Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (83)
MS-VaCn- WLNCI SV SY Cic).,1s.... CT ENGINEERING Structural Engineers 180 Nickerson Street Suite 302 Seattle, WA 98109 INC. 206285.4512 (V) 206.285.0618 (F) RECEIVED #15238 AUG 8 2017 Structural Calculations CITY OFTIGARD BUILDING DIVISION River Terrace PRo, `c,NAG I N �� Plan 5 , � .; 60 , Elevation B �• � �REG�iNA Tigard, OR • E 1�� <`, t�FS T 0 Design Criteria: 2012 IBC (ORSC, OSSC) 09/14/2015 ASCE 7-10 Wind Speed: 120(ULT); 93(ASD); Kzt=1 .0 Seismic: Ss=0.972, S1 =0.423, SDC=D Roof Snow Load = 25 psf Site Class = D, Bearing = 2000 psf Client: Polygon Northwest Company 109 East 13th Street, Suite 200 Vancouver, WA 98660-3229 Ph: 360.695.7700 Fax: 360.693.4442 Architect: Milbrandt Architects 25 Central Way, Suite 210 Kirkland, WA 98033 Ph: 425.454.7130 Fax: 425.646.0945 CT ENGINEERING 180 Nickerson St. INC Suite 302 Seattle,WA 98109 (206)285-4512(V) (206)285-0618(F) Polygon Northwest Company Multiple locations in Tigard,OR DESIGN SUMMARY: The proposed project is to be single-family homes. We understand that these homes are to be constructed in multiple locations throughout Tigard, Oregon. Design parameters are as noted below: The structures are two-story wood-framed. Roof framing is primarily with pre-manufactured pitched chord wood trusses. Upper floor framing is primarily with pre-manufactured parallel chord wood trusses. Floor framing over crawispace is primarily pre-manufactured wood joists. The foundations are to be conventional spread footings. Wind design is based on the ASCE 7-10 MWFRS (Envelope Procedure)for 120 mph ultimate wind speed, exposure category B, and with a Kzt value of 1.00. Lateral design is based on the ASCE 7-10"equivalent lateral force" procedure with Ss equal to or less than 1.10 and S1 equal to or less than 0.50 and with soil classification"D". Plywood or OSB shearwalls are the primary lateral force resisting system (R=6.5). . Foundations have been sized for Class 4 soils as defined in IBC 1806.2. Codes considered; 2012 IBC, and currently adopted ORSC and OSSC. SHEET TITLE: DEAD LOAD SUMMARY CT PROJECT#: CT# ROOF Roofing 3.5 psf Roofing future 0.0 psf 5/8" plywood (O.S.B.) 2.2 psf Trusses at 24" o.c. 4.0 psf Insulation 1.0 psf (1) 5/8"gypsum ceiling 2.8 psf Misc./Mech. 1.5 psf ROOF DEAD LOAD 15.0 PSF FLOOR floor finish 4.0 psf NO gypsum concrete 0.0 psf 3/4" plywood (O.S.B.) 2.7 psf joist at 12" 2.5 psf Insulation 1.0 psf (1) 1/2"gypsum ceiling 2.2 psf Misc. 2.6 psf FLOOR DEAD LOAD 15.0 PSF (2)2(8 HDR ( )2x8 I-OR (2 2x8 HIR TRB.1 RB.2 RB.3 RB.4 .2B.5 01 iT.1) xcp, 1 ' m N In I u u u u N A Al' di V u V sli; u u —ri1 1HI GT b1 Y 2 1 GT 1 1 1 1 1 1 1 11I 1 1 1 E TN 1 1 I 1 0 1 1 I = II N I I I N I I I ET 1 1 x H T, I W F '' j N414 a I 'Tog' I InECE` 1 I L' •J 0 1 2 A i-:-, 1 O x la •N I I I I 1 ] I I II 1 1 1 1 1 ROOF TRUSS @124"0 11 I r 8 1 I i K 1 O 59.1 . GT 1 o I W dT.b2 x N �T� 1 col \.::..::.s::, N N O (2)2K8 HD 1 l I RB.131 1 /M0 -F R— ,a , GABLE END TRUSS RB.1_i . I I I g s 12 I IfB.10 I RB 1� GAR!F FND TRI ISSGABLE!END TRUSS OPLAN 5B PLAN 5B Roof Framing Plan 1/4"=1.-0" CT# 14051 2014.05.09 1/4" = 1'-0" (11x17) e :4*111141.1 (II O I -- II I I I_ II II F I I al JII_ 0 E I e r W F I. <A h ' 4] I I I II II , 0, K .__ , F I_ L J i IIF I 111 .I ■ ,4 4. a 4. . ' ni 4.Te 4.T- W 41:10 / (P4) OD OPLAN 5B PLAN 5B Top Floor Shear Plan 1/4"= 1"-0" CT# 14051 2014.05.09 1/4" = 1'-0" (11x17) dh Ark MIP gar a CO 14 STHD14 1.Ma 4x10 HDR 1 Mb 3.5x9 GLB HDR 1 Mc 4x10 HDR 4x10 HDR 4x10 HDR 1.Md A. === _====-=:= 4.1 \_, B.2 B. rB.4 B.3� I o 1 t' `°N N / 1 I{' 1 -- -1L i; �' I E 43m N __ q,' I Ul= m i__ II 11 } 3.5x ii.NG BEAM FB 3.5x14 B BEAM FB1- 3.5x9,LB HDR F� - gR��O -Tr' B.I1 II B.12 z I I j - II v I ..-x� ------ g:1a3HDR 4 IHDR J I ry :...I i I B I =F; I' �\STAIR / ' 4 I Si HD14 .,j. STW 1� --2i \FRAMING x 11 11:1-----! _sTHC - ST-ID14 \ / rAT, 1. II \/ /\ F / \ Pa / \ \ / \ S1HD14 \ 1 1 / \,�I f! STHD14 3.5 •BIG BEAM FB 11 r ~ 5.5x18 LIB HDA - = —r- I-r.-�.�+-...r s as arrahrmrs� B ce ____ e6 ___ : 14 WI = 13 ii = Fes-- - pN I I I c 0 -1 r.____----____ ___-T nx m + a j Q )2x8 HDR = I x B.17 n I ` IrYC I _ 1 No ■ I n . 1 1 5.5x12 GLB HDR 1 56.1 3.5x14' M FB ..-rr=�*•7--rC 4.M� mB.16 / iDR 4x10 r C �/1.�GI� r P341110 STHD14 B•15 STHD14 41 An.•..2x LED, ©•. SIM. 0 4.Mc & 4.Md not used this elevation 19 B.19 IS \ • A `MONO TRUSSES v @24"O.C. PLAN 5B (I) PLAN 5 B Main Floor Shear/Top Floor Framing 1/4"=1'-0" CT# 14051 2014.05.09 1/4" = 1'-0" (11x17) 13" 4 0" 3.11,6„_, 6 T.O.S. 31/2"CONC.SLAB c „g -01-71/2" -0'-3"I T.O.S. STHD14 STHD14 t a 1 t.. 11 1/2"TJI FLOOR JOISTS© ... 1NSTALLSYSTEM TO.ALLOW I 92 O.0 P U.N.O I .ADEQUATE.DRAlNAGE.AT - �-,,_ ® 1 CRAWL SPACE 1 1.25x9_LVL'. I1 —n. I ;1B x18 x10"'FTG .'.-.I. c' t W/(2)#4 EACH.WAY TYP 1 I-1'-01/2 si r"I( .. t 2x6 PONY WALL FOR ! L eo Ws, _ t75 WIDE LVL TO MATC. (JOIST !', DEPTH ! ,I - ABOVE PONY WAL�S 'jf1f 1 J a 1 � I I Ir WH ) STHD14 t STHD14 P4 CP.-1) T.O.S. I 30"x20")(10"FTG. 175"WIDE LVL TO TCH 1 W/ "EA WAY I I JOIST DEPT}i ABs POND, STHD1a - I P4 STHO a 31/T'CONC.SLAB ;- ... .. ...............L. SLAB SLOPES 31/2" 1 � sem+ FROM BACK TO APRON VERIFY GARAGE SLAB HEIGHT WITH GRADING PLAN 'I 5 191-10" —311 r Q I / r I-� 2x4 PONY WALL l 1 IIIWIN • T.O.S. olio 0 I ': 18 STHD14 _1'-0 1/2" STHD14 + __ % _ .1 361 P3 v STHD14 STHD14 31/2"CONC.SLAB SLOPED DOWN P3 1/4 :12 —ow • Je 1 ---- J 440, 2'-1", { 16'-3" 2'-2" T-10" PLAN 51h ' l/ ,1 PLAN 58 14051 2014.05.09 J4" = 1'-C" (11x17) CT Engineering Project Title: Engineer: Project ID: 180 Nickerson,Suite 302 En g Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed'26 MAF 2014,4:29PM ,,: ,,rile,--Q'114ti51T 1VE17 4051-4,EM M/4itlple Sltiipie Beam ': ', .` , (ri1LC 1tatG 1,983-20141 13uidS 1a 1 V 14 1. e Lie.#:KW-06002997 Licensee:c.t.engineering Description : PLAN 5.B Top Floor Framing Wood Beam Design B.1 Calculations per 2012 NDS,IBC 2012,CSC 2013,ASCE7-10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Pr!! 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,0.0 to 2.670 ft,Trib=3.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.990, S=1.650 k @ 2.670 ft Design Summary D(0 Ott.,: , s 0.57.n Max fb/Fb Ratio = 0.795- 1 0 0.043 ,, .. . 1°) ' ' fb:Actual: 983.60 psi at 2.663 ft in Span#1 ��illiii�a Fb:Allowable: 1,237.45 psi Load Comb: +D+0.750L+0.750S+H Max fv/FvRatio= 0.588: 1 A A fv:Actual: 121.63 psi at 3.485 ft in Span#1 Fv:Allowable: 207.00 psi 4.250 ft,4x10 Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.024 in Downward Total 0.038 in Left Support 1.05 0.87 0.92 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.60 0.87 1.84 Live Load Defl Ratio 2120 >360 Total Defl Ratio 1333 >180 Wood-Beam Design : B.2 : 'Calculations per 2012 NDS ,IBC 2012 ,CBC 2013,ASCE 7-10 BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-PrIl 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 6.50 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.560, S=0.9350 k @ 3.250 ft Design Summary o(C1';;; Max fb/Fb Ratio = 0.736. 1 ' ' 0(0. _4,f.34%0{540.57.'0) f fb:Actual: 1,600.40 psi at 3.250 ft in Span#1 ,, Fb:Allowable: 2,175.87 psi Load Comb: +D+0.750L+0.750S+H Max fv/FvRatio= 0.511 : 1 = • fv:Actual: 182.08 psi at 5.352 ft in Span#1 6.50 R, 1.75x14 Fv:Allowable: 356.50 psi Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) 2 L Lr S W E H Downward L+Lr+S 0.066 in Downward Total 0.104 in Left Support 1.43 1.33 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.97 1.33 2.02 Live Load Defl Ratio 1187 >360 Total Defl Ratio 748 >180 Wood'Beaim Design,:: B.3 Calculations',per 2012 NDS,IBC 2012,CBC 2013,ASCE'7-10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-PrIl 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,1.50 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.560, S=0.9350 k @ 1.50 ft CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 26 MAR 214 4 29PM Mipll °. -2:1.F7.%,,''' <'_ , , 1 Q 1Ot 51T 1iEf i1 1T .EtufIlu Simpege�11 P 1 ,, ,,,_ .r,e, n_ ENERCALC1t .19832014,Bu .14123,Uer 14.12 3 Lic.#: KW-06002997 Licensee:c.t.engineering Design Summary '''"T) 50 Max fb/Fb Ratio = 0.681: 1 + +Dt.15-''Li CT Engineering Project Title: Engineer: Project ID: 180 Nickerson,Suite 302 En g Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 26 MAR 23144297M g �2irO a 51T ii 14051V4E05 111 1p p L$ fit ro,... ENER A1.C,INC_19514,. :6.14 s i,V f4::123 ; Lic.#:KW-06002997 Licensee:c.t.engineering Woad earn Design: B.6 ,'; .• on Calculatis`per 2012 NDS,IBC 2012,CBC 2013,ASCE 7-10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 klft,Trib=5.0 ft Unif Load: D=0.010 klft,Trib=8.0 ft Design Summary i • Z4,44 T Max fb/Fb Ratio = 0.520; 1 fb:Actual: 606.14 psi at 3.000 ft in Span#1 _ Fb:Allowable: 1,165.07 psi . ,,. Load Comb: +D+S+H 0 A Max fv/FvRatio= 0.283: 1 fv:Actual: 48.83 psi at 5.400 ft in Span#1 Fv:Allowable: 172.50 psi 6.ore,2-2x8 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.039 in Downward Total 0.079 in Left Support 0.51 0.12 0.38 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.51 0.12 0.38 Live Load Defl Ratio 1843 >360 Total Defl Ratio 908 >180 Wood Beare Design B.7 Calculations per 2012 NDS,IBC 2012;.CBC 2013,ASCE 7-10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 klft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 klft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary • ;,,;.'et , • Max fb/Fb Ratio = 0.292: 1 fb:Actual: 340.95 psi at 2.250 ft in Span#1am Fb:Allowable: 1,167.23 psi Load Comb: +D+S+H El Max fv/FvRatio= 0.195: 1 A A fv:Actual: 33.57 psi at 0.000 ft in Span#1 Fv:Allowable: 172.50 psi 4.50tt 2-2x6 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.012 in Downward Total 0.025 in Left Support 0.38 0.09 0.28 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.38 0.09 0.28 Live Load Defl Ratio 4369 >360 Total Defl Ratio 2152 >180 Wood Beare Design B.8 °' ; - Calculationi per 2012 NDS,IBC 2012, CBC 2013,ASCE 7-10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Pr!! 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary D 0.2213 L 0.590 Max fb/Fb Ratio = 0.277 1 ����� fb:Actual: 298.66 psi at 1.750 ft in Span#1 . Fb:Allowable: 1,077.23 psi • Load Comb: +D+L+H = Max fv/FvRatio= 0.205: 1 fv:Actual: 36.84 psi at 2.730 ft in Span#1 Fv:Allowable: 180.00 psi 3.50,s 4x10 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Defl Ratio 7745 >360 Total Defl Ratio 5633 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Painted:26 MAR 2014,4:29PM lupi le Sim l BeafT - i0 ,� 51 1.23 r 1 Tres �, , ,, � . .....:`. ..... ....... . �-,��Cu. ,u,[c�ss3-zof4 �tsi412tuem�t41,g3�.'. Lic.#:KW-06002997 Licensee:c.t.engineering Wood Beam Design B.9 Calculations per 2012 NOS,IBC 2012,CBC 2013,ASCE 7-10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Pill 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary D 0.2213 L 0.590 : imraimmor: Max fb/Fb Ratio = 0.277. 1 ,• . fb:Actual: 298.66 psi at 1.750 ft in Span#1 Fb:Allowable: 1,077.23 psi • Load Comb: +D+L+H Max fv/FvRatio= 0.205: 1 A A fv:Actual: 36.84 psi at 2.730 ft in Span#1 Fv:Allowable: 180.00 psi 3.50a 4x10 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Deft Ratio 7745 >360 Total Defl Ratio 5633 >180 Wood Beam Design al() Calculations per 2012 NDS,IBC'2012,CBC 2013,ASCE 7-10 BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Fri! 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Desiqn Summary D(0.2213 L(0.590) Max fb/Fb Ratio = 0.372. 1 fb:Actual: 766.31 psi at 3.000 ft in Span#1 4.£ „ : Fb:Allowable: 2,062.40 psi ,Wg Load Comb: +D+L+H w _ Max fv/FvRatio= 0.295: 1 A A Si:Actual: 91.39 psi at 4.840 ft in Span#1 Fv:Allowable: 310.00 psi 6.0 R, 1.75x14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.028 in Downward Total 0.038 in Left Support 0.66 1.77 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.66 1.77 Live Load Defl Ratio 2581 >360 Total Defl Ratio 1877 >180 Wood Beam Design': B.11 Calculations per 2012 NDS IBC 2012,CBC 2013,ASCE 7-10 BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Pill 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Desiqn Summary D 0.2213 L 0.590 ftiMMMINftMax fb/Fb Ratio = 0.198: 1ft 72, __ fb:Actual: 431.05 psi at 2.250 ft in Span#1 � Fb:Allowable: 2,180.79 psi Load Comb: +D+L+H == • Max fv/FvRatio= 0.175: 1 fv:Actual: 54.39 psi at 0.000 ft in Span#1 Fv:Allowable: 310.00 psi 4.505,1.75x14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.50 1.33 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.50 1.33 Live Load Defl Ratio 6120 >360 Total Defl Ratio 4451 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Prinki 26 MAR 2314 4 29PM Mu 4p1e'5tmpte Beit' r E ERC)I—C,I 1 ,20 B 61 1-123,,u40i4.1 `' Lic #:KW-06002997 Licensee:c.t.engineering Wood Beam Design :' B.12 _y;; Calculations per 2012 NDS,IBC 2012,CBC 2013,ASCE 7-10.' BEAM Size: 3.125x9,GLB, Fully Unbraced OR 3.125X10.5 Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-PrIl 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.0 ft Design Summary D(0.210 L(0.560) Max fb/Fb Ratio = 0.736; 1 fb:Actual: 1,752.18 psi at 4.000 ft in Span#1 Fb:Allowable: 2,379.75 psi z.�.� .,M ,.� a. ���� �" Load Comb: +D+L+H I. AIII Max fv/FvRatio= 0.504: 1 fit:Actual: 133.60 psi at 0.000 ft in Span#1 Fv:Allowable: 265.00 psi 8.0 ft, 3.125x9 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.152 in Downward Total 0.209 in Left Support 0.84 2.24 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.84 2.24 Live Load Defl Ratio 632 >360 Total Defl Ratio 459 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed.26 MAR 2014,428PM j ,,. 0:111651T 1SEt1 14451T-4Ec6 Multiple lrrl p(e Beca11111 11 ENERCAL* 1NC.ass.3-2014.Bu :s 1 t 2SVeri614t.23 Lic.#:KW-06002997 Licensee:c.t.engineering Description : PLAN 5.B Top Floor Framing, Cont. Wood Beam Design ;: B.13 Calculations per 2012 NDS,IBC 2012,CBC 2013,ASCE 7-10 BEAM Size: 3.5x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-PrIl 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.0 ft Unif Load: D=0.0150, L=0.10 k/ft,Trib=5.0 ft Design Summary 8{8:7P%1493i8. Max fb/Fb Ratio = 0.422. 1 fb:Actual: 962.10 psi at 4.250 ft in Span#1 � Fb:Allowable: 2,280.40 psi 6 *;, Load Comb: +D+L+H �� :; . Max fv/FvRatio= 0.310: 1 A A fv:Actual: 95.96 psi at 7.338 ft in Span#1 Fv:Allowable: 310.00 psi 8.50 ft.3.5,14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.078 in Downward Total 0.097 in Left Support 0.83 3.49 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.83 3.49 Live Load Deft Ratio 1306 >360 Total Defl Ratio 1055 >180 Wood Beam Design;: B.14 Calculations per2012 NOS,IBC 2012,CBC 2013,ASCE7-10 BEAM Size: 5.125x18,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-PrIl 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=12.0 ft Design Summary Max fb/Fb Ratio = 0.634: 1 D(0.180 L(0.480) fb:Actual: 1,466.89 psi at 10.125 ft in Span#1 Fb:Allowable: 2,313.03 psi Load Comb: +D+L+H Max fv/FvRatio= 0.350: 1 20.250 n, 5.125x18 fv:Actual: 92.72 psi at 18.765 ft in Span#1 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.407 in Downward Total 0.560 in Left Support 1.82 4.86 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.82 4.86 Live Load Defl Ratio 596 >360 Total Defl Ratio 433 >180 Wood Beam Design B.15 Calculations'per 2012 NDS,IBC 2012,CBC 2013,ASCE 710 BEAM Size: 4x12,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-PrIl 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=2.750 ft Design Summary oc$8411._ S%Qv,„35) Max fb/Fb Ratio = 0.893: 1 fb:Actual: 876.94 psi at 4.375 ft in Span#1 ;, Fb:Allowable: 982.26 psi Load Comb: +D+L+H Max fv/FvRatio= 0.411 : 1 A fv:Actual: 73.91 psi at 0.000 ft in Span#1 Fv:Allowable: 180.00 psi 8.750 ft,4x12 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.090 in Downward Total 0.126 in Left Support 0.80 1.66 0.30 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.80 1.66 0.30 Live Load Defl Ratio 1172 >360 Total Defl Ratio 831 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Pnntea 26 MAR 2014,4.26PM 1.'00,1'7, F� x... r 4 1•1405' 25icfi Mu,1 p1e tp ebeam ' ` 3$ 40 ,, . r R ALC/ :19804 Boats14 r s 14t 1- Lic.#:KW-06002997 Licensee:c.t.engineering Wood Beam Design : B.16 l4' ;1,- - BEAM Size: 5.125x12,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-PrIl 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=2.0 ft Design Summary Max fb/Fb Ratio = 0.771 . 1 &.13 ' Uo.SIA fb:Actual: 1,834.37 psi at 8.250 ft in Span it 1 Fb:Allowable: 2,379.23 psi ' _ z ' Load Comb: +D+L+H a� .. Max fv/FvRatio= 0.369: 1 A A fv:Actual: 97.83 psi at 0.000 ft in Span it 1 16.50 n, 5.125x12 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.543 in Downward Total 0.760 in Left Support 1.42 3.14 0.41 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.42 3.14 0.41 Live Load Defl Ratio 364 >360 Total Dell Ratio 260 >180 WoodE Beam: esign B 17 _ Calculations per 2012 NDS,IBC2012,CBC 2013;ASCE 7-10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850 psi Fc-PrIl 1300 psi Fv 150 psi Ebend-xx 1300 ksi Density 27.7 pcf Fb-Compr 850 psi Fc-Perp 405 psi Ft 525 psi Eminbend-xx 470 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.250 ft Design Summary D(0.1238 L(0.330) Max fb/Fb Ratio = 0.312. 1 fb:Actual: 317.25 psi at 1.750 ft in Span#1 ,: Fb:Allowable: 1,016.71 psi Load Comb: +D+L+H Max fv/FvRatio= 0.241 : 1 A A fv:Actual: 36.14 psi at 2.905 ft in Span#1 Fv:Allowable: 150.00 psi 3.508,2-2,8 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.22 0.58 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.22 0.58 Live Load Defl Ratio 4643 >360 Total Defl Ratio 3377 >180 Wood Beam Design B.18 ,y = r Calculations per 2012 NDS,IBC 2012,CBC2013,ASCE 7-10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pill 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.250 ft Design Summary D 0.1238 L 0.330 Max fb/Fb Ratio = 0.312; 1 . iimi...> 01 fb:Actual: 317.25 psi at 1.750 ft in Span*1 Fb:Allowable: 1,016.71 psi p Load Comb: +D+L+H 40 • Max fv/FvRatio= 0.241 : 1 A A fv:Actual: 36.14 psi at 2.905 ft in Span#1 Fv:Allowable: 150.00 psi 3.50 ft,2-2,8 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.22 0.58 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.22 0.58 Live Load Defl Ratio 4643 >360 Total Defl Ratio 3377 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 2014,4.26PM �u. 4ne irnp 6@anl 1`� '. 11 T f1Engd14D tERCAI,C,ft� tsa3-•2411 tai£14123 vis'#4.23.. Lic.#:KW-06002997 Licensee:c.t.engineering Wood Beam Design : B.19 t-� Calculations per 2012 NDS,IBC 2012,CSC 2013,ASCE 7-10 BEAM Size: 4x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-PrIl 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=3.50 ft Design Summary Max fb/Fb Ratio = 0.593. 1 D(0.05250)S(0.08750) fb:Actual: 791.49 psi at 5.375 ft in Span#1 �, Fb:Allowable: 1,334.07 psi Load Comb: +D+S+H = Max fv/FvRatio= 0.192: 1 fv:Actual: 39.74 psi at 10.177 ft in Span#1 10.750 ft, 4x8 Fv:Allowable: 207.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.149 in Downward Total 0.238 in Left Support 0.28 0.47 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.28 0.47 Live Load Defl Ratio 867 >360 Total Defl Ratio 542 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MAR 2014,9:51AM Mr' ' P ' -e - ,P: 1 z I6A51TN1iErqi1d451T tEu , i . „ r , ,.;,.. ,,,,, , EKt tC, ilO1dMn4t81441t43rs t4 9.2 .,...: Lic.#:KW-06002997 Licensee:c.t.engineering Description : PLAN 5.B 2nd floor wall Headers Wood Beam Design Typical Partial/Non-Bearing Header(6'clear span max., 6'trib max.) Calculations per 2012 NDS,IBC 2012,CRC 2013;ASCE 7-10: BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Design Summary D(0.0750)S(0.1250) Max fb/Fb Ratio = 0.476: 1 fb:Actual: 482.28 psi at 3.250 ft in Span#1 ? & ' Fb:Allowable: 1,013.55 psi „ . Load Comb: +D+S+H Max fv/FvRatio= 0.245: 1 A A fv:Actual: 36.76 psi at 0.000 ft in Span#1 Fv:Allowable: 150.00 psi 6.50 ft, 2-2x8 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.041 in Downward Total 0.065 in Left Support 0.24 0.41 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.24 0.41 Live Load Defl Ratio 1913 >360 Total Defl Ratio 1196 >180 Wood Beam Design,: Typical Full-width Bearing Header(4'clear span Max, 23'Trib Max.) Calculations per 2012 NDS,IBC 2012,CBC 2013,ASCE 7;10 BEAM Size : 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=23.0 ft Desiqn Summary D(0.3450)0(0.5750) Max fb/Fb Ratio = 0.934: 1 ,, fb:Actual: 948.44 psi at 2.125 ft in Span#1 Fb:Allowable: 1,015.94 psi Load Comb: +D+S+H Max fv/FvRatio= 0.647: 1 A fv:Actual: 97.08 psi at 3.655 ft in Span#1 Fv:Allowable: 150.00 psi 4.250 ft,2-2x8 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.034 in Downward Total 0.055 in Left Support 0.73 1.22 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.73 1.22 Live Load Defl Ratio 1488 >360 Total Defl Ratio 930 >180 Wood Beam Design: Header RB.9.B Calculations'per 2012 NDS,IBC 2012,CBC 2013,ASCE-7-10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Point: D=1.010, S=1.680 k@0.50ft Desiqn Summary Max fb/Fb Ratio = 0.597. 1 D(0.0750 S(0.1250) fb:Actual: 696.61 psi at 1.348 ft in Span#1 Fb:Allowable: 1,166.16 psi Load Comb: +D+S+H • • Max fv/FvRatio= 0.265: 1 A A fv:Actual: 45.67 psi at 4.655 ft in Span#1 Fv:Allowable: 172.50 psi 5.250 ft,2-2x6 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.038 in Downward Total 0.060 in Left Support 1.11 1.85 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.29 0.49 Live Load Defl Ratio 1671 >360 Total Defl Ratio 1044 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Fnnted:6 MAR.2014,9:51AM • .^-r ,- �� Q 1144511' 14051T LEGE£'' multiple Simple Beam ,r,% f,o ,, � .ry !..,..,. � '' � , Lic.#:KW-06002997 Licensee:c.t.engineering Wood Beam Design Header RB.17.6 Calcuons per 2012 NDS,IBC 2012,CBC 2013,ASCE 7-10. BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 klft,Trib=5.0 ft Point: D=0.90, S=1.50 k@0.50ft Desiqn Summary .1°-...SO, Max fb/Fb Ratio = 0.556. 10 0.0750 S 0.1250 fb:Actual: 648.22 psi at 1.488 ft in Span#1 'I I I I MI I II I M' :•_ Fb:Allowable: 1,166.16 psi Load Comb: +D+S+H III ill Max fv/FvRatio= 0.254: 1 A A fv:Actual: 43.76 psi at 4.655 ft in Span#1 Fv:Allowable: 172.50 psi 5.250 ft, 2-2x8 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.036 in Downward Total 0.057 in Left Support 1.01 1.69 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.28 0.47 Live Load Deft Ratio 1774 >360 Total Defl Ratio 1108 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MAR 2014,9.22AM �_ �� `j 4 1+f5 T1E 3MultipleSnnple am � l��t£ ; -ii Lic.#•KW-06002997 Licensee:c.t.engineering Description : PLAN 5.B Crawlspace Framing Wood Beam'Design : CB.1 CalculatIo3is per 2012 NDS,IBC 2012,CBC 2013,ASCE 7-10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-PrIl 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Design Summary D(0.1425 L(0.380) Max fb/Fb Ratio = 0.823: 1 fb:Actual: 883.28 psi at 3.750 ft in Span#1 ,ti Fb:Allowable: 1,073.71 psi , • • , �: a 63`x' Load Comb: +D+L+H ID 0 Max fv/FvRatio= 0.403: 1 A A fv:Actual: 72.63 psi at 0.000 ft in Span#1 Fv:Allowable: 180.00 psi 7.50 ft, 4x10 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.074 in Downward Total 0.101 in Left Support 0.53 1.43 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.53 1.43 Live Load Defl Ratio 1222 >360 Total Defl Ratio 888 >180 TJI JOISTS and RAFTERS (._.____._._.._._,_._._,___._._._.,__,_._._.._y Code Code Code Suggest Suggest Suggest Lpick Lpick Lpick Lpick Joist 1 b j d Spa LL DL 1 M max V max El J L fb L fv L TL240 L LL360 I, L max TL deft. 1 LL deft. �_-1_7(1:380.---1:1148-6-_ L max T_L def TL defl.LL deft'LL deft. size& rade widthSin). de th in in s s 1 ft Ibs sI 1 si ft f ft ft fl m in 7 ft ft ft &.. ............. ._ depth l._�._.1._ 1P'2._!.Se_. .__S._-_._..1._.._(e_).__.__(e:1.._._..._._SJ_.._...___S.1._._..._._S._:1._.__._.�.)._._._.._._.l1_.._.___i._.1._.._. S •L._ _..�_._.._L..1_._..__._.._.�.:1_._.._. 1 •1 (ink ratio Sm� �:_ratio .._._.._. _.____. 9S"TJI 110 1.75 95 19.2 40� 15 2380 1220! 1.40E+08 14.71 27.73 15.23 14.80 14.71 0.66'=. 0.48 13.31 13.45 13.31044 360 032: 495 9.5"TJI 110 1 75J 9 5 16 40 15 2380 12201 1.40E+08; 16.11 33.27 16.19 15.73 15.73 0.72: 0.52 14.14 14.29 14.14 0.47 360 0.341 495 9.5"TJI 110 1.751 91 12 40 15 2380 12201 1.40E+081 18.61 44.36 17.82 17.31 17.31 0.791 0.58 15.57 15.73 15.57 0.52 360 0.381 495 9.5"TJI 110 1.75 9.5 9.6 40 15 2380 12201 1.40E+081 20.80 55.45 19.19 18.64 18.64 0.854 0.62 16.77 16.94 16.77 0.56 360 0.41: 495 9.5"TJI 1101 1.75, 9.5 19.2 401 10� 2500 1220 1.57E+081 15.81 30.50 16.34 15.371 15.37 0.64 0.51! ! 14.27 13.97 13.97 0.441- 384 0.35~ 480 9.5"TJI 110 1.75 9.5 16 40 1 10 2500 1220. 1.57E+08, 17,32 36.60 17.36 16.34 16.34 0.68 0.54 15.17 14.84 14.84 0.46 384 0.37 480 9.5"TJI 110 1.751 9.5 12 40 101 25001_1220 1.57E+08' 20.00 48 80 19.11____17,98._____17.58_. 0.75 050_1_1_..._16 69! 16 34 16.34 0.511 384 0.41i 480 9.5"T.11 1101 1.757 9.5 9.6 40 10 2500 1220 1.57E+081 22.36 61.00 20.58 19.37 19.37 0.81: 0.65 17.98 17.60 17.60 0.551 384 0.441 480 p ._.._._._.._._...._._.._._.___._._.._._._.._._. ._._.._._._.._..._.._._._................._..__._.._._._.._._...._._.._._._.._._...._._._.._._._.._.+._._._.._._._.._.__.. _._._._.._._._.._ .._.._.._._._.._..._.._.__.._.. 1 _._..__._ .._.__. _.._._._. L _._.._._. _.._._._.._.___ ' 9.5"TJI 210 2.06251 9.5 19.21 40 101 3000 1330 1.87E+081. 17.32 33.25 17.32 16.30 16.30, 0.681 0.54,-1 15.13, 14.81 14.81 0.46 384 0.371 480 9.5141210 2.0625 9.5 16 ', 40 10 3000 1330 1.87E+08 18.97 39.90 18:40 17.32 17.32 0.72 0.58 16.08 15.74. 15.74 0.49 384 0.39 480 9.5"TJI 210, 2.0625 9 5 9.6 401 10� 3000 21.911 53.20 20.26 19.06 19.06' 0.79. 0.641 i 17.70 17.32 17.32 0.54! 384 0.431. 480 r 13301 1.87E+08 24.49( 66.50 21.82 20.53 20.53 0.861 0.68 I 19.06 18.66 18.66 058 384 0.47 480 9.5"TJI 230 2.3125, -91-6- 19.2 40 101 3330,r 13301 2.06E+08 18.25 33.25 17.89 16.83 16.83, 0.70 7 0.56 15.63 15.29 15.29 0.48, 384 0.381 480 9.5.'1'41230 2.3125 9.5 16 40 10 3330 1330 2.06E+08 19.99 39.90` 19.01 17.89 17.89 0.75 0.60 ` 16.60 16.25 18.25' 0.51 384 0.41 480 9.5"TJI 230! 2.3125! 9.5 12 401 10 3330 1330'' 2.06E+08, 23.081 53.20 20.92 19.69 19.691 0.821 0.68 1 18 28 17 89 17.89 0.56 384 0.451 480 9.5"TJI 230 2 31251 9.5 9.6 40' 10 33301 13301 2.06E+081 25.81.--_--66.50 22.54 21.21 21.21 0.881 0.71 1959 19.27 19.27 0.60 384 0.481 480 i 11.875"TJI 110i 1.751 11.875 19.2 40 101 31601 15601 2,67E+08' 17.78 39.00 19.50 18.35 17.78 0.671 0.54 17.041 16.67 16.67 0.521 384 0.4-21. 480 11.875'1'41 110 1.75 11.875 16 40 10 3160 1560 2.67E+08 19.47 46.80 2032 19.50 19.47 0.81 0:65 18.10 17.72 17.72 0.55 384 0.44 480 _11.875"TJI 1101 1.75, 11.875 121_ 40 10L 3160 15601 2.67E+081 22.49 62 40 22 81 21.461 21.46 0.891 0.72 19.93 19.50 19.50 0.61 384 0.49: 480 11.875"TJI 1101 1.75' 11.875 9.6 40 10 3160 15601 2.67E+081 25.14. 78.00 24.57 23.12 23.12 0.961 0.77 + 21.46 21.01 21.01> 0.66 384 0.531 480 i 11.875"TJI 2101 2.0625 11.875 19.2 40 101 37951 16551 3.15E+081 19.481 41.38 20.61 19.39 19.39 0.81 0.65 1 18.00 17.62 17.62 0.55 384 0.44i 480 11.875"TJI 210 2.0625 11.875 16 40 10 3795 1655 3.15E+08 2154 49.65 21.90 20.61 "'20.61 0.86 0.69 19.13 18.72 1832 0.59 384 0A7 480 11.875"TJI 210 2.0625 11.875 121 401 101 3795 16551 3.15E+08 24.64' 66.20 24.10 22.68 22.681 0.95 0.76 i 21.05 20.61 20.61 0.641 384 0.521 480 11.8751'1141 210' '2.0625 11.875 9.6 40 101 3795 16551 3.15E+08 27.55 82.75 25.96 24.43 24.43 1.02: 0.81 22.68 22.20 22.20 0.691 384 0.55; 480 i 1 1 • ............ 1.___..._._...._..._.-._.._. 11.875111-J1 230' 2.31251 11.875 19.219 40 101 4215 1655' 3.47E+081 20.53 41.38 21.28 20.03 20.03 0.83 0.671 j 18.59 18.20 18.20 0.571 384 0.45. 480 11.875"TJI 230 2.3125 11.875 16 40'1 10 4215 1655 3.47E+08' 22.49 49,65 22.62 21.28 21.28 0.89 0.71 19.76 19.34 19.34, 0.60 384 0.48 480 11.875"TJI 230 2.31251 11.875 121 40' 101 4215' 16551 3.47E+081 25.97 66.20 24.89 23.42 23.42 0.98 0.781 I 21.74 21.28 21.28 0.67 384 0.53' 480 11.875"TJI 230 2.31251 11.875 9.6 40 10 4215 16551 3.47E+081 29.03 82.75 26.81 25.23 25.23 1.05 0.84 23.42 22 93 22.93 0.72 384 0.57' 480 7 1 - -------_ i_._.__._._.._. . _.._..._.. . 7 r t- 1 _.._.: _.. _.._._ _. ... 11.875"RFPI4001 2.06251 11.875 19.2 401 101 43151 1480 3.30E+081 20.771 37.00 20.93 19.69 19.69 0.82; 0.66 18.28 17.89 17.89 0.5661 384 0 0.45._.w480 11.875"RF PI 400 2.0625 11.875 16 401 10 4315 1480 3.30E+08 22.76 44.40 22.24 20.93 20,93 0.87" 0.70 19,43 1901 1,`1901 0.59 384 0.48 48011.875"RFPI 4001 2.0625! 11.875 12 101 431 14801 3.30E+081 26.28 11.875"RFPI 4001 2.06251 11.8751 9.61 40, 10` 4315 14801 3.30E+081 29.38 74.00 26.371 24 81, 24.81' 1.03 0.83 23.03 22.54 22.54 0.70 384 0.56 480 Page 1 13+1,+S CT#14051-4015.2 Twin Creek I LOAD CASE (12-12) (BASED ON ANSI/AF&PA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3,1 3.7.1 3.7.1 Ke 1.00 Desi.n Bucktin.Factor D+L+S Cr 1•111111111111111 NM _ c Constant > KcE 0.30(Constant)> Section 3.7.1.5 Cf(Fb)Ill Cf(Fc) 1997 NDS MEIN Cb arses Section 2.3.10 ��-�Bendy). . . -. � -�Cd Fb Cd Fc E..3.7-1 _ ____--CLEELEMZEM duration durato CIMIMICZI_IIIIIII____IIIIIIII_--IIIIIIIIIIIIIIII- Stud Grad: Width Depth Spadn. Height Le/d Vert.Load Hor.Load <.1.0 oad @ Plat:Cd(Fb)Cd(Fc, Cf Cf Cr Fb Fc perp Fc E Fb Fc perp' Fc Fce Fc fc fc/F'c 11) Its/ in. in. in. ft. p8 psf p0 (Fb) (Fc) psi psi psi psi psi Psi Psi Psi Psi Psi psi Fb^(1-fc/Fce) H-F Stud 1.5 3.5 18 7.7083 26.4 1730 0 0.9916 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 968 515.42 441.22 439.37 1.00 0.00 0.000 H-F Stud 1.5 3.5 16 9 30.9 1340 0 0.9968 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 988 378.09 340.90 340.32 1.00 0.00 0.000 H-F Stud ®®®111•3®' 11111E1211111111111' ''®'- ®" ®®1.05 111211:011121111.200,0001111EMINICIMM340.00 0.00 0.000 H-F Stud ®® . 8.25 28.3 1550 0 0.9921 1993.4 1.00 1.15 ®1.05 1.15 675 405 800 1,200,000Eil 506lire 449.95 395.22 393.85 1.00 0.00 0.000 i-i-F Stud 8.25 28.3 2070 0 0.9953 2657.8 1.00 1.15 1.05 1.15 675 405 800 1,200,000 506 449.95 395.22 394.29 1.00 0.00 0.000 ®®011113931112E1®"�' 0.9921 3086.7 Ma 1.15 ®ELE11® ®' 1,200,000 1111E111111213 966 1111E263 11111311 0.00 0.000 SPF Stud MM 7.70831N 1695 0 0.9952 2091.8 1.15 111119111E11111725_1,200,005 EM 431.52 430.48 111190! 0.000 ®® ���� 1.15 ®�®�® 725 1.200,000 854 111101EMEDIFECO 336.17111030.10 0.00 0.000 SPF Stud 30.9 1760 0 0.9944 2789.1 1.00 1.15 1.05 1.15 675 425 725 1,200,000 854 875.438 378.09 336.17 335.24 1.00 0.00 0.000 SPF Stud ®®� . 28.3 1525 0 0.9957 2091.8 1.00 1.15 ®1.05 1.15 675 425 725 1,200,000 854®875.438 449.95 388.13 387.30 1.00 0.00 0.000 SPF Stud ®®®MEERIEZI®"'�' 0.9925 _1 00_®®®' ®��®1,200,000 854® t,�' 386.67 MC 0.00 0.000 ® ®® ®® ®®®®1 ®®® ®®® ® ," SPF Stud 3.5 3050 0 0.9957 4183.6 1.00 1.05 1,200,000 854 388.13 387,30 0.000 Com® 5.5 IMiLIIIIK11111111111111111E1M11111113113=1111111161331111111311108311111111110311011123111120111iEMI 1300,000® 7 0.00 0.000 H F#2 ® 5.5 mIIIIIE ®MINIKA11602111®®®®'®IX11®' 1,300,000®1111111011 '®IIRDE 0.60 0.00 0.000 H-F#2 8.25 18.0 3132 0 0.2858 3132.4 1.00 1.15 1.10 850 405 1300 1,300,000 1,271 506 1644.5 1203.70 946.77 506.18 0.53 0.00 0.000 SPF#2 7.7083 16.8 3287 0 0.2737 3287.1 1.00 1.15 1.10 875 425 1150 1,400,000 1,308 531 1454.75 1484.89 1015.45 531.23 0.52 0.00 0.000 SPF#2 9 19.6 3287 0 0.3905 3287.1 1.00 1.15 1.10 875 425 1150 1,400,000 1,308 531 1454.75 1089.25 850.16 531.23 0.82 0.00 0.000 SPF#2 III 8.25 18.0 3287 0 0.3158 3287.1 1.00 1.15 1.10 875 425 1150 1,400,000 1,308 531 1454.75 1296.30 945.38 531.23 0.56 0.00 0.000 SPF iii 1. 5 1.15 675 425 5 1 200 000 854 531 875.438 144.26 139.02 138.41 1.00 0.00 0 SPF#2 Stud 1.5 5.5 1419 47.5 1450 0 0.9917 3287.1 1.00 1.15 ®1.110 1.15 875 425 11502 1,400,000 1 308 531 1454.75 244.40 235.32 234.34 1.00 0.00 0.000 H-F#2 1.5 5.5 16 19 41.5 1360 0 0.9969 3132.4 1.00 115 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 506 1644.5 228.94 220.14 219.80 1.00 0.00 0.000 Page 1 D+L+W CT#14051-4015.2 Twin Creek LOAD CASE (12-13) (BASED ON ANSI/AF&PA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Desi.n Bucklin.Factor D+L+W _ c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Sec5 __00 3.7.1.5 Cf(Fb) Cf(Fc) 1997 NDS Cb (Varies) > Section 2.3.10 Bending Comp. Size Size Rep. Cd_(Fb) Cb Cd(Fc) Eq.3.7-1 NDS 3.9.2 Max.Wall duration duration factor factor use Stud Grade Width Depth Spacing Height Le/d Vert.Load Hor.Load x 1.0 Load olg Plate Cd(Fb)Cd(Fc) Cf Cf Cr Fb Fc perp Fc E Fb' Fc perp' Fc• Fce Fe is fc/F'c fb 10/ in. in. in. ft. plf psi pit (Fb) (Fe) psi psi psi psi psi psi psi psi psi psi psi Fb'•(1-fc/Fce) H-F Stud 1.5 3.5 16 7.7083 26.4 1075 9.71 0.9951 1993.4 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 840 515.42 427.08 273.02 0.64 378.78 0.586 H-F Stud 1.5 3.5 16 9 30.9 755 8.46 0.9942 1993.4 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,388 506 840 378.09 333.99 191.75 0.57 447.52 0.665 H-F Stud 1.5 3.5 12 9 30.9 1140 8.46 0.9998 2657.8 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 840 378.09 333.99 217.14 0.65 335.64 0.577 H-F Stud 1.5 3.5 18 8.25 28.3 970 8.13 0.9943 1993.4 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 840 449.95 384.87 246.35 0.64 381.37 0.585 H-F Stud 1.5 3.5 12 8.25 28.3 1425 8.13 0.9974 2657.8 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 840 449.95 384.87 271.43 0.71 271.03 0.500 H-F Stud 1.5 3.5 8 8.25 28.3 2355 8.13 0.9981 3986.7 1.60 1.00 1.1 1.05 1.15 875 405 800 1,200,000 1,366 506 840 449.95 384.87 299.05 0.78 180.69 0.394 OFF Stud 1.5 3.5 16 7.7083 26.4 1060 9.71 0.9971 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 515.42 415.53 269.21 0.65 376.78 0.577 SPF Stud 1.5 3.5 18 9 30.9 700 8.46 0.9115 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 378.09 328.30 177.78 0.54 447.52 0.618 SPF Stud 1.5 3.5 12 9 30.9 1125 8.46 0.9931 2789.1 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 378.09 328.30 214.29 0.65 335.64 0.567 _SPF Stud 1.5 3.5 16 8.25 26.3 980 8.13 0.9970 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 449.95 376.35 243.81 0.65 361.37 0.577 SPF Stud 1.5 3.5 12 8.25 28.3 1405 8.13 0.9952 2789.1 1.60 1.00 1.1 1.05 1.15 675 425 725 _1,200,000 1,366 531 761.25 449.95 376.35 267.62 0.71 271.03 0.490 SPF Stud 1.5 3.5 8 8.25 28.3 2320 8.13 0.9958 4183.6 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 449.95 376.35 294.60 0.78 180.69 0.383 H-F#2 1.5 5.5 16 7.7083 16.8 3132 9.71 0.3909 3132.4 1.80 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 508 1430 1378.83 969.91 506.18 0.52 152.58 0.119 H-F#2 1.5 5.5 16 9 19.6 3132 8.46 0.5743 3132.4 1.80 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 1011.45 804.50 506.18 0.63 181.23 0.178 H-F#2 1.5 5.5 16 8.25 18.0 3132 8.13 0.4411 3132.4 1.60 1,00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 1203.70 899.13 506.18 0.56 146.34 0.124 SPF#2 1.5 5.5 16 7.7083 16.8 3287 9.71 0.4327 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1265 1484.89 940.30 531.23 0.56 152.58 0.114 SPF#2 1.5 5.5 16 9 19.6 3287 8.46 0.6033 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1265 1089.25 806.08 531.23 0.66 181.23 0.169 SPF#2 1.5 5.5 16 8.25 18.0 3287 8.13 0.4790 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1265 1296.30 884.89 531.23 0.60 148.34 0.118 SPF Stud 1.5 3.5 16 14.57 50.0 70 8.46 0.9957 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 781.25 144.26 138.14 17.76 0.13##4Yl## 0.979 SPF#2 1.5 5.5 16 19 41.5 660 9.71 0.9941 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1265 244.40 233.80 108.67 0.46 927.02 0.786 H-F#2 1.5 5.5 16 19 41.5 600 9.71 0.9921 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 226.94 219.02 96.97 0.44 927.02 0.796 Page 2 D+L+W+,55 CT#14051-4015.2 Twin Creek I LOAD CASE I (12-14) I (BASED ON ANSI/AF&PA NDS-1987) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling Factor D+L+VOS/2 c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 Cf(Fb) Cf(Fc) 1997 NOS Cb (Varies) > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NOS 3.9.2 Max.Wall duration duration factor factor use Stud Grade Width Depth Sparing Height Le/d Vert.Load Hor.Load ifei 1.0 Load Plate Cd(Fb(,Cd(Fc) Cf Cf Cr Fb Fc perp Fc E Fb' Fc perp' Fc• Fce Pic To Tc/F'c ib lb/ in. in. in. ft. pit psf pit (Fb) (Fc) psi psi psi psi psi ' psi psi psi psi psi psi Fb"(1-fc/Fce) H-F Stud 1.5 3.5 18 7.7083 28.4 1095 9.71 0.9962 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 515.42 441.22 278.10 0.63 376.78 0.599 H-F Stud 1.5 3.5 16 9 30.9 765 8.46 0.0986 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 194.29 0.57 447.52 0.874 H-F Stud 1.5 3.5 12 9 30.9 1150 8.48 0.9969 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 219.05 0.64 335.64 0.584 H-F Stud 1.5 3.5 16 8.25 28.3 985 8.13 0.9963 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 250.16 0.63 361.37 0.596 H-F Stud 1.5 3.5 12 8.25 28.3 1445 8.13 0.9959 2857.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 275.24 0.70 271.03 0.511 H-F Stud 1.5 3.5 8 8.25 28.3 2390 8.13 0.9960 3986.7 1.60 _1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,386 506 988 449.95 395.22 303.49 0.77 180.89 0.406 SPF Stud 1.5 3.5 16 7.7083 26.4 1080 9.71 0.9935 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 274.29 0.64 376.78 0.589 SPF Stud 1.5 3.5 16 9 30.9 760 8.46 0.9988 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 378.09 338.17 193.02 0.57 447.52 0.669 SPF Stud 1.5 3.5 12 9 30.9 1140 8.46 0.9844 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,386 531 875.438 378.09 336.17 217.14 0.65 335.64 0.577 SPF Stud 1.5 3.5 16 8.25 28.3 975 8.13 0.9952 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 247.62 0.64 361.37 0.588 SPF Stud 1.5 3.5 12 8.25 28.3 1430 8.13 0.9952 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 272.38 0.70 271.03 0. 503 SPF Stud 1.5 3.5 8 8.25 28.3 2380 8.13 0.9922 4183.6 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,3661 531 875.438 449.95 388.13 299.68 0.771 180.89 0.396 H-F#2 1.5 5.5 16 7.7083 18.8 3132 9.71 0.3593 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033, 506 1644.5 1378.83 1031.58 506.18 0.49 152.58 0.119 H-F#2 1.5 5.5 16 9 19.6 3132 8.46 0.5437 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1.300,000 2,033 506 1644.5 1011.45 837.57 506.18 0.60 181.23 0.178 H-F#2 1.5 5.5 16 8.25 18.0 3132 8.13 0.4100 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1203.70 946.77 506.18 0.53 148.34 0.124 SPF#2 1.5 5.5 16 7.7083 16.8 3287 9.71 0.3872 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 152.58 0.114 SPF 02 1.5 5.5 16 9 19.6 3287 8.46 0.5595 3287.1 1.60 1.15 1.3 1.10 1.15_875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.18 531.23 0.62 181.23 0.168 SPF#2 1.5 5.5 16 8.25 18.0 3287 8.13 0.4342 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 148.34 0.118 SPF Stud 1.5 3.5 16 14.57 50.0 70 8.46 0.9955 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 17.78 0.13 MOW 0.979 SPF#2 1.5 5.5 16 19 41.5 660 9.71 0.9914 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 244.40 235.32 106.67 0.45 927.02 0.786 H-F#2 1.5 5.5 16 19 41.5' 600 9.71 0.9901 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 226.94 220.14 98.97 0.44 927.02 0.786 Page 3 D+L+S+.SW CT#14051-4015.2 Twin Creek LOAD CASE (12-15) (BASED ON ANSI/AF&PA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Desi.n Buckio,Factor D+L+8+WI2 c _480(ConstantQ> Section 3.7.1.5 _____ ___ Cr KcE 0.30(Constant)> Section 3.7.1.5 Cf(Fb) Cf(Pc) 1997 NOS Cb (Varies) > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NOS 3.9.2 Max.Wall duration duration factor factor use Stud Grade Width Depth Spacing Height Le/d Vert.Load Hor.Load C.1.0 Load ift Plate Cd(Fb)Cd(Fc) Cf Cf Cr Fb Fc perp Fc E Fb' Fc perp' Fc" Fce Pc fc fc/F'c rb lb/ in. M. In. ft. plf psf plf (Fb) (Fc) Psi Psi Psi Pal psi psi psi psi psi psi pal Fb'"(14c/Fce) H-F Stud 1.5 3.5 16 7.7083 28.4 1335 4.855 0.9935 1993.4 1.60 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,368 506 966 515.42 441.22 339.05 0.77 188.39 0.403 H-F Stud 1.5 3.5 16 9 30.9 970 4.23 0.9923 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 246.35 0.72 223.76 0.470 H-F Stud 1.5 3.5 12 9 30.9 1380 4.23 0.9978 2857.8 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 968 378.09 340.90 282.86 0.77 167.82 0.403 H-F Stud 1.5 3.5 16 8.25 28.3 1195 4.085 0.9960 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 303.49 0.77 180.69 0.406 H-F Stud 1.5 3.5 12 8.25 28.3 1680 4.065 0.9990 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200300 1,366 506 966 449.95 395.22 320.00 0.81 135,51 0.343 H-F Stud 1.5 3.5 8 8,25 28.3 2685 4.085 0.9999 3986.7 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 966 449.95 395.22 338.41 0.88 90.34 0.267 SPF Stud 1.5 3.5 16 7.7083 26.4 1315 4.855 0.9907 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 333.97 0.77 188.39 0.392 SPF Stud 1.5 3.5 16 9 30.9 965 4.23 0.9970 2091.8 1.60 1.15 1.1 1.05 1.15 875_ 425 725 1,200,000 1,368 531 875.438 378.09 336.17 245.08 0.73 223.76 0.466 67 SPF Stud 1.5 3.5 12 9 30.9 1370 4.23 0.9990 2789.1 1.60 1.15 1.1 1.05 1.15 5 425 725 1,200,000 1,366 531 875.438 378.09 338.17 260.95 0.78 187.82 0.396 SPF Stud 1.5 3.5 16 8.25 28.3 1180 4.065 0.9922 2091.8 1.80 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 299.68 0.77 180.69 0.396 SPF Stud 1.5 3.5 12 8.25 28.3 1660 4.065 0.9973 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 316.19 0.81 135.51 0.334 SPF Stud 1.5 3.5 8 8.25 28.3 2630 4.085 0.9969 4183.6 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1.388 531 875.438 449.95 388.13 333.97 0.86 90.34 0.257 H-F#2 1.5 5.5 16 7.7083 16.8 3132 4.855 0.3001 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 508 1644.5 1378.83 1031.58 506.18 0.49 76.29 0.059 H-F#2 1.5 5.5 16 9 19.8 3132 4.23 0.4544 3132.4 1.80 1.15 1.3 1,10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1011.45 837.57 506.18 0.80 90.81 0.089 H-F#2 1.5 5.5 16 8.25 18.0 3132 4.065 0.3479 3132.4 1.80 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1844.5 1203.70 946.77 506.18 0.53 73.17 0.062 SPF#2 1.5 5.5 16 7.7083 18.8 3287 4.855 0.3304 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 78.29 0.057 SPF#2 1.5 5.5 16 9 19.6 3287 4.23 0.4750 3287.1 1.60 1,15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23 0.62 90.61 0.085 SPF#2 1.5 5.5 16 8.25 18.0 3287 4.065 0.3750 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 73.17 0.059 SPF Stud 1.5 3.5 16 14.57 50.0 255 4.23 0.9959 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 84.76 0.47 586.43 0.779 SPF#2 1.5 5.5 16 19 41.5 935 4.855 0.9925 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 244.40 235.32 151.11 0.64 463.51 0.580 H-F#2 1.5 5.5 16 19 41.5 865 4.855 0.9970 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 508 1644.5 226.04 220.14 139.80 0.64 463.51 0.594 Page 4 D+L+S+.7E CT#14051-4015.2 Twin Creek I LOAD CASE I (12-16) I (BASED ON ANSI/AF&PA NDS-1987) SEE SECTION: 2.3,1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Dash n Buck0n•Factor D+L+S+EI1.4 0._0.60 "� _..._._ _��_�_�---�� ® 0.30(( W _��-� -�_�__EI '1_�1_®-�_ 1111101•111111111010M1111Section2.3.10 N111111111111=11111111111[111321 Com, size size GCJMIIIIIIIIIIIIIIIMIIIIIIIIIIIIIIMMEZZIIIIIEIIIIIEIWIIIMIIIIIIIZIEIZMIIIIIIIIIIIIINNIIIIIIIIIIIIIMIIIIIIIIIIII NDS 3.9.2 Max.Wall duration duraho factor factor use Stud Grade Wdth Depth SpacIn.,Height Le/d Vert.Load Hor.Load u.1.0 Load Plat.Cd(Fb)Cd(Fci Cf Cf Cr Fb Fc perp Fc E FbFc perp' Fc• Fce F'c fc fc/F'c fb ib/ in. in. in. ft. p0 psf pit (Fb) (Fc) psi psi psi psi psi psi psi psi psi psi psi Fb"(1-fc/Fce) H-F Stud 1.5 3.5 16 7.7083 26.4 1415 3.57 0.9983 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 515.42 441.22 359.37 0.81 138.53 0.335 H-F Stud 1.5 3.5 16 9 30.9 1010 3.57 0.9960 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 256.51 0,75 188.85 0.430 H-F Stud 1.5 3.5 12 9 30.9 1420 3,57 0.9937 2857.8 1.60 1.15 1.1 1.05 1,15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 270.48 0.79 141.63 0.364 H-F Stud 1.5 3.5 16 8.25 28.3 1225 3.57 0.9961 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 311.11 0.79 158.68 0.376 H-F Stud 1.5 3.5 12 825 28.3 1710 3.57 0.9947 2657.8 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 325,71 0.82 119,01 0.315 H-F Stud 1.5 3.5 8 8.25 28.3 2700 3.57 0.9968 3986.7 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,386 508 966 449.95 395.22 342.66 0.87 79.34 0.244 SPF Stud 1.5 3.5 16 7.7083 26.4 1395 3.57 0.9984 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 354.29 0.82 138.53 0.324 SPF Stud 1.5 3.5 16 9 30.9 1000 3.57 0.9918 2091.8 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,368 531 875.438 378.09 336.17 253.97 0.76 188.85 0.421 SPF Stud 1.5 3.5 12 9 30.9 1410 3.57 0.9962 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 378.09 336.17 268.57 0.80 141.63 0.358 SPF Stud 1.5 3.5 16 8.25 28.3 1210 3.57 0.9932 2091.8 1.80 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,386 531 875.438 449.95 388.13 307.30 0.79 158.68 0.366 SPF Stud 1.5 3.5 12 8.25 28.3 1690 3.57 0.9940 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 321.90 0.83 119.01 0.306 SPF Stud 1.5 3,5 8.25 26.3 2670 3.57 0.9987 4183.8 1.60 1.15 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 339.05 0.87 79.34 0.236 H-F#2 1.5 5.5 7.7083 18.8 3132 3.57 0.2844 3132.4 1.60 1.15 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1378.83 1031.58 506.18 0.49 56.10 0.044 H-F#2 1.5 5.5 9 19.6 3132 3.57 0.4405 3132.4 1.60 1.15 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1011.45 837.57 508.18 0.60 76.47 0.075 H-F#2 18.0 3132 3.57 0.3404 3132.4 1.10 850 405 1,300,000 2,033 506 1203.70 946.77 506.18 0.53liiii 0.055 ®®®�® MM® '�. ®®® ®®®1,400,000��'- ®® � 531.23 0.52�] SPF#2 ®®m�INDZIONECO® '®' IERIEIM®'' ®®®'® INEESJI 1150 1,400,000 2,093® 1®' '® 0.62 110261®" SPF#2 8.25 18.0 3287 3.57 0.3678 3287.1 1.60 1.15 1.10 875 425 1150 1,400,000 2,093 531 1454.75 1298.30 945.38 531.23 0.56 84.28 0.052 SPF Stud 14.57 50.0 285 3.57 0.9981 2091.8 1.60 1.15 1.05 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 72.38 0.52 494.93 0.727 SPF#2 19 41.5 1020 3.57 0.9910 3287.1 1.60 1.15 1.10 875 425 1150 1,400,000 2,093 531 1454.75 244.40 235.32 164.85 0.70 340.83 0.500 H-F#2 1.5 5.5 16 19 41.5 945 3.57 0.9939 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 226.94 220.14 152.73 0.69 340.83 0.513 ii Page 5 3E N G I N E E R I N G Suit Nickerson St. III3Sults 302 �^j ,4{Jy(r� r'14-3 /�7rs� Seattle,WA PIotect: r 4 r �i ] �✓ (206)3 Date: `�� fz46)ass-4512 Si i41��:3/ PA-644,_ 1.... .._0_4..1 JCC FAX: Client: •Page Number: (206)285-0618 1 PR v : VALUES t_ - ' ► l ►,T 1 ei- 3 V.` , 11,0 ro 5.4A 7,00,7 , ip,,.„c,:.: .„re,p4-i t z_idire.,, j e. Gf. 5.5 5-7)4 Int` R714 t� ) \ , , ° t- f� (4 5), — " (400)6 - `' v , :_ , = a� i1 6 "7 ' 1-4. -' " - Li'`` Pw.wr ---, `J ° tom.: _,__.. ._ LY f? S (i '. 4--z 4, - i&\` i +�]r'rJ� 2 re LTs " . S le ii. 1y z /fit3 L$. �: 3 11 W 15. Structural Engineers 280 NkXetsoa St. s Suite 302 ,./IBM , , sou,WA 98109 / Project: C- �...p y _ .Date: "" ._ (206)7.534522 FAX.. Client; page Number: (206)285-0658 140 1 00_4.116, 4 ANZP P5r 0,41 ( t5,r) . v.- till,14.\) *,, PIZ& (311;e4) (tr-A-g) ,---. 120 rt& ‘ 04(6 (4-011.5) =. 3es _ 440 0 . R 04 15 M z,. h.) g +-1 . - *r, 417 je' 54 -.410. -65Y( 2.W.),-,;-.45-.KiK - . 50it e of c._ .ci 4ra p—,, q.3.c o fix . �- , .r;.11.-- 2. mss` slytpre_ .M. L Structural Engineers Design Maps Summary Report Page 1 of 1 Design Maps Summary Report User-Specified Input Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 45.43123°N, 122.77149°W Site Soil Classification Site Class D -"Stiff Soil" Risk Category 1/II/III , e,....".'":•.*::'„,:,J.,,.:,,!L'f,„,:,4„:"---*t 7.1,..,...,--r--77tr r,.,?;•,-;.',1.,v; ,.»..'q".4.,,':,z,„,,i.,',„ .::,,•-,,„,,,,,,,,v '"". .1$ • S ,' Lae-,%,,,,,',",,,,,,---!..„:-.,'!„.1j17.77,-., -6w -, "� ,,,y,,,,:11,',0 8$ g RI t67bs&'p �i • y a r ilwaukie r u ;044 y �1, 3s� � _ � � k','.'1'; - �� •. , �� : Lake sw+eq .' `v; /5 • f; I: , A M ? l 1 1 '" if 3 �3 1 .1 `^-^ ///. ,.,. /, {+ P! ' d1 + e"` ,G/fl *J tMQ�E"5Y:. USGS-Provided Output S5 = 0.972 g SMS = 1.080 g SDS = 0.720 g Si = 0.423 g SMS = 0.667 g S°1 = 0.445 g For information on how the SS and Si values above have been calculated from probabilistic (risk targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEHRP" building code reference document. catt NICER Response Spectrum Design Response Spectrum 110 0,10 022 011 sr. s 0.04 O.v7 0.S4 3 0..44 V 0.140.32,. 0 V)•., t5, t 0.22 c 0.21. 0.00 0. ppb 0,0 0, a i1.t 0- period, 0-2.° 1.00 1.2* &.t 1.. 0 1. a 5 0.00 0,20 0.40 0. 85 0.. Loo1.202,x0 1. 0 1. 0 2.00 Det d,T(set) Period.T(s+ec) Although this information is a product of the U.S.Geological Survey,we provide no warranty,expressed or implied,as to the accuracy of the data contained therein.This tool is not a substitute for technical subject matter knowledge. http://ehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?template=minimal&latit... 9/14/2015 2012 IBC SEISMIC OVERVIEW SHEET TITLE: 2012 IBC SEISMIC OVERVIEW CT PROJECT#: Elevation B Step# 2012 IBC ASCE 7-10 1. RISK CATEGORY TYPE= II Table 1604.5 Table 1.5-1 OCCUPANCY CATEGORY 2. IMPORTANCE FACTOR IE= 1.00 Section 1613.1 ->ASCE Table 1.5-2 I 3. Site Class-Per Geo. Engr. S.C.= D Section 1613.3.5 Section 11.4.2/Ch. 20 Table 1613.3.3(2) Table 20.3-1 4. 0.2 Sec.Spectral Response Ss= 0.97 Figure 1613.3.1(1) Figure 22-1 5. 1.0 Sec. Spectral Response S1= 0.43Figure 1613.3.1(2) Figure 22-2 Latitude= 45.46 N Longitude= -122.89 W N/A (Or by ZIP code) (Or by ZIP code) http://earthquake.usqs.qov/research/hazmaps/ http://qeohazards.usgs.qovidesionmaps/us/application.php 6. Site Coefficient(short period) Fa= 1.11 Figure 1613.3.3(1) Table 11.4-1 7. Site Coefficient(1.0 second) Fv= 1.58 Figure 1613.3.3(2) Table 11.4-2 SMs=F.*Ss SMs= 1.08 EQ 16-37 EQ 11.4-1 SMS= Fv*Si SMi= 0.68 EQ 16-38 EQ 11.4-2 SDs=2/3`SMS SDs= 0.72 EQ 16-39 EQ 11.4-3 SDI=2/3*SMI SDi= 0.45 EQ 16-40 EQ 11.4-4 8. Seismic Design Category 0.2s SDCs= D Table 1613.3.5(1) Table 11.6-1 9. Seismic Design Category 1.0s SDC1 = D Table 1613.3.5(2) Table 11.6-2 10. Seismic Design Category SDC= D Max. Max. 11. Wood structural panels - - N/A Table 12.2-1 12. Response Modification Coef. R= 6.5' N/A Table 12.2-1 13. Overstrength Factor Os= 3.0 N/A Table 12.2-1 14. Deflection Amplification Factor CD= 4.0 N/A Table 12.2-1 15. Plan Structural Irregularities - No N/A Table 12.3-1 16. Vertical Structural Irregularities - No N/A Table 12.3-2 17. Permitted Procedure Equiv. Lateral Force - Table 12.6-1 Page 2 2012 IBC EQUIV.LAT.FORCE SHEET TITLE: 2012 IBC EQUIVALENT LATERAL FORCE PROCEDURE PER ASCE 7-10 CT PROJECT#: Elevation B Sps= 0.72 h„ = 18.00(ft) Sp,= 0.45 X = 0.75 ASCE 7-05(Table 12.8-2) R= 6.5 C,= 0.020 ASCE 7-05(Table 12.8-2) 1E= 1.0 T= 0.175 ASCE 7-05(EQ 12.8-7) S,= 0.43 k = 1 ASCE 7-05(Section 12.8.3) TL= 6 ASCE 7-05(Section 11.4.5:Figure 22-15) Cs=Sips/(R/IE) 0.111 W ASCE 7-05(EQ 12.8-2) Cs=Sp,I(T*(R/IE)) (for T<TL) 0.399 W ASCE 7-05(EQ 12.8-3)(MAX.) Cs=(Sp,*Tj/0-2*(R/IE)) (for T>TL) 0.000 W ASCE 7-05(EQ 12.8-4)(MAX.) Cs=0.01 0.010 W ASCE 7-05(EQ 12.8-5)(MIN.) Cs=(0.5 S,)/(R/IE) 0.033 W ASCE 7-05(EQ 12.8-6)(MIN.if S,>0.6g) CONTROLLING DESIGN BASE SHEAR= 0.111 W VERTICAL DISTRIBUTION OF SEISMIC FORCES PER ASCE 7-10 SECTION 12.8.3 (EQ 12.8-11) (EQ 12.8-12) C„, = DIAPHR. Story Elevation Height AREA DL w; w, *h;k wX *hXk DESIGN SUM LEVEL Height (ft) h (ft) (sqft) (ksf) (kips) (kips) Ew; *h;k Vi DESIGN Vi Roof - 18.00 18.00 1666 0.022 36.652 659.7 0.58 3.88 3.88 2nd 8.00 10.00 10.00 1712 0.028 47.936 479.4 0.42 2.82 6.70 1st(base) 10.00 0.00 SUM= 84.6 1139.1 1.00 6.70 E=V= 9.38 (LRFD) E/1.4= 6.70(ASD) DIAPHRAGM FORCES PER ASCE 7-10 SECTION 12.10.1.1 (EQ 12.10-1) Design Fp, = DIAPHR. F, F; w, E w; FPX = 'wPX 0.4*Sps*1E*w, 0.2*SDS*1E*Wp LEVEL (kips) (kips) (kips) (kips) (kips) Ew; Fp, Max. FPX Min. Roof 3.88 3.88 36.7 36.7 5.28 3.88 10.56 5.28 2nd 2.82 6.70 47.9 84.6 6.91 3.80 13.81 6.91 1st(base) 0.00 0.00 0.0 84.6 0.00 0.00 0.00 0.00 Page 3 ASCE 7-10 WIND Part2 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 2 CT PROJECT#: Elevation B N-S E-W F-B S-S 2012 IBC ASCE 7-10 Ridge Elevation(ft)= -30.00 30.00ft. Roof Plate Ht.= 18.00 18.00 Roof Mean Ht.= 24.00 24.00 ft. -- -- Building Width= "40.0 48.0 ft. V ulf. Wind Speed a seo.oat= 120 120 mph Figure 1609 Fig. 26.5-1A thru C V asd. Wind Speed 3 sec Get_ 93 93 mph (EQ 16-33) Exposure= B B lw= 1.0 1.0 N/A N/A Roof Type= Gable Gable Ps3oA= 28,8 28.6`psf Figure 28.6-1 Paso B= 4.6' 4.6 psf Figure 28.6-1 Ps30 c= 20.7 20.7 psf Figure 28.6-1 PS30 D= 4.7 4.7 psf Figure 28.6-1 A= 1.00 1.00 Figure 28.6-1 Kn= 1,00 1.00 Section 26.8 windward/lee= 1.00 1,00(Single Family Home) A*Ka'I : 1 1 Ps=A*Kzt*I'poo= (Eq.28.6-1) PSA= 28.60 28.60 psf (LRFD) (Eq.28.6-1) PsB= 4.60 4.60 psf (LRFD) (Eq.28.6-1) psc= 20.70 20.70 psf (LRFD) (Eq.28.6-1) Pso= 4.70 4.70 psf (LRFD) (Eq.28.6-1) Ps A and C average= 24.7 24.7 psf (LRFD) Ps B and D average= 4.7 4.7 psf (LRFD) a= 4 4 Figure 28.6-1 2a= 8 8 width-2`2a= 24 32 MAIN WIND-ASCE 7-10 CHAPTER 28 PART 2 Areas(N-S) Areas(E-W) (N-S) (E-W) Wind(N-S)(LRFD) Wind(E-W) (LRFD) width factor roof-> 1.00 1.00 1.00 1.00 16 psf min. 16 psf min. width factor 2nd-> 1.00 1.00 wind(LRFD)wind(LRFD) DIAPHR. Story Elevation Height AA AB AC AD AA AB AC AD per 28.4.4 per 28.4.4 WIND SUM WIND SUM LEVEL Height (ft) hi(ft) h(ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) Vi(N-S) V(N-S) Vi(E-W) V(E-VV) 30.00 12.0 0 192 0 288 0 192 0 384 Roof - 18.00 18.00 4.0 64 0 96 0 64 0 128 0 10.2 12.3 6.05 6.05 7.17 7.17 2nd 8.00 10.00 10.00 9.0 144 0 216 0 144 0 288 0 5.8 6.9 8.59 14.64 10.08 17.25 1st(base) 10.00 0.00 0.00 0 0.00 0.00 AF= 1000 AF= 1200 16.0 19.2 V(n-s)= 14.64 V(e-w)= 17.25 kips(LRFD) kips(LRFD) kips kips Page 4 ASCE 7-10 Part 1 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 1 CT PROJECT#: Elevation B SEE SEAW RAPID SOLUTION SPREADSHEET AND INSERT VALUES BELOW MAIN WIND-7-10 CHAPTER 28 PART 1 Wind(N-S) Wind(E-W) Min/Part 2(Max.) Min/Method 1(Max.) Wind(N-S)(LRFD) Wind(E-W)(LRFD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) Vi(N-S) V(N-S) Vi(E-W) V(E-VV) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Roof - 18.00 18.00 0.00 0.00 0.00 0.00 10.24 1024 12.29 1229 2nd 8.00 10.00 10.00 0,001 0.00 0.00 0.00 5.76 16.00 6.91 19.20 1st(base) 10.00 0.00 0.00 V(n-s). 0.00 V(e-w)= 0.00 V(n-s)= 16.00 V(e-w)= 19.20 kips kips kips(LRFD) kips(LRFD) DESIGN WIND-Min./Part 2/Part 1 ASD Wind(N-S)(LRFD) Wind(E-W)(LRFD) Wind(N-S)(ASD) Wind(E-W)(ASD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) Vi(NS) V(NS) Vi(E-W) V(E-W) Vi(NS) V(NS) Vi(E-W) V(E-W) Roof 8 10 10 10.24 10.24 12.29 12.29 7.93 7.93 9.52 9.52 2nd 10 0 0 5.76 16.00 6.91 19.20 4.46 12.39 5.35 14.87 1st(base) 0 0 0 V(n-s)= 16.00 V(e-w)= 19.20 V(n-s)= 12.39 V(e-w)= 14.87 kips(LRFD) kiP JLRFD) kips(ASD), kips(ASO) Part 1 Base Shear Part 2 Base Shear = 0.0 0.0 ratio ratio Page 5 SHEET TITLE: SDPWS SHEARWALL VALUES PER TABLE 4.3P CT PROJECT#: Elevation B SHEATHING THICKNESS tsneathing = 7/16" NAIL SIZE nail size= 0.131"dia.X 2.5"long STUD SPECIES SPECIES= H-F or SPF SPECIFIC GRAVITY S.G.= 0.43 ANCOR BOLT DIAMETER Anc. Bolt dia. ="0.625 ASD F.O.S. = 2.0 SHEARWALL TYPE Table 4.3A Seismic Table 4.3A Wind 7/16"wl8d common V seismic V a allowable V wind V w allowable (15/32"values per (SDPWS-2008) modify per S.G. (SDPWS-2008) modify per S. G. footnote 2) (divide by 2.0 FOS) (divide by 2.0 FOS) (for ASD) (for ASD) I 0 1 0 1 P6TN 150 150 150 150 P6 520 242 730 339 P4 760 353 1065 495 P3 980 456 1370 637 P2 1280 595 1790 832 2P4 1520 707 2130 990 2P3 1960 911 2740 1274 2P2 2560 1190 3580 1665 N.G. 10000 4650 10000 4650 GYPSUM THICKNESS tsneathing = 1/2" NAIL SIZE nail size= 1 1/4"long No.6 Type S or W Response Modification Coef. R= 6.5 SHEARWALL TYPE Table 2306A.7 Seismic Wind 1/2"w/1 1/4"screw V allowable V s allowable V w allowable Blocked (PER 2009 IBC) modify G7 125 R>2 not allowed R>2 not allowed G4 150 R>2 not allowed R>2 not allowed 2G7 250 R>2 not allowed R>2 not allowed 2G4 300 R>2 not allowed R>2 not allowed 2G4 300 150 SHEET TITLE: LATERAL N-S(front to back-up/down) CT PROJECT#: Elevation B Diaph.Level: Roof Panel Height= "'--=8 ft. Seismic V I= 3.88 kips Design Wind N-S V i= 7.93 kips Max.aspect= - 3.5 SDPWS Table 4.3.4 Sum Seismic V i= 3.88 kips Sum Wind N-S V I= 7.93 kips Min.Lwall= 2.29 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pc= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall I-DL eff. C 0 w dl V level V abv.V level V abv. 2w/h v i Type Type v i OTM ROTM Unet Usum OTM RoTM Unet U.,, Usnm HD (sqft) (ft) (ft) (kit) (kip) (kip) (kip) (kip) p (pIf) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext. A.T1 416 15.0 46.0 1.00 0.15 1.98 0.00 0.97 0.00 1.00 1.00 65 P6TN P6TN 132 7.76 26.12 -1.28 -1.28 15.86 31.05 -1.06 -1.06 -1.06 Ext. A.T2 139 5.0 46.0 1.00 0.15 0.66 0.00 0.32 0.00 1.00 1.00 65 P6TN P6TN 132 2.59 8.71 -1.41 -1.41 5.29 10.35 -1.17 -1.17 -1.17 Ext. A.T3 278 10.0 46.0 1.00 0.15 1.32 0.00 0.65 0.00 1.00 1.00 65 P6TN P6TN 132 5.17 17.41 -1.31 -1.31 10.58 20.70 -1.08 -1.08 -1.08 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0♦00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 r 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ext. B.T1 150 5.0 47.0 1.00 0.15 0.71 0.00 0.35 0.00 1.00 1.00 70 P6TN P6TN 143 2.80 8.90 -1.41 -1.41 5.72 10.58 -1.12 -1.12 -1.12 Ext. B,T2 300 10.0 47.0 1.00 0.15' 1.43 0.00 0.70 0.00 1.00 1.00 70 P6TN P6TN 143 5.59 17.79 -1.31 -1.31 11.43 21.15 -1.04 -1.04 -1.04 Ext. B.T3 143 4.8 47.0 1.00 0.15 0.68 0.00 0.33 0.00 1.00 1.00 70 P6TN P6TN 143 2.66 8.45 -1.42 -1.42 5.43 10.05 -1.13 -1.13 -1.13 Ext. B.T4 240 8.0 ;,47.0 1.00 0.15 1.14 0.00 0.56 0.00 1.00 1.00 70 P6TN P6TN 143 4.47 14.23 -1.33 -1.33 9.15 16.92 -1.06 -1.06 -1.06 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 -- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0,00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 '0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 `0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0's< 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0,0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 "0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0,00' 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 EE 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1666 57.8 57.8=L eff. 7.93 0.00 3.88 0.00 EVw;,,d 7.93 EVEQ 3.88 Notes: denotes with shear transfer ** denotes perferated shear wall iSB denotes iSB Shear Panel SHEET TITLE: LATERAL N-S(front to back-up/down) CT PROJECT#: Elevation B Diaph.Level: 2nd Panel Height= 9 ft. Seismic V I= 2.82 kips Design Wind N-S V i= 4.46 kips Max.aspect= 3.5 SDPWS Table 4.3.4 Sum Seismic V i= 6.70 kips Sum Wind N-S V i= 12.39 kips Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pt= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LOLeS. C 0 w dl V level V abv.V level V abv. 2w/h v i Type Type v i OTM RoTM Unet Ueum OTM Row Unet U,,,,„ U,,,,„ HD (sqft) (ft) (ft) (kit) (kip) (kip) (kip) (kip) p (pif) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext. A:Ma 621 29.0 46.0 1.00 0.15 1.62 2.88 1.02 1.41 1.00 1.00 84 P6TN P6 155 21.85 50.50 -1.01 -2.29 40.43 60.03 -0.69 -1.75 -1.75 Ext. A.Mb 235 11.0 46.0 1.00 0.15''- 0.61 1.09 0.39 0.53 1.00 1.00 84 P6TN P6 155 8.29 19.16 -1.05 -2.46 15.34 22.77 -0.72 -1.89 -1.89 - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 -1.31 0.00 0.00 0.00 -1.08 -1.08 - - - 0 0.0 r 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - Ext. B.Ma 571 10.0 47.0 1.00 0.15 1.49 2.64 0.94 1.29 1.00 1.00 223 P6 P4 413 20.09 17.79 0.25 -1.16 37.18 21.15 1.72 0.60 0.60 Ext. B.Mb 285 5.0 47.0 1.00 0.15 0.74 1.32 0.47 0.65 1.00 1.00 223 P6 P4 413 10.05 8.90 0.27 -1.04 18.59 10.58 1.85 0.81 0.81 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 -1.42 0.00 0.00 0.00 -1.13 -1.13 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 -1.33 0.00 0.00 0.00 -1.06 -1.06 - - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00` 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.000.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - '+ 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 • 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1712 55.0 55.0=L eff. 4.46 7.93 2.82 3.88 1.00 EV,„nd 12.39 EVEQ 6.70 Notes: ii, denotes with shear transfer denotes perferated shear wall iSB denotes iSB Shear Panel SHEET TITLE: LATERAL E-W(side to side-left/right) CT PROJECT#: Elevation B Diaph.Level: Roof Panel Height= 8 ft. Seismic V i= 3.88 kips Design Wind E-W V i= 9.52 kips Max.aspect= ''' 3.5 SDPWS Table 4.3.4 Sum Seismic V i= 3.88 kips Sum Wind E-W V i= 9.52 kips Min.Lwall= 2.29 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pt= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL eff. C 0 w di V level V abv.V level V abv. 2w/h v i Type Type v i OTM RoTM Unet Us„m OTM RoTM Unet Veum (J HD (sqft) (ft) (ft) (klf) (kip) (kip) (kip) (kip) p (pIf) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Rear 1.Ta* 283.6 8.0 40,0 1.00 0.15 1.62 0.00 0.66 0.00 1.00 1.00 83* * 203 5.28 12.11 -0.93 -0.93 12.96 14.40 -0.20 -0.20* Rear 2.Tb* 407.6 11.5 40.0 1.00 0.15 2.33 0.00 0.95 0.00 1.00 1.00 83* * 203 7.59 17.41 -0.91 -0.91 18.63 20.70 -0.19 -0.19* Rear 3.Tc* 141.8 4.0 40.0 1.00 0.15 0.81 0.00 0.33 0.00 1.00 1.00 83* * 203 2.64 6.06 -1.02 -1.02 6.48 7.20 -0.22 -0.22* Rear 4.Td 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int N/A 0 0,0 0,0 1,00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int N/A 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int N/A 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Ta 148.7 2.5 >11.0 1.00 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222* * 340 2.77 1.04 0.94 0.94 6.80 1.24 3.03 3.03* Front 4.Tb 148.7 2.5 11.0 1.00 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222* * 340 2.77 1.04 0.94 0.94 6.80 1.24 3.03 3.03* Front 4.Tc 119 2.0 9.7 1.00 0.15 0.68 0.00 0.28 0.00 1.00 0.50 277* * 340 2.22 0.73 1.11 1.11 5.44 0.87 3.43 3.43 Front 4.Td 119 2.0 9.7 1.00 0.15 0.68 0.00 0.28 0.00 1.00 0.50 277* * 340 2.22 0.73 1.11 1.11 5.44 0.87 3.43 3.43* Front 4.Te 148.7 2.5 11.7 1.00 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222* * 340 2.77 1.10 0.91 0.91 6.80 1.31 2.99 2.99* Front 4.Tf 148.7 2.5 11.7 1.00 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222* * 340 2.77 1.10 0.91 0.91 6.80 1.31 2.99 2.99* - 0 0.0 0.0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 r 0.0 0.0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 i 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 00 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - ' 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1666 37.5 37.5=L eff. 9.52 0.00 3.88 0.00 EV ,d 9.52 EVEQ 3.88 Notes: * denotes with shear transfer ** denotes perferated shear wall iSB denotes iSB Shear Panel GARAGE ABWP SHEET TITLE: LATERAL E-W(side to side-left/right) CT PROJECT#: Elevation B Diaph.Level: 2nd Panel Height= 9 ft. Seismic V i= 2.8 kips Design Wind E-W V i= 5.35 kips Max.aspect= ''' 3.5 SDPWS Table 4.3.4 Sum Seismic V i= 6 0 kips Sum Wind E-W V I= 14.87 kips Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 p L= 1.00 Table 4.3.3.5 Wind Wind ..Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL eff. C 0 w dl V level V abv level V abv. 2w/h v i Type Type v i OTM RoTM Unet Ueum OTM Rork! Unet Ucum Us,,,,„ HD (sqft) (ft) (ft) (klf) (kip) (k'+ (kip) (kip) p (plf) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Rear 1.Ta" 107.6 4.3 12.3 1.00 0.15 0.3• 1.20 0.18 0.49 1.00 0.94 166* * 361 5.98 1.98 1.12 0.18 13.80 2.36 3.19 3.00* Rear 2.Tb 98.77 3.9 12.3 1.00 0.15- 0•1 1.10 0.16 0.45 1.00 0.87 181 * * 361 5.49 1.82 1.14 0.23 12.66 2.16 3.25 3.06* Rear 3.Tc. 158.3 6.3 19.5 1.00 0.16 +.50 1.76 0.26 0.72 1.00 1.00 156* 361 8.80 4.61 0.75 -0.27 20.30 5.48 2.65 2.44* Rear 4.Td' 63.31 2.5 19,5 1.00 0.15 0.20 0.70 0.10 0.29 1.00 0.56 282* * 361 3.52 1.85 0.91 0.91 8.12 2.19 3.23 3.23* - - 0 0.0 0.0 1.00 0.'I 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int N/A 181.1 5.5 5.5 1.00 5.15'' 0.57 0.00 0.30 0.00 1.00 1.00 54 P6TN P6TN 103 2.68 1.15 0.32 0.32 5.10 1.36 0.77 0.77 0.77 Int N/A 246.9 7.5 7.5 1.00 0.15 0.77 0.00 0.41 0.00 1.00 1.00 54 P6TN P6TN 103 3.66 2.13 0.22 0.22 6.95 2.53 0.65 0.65 0.65 - - 0 ` 0.0 0.0 1.0 7 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nt A'' . 8 10 I 0.0 10 0. .3, •00 0 0 0.01 00 1.00 70 P6TN P6TN 134 6.34 3.79 0.27 0.27 12.05 4.50 0.81 0.81 0.81 - - I 3.0 0.1 1.0' 1.00 0.4 0.04 x.00 0.10 1."^+ 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Ta 117.1 2.4 ;20.5 1:00 0.15' 0.37 0.89 0.19 0.62 1.., 0.54 629 ABWP ABWP 785 7.35 1.88 3.13 4.07 17.06 2.23 8.48 11.51 ABWP Front 4.Tb, 0 0.0 0.0 1.00 0.15 0.00 0.00 0.00 0.00 1.1% 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Tc 0 0.0 0.0 1.00 0.15 0.00 0,00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Td- 117.1 2.4 20.5 1.00 0.15 0.37 0.89 0.19 0.62 1.+' 0.54 629 ABWP ABWP 785 7.35 1.88 3.13 4.24 17.06 2.23 8.48 11.90 ABWP ro T- 9+ 91 0 11 ' 0. • 5 0. • .44 $ 16 0 45 `1.I' 0.44 569* * 576 4.55 0.88 2.75 3.66 10.38 1.05 6.99 9.99* Front 4.Tf 96.91 2.0 11.7 1;00 0.15 0.30 1.49 0.16 0.35 1.00 0.44 569* * 576 4.55 0.88 2.75 3.66 10.38 1.05 6.99 9.99* - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 ` 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 : 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 ` 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 __1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1712 48.7 48.7 =L eff. 5.35 9.52 2.82 3.88 EVnd 14.87 EVEo 6.70 Notes: * denotes with shear transfer ABWP Alternate Braced Wall Panel-2308.9.3.2 ** denotes perferated shear wall iSB denotes iSB Shear Panel JOB#: Elevation B SHEARINALL WITH FORCE TRANSFER ID: Elevation B 4.Ta;4.Tb Roof Level w dl= 150 p/f V eq 692.6 pounds V1 eq= 362.3 pounds V3 eq= 330.3 pounds V w= 1699.7 pounds V1 w= 889.1 pounds V3 w= 810.6 pounds i v hdr eq= 63.4 plf - IP. A H head= A v hdr w= 155.7 plf I y Fdragl eq= 183 F2 eq= 166 Fdragl w= •8 F2 -408 H pier= v1 eq= 127.9 plf v3 eq= 127.9 plf P6TN E.Q. 5.0 v1 w= 313.8 plf v3 w= 313.8 plf P6 WIND feet H total= 2w/h= 1 2w/h= 1 9 • Fdrag3 eq= : F4 e.- 166 feet A Fdrag3 w=448 F4 w=408 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 63.4 p/f P6TN 3.0 EQ Wind v sill w= 155.7 Of P6 feet OTM 6234 15297 R OTM 4461 5363 v v UPLIFT 173 969 Up above 0 0 UP sum 173 969 H/L Ratios: L1= 2.8 L2= 5.5 L3=a 2.6 Htotal/L= 0.82 • ► 1 ►4 ► Hpier/L1= 1.76 Hpier/L3= 1.94 + L total= 10.9 feet ► JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 4.Tc,4.Td Roof Level w dl= 150 plf V eq 554.1 pounds V1 eq= 277.1 pounds V3 eq= 277.1 pounds V w= 1359.7 pounds V1 w= 679.9 pounds V3 w= 679.9 pounds v hdr eq= 58.3 plf •H head= A v hdr w= 143.1 plf 1 V Fdragl eq= 160 F2 eq= 160 Fdragl w= '4 F2 -394 H pier= v1 eq= 173.2 plf v3 eq= 173.2 plf P6 E.Q. 5.0 v1 w= 339.9 plf v3 w= 339.9 plf P6 WIND feet Htotal= 2w/h= 0.8 2w/h= 0.8 9 v Fdrag3 eq= :1 F4 e•- 160 feet • Fdrag3 w=394 F4 w=394 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 58.3 plf P6TN 3.0 EQ Wind v sill w= 143.1 plf P6TN feet OTM 4987 12238 R OTM 3379 4061 v UPLIFT 182 926 Up above 0 0 UP sum 182 926 H/L Ratios: L1= 2.0 L2= 5.5 L3= 2.0 Htotal/L= 0.95 0 4 0 4 0 Hpier/L1= 2.50 Hpier/L3= 2.50 L total= 9.5 feet JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 43e,4.Tf Roof Level w dl= 150 plf V eq 692.6 pounds V1 eq= 346.3 pounds V3 eq= 346.3 pounds V w= 1699.7 pounds V1 w= 849.8 pounds V3 w= 849.8 pounds v hdr eq= 60.2 plf P H head= A v hdr w= 147.8 plf 1 V Fdragl eq= 196 F2 eq= 196 A Fdragl w= ,;0 F2 -480 H pier= v1 eq= 138.5 plf v3 eq= 138.5 Of P6TN E.Q. 5.0 " v1 w= 339.9 plf v3 w= 339.9 plf P6 WIND feet H total= 2w/h= 1 2w/h= 1 9 Fdrag3 eq= '• F4 e.- 196 feet Fdrag3 w=480 F4 w=480 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 60.2 plf P6TN 3.0 EQ Wind v sill w= 147.8 plf P6TN feet OTM 6234 15297 R OTM 4951 5951 v T UPLIFT 118 863 Up above 0 0 UP sum 118 863 H/L Ratios: L1= 2.5': L2= 6.5'. L3= 2.5' Htotal/L= 0.78 10.1 I. Hpier/L1= 2.00 Hpier/L3= 2.00 L total= 11.5 feet JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B'.1.Ma,1.Mb Roof Level w dl= 150 plf V eq 1275.1 pounds V1 eq= 677.4 pounds V3 eq= 597.7 pounds V w= 2940.6',, pounds V1 w= 1562.2 pounds V3 w= 1378.4 pounds -► ---10. v hdr eq= 106.3 Of A H head= A v hdr w= 245.0 plf 1 v Fdragl eq= 226 F2 eq= 199 Fdragl w= -.1 F2 -459 H pier= v1 eq= 159.4 plf v3 eq= 159.4 plf P6 E.Q. 50 v1 w= 367.6 plf v3 w= 367.6 plf P4 WIND feet H total= 2w/h= 1 2w/h= 1 9 Fdrag3 eq= • F4 e.- 199 feet • Fdrag3 w=521 F4 w=459 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 106.3 plf P6TN 3.0 EQ Wind v sill w= 245.0 plf P6 feet OTM 11476 26465 R OTM 5391 6480 UPLIFT 537 1763 Up above 0 0 UP sum 537 1763 H/L Ratios: L1= 4:3 L2= 4.0 L3= 3.8 Htotal/L= 0.75 f 0 4 104 0 Hpier/L1= 1.18 Hpier/L3= 1.33 L total= 12.0 feet JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 1.Mc,1.Md Roof Level w dl= 150 plf V eq 1368.9 pounds V1 eq= 977.8 pounds V3 eq= 391.1 pounds V w= 3157.1 pounds V1 w= 2255.0 pounds V3 w= 902.0 pounds v hdr eq= 62.2 plf •H head= A v hdr w= 143.5 plf 1 v Fdragl eq= 589 F2 eq= 236 Fdragl w= 58 F2 -543 H pier= v1 eq= 156.4 plf v3 eq= 156.4 plf P6 E.Q. 5.0 vi w= 360.8 plf v3 w= 360.8 plf P4 WIND feet H total= 2w/h= 1 2w/h= 1 9 Fdrag3 eq= F4 e.- 236 feet Fdrag3 w= 1358 F4 w=543 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 62.2 plf P6TN 3.0 EQ Wind v sill w= 143.5 plf P6TN feet OTM 12320 28413 R OTM 18119 21780 *, UPLIFT -272 311 Up above 0 0 UP sum -272 311 H/L Ratios: L1= 6.3 L2= 13.3 L3= 2.5. Htotal/L= 0.41 Hpier/L1= 0.80 Hpier/L3= 2.00 L total= 22.0 feet JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 4 Me,4.Mf Roof Level w dl= 150 plf V eq 1011.7pounds V1 eq= 505.9 pounds V3 eq= 505.9 pounds V w= 2305.8', pounds V1 w= 1152.9 pounds V3 w= 1152.9 pounds > v hdr eq= 89.3 plf --10. A H head= A v hdr w= 203.5 plf 1 y Fdragl eq= 327 F2 eq= 327 Fdragl w= .6 F2 -746 H pier= v1 eq= 252.9 plf v3 eq= 252.9 plf P4 E.Q. 3.0 v1 w= 576.5 plf v3 w= 576.5 plf P3 WIND feet H total= 2w/h= 1 2w/h= 1 7 Fdrag3 eq= F4 e.- 327 feet A Fdrag3 w=746 F4 w=746 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 89.3 plf P6TN 3.0 EQ Wind v sill w= 203.5 plf P6 feet OTM 7082 16141 R OTM 4805 5777 v UPLIFT 213 972 Up above 118 863 UP sum 332 1835 H/L Ratios: L1= 2.0 1_2= 7.3 L3= 2.0 Htotal/L= 0.62 ► -4 ►4 0. Hpier/L1= 1.50 4 0- Hpier/L3= 1.50 L total= 11.3 feet �4 .•lV A PA Tecnnic � o ics TT-1O0F APRIL 2014 A Portal Frame with Hold Downs for Engineered Applications The APA portal-frame design,as shown in Figure 1,was envisioned primarily for use as bracing in conventional light- frame construction.However,it can also be used in engineered applications,as described in this technical topic.The portal frame is not actually a narrow shear wall because it transfers shear by means of a semi-rigid,moment-resisting frame.The extended header is integral in the function of the portal frame,thus,the effective frame width is more than just the wall segment,but includes the header length that extends beyond the wall segment. For this shear transfer mechanism,the wall aspect ratio requirements of the code do not apply to the wall segment of the APA portal frame. Cyclic testing has been conducted on the APA portal-frame design(APA 2012).Recommended design values for engi- neered use of the portal frames are provided in Table 1. Design values are derived from the cyclic test data using a rational procedure that considers both strength and stiffness. The Table 1 values in this report were developed using the CUREE cyclic test protocol(ASTM E2126),using a flexible load head.Earlier testing was conducted using rigid load heads and the sequential phased displacement(SPD)method, as outlined in SEAOSC(1997)Standard Method of Cyclic(Reversed)Test for Shear Resistance of Framed Walls for Buildings. The design values in Table 1 ensure that the code(IBC)drift limit and an adequate safety factor are maintained.For seismic design,APA recommends using the design coefficients and factors for light-frame(wood)walls sheathed with wood structural panels rated for shear resistance(Item 15 of Table 12.2-1 of ASCE 7-10). See APA Report T2004-59 for more details.For designs where deflection may be less of a design consideration,for example,wind loading while the portal frames are used in tandem with each other,and not used as conventional shear walls,a load factor of 2.5, based on the cyclic test results is used. Since cyclic testing was conducted with the portal frame attached to a rigid test frame using embedded strap-type hold downs, design values provided in Table 1 of this document should be limited to portal frames constructed on similar rigid-base foundations,such as a concrete foundation,stem wall or slab,and using a similar embedded strap- type hold down. 1 ®2014 A PA—The Engtnccrcd Wood Association PORTAL FRAME DESIGN (MIN.WIDTH =22 1/2"): EQ=810#< EQ (ALLOW)= 1031# WIND = 1260#<WIND (ALLOW)= 1444# Table 1.Recommended Allowable De gn Val. •s for APA Portal Frame Used on a Rigid-Base Minimum Width Maximu " eight Allowable Design(ASD)Values per Frame Segment (in.) ) Sheart" (lbf) Deflection(in.) Load Factor 8 850 (1190 WIND) 0.33 3.09 1 16 10 625 (875 WIND) 0.44 2.97 8 1,675 (2345 WIND) 0.38 2.88 24 t 0.51 3.42 1'-10 1/2" 8 1520 EQ(2128 WIND) V-10ronndation f r Wind or Seismic Loadings'''""' EQ(1444 WIND) (a) Design values are based on the use of Douglas-fir or Southern pine framing.For other species of framing,multiply the above shear design value by the specific gravity adjustment factor=(1—(0.5—SG)),where SG=specific gravity of the actual framing.This adjustment shall not be greater than 1.0. (b) For construction as shown in Figure 1. (c) Values are for a single portal-frame segment(one vertical leg and a portion of the header).For multiple portal-frame segments,the allowable shear design values are permitted to be multiplied by the number of frame segments(e.g.,two=2x,three=3x,etc.). (d) Interpolation of design values for heights between 8 and 10 feet,and for portal widths between 16 and 24 inches,is permitted. (e) The allowable shear design value is permitted to be multiplied by a factor of 1.4 for wind design. (f) If story drift is not a design consideration,the tabulated design shear values are permitted to be multiplied by a factor of 1.15.This factor is permitted to be used cumulatively with the wind-design adjustment factor in Footnote(e)above. Figure 1. Construction Details for APA Portal-Frame Design with Hold Downs • Extent of header with double portal frames(two braced wall panels) • Extent of header with single portal frame (one braced wall panels) Header to jack-stud strap 2'to 18'rough width of opening per wind design min 1000 lbf I. for single or double portal j on both sides of opening t - _ opposite side of sheathing Pony ,,■ wall height Fasten top plate to header 8tt kt 4j; with two rows of 16d s.r ,W y �' *" E. <..h :" - sinker nails at 3"o.c.typ ) • Fasten sheathing to header with 8d common or Min.3/8"wood structural 12' galvanized box nails at 3"grid pattern as shown = /panel sheathing max total },. Header to jack-stud strap per wind design. wall r Min 1000 lbf on both sides of opening opposite height side of sheathing. If needed,panel splice edges shall occur over and be 10' Min.double 2x4 framing covered with min 3/8" �• nailed to common blocking thick wood structural panel sheathing with ttt within middle 24"of portal max r 8d common or galvanized box nails at 3"o.c. height.One row of 3"o.c. height r "" in all framing(studs,blocking,and sills) nailing required in each tYP• � is9 - panel edge. Min length of panel per table 1 Typical portal frame construction t 11116' Min(2)3500 lb strap-type hold-downs ' : s (embedded into concrete and nailed into framing) imiMin double 2x4 post(king, . P; and jack stud).Number of �, Min reinforcing of foundation,one#4 barI jack studs per IRC tables V.' 1 top and bottom of footing.Lap bars 15 min i R502.5(1)&(2). R\va i \ t Min footing size under opening is 12"x 12".A turned-down Min 1000 lb hold-down slab shall be permitted at door openings. device(embedded into concrete and nailed Min(1)5/8"diameter anchor bolt installed per IRC R403.1.6— into framing) with 2"x 2'x 3/16"plate washer 2 0 2014 APA—The Engineered Wood Association References APA, 2004, Confirmation of Seismic Design Coefficients for the.APA.Portal Frame, APA Report T2004-59, APA—The Engineered Wood Association,Tacoma,WA. APA,2012,Effect of Hold-Down Capacity on IRC Bracing Method PFH and IBC Alternate Method,APA Report T2012L-24, APA—The Engineered Wood Association,Tacoma,WA. ASCE,2010,Minimum Design Load for Buildings and Other Structures.ASCE 7.American Society of Civil Engineers. Reston,VA. ASTM E2126-11,Standard Test Methods for Cyclic(Reversed)Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings,ASTM International.West Conshohocken,PA. SEAOSC, 1997,Standard Method of Cyclic (Reversed)Test for Shear Resistance of Framed Walls for Buildings, Structural Engineers Association of Southern California.Whittier,CA. We have field representatives in many major U.S.cities and in Canada who can help answer questions involving www.apawood.org APA trademarked products.For additional assistance in specifying engineered wood products,contact us: APA HEADQUARTERS:7011 So.19th St.•Tacoma,Washington 98466•(253)565-6600•Fax:(253)565-7265 APA PRODUCT SUPPORT HELP DESK:(253)620-7400•E-mail:hel Form No.TT-100F p@apawood.org Revised April 2014 DISCLAIMER:The information contained herein is based on APA-The Engineered Wood Association's continuing programs of laboratory testing,product research,and comprehensive field experience.Neither APA nor its members make any warranty,expressed or implied,or assume any legal liability or responsibility for the use, application �� of,and/or reference to opinions,findings,conclusions, or recommendations included in this publication. Consult your local jurisdiction or design professional to assure compliance with code, construction, and performance requirements.Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used it cannot accept responsibility of product performance or designs as actually constructed. 3 ©2014 APA—The Engines rd Wood Association 180 Nickerson St. CT ENGINEERING Suite 302 INC. � ,"��f� � Seattle,WA 3A II�1117�,�J I^J wk.10-- P r S81 o� Project: i N"� @ ✓'I `+"'-` Date: ��. (206)285-4512 Client: g' 1w — i f. + ( C>S5(_ 29)P5',&.5,-1,-) Page Number: (206)285-0618 V6,7:7 ‘5077 V:10 6'9 O) ops 0117-14)(A-60 0 V ct161" AL12( -71 d, 50 `` X Ib`` )2(1 k i ( SKs--43),c-K- FD(2- ‘07F1.1) ?),577Pit4 OHL '72* Pc5)74s- EFILD/141\ 7cnfrT) Vrn\g• R (rt' eM- 3F - ! A i)► PM 1 p.5$ stv, (_01.0_,:6Z6152/ \ (3, 12 (5 �'� LIG (Wz3LlZ (49:1) 60)( 1- - gy� (M 2 �)V,7)//at .,`e - ale 1q Lei 5` ' X lamF13, w/(2) 0,;66 utv, Tb /2,t 1 L3/4-4-7i-f) Cl �1 rl BAIL e�Vj s Y"v1�t'J Ater-- A-;" +.5 P? IMG L. Nt _ 'Iw .a ,n- Structural Engineers j WOOD FRAME CONSTRUCTION MANUAL 03 t. Table 2.2A Uplift Connection Loads from Wind '•I - . (For Roof-to-Wall,Wall-to-Wall,and Wall-to-Foundation) 700-yr.Wind Speed 3-second gust(mph) 110 115 120 130 140 150 160 170 180 195 Roof/Ceiling Assembly Roof Span(ft) Unit Connection Loads(plf)1'2'3'4'5'67 Design Dead Load 12. 118 128 140 164 190 219 249 281 315 369 Z 24 195 213 232 •272 315 362 412 465 521 612 0 0 psfe 36 272 298 324 380 441 506 576 650 729 856 M 48 350 383 417 489 567 651 741 836 938 1100 rri 60 428 468 509 598 693 796 906 1022 1146 1345 i . 12 70 80 92 116 142 171 201 233 267 321 0 24 111 129 148 188 231. 278 328 381 437 528 N 10 psf 36 152 178 204 260 321 386 456 530 609 736 48 194 227 261 333 411 495 585 680 782 944 a 60 236 276 317 406 501 604 714 830 954 1153 12 46 56 68 92 118 147 177 209 243 297 24 69 87 106 146 189 236 286 339 395 486 15 psf 36 92 118 144 200 261 326 396 470 549 676 48 116 149 183 255 333 417 507 602 704 866 60 140 180 221 310 405 508 618 734 858 1057 12 22 j 32 44 68 94 123 153 185 219 273 24 27 45 64 104 147 194 244 297 353 444 20 psf 36 32 58 84 140 201 266 336 410 489 616 'Ib 48 38 71 105 177 255 339 429 524 626 788 60 44 84 125 214 309 412 522 638 762 961 12 - 8 20 44 70 99 129 161 195 249 24 - 3 22 62 ' 105 152 202 255 311 402 25 psf 36 - - 24 80 141 206 276 350 429 556 48 - - 27 99 177 261 351 446 548 710 • 60 - - 29 118 213 316 426 542 666 865 I. Tabulated unit uplift connection loads shall be permitted to be multiplied by 0.75 for framing not located within 6 feet of corners for buildings less than 30 feet in width(W),or W/5 for buildings greater than 30 feet In width. 2 Tabulated uplift loads assume a building located in Exposure B with a mean roof height of 33 feet. For buildings located in other exposures,the tabulated values for 0 psf roof dead load shall be multiplied by the appropriate adjustment factor in Section 2.1.3.1 then reduced by the appropriate design dead load. ! 3 Tabulated uplift loads are specified in pounds per linear foot of wall. To determine connection requirements, I: multiply the tabulated unit uplift load by the multiplier from the table below corresponding to the spacing of the . connectors: Connection Spacing(in.) I 1216 19.2 24 48 Multiplier 1.00 i 1.33 I 1.60 2.00 1 4.00 1- 4 Tabulated uplift loads equal total uplift minus 0.6 of the roof/ceiling assembly design dead load. s Tabulated uplift loads are specified for roof-to-wall connections. When calculating uplift loads for wall-to-wallor wall-to-foundation connections,tabulated uplift values shall be permitted to be reduced by 73 plf(0.60 x 121 pit) for each full wall above. T f ;66 When calculating uplift loads for ends of headers/girders,multiply the tabulated unit uplift load by 1/2 of the s ,„!1_ header/girder span(ft.). Cripple studs need only be attached per typical uplift requirements. '�`'° ' ' For jack rafter uplift connections,use a roof span equal to twice the jack rafter length.The jack rafter length I!: - includes the overhang length and the jack span. 3 cr f s Tabulated uplift loads for 0 psf design dead load are included for Interpolation or use with actual roof dead loads. ',I: `"4": :X. !. AMERICAN WOOD COUNCIL 180 Nickerson St. CT ENGINEERING Suttc 302 --1{ /�/ �� I�YN C. 1 yl�� Seattle,WA Project: 1 YP C*L S)I' 4tav . L1 jR Date: 98109 t (206)285-4512 FAX: Client: Page Number: (206)285-0618 \d/Ri). ,' ; - 57 604 .1;1•s \f\)Nif) •evosr, th ;q4 o M,P( 5P5F--- P . DZ ^ : I ° or • •Co(vtik o X 55 • j 417)1 . ' 3b �7:41. Lirfilra t'e I/€ Ivo ` , : , , )6-v • �r - - -'= ur6-•: .-r09: • eviigrencioQi2 I its 2Y 13 TPNA46 ` 7.,NT59 -6 2J- 12 (4)(.2) I,0)( 0,0 , U -n(P, ‘00 6»(052-- 11\4/1- J 4-17 /0 (L1'6Y 1/Z)(p,,-5 (0 91P6- `-fYP. 6vioitfocio e . p .v. -str, TV1 • ice -,v Fes) 1. ) = (� ( -PS- 0 - fi �xJ Structural Engineers TRUSS TO WALL CONNECTION ';I'I ViAI II ll' #OF TRUSS CONNECTOR TO TRUSS TO TOP PLATES lil'I II 1 I 1 PLIES 1 H1 (6) 0.131" X 1.5" (4) 0.131" X 2.5" CM ,I', 1 H2.5A (5) 0.131" X 2.5" (5) 0.131" X 2.5" 'C.!' Ilii 1 SDWC15600 - - -.H‘._ _ i i'. 2 H10-2 (9) 0.148" X 1.5" (9) 0.148" X 1.5" in/0 700 2 (2)H2.5A (5) 0.131" X 2.5" EA. (5) 0.131"X 2.5" EA. lU%i) 2,'0 ._ 2 (2)SDWC15600 .-..,... - - 9/0 7.1(1 3 (3)SDWC15600 - - UI.' 11'' ROOF FRAMING PER PLAN 8d AT6" ac. 2X VENTED BLK'G. --,..:44 40.131" X 3" TOENAIL 1PW AT 6" O.C. In f . _ -. -0 r \1-I2.5A & SOWC15600 STY!FCOMMON/GIRDER TRUSS �- PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE 3/4"=1'-O" (BEAM/HEADER AT SIMILAR) 14 TYP. RAISED HEEL TRUSS TO WALL CONNECTION TRUSS TO WALL CONNECTION '-;PF VALUE`; #OF TRUSS CONNECTOR TO TRUSS TO TOP PLATES UPLIFT n PLIES 1 Hi (6) 0.131" X 1.5" (4) 0.131" X 2.5" 400_1 415 1 H2.5A (5) 0.131" X 2.5" (5) 0.131" X 2.5" 555 I 110 1 SDWC15600 - - 4)1 IIS 2 H10-2 (9) 0.148" X 1.5" (9) 0.148" X 1.5" 1070 700 2 (2)H2.5A (5) 0.131" X 2.5" EA. (5) 0.131"X 2.5" EA. inn ?/11 2 (2)SDWC15600 - - :170 LSU_ 3 (3)SDWC15600 - - 14: , i_..._-ii,, ADD A35 0 48"O.C. ROOF FRAMING PER PLAN FSDWCOR.H2.5A AND Sd AT 6" O.C. STYLE akiiiSNitCONNECTIONS 2X VENTED BLK'G. III 111111111 *...1% 111111111"M -4... IIII II H2.5A & SDWC15600 STYI F COMMON/GIRDER TRUSS -.PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE: 3/4"= 1'-0" (BEAM/HEADER AT SIMILAR) 19 TYPICAL TRUSS TO WALL CONNECTION [ PL14-90 3-31-14 - R O S E B U R G 75 MAIN 9:04am 1 of 1 CS Beam4.605 1unBeamEnginc 4.6026 Materials Database 1476 Member Data Description: Member Type:Joist Application: Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:Continuous Standard Load: Moisture Condition: Dry Building Code: IBC/IRC Live Load: 40 PSF Deflection Criteria: L/480 live, L/240 total Dead Load: 12 PSF Deck Connection: Glued&Nailed Filename: Beam1 8 n T / . / 9 1480 1400 28 800 / Bearings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift 1 0' 0.000" Wall DFL Plate(625psi) 3.500" 1.750" 509# -- 2 14' 8.000" Wall DFL Plate(625psi) 3.500" 3.500" 1469# -- 3 28' 8.000" Wall DFL Plate(625psi) 3.500" 1.750" 485# -- Maximum Load Case Reactions Used for applying point loads(or line loads)to carrying members Live Dead 1 403#(252p1f) 106#(66p1f) 2 1130#(706p1f) 3394(212p1f) 3 387#(242p1f) 98#(61 plf) Design spans 14' 5.375" 13' 9.375" Product: 9 1/2" RFPI-20 19.2" O.C. PASSES DESIGN CHECKS Design assumes continuous lateral bracing along the top chord. Design assumes continuous lateral bracing along the bottom chord. Lateral support is required at each bearing. Allowable Stress Design Actual Allowable Capacity Location Loading Positive Moment 1551.'# 2820.'# 54% 6' Odd Spans D+L Negative Moment 2075.'# 2820.'# 73% 14.67' Total Load D+L Shear 744.# 1220.# 60% 14.66' Total Load D+L End Reaction 509.# 1151.# 44% 0' Odd Spans D+L Int.Reaction 1469.# 1775.# 82% 14.67' Total Load D+L TL Deflection 0.2689" 0.7224" L/644 6.72' Odd Spans D+L LL Deflection 0.2261" 0.3612" L/766 6.72' Odd Spans L Control: Max Int.React. DOLs: Live=100% Snow=115% Roof=125% Wind=160% SIMPSON All product names are trademarks of their respective owners KAMI L.H ENDERSON Strong -Tie MANAGER Strong-Tie Copyright(C)2013 by Simpson Strong-Tie Company Inc.ALL RIGHTS RESERVED. PACIFIC LUMBER&TRUSS "Passing is defined as when the member,floor joist,beam or girder,shown on this drawing meets applicable design criteria for Loads,Loading Conditions,and Spans listed on this sheet.The LAKE OSWEGO,OREGON design must be reviewed bye qualified designer or design professional es required for approval.This design assumes product installation according to the manufacturer's specifications. 503-479-3317 PL15-52 2-16-15 ti Roseburg MAIN 3:52pm 4 Forest Products('onspaov J6 1 of 1 CS Beam 4.11.26.1 ImiBeamEngine 4.11.26.1 Materials Database 1516 Member Data Description: Member Type:Joist Application: Floor Top Lateral Bracing: Continuous Bottom Lateral Bracing: Continuous Standard Load: Moisture Condition: Dry Building Code: IBC/IRC Live Load: 40 PSF Deflection Criteria: L/480 live, L/240 total Dead Load: 12 PSF Deck Connection: Glued&Nailed Filename: Beam1 11' fl 1' / / / 1400 1480 9 m ° 2880 Bearings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift 1 0' 0.000" Wall DFL Plate(625psi) 3.500" 1.750" 485# -- 2 14' 0.000" Wall DFL Plate(625psi) 3.500" 3.500" 1469# -- 3 28' 8.000" Wall DFL Plate(625psi) 3.500" 1.750" 509# -- Maximum Load Case Reactions Used for applying point loads(or line loads)to carrying members Live Dead 1 387#(242p1f) 98#(61p1f) 2 1130#(706p1f) 339#(212p1f) 3 403#(252plf) 106#(66plf) Design spans 13' 9.375" 14' 5.375" Product: 9 1/2" RFPI-20 19.2" O.C. PASSES DESIGN CHECKS Design assumes continuous lateral bracing along the top chord. Design assumes continuous lateral bracing along the bottom chord. Lateral support is required at each bearing. Allowable Stress Design Actual Allowable Capacity Location Loading Positive Moment 1551.# 2820.# 54% 22.67' Even Spans D+L Negative Moment 2075.# 2820.# 73% 14' Total Load D+L Shear 745.# 1220.# 61% 14' Total Load D+L End Reaction 509.# 1151.# 44% 28.67' Even Spans D+L Int.Reaction 1469.# 1775.# 82% 14' Total Load D+L TL Deflection 0.2689" 0.7224" L/644 21.95' Even Spans D+L LL Deflection 0.2261" 0.3612" L/766 21.95' Even Spans L Control: Max Int.React. DOLs: Live=100% Snow=115°/ Roof=125% Wind=160% SIMPSON All product names are trademarks of their respective owners KAMI L HENDERSON EWP MANAGER Strong-Tie Copyright(C)2013 by Simpson Strong-Tie Company Inc.ALL RIGHTS RESERVED. PACIFIC LUMBER&TRUSS "Passing is defined as when the member,floor joist,beam or girder,shown on this drawing meets applicable design criteria for Loads,Loading Conditions,and Spans listed on this sheet.The design BEAVERTON,OREGON must be reviewed by a qualified designer or design professional as required for approval.This design assumes product installation according to the manufacturer's specifications. 503-858-9663