minimum Minimum Shear Load Based onEPfill Embed. Concrete Edge Distance Size Drill Bit Depth Edge End Spacing 1 in. Dia. in. Dist. Dist. Dist. f'0>_2,500 psi(17.2 MPa)Concrete (mm) in. in. in. in. (mm) (mm) (mm) (mm) tlbi ltmate(kN) Slb.(kNtd. ). Allowable 234 4,660 575 1,165 a ' « (70) (20.7) (2.6) (5.2) 1/a m. 31 _ _ 1,530 (83) 13/4 8 8 (6.8) Note:Rebar not .44 (12.7) 1/2 31/2 (45) (203) (203) 6,840 860 1,710 shown for clarity. (89) (30.4) (3.8) (7.6) Cn 41/2 7,800 300 1,950 (114) (34.7) (1.3) (8.7) 0 4,820 585 1205 ,t 23Ia U i (70) i (21.4) ; (2.6) (5.3) 5A3s 31/4 8 13/a ' 10 10 _ - 1,580 Q (15 9) / i (83) (45) (254) i (254) I (7.0) _ 31/2I 7,060 1,284 1,765 ,t.ttit ..' 1 (31.4) (5.7) (7-9) .- 1.The allowable loads listed are based on a safety factor of 4.0. _ 2.The minimum concrete thickness is 11 times the embedment depth. 0 Titen HD®Allowable Tension Loads in Normal-Weight Qs Titen HD®Allowable Tension Loads in IliWi wl t l ' * Concrete, Load Applied at 60°Angle x .* 2 Normal-Weight Concrete Stemwall I." •1 to Horizontal for Tilt-Up Wall Braces 1 , Tension Load Tension Applied at 60 degrees Min. Min. f'0>_2,500 psi f'r>_4,500 psi to Horizontal Drill Embed. Stemwall Embed. Size Bit Depth Width Edge End (17.2 MPa) (31.0 MPa) Size Drill Bit Depth f�>2,500 psi(17.2 MPa) m. Dia. in. in. Dist. Dist. Concrete Concrete in. Dia. in. Concrete (mm) in. (mm) (mm) In' In' Ultimate Albw. Ultimate Allow. (mm) in. (mm) (mm) (mm) lb. b. lb. lb. Ultimate Std.Dev. Allow. (kN) (kN) (kN) (kN) lb.(kN) lb.(kN) lb.(kN) 8 15,420 '3,855 20,300 5,075 % s 5 13,420 1,273 3,355 1(203) (68.6) (17.1) (90.3) (22.6) (15.9) /8 (127) (59.7) (5.7) (14.9) 1/z 1/z 10 6 13/a , a%;‘;;;;;;),m;:-11--1-1;-",;-;; ;...";-' N. W z (12.7) . (254) (152) ' (45) 4�e 14,280 3,5701 19,040 4,760 t �. 5180 ) 3795 '' r (111) (63.5) (15.9) (84.7) (21.2) r ��u 0 1.The allowable loads are based on a safety factor of 4.0. 1.The allowable loads are based on a safety factor of 4.0. 0 - 2.The minimum anchor spacing is 15 inches. 2.Anchor must be installed into a concrete floor slab,footing,or 3.The minimum concrete thickness(depth)is 12 inches. deadman with sufficient area,weight,and strength to resist the Fujz 4.Allowable loads may be interpolated for compressive strengths between 2,500 anchorage load. z' and 4,500 psi. 3.Tften HD*has been qualified for temporary outdoor use of up to 90 days through testing for this application. tn z 0 0 3- 2 U 0 E � n• '• i? , ; r ' ' The Titen HD®screw anchor 3/4'x 6" v�, and 3/4"x 7"(models THDT75600H and -,, ',: THD75700H)have a 1"section under ' the head that is unthreaded to allow y, ," 4';' installation into tilt-up wall braces. *See page 12 for an explanation of the load table icons. 193 Simpson Strong-Tie"Anchoring and Fastening Systems for Concrete and Masonry 4 ;1,...x7 SIMPSON Titen HD® Design Information - Concrete Strong-Tie ® Oil Titen HD°Allowable Tension and Shear Loads in Sand-Lightweight Concrete over Metal Deck 1 Install in Concrete(see Figure below) Install through Metal Deck(see Figure below) Critical j Critical Drill Embed. Tension Load Shear Load Tension Load Shear Load Sine Bit Depth EDis. Spa f',>3,000 psi(20.7 MPa) f'5>3,000 psi(20.7 MPa) P,>_3,000 psi(20.7 MPa) f',>_3,000 psi(20.7 MPa) (mm) 1 Eli. (mm) in. in. I Lightweight Concrete Lightweight Concrete Lightweight Concrete Lightweight Concrete (mm) (mm) . Ultimate Allowable Ultimate Allowable Ultimate Allowable Ultimate Allowable • lb.(kN) lb.(kN) lb.(kN) lb.(kN) lb.(kN) lbs.(kN) lb.(kN) lb.(kN) 2% 2,560 640 4,240 1,060 _ - - - (70) 6 6 (11.4) (2.8) (18.9) (4.7) (9.5) g7e 3 (152) (152) - - _ 5,420 t;355 4,100 1,025 ' (76) - 1 (24.1) (6.0) (18.2) (4.6) U) T • 3,040 760 6380 j 1,595 - - I _ $ ) 8 8 (135) P.4) (28.4) I (7.1) j (12.7) t,yl (203) (203) I - ... - - 1 7,020 1,755 6,840 1,710 o .; i (31.2) (7.8) (30.4) (7.6) E 2% 1 3,100 775 6,380 1,595 _ - - % 6/e (70) 10 10 (13.8) (3.4) ' (28.4) (7.1) - (15.9) 5 (254) I (254) I 8,940 2,235 • 10,700 2,675 CZ (127) - - - - (39.8) 1 (9.9) (47.6) (11.9) V 1.The allowable loads listed are based on a safety factor of 4.0. C 2.Allowable loads for anchors installed in the lower flute of the steel deck are for flutes with a trapezoidal profile with a depth of 3 inches,and a width varying from CO 4' inches at the bottom to 71/2 inches at the top.The spacing of the flutes is 12 inches.The metal deck must be minimum 20-gauge with a minimum yield strength of 38 ksi and minimum ultimate strength of 45 ksi. O 3.Anchors may be installed off-center in the lower flute(up to 11/2"from the edge of the lower flute)without a load reduction. O 4.100%of the allowable load is permitted at critical edge distance and critical spacing.Testing at smaller edge distances and spacings has not been performed. 2 Min.3,000 PSI Sand-Lightweight Concrete CD po. o a ° a ` i o' o • ° o ° " Q: :()_°1--'' opo° O O . o ;O: D ro O Upper ° `i Flute Min. 13" 20-Gauge k- ,441�"-- Steel FluteLr 11/2" Deck z 71/2" . - 41/2" >. z a 2 0 0 Titen HD®screw anchor installed in the top and bottom of a structural w sand-lightweight-concrete and metal-deck assembly o 0 F- z 0 4. CT) tn0 N co 0 5 0 See page 12 for an explanation of the load table icons. 194 1 Simpson Stron Tie-Anchoringand FasteningSystems for Concrete and Masonrya` ` ' SIMPSON (� 5 Y = ,� Titen HD® Design Information - Masonry StrongTie a Titen HD®Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight 1BC ( 7 * Grout-Filled CMU 4"minimum Critical edge distance edge distance (see load table) Installation Values for 8-inch Lightweight,Medium-Weight in this area Min. Critical Critical Critical 11 educed Drill or Normal-Weight Grout-Filled CMU allowable Size Bit Embed. Edge End Spacing �� \\\\Nload capaci y in. Dia Depth Dist. Dist. Dist. Tension Load Shear Load (mm) in. in. m in. OII lry-0101-t\ 10' (mm) (mm) (mm) (mm) llb.(kN) Alb.(kN)e lb.(kN) Alb.(kN)e / , Sliti\ : _4°minimum /s the CMU Wall(See Figure 4) "'-end distance Anchor tnslled�`�ie Face of 3/e 3 2a/a 12 12 6 2,390 480 4,340 870 4I, cntical end distance (9.5) (70) (305) (305) (152) (10.6) (2.1) 1 (3.9) r (see load table) (193) 7� T; 31/2 12 12 8 3,44fl 690 6,920 1,385 p/ No installation "': �� �� 1W of ' 2.7) x(89) (305) (305 ,"-(20 (15.3) j (3.1) (� r )62) '� E .� N withinint ,,, 5!e 5/a 4'/z 12 12 10 5,300 1,060 10,420 1 2,085 Vr7,14riforeratign•. s_o (15.9) (114) (305) (305) (254) ! (23.6) (4.7) (46.4) (9.3) Installations in this area for full allowable load capacity 444 3J< i 512 12 '; 2 ',' 12 a 7,990 1,600 15,000 3,000 U 1� (1 fr ; t'7 ;. (30"• 5 . (35t�.` (7-1) (66 (13.3) Q ` �; a Figure 4.Shaded Area=Placement for 1.The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC. Full and Reduced Allowable Load Capacity 2.Values for 8-inch-wide,lightweight,medium-weight and normal-weight concrete masonry units. CO 3.The masonry units must be fully grouted. in Grout-Filled CMU V 4.The minimum specified compressive strength of masonry,fm,at 28 days is 1,500 psi. '- 5.Embedment depth is measured from the outside face of the concrete masonry unit. 6.Allowable loads may be increased 331/2%for short-term loading due to wind or seismic forces where CZ permitted by code. . 7.Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding U applied loads. Q,) 8.Refer to allowable load-adjustment factors for spacing and edge distance on page 200. 2 Titen HD®Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and IBC (� -► --r-" Normal-Weight Hollow CMU I , :.,i 8-inch Hollow CMU Loads Based Min. Min. I on CMU Strength 1 4e/8 Drill Embed. End } iSn. Dia. Depth' i . j Dist. I Dist. , Tension Load Shear Load e (mm) in. (mm) (mm) (mm) Ultimate I Allowable Ultimate Allowable lb.(kN) ' lb.(kN) lb.(kN) lb.(kN) 0 ° 3 z ;'Fro,,} .- .�x: axr .. , w. , hell ee Fi ure z} Anchor instalt .. aces ., g 5) F 3i8 1's 4 45/8 720 145 1,240 250 o (9.51 'r 4 (102; T, (3.2) (0.6) (5.5) , 0 ` w 1 13/4 4 4% 760 150 1,240 250 , o (12.7) z (45) I (102) (117) 1 (3.4) (0.7) (5.5) (1.1) 1 A 0 5/8 13/4 1 4 1 4% 800 160 1,240 250 05 9) (45) I (102) (117) (3.6) (0.7) (5.5) (1.1) 0 3/4 �.3/4 1V4 ,,. 4 4% { 880 175 1,240 250 Figures 1 (19.1) (45) . (102) '1 4117 (3.9) (0.8) (5.5) (1.1) _.. . 1ro .The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC. 5 2.Values for 8-inch-wide,lightweight,medium-weight and normal-weight concrete masonry units. 3.The minimum specified compressive strength of masonry,cm,at 28 days is 1,500 psi. 'S 4.Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional 1/z'through 11/4"thick face shell. o 5.Allowable loads may not be increased for short-term loading due to wind or seismic forces.CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads. 6.Do not use impact wrenches to install in hollow CMU. 7.Set drill to rotation-only mode when drilling into hollow CMU. • 'See page 12 for an explanation of the load table icons. 1195 I Simpson Strong-Tie' Anchoring and Fastening Systems for Concrete and Masonry'E 1,4fl- SIMPSON Titen HD® Design information — Masonry Strong-Tie Titen HD®Allowable Tension and Shear Loads in 8" Lightweight, IBC t ♦ * Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall I ' ' Drill Embed Min. Min. Critical 8-inch Grout-Filled CMU Allowable Loads Based on CMU Strength Size Bit Depth Edg Dist. Spacinge End isTension Shear Perp.to Edge Shear Parallel to Edge (mm) n U (mm) (mm) (mm) (mm) Ultimate lb.(kN) Allowablelb.(kN) lb.(akN) Allowablelb.(kN) Ultimatel. kAllowable k Anchor Installed in Cell Opening or Web(Top of Wall)(See Figure 6) 1/2 1 4' 13/4 1 8 8 2,860 i 570 800 160 2,920 585 (12.7) 1141 (45) (203) (203) j (12.7) (2.5) (3.6' 10.7) (- 3 01 (2.6) 5 s 4'12 13/a 10 10 2,860 570 800 160 3,380 675 (15.9) I (114) (45) [54) (254) (12.7) (2.5) (3.6) (0.7) (15.0) (3.0) U) 1.The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC. O 2.Values are for 8-inch-wide,lightweight,medium-weight and normal-weight concrete masonry units. 3.The masonry units must be fully grouted. 4.The minimum specified compressive strength of masonry,f'm,at 28 days is 1,500 psi. rte- 5.Allowable loads may be increased 33'/s%for short-term loading due to wind or seismic forces where permitted by code. Q6.Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads. 7.Loads are based on anchor installed in either the web or grout-filled cell opening in the top of wall. O 13/"Edge .I✓ O- o Q C? o o I E0 - cc� G o 00 � o. • J °° Figure 6.Anchor Installed in top of wall z z a O e w Co z 0 1- cn r z 0 Co a t0 3 N O O 4 U *See page 12 for an explanation of the load table icons. 196 Simpson Strong-Tie Anchoring and Fastening Systems for Concrete and Masonry SIMPSON Titen HD® Design Information — Masonry StrongTie Titen HDA Allowable Tension Loads for 8" Lightweight, Medium-Weight and IBC ? . * Normal-Weight CMU Chair Blocks Filled with Normal-Weight Concrete 1 Ili Size Drill Bit Min Embed. Min. Critical 8-inch Concrete-Filled CMU Chair Block izDia. Depth Edge Dist. Spacing Allowable Tension Loads Based on CMU Strength (mm) (in.) in. m. in. (mm) (mm) (mm) Ultimate lb. Allo(ae lb. kN kN 2% 13 91/2 3,175 635 n (60) (44) (241) (14.1) (2.8) 3/83 3% 1% 131/2 5,175 1,035 (9.5) /a (86) (44) (343) (23.0) (4.6) 5 21 20 10,584 I 2,115 r (127) (57) (508) (47.1) (9 4) 8 21 32 13,722 2,754 1 1_ (203) _ (57) (813) 1:1..0) (12.2) {12.7) i r 10 211 40 630 3325 _`n .(Z54) (57) i41916) -8.0) (14.8) 0 51/2 14 22 9,025 1,805 U (140) (44) (559) (40.1) i (8.1) r- (15.9) (15.9) 5/3 12 21/4 48 18,104 1 3,620 Q (305) (57) _ (1219) (80.5) (16.1) 1.The tabulated allowable loads are based on a safety factor of 5.0. CO 2.Values are for 8-inch-wide concrete masonry units(CMU)filled with concrete,with minimum compressive strength of 2,500 psi and V poured monolithically with the floor slab. • 3.Center#5 rebar in CMU cell and concrete slab as shown in the illustration below. C Ca 0^, 0 0 _ _ W Edge Distance :/- ____f - m 0oo #5 Rebar 40 �� • f',>_2,500 psi Concrete, Z �" • • ,.1 Slab on Grade > J o• e- (Monolithic Pour) I ' II ) 1 ' 4"Thick x o , ., , 1 o ,. ,i, ; Slab h : ', ` th 1 < I L /`.i I "'�\ ° , + `4.; v' Minimum Z ,'� 3 Courses High 0 a m 7 5 a O 5 ,, U See page 12 for an explanation of the load table icons. 197 Simpson Strong-Tie Anchoring and Fastening Systems for Concrete and Masonry SIMPSON Titen HD® Design Information - Concrete StrongTie Load Adjustment Factors for Titen HDa Anchors in Normal-Weight Concrete: Edge Distance,Tension and Shear Loads How to use these charts: . 1.The following tables are for reduced edge distance. 4.Locate the edge distance(cact)at which the anchor is to be installed. 2.Locate the anchor size to be used for either a tension 5.The load adjustment factor(f0)is the intersection of the row and and/or shear load application. column. 3.Locate the anchor embedment(E)used for either a tension 6.Multiply the allowable load by the applicable load adjustment factor(s). M and/or shear load application. 7.Reduction factors for multiple edges are multiplied together. Edge Distance Tension(fc) Dia. % 1/2 % 3/4 Ed/e E 11/2 23/4 33/4 23/4 3% 53/4 23/4 41/2 53/4 23/4 4% 53/4 Dist. c 6 3 3 4 4 4 5 5 5 6 6 ! 6 O tact ,, f, 6 13/a 13/4 13/4 13/4 13/4 13/4 1 13/4 13/4 13 14 13/4 U (in.) fcmin 1.00 0.83 0.73 0.67 0.57 0.73 0.67 0.57 0.59 0.67 0.48 0.58 C- 13/4 0.83 0.73 0.67 ! 0.57 0.73 0.67 0.57 0.59 0.67 0.48 0.58 Q 2 0.86 0.78 0.71 0.62 0.76 0.70 0.60 0.62 0.69 j 0,51 0.60 21/4 ; 0.90 0.84 0.74 0.67 0.79 0.72 0.64 0.65 0.71 0.54 0.63 al 21 0.93 0.89 0.78 0.71 0.82 0.75 j 0.67 0.68 0.73 0.57 0.65 t3 23/4 ' 0.97 0.95 0.82 0.76 0.85 0.77 ! 0.70 0.72 0.75 0.60 0.68 •� 3 , 1.00 1.00 0.85 0.81 0.88 0.80 0.74 0.75 0.77 0.63 !, 0.70 31 0.89 0.86 0.91 0.82 0.77 0.78 0.79 0.66 0.73 CO 3' 1 0.93 0.90 0.94 0.85 0.80 0.81 0.81 0.69 0.75 34 0.96 0.95 0.97 0.87 0.83 10.84 0.83 0.72 0.78 0 a) 4 j 1.00 1.00 1.00 0.90 0.87 j 0.87 0.84 i 0.76 0.80 41/4 j % ' -' 41 0.92 0.90 0.91 0.86 0.79 0.83 2 41/2 j "f ,,- t 0.95 0.93 0.94 0.88 0.82 0.85 43/4 ` 0.97 0.97 0.97 0.90 10.85 0.88 1 5 -I 1.00 1.00 1.00 0.92 0.88 0.90 51/4 I 0.94 0.91 0.93 51/2Iye. 9 0.96 0.94 . 0.95 53/4 i0.98 0.97 { 0.98 6 j 1.00 i 1x 1 ) 1.00 1.00 11.00 See notes below. Edge Distance Shear(fc) ® 1 i * Dia. % '/z % 3/4 Edge E 11/2 j 23/4 33/4 23/4 3% 53/4 23/4 41/2 53'4 23/4 4% 53/4 d Dist. cc, 6 1 PA 41,4 6 6 6 71 71/2 71/2 9 9 9 z (�) curia ,I 6 1 13/4 13/4 13✓a 13/4 13/4 13/4 13/4 13'4 13/4 ' 13/4 11 13/4 0_ 'raw 1.00 0.25 0.24 0.25 0.20 0.17 0.19 0.16 0.19 0.19 0.14 0.13 0 13/4 ' 0.25 0.24 0.25 0.20 0.17 0.19 0.16 0.19 0.19 i 0.14 10.13 w • 2 0.32 0.31 0.29 0.25 0.22 0.23 0.20 0.23 0.22 0.17 j 0.16 IT I; 2% 0.45 0.45 0.38 0.34 0.32 0.30 0.27 0.30 10.27 0.23 i 0.22 Z 0 fr 3 -, 0.59 0.59 0.47 0.44 0.41 0.37 0.34 0.37 1 0.33 0.29 0.28 31 0.73 0.72 0.56 0.53 0.51 0.44 0.42 0.44 i 0.39 0.35 1 0.34 0 4 0.86 0.86 0.65 0.62 0.61 0.51 0.49 0.51 10.44 0.41 0.40 0 41 1.00 1 1 00 10.74 0.72 0.71 0.58 0.56 0.58 0.50 j 0.47I 0.46 2 + 5 1 0.82 0.81 0.80 0.65 0.63 0.65 0.55 0.53 0.52 5% 0.91 0.91 0.90 0.72 0.71 0.72 0.61 10.58 0.58 6 1.00 1.00 1.00 , 1.00 0.79 0.78 0.79 0.66 0.64 i 0.64 0.86 10.85 0.86 0.72 0.70 0.70 6 biz 0.93 ''. 0.93.93 0.93 0.78 0.76 93 0.83 0.82 10.76 U 7/z0.82 8 , 0.89 0.88 0.88 8% I I 0.94 0.94 1 0.94 9 I i 1.00 1 1.00 1.00 The tabled adjustment values(fc)have been calculated using 5.fc=percent of allowable load at actual edge distance. the following information: 6.fc,=percentage of allowable load at critical edge 1.E=Embedment depth(inches). distance.f,c,is always=1.00. 2.cacr=actuaLedge distance at which anchor is installed 7.fcmin=percent of allowable load at minimum edge (inches). distance. 3.cc,=critical edge distance for 100%load(inches). 8.fc=fcmin+l(1-fc,,,in)(cacr-cmm)I(ccr-cm,,)]. 4.c,,,1,,=minimum edge distance for reduced load(inches). See page 12 for an explanation of the load table icons. 198 Simpson Strong-TieT Anchoring and Fastening Systems for Concrete and Masonry SIMPSON Titen HD® Design Information - Concrete StrongTie Load Adjustment Factors for Titen HD®Anchors in Normal-Weight Concrete: Edge Distance,Tension and Shear Loads How to use these charts: 1.The following tables are for reduced edge distance. 4.Locate the edge distance(sant)at which the anchor is to be installed. 2.Locate the anchor size to be used for either a tension 5.The load adjustment factor(fs)is the intersection of the row and and/or a shear load application. column. 3. Locate the anchor embedment(E)used for either a tension 6.Multiply the allowable load by the applicable load adjustment factor(s). * and/or a shear load application. 7.Reduction factors for multiple edges are multiplied together. Spacing Tension (fs) 4. Dia 3/a -1/2 % 3/4 i E ' 11/2 23/4 33/4 23/4 3% 53/4 23/4 41 534 23/4 4% j 53/4_ U) Sac[ s. 4 6 6 8 8 8 10 10 10 12 12 1 12 m O smin 4 11 11 2 ! 2 2 2' 2Y2 2' 13 3 •• 3 fsmin 1.00 0.66 0.56 0.72 0.63 0.76 0.79 0.69 0.73 0.80 0.70 0.72 0 1 { E 1 t j 0.66 0 56 ;ry f= Q 2 -f 0.70 0.61 0.72 0.63 0.76 1n1 A:-: _ Ca 2'/2 0.74 0.66 0.74 0.66 0.78 0.79 0.69 0.73 ' j 0 3 0.77 0.71 0.77 0.69 0.80 0.80 0.71 0.75 0.80 0.70 0.72 •= 4 1.00 0.85 0.80 0.81 1 0.75 0.84 ! 0.83 0.75 0.78 10.82 0.73 j 0.75 CO 5 0.92 0.90 j 0.86 1 0.82 0.88 0.86 0.79 0.82 0.84 0.77 j 0.78 r" 6 1.00 1.00 0.91 0.88 0.92 0.89 0.83 0.86 0.87 0.80 0.81 0 7 , 0.95 0.94 0.96 1 0.92 0.88 0.89 1 0.89 0.83 1 0.84 ca) 8 1.00 1.00 1.00 0.94 0.92 0.93 0.91 0.87 0.88 , G 9 0.97 0.96 0.96 0.93 0.90 0.91 10 , 100 1.00 1.00 1 0.96 0.93 0.94 11 ] 0.98 0.97 0.97 12 I i 1 1.00 1.00 k 1.00 See notes below Spacing Shear(f5) I Dia. % ' % _ 3/4 E 11/2 23/4 33/4 23/4 3% I 53/4 23/4 41 53/4 23/4 4% 1 5% sact s 4 0 0 0 0 1 0 0 0 0 0 0 1 0 Y (in) �) s 4 0 1 0 0 ! 0 ! 0 0 0 0 0 0 0 a fsmin 1.00 'i 0.77 j 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 2 1 I I L o w 11/2 I 0.77 0.77 0.88 , -, 0 2 I I 0.80 0.80 0.77 0.77 0.77 . ¢ 2' i" i 0.82 0.82 0.79 0.79 0.79 0.77 1 0.77 0.77 0 3 f 0.85 0.85 0.81 0.81 1 0.81 0.79 0.79 0.79 0.770.77 0.77 0 4 00 0.90 0.90 0.85 0.85 0.85 0.82 0.82 0.82 0.80 li 0.80 I 0.80 2 5 j 0.95 0.95 0.89 0.89 1 0,89 0.85 0.85 0.85 0.82 0.82 0.82 6 ! 1.00 1.00 0.92 0.92 0.92 0.88 1 0.88 0.88 0.85 0.85 0.85 '/ N 7 , _f 1 J 0.96 ! 0.96 0.96 1 0.91 i 0.91 0.91 0.87 0.87 0.87 05 8 i ( 1.00 1.00 1.00 0.94 I 0.94 0.94 0.90 0.90 0.90 9 1 0 97 0.97 0.97 0.92 0.92 0.92 a 10 ,: i 1.00 1.00 1.00 0.95 0.95 0.95 11 I { j i 0.97 0.97 0.97 12 i i i I i '' tx4 ; 1.00 1.00 I 1.00 The tabled adjustment values(fs)have been calculated 5.fs=adjustment factor for allowable load at actual using the following information: spacing distance. 1.E=Embedment depth(inches). 6.fns,=adjustment factor for allowable load at critical 2.sact=actual spacing distance at which anchors are spacing distance.fscr is always=1.00. installed(inches). 7.fs,-,i =adjustment factor for allowable load at 3.scr=critical spacing distance for 100%load(inches), minimum spacing distance. 4.s =minimum spacing distance for reduced load 8.fs=fsm,v+Ill-fsmin)(sacs-smin)7(sa-Smin)]' (inches). *See page 12 for an explanation of the load table icons. 199 Simpson Strong-Tie"Anchoring and Fastening Systems for Concrete and Masonry SIMPSON Titen HD° Design Information - Masonry Strong-Tie Load-Adjustment Factors for Titen HD®Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing,Tension and Shear Loads How to use these charts: 1.The following tables are for reduced edge distance and spacing. 5.The load adjustment factor(fc or I's)is the intersection of the 2. Locate the anchor size to be used for ether a tension and/or shear row and column. load application. 6.Multiply the allowable load by the applicable load adjustment factor. 3.Locate the embedment(E)at which the anchor is to be installed. 7.Reduction factors for multiple edges or spacings are 4.Locate the edge distance(cact)or spacing(sact)at which the multiplied together. anchor is to be installed. Edge and End Distance Shear(fc) , Edge or End Distance Tension (fc) Shear Load Parallel to Edge or End Dia. 3F8 Y. 5F8 3F4 IBC'* Dia. % '/s % % IBC E 41/2 31h 4t1__ 41/2 1 1 E 23/4 312 41/2 4/ o in cc, 12 12 12 12 t fm) 12 12 12 12 .► O ! Cmin 4 4 4 4 I cmin 4 4 , 4 4 II U fcmin 1.00 1.00 0.83 0,66 rim. , fawn 0.77 0.48 i 0.46 0.44 4 1.00 1.00 0.83 0.66 �� •i 4 i,° 1 0.77 0.48 0.46 0.44 �: Q - 6 { 1.00 1.00 0.87 0.75 6 0.83 0.61 0.60 0.58 Cla 8 1.00 1.00 � 0.92 0.83 I 8 0.89 0.74 0.73 0.72 10 1.00 1.00 0.96 0.92 I 10 0.94 0.87 0.87 0.86 • ✓ 12 1.00 1.00 ' 1.00 1.00 I 12 ,*:,::4Kyr 1.00 1.00 1 1.00 1.00 1 C See notes below See notes below C .0 Edge or End Distance Shear(fc)Shear Load Perpendicular to Edge or End Distance Shear(fc) O Edge or End(Directed Towards Edge or End) Shear Load Perpendicular to Edge or Dia. 1/2 % 3/4 IBC * End(Directed Away From Edge or End) E 23/a 31/z 4'/s 5'/z Dia. 3k Yz 5/e �-- * 6 IBC Cad cc, 12 12 12 12 4 , E 23/4 31/ 41/2 5' ( ) cmin 4 ! 4 4 4 cad Cc, 12 12 12 12 4 , fcmin 0.58 0.38 0.30 0.21 --r- Cmin 4 4 4 4 II 1 4 "r . 0.58 0.38 0.30 0.21 i Ifano 0.89 0.79 0.58 0.38 6 0.69 0.54 I 0.48 0.41 4 All 0.89 0.79 0.58 0.38 8 `7;41 0.79 0.69 0.65 0.61 6 fl 0.92 0.84 0.69 0.54 10fai r R 0.90 0.85 I 0.83 0.80 8 ' 0.95 0.90 0.79 0.69 mit12 # `; 1.00 1.00 i 1.00 1.00 1 10 1 0.97 0.95 0.90 0.85 i.E=Embedment depth(inches). 1 12 J_ 1.00 1.00 1.00 1.00 2.tact=actual end or edge distance at which anchor is installed(inches). 3.c,=critical end or edge distance for 100%load(inches). U ' 4.cm,=minimum end or edge distance for reduced load(inches). z 5.f,=adjustment factor for allowable load at actual end or edge distance. 6.fcc,=adjustment factor for allowable load at critical end or edge distance. a 2 ( fcc,is always=1.00. 8 U 7.fcmin=adjustment factor for allowable load at minimum end or edge distance. w 8.fc=f=in+I(1-fcmin)(Cast-Cmin) (Ccr-Cmin))• ETZ Spacing Tension(f5) Spacing Shear(fs) Q Dia. % % % / IBC* Dia. 3/e 1/2 I % 3/4 IBC* z E 23/4 1 31/2 41/2 51/2 E 23/4 31/2 1 41/2 51/2 (i�) scr 6 1 8 10 12 t sad Sc, 6 8 10 12 .► cmin 3 4 1 5 I 6 I ( } i Smin 3 4 5 6 I .; fsmm 0.87 0.69 0.59 0.50 ,--r- fin 0.62 0.62 0.62 0.62 ('-r141 1 3 <N 0.87 ,' 1 ' I 3 =. 0.62 1` ( M . J I 4 0.91 0.69 4 0 75 0 62 o 5 0.96 0.77 0.59 5 0 87 0.72 0.62 11 0 6 1.00 0.85 0.67 0.50 I 6 1.00 1 0.81 0.70 0.62 8 ( 1 00 0.84 0.67 8 r, 1 00 0.85 0.75 10 1 1.00 1 0.83 10 !;-''',;.'3X r< ! 1 00 0.87 12 1. .I = ') 1.00 12 Y -!!:/':f171;;',' 1.00 1.E=Embedment depth(inches). 2.sacs=actual spacing distance at which anchors are installed(inches). 3.sc,=critical spacing distance for 100%load(inches). 4.Smin=minimum spacing distance for reduced load(inches). 5.fs=adjustment factor for allowable load at actual spacing distance. 6,fsc,=adjustment factor for albwable load at critical spacing distance.fsc,is always=1.00. 7.fame=adjustment factor for allowable load at minimum spacing distance. 8.fs=tame+I(1-fsmm)(Sart-sawn)/(Sc,-Small. *See page 12 for an explanation of the load table icons. 200 ♦ r r DIMENSIONS AND SECTION PROPERTIES OF RECTANGULAR HSS Design Wall Nominal Axis X-X Axis Y-Y Torsion Surface Shape Thickness,t Wt Area, A p b/t h/t I Sr Z I S r Z J C Area in. lb/ft in.2 in.4 in.3 in. in.3 in.4 in.3 in. in.3 in.4 in.3 ft2/ft HSS16X8X5/8 0.625 93.34 27.4 9.20 22.0 863 108 5.61 137 290 72.5 3.25 84.1 723 141 3.82 X1/2 0.500 76.07 22.4 12.4 28.4 722 90.2 5.68 113 244 61.0 3.30 69.7 599 116 3.86 X3/8 0.375 58.10 17.1 18.1 39.5 565 70.6 5.75 87.6 193 48.2 3.36 54.2 465 89.2 3.89 X5/16 0,313 48.86 14.4 22.4 47.9 482 60.2 5.79 74.3 165 41.2 3.39 46.0 395 75.4 3.91 X1/4 0.250 39.43 11.6 28.8 60.8 393 49.1 5.82 60.3 135 33.8 3.41 37.4 321 61.0 3.93 HSS16X4X5/8 0.625 76.33 22.4 2.80 22.0 568 71.0 5.04 98.5 56.4 28.2 1.59 34.2 182 63.9 3.15 X1/2 0.500 62.46 18.4 4.40 28.4 481 60.1 5.11 82.2 49.3 24.6 1.64 29.0 157 53.8 3.19 X3/8 0.375 47.90 14.1 7.47 39.5 382 47.8 5.21 64.2 40.4 20.2 1.69 23.0 127 42.3 3.23 X5/16 0.313 40.35 11.9 9.58 47.9 328 41.0 5.25 54.6 35.2 17.6 1.72 19.8 110 36.1 3.24 X1/4 0.250 32.63 9.59 12.8 60.8 269 33.6 5.30 44.5 29.3 14.6 1.75 16.2 90.6 29.5 3,26 X3/16 0.188 24.73 7.29 18.1 81.9 208 26.0 5.34 34.1 23.0 11.5 1.78 12.5 70.3 22.6 3.28 HSS14X10X5/8 0.625 93.34 27.4 12.4 18.8 728 104 5.15 127 431 86.2 3.97 101 885 156 3.82 X1/2 0.500 76.07 22.4 16.4 24.4 608 86.9 5.21 105 361 72.2 4.01 83.6 730 128 3.86 X3/8 0.375 58.10 17.1 23.5 34.1 476 68.0 5.28 81.5 284 56.8 4.08 64.8 564 98.2 3.89 X5/16 0.313 48.86 14.4 28.7 41.5 406 58.0 5.31 69.1 242 48.4 4.10 55.0 478 82.9 3.91 X1/4 0.250 39.43 11.6 36.8 52.8 331 47.3 5.34 56.0 198 39.6 4.13 44.6 387 67.0 3.93 HSS14X6X5/8 0.625 76.33 22,4 6.00 18.8 504 72.0 4.74 94.0 130 43.3 2.41 51.2 352 88.9 3.15 X1/2 0.500 62.46 18.4 8.40 24.4 426 60.9 4.81 78.3 111 37.0 2.46 42.9 296 73.8 3.19 X3/8 0.375 47.90 14.1 12.8 34.1 337 48.1 4.89 61.1 89.1 29.7 2.51 33.6 233 57.3 3.23 X5/16 0.313 40.35 11.9 16.0 41.5 289 41.3 4.93 51.9 76.9 25.6 2.54 28.7 199 48.6 3.24 X1/4 0.250 32.63 9.59 20.8 52.8 237 33.9 4.97 42.3 63.4 21.1 2.57 23.4 162 39.5 3.26 X3/16 0.188 24.73 7.29 28.7 71.3 182 26.0 5.00 32.4 49.2 16.4 2.60 18.0 125 30.2 3.28 HSS14X4X5/8 0.625 67.82 19.9 2.80 18.8 392 56.0 4.44 77.3 49.2 24.6 1.57 30.0 154 55.5 2.82 X1/2 0.500 55.66 16.4 4.40 24.4 335 47.9 4.52 64,8 43.1 21.6 1.62 25.5 134 46.8 2.86 X3/8 0.375 42.79 12.6 7.47 34.1 267 38.1 4.60 50.8 35.4 17.7 1.68 20.3 108 36.8 2.89 X5/16 0.313 36.10 10.6 9.58 41.5 230 32.9 4.66 43.4 30.9 15.4 1.71 17.4 93.2 31.5 2.91 X1/4 0.250 29.23 8.59 12.8 52.8 189 27.0 4.69 35.4 25.8 12.9 1.73 14.3 77.0 25.7 2.93 X3/16 0.188 22.18 6.54 18.1 71.3 147 21.0 4.74 27.2 20.3 10.2 1.76 11.1 59.8 19.8 2.95 11