Loading...
Specifications (76) OPUS Project IZ I Date 6/vq/e v Opus Architects&Engineers, Inc. • By Sheet ii of Minneapolis,Chicago,Phoenix,Tampa,Bethesda,and Dallas • DESIGN OF EMBED WITH HEADED STUDS "From PCI Design Handbook-5th edition,section 6.5.2" • Filename:Embed Plate Designamcd By:DIW Description> ti o7M F A-141 6 4. k d c N 1) INPUT a)Dimensions: (Note:if there is not a free edge in one or more directions, use a value for de >le) Vu y:= 0-in del := 60•in de:= 76-in de3 x:= 12•in de2:= 60•in Ru Y de dei:= 56-in deo de4:= 56•in del de2 b:= 12•in center-to-center distance between the outermost studs in the back row of the group h:= 24-in thickness of the concrete member(dimension out of plane) b) Stud information: fyt:= 45•ksi fys:= 24•ksi strength of the steel for the studs, tension &shear respectively n:= 3 number of stud in the group ns:= 3 number of studs in the back row(for shear) le:= 18•in embedment length of the stud (for studs shorter than 4",use stud length minus the thickness of the head) db:= 1.5•in diameter of the stud dh:= 4.2 dh=3 in diameter of the stud head for tension capacity of individual studs (This information should be obtained from the manufacturer) Ces:= 1 reduction factor for tension capacity of individual studs(delle <= 1) (Factor must be less than 1. Use an average value for all of the studs considered. Remember to multiply factors together for each edge effecting the stud) d Ab:= 7E• b Ab= 1.767 in area of a stud 2 d steel 0.75 c) Concrete information: := 3000-psi concrete 28 day compressive strength coefficient to use for light weight concrete X:= 1 =1 for normal weight concrete =0.75 for all-lightweight concrete =0.85 for sand-lightweight concrete • cone 0.85 factor used for P and V d) Loads applied to the embed: Vu:= 16.5.kip shear force in the embed plate Pu:= 91-kip tension force in the embed plate OPUS Project Date 6/14/6“-/ Opus Architects&Engineers, Inc. Sheet el of Minneapolis,Chicago,Phoenix,Tampa,Bethesda,and Dallas • 2) TENSION CAPACITY OF THE STUDS: a)adjust"de"to account for if there is a free edge condition or not diel := if(dei <le, le) diel = 18 in d'e2 if(de2<le,de2,le) d'e2= 18 in d'e3 if(de3 <le,de3,1e) d'e3= 18 in d'e4 if(de4<le,de4,le) d'e4= 18 in b) tension capacity based on studs acting as a group z:= if(x<y,x,y) z=0in (z+ 2.1e) hmin := hmin = 18 in 2 (x+ d'el + d'e2) =4ft AR:= (x+ 2.1e-2•h)•(y+ 2•le-2•h) AR=0in2 Pei := 2.67 fc psi(x+ d'el + d'e2)'(Y+ d'e3 + d'e4) Pei =252.7 kip • P := 2.67•A,• f . sisi x+ d' + d' + die3 die4) A P =252.7ki c2 �V P �( el e2)'(Y e3 e4) R� c2 P Pc_grp:= if(h <hmin,Pc2,Pei) Pc_grp=252.7 kir c) tension capacity based on individual stud failure cone r 10.7 Pc_ind= L •le•( le+ db)-�. f . psi•CeSI•n Pc_ind= 782 kip conc JJ Py:= Ab.(fyt)•n Py=238.6 kip 4 Py 4 steel'Py 4 Py= 178.9 kip Pycheck if(4Py>_Pu,"O.K.","N.G.") Pycheck= "O.K." d)governing tension capacity for group Pc:= if(Pc_grp<Pc_ind,Pc grp,Pc_ind) Pc=252.7 kip 4 Pc= cone"Pc 4Pc=214.8 kip • P �P >_Pu,"O.K.","N.G." ccheck•= if( c ) Pccheck= "O.K." 0 OPUS Project &1 Date C/71/06° Opus Architects&Engineers, Inc. ByCe` Sheet i o of Minneapolis,Chicago,Phoenix,Tampa,Bethesda,and Dallas lb3) SHEAR CAPACITY OF THE STUD GROUP: Cw:= if 1 + b 5 ns,t + b ,ns] CN,= 1.045 ( 3.5-de) 3.5-de J Ct:= if( b <_ 1, h ,1) Ct=0.243 1.3•de 1.3•de Cc := if 0.4+'0.7•---)del < 1, 0.4+ 0.7•del ,1 Cc1 =0.953 de de Ca:= if 0.4+ 0.7• del <_ 1, 0.4+ 0.7. del 1] Cc2=0.953 e e Vc1 :_ (12.5-de1•5-X. fc,. psi•in)•Cw'Ct'Ccl Vcl = 109.7 kip Vc2:_ (12.5.de15. iJi ).Cw.Ct.Cc2 Vc2= 109.7 kip Vc:= if(Vc2<Vc1,Vc2,Vc1) Vc= 109.7 kip 410 4 Vc= (i)cone'Vc 4Vc=93.3 kip Vccheck if(4)Vc>_Vu,"O.K.","N.G.") Vccheck= "O.K." Vy:_ (fys) Ab nVy= 127.2 kip (Wy:= 4.steel'Vy 4 Vy=95.4 kip Vycheck:= if(4Vy>_Vu,"O.K.","N.G.") Vycheck= "O.K." 4) COMBINED SHEAR AND TORSION a)For Concrete: P 2 V 2 Interc:= 1 u + u1 Interc=0.179 (must be less than 1 4)conc Pc Vc b) For Steel Studs: [rpu)2 Vu 2 Inters:= 1 + Inters=0.216 (must be less than 1, 4 steel Py Vy ) • Notes: 1. The typical embed plate should be sized for thickness based on 2/3 of the stud diameter, unless a thicker plate is required by bending analysis. 2. The dimensions of the base plate should be sized such that the studs are in accordance with the AISC design code for edge distances to the embed plate. /, opus Ic Project YL1 Z— Date di 8 jot/ Opus Architects & Engineers By M b k Sheet ) t of • rx M Al wtK�Y� '14,_.%.\.► „,1,44,"',.•_..ir�e. _..c . . .1 tw^ c : e � . '^^ � Q• 4.�sr /6 A-c s c r-,e � enc Ira.:„ 6 WiYy� 13.x ` 0 � _.... .: ... . ...... _...,. ... _. 19,-e.4. _, , � S7�s �� T�6�R 1 36 TX,b,i w�cw '. ` -. _, 4. U`` - s " Sw S s S ._ "t'r'r- _ 11-'„.. ,.S _ .., . :rte.0 c. p '-A.:. �' ^e s s ft1:-. ... _ _. _,...._._. .f.r.17 ......... p„ .,.A-9✓4,,,t.J_.. ..s_.i�.: ... .._.19 ,o''( fr ra-art-.”- . ..,4.. 'G.c2.4. C'(E... c 7 • pec?,k s -rte`/ 5iS"7.k/ . Lcv. _ . 8,3c ki,„; .cam `.^°S. a /► 5 s 7 °t - g 'IC Cz dj - 1 g k-, c 7 M� wl s!. t 3 �f�- J . 0 Opus Architects&Engineers,Inc. .% opus. 10350 Bren Road West Minnetonka,Minnesota 55343 952-656-4444 Fax 952-656-4529 FRAME FOOTINGS S S I West Mom Frame -0o-7-7.4)6 S VisualAnalysis 4.00 Report Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R1 File: G:\Bridgeport\S43_5210-rl\Struc\Calculations\West Mom Frame.vap 0Nodal Reactions Node Load Case FX FY MZ Gglb K K K-ft N1 Dead A_-. I 0.3879 3.8994 -1.9817 LRFD 16-1 0.5430 5.4591 -2.7744 LRFD 16-2a 0.6863 6.4490 -3.5066 " LRFD 16-3a 1.1723 10.3427 -5.9894 " LRFD 16-5a -4.0760 3.2582 42.1534 Q )c Vi ( F(, LRFD 16-5b5.5650 10.8097 -49.761 " LRFD 16-6c -4.5296 -0.8512 44.4710 II LRFD 16-6d 5.1114 6.7003 -47.443 ,, V P'"--- Al Live 0.4418 3.5397 -2.2571 k �^-- " Seismic -4.3428 -3.4016 41.4030 -� )( 1 h 11 = L.(,g 3 ct 4‘,0 N3 Dead 0.0123 9.1544 0.0707 " LRFD 16-1 C- I 0.0173 12.8161 0.0990 " LRFD 16-2a 0.0218 15.7478 0.1251 " LRFD 16-3a 0.0373 26.2255 0.2137 9 X X 2 " LRFD 16-5a -5.7085 19.0633 50.5502 y II LRFD 16-5b 5.7558 15.1787 -50.278 II LRFD 16-6c -5.7229 8.8081 50.4675 " LRFD 16-6d 5.7414 4.9235 -50.361 " Live 0.0140 9.5251 0.0805 " Seismic -5.1641 1.7498 45.4184 -4, k ('t I S.-) i ' SO'Y N5 Dead CAS -I -0.2670 7.6939 1.5918 " LRFD 16-1 -0.3738 10.7715 2.2286 " LRFD 16-2a -0.4725 13.1635 2.8168 • LRFD 16-3a -0.8070 21.8114 4.8112 p II 16-5a -6.3483 9.5806 53.6259 _1?,c11 ,74-2,411 II LRFD 16-5b 5.3233 19.0546 -47.514 " LRFD 16-6c -6.0361 1.0334 51.7642 " LRFD 16-6d 5.6355 10.5074 -49.376 " Live -0.3041 7.8617 1.8131 " Seismic -5.2575 -4.2676 45.5589 7 X 1^It S-. E. q•7 Jam•6 N7 Dead1% ` _ I -0.1332 2.4629 0.8529 " LRFD 16-1 -0.1864 3.4480 1.1940 " LRFD 16-2a -0.2356 3.9072 1.5091 " LRFD 16-3a -0.4025 6.0011 2.5777 ( Y10)42-till f II LRFD 16-5a -5.2902 10.8471 47.6932 " LRFD 16-5b 4.7789 -2.2938 -44.419 CN-.-h--,•(c " LRFD 16-6c -5.1344 8.4176 46.6958 " LRFD 16-6d 4.9347 -4.7233 -45.416 " Live -0.1517 1.9035 0.9714 " Seismic -4.5356 5.9193 41.4920 7 X It 1 t = S•O 4 6(b tz 4'6. Fod-. @ q,„;d Or I --- ! Govvi-v,(1 Acb vo (67c /0 )c-2..(/f` -C6 0 ^r eif - t$e- .6- E..(A), • tks e ci,,, a(A -coo It'",5 • -1- 1 2 East Mom Frame Fo-D,-rt A.1Gs VisualAnalysis 4.00 Report Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R1 File: G:\Bridgeport\S43_5210-rl\Struc\Calculations\East Mom Frame.vap "'Nodal Reactions Node Load Case Q t FX FY MZ K K K-ft N1 Dead C- 1.1951 5.8719 -6.8142 " LRFD 16-1 1.6732 8.2206 -9.5398 " LRFD 16-2a 3.6138 16.3015 -20.680 K ,�4®!j " LRFD 16-3a 2.1153 9.9385 -12.084 " LRFD 16-5a -1.9719 8.7855 29.7711 " LRFD 16-5b 6.5611 12.8531 -55.984 " LRFD 16-6c -3.3701 2.3701 37.7670 LRFD 16-6d 5.1628 6.4377 -47.988 i/o, no.N M-u " Live 1.3623 5.7845 -7.8147 Seismic -3.8437 -1.8322 38.6285 --,X1,11 _ `f, -7,0 14 2 'd1 N3 Dead V- c 0.6255 17.3595 -3.7415 " LRFD 16-1 0.8757 24.3033 -5.2381 " LRFD 16-2a 2.0322 51.8385 -12.163 " LRFD 16-3a 1.1511 30.5212 -6.8879 " LRFD 16-5a -4.3839 32.9884 42.4269 rp� crl x 2(/ f " LRFD 16-5b 6.8738 33.2617 -57.325 " LRFD 16-6c -5.1597 12.8830 47.0699 " LRFD 16-6d 6.0980 13.1563 -52.682 Live 0.8010 19.3794 -4.7962 " Seismic -5.0711 -0.1231 44.9334 --) x I.f' T'r6 , I it- 419,ct ktto- N5 Dead -1.8207 9.1598 9.6260 " LRFD 16-1 -2.5489 12.8237 13.4764 LRFD 16-2a -5.6460 26.9098 29.7979 0 11 LRFD 16-3a -3.2664 15.9662 17.2533 LRFD 16-5a -7.7411 19.5106 60.5236 6 (1 Y411-41 f( LRFD 16-5b 0.6621 15.1697 -23.129 " LRFD 16-6c -5.5671 9.0403 49.0459 " LRFD 16-6d 2.8361 4.6994 -34.606 Il Live -2.1632 9.9488 11.4042 " Seismic -3.7852 1.9553 37.6814 -> XI. Wq•2 Z t 'Z '-i !• S k-Fc 1111 -1- 3 North Mom Frame 152001-o.N 6 s VisualAnalysis 4.00 Report Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R1 File: G:\Bridgeport\S435210-r1\Struc\Calculations\North Mom Frame.vap •Nodal Reactions Node Load Case ,.k. FX FY MZ G�" K K K-ft N1 Dead 0.0058 14.6584 -0.1262 II LRFD 16-1 3-3 0.0082 20.5217 -0.1767 LRFD 16-2a -0.0042 26.1282 -0.1466 "7k 7 ?, 2c( '1 " LRFD 16-3a -0.0289 44.9123 -0.1358 " LRFD 16-5a -4.1678 24.1694 38.7170 II LRFD 16-5b 4.1612 32.4846 -39.048 II LRFD 16-6c -4.1601 6.8362 38.7878 LRFD 16-6d 4.1689 15.1514 -38.977 ILA II Live -0.0224 17.0764 0.0098 ------ -- " Seismic -3.7518 -3.7456 35.0293 -'S K t(/ 1 = 41,-2...4,- Li , - t-- 3 Or`i fr ( N3 Dead t5- 3,3 -0.0136 2.1419 -0.0193 LRFD 16-1 -0.0191 2.9986 -0.0270 LRFD 16-2a -0.0250 3.0633 -0.0320 " LRFD 16-3a -0.0441 4.1481 -0.0516 " LRFD 16-5a -4.9736 5.2365 42.7876 c�C 5 X1-y'1 LRFD 16-5b 4.9195 1.5327 -42.857 LRFD 16-6c -4.9568 3.4583 42.8080 " LRFD 16-6d 4.9363 -0.2455 -42.836 " Live -0.0173 0.9861 -0.0178 �� 8 Seismic -4.4563 1.6683 38.5788 ---- x(11( t1'9 S`k- I ‘q N5 Dead V3- 3 7 0.0527 2.0533 -0.3838 " LRFD 16-1 0.0738 2.8747 -0.5373 " LRFD 16-2a 0.0911 2.8673 -0.6697 • " LRFD 16-3a 0.1524 3.7546 -1.1297 LRFD 16-5a -4.7005 2.1931 41.0327 q K Ct z( "(if [f " LRFD 16-5b 4.8985 4.1576 -42.487 LRFD 16-6c -4.7600 0.5578 41.4720 II LRFD 16-6d 4.8390 2.5223 -42.047 Live 0.0557 0.8066 -0.4183 Seismic -4.3239 -0.8849 37.6215 7 htr(1 = (1,Z /tote- Y 1` 8 N7 Dead 6_. LI -0.0449 2.1024 0.1516 " LRFD 16-1 -0.0629 2.9434 0.2122 " LRFD 16-2a -0.0619 3.1955 0.1696 " LRFD 16-3a -0.0794 4.6754 0.1426 " LRFD 16-5a -3.9180 6.7989 36.6084 1 Crx<-2-(1c( " LRFD 16-5b 3.7808 0.2229 -36.223 " LRFD 16-6c -3.8831 4.8648 36.5298 " LRFD 16-6d 3.8158 -1.7112 -36.302 If Live -0.0160 1.3453 -0.0245 " Seismic -3.4680 2.9622 32.8073 -') l' ,,tt / S 3`3 36- I • -1- I South Mom Frame P0-07-1 A) C VisualAnalysis 4.00 Report Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R1 File: G:\Bridgeport\S43_5210-rl\Struc\Calculations\South Mom Frame.vap SNodal Reactions Node Load Case / FX FY MZ (� icio K K K-ft Ni Dead F -3 0.0271 4.5320 -0.1270 " LRFD 16-1 0.0379 6.3449 -0.1779 II LRFD 16-2a 0.0347 7.6229 -0.1490 II LRFD 16-3a 0.0395 12.4288 -0.1415 S X Y"--2-c( il " LRFD 16-5a -4.1258 4.1452 38.7144 " LRFD 16-5b 4.2033 12.4604 -39.050 " LRFD 16-6c -4.1442 -0.7586 38.7872 " LRFD 16-6d 4.1848 7.5566 -38.977 Vu P,1 / .. ll Live 0.0044 4.3690 0.0068 te Seismic -3.7518 -3.7456 35.02 93 -5 X<<((- Y. 2 3 t`, N3 Dead -0.0228 1.9922 0.1468 " LRFD 16-1 L , 3(''' -0.0320 2.7891 0.2055 LRFD 16-2a -0.0417 2.7900 0.2701 " LRFD 16-3a -0.0731 3.6686 0.4769 " LRFD 16-5a -4.9917 4.9407 43.1146 1 y 7.0/h/ It LRFD 16-5b 4.9014 1.2369 -42.530 " LRFD 16-6c -4.9637 3.3460 42.9326 " LRFD 16-6d 4.9294 -0.3577 -42.712 Live -0.0286 0.7987 0.1880 " Seismic -4.4563 1.6683 38.5788 -'1 Y WI 7 4'`(S I,`1 x-12-, N5 Dead . 7 0.0327 2.1698 -0.1587 " LRFD 16-1 0.0457 3.0377 -0.2221 " LRFD 16-2a 0.0544 3.0794 -0.2584 1111 LRFD 16-3a 0.0880 4.1258 -0.4080 LRFD 16-5a -4.7402 2.4226 41.4777 >,' ^i K1-(1tf " LRFD 16-5b 4.8589 4.3871 -42.042 " LRFD 16-6c -4.7750 0.6451 41.6409 " LRFD 16-6d 4.8240 2.6096 -41.878 Live 0.0305 0.9513 -0.1360 " Seismic -4.3239 -0.8849 37.6215-'2 x f(O Lir? ho /r N7 Dead E.- `el -0.0369 10.7920 0.2228 ,, LRFD 16-1 -0.0517 15.1088 0.3119 II LRFD 16-2a -0.0474 18.9981 0.3005 " LRFD 16-3a -0.0544 32.3032 0.3735 LRFD 16-5a -3.9024 23.9049 36.7500 >e;c/ ,,r 7,4/ 1( ' II LRFD 16-5b 3.7964 17.3289 -36.082 " LRFD 16-6c -3.8771 11.3820 36.5832 " LRFD 16-6d 3.8218 4.8060 -36.249 " Live -0.0063 12.0955 0.0663 " Seismic -3.4680 2.9622 32.8073 '- 'Kill = 3,g 3,3 3C.1 0 -1- • • • 6 I I Project 'i Project /�, OPUS. Date 6/8/2004 0 �fnU5, Date 6/8/2004 By By Opus Architects&Engineers.Inc. Sheet of Opus Architects&Engineers,inc. Sheet of Description Summary West Moment Frame Footing-Grid f-1 controls Footing Design OK Soil Pressure Oma,= 511 psf Maximum Soil Pressure General Footing Analysis&Design author DCP a,= 6,000 psf Allowable Soil Bearing Capacity - Codes ACI 2002 checked IBC 2003 Ecc,= 0.00 in Eccentricity of Resulant along the X-axis ASCE 7-02 Ecce,= 18.02 in Eccentricity of Resulant along the Y-axis 1.79 Y-axis minimum stability ratio General Information No OT X-axis minimum stability ratio o,= 6,000 psf Allowable Soil Bearing Capacity 1.00:1.0 Y-axis Minimum stability ratio f',= 3,000 psi Concrete Compresive Strength 1.50:1.0 X-axis Minimum stability ratio FY= 60,000 psi Reinforcement Yield Strength Shear Stress we= 145 pcf Concrete Weight two-way one-way pm,„= 0.0018 Minimum steel% v 20 psi v„= 5 psi d'= 3.5 in Rebar Center to Edge Distance gpvc= 164 psi Ov,= 82 psi N,= 10 ft Width along X-X axis Moment Ny= 10 ft Width along Y-Y axis Rotations on Y-Y axis Rotations on X-X axis H= 24 in Footing Thickness M.= 32 k-in/ft M.= 42 k-in/ft A,,,qe= 0.52 in`/ft A,r,q•e= 0.52 in`/ft 14 in Column Dimension Along X-X axisA,P„„d= 0.55 in`/ft A,p,ov'd= 0.55 in`/ft 14 in Column Dimension Along Y-Y axis 0 in Base Pedestal Height reinforcement left to right top to bottom d= 20.50 in effective depth of reinforcement 7 #8 7 #8 4116 OPUS Date 6/8/2004 By MGK Opus Architects & Engineers, Inc. Sheet of Applied Vertical Loads D = 2.5 kips Dead Load EDL= 32 kips L= kips Live Load L,= 1.9 kips Live Load Roof W = kips Wind E _ -6.6 kips Seismic (ultimate) ex= 0 in eccentricity along the X-axis ey= 0 in eccentricity along the Y axis Overburden = 0 psf Applied Moments Rotations on Y-Y axis Rotations on X-X axis (pressure @ left & right) (pressure @ top & bot.) D = k-ft 0.9 k-ft L= k-ft k-ft L,= k-ft 1 k-ft W = k-ft k-ft E= k-ft 46.1 k-ft Applied Shears @ 2.00 foot above above toe of footing Rotations on Y-Y axis Rotations on X-X axis D = (pressure @ left& right) (pressure @ top & bot.) k 0.1 k L= k k Lr= k 0.15k W = k k E= k 5k Project Bridgeport R1 • • • • . 1 OPUS Date Bridgeport Al 1 OPUSProject Bridgeport R1 V J 6/8/2004r . Date 6/8/2004 By MGK By MGK Opus Architects&Engineers,Inc. Sheet of Opus Architects&Engineers.Inc. Sheet of Description Summary East Moment Frame Footing-Grid C-1 controls Footing Design OK Soil Pressure . am„= 767 psf Maximum Soil Pressure General Footing Analysis&Design author DCP a,= 3,000 psf Allowable Soil Bearing Capacity — Codes ACI 2002 checked IBC 2003 Ecc,= 0.00 in Eccentricity of Resulant along the X-axis ASCE 7-02 Ecc,= 16.22 in Eccentricity of Resulant along the Y-axis 1.76 Y-axis minimum stability ratio General Information No OT X-axis minimum stability ratio 0.= 3,000 psf Allowable Soil Bearing Capacity 1.00:1.0 Y-axis Minimum stability ratio f,= 3,000 psi Concrete Compresive Strength I 1.50:1.0 X-axis Minimum stability ratio F,= 60,000 psi Reinforcement Yield Strength Shear Stress we= 145 pcf Concrete Weight two-way one-way pmm= 0.0018 Minimum steel% v„= 23 psi v,= 6 psi d'= 3.5 in Rebar Center to Edge Distance pv,= 164 psi w,= 82 psi N,= 9 ft Width along X-X axis Moment N,= 9 ft Width along Y-Y axis Rotations on Y-Y axis Rotations on X-X axis H= 24 in Footing Thickness M.= 27 k-in/ft M.= 42 k-in/ft A.reyd= 0.52 in`/ft A,,,yd= 0.52 In`/ft 14 in Column Dimension Along X-X axis A,P,,,d= 0.61 in`/ft A.,,,,d= 0.61 in`/ft 14 in Column Dimension Along Y-Y axis 0 in Base Pedestal Height reinforcement left to right top to bottom ' d= 20.50 in effective depth of reinforcement 7 #8 7 #8 I ' di OPUS Project Bridgeport R1 OPUS Date 6/8/2004 By MGK Opus Architects & Engineers, Inc. Sheet of Applied Vertical Loads D= 5.9 kips Dead Load EDL= 29 kips L= kips Live Load Lr= 5.8 kips Live Load - Roof W = kips Wind E = -2 kips Seismic (ultimate) ex= 0 in eccentricity along the X-axis ey= 0 in eccentricity along the Y-axis Overburden= 0 psf Applied Moments Rotations on Y-Y axis Rotations on X-X axis (pressure @ left& right) (pressure @ top & bot.) D= k-ft 6.8 k-ft L= k-ft k-ft Lr= k-ft 7.8 k-ft W = k-ft k-ft • E = k-ft 42.9 k-ft Applied Shears @ 2.00 foot above above toe of footing Rotations on Y-Y axis Rotations on X-X axis (pressure @ left& right) (pressure @ top& bot.) D= k 1.2 k L= k k Lr= k 1.4k W = k k E= k 4.3 k S • •. • 1 OPUS. Project Bridgeport R1 Project Bridgeport R1 r lJ Date 6/8/2004 ♦ OPUS. Date 6/8/2004 By MGK By MGK Opus Architects&Engineers.Inc. Sheet of Opus Architects&Engineers,Inc. Sheet of Description Summary North&South Moment Frame Footings-Grid G-3.3 controls Footing Design OK Soil Pressure a,,,,= 711 psf Maximum Soil Pressure General Footing Analysis&Design author DCP a,= 3,000 psf Allowable Soil Bearing Capacity .- Codes ACI 2002 checked IBC 2003 Ecc,= 0.00 in Eccentricity of Resulant along the X-axis ASCE 7-02 Ecc,= 13.53 in Eccentricity of Resulant along the Y-axis 2.33 Y-axis minimum stability ratio General Information No OT X-axis minimum stability ratio a,= 3,000 psf Allowable Soil Bearing Capacity 1.00:1.0 Y-axis Minimum stability ratio f'.= 3,000 psi Concrete Compresive Strength 1.50:1.0 X-axis Minimum stability ratio F,= 60,000 psi Reinforcement Yield Strength Shear Stress w,= 145 pcf Concrete Weight two-way one-way p,„;,= 0.0018 Minimum steel% v = 22 psi v.= 6 psi d'= 3.5 in Rebar Center to Edge Distance ov,= 164 psi w,= 82 psi N,= 9 ft Width along X-X axis Moment N,= 9 ft Width along Y-Y axis Rotations on Y-Y axis Rotations on X-X axis H= 24 in Footing Thickness M„= 30 k-iNft M„= 41 k-in/ft A,reqs= 0.52 in`/ft A.„we= 0.52 in`/ft 14 in Column Dimension Along X-X axis A.p,,,,'e= 0.61 in`/ft A, ,oa c e= 0.61 in`/ft 14 in Column Dimension Along Y-Y axis 0 in Base Pedestal Height reinforcement left to right top to bottom d= 20.50 in ,effective depth of reinforcement 7 #8 7 #8 II , i-0 0'4 PUS® • Project Bridgeport R1 • Date 6/8/2004 By MGK Opus Architects & Engineers, Inc. Sheet • /6 of Applied Vertical Loads D= 10.7 kips Dead Load EDL= 34 kips L= kips Live Load Lr= 0.8 kips Live Load - Roof W = kips Wind E= -1.9 kips Seismic (ultimate) eX= 0 in eccentricity along the X-axis ey= 0 in eccentricity along the Y-axis Overburden= 0 psf Applied Moments Rotations on Y-Y axis Rotations on X-X axis (pressure @ left& right) (pressure @ top& bot.) D= k-ft 0.1 k-ft L= k-ft k-ft Lr= k-ft 0.2 k-ft . W = k-ft k-ft E= k-ft 42.8 k-ft Applied Shears @ 2.00 foot above above toe of footing Rotations on Y-Y axis Rotations on X-X axis (pressure @ left& right) (pressure @ top& bot.) D= k Ok L= k k Lr= k 0 k W = k k E= k 5k • • • i /s JU /: OPUS Project Bridgeport R1 Projectridg Bridgeport Al .+ Date 06/29/04 0g Date 06/29/04 iBy MGK By MGK Opus Architects&Engineers.Inc. Sheet. of Opus Architects&Engineers,Inc. Sheet of Grade Beams Equations Soil wgt=L*W*soil covery,gr Load Case 0.6DL+0.7E I Description: I West Mom Frame Grid 1 Conc wgt=L*W'd/12`Yroac DL Total=DL+Soil+Conc Material Properties P=0.6(DL Total)+0.7(Ev.,,) 7p...is.= 350 psfttt Soil passive pressure V=0.7(E„g,,,) 7.eg= 110 pcf Density of soil F,=P'y. ye.ne= 145 pcf Density of concrete Pgraee beam,.=V.+Pg,adebeam,1-r-f1..-Pp.. (Positive=sliding) µ,= 0.35 Coefficient of Friction • Footin. 1 2 3 4 5 6 7 8 9 Footings 1 2 Footings for frame Footing# 1 1 1 1 Length 11 ft Length of footing in direction of load DL 3.9 9.2 7.7 2.5 Width 11 ft Width of tooting perpendicular to load Soil wgt 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 height 24 in Height of footing Conc wgt 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 Wgb ft Width of grade beam DL Total 52.3 57.6 56.1 50.9 48.4 48.4 48.4 48.4 48.4 Location A-1-D.1-1 Grids in frame of footings Evan -3.8 1.9 -4.7 6.6 Soil Cover 1 ft Depth of soil on top of footing Eso,s 4.8 5.7 5.7 5 P 28.7 35.9 30.4 35.2 29.0 29.0 29.0 29.0 29.0 Passive Pressure V 3.4 4.0 4.0 3.5 0.0 0.0 0.0 0.0 0.0 350 psi GB? N N N N Pp 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 F, 10.1 12.6 10.6 12.3 10.2 10.2 10.2 10.2 10.2 Looting 1 k Pgradebeam -22.1 -24.0 -22.0 -24.2 -25.6 -25.6 -25.6 -25.6 -25.6 Pp Pgred.b..m,m..= -22.0 k O.K. MEW 1050.0 psf Legend Footing w/GB Pp= 15.4 k Passive pressure with grade beam Footing=Footing number in frame ' Footing w/o GB Pp= 15.4 k Passive pressure without grade beam Footing#=Footing type DL=Dead Load,kips 0 psf Soil wgt=Soil Dead Load,kips Conc wgt=Weight of footing,kips Even=Seismic vertical load,kips Footing 2 1111, Erb5,=Seismic horizontal load,kips P=Factored total vertical load,kips Pp V=Factored total shear load,kips GB?=Grade Beam reducing the Passive Pressure 0.0 psf Pp=Passive Pressure,kips Footing w/GB Pp= 0.0 k Passive pressure with grade beam F,=Friction Force,kips . Footing w/o GB Pp= 0.0 k Passive pressure without grade beam Pgradebeam=Axial Load in Grade Beam,kips . O.:' . 01 OPUSProject Bridgep rt R1 OPUS. Project Bridgeport R1 . f� Date 06/29/04 By MGK By MGK Opus Architects&Engineers.Inc. Sheet of Opus Architects&Engineers,Inc. Sheet of Grade Beams Equations Soil wgt=L'W soil cover'y,0 I Load Case 0.6DL+0.7E ' Description: I East Mom Frame Grid 5 I Conc wgt=L'W'dr12'y,on, - DL Total=DL+Soil+Conc Material Properties P=0.6(DL Total)+0.7(Ep) - Yg...i»= 350 psf/ft Soil passive pressure i V=0.7(E„) Yeas= 110 pcf Density of soil F,=P'y, Yoa.e= 145 pcf Density of concrete pre 9 de beam,i=V1 4'pgmdebeam,i4-ft i-pp,f (Positive=sliding) µ,= 0.35 Coefficient of Friction Footin. 1 2 3 4 5 6 7 8 9 Footings 1 2 Footings for frame i Footing a 1 1 1 Length 11 ft Length of tooting in direction of load I DL 5.9 17.4 9.2 Width 11 ft Width of footing perpendicular to load Soil wgt 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 height 24 in Height of footing Cont wgt 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 Wo ft Width of grade beam DL Total 54.3 65.8 57.6 48.4 48.4 48.4 48.4 48.4 48.4 Location C-5-E-5 Grids in frame of footings E,,,,, -2.0 -0.1 2.2 Soil Cover 1 ft Depth of soil on top of footing E„od, 4.3 - 5.6 4.2 P 31.2 39.4 36.1 29.0 29.0 29.0 29.0 29.0 29.0 Passive PressureI V 3.0 3.9 2.9 0.0 0.0 0.0 0.0 0.0 0.0 350 psf GB? N N N Pp 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 F, 10.9 13.8 12.6 10.2 10.2 10.2 10.2 10.2 10.2 Footing 1 ! p m. g a b.am -23.3 -25.3 -25.1 -25.6 -25.6 -25.6 -25.6 -25.6 -25.6 I MOW Pp Puede beam,m..= -23.3 k O.K. 1050.0 psi Legend Footing w/GB ' Pp= 15.4 k Passive pressure with grade beam Footing=Footing number in frame Footing w/o GB Pp= 15.4 k Passive pressure without grade beam Footing u=Footing type DL=Dead Load,kips 0 psf Soil wgt=Soil Dead Load,kips Cont wgt=Weight of footing,kips Even=Seismic vertical load,kips <doting 2lik, Ehad.=Seismic horizontal load,kips NOMP=Factored total vertical load,kips Fp V=Factored total shear load,kips GB?=Grade Beam reducing the Passive Pressure • Al 0.0 psf Pp=Passive Pressure,kips Footing w/GB Pp= 0.0 k Passive pressure with grade beam F,=Friction Force,kips Footing w/o GB Pp= 0.0 k Passive pressure without grade beam P5,adabeem=Axial Load in Grade Beam,kips • r' • 0 • /� OPUS Project Bridgeport R1 /� Project Bridgeport R1 ��, , Date 06/29/04 �, OPUS. Date 06/29/04 By MGK By MGK Opus Architects&Engineers,Inc. Sheet of Opus Architects&Engineers,Inc. Sheet of Grade Beams Equations Soil wgt=L'W'soil cover?,,;, Load Case 0.6DL+0.7E I Description: I North Mom Frame Grid B Conc wgt=L'W'd/12'Yo0M . DL Total=DL+Soil+Conc Material Properties P=0.6(DL Total)+0.7(Ep) •- Ypa..ro.= 350 psf/ft Soil passive pressure V=0.7(E„) 7,.p= 110 pct Density of soil F,=P'),, Yoone= 145 pct Density of concrete Pgr,de beam,,=V;+Pg,adebeam,1.1-I,,,-Pp,, (Positive=sliding) P.= 0.35 Coefficient of Friction Footin. 1 • 2 3 4 5 6 7 8 9 Footings 1 2 Footings for frame Footing# 1 1 1 1 Length 11 ft Length of footing in direction of load DL 14.7 2.1 2.1 2.1 Width 11 • ft Width of footing perpendicular to load Soil wgt 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 height 24 in Height of footing Conc wgt 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 Wgb ft Width of grade beam DL Total 63.1 50.5 50.5 50.5 48.4 48.4 48.4 48.4 48.4 Location 8-3-B-4 Grids in frame of footings Ey„,„ -4.2 1.9 -1 3.3 Soil Cover 1 ft Depth of soil on top of footing E„o,;, 4.2 5 4.8 3.8 P 34.9 31.6 29.6 32.6 29.0 29.0 29.0 29.0 29.0 Passive Pressure V 2.9 3.5 3,4 2.7 0.0 0.0 0.0 0.0 0.0 350 psf GB? N N N N IlLFp 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15,4 F, 12.2 11.1 10.4 11.4 10.2 10.2 10.2 10.2 10.2 Footing 1 Pg,edebeam -24.7 -23.0 -22.4 -24.2 -25.6 -25.6 -25.6 -25.6 -25.6 Pp Parade beam,m..= -22.4 k O.K. NEM 1050.0 psf Legend Footing w/GB Pp= 15.4 k Passive pressure with grade beam Footing=Footing number in frame ' Footing w/o GB Pp= 15.4 k Passive pressure without grade beam Footing#=Footing type DL=Dead Load,kips 0 psf Soil wgt=Soil Dead Load,kips Conc wgt=Weight of footing,kips lik, E,,,,,,=Seismic vertical load,kips Footing 2 f Era„,=Seismic horizontal load,kips 1111 P=Factored total vertical load,kips Pp V=Factored total shear load,kips . GB?=Grade Beam reducing the Passive Pressure ' 4 . 0.0 psf P,,=Passive Pressure,kips Footing w/GB Pp= 0.0 k Passive pressure with grade beam i F,=Friction Force,kips Footing w/o GB Pp= 0.0 k Passive pressure without grade beam Pg,adebeam=Axial Load in Grade Beam,kips . .----i i 0 ...' 1110 !i III o OPUS. Project Bridgeport R1 1 OPUSProject Bridgeport R1 1' Date 06/29/04 • OP�+�+. Date 06/29/04 i By MGK By MGK Opus Architects&Engineers.Inc. ' Sheet of Opus Architects&Engineers,Inc. Sheet of Grade Beams Equations Soil wgt=L'W`soil cover'„, Load Case 0.6DL+0.7E I Description: I South Mom Frame Grid E Conc wgt=L'W`d/12`7=,. DL Total=DL+Soil+Conc Material Properties P=0.6(DL Total)+0.7(Ep) - Yp...,,= 350 psf/ft Soil passive pressure V=0.7(E„) 7.,n= 110 pct Density of soil F,=P`', '.,m= 145 pcf Density of concrete P9„d,beam,=V,+P9reaebea,.,,-,-I,,,-Pp,; (Positive=sliding) µ,= 0.35 Coefficient of Friction Footin. 1 2 3 4 5 6 7 8 9 Footings 1 2 Footings for frame Footing# 1 1 1 1 Length 11 ft Length of footing in direction of load DL 4.5 2 2.2 10.8 Width 11 ft Width of footing perpendicular to load Soil wgt 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 height 24 in Height of footing Conc wgt 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 W9b ft Width of grade beam DL Total 52.9 50.4 50.6 59.2 48.4 48.4 48.4 48.4 48.4 Location E-3-E-4 Grids in frame of footings Eu,,, -4.2 1.9 -1 3.3 Soil Cover 1 ft Depth of soil on top of footing Eh,d, 4.2 5 4.8 3.8 P 28.8 31.6 29.7 37.8 29.0 29.0 29.0 29.0 29.0 Passive Pressure V 2.9 3.5 3.4 2.7 0.0 0.0 0.0 0.0 0.0 350 psfGB? N N N N Pp 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15,4 F, 10.1 11.0 10.4 13.2 10.2 10.2 10.2 10.2 10.2 Footing 1alk P9md,be,m -22.5 -22.9 -22.4 -26.0 -25.6 -25.6 -25.6 -25.6 -25.6 Pp Pynd.besm,m..= -22.4 k O.K. NEM 1050.0 psf Legend Footing w/GB Pp= 15.4 k Passive pressure with grade beam Footing=Footing number in frame ' Footing w/o GB Pp= 15.4 k Passive pressure without grade beam Footing#=Footing type DL=Dead Load,kips 0 psf Soil wgt=Soil Dead Load,kips Conc wgt=Weight of footing,kips E.=Seismic vertical load,kips Footing 2 lik, E,,,„,=Seismic horizontal load,kips MOMP=Factored total vertical load,kips Pp V=Factored total shear load,kips GB?=Grade Beam reducing the Passive Pressure 4 0.0 psf Pp=Passive Pressure,kips Footing w/GB Pp= 0.0 k Passive pressure with grade beam F,=Friction Force,kips Footing w/o GB Pp= 0.0 k Passive pressure without grade beam P9,ad,b,am=Axial Load in Grade Beam,kips i I ti/ r • opus. Project 1R z Date 1 /►2 loy Opus Architects & Engineers By tv'6t` Sheet !5- of • 1-o 07 pi G r Air r, t..r.t2 Rx.i ;W/ M io e G. rH-p 4-1"Cr . i 1 0.4-vokko'1 1/"Qviu '1'1 I t A<514 k,.E f!"ppc'm. Kw, # ,./rs. ; � _ � )_. , �_- a� 'ivy. -w-r,i ._ f : i ; 0 ' . . .. , '.. I, . .. . . ... , , ,, cv4c.),6C- I r , G-EA2A-NcJE ii . /'/kms O Ct r 22 rX �- TSE G� .t l `P '0 i 0 ' of fry ,• ' ' (cr,A .4,c . . tIe rt (4(.c`' 0K Opus Architects&Engineers,Inc. • opus. 10350 Bren Road West Minnetonka,Minnesota 55343 952-656-4444 Fax 952-656-4529 STUD WALL, JAMB, & HEADER DESIGN • A. OPUS Date Opus Architects & Engineers By eA"(- Sheet l of ovt 0 1,J4t,t Jcz.s_4.t -4 / )0) t‘Ff '14e• -14- 2S, 2_, 2S" y4,E ('7o ) • lksa " 5it- 6„, /- = 3, 5-2Y r):1 1\1,_ -7 Z6 7 - 4r, n.) E 7-4(1(t. /6 ?r. — : Ir 6 Sp.s 2-0 ifJje. 5, > ."3 5.0s, P > r I • -T- ( 3) (?op 2-2-r ps OPUS. Project__. V Date GJZS�DY Opus Architects & Engineers By M64 • Sheet '2. of r k3 -I F-,A-46 2 sC F-rtA I F/NA-1- 6/z5/oy O P)J,.v C J R M S STA-0 SF 44 F.2 Shit as' i Tr_A-r e s . (2-) �$'f_ 2-09' CSS C2-) Jo"- / 75,, CST Ue.fico + Cy) ,,- CSS H6rZtlna6.11 *C3) - gr( - 2y c<<c 01•4%-e__, 111 (3) E"- 205; CST -so-c. as ,A- (- 4( (16 $'' - .20fa Cs-r- ... as A- 'c ' (5-) Z'` - 205,, (s r" Sa..,k oS A- O61) 8 - )L CST (2) to"— ill g, CSJ Ve..+, -1-(y) $,r_ /4 CST N'r +(3) - 3"- ►yqa ,-.c.,et ;0'• - • (6) z - NIc. cST- so. uc A- d (6) - Hi. c .T So.,,._e u S a (.4) g' - NIA Cs 1 (2-) 1`f'I-0,,, Cc- tie,4-. t N g'` - pil, CST 14 -r . 0 -F C3) - - /y lc, rr.r s f,eZ.., It T' P F,c 4-,M tN 6 = 'i? - 2-07- S @ /6 " 0, c. tat D6 6 C ),\ I C2) t" - ¢bT c,c. Cs'i ue,-'-r 't` 2i G ' -- 1z, cS3 i'vra .. CO (2) - ¢V G c5 '+(3) er - /b5KTfe't6 c t7U rZ. , / (3) 14 CST (z-) - 2 ' - 14ci, c s; ve...+. -t- (4) v"- iiia. (57 17,r;e. 6 — /U fir, T,eucic ¢iaP,'� , OP (6) 6' Hy" CSS (2) - 1-2 - Pt la CsT Upf-,- +(6) 6/ - iys, cs7 !.,), f, .* <3j o _. lcl 5k 'pa rc_ ¢-¢vim•- , 0 Tv f-2A,',NG — 6" - /-/ 9a 5-f-,), G 16" 0.c, Project P.k OPUS. Date %'LA- '`�:; Opus Architects & Engineers By Sheet 3 of • IS I r -1`4 L L g t5 si i:21--- htfi-SOF r/2 /21` = 1 '' r- (2...) 6`� TeA-c K-s . _ ' I CEJ 6 SJ S `1 e 8 '' s hiA --. ._.., /— F " .5.7i,A 0 _ (2. 6"s dS 1 - 1 - e6" _T2a-ck OPUS.. Project �} Date qt tic'. Opus Architects & Engineers By ' 6 Sheet t of • 6" F41 tf-& 4FR g ( 1$y4k keb T� TyA- (2)- S " - /8 yk S74t.,r9S 1/e 67 ( ,(60 C`})_ 6„ - kAlf."70./chNk 2.3/ 6 /18 .44(7 (3)— 6 ' - /S y. 11 4-t4c 1, 6g ,05f3 ,37c( 2(2(,63=4) -F Y ,/Yg t tY,7(2,3-7sz�� 2_ C,Oit'3 f .379(y1� 32.2 ;,(-1 N1-u - - Citi 6 (33fr,:) (32 z, `') 15cr L � • �{drr"z- = 3 Tx-hrGf 4 17/ �x ys GL, r6,14 -r- (1(1,6g2 ) ,6x2) --r (2, 3/6) t- 2 C./60 -f , 5-3? (3z)] y Cra i .6 ("334 s, go k OPUS. Project 2I Date Vs/ 1p'v Opus Architects & Engineers By AZ Sheet S of • „ s 11) -(A) 4 (2.) g`' — -h c 7, ve$ ,2-3 (4) 61' - J cr eJ C-11.49 f�,,•: *a . 31 , 2/g ,6 i 3 (3) b`` l T' 4-3 ,06-7 ,cscr 2 y LT, 4`f*4 -t A1/41:73 -t 2 [ z t <<< 2] Z (7<6n) -I- 4 .2,s f . 683(2<37c + 2,067+ ,s' 7( Tva1fi 't g, cr , /{,rr.Z. ,3....-X 4 - T .T>t St�ol _ jZ,8Y3) f y (3,5-z) -F a L .235 • 01. OPUS,. Project R Date /71/041 Opus Architects & Engineers By M Sheet () of L " L14 t-1- ...1.,.9z-sr `=4-;;: I' )2_5 ger,..oti...k A-- C-2-) — 1.2." - 14fJ 19,5-i? (6) — 6 1(1 5, c1-1,,,.1 •67 ) iq -2 ,961 067 6 0 e T Ix A-.111 2_ ( 19, 57 e') 4 Lf C.sr ,62(a,37 + 2 [067-4 ,605 (6 1-) i3 6 2 = 3 Tx q..r), 2.17,., 4„t3 2, o1) (3,5-z5-) z c,-2A-v- 4 1,11/ ('3 -jj 2- -7- 5-0 7414ve(1 6(35 ) G'.7 ) C 3c- 0 • • Building R1 OAE Project Number S435190 Date: 07/14/04 JAMBS 15 psf Reactions 22.5 psf/1.4 Allow. Reactions Section Opening Orig. Jambs @ Slab @ Girt @ Roof @ Slab @ Girt @ Roof Slab Conn Notes Max 1170 0 2524 1254 0 2704 # PDFs 3/4.1 9.83 3--14 453 1471 485 0 1576 3 1/4.2 19.83 3--14 1052 2524 1127 0 2704 6 13.17 2--14 699 1677 749 0 1797 4 2/4.2 18.33 5--14 1170 1521 1254 0 1630 6 1/4.3 10.67 4--14 468 1652 501 0 1770 3 2/4.3 8.67 4--14 552 585 591 0 627 3 1/4.4 13.5 2--14 713 1711 764 0 1833 4 9.17 2--14 487 1169 522 0 1253 3 3/4.4 16.42 4--14 826 2433 885 0 2607 4 7.92 2--14 399 1175 428 0 1259 2 INFILL STUDS 14 ga. © 16 inch o.c. Verify 15 psf Reactions Section TWE TDE TSE if O.K. @ Slab @ Roof @ Girt Notes 1/4.1 119.5 117.17 100 O.K. 169 221 2/4.1 126 117 100 O.K. 122 398 4/4.1 124 117 100 O.K. 141 339 3/4.2 126.5 117 100 O.K. 117 413 3/4.3 124 117 100 O.K. 141 339 2/4.4 124 117 100 O.K. 141 339 4/4.4 126.5 117.75 100 O.K. 134 396 ! OPUS. Project 22 OPUS. Date 7/740`i Opus Architects & Engineers By M.�� Sheet • of CoNAFr- 1FJ4 r-Ac7r . .'2 .19 S/CA Far= v dF--.40.1(/2 Set 02_+14.e i6/s6 ,f Ott.5- CA. c(')C,T a /On bo-f-f-vw 6 t ']c•` &r 4`. a(4\,,, ';1 o J. w�L (10 (V.+Y^e t7- 1,7-441t- o L � _Fezytec-s F,o 22, Ss s Seg ,w `+/4,! c +ts )3 L 5j 4..2- .7' Z2_ 3 k c7. cp I 3 2 i- czcse s^to. !5-p.c 3 goo Cep ccr !,,f. SJ Z — /6o0 /6$ rC. I) I ky a — 2 S ,Otcl-Ar(4, /boa ,c-,v0,..)5 .. r — S6 So tj !Z ccnaws ,: 40, (PCC1 O(z Y rrc4G r= YtCt 00 (-e5 /TG({ /o = 2 6 00 Esq S(1@sti r Cc.,0 lZ. Sc.ryeJ\ 1 /Y jR c 2.r-/$s ova Sc�e�as = c-2 5- L.(. /6 tt So 6 1-z Screws eGctGe) oP -G Ok. (! CProject. �i OPUS.J_ Date 7//6/0'1 Opus Architects & Engineers By !1/16 • Sheet cl of • Components and Cladding h<_30 ft. Table 6-3A Design Wind Pressures Simplified Procedure Enclosed Buildings Walls & Roofs pa DESIGN WIND PRESSURE(PSF) Effective Location Zone Wind Basic Wind Speed V(MPH) 41). Area 85 90 100 110 120 130 140 150 160 170 (SF) 10 +10 -13 +10 -15 +10 -18 +10 -22 +11 -26 +12-30 +14 -35 +16 -40 +19 -46 +21 -52 1 20 +10 -13 +10-14+10 718 +10 41 +10 25 +12.;:30 +13 -34 +15 -39 +18 -45 +20 -51 100 +10.=12 +10.43+10 -46 +1040+10':::24 +10-:28 +11 =32 +13 -37+15 -42 +17 -48 10 +10 -22 +10:44+10 .30 +10 46 +11-43 +12.-4f +14 =59 +16:.-68 +19 -17 +21 47 Roof 2 20 +10.49 +10.4i+10 47 +10 33 +10 i39 +12 -46.+13 -53 +15. ,41 +18 +20 `=78 • 100 +10 -14+10•36+10 -19 +10'.424 +10=28 +10=33 +11 -38 +13 -44 +15 50 +17 -56 10 +10 33 +10 37+10 -45 +10 -55 +11 -65 +12...-77+14 49 +16-102 +19-1.16+21 -131 3 20 +10 -27 +10-30+10 -37 +10 -45 +10-5.4 +12 -53 +13 -73 +15 44 +18 -96 +20-106 - 100 +10-14 +10,-16+10 -19+10 -24 +10.:28 +10 ;33 +11 -38 +13 _ F +15..,..-50 +17:.:7:56 10 +13 -14 +15 x16+18 -19 +22 -24 +26.-28. +304.3 +35 -38 +40.44 +46 (?+52 .56 4 50 +12 -13 +13.44+16 -18 +1922 +23-26+27 40+31 -35 +36• +41 -46+46;.-91 500 +10 =11 +11 .42 +13 -15 +16 :18 +19.21= +23 -25 +26 -29 +30 34 +34 :38 +39 :-43 Watts 10 +13 -.17- +15 -19+18 -24 +22 -29 +26;=35 +30 -41 +35 -47 +40. 54 +46 -62 +52 -70 5 50 +12-15 +13 -16+16 -2Q +19-45 +23-29 +27 -34 +31 -40 +36 -46 +41 ;52 +46 -59 500 +10 -11 +11 -12 +13 -15 +16 =18 +19-21 +23 -25 +26 -29 +30 -34 +34 -38 +39 -43 Metric Conversion: 1 PSF=47.9.pascals 1 SF=0.0929 SM 1 MPH=0.447 M/S Notes: I. Design wind pressures above represent the net pressure(sum of external and internal pressures) applied normal to all surfaces. 2. Values shown are for exposure B. For other exposures,multiply values shown by the following factor: exposure C: 1.40 and exposure D: 1.66. 3. Linear interpolation between values of tributary area is permissible. 4. Values shown are for an importance factor 1= 1.0. For other values of I,multiply values shown by I. 5. Plus and minus signs signify pressure acting toward and away from the exterior surface,respectively. 6. All component and cladding elements shall be designed for both positive and negative pressures shown in the table. • 7. Notation: a: 10 percent of least horizontal dimension or 0.4 h,whichever is smaller,but not less than 4%of least horizontal dimension or 3 ft. h: Mean roof height in feet(meters). Project kk 0 opus. Date "7//6/0'1 61.6.dr_ Opus Architects & Engineers • By Sheet 10 of 0 , , , , , • 0t4-F.•.4 .41. .t. x Alesk -e- C4,C.Z S ""th."Cr?o,A) 314 q ...• 're -F- -.----- i i -' 44- VA(( Ce5 kJ- I I 0 0-e..,(5,k4- . . . , 7....:,.:3-C--..r(r7.) --z- 36, s 4- ( 9.PA ott .,)ii-Ald S--hkcgs 7: Z — i e-t 4,.• — 113K‘, vt„,,,,Z,-/,--1 ,.../C--s46614,..4.-?,& - - -F-Y,0 lio re i _Lk: N AL L -2- /Ss (4)c)F—..----. c . , . , ,. . . IV, . -A r(LI_ '-srks95 d-t) -r",.. r --._ r,„4.!:..„.,-. ----. „ _itcs,— it o , - a.,---s ' • , 1 ' , 736t ce 49-°(----- = (ID • . ) 40 , . . , 0 OPUS 7 Project ( 6 Date ! foci Opus Architects & Engineers By 646 cc.... Sheet 11 of • ® L kr- L4.k,,a0 (-004 - 'Y•,,., -...lr 6fr•s.. 6 P. (ib �" 3q. S' ,4- /Oat, 'SjoL-4- .. : C.f-- — 3 (h,/� 7 �(1 I10) \{I J` l(i2 � 2,'S I., __ _ ../r1 . (u,f- ,_,i,)'- , ii C.) �9a'3cj 1,32 ,rt, /6, -4.. '.: $ -z o T'i C...A . 1 . -cA--r Q f--a[C-T .r---,..-„,„ -c--6-. I 4 5.0,-4 i 6-C4- 4.1 Y i" 530 L-'/e � - Ylz. 3 �• -r 52,,G� �i S� ��. z � ? :%c- -z 3) Sr- , . ,71-1:<.'.,--„, -: ,_, i S3 C j, 3 .-� ' 2 7 S k -�. -z 1;Fe4.c.@� . 1 wa lls_._ 6�,&-', .e-co,h.L ..+'c-S .:-, - x,1,1 . J -1-,-,:..4--:., -=--= Q;'l . .i4 Lig,9 ,;-,,,,Y M,,,,i = Z4'7 rr 1, 0 OPUS o Project Bridgeport R1 Date 7/14/2004 By MGK 11110 Opus Architects&Engineers Sheet I'l. of • DESIGN OF ONE STORY JAMBS AND HEADERS FOR STUD WALLS USING VALUES FROM DIETRICH INDUSTRIES CATALOG. DESCRIPTION- South&East Elevation Section 3/A4.1 Filename: Stud Wails.xls By: MGK WALL PROPERTIES TWE=:::::::::1:26.00 ft TDE= 117.00 ft 1i a v T/windowl = 110;00ft=Header Elevation vTSE= 100.00 ft e "< L > LOADS WL= 15 psf wind load Wt..'= 35 psf wall weight Wtwind.= 15 psf window weight HEIGHTS a= 2600 ft =TWE-TSE b= 1600 ft =TWE-T/windowl e= 1000 ft =T/windowl-TSE JAMB DESIGN Opening 1 Opening 2 Opening 3 L= 9.83 ft ft ft width or span of opening/header "a®ow= 0.33 in 0.00 in 0.00 in Allowable deflection=L/360 ww;nd= 73.7 plf 0.0 plf 0.0 plf ww;nd=WL*U2 Pwae= 4.5 kips 0.0 kips 0.0 kips P,,,a1=Wt,,,au*U2*a • #of 6"JAMB STUDS= 3-149 a. a. ga. 9 TOP HEADER DESIGN Studs w,„ar= 0.560 k/ft N/A k/ft N/A k/ft wway=Wt„ae*b MmaX= 81 k-in #VALUE! k-in #VALUE! k-in M,aa„=waLz/8 IfeQ= 12.38 in4 #VALUE! in4 #VALUE! in4 Ireq=5wwe*L4/(384*E*DaN„„) Reaction= 2.75 k #VALUE! k #VALUE! k Reaction=wwd112 Track widthb;b= 21.0 ft N/A ft N/A ft widthtdb=b+e/2 wywnd= 0.315 k/ft #VALUE! k/ft #VALUE! k/ft wwind=WL*widthb;b Mn a = 46 k-in #VALUE! k-in #VALUE! k-in M ax=wwind*L2/8 Iraq= 6.96 in4 #VALUE! in4 #VALUE! in4 Ifeq=5w,,,,nd*L4/(384*E*Iapow) Reaction= 1.55 k #VALUE! k #VALUE! k Reaction=ww;nd*U2 TOP HEADER#= 2. ‘,1- e-- i>) • 'r OPUS Project Bridgeport R1 OPUS Date 7/14/2004 By MGK • Opus Architects&Engineers Sheet I of DESIGN OF ONE STORY JAMBS AND HEADERS FOR STUD WALLS USING VALUES FROM DIETRICH INDUSTRIES CATALOG. DESCRIPTION-South Elevation Section 1/A4.2 Filename: Stud Walls.xls By: MGK WALL PROPERTIES TWE= 124.00 ft A TDE= 117 00 ft b^ a --T/window1 = 110.00!ft=Header Elevation vTSE= 100.00ft e 1:;>.<3 .< L > LOADS WL= 15 psf wind load WtWap= 35 psf wall weight Wtwindow= 15 psf window weight HEIGHTS a= 2400 ft =TWE-TSE b= 1400 ft =TWE-T/windowl e= 1000 ft =T/windowl-TSE JAMB DESIGN Opening 1 Opening 2 Opening 3 L= 19.83 ft 13.17:ft ft width or span of opening/header Aapow= 0.66 in 0.44 in 0.00 in Allowable deflection=L/360 wW nd= 148.11`plf 98.8 plf 0.0 plf ww;nd=WL*U2 SPN= 8.3 kips 5.5 kips 0.0 kips P1=Wtwep*U2*a #of 6JAMB STUDS= 3-14 ga. 2-14 ga. ga. TOP HEADER DESIGN Studs wwep= 0.490 k/ft 0.490 k/ft N/A k/ft w„ap=Wtwau*b Mrnax= 289 k-in 127 k-in #VALUE! k-in Mn =wWap*L2/8 Iraq= 88.93 in4 26.05 in4 #VALUE! in4 Ireq=5wwap*L4/(384*E*Aapow) Reaction= 4.86 k 3.23 k #VALUE! k Reaction=wWep*U2 Track width(#b= 19.0 ft 19.0 ft N/A ft widthb;b=b+e/2 wwnd= 0.285 k/ft 0.285 k/ft #VALUE! k/ft ww;nd=WL*widtht4b MR== 168 k-in 74 k-in #VALUE! k-in Mn.„=ww;nd*L2/8 Ireq= 51.73 in4 15.15 in4 #VALUE! in4 Ireq=5wwnd*L4/(384*E*Aakow) Reaction= 2.83 k 1.88 k #VALUE! k Reaction=ww nd*U2 TOP HEADER#= 3 1 V15e 0 lk5 e K>. • 0.4 OPUS° Project Bridgeport R1 Date 7/14/2004 ByMGK • Opus Architects&Engineers Sheet 1 9 of DESIGN OF ONE STORY JAMBS AND HEADERS FOR STUD WALLS USING VALUES FROM DIETRICH INDUSTRIES CATALOG. DESCRIPTION- North Elevation Section 2/A4.2 Filename: Stud Walls.xls By: MGK WALL PROPERTIES TWE= 119.50 ft TDE=_.....117.33ft b" a v —T/windowl= "108;17 ft=Header Elevation vTSE= 100.00ft e r›....<3 L LOADS WL= 15 psf wind load Wtwan=:'. ::::: : 35 psf wall weight Wtw;ndow= 15 psf window weight HEIGHTS a= 1950 ft =TWE-TSE b= 1133 ft =TWE-T/windowl e= 817 ft =T/windowl -TSE JAMB DESIGN Opening 1 Opening 2 Opening 3 L= 18.33 ft ft ft width or span of opening/header Aanow= 0.61 in 0.00 in 0.00 in Allowable deflection=L/360 ww,nd= 137.5 plf 0.0 plf 0.0 plf minim'=WL*1/2 IIIPwan= 6.3 kips 0.0 kips 0.0 kips Pwen=Wt,,,,en*U2*a #of 6"JAMB STUDS= 5-14 ga. ga. ga. TOP HEADER DESIGN Studs wwan= 0.397 k/ft N/A k/ft N/A k/ft wwan=Wtw,n*b Mmax= 200 k-in #VALUE! k-in #VALUE! k-in Mmax=wwan*L2/8 Ifeq= 56.84 in4 #VALUE! in4 #VALUE! in4 Iraq=5wwan*L4/(384*E*Lianow) Reaction= 3.63 k #VALUE! k #VALUE! k Reaction=wwan*U2 Track widthfb= 15.4 ft N/A ft N/A ft widthb;b=b+e/2 ., ww d= 0.231 k/ft #VALUE! k/ft #VALUE! k/ft wwind=WL*widthVb Mmax= 117 k-in #VALUE! k-in #VALUE! k-in Murex=ww.nd*L2/8 'req= 33.15 in4 #VALUE! in4 #VALUE! in4 IreQ=5ww;nd*L4/(384*E*Lanow) Reaction= 2.12 k #VALUE! k #VALUE! k Reaction=ww;nd*U2 TOP HEADER#= 3 (LSA. <> • 6 OPUSo • Project Bridgeport R1 Date 7/14/2004 By MGK • Opus Architects&Engineers Sheet I< of DESIGN OF ONE STORY JAMBS AND HEADERS FOR STUD WALLS USING VALUES FROM DIETRICH INDUSTRIES CATALOG. DESCRIPTION- South Elevation Section 1/A4.3 Filename: Stud Walls.xls By: MGK WALL PROPERTIES TWE= 126:50:ft A TDE= 117.00 ft bA a v T/windowl= - 112.17.ft=Header Elevation vTSE= 100.00 ft e LOADS „� L WL= ::::: 15 psf wind load Wts.,an=:.:::::: :::35 psf wall weight Wtrd,ao„ 15 psf window weight HEIGHTS a= 2650 ft =TWE-TSE b= 1433 ft =TWE-T/windowl e= 1217 ft =T/windowl -TSE JAMB DESIGN Opening 1 Opening 2 Opening 3 L= 10.67 ft ft ft width or span of opening/header Dab,,,= 0.36 in 0.00 in 0.00 in Allowable deflection=U360 ww;„d= 80.0 plf 0.0 plf 0.0 plf ww;„d=WL*U2 IIIPwaa= 4.9 kips 0.0 kips 0.0 kips Pwan=Wts.,a'*U2*a #of 6"JAMB STUDS= 4-14 ga, ga. ga. TOP HEADER DESIGN Studs wwan= 0.502 k/ft N/A k/ft N/A k/ft wwan=Wtwan*b Mma:= 86 k-in #VALUE! k-in #VALUE! k-in M,X=wwan*L2/8 IfeQ= 14.18 in4 #VALUE! in4 #VALUE! in4 Ireq=5w.y*L4/(384*E*Aagow) Reaction= 2.68 k #VALUE! k #VALUE! k Reaction=ws.,an*U2 Track widthtb= 20.4 ft N/A ft N/A ft widthwb=b+e/2 wwind= 0.306 k/ft #VALUE! k/ft #VALUE! k/ft w,„„d=WL*widthb;b M aax= 52 k-in #VALUE! k-in #VALUE! k-in M ax=w,ai„d*L2/8 'req= 8.66 in4 #VALUE! in4 #VALUE! in4 Ireq=5w,,,b,d*L4/(384*E*4anow) Reaction= 1.63 k #VALUE! k #VALUE! k Reaction=wwind*U2 TOP HEADER#= 1 il-Sta .0 III 0 Opus. Project Bridgeport R1 OPUS. Date 7/14/2004 By MGK IIIOpus Architects&Engineers Sheet !4 of DESIGN OF ONE STORY JAMBS AND HEADERS FOR STUD WALLS USING VALUES FROM DIETRICH INDUSTRIES CATALOG. DESCRIPTION- South Elevation Section 2/A4.3 Filename: Stud Walls.xls By: MGK WALL PROPERTIES TWE= 11750:ft A TDE= 11700ft b" a T/windowl= 11200 ft=Header Elevation v TSE= 100.00 ft e < L > LOADS WL= 15 psf wind load Wt,,,,,— 35 psf wall weight Wtwindow= 15 psf window weight HEIGHTS a= 1750 ft =TWE-TSE b= 550 ft =TWE-T/windowl e= 1200 ft =T/windowl-TSE JAMB DESIGN Opening 1 Opening 2 Opening 3 L= 8.67 ft ft ft width or span of opening/header 4aYow= 0.29 in 0.00 in 0.00 in Allowable deflection=U360 wwnd= 65.0 plf 0.0 plf 0.0 plf w�„d=W L*U2 P,,,aw= 2.7 kips 0.0 kips 0.0 kips P,,,,ap=Wt,,,ap*U2*a 0 #of 6"JAMB STUDS= 4.14 ga. ga. ga. TOP HEADER DESIGN Studs wwd= 0.193 k/ft N/A k/ft N/A k/ft ww.,=Wt,,,au*b M n,x= 22 k-in #VALUE! k-in #VALUE! k-in M =wwq*L2/8 Ireq= 2.92 in4 #VALUE! in4 #VALUE! in4 'reQ=5wwap*L4/(384*E*4a1,H,) Reaction= 0.83 k #VALUE! k #VALUE! k Reaction=ww.d*U2 Track widthi,b= 11.5 ft N/A ft N/A ft widththb=b+e/2 "'wind= 0.173 k/ft #VALUE! k/ft #VALUE! k/ft wfld=WL*widthb;b Mmax= 19 k-in #VALUE! k-in #VALUE! k-in Mm.„=wwind*L2/8 'red= 2.62 in4 #VALUE! in4 #VALUE! in4 Ifeq=5w„„nd*L4/(384*E*Aapow) Reaction= 0.75 k #VALUE! k #VALUE! k Reaction=w,„nd*U2 TOP HEADER#= 1 Vitc.'-- 0. 0 6 OPUSProject Bridgeport R1 o OPUS Date 7/14/2004 By MGK • Opus Architects&Engineers Sheet t7 of DESIGN OF ONE STORY JAMBS AND HEADERS FOR STUD WALLS USING VALUES FROM DIETRICH INDUSTRIES CATALOG. DESCRIPTION- South&West Elevation Section 1/A4.4 Filename: Stud Walls.xls By: MGK WALL PROPERTIES TWE= :124.00 ft A TDE=-.---117.00 ft b^ a v T/windowl = . 110.00ft=Header Elevation v TSE= 100.00 ft e .< L > LOADS WL= 15 psf wind load Wtwa= 35 psf wall weight Wt,M„dow= 15 psf window weight HEIGHTS a= 2400 ft =TWE-TSE b= 1400 ft =TWE-T/windowl e= 1000 ft =T/windowl -TSE JAMB DESIGN Opening 1 Opening 2 Opening 3 L= 13.5 ft 8.58:ft 9.17:ft width or span of opening/header Aapow= 0.45 in 0.29 in 0.31 in Allowable deflection=U360 ww;„d= 101.3 plf 64.4 plf 68.8 plf wmnd=WL*U2 aik 111. Pwap= 5.7 kips 3.6 kips 3.9 kips PwaH=Wt, 0*U2*e #of 6"JAMB STUDS= 2-14 ga. 2-14 ga. 2-14 ga. TOP HEADER DESIGN Studs wwall= 0.490 k/ft 0.490 k/ft 0.490 k/ft wwar=Wtwad`b Mn = 134 k-in 54 k-in 62 k-in Mma,=w.H*L2/8 IfaQ= 28.06 in4 7.20 in4 8.79 in4 req=5wwau*L4/(384*E*AeIow) Reaction= 3.31 k 2.10 k 2.25 k Reaction=wwaN*U2 Track widthifb= 19.0 ft 19.0 ft 19.0 ft widthb;b=b+e/2 ww;nd= 0.285 k/ft 0.285 k/ft 0.285 k/ft %and=WL*widthb;b M„,ax= 78 k-in 31 k-in 36 k-in Max=ww;nd`L2/8 IfeQ= 16.32 in4 4.19 in4 5.12 in4 IreQ=5ww{„d*L4/(384*E*Aaiiow) Reaction= 1.92 k 1.22 k 1.31 k Reaction=ww;nd*U2 ..................... TOP HEADER#= 11 1 1 1,4. t:: :)? OA ION, 4110 0 OPUS Project Bridgeport R1 ++• Date 7/14/2004 By MGK 0 Opus Architects&Engineers Sheet 1411 of DESIGN OF ONE STORY JAMBS AND HEADERS FOR STUD WALLS USING VALUES FROM DIETRICH INDUSTRIES CATALOG. DESCRIPTION- South&West Elevation Section 3/A4.4 Filename: Stud Walls.xls By: MGK WALL PROPERTIES TWE=.. .....126:50 ft TDE=........117.75 ft b'' a vM1_ ,._--- T/windowl=':::: :110:00:ft=Header Elevation vTSE=........1,00:00:ft e VQ n LOADS L WL= -:.: :: 15 psf wind load Wtwdu= ::.: 35 psf wall weight WtW ndow=-;::: - 15 psf window weight HEIGHTS a= 2650 ft =TWE-TSE b= 1650 ft =TWE-T/windowl e= 1000 ft =T/windowl-TSE JAMB DESIGN Opening 1 Opening 2 Opening 3 L= .._.....i 6:42 ft 6:92.ft 7:92.ft width or span of opening/header 4a9ow= 0.55 in 0.23 in 0.26 in Allowable deflection=U360 wwgnd= 123.2 plf 51.9 plf 59.4 plf wW;nd=W L*U2 S` PWa1= 7.6 kips 3.2 kips 3.7 kips P,,,ap=Wt,,,ar*U2*a #of 6"JAMB STUDS= 4-14 ga. 2=14.ga. 2=14 ga. TOP HEADER DESIGN Studs wWa,= 0.578 k/ft 0.578 k/ft 0.578 k/ft wwaB=Wt,,,ar*b KM= 234 k-in 41 k-in 54 k-in M =wwan*L2/8 'req= 59.51 in4 4.45 in4 6.68 in4 Ireq=5wwae*L4/(384*E*Aa10W) Reaction= 4.74 k 2.00 k 2.29 k Reaction=w,„.1U2 Track widththb= 21.5 ft 21.5 ft 21.5 ft widthb;b=b+e/2 wwind= 0.323 k/ft 0.323 k/ft 0.323 k/ft ww;nd=WL*widthb;b Mmax= 130 k-in 23 k-in 30 k-in Mn =wwind*L2/8 'req= 33.23 in4 2.49 in4 3.73 in4 req=5ww;nd*L4/(384*E*AaAow) Reaction= 2.65 k 1.12 k 1.28 k Reaction=ww,nd*U2 TOP HEADER#= 3' 1 4 1A-S€ V O i'<::> 0