Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Report (157)
O Opus Architects&Engineers,Inc. • OPUSn, 10350 Road West Minnetonka,Minnesota 55343 952-656-4444 Fax 952-656-4529 TABLE OF CONTENTS I. Gravity System A. Roof Design I.A.l - 17 B. Column, Base Plate, &Foundations Design I.B.1 -4 II. Lateral System—Seismic Analysis and Design A. Lateral Load Summary II.A.1 -4 B. Moment Frame Design ILB.1 -25 C. Diaphragm Design& Collector Elements TLC.1 - 15 D. Anchor Rod Design II.D.1 - 11 E. Frame Footing Design II.E.1 -15 III. Miscellaneous A. Stud Wall,Jamb, &Header Designs III.A.1 - 18 • S Opus Architects&Engineers,Inc. OPUS.. Minnetonka,Minnesota 55343 952-656-4444 Fax 952-656-4529 ROOF DESIGN •` • Opus Project K I Date C ' A L-••° 4 Opus Architects & Engineers - . By 10 A Aiki Sheet - ) of 11111P ..........,, ..._.. _ . ........ . ..... _. . .. . . . . _______. _ ... . ... . -- ... .. _.. .0(..... 7: 1.1./e'..) '- l'it'• i 4-.2..s -A_- It)s- ,iz..,\(-- I ' : : '', : ': '..Z...' . • 10 k''. '5"-. .,..c Ni-?.._S- ,—4 ..',.11., ..,,-z. ...,,.3. .. A. ,,t, . . . . , . . . , . . . . . „, . . , . . . . . . . . , I, r • , , '•°2;71 : ,,'' , '''. V S' .-3::.' i T- ,.• '.' -r... '• ----2.-: -.1: ?\,';—* ; • , . , . , ' L :: ' : , : • ::;.•-:---.1:: 2.C\--..N : -.::•:• -•-''', ••••1-- • .,..',,'..c\_‘(-'.`..-1_,',,,,,,,...i.,. ,,_i:...,_e _p\-%; ----' #.1-6<\ ' 0,C7 . y : ' :1 ..• - --.• , --.•, 1 • _. • ' . • • ' 1 • 1. , • , .:' ' : • : , ik 1 1 , 1 : • • • 1 • ." ;._ - -2_,€2,S. ) . . . , . . Lo . , . . : .. . . . ... ..... . , .... ....., ... ... ......., i. .. .. . . . . . .. . . . , , , .... .., ., . . .,. , . , . r . , . . . . . . . , . 0 , : . . . . —=----------... 501 -7 0 xa { _ .... Z OEC) L ° °� 1 ,A 811 - "vU 11-'0 �� N7ti I L 0 1 (LavA7-19) ' 1 L ) ),)- .., La. D 19. 1 z c SL c1Q, \ 4_ C, 3 LZler- . l nL2 , o ( _. s -e.. r1 r ao az l_ CAS' a i Jo _z_... loot's �� AEI saaaui2ua 1g s�.�aa.tuDaV sndo aleQ ,f� , , ' � 'sndo laaro.zd Noo Project /2- I 0% opus Date Opus Opus Architects & Engineers By Sheet 3 of 0\11c- (0 ( 1 '\• -tzgr • S 3 To specify your title block on Title: Job# LI these five lines, use the SETTINGS Dsgnr: Date: 2:47PM, 14 MAY 04 Description : main menu selection,choose the Printing&Title Block tab, and ent Scope: your title block information. • . • Rev: 580001 ,,. .. User 0Ver 1e (c)1983-2003ENE�CALCEngineering Software Single Span Beam Analysis Page 1 Description KCS joist - Grid 1 to 3 General Information Center Span 38.83 ft Moment of Inertia 1,000.000 in4 Left Cantilever ft Elastic Modulus 29,000 ksi Right Cantilever ft Beam End Fixity Pin-Pin Uniform Loads On Center Span... On Left Cantilever... On Right Cantilever... #1 0.270 k/ft #1 k/ft #1 k/ft Point Loads i Y.- . . M.`b`'�,wur*se a„x ay WesvM.,d.'�,v" „..'w,.. '# „<;... +39?s:z`; 'S »,.rs4a.,asrp5, ten.. .a a$i e ..a sw. ""• 4.4- ,-, c+.ik-Y.FS_,,,, .x Magnitude 1.500 k k k k k Location 28.830 ft ft ft ft ft Query Values Center Location 0.000 ft Left Cant 0.000 ft Right Cant 0.000 ft Moment 0.00 k-ft 0.00 k-ft 0.00 k-ft Shear 5.63 k 0.00 k 0.00 k Deflection 0.00000 in 0.00000 in 0.00000 in rSummary1 0 Moments... Shears... Reactions... Max+ @ Center 58.66 k-ft at 20.85 ft @ Left 5.63 k @ Left 5.63 k Max- @ Center 0.00 k-ft at 0.00 ft @ Right 6.36 k @ Right 6.36 k Maximum 6.36 k @ Left Cant 0.00 k-ft @ Right Cant 0.00 k-ft Deflections... @ Center -0.553 in at 19.69 ft Maximum = 58.66 k-ft @ Left Cant. 0.000 in at 0.00 ft @ Right Cant 0.000 in at 0.00 ft 110 0 OPUS, Project Bridgeport R1 Date 6/8/2004 By MGK • Opus Architects&Engineers Sheet 5 of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid A-1 to 3 Filename: bm_dsgn.xls By: DCP Beam Data W 7 RDS= 1.6 kips RDL= 1.6 kips Ru= 1.3 kips RLL= 1.3 kips R„= 2.8 kips L= 41.17 ft R = 2.8 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384Ei*coeff) t3 pin-pin pin-pin 2 8 1 r fixed-fixed fixed-fixed 2 16 2.5 ['fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00k/ft LL= 25 PSF 0.00''k/ft d�5= 4 ft distance to adjacent beam on left dugut= 1 ft distance to adjacent beam on right W trio= 2.50 ft tributary width service L.F. ultimate DL= 0.08 k/ft * 1.35 = 0.10 k/ft LL= 0.06 k/ft * 0.5 = 0.03 k/ft W= 0.14 k/ft W„= 0.13 k/ft use W16x26 camber 0 in. Ru MaX= 3 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 301 in4 moment of inertia Wt= 0.026 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 28 ft-kips Mu=W„L2/moment coeff. cl)Mn= 150 ft-kips o.k. Deflection allowable live load deflection=U 240 • DOL= 0.56 in A .= 0.46 in = U 1067 o.k. A=(5WL4/384E1)/deflection coeff. 0n= 1.03 in = U 482 o.k. An=DL+LL-camber • OPUS. Project Bridgeport R1 Date 6/2/2004 By MGK • Opus Architects&Engineers Sheet � of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION- Grid E-1 to 2 Filename: bm_dsgn.xls By: DCP Beam Data 4 RDL= 0.5 kips RDL= 0.5 kips RLL= 0.5 kips Ru.= 0.5 kips R„= 1.4 kips L= 14 ft R„= 1.4 kips coefficients Support reaction moment deflection Support Condition Condition WWUcoeff WWL2/coeff 5WL4/(384EI*coeff) tz pin-pin pin-pin 2 8 1 r fixed-fixed fixed-fixed 2 16 2.5 fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft deft=` 4.5 ft distance to adjacent beam on left dughc= 1 ft distance to adjacent beam on right W(rib= 2.75 ft tributary width service L.F. ultimate DL= 0.08 k/ft * 1.2 = 0.09 k/ft LL= 0.07 k/ft * 1.6 = 0.11 k/ft W= 0.15 k/ft Wu= 0.20 k/ft use W14x22 camber 0 in. Ru max= 2 kips Beam Properties Fy= - 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 199 in4 moment of inertia Wt= 0.022 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 5 ft-kips M„=WuL2/moment coeff. = 110 ft-kips o.k. Deflection allowable live load deflection=U 240 • IDL= 0.01 in ALL= 0.01 in = U 16315 o.k. A=(5WL4/384EI)/deflection coeff. ATL= 0.02 in = U 7696 o.k. Ott=DL+LL-camber OPUS` Project Bridgeport 121. Date 6/2/2004 • Opus Architects&EngineersBy MGK Sheet 7 of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid F-2 to 3 Filename: bm_dsgn.xls By: DCP Beam Data V RDS= 1.1 kips RDS= 1.1 kips RLL= 1.0 kips Ru= 1.0 kips R = 3.0 kips L= 27.33-ft R„= 3.0 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384EI*coeff) pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 C fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00"k/ft dies= 5 ft distance to adjacent beam on left • d,;nb 1 ft distance to adjacent beam on right W mb= 3.00 ft tributary width service L.F. ultimate DL= 0.08 k/ft * 12 = 0.10 k/ft LL= 0.08 k/ft * 1.6 = 0.12 k/ft W= 0.16 k/ft W = 0.22 k/ft use W14x22 camber 0 in. Ru max= 3 kips Beam Properties FY= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 199 in4 moment of inertia Wt= 0.022 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= " 1 use equation(F1-3)or conservatively Cb=1.0 Moment M„= 20 ft-kips M =W„L2/moment coeff. OM„= 110 ft-kips o.k. • Deflectionallowable live load deflection=U 240 ADL= 0.18 in Du == 0.16 inL/ 2010 o.k. A=(5WL4/384EI)/deflection coeff. ATL= 0.34 in = U 960 o.k. ATL=DL+LL-camber OPUS Project Bridgeport R1 • Date 5/14/2004 By DCP • • Opus Architects&Engineers Sheet cK of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION- Grid C-4 to 5 Filename: bm_dsgn.xls 6elo F fro By: DCP Beam Data RDL= 2.3 kips RDS= 2.3 kips RLL= 2.0 kips RLL= 2.0 kips R„= 5.9 kips L= 44.67 ft R„= 5.9 kips coefficients Support reaction moment deflection Support Condition Condition W„L/coeff WuL2/coeff 5WL4/(384EI'coeff) pin-pin pin-pin 2 8 1 fixed-fixed fixed-fixed 2 16 2.5 fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft digin= 6 ft distance to adjacent beam on left duo,= 1 ft distance to adjacent beam on right • W,r;b= 3.50 ft tributary width service L.F. ultimate DL= 0.11 k/ft 1.2 = 0.13 k/ft LL= 0.09 k/ft 1.6 = 0.14 k/ft W= 0.19 k/ft Wu= 0.27 k/ft use W18x35 camber 0 in. Ru max= 6 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 510 in4 moment of inertia Wt= 0.035 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 66 ft-kips Mu=WuL2/moment coeff. (13Mr,= 242 ft-kips o.k. Deflection allowable live load deflection=U 240 • ODS= 0.64 in ALL= 0.53 in = U 1011 o.k. A=(5WL4/384E1)/deflection coeff. OTL= 1.17 in = L/ 46060o.k. ATL=DL+LL-camber o OPUS Project Bridgeport R1 Date 5/14/2004 By.DCP • Opus Architects& Engineers Sheet q of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION• Grid D-5 to 6 Filename: bm_dsgn.xls 621Y1t= s° Oro 6 By: DCP Beam Data RDr= 1.3 kips Rpr= 1.3 kips Ra= 1.1 kips Ra= 1.1 kips R = 3.3 kips L= 32 ft R = 3.3 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384Ercoeff) E pin-pin pin-pin 2 8 1 Cfixed-fixed fixed-fixed 2 16 2.5 fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft diet= 4.5 ft distance to adjacent beam on left dright= 1 ft distance to adjacent beam on right W mb= 2.75 ft tributary width service L.F. ultimate DL= 0.08 k/ft 1.2 = 0.10 k/ft LL= 0.07 k/ft 1.6 = 0.11 k/ft W= 0.15 k/ft W.= 0.21 k/ft use W16x26 camber 0 in. Ru max= 4 kips Beam Properties FY= 50 ksi yield stress F,= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 301 in4 moment of inertia Wt= 0.026 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment M = 27 ft-kips M„=W„L2/moment coeff. ctM„= 158 ft-kips o.k. Deflection allowable live load deflection=U 240 ADL= 0.22 in • ALL= 0.19 in = U 2067 o.k. o.k. A=(5WL4/384E1)/deflection coeff. ATI= 0.40 in = U 949 A11=DL+LL-camber OPUS. Project Bridgeport Ri Date 6/2/2004 By MGK • Opus Architects&Engineers Sheet /0 of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION- Grid 2-E to F Filename: bm_dsgn.xls By: OCP Beam Data ROL= 3.0 kips a RDx= 3.0 kips Ru= 3.5 kips RLL= 3.5 kips Ru= 9.2 kips L= 20 ft R„= 9.2 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384EI*coeff) t• pin-pm pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00k/ft LL= 25 PSF 0.00 k/ft d,eh= 27 ft distance to adjacent beam on left drght= 1. ft distance to adjacent beam on right W bib= 14.00 ft tributary width service L.F. ultimate DL= 0.30 k/ft * 1.2' = 0.36 k/ft LL= 0.35 k/ft * 1.6' = 0.56 k/ft W= 0.65 k/ft Wu= 0.92 k/ft use W14x22 camber 0 in. Ru max= 10 kips Beam Properties FY= 50 ksi yield stress Fr= ' 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 199 in4 moment of inertia Wt= 0.022 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 46 ft-kips Mu=W„L2/moment coeff. rDM„= 110 ft-kips o.k. Deflection allowable live load deflection=L/240 • ADL= 0.19 in ALL= 0.22 in = IJ 1099 o.k. A=(5WL4/384E1)/deflection coeff. An= 0.41 in = U 590 o.k. ATL=DL+LL-camber 0 OPUS. Project Bridgeport R1 Date 6/2/2004 By MGK • Opus Architects&Engineers Sheet f of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid 3-A to B Filename: bm_dsgn.xls Grid 4-B to C By: DCP Beam Data 4 4 4 RDL= 1.8 kips "DL= 1.8 kips RLL= 2.1 kips RLL= 2.1 kips R = 5.5 kips L= 8 ft R.= 5.5 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff WWL2/coeff 5WL4/(384EI*coeff) C pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 C fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00-k/ft LL= 25 PSF 0.00k/ft diet= 41.33 ft distance to adjacent beam on left • d,gM= 1 ft distance to adjacent beam on right W criu= 21.17 ft tributary width service L.F. ultimate DL= 0.44 k/ft * 1.2'' = 0.53 k/ft LL= 0.53 k/ft * 1.61` = 0.85 k/ft W= 0.97 k/ft W„= 1.38 k/ft use W12x19 camber 0 in. R„max= 6 kips Beam Properties FY= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 130 in4 moment of inertia Wt= 0.019 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment M„= 11 ft-kips M =WWL2/moment coeff. cbMn= 75 ft-kips o.k. Deflection allowable live load deflection=1../240 • ADL= 0.01 in ALL= 0.01 in = U 7422 o.k. A=(5WL4/384EI)/deflection coeff. AR= 0.02 in = U 4043 o.k. ATL=DL+LL-camber 0 OPUS ISR Project Bridgeport R1 Date 5/14/2004 By DCP • Opus Architects&Engineers Sheet i Z. of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION- Grid 3-$to D Filename:bm_dsgn.xls By: DCP Beam Data Roy= 13.6 kips Rp�= 13.6 kips ALS= 16.0 kips = 16.0 kips Ru= 42.0 kips L= 32 ft Ru= 42.0 kips coefficients Support reaction moment deflection Support Condition Condition WuL/coeff WuL2/coeff 5WL4/(384E1"coeff) E pin-pin pin-pin 2 8 1 jC fixed-fixed fixed-fixed 2 16 2.5 fixed pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft = 41.33 ft distance to adjacent beam on left ddgrn= 38.83 ft distance to adjacent beam on right W trjb= 40.08 ft tributary width service L.F. ultimate DL= 0.85 k/ft 1.2 = 1.02 k/ft LL= 1.00 k/ft 1.6 = 1.60 k/ft W= 1.85 k/ft Wu= 2.63 k/ft use W21x50 camber" 0 in. Ru max= 43 kips Beam Properties FY= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 984 in4 moment of inertia Wt= 0.050 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 336 ft-kips Mu=WuL2/moment coeff. <AM = 406 ft-kips o.k. Deflection allowable live load deflection=U 240 Doi= 0.70 in 4110 ALL= 0.83 in = L/ 464 o.k. O=(5WL4/384E1)/deflection coeff. 6k-n_= 1.53 in = U 251 o.k. OTS=DL+LL-camber 02 OPUS` Project Bridgeport R1 Date 6/2/2004 By MGK Opus Architects&Engineers Sheet Is 3 of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION- Grid 3-D to F Filename: bm dsgn.xls By: DCP Beam Data Rix= 8.8 kips RDL= 8.8 kips RLL= 10.5 kips Ru= 10.5 kips Ru= 27.4 kips L= 24.5 ft Ru= 27.4 kips coefficients Support reaction moment deflection Support Condition Condition WuUcoeff W„L2/coeff 5WL4/(384EI*coeff) Pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 t fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00,k/ft LL= ` 25PSF 0.00'k/ft diet= 41.33 ft distance to adjacent beam on left d,;ght= 27.33 ft distance to adjacent beam on right W m b= 34.33 ft tributary width service L.F. ultimate DL= 0.72 k/ft * 12 = 0.87 k/ft LL= 0.86 k/ft * 1.6 = 1.37 k/ft W= 1.58 k/ft Wu= 2.24 k/ft use W18x35 camber 0;, -- in. Ru mez= 28 kips Beam Properties FY= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 510 in4 moment of inertia Wt= 0.035 k/ft beam self weight Lb= ` 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 168 ft-kips Mu=W„L2/moment coeff. r6M„= 242 ft-kips o.k. Deflection allowable live load deflection=U 240 • ADL= 0.40 in ALL= 0.47 in = U 625 o.k. A=(5WL4/384E1)/deflection coeff. An= 0.87 in = U 340 o.k. An=DL+LL-camber o OPUS Project Bridgeport R1 Date 5/14/2004 By DCP • Opus Architects&Engineers Sheet { of • DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION- Grid 4-C to D Filename: bm_dsgn.xls By: DCP Beam Data RDS= 10.7 kips Roy= 10.7 kips RLL= 12.9 kips RLL= 12.9 kips Ru= 33.5 kips L= 24 ft R = 33.5 kips coefficients Support reaction moment deflection Support Condition Condition WuUcoeff WuL2/coeff 5WL4/(384E1*coeff) pin-pin pin-pin - 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft died= 41.33 ft distance to adjacent beam on left • dnght= 44.67 ft distance to adjacent beam on right W t,;n= 43.00 ft tributary width • service L.F. ultimate DL= 0.90 k/ft 1.2 = 1.07 k/ft LL= 1.08 k/ft 1.6 = 1.72 k/ft W= 1.97 k/ft Wu= 2.79 k/ft use W18x35 camber 0 in. Ru max= 34 kips Beam Properties Fy= 50 ksi yield stress F1= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 510 in4 moment of inertia Wt= 0.035 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment M„= 201 ft-kips Mu=WuL2/moment coeff. �Mu= 242 ft-kips o.k. Deflection allowable live load deflection=U 240 Doi= 0.45 in Ori= 0.54 in = U 531 o.k. D=(5WL4/384E1)/deflection coeff. Ort = 0.99 in = Li 290 o.k. ATL=DL+LL-camber 0 OPUS Project Bridgeport R1 r V Date 6/2/2004 • Opus Architects&Engineers By MGK Sheet s of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid 4-D to F Filename: bm_dsgn.xls By: DCP Beam Data RDS= 11.0 kips = 11.0 kips RLL= 13.2 kips RLL= 13.2 kips R.= 34.2 kips L= 24.5 ft R.= 34.2 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384EI'coeff) pin-pm pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 C fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20'PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft diefl= 44.67 ft distance to adjacent beam on left S dM= 41.33 ft W fro= 43.00 ft distance to adjacent beam on right tributary width service L.F. ultimate DL= 0.90 k/ft ' 1.2= = 1.07 k/ft LL= 1.08 k/ft 1.6'- = 1.72 k/ft W= 1.97 k/ft W„= 2.79 k/ft use W18x35 camber 0 ,' in. R.max= 35 kips Beam Properties FY= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000'ksi modulus of elasticity I= 510 in4 moment of inertia Wt= 0.035 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment M„= 210 ft-kips M =W„L2/moment coeff. (IPM„= 242 ft-kips o.k. • Deflection allowable live load deflection=U 240 Aix= 0.49 in ALL 0.59 in = U 499 o.k. A=(5WL4/384EI)/deflection coeff. = 1.08 in = U 272 o.k. An=DL+LL-camber OPUS Project Bridgeport R1 Date 5/14/2004 By DCP • Opus Architects&Engineers Sheet t 6 of • DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid 6 Filename: bm_dsgn.xls By: DCP Beam Data RDS= 4.3 kips ''DL= 4.3 kips RLL= 5.1 kips RLL= 5.1 kips Ru= 13.3 kips L= 24.5 ft R„= 13.3 kips coefficients Support reaction moment deflection Support Condition Condition WuUcoeff WuL2/coeff 5WL"/(384E1'coeff) pin-pin pin-pin 2 8 1 ( fixed-fixed fixed-fixed 2 16 2.5 fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft = 32 ft distance to adjacent beam on left d,yM= 1 ft distance to adjacent beam on right • W t,;b= 16.50 ft tributary width service L.F. ultimate DL= 0.35 k/ft 1.2 = 0.42 k/ft LL= 0.41 k/ft 1.6 = 0.66 k/ft W= 0.76 k/ft Wu= 1.08 k/ft use W14x22 camber 0 in. R„ a = 14 kips Beam Properties Fy= 50 ksi yield stress F,= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 199 in4 moment of inertia Wt= 0.022 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 81 ft-kips Mu=WuL2/moment coeff. 0 M = 116 ft-kips o.k. Deflection allowable live load deflection=U 240 • O = 0.49 in ALL��= 0.58 in = U 507 o.k. A=(5WL4/384EI)/deflection coeff. On= 1.07 in = U 274 o.k. LTL=DL+LL-camber 0 OPUS, Project Bridgeport Al Date 5/14/2004 • By DCP • • Opus Architects&Engineers Sheet 1,1 of • DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION- beam parallel to Moment Frame Filename: bm_dsgn.xls By: DCP Beam Data W R01= 2.6 kips Roi= 2.6 kips Rii= 2.6 kips Ra= 2.6 kips R„= 7.3 kips ' L= 41.33 ft R.= 7.3 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384EI"coeff) pin-pin pin-pin 2 8 1 fixed-fixed fixed-fixed 2 16 2.5 fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft dian= 5 ft distance to adjacent beam on left d"9b`= 5 ft distance to adjacent beam on right faW bib= 5.00 ft tributary width service L.F. ultimate DL= 0.13 k/ft 1.2 = 0.15 k/ft LL= 0.13 k/ft * 1.6 = 0.20 k/ft W= 0.25 k/ft W.= 0.35 k/ft use W16x26 camber 0 in. R.max= 8 kips Beam Properties Fy= 50 ksi yield stress F,= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 301 in4 moment of inertia Wt= 0.026 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment M„= 75 ft-kips M.=W„L2/moment coeff. i:tiM.= 158 ft-kips o.k. Deflection allowable live load deflection=L/240 0 Ao.= 0.95 in Di = 0.94 in = U 528 o.k. A=(5WL4/384E1)/deflection coeff. 4n= 1.89 in = U 263 o.k. 'TL=DL+LL-camber Opus Architects&Engineers,Inc. • ^ 10350 Bren Road West opus. Minnetonka,Minnesota 55343 952-656.44441 Fax 952-656-4529 COLUMN, BASEPLATE, & FOUNDATION DESIGN • • ,- r _ V et 0 C11 •o q cna 4S4 m�bl Z�� I 1�bQ-b O LL 1 i 0 of 1 I 8 J�^ I �$�ll I �,�LZ 1 i , . ..._ 45 ° i ,..tp z b5 II._ _ _ _ iD cu SS 82 -OTC—L I ,°)S 1 7• 1 o� _�°� -- - uo i-,st - - r ,,4711.0 .._ .:....) ,,0.71,s w4 2 C) L) M V J A O • J 0 0 0 0 . 0 1 opusDate 12 0 Date C(1.-) '- Opus Architects & Engineers By Q LP Sheet • Z of 0 LV1v,r� 1)54"7,1 L rJ - GIZA 3 Q /C _;41!. ,r _ ��� _. . 0,s l_... N. A 3 Pn = �� �` Lam _ f Opus Project g- ( Date Opus Architects & Engineers By b cie Sheet Z of • .------_------- — > Tpk)tjP-11.71 f ° b%L tx .0 _ _ L- I ik\Alw•I 4kVs\A- SeA 6 el,. =-- 30DO i7s-1 - cliz. 1 0 2, D Fc K. .__ ......) 4 1 -z_ . 3k • rf I- G v 4---I ' It i I, • GI 9 n•D c, ( T. ..., IS V-1 (c- 0 "; I 2.. 4„i tit_ 2 • .,. OPUSopus Group of Companies- Project Bridgeport R1 • ♦ e Architects,Engineers,Contractors,Developers Date 6/2/2004 By MGK Sheet c f of Design base plate with axial loads only DESCRIPTION > Typ Column Base Plate Filename: colbaspl.XLS > By: DCP BASE PLATE B = 16 in• Base plate width N = 16 in Base plate length t= 0.75 in. Base plate thickness Fy= 36 ksi yield stress of base plate FOUNDATION fc'= 3 ksi compressive strength of concrete foundation b= 54 in foundation width I = 54 in foundation length A2= 2916 inA2 area of the supporting concrete foundation that is geometrically similar to the plate • COLUMN column W10x33 bf= 7.96 in column flange g width d = 9.73 in column depth dsg = W shape designation ULTIMATE LOADS Pu = 73 kips REQUIRED BEARING AREA Al = 23 inA2 Al = max[Pu/0.6*1.8fc', 1/A2*(Pu/0.65*0.85f0^2] B*N = 256 inA2 o.k. REQUIRED PLATE THICKNESS m = 3.38 in m = (N-0.95d)/2 n = 4.82 in n = (B-(0.8 W, 0.95 TS)bf)/2 tp = 0.64 in tp= max(m, n)*(2Pu/0.9FyBN)^0.5 t> tp, o.k. S • Opus Architects&Engineers,Inc. • • /, OPUS, 10350 Bren Road West Minnetonka,Minnesota 55343 952-656-4444 Fax 952-656-4529 LATERAL LOAD SUMMARY i Project! OPUS. k Date 617/o y Opus Architects & Engineers By MC,4 Sheet 1 of 0 : , „ eUtIII)tAi om S _ , ! 1 Y s°f mf-, Saa,ic l ;.v MFs « z t t ' ; F ' S d t i ;' -, - „..,,,,, { F . , kr9 4\ 73$4 0 ,.; . . . , 12�0 � 20 -� ,7 $i. �� ',/41$ we,cc PL-', — ' 35� s4 4s-z� ' zy #�Z 12-g W 37 r,-,QtiotF.4 ., S2 3 _CS, - 1.L. , CsW g Ili ; t .. . . . • OP 1S Project Bridgeport R1 ♦ �J Date 6/7/2004 Opus Architects&Engineers,Inc. By MGK Chicago,Minneapolis,Phoenix,Tampa,Washington D . Sheet of Required Design Data SDs = 0.75 Design spectral response acceleration at short period, Section 1615.1.3 Sol = 0.404 Design spectral response acceleration at 1-second period, Section 1615.1.3 S = D Soil Profile Type Seismic Use'Group I Seismic Design Category ',R Moment Frame System -Special Moment Frame R= 8.0 response modifciation factor, Table 1617.6 IE= 1.0 occupancy importance factor, Section 1616.2 Cd = 5 1/2 deflection amplification factor Equivalent Lateral Force Procedure V=CsW Cs= 0.094 SDS/(R/lE) Ta= 0.270 seconds Ta= CThnx CT= 0.028' x= 0.8 h = 170 n 0 feet Cu = 1.4 Table 1617.4.2 Tmax= 0.378 seconds Tmax= CuT5 T= 0.270 seconds T=Ta Cs max= 0.187 Cs max=Sol/RR/kin Cs min= 0.033 Cs min= 0.044SDSIE or 0.01 Cs= 0.094 V= 32 kips V= CsW Vertical Force Distribution of Seismic Forces k= 1.000 T<= 0.5 k= 1 T=> 2.5 k= 2 Wx hx wxhxk Cvx Fx Mo level kips ft k*ft2 kips k*ft Roof 337 17.00 5729 1.00 32 537 • 337 5729 32 537 Bridgeport Date and Time: 7/7/2003 11:12:10 AM • MCE Ground Motion - Conterminous 48 States • Zip Code - 97062 Central Latitude = 45.369403 Central Longitude = -122.759583 Period MCE Sa (sec) (%g) 0.2 104.5 MCE Value of Ss, Site Class B 1.0 036.3 MCE Value of S1, Site Class B Spectral Parameters for Site Class D 0.2 c ,112.9 = FaSs, Fa = 1.08 1.0 S :060.6 sa = FvS1, Fv = 1.67 Spectrumor.Site Class D Period MCE Sa (sec) (%g) 0.000 045.2 T = 0.0, Sa = 0.4FaSs 0.107 112.9 T = To, Sa = FaSs 0.200 112.9 T = 0.2, Sa = FaSs 0.537 112.9 T = Ts, Sa = FaSs 0.600 101.1 0.700 086.6 0.800 075.8 0.900 067.4 1.000 060.6 T = 1.0, Sa = FvS1 1.100 055.1 1.200 050.5 1.300 046.6 1.400 043.3 1.500 040.4 1.600 037.9 Z Srn 2/50. /27) z= S 1.700 035.7 SPS z /3 s (� 1.800 033.7 1.900 031.9 Sol Z 2/ Sm, % 2/5 ( 0-0o(o) z o.4-611' 2.000 030.3 110 4 Period,sec MCE Sa,g 0.00 0.452 Maximum Considered Earthquake Ground Motion 0.11 1.129 Site Class D Fa = 1.08 Fv = 1.67 III Zip Code=97062 0.20 1.129 Central Lat. =45.369403 deg Central Long. =-122.759583 deg 0.54 1.129 0.60 1.011 1.6 0.70 0.866 cm 1.4 0.80 0.758 CO 0.90 0.674 7 0 1.2 1.00 0.606 y 1.10 0.551 • 1a\ss4.. 1.20 0.505 ✓ 1.30 0.466 Q 0.8 11/ to 0.433 t 0.6 1.50 0.404 13.3 1.60 0.379 W0.4 1.70 0.357 1.80 0.337 0.2 1.90 0.319 0 2.00 0.303 0 0.5 1 1.5 2 Period,sec .' . • Opus Architects&Engineers,Inc. /, aRoad West OPUS Tm Minnetonka, Minnesota 55343 952-656-4444 Fax 952-656-4529 MOMENT FRAME DESIGN S • OPUS.. Project R r V Date_ -' -------- ------ ----- Opus Architects & Engineers By /16k- • Sheet 1 of Coro P2o)L $(C4 r pout SrzucTrAtA06c /AY 'Z , 4o Z. 4+Sc ?,y - az S-tv • ent60.n/cnr-I Con n�<{�.� Ic+2o C 44A- 350 Lie-COED Gtnt2E/A1 Fcnc -cg - GJGLJI;D r,JE' Co'J•J (t✓UF-W) EL c1,(-f 6Es}M t C cis a-4^•N W AAITAr:oeiS i- p Semrr;< 101.6 ,itis -fo6fc. c o r '3 b e_ . 3 o +50 ?q;?o-? -z-z. • MeIn..thSo-{— bet..,g •C1PxaLAwQ C hno ss;r-. 1�— 4 z .4 S- toths o-P- coC CLQ �y Lu+.....g E} a—� <,....r ,1, a++.6,:,.c� -Ft -.k. � �cc� Cu:, .0 Sse ''� -CD KA. ,as- h _� 3,i' .' 1 6_ 1. f a�,1 _ 2,SY 6/, 5 Ew Pr9/ -Fier PK 12c- I. L /'tl I 2'33— Pu _ 1'V9 f _ 35;5 Se cIk n s k.=1 wa,k< t t.J / "/fir.& 54 4 7,22 X �8t C3/ 68 7,/, 82-1 132 IYS ) /76 / /93 w /6 317 yo1 qA7j S01 `7 77i 2, / (00 GjIg 5 '7'o) 5'6 f Sa sc , Got 65 7 / 8 , W21 >e `-/"( 50 -7621" q3 zy x 5-5"/ 621 76 'o • • OPUS.. Project • _ Date "o Opus Architects & Engineers By M kr..- Sheet LSheet 2 of • q,6 r3Pc, c —4 —�= 7 I,D No F cA eck �-e Q� G�+Cci oc.[v24.4-4 hu%tpt/..5 1,49A s Z)TIV -.✓t kGt)cc'iCFIfs At LL 0fi ��fj,lt.vB.IP`� 4 ct O -f-/41*-*_ 064 et-4 -- GI�I,1<1 v"- Will (}C CL�.t �y( 01`t--• Ikk.. Witet' t 'may AM- 3 1111 G,�$ Gc IC�yQ g�2At<46 0 F 3F.A wit s -- C!..0'1" r (c- .c h 6rc�ed i�— ?� he re 6nF � = ,D86 P5 Es Reb•d• s or 3 , _ .O Z 6 E- S OPUS. Project Rl • Date bl-7/oar Opus Architects & Engineers By /1,4 c Sheet 3 of • i , �w"`� t 6.Rik 4, ,� A ,!_"� "'J�3:i 1. ^7 �' ._ - i .n_k. F e { Sp.C ,,,,......, 7.F �6 i x fn , Wo - 2.'k,_ ( 12 { �� j - /£- F. S � • r NU ales a^ c - (.©c.r� o.,.. c s.,(,,,L S. 11/z. d i __ 4/3 k i' S.72,k 31 t44----' 5v,®�e 1` $63,-- lc.-J- t13,7jr.4 - --c) �5 1 OPUS.. Project 6 i Date Opus Architects & Engineers By 6k" Sheet Y of • fi �3c�se 11_3 j. N�` M . r YJL 20) is Ft---1-74 - 1 I. �` t. c 3 85 !c tlrSE 1< �•• yiarl, 3,v6k 1 ` / ! '7 2a8°/ i p + ( ). 6 � ah # tee., s r t # 4 G� (a....,. 4 v P„ '2;0 ( 55'4-4 ,� �.� /.1.47/...;t ' 77 /e , y l�Gt ?fi (S?, s 1 �1 °!? t S YC i .....:._. .. co rc,..---- n'... V` . P, Z- '� ZOp {.. (i77, 177 Xt 2) 5�'z Z� -i (3:k_ /> C6 (id`s- =, I/cr [� Ctc`-", ^ i � � ` ass �f8`I�k�� — Yr( +, � `�(S ;. 'f t c_ =.. 7'5 c.‘,.., ( u-3` %i) — ��t�r(;') 0r 1' ` ., i. w, a ! OPUS. Project R Date 6 f/(o? Opus Architects & Engineers By fri6A Sheet S of • i L r el > t + Y "v .>, ".•••••2;z �j Ul+v�. 5, �4.U. i`!1 [. GAo���o.f P 1�,1" C ct l u„�,v`,![... "',.,...Yti^°'""" �+'"°',•!^ - x.._..i.�....__..t }S1. /+ Z..3 i '�cotrl�[' J"JY i, d[ 7— 20 I / / l^ i,�c', 35.. 4l�#.< r-Q.✓. .L03 1 Et I7r 71 1_ o � ,t`k G 5 $ g 0 - _,rte p , 1 4 . <.. _._ _. , _ .._ .-.,. _„ __. .,... ,, _ i r • Y 0 4 VisualAnalysis(version 4.00)- West Mom Frame, Mon Jun 07 15:53:37 2004 6 Opus Architects& Engineers, Inc., Matthew Kahle, Bridgeport R1 Seismic • III N2 W16x40 N4 W16x40 N6 W16x40 N8 19.300 K =i» R theta=0 � theta=0 � theta=0 • co 0 co 0 co 0 CO 0 X_ co v� �° XVn XIcult FL's)v .r v a� . ,C a� ,L� rC m ..act ,r 3 lis 3 g4t7 LA-i N-- ot,';,a o c.,.,. — , 0 15 z 1 6 S,7 y 6Si?, - Co, z cx V oc , -t 43,YE �- — ,602-(32)= lcr.2, K. S Y .)., 0L-s ✓le. . D, , 2 t '" Z__4(1. -co Ok- va = oz.s hSgc. 4 0-xc ( I7 ) (‘'-<-) a3 ,( cd_ Sis— III VisualAnalysis (version 4.00) - East Mom Frame, Mon Jun 07 15:54:01 2004 r Opus Architects & Engineers, Inc., Matthew Kahle, Bridgeport R1 • Seismic • } W16x40 W16x40 NZ RM1 N4 RM2 N6 12.700 K >41 theta=0 theta=0 °o o 00 o 00 o XN-- II V. \ II 'cr. II al Xal X 03 C . Cw 1 4134t5 u w;�- lam- ...ti.. = o 2 f 'i 3.4 ' o 3 --- - i 3.L(8 = 3`J� i \I ,uz- 234 F ‘s01 (39? (3 Z) = l z•7 k.. • !'►'\o-k, o{, lc , =d,-.,.6 = 0 22 " L &,,, , a lc �0. _ _ c.), 'x.5- ks-k. .c7...c_,�...(I,) (r.-i'3 I, C.,,,_` l I 0 VisualAnalysis (version 4.00)- North Mom Frame, Mon Jun 07 15:54:20 2004 `Z Opus Architects & Engineers, Inc., Matthew Kahle, Bridgeport R1 Seismic • W16x40 W16x40 W16x40 16 K ]+N2 RM1 •N4 RM9 .N6 RM1 $ • theta=0 theta=0 theta=0 co o coco 0oo NJ- a NI-c\ ii o er cr i v v o xxco x cu x co LL Lw •�Cm �Ca� v _Iql___2( --11c140 -AV -4i7 �( K �- d.i,L��A - .oICo 5v , .�, �Oec�c h Carr.fS ZU = /G `..., }f,,,c,-/o , r7 `( 7 0c, = ,93" 56 ak- . 0 VisualAnalysis (version 4.00) - South Mom Frame, Mon Jun 07 15:54:24 2004 t Opus Architects & Engineers, Inc., Matthew Kahle, Bridgeport R1 , Seismic Ili W 16x,40 W16x40 W16x40 16 K >+N2 RM1 •N4 RM9 �N6 RMA 8 • theta=0 theta=0 theta=0 como �� o coV'cr, II o do II X f6 46 �X_ coii; X «° v— CuC 1 AV 415 7 of g) ltitr,r M" s J e_Cc(�, co,,r,.0.0 %. V — /6 lc h^e^-,x, I L.. • OPUSProject Bridgeport R1 •VV .7 Date 6/7/2004 By MGK •` Opus Architects & Engineers, Inc. Sheet ► o of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. This spreadsheet calculates the interaction equation for compact I-shaped members with combined axial &flexural forces, using AISC-LRFD latest edition. DESCRIPTION - Moment Frame Column Design Filename: axl-flex.XLS Worst Case East Mom Grid G-5 By: DCP APPLIED FORCES(ultimate) Pu= 19 kips required axial strength Mux= 67 ft*kips required moment capacity May= 0 ft*kips required moment capacity Cb= 1 use equation (F1-3) or conservatively Cb= 1.0 UNBRACED LENGTHS Lx= 17 ft Kx= 1 KLx= 17 ft Ly= 17 ft Ky= 1 KL = 17 ft LZ= 17 ft KZ= 1 KLZ= 17 ft where Kx= effective length factor for the x-axis Ky= effective length factor for the y-axis KZ= effective length factor for torsional buckling Lb= 17 ft distance between points braced against lateral displacement of the compression flange. BEAM= W14X48 Interaction Equation = 0.33 BEAM PROPERITIES: Xaxis Yaxis = 484 51.4 in4 moment of inertia S= 70.2 12.8 in3 section modulus r= 5.85 1.91 in radius of gyration Z= 78.4 19.6 in3 plastic section modulus A= 14.1 in2 gross area J = 1.45 in4 torsional constant CW= 2240 in' warping constant Xi= 2580 ksi Xt =n/Sx(EGJA/2)o.s X2x106= 3250 (1/ksi)` X2 =4Cw/Iy(Sx/GJ)2 Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity G = 11600 ksi 410 4 OPUS. Project Bridgeport R1 OPUS. Date 6/7/2004 ByMGK • Opus Architects& Engineers, Inc. Sheet t t of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. FLEXURAL DESIGN STRENGTH: bf/24= 6.75 < Xp=Table B5.1 = 9.15 flange is compact h/t,= 33.6 < Xp=Table B5.1 = 83 web is compact Major Axis Bending: Lp= 81 in Lp= 1.76ry(E/Fy)05 (F1-4) Lr= 230 in Lr= ryX1/(Fy-Fr)*(1+(1+X2*(Fy Fr)2)°.$)o.s (F1-6) Mp= 327 ft*kips Mp= FyZx<= 1.5FySx (F1-1) Mr= 234 ft*kips Mr= (Fy-Fr)Sx (F1-7) 43Mnx= 225 ft*kips Lp< Lb< Lr if Lb< Lp cM„=obMp (F1-1) if Lp< Lb< Lr OM„= Cb(Mp(MpMr)*(Lb-Lr)/(Lr Lp)) <_ (13Mp (F1-2) • if Lb> Lr cIMr,=cICbSxXi(2)o.5/(Lb/ry)*(1+X12X2/2/(Lb/ry)2)°5 (F1-13) Minor Axis Bending: Mp= 80 ft*kips Mp= FyZy<= 1.5FySy 4:13b= 0.9 (1)Mny= 72 ft*kips • OPUSProject Bridgeport R1 • Date 6/7/2004 By MGK • Opus Architects& Engineers, Inc. Sheet 12. of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. AXIAL COMPRESSIVE STRENGTH: bc/24= 6.8 < =Table B5.1 = 13.49 flange is compact h/tH,= 33.6 < =Table B5.1 = 134 web is compact KUrx= 35 KUry= 107 Chapter E = 1.41 X,c= KUrmax(Fy/E7t2)o.s (E2-4) Fcr= 21.71 ksi X.<= 1.5 OF, = (0.6581c"2)Fy (E2-2) X.> 1.5 OF, = (0.877/Xc2)Fy (E2-3) Fy/2 = 25 ksi ok Appendix E-E.3 Design Compressive Strength for Flexural-Torsional Buckling Fe= 60.19 ksi Fe= [7t2EC,,,,/(KZI)2+GJ]/(Ix+Iy) (A-E3-5) • ae= 0.91 (Fy/Fe)os (A-E3-4) Fcr= 35.32 ksi Xe <= 1.5 OF, = (0.6582`e"2)Fy (A-E3-2) Xe> 1.5 OF, = (0.877/X.e2)Fy (A-E3-3) cDc= 0.85 OP„ = 260 kips (DR,, = OFcAg Fcr per chapter E (E2-1) INTERACTION EQUATION: Pu/ctPn= 0.07 <0.2 Me/cDMnx= 0.30 MJ/OMny= 0.00 if Pu/OP„_> 0.2 Puic)?Pn + 8/9(MunMn) = (H1-1a) if Pu/cIMP„ < 0.2 Pu/2(DPn + Mu/cDMn= 0.33 o.k. (H1-1b) • 0 OPUS. Project Bridgeport R1 OPUS. Date 6/7/2004 By MGK io Opus Architects&Engineers, Inc. Sheet of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. This spreadsheet calculates the interaction equation for compact I-shaped members with combined axial &flexural forces, using AISC-LRFD latest edition. DESCRIPTION - Moment Frame Beam Design Filename: axl-flex.XLS Worst Case East Mom By: DCP APPLIED FORCES (ultimate) Pu= 6 kips required axial strength Mux= 117 ft*kips required moment capacity Muy= 0 ft*kips required moment capacity Cb= 1use equation (F1-3)or conservatively Cb= 1.0 UNBRACED LENGTHS Lx= 24 ft Kx= 1 KLx= 24 ft Ly= 6 ft Ky= 1 KL = 6 ft LZ= 24 ft KZ= 1 KL,= 24 ft where Kx= effective length factor for the x-axis Ky= effective length factor for the y-axis KZ= effective length factor for torsional buckling • Lb= 6 ft distance between points braced against lateral displacement of the compression flange. BEAM= W16X40 Interaction Equation = 0.45 BEAM PROPERITIES: Xaxis Yaxis = 518 28.9 in4 moment of inertia S= 64.7 8.25 in3 section modulus r= 6.63 1.57 in radius of gyration Z= 73 12.7 in3 plastic section modulus A= 11.8 in2 gross area J = 0.794 in4 torsional constant C = 1740 111° warping constant W X�= 1890 ksi X, =i/Sx(EGJA/2)6.6 X2x106= 12700 (1/ksi)` X2=4C,,,,/ly(Sx/GJ)2 Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity G = 11600 ksi • OPUS Project Bridgeport R1 v • Date 6/7/2004 By MGK Opus Architects& Engineers, Inc. Sheet Y of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. FLEXURAL DESIGN STRENGTH: bfl2tf= 6.93 < X =Table 65.1 = 9.15 flange is compact h/t,,,,= 46.5 < Xp=Table B5.1 = 88 web is compact Major Axis Bending: Lp= 67 in Lp= 1.76ry(E/Fy)o.5 (F1-4) Lr= 176 in ryX1/(Fy-Fr)*(1+(1+X2*(Fy-Fr)2)o.5)0.5 (F1-6) Mp= 304 ft*kips Mp= FyZx<= 1.5FySx (F1-1) Mr= 216 ft*kips Mr_ (Fy-Fr)Sx (F1-7) Mn = 270 ft*kips Lp < Lb < Lr if Lb< Lp OK=d1.Mp (F1-1) if Lp< Lb< Lr =OCb(Mp(MP Mr)*(Lb-Lr)/(Lr Lp)) <_€13Mp (F1-2) if Lb> Lr =(13CbSXXl(2)o.5/(Lbiry)*(1+X12X2/2/(Lb/ry)2)o.5 (F1-13) Minor Axis Bending: Mp= 52 ft*kips Mp= FyZy<= 1.5FySy 0b= 09 OMny= 46 ft*kips 4110 OPI tCProject Bridgeport R1 • V J Date 6/7/2004 By MGK • Opus Architects & Engineers, Inc. Sheet i S of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. AXIAL COMPRESSIVE STRENGTH: bf/2tf= 6.9 < =Table B5.1 = 13.49 flange is compact hit,= 46.5 < 7k=Table B5.1 = 136 web is compact KUrx= 43 KUry= 46 Chapter E Xc= 0.61 KUrmax(Fy/Eit2)os (E2-4) F .= 42.87 ksi <= 1.5 OF, = (0.6582`c^2)Fy (E2-2) a.e> 1.5 OF, = (0.877/X2)Fy (E2-3) Fy/2= 25 ksi Fcr>Fy/2, see Appendix E Appendix E-E.3 Design Compressive Strength for Flexural-Torsional Buckling Fe= 27.82 ksi Fe= [lt2EC,,,,/(KZI)2+GJ]/(Ix+Iy) (A-E3-5) • Xe= 1.34 Xe= (Fr/Fe)" (A-E3-4) Fa= 23.57 ksi Xe <= 1.5 OF, = (0.658'`e"2)Fy (A-E3-2) Xe> 1.5 4:1F, _ (0.877/iXe2)Fy (A-E3-3) croe= 0.85 (13P„= 236 kips (1)Pn = OF,Ag Fcr per Appendix E (E2-1) INTERACTION EQUATION: PAPn = 0.03 <0.2 Mu/OMnx= 0.43 Mu/ Mny= 0.00 if Puft Pn_> 0.2 PunPn + 8/9(Mu/'Mn) = (H1-1a) if Pu/013Pn < 0.2 Pu/2cPn + Mu/013Mn= 0.45 o.k. (H1-1b) S Project 0 opus - Date 6 Opus Architects & Engineers • By n't 6 k Sheet 1C of 0 , x • isQl-1 0 E-16 1,110 126 iaJF-ric-.6:V R 0 le_ ---AAS.1.4 1 FA.2 WE A 6114F-140 114-4)11tFoir 60.1.1) Z Tro Gi.myrr --,,z, • ce.,,e..,,r3L. .., Arpit,,,,6(e: .s.- k...,_ ----- sA r- 0 ic.,.. ot,/ t. 14 / ,C1/ Q, 04 /0 4 sive," ...., ,.. •. -, - -.T.---- . ' co ., ',A." Pc't.,..,.' .. , , . /,,, ,, . z :. ( 10 -1,z--, ,... ' 2' .... .S..0"--,re ,24 106 -cr. L 0_4- ca0‘.-,4----rryvt. • -,,,,tf, ot. /tk 'to 1e,r c,.... Qc..!,k Si,AL 04- CO 11.4.rK: cA)-e,6 C4+ ... _„., , .._ ,L ,, 'ID' it; 0,—..k d-o-t-frr".._• :Fic----.;e_ toc-res6-Xr Ott- 1,,-r::-.- i At A-M-'' _ ' ' , , . _ ' ,• / Lo.e„,trAs ,kte cx,..0,,--j • c--411, .. .44(4, , (Airtdc 40 : . . , keciimaic.:6 7-6' rAt, 60J E C.,e9 Sp"? ./ .'46774- ricr, (0 ArriA/04 i ri PIA-Tic 6 .•(-- / riS 4 L (....4.-•.% (.--.. r- '/,1 4,1-'- ‘ --. 1-3 A i -- 3( L E kst, 4_ .f- - d -- 2, Ek -4 C4-, pla --- ,co • fw,-- kw., -r,y oto ..:',- /;,f , 1-.4%.e.4- -:---. f 41 l!-. 0 , kzc-, 4 I/ ' , is..,„.,i.--k '--- 1 i ic,_ . , . ' . . --, so 6OPUS Project Bridgeport Kt Date 6/7/2004 By MGK • Opus Architects&Engineers Sheet / ) of DESIGN OF A WELDED UNREI,NFORCED FLANGE-WELDED WEB CONNECTION USING FEMA 350. DESCRIPTION- W EST Adto,A/t FiL41+t.4 C Filename: connection design.xls 2 '' ' E4' . By: MGK Column Properties Beam Properties size= W14x48 size=W16x40 = 13.79 in column depth L=-........18.17 ft beam length t,= 0.340 in thickness web db= 16.01 in depth of beam tf= 0.595 in thickness of flange t,= 0.305 in thickness of web bf= 6.995 in width of flange h= 17 ft avg story height above&below tf= 0.505 in thickness of flange Fy= 50 ksi yield stress S.= 64.7 in"3 elastic section modulus F„= 65 ksi ultimate stress Zx= 72.9 in"3 plastic section modulus Ry= 1.1: Table I-6-1 Seismic Provisions wgt= 0.040 k/ft beam self weight E= 29000 ksi modulus of elasticity Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft diet=::::41.17 ft distance to adjacent beam on left d,;ght= 1 ft distance to adjacent beam on right W bb= 21.09 ft tributary width service L.F. ultimate DL= 0.46 k/ft - "1 2 =:: = 0.55 k/ft • LL= 0.53 k/ft * 1 6 = 0.84 k/ft W= 0.99 k/ft Wu= 1.40 k/ft Step 1:Calculate Mpr,at Hinge Location sh-Section 3.2.4 sh= 14.9 in dc/2+4/2 Cp.= 1.2 conservatively 1.2 or(Fy+Fu)/(2*Fy)= 1.15 Ma= 401 k*in Cpr*Ry'Zbe*Fy Step 2:Calculate Vp,at Hinge Location sh-Section 3.2.5 L'= 15.7 ft L-2'sh/12 Vp= 58.9 k (Mpr+Mpr+PL'/2+wL'2/2)/L' Step 3:Calculate Mc and Cy-Sections 3.2.6&3.2.7 M�= 474 k'ft Mpr+Vp'sh Cy= 0.740 1/(Cpr*Zi/Sb) Step 4:Calculate Required Panel Zone Thickness-Section 3.3.3.2 tfec d= 0.611 in > twc= 0.340 in N.G.-Doubler Plate Req'd tregd= Cy*Mc*(h-db)/h tdp> 0.271 in. Min Doubler Plate Thickness .9*.6*Fyc*Ryc*dc*(db-tfb) Step 5:Continuity Plates Requirements-Section 3.3.3.1 tcfread= 1.17 in > tfc= 0.595 in N.G.-Continuity Plates Req'd For One-Sided(Exterior)Connections,tcp> 0.253 in tep>ttb/2 For Two-Sided(Interior)Connections,t r> 0.505 in tep>ttb Following Sec K1.9 of LRFD Spec.: • Width of Stiffener> 2.16 in wap>b1b/3-t J2 Thickness of Stiffener> 0.520 in tcp>max(tfb/2 or b,b'1.79*sgrt(Fy/E) 0 OPUSProject Bridgeport . nl o OPUS Date 6/7/2004 By MGK • Opus Architects&Engineers Sheet /2 of DESIGN OF A WELDED UNREINFORCED FLANGE-WELDED WEB CONNECTION USING FEMA 350. DESCRIPTION- U fi M ' Filename: connection design.xls /0 ' Zai ( 4„M By: MGK Column Properties Beam Properties size= W14x48 size= W16x40 do= 13.79 in column depth L= 10.17 ft beam length t = 0.340 in thickness web db= 16.01 in depth of beam tf= 0.595 in thickness of flange tw,= 0.305 in thickness of web bf= 6.995 in width of flange • h= 17 ft avg story height above&below tr= 0.505 in thickness of flange Fy=" 50 ksi yield stress SX= 64.7 in"3 elastic section modulus F„=::::::::::65 ksi ultimate stress Zx= 72.9 inA3 plastic section modulus Ry= 1,1 Table 1-6-1 Seismic Provisions wgt= 0.040 k/ft beam self weight E=:::29000 ksi modulus of elasticity Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0:00 k/ft diet=:::•41.17 ft distance to adjacent beam on left d,;ghf= 1 ft distance to adjacent beam on right W bib= 21.09 ft tributary width service L.F. ultimate DL= 0.46 k/ft * 1.2..,._ = 0.55 k/ft LL= 0.53 k/ft * 15 = 0.84 k/ft W= 0.99 k/ft W„= 1.40 k/ft Step 1:Calculate Mpr,at Hinge Location sh-Section 3.2.4 sh= 14.9 in dc/2+db/2 Cpr= 1.2 conservatively 1.2 or(Fy+Fu)/(2`Fy)= 1.15 Mpr= 401 k*in Cpr*Ry`Zbe*Fy Step 2:Calculate Vp,at Hinge Location sh-Section 3.2.5 L'= 7.7 ft L-2*sh/12 Vp= 108.1 k (Mpr+Mpr+PL'/2+wL'2/2)/L' Step 3:Calculate Mc and Cy-Sections 3.2.6&3.2.7 Mc= 535 k*ft Mpr+Vp*sh Cy= 0.740 1/(Cpr*Zb/Sb) Step 4:Calculate Required Panel Zone Thickness-Section 3.3.3.2 treq'd= 0.689 in > twc= 0.340 in N.G.-Doubler Plate Req'd treq'd= Cy`Mc*(h-db)/h tdp> 0.349 in. Min Doubler Plate Thickness .9*.6*Fyc*Ryc*dc*(db-tfb) Step 5:Continuity Plates Requirements-Section 3.3.3.1 terreq'd= 1.17 in > tfc= 0.595 in N.G.-Continuity Plates Req'd For One-Sided(Exterior)Connections,top> 0.253 in tcp>tpb/2 For Two-Sided(Interior)Connections,tut:,> 0.505 in tep>tib Following Sec K1.9 of LRFD Spec.: • Width of Stiffener> 2.16 in 0.520wep>b1,/3- Thickness of Stiffener> in tip>max(4)2 or b1b*1.79*sqrt(Fy/E) oOPUS Project Bridgeport A‘ OPUS.J Date 6/7/2004 By MGK Opus Architects&Engineers Sheet of DESIGN OF A WELDED UNREINFORCED FLANGE-WELDED WEB CONNECTION USING FEMA 350. N 'r -6 Si 4W Atom F!4-A4.E DESCRIPTION- Filename: connection design.xls /t{ '& " f ifs+.. By: MGK Column Properties Beam Properties size= W14x48 size= W16x40 d�= 13.79 in column depth L=. 14:67 ft beam length tN,= 0.340 in thickness web db= 16.01 in depth of beam tr= 0.595 in thickness of flange tW= 0.305 in thickness of web bf= 6.995 in width of flange h= 17 ft avg story height above&below t1= 0.505 in thickness of flange Fy= 50 ksi yield stress Sx= 64.7 in"3 elastic section modulus F„= 65 ksi ultimate stress ZX= 72.9 in^3 plastic section modulus Ry= 11 Table 1-6-1 Seismic Provisions wgt= 0.040 k/ft beam self weight E=::125000 ksi modulus of elasticity Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0:00 k/ft diet= 4 ft distance to adjacent beam on left dnghr= 1 ft distance to adjacent beam on right W bib= 2.50 ft tributary width service L.F. ultimate DL= 0.09 k/ft * 1.2 = 0.11 k/ft LL= 0.06 k/ft * 1.6 = 0.10 k/ft W= 0.15 k/ft W„= 0.21 k/ft Step 1:Calculate Mpr,at Hinge Location sh-Section 3.2.4 sh= 14.9 in dc/2+4/2 Cp,= 1.2 conservatively 1.2 or(Fy+Fu)/(2*Fy)= 1.15 Mix.= 401 k*in Cpr*Ry*Zbe*Fy Step 2:Calculate Vp,at Hinge Location sh-Section 3.2.5 L'= 12.2 ft L-2*sh/12 V,= 66.7 k (Mp,+MF+PL'/2+wL'2/2)/L' Step 3:Calculate Mc and Cy-Sections 3.2.6&3.2.7 Me= 484 k*ft Mpr+Vp*sh Cy= 0.740 1/(Cpr*Zb/Sb) Step 4:Calculate Required Panel Zone Thickness-Section 3.3.3.2 • tregd= 0.623 in > twc= 0.340 in N.G.-Doubler Plate Req'd trega= Cy*Mc*(h-db)/h tdp> 0.283 in. Min Doubler Plate Thickness .9*.6*Fyc*Ryc*dc*(db-tfb) Step 5:Continuity Plates Requirements-Section 3.3.3.1 tef req•d= 1.17 in > tfc= 0.595 in N.G.-Continuity Plates Req'd For One-Sided(Exterior)Connections,t„,> 0.253 in t. >t,/2 For Two-Sided(Interior)Connections,tep> 0.505 in t=p>tfb Following Sec K1.9 of LRFD Spec.: • Width of Stiffener> 2.16 in ww>bq,/3-t„„/2 Thickness of Stiffener> 0.520 in tbp>max(412 or be*1.79*sgrt(Fy/E) grJ OPUS Project Bridgeport 2 Date 6/7/2004 By MGK • Opus Architects&Engineers Sheet '2.0 of DESIGN OF A WELDED UNREINFORCED FLANGE-WELDED WEB CONNECTION USING FEMA 350. DESCRIPTION- 'J T F4,4 Filename: connection design.xls �tt T4. 4e,4,....„ By: MGK Column Properties Beam Properties size=W14x48 size= W16x40 dfi= 13.79 in column depth L= 24 ft beam length t,,,= 0.340 in thickness web db= 1601 in depth of beam tf= 0.595 in thickness of flange t,,,= 0.305 in thickness of web br= 6.995 in width of flange h= 17 ft avg story height above&below 1r= 0.505 in thickness of flange Fy= 50 ksi yield stress Sx= 64.7 inA3 elastic section modulus F„= 65 ksi ultimate stress Zx= 72.9 inA3 plastic section modulus Ry= ... : 1.1 Table 1-6-1 Seismic Provisions wgt= 0.040 k/ft beam self weight E_'::29000 ksi modulus of elasticity Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft die=::::44:67 ft distance to adjacent beam on left da9h,_ :::::::: 1 ft distance to adjacent beam on right W bib= 22.84 ft tributary width service L.F. ultimate DL= 0.50 k/ft 1,2..... 0.60 k/ft LL= 0.57 k/ft * 1 6 = 0.91 k/ft W= 1.07 k/ft W„= 1.51 k/ft Step 1:Calculate Mpr,at Hinge Location sh-Section 3.2.4 sh= 14.9 in dfi/2+db/2 Cpr= 1.2 conservatively 1.2 or(Fy+Fu)/(2*Fy)= 1.15 Mpr= 401 k*in Cp*Ry*Zbe*Fy Step 2:Calculate Vp,at Hinge Location sh-Section 3.2.5 L'= 21.5 ft L-2*sh/12 Vp= 48.8 k (Mpr+Mpr+PL'/2+wL'2/2)/L' Step 3:Calculate Mc and Cy-Sections 3.2.6&3.2.7 M�= 461 k*ft Mpr+Vp*sh Cy= 0.740 1/(Cpr*Zb/Sb) Step 4:Calculate Required Panel Zone Thickness-Section 3.3.3.2 treq'a= 0.594 in > twc= 0.340 in N.G.-Doubler Plate Req'd tread= Cy*Mc*(h-db)/h tdp> 0.254 in. Min Doubler Plate Thickness .9*.6*Fyc*Ryc*dc*(db-tfb) Step 5:Continuity Plates Requirements-Section 3.3.3.1 tcrregd= 1.17 in > tfc= 0.595 in N.G.-Continuity Plates Req'd For One-Sided(Exterior)Connections,tfi > 0.253 in tep>40/2 For Two-Sided(Interior)Connections,tx,> 0.505 in tip>t1b Following Sec K1.9 of LRFD Spec.: Width of Stiffener> 2.16 in wep>b�b/3 Thickness of Stiffener> 0.520 in tep>max(tfl,/2 or bn,*1.79*sqrt(Fy/E) OPUS Project Bridgeport Ql Date 6/7/2004 By MGK • Opus Architects&Engineers Sheet 2 / of DESIGN OF A WELDED UNREINFORCED FLANGE-WELDED WEB CONNECTION USING FEMA 350. DESCRIPTION- 6,06C51.—1 fkD -/ Filename: connection design.xls 7Z r 4F* By: MGK Column Properties Beam Properties size= W14x48 size=W16x40 du= 13.79 in column depth L= 2267 ft beam length tw= 0.340 in thickness web db= 1601 in depth of beam tf= 0.595 in thickness of flange t, = 0.305 in thickness of web bf= 6.995 in width of flange h= 17 ft avg story height above&below tf= 0.505 in thickness of flange Fy= 50 ksi yield stress Sx= 64.7 inA3 elastic section modulus F„= 65 ksi ultimate stress Zx= 72.9 inA3 plastic section modulus Ry= 1.1 Table 1-6-1 Seismic Provisions wgt= 0.040 k/ft beam self weight E=:::29000 ksi modulus of elasticity Load Additional Uniform Load .................... DL= 20 PSF 0:00 k/ft .................... LL= 25 PSF 0 00 k/ft dot= ::44.67 ft distance to adjacent beam on left ddg,t=.......32 ft distance to adjacent beam on right W trib= 38.34 ft tributary width service L.F. ultimate DL= 0.81 k/ft * 12 = 0.97 k/ft • LL= 0.96 k/ft 1 6 = 1.53 k/ft W= 1.77 k/ft W„= 2.50 k/ft Step 1:Calculate Mpr,at Hinge Location sh-Section 3.2.4 sh= 14.9 in de/2+4/2 Cr,= 1.2 conservatively 1.2 or(Fy+Fu)/(2*Fy)= 1.15 Mpr= 401 k*in Cpr*Ry*Zhe*Fy Step 2:Calculate Vp,at Hinge Location sh-Section 3.2.5 L'= 20.2 ft L-2*sh/12 Vp= 57.5 k (Mpr+Mpr+PL'/2+wL'2/2)/L' Step 3:Calculate Mc and Cy-Sections 3.2.6&3.2.7 Mc= 472 k*ft Mp,+Vp*sh Cy= 0.740 1/(Cp,*Z4/Sb) Step 4:Calculate Required Panel Zone Thickness-Section 3.3.3.2 treq.d= 0.608 in > twc= - 0.340 in N.G.-Doubler Plate Req'd treq'd= Cy*Mc*(h-db)/h tdp> 0.268 in. Min Doubler Plate Thickness .9*.6*Fyc*Ryc*dc*(db-ttb) Step 5:Continuity Plates Requirements-Section 3.3.3.1 tcfregd= 1.17 in > tfc= 0.595 in N.G.-Continuity Plates Req'd For One-Sided(Exterior)Connections,tup> 0.253 in top>t112 For Two-Sided(Interior)Connections,tup> 0.505 in top>tro • Following Sec K1.9 of LRFD Spec.: Width of Stiffener> 2.16 in wep>4/3-tW�/2 Thickness of Stiffener> 0.520 in tep>max(1112 or b1b*1.79*sqrt(Fy/E) 0PUS. Project &1 i.)Z-2--- Date 6("7/o Opus Architects & Engineers By MGA. Sheet 2-1_ of • ,;.._ . l-4teA-C.. /de-Arc PA/G 0 Mow. .Al "" - FPA-.i4 A ,4141- s '...j,-e..,..1,,0,,,V., nr{'. 1 aR.,...5.. 9r. V rwr c, G 0/4,..K jr jr If 57 _, _ . . .b• = 6, f95-4' - Sus- f, _.. .. .. .; ff s , o : ._4013 : / 6 ',,-•-c,,,,, • Project Z- 0 opus n, Date 6/7 63 Opus Architects & Engineers . By AA 6 le--- Sheet 2-3 of IIPAi, 1.------ 6 P 624,7:0••• ' • , - "Tg y 3,* 3, ,'', x Pl4k, A? = i, 125- v1/4 --r- --,---- .. ' •/oT ' V — / .. . ..•-- --- ,i 5-6 i r ---- )5-(2.7 > f•e- so 34--- i 03R 4 1‘5- r ft j 2-20o0 . . -22,,' 5) , •-=',„p 04.51. p-,7---_, vc--- (i o i s-j (-4-2_ .5) ---—,2_1 ,9 k.._ 5- k ''.> , , , k `i-- 1- 0 \ ( 3 6,5- (e.._ Ok ---,- , , I. , pc34, y"I • • -/ V /4 , , • • , PL. 3,4' ?< I " ef it r 1 y r i,,,, 46 ' 2."" ' , 5 . e OPUS Project U i J Z Date 6 J2.7/oy Opus Architects & Engineers By '44k_ Sheet --2-Lr of • CO Lu MA/ K F6 C1-f. Gfe5..... � .. � ... _ ..�_ .. �.w .,���`5/ _ ✓J�*.y,-use,,w� ,�; 1 .3 ti, , h - usi�u T '/r 44- ?a t P --- ,°,- 5 70s--- pc_ ., ` OES_., c• G,A-c- 'ga.Gl lei 6 --. rt (c c ? - It If ,. /19= fig aR l �... A,,,.,' ,,. W/d !ge,„.'.t 0 ° k hs tt ( 2sk dk e IN)e-6 Cis/Pat rnvG ,?S”" . A-r s c S e<... k /.zfw e , V /`N ,/ 1..� • ` i(tZ G. ) z a ( ..3 tial k 1 opus,.ni Ic Project f/ 2 Z Date 4/-2-`1 j°z✓ Opus Architects & Engineers By 714-e-4-- Sheet 14e- Sheet .Q-5 of • i. J A i ►��, r ( t C.3 � `'2. -,200 cam) qY 42 F ! _''g .T_, . _ buff- ,. J'�ice,... ,5 .� o� C +.. ,,�3 � �, owF F�lr�? _ 4 i z z t V 5 6 PA-A 4" t Pik - 1,2(TO) ( 1zt41) —r-. i / 6_, tri } �S -?,S k.... k PS 7v5k 4 o, ,.,; E .. , ; , " , , , so ;piej. ---1 , 4 6 4c. kw i ! ! i _ ...a 6) t ) t, .( 3vz /2-7 t-7 Lk! o • } , d •- y } Opus Architects&Engineers,Inc. • 10350 opus 10350 Bren Road West Minnetonka,Minnesota 55343 952-656-4444 Fax 952-656-4529 DIAPHRAGM DESIGN & COLLECTOR ELEMENTS 411 • S OPUS. Project R 1 0 Date 6/g JO ty Opus Architects & Engineers . By M 0.er.- Sheet • ) of 0 . . , , . , - . . , . , . , . . . . , . . , . . _21L,k eA . . : F. - , 2- '5 zr- i,..) .•,- z -7,---7)' /it 0-‘ , /c . . . _ F :-.---- ft- -(.3 3 7 itz-) •.7.-- '4-0 6 ic.: ' , . ' . . 1..6.)1r.--...".17.C.-' ._ ',..1---"Fs":,‘' c.,...i. a, op..1.frrck '' -f-,?.; d f cA.L, ,_ .c4.0-,,,,,'".t. . f...4.,,lf . ,,,,,,,-,t .. • _, 1 (- k:..._... ,c' ....1.. e'".....:: 6,,tLA:tr..,,. . , .. ; , Te; C-45,^7.30,..,--e, +0: r2.'f " 5_44,,..„ va tor-Z.2: go..,:' ;.,l',IN '1-L A,..... )''•.-t., .SC, .',. . ,._ .' . . _ ' , , .,„• , j j . . . ; ' , ' . 'd-e-CA ' 1•:''t ' '" V44 ' 7 ' I 2gH4, ' '•- 'cc-1., , i 40' - — - f4; I'SI , r . • ' . . ,_ - • , . . : , . . ; . . : ' . , • . . 0 . . . Project e ! 0 opus,. Date . Opus Architects & Engineers • By At 6es., Sheet -.--1.' of OcL 0 . , . . , . , . . , ., . . .. . . . ) EC . . , . . fiCort! , . . . , ' . ---------------•-------- . , . , _ . AA. : . , ' ; r --51Ic P- '; rAsr ;.- 0 . ; . . , . , . . . , . . . . , )6 0 ,r-4- , . ' r ,., ' NO ki-M-' 501.4-4_ ' ". -, ' ' . • . Id.,5- ILO r.._ ,3 2, -/.p'1,_ .,.:.... — O. , . . , ' 60S-t.1. c,•• Str-ff."4 SI I U 6C r, CAker,tS : . . . . . . . Cc ' . , :V:_.,---• ' -2-9,5-:K-- ..1- ' S"' e Ave.( i6, t- - '' ,44'7- l,e= '4._ ' L.)/ ' 6./''''•?. eek,e4tH 4,c,<_,. F6-54.e.,,e,,,,4 044-61,1: ',..e , . , z.--....„ . . .. . . . . 0 ! opus. Project Date 6/3/04y Opus Architects & Engineers By f k-- Sheet • of • p` 4 1 1 2'Lk,. V.'-' _ 6'Sk ',I5- [ 22- — 1-67ptF -zzk /S`as /; 1it.17.c4- gz, s !ys (e,5 i '.2 _•,--.. v 22 36 ,._ pne-4-A t"'< G�-t� ' j s c ' ; c.? � c r t� �. 0 3 z , • opus Project (Z I . Date 6/4/45 y Opus Architects & Engineers . By A 6 k Sheet ti of 0 . , . - : .,-- , k ' i A P i a H 4-6 IA r DI a e- '.1. 1 ' . • L(.. 7- it.4 C . , , . 1,1)F...t-r- /40,4 0t p171 1,,c ' 1., , Gy3 .= W z-q e' e , . . , &ice :Ckte,ti, --: :r 1,3 Fe_ -- 1-13.2- ef \. 3, 0 -7--- 12-'1 6 p 1. . it q67.er . . . . . , 0 t a-pl.ra.'5,.." --rrrrii ,----, 2'?..I i 0 ir ( Lf'I,G.-7,r4. ) --:-..- 3‘.g ifc- .. . '&R.40: 5- .F/4-s-r, '1e,-4/‘ :F.-fe4....t. „---.... cap' ----- , g 2 ci la(.4--. (9(.41..7) 4. `g:411 (7:L.4-7,P) "z il..,7 Ic.:, x r 0 ---- Scg, I k- &.--f. c., ,,.-4,0 F st • -' , Ak IP A.khel-t-f. A444,,, Feim,r-. 4_ , 6, ..), '.-r i 2..r( L i i 17,c,i''‘ - ) 5., -2_k < ' f f i ' I6 i<- ic ',,0 :-L--- ' ' • _.............. --- . 6o 1.-c' G c-r-tbf?„, '_ I •+., --- hiT , :::..3 8 31k 0 ,G ,' ct.ck+H'.: AAA, 1704;41 c , A_- Fr, 1r-'''../1;,2, ”. ' •:--= 33'/ /5,:.tf- 1 . .. , . • , . 0 " ")tte. Cf6V' ',7..... 4,) 3 , c_ —) ', '' s 1 ( 3-Z....':,)" -,:-:-. ( ) . . . . , ' OPUS. Project Bridgeport R1 Date 6/8/2004 By MGK • Opus Architects&Engineers Sheet S of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Collector Beam Filename: bm_dsgn.xls Grid B-1 to 3 By: DCP Beam Data RDS= 2.2 kips RDS= 2.2 kips RLL= 2.1 kips RLL= 2.1 kips R„= 5.9 kips L= 41.17,ft R„= 5.9 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384EI*coeff) C pin-pin pin-pin 2 8 1 r fixed-fixed fixed-fixed 2 16 2.5 fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00k/ft LL= 25 PSF 0.00f k/ft diet= 4 ft distance to adjacent beam on left d,;am= 4 ft distance to adjacent beam on right • W mb= 4.00 ft tributary width service L.F. ultimate DL= 0.11 k/ft 1.2 = 0.13 k/ft LL= 0.10 k/ft * 1.6 = 0.16 k/ft W= 0.21 k/ft Wu= 0.29 k/ft use W16x26 camber 0 in. RU MaX= 6 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 301 in4 moment of inertia Wt= 0.026 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment M„= 61 ft-kips M„=W„L2/moment coeff. cbM„= 150 ft-kips o.k. Deflection allowable live load deflection=U 240 ADL= 0.78 in ALL= 0.74 in = U 667 o.k. A=(5WL4/384EI)/deflection coeff. On,= 1.53 in = U 324 o.k. =DL+LL-camber 0 OPUSProject Bridgeport R1 . ` Date 6/8/2004 • Opus Architects&Engineers By MGK Sheet 6 of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Collector Beam Filename: bm_dsgn.xls Grid B- 1 to 3 By: DCP Beam Data W Ra= 2.2 kips Rpr= 2.2 kips Rei= 2.1 kips RLL= 2.1 kips R„= 4.0 kips .L= 41.17 ft R„= 4.0 kips coefficients Support reaction moment deflection Support Condition Condition WuUcoeff WuL2/coeff 5WL4/(384E1'coeff) E pin-pm pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 [;fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft dien= 4 ft distance to adjacent beam on left S d.;9m= 4 ft distance to adjacent beam on right W�m = 4.00 ft tributary width • service L.F. ultimate DL= 0.11 k/ft 1.35 = 0.14 k/ft LL= 0.10 k/ft 0.5 = 0.05 k/ft W= 0.21 k/ft Wu= 0.19 k/ft use W16x26 camber 0 in. Ru max= 4 kips Beam Properties Fy= 50 ksi yield stress F,= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 301 in4 moment of inertia Wt= 0.026 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment M.= 41 ft-kips Mu=WuL2/moment coeff. (PM„= 150 ft-kips o.k. Deflection allowable live load deflection=U 240 • Dor= 0.78 in ALL= 0.74 in = U 667 o.k. A=(5WL4/384E1)/deflection coeff. An= 1.53 in = L/ 324 o.k. OTL=DL+LL-camber • • 41, • , /.' IJProject Bridgeport RI /� C Project Bridgeport Al ��, O U • Date 6 8/2004 �1 PUS. Date 6/8/2004 • By MGK By MGK Opus Architects&Engineers,Inc. Sheet of Opus Architects&Engineers,Inc. Sheet of Chicago,Minneapolis.Phoenix,Tampa.Washington D . Chicago,Minneapolis,Phoenix,Tempa,Washington D.C. This spreadsheet calculates the interaction equation for compact I-shaped members FLEXURAL DESIGN STRENGTH: with combined axial&flexural forces,using AISC-LRFD latest edition. by2t,= 7.97 < ap=Table 85.1= 9.15 flange is compact h/t„= 56.8 < ],p=Table 85.1= 69 web is compact DESCRIPTION-Collector Beam Filename:axl-flex.XLS Grid B-110 3 By:DCP APPLIED FORCES(ultimate) Major Axis Bending: Pu= 30 kips required axial strength Lp= 47 in Lp=1.76ry(E/Fy)05 ,-(F1-4) Mu.= 41 frkips required moment capacity Mu,= 0 frkips required moment capacity L,= 125 in L,=r X/F-F,'1+1+X'F-Fr z os os Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Alp= 184 frkips Mp=FyZx<=1.5FySx (F1.1) M,= 128 frkips M,=(Fy F,)Sx (F1-7) UNBRACED LENGTHS L,= 41.17 ft Ky= 1 KL,= 41.17 ft 4,Mnx= 150 frkips Lp<Lb<Lr Ly= 6 ft Ky= 1 KLy= 6 ft L,= 41.17 ft K,= 1 KL,= 41.17 ft if Lb<Lp where drMn=rbMp (F1-1) Kr=effective length factor for the x-axis if Lp<Lb<Lr Ky=effective length factor for the y-axis 4,Mn=4,Cb(MP(MP M,)•(Lb-Lr)/(L(Lp))<=OM, (F1-2) K,=effective length factor for torsional buckling if Lb>L r8Mn=44CbSxX1(2)°.5/(Lb/ry)'(1+X,2XS/2/(Lb/ry)2)°s (F1-13) Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Minor Axis Bending: Mp= 22 frkips Mp=FyZy<=1.5F,Sy BEAM= W16X26 Interaction Equation=0.68 BEAM PROPERITIES: fib= 0.9 Xaxro Ya,ix I= 301 9.59 in° moment of inertia cbMny= 20 frkips S= 38.4 3.49 in' section modulus r= 6.26 1.12 in radius of gyration Z= 44.2 5.48 in' plastic section modulus A= 7.68 in' gross area J= 0.262 in° torsional constant C„= 565 in° warping constant X,= 1480 ksi X,=x/Sx(EGJA/2)°5 X2x10c= 40300(1/ksi)` X2=4C„/ly(Sx/GJ)' Fy= 50 ksi yield stress F,= 10 ksi residual stress E= 29000 ksi modulus of elasticity G= 11600 ksi V • • • 0 OPUSa Project Bridgeport R1 OPUS Date 6/8/2004 By MGK Opus Architects&Engineers,Inc. Sheet of Chicago.Mn,ieapolis,Phoenix,Tampa,Washington D.C. AXIAL COMPRESSIVE STRENGTH: b,/21,= 8.0 < ),=Table B5.1= 13.49 flange is compact My,= 56.8 < X,=Table 85.1= 128 web is compact KUrx= 79 KUrx= 64 Chapter E = 1.04 =KUrme„(F/En2)o.s (E2-4) F„= 31.71 ksi 1 <=1.5 rbFc, _(0.658yr"2)Fy (E2-2) )k>1.5 NFor=(0.877/Xe2)Fy (E2-3) Fy/2= 25 ksi Fcr>Fy/2,see Appendix E Appendix E-E.3 Design Compressive Strength for Flexural-Torsional Buckling Fe= 11.92 ksi F.=[112EC„/(K,I)2+GJy(I„+ly) (A-E3-5) X.= 2.05 (Fy/Fe)05 (A-E3-4) F,= 10.45 ksi <=1.5 d3F„ =(0.65e1)Fy (A-E3-2) ),>1,5 NFA,=(0.877/J,s)Fy (A-E3.3) = 0.85 NP„= 68 kips OUP„=rbFc,Ag Fcr per Appendix E (E2-1) INTERACTION EQUATION: P„/NPn= 0.44=>0.2 M„/8Mn„= 0.27 M„/ct'Mny= 0.00 if P„/d'P„=>0.2 P,JNP„+8/9(M,Jc6M„)= 0.68 o.k. (H1-1a) if P„/mP„<0.2 Pd24 P„+MAK,= (H1-1b) rQ . . • • 0 OPUS° Project Bridgeport R1 OPUS, Date 6/8/2004 •/1 Pret 6/8/2004Al Date Bridgeport By MGK By MGK Opus Architects&Engineers,Inc. Sheet of Opus Architects&Engineers,Inc. Sheet of Chicago,Minneapolis,Phoenix.Tampa,Washington D.C, Chicago,Minneapolis,Phoenix,Tempa,Washington D.C. This spreadsheet calculates the interaction equation for compact I-shaped members FLEXURAL DESIGN STRENGTH: with combined axial&flexural forces,using AISC-LRFD latest edition. b,/2t,= 7.46 < Xp=Table 85.1= 9.15 flange is compact DESCRIPTION-Collector Beam Filename:axl-flex.XLS h/ty= 53.3 < =Table 85.1= 83 web is compact Grid G-2 to 3 By:DCP APPLIED FORCES(ultimate) Pu= 9 kips required axial strength Major Axis Bending: - Mux= 13 frkips required moment capacity Lp= 44 in Lp=1.76ry(E/Fy)°5 ,-(F1-4) Mur= 0 ft'kips required moment capacity L,= 116 in L,=ryX,/(Fy Fr)*(1+(1+XZ(FY Fr)2)°s)os (F1-6) C,= 1 use equation(F1-3)or conservatively Cb=1.0 . Mp= 138 ft'kips Nip=FyZ,<=1.5F,S, (F1.1) UNBRACED LENGTHS M,= 97 frkips Mr=(Fy F,)S, (F1-7) L,= 27.17 ft K,= 1 KL,= 27.17 ft l'Mn,= L,,= 6 ft Ky= 1 KLy= 6 ft 110 frkips Lp<Lb<Lr L,= 27.17 ft K,= 1 KL,= 27.17 ft if Lb<Lp where (1)Mn=CbMp 1 (F1-1) K.=effective length factor for the x-axis K,=effective length factor for the y-axis if Lp<Lb`4 K.=effective length factor for torsional buckling d,Mn=�Cb(Mp(MP M,)'(Lb-L,)/(L-Lp))<=OM, (F1-2) if Lb>I, Lb= 6 ft distance between points braced against lateral displacement dyMn=43C,S,X,(2)0'S/(Lb/r),)'(1+X,2X2/2/(Lb/ry)2)°'S (F1-13) of the compression flange. Minor Axis Bending: BEAM= W14X22 Interaction Equation=0.18 M,,= 18 ff'kips Mp=F,Zy<=1.5F,Sy BEAM PROPERITIES: X,,,, Y,,,, (be= 0.9 I= 199 7 in° moment of inertia d'Mny= 16 ft'kips S= 29 2.8 in' section modulus r= 5.54 1.04 in radius of gyration Z= 33.2 4.39 in' plastic section modulus A= 6.49 in2 gross area J= 0.208 in° torsional constant C,.= 314 in° warping constant X,= 1600 ksi X,=or/S,(EGJA/2)0' X2x106= 27800(1/ksi)` X2=4C,/ly(S,/GJ)' F,= 50 ksi yield stress F,= 10 ksi residual stress E= 29000 ksi modulus of elasticity • G= 11600 ksi , • • • 1 OPUS. Project Bridgeport Al v Date 6/8/2004 By MGK Opus Architects&Engineers,Inc. Sheet of Chicago,Minneapolis,Phoenix,Tampa.Washington D.C. AXIAL COMPRESSIVE STRENGTH: b✓2t,= 7.5 < J,,=Table B5.1= 13.49 flange is compact h/t,V= 53.3 < �=Table B5.1= 134 web is compact KUrx= 59 KL/r0= 69 Chapter E = 0.92 l<=KUrmax(F✓Ex2)os (E2-4) F01= 35.22 ksi X,<=1.5 (0.658a<"2)F0 (E2-2) )K>1.5 _(0.877/),<2)F0 (E2-3) F✓2= 25 ksi Fcr>Fy/2,see Appendix E Appendix E-E.3 Design Compressive Strength for Flexural-Torsional Buckling Fe= 15.82 ksi F.=(n2ECµ/(K,I)2+GJ)/(I0+I0) (A-E3-5) X.= 1.78 X...(F✓F5)os (A-E3-4) F<,= 13.87 ksi Xe<=1.5 6F<, =(0.658'e"2)F0 (A-E3-2) X.>1.5 4sF0,=(0.877/e2)Fr (A-E3-3) d><= 0.85 d>Pn= 77 kips d Pn=(L)F,,Ag Fcr per Appendix E (E2.1) INTERACTION EQUATION: P./(1)P.= 0.12<0.2 M„/4eMnx= 0.12 M„/4)Mn0= 0.00 it Pg/OP,=>0.2 PJmP0+8/9(Mid)Mn)_ (H1-1a) it Pg/(1)P„<0.2 P0/2NPn+MJ<6Mn= 0.18 o.k. (H1-1b) ii O • • - 0 OPUS. Project Bridgeport R1 n Date 6/8/2004 fit) OPU • Project Bridgeport R1 Date 6/8/2004 By MGK By MGK Opus Architects&Engineers,Inc. Sheet of Opus Architects&Engineers,Inc. Sheet of Chicago.Minneapolis,Phoenix,Tempa,Washington D.C. Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. This spreadsheet calculates the interaction equation for compact I-shaped members FLEXURAL DESIGN STRENGTH: with combined axial&flexural forces,using AISC-LRFD latest edition. b✓2tr= 7.97 < 4=Table 05.1= 9.15 flange is compact DESCRIPTION-Collector Beam Filename:axl-flex.XLS h/t„= 56.8 < =Table 85.1= 83 web is compact Grid G-6 to 5 By:DCP APPLIED FORCES(ultimate) Pu= 11 kips required axial strength Major Axis Bending: Mu„= 19 11'kips required moment capacity Lb= 47 in Lp=1.76ry(E/Fr)09 z,(F1-4) M30= 0 ft'kips required moment capacity L,= 125 in L,=ryX,/(Fy-F,)'(1+(1+X2'(FY F,)2)os)o.s (F1-6) Cb= 1 use equation(F1-3)or conservatively Cb=1.0 M 184 ft'ki s M F Z„<=1.5F S„ p= P P= v r (F7.1) UNBRACED LENGTHS M,= 128 ft`kips M,=(FY F,)S„ (Pt_7) Lx= 32 ft K„= 1 KL„= 32 ft 4)Mn„= 150 ft'kips Lp<Lb<Lr Ly= 6 ft Ky= 1 KLy= 6 ft L,= 32 ft K,= 1 KL,= 32 ft it Lb<Lp where OMn=cl-Op (F1.1) K„=effective length factor for the x-axis if Lp<La<L, Ky=effective length factor for the y-axis cbMn=�Cb(MP(MP ML-L,/(L;LP))<_�M p (Ft-2)K,=effective length factor for torsional buckling if Lb>L, L,= 6 ft distance between points braced against lateral displacement 1)M„=)CbS„X1(2)°5/(Lb/ry)'(1+X,2X2/2/(Lb/ry)2)05 (F1-13) of the compression flange. Minor Axis Bending: BEAM= W16X26 Interaction Equation=0.20 M,,= 22 frkips Mp=FyZy<=1.5F.Sy BEAM PROPERITIES: X0,„, .1",,,,. �b= 0.9 I= 301 9.59 in° moment of inertia 4'Mny= 20 ft kips S= 38.4 3.49 in' section modulus r= 6.26 1.12 in radius of gyration Z= 44.2 5.48 in' plastic section modulus A= 7.68 in2 gross area J= 0.262 in° torsional constant C„= 565 in° warping constant X,= 1480 ksi X,=x/S„(EGJA/2)o 5 X2x106= 40300(1 Ash' X2=4Cw/1y(S„/GJ)2 F,= 50 ksi yield stress F,= 10 ksi residual stress E= 29000 ksi modulus of elasticity G= 11600 ksi • • •; OPUS• Project Bridgeport Al r Date 6/8/2004 By MGK Opus Architects&Engineers,Inc. Sheet of Chicago.Minneapolis,Phoenix,Tampa,Washington O.C. AXIAL COMPRESSIVE STRENGTH: b,/21,= 8.0 < X,=Table 85.1= 13.49 flange is compact h/t„= 56.8 < X,=Table 85.1= 134 web is compact KUr,= 61 KUrr= 64 Chapter E = 0.85 X,.KUrmax(Fr/En2)o 5 (E2-4) Fc,= 36.96 ksi ac<=1.5 (PF,, =(0.658zc"2)Fy (E2-2) X0>1.5 4'F0,_(0.877/a02)F, (EP-3) F0/2= 25 ksi Fcr>Fy/2,see Appendix E Appendix E-E.3 Design Compressive Strength for Flexural-Torsional Buckling Fe= 13.32 ksi F,=[a2EC,0I(K,I)2+GJ)/(Ix+l) (A-E3-5) A,= 1.94 X,=(FY/F,)" (A-E3-4) F0,= 11.68 ksi )v,<=1.5 NF, =(0.6584°A2)F, (A-E3.2) x,>1.5 4,F„_(0.877/,2)F, (A-E3-3) d' = 0.85 c'P,= 76 kips mPn=NFO,Ag Fcr per Appendix E (E2-1) INTERACTION EQUATION: PAPn= 0.14<0.2 M,/bMn,= 0.13 MiaiMny= 0.00 if P„/diP,=>0.2 P„,/(UP,,+8/9(M,/d>Mn)= (H1.1 a) if P„/cFPn<0.2 P,/2u>Pn+M„/mMn= 0,20o.k. (H1-1b) • • • ' OPUS. Project Bridgeport R1 �,/� OPUS.C Project Bridgeport R1 ° Date 6/8/2004 . Date 6/8/2004 By MGK By MGK Opus Architects&Engineers,Inc. Sheet of • Opus Architects&Engineers,Inc. Sheet of Chicago.Minneapolis.Phoenix.Tampa.Washington D.C. Chicago.Minneapolis.Phoenix.Tampa,Washington D.C. This spreadsheet calculates the interaction equation for compact I-shaped members I FLEXURAL DESIGN STRENGTH: with combined axial&flexural forces,using AISC-LRFD latest edition. bat,= 7.06 < Xi,=Table B5.1= 9.15 flange is compact DESCRIPTION-Collector Beam Filename:axl-flex.XLS h/t,.,= 53.5 < ]<p=Table B5.1= 77 web is compact Grid G-5 to 4 By:DCP APPLIED FORCES(ultimate) P, Major Axis Bending: v= 24 kips required axial strength Lp= 52 in L1,=1.76ry(E/Fy)05 _(F1-4) M lls= 39 ft'kips required moment capacity Mu,= 0 frkips required moment capacity L,= 138 in L,=ryX1/(FY F,)'(1+(1+X2(FY F,)2)°5)°s (F1-6) C,= 1 use equation(F1-3)or conservatively Cb=1.0 Mp= 277 frkips Mp=FZ,<=1.SFYS, (F1-1) UNBRACED LENGTHS M,= 192 Whips M,=(Fy Fr)S, (F1-7) L,= 44.67 ft K,= 1 KL,= 44.67 ft cl3Mn,= 231 frkips Lp<Lb<Lr Ly= 6 ft Ky= 1 KLy= 6 ft L,= 44.67 ft K,= 1 KL,= 44.67 ft if Lb<Lp where 4xMn=OM, (F1-1) K,=effective length factor for the x-axis if Lp<L,<L, Ky=effective length factor for the y-axis K0=effective length factor for torsional buckling omn=oCb(Mp(MP Mr)'(Lo-Lr)/(L;Lp))<=omp (F1-2) ' if Lb>L, Lb= 6 ft distance between points braced against lateral displacement <1.,k4„=OC,S,X,(2)0'S/(l.b/ry)'(1+X,2X2/2/(Lb/ry)2)°.5 (F1-13) of the compression flange. Minor Axis Bending: BEAM= W18X35 Interaction Equation=0.39 Mp= 32 frkips Mp=FyZy<=1.5FySy BEAM PROPERITIES: X,,,,,, Yexis 1 = 0.9 I= 510 15.3 in° moment of inertia °MMn,= 29 frkips S= 57.6 5.12 in3 section modulus r= 7.04 1.22 in radius of gyration Z= 66.5 8.06 in3 plastic section modulus A= 10.3 int gross area J= 0.506 in° torsional constant C.= 1140 in' warping constant X1= 1590 ksi X1=rt/S,(EGJA/2)o.s X2x106= 30800(1/ksi)` X2=4Cw/Iy(S,/GJ)2 F0= 50 ksi yield stress F,= 10 ksi residual stress E= 29000 ksi modulus of elasticity G= 11600 ksi • • . • $ OPUS. Project Bridgeport RI •a Date 6/8/2004 By MGK • Opus Architects&Engineers,Inc. Sheet of Chicago.Minneapolis.Phoenix,Tampa.Washington D.C. AXIAL COMPRESSIVE STRENGTH: b,/211= 7,1 < X,=Table 85.1= 13.49 flange is compact h/1„,= 53.5 < A,=Table 85.1= 132 web is compact KUr„= 76 KUry= 59 Chapter E = 1.01 )k=KUrmax(F✓En2)os (E2-4) F,= 32.72 ksi A <=1.5 (0.658Xcw)Fy (E2-2) A >1.5 4>F„_(0.877/X.2)F, (E2-3) Fy/2= 25 ksi Fcr>Fy/2,see Appendix E Appendix E-E.3 Design Compressive Strength for Flexural-Torsional Buckling F.= 13.34 ksi F.=(n2EC„/(K21)2+GJ1/(Ix+ly) (A-E3-5) Xe= 1.94 X.=(Fy/F,)o 5 (A-E3-4) F.,= 11.70 ksi Aa<=1.5 chFe, _(0.658""2)Fy (A-E3-2) X.>1.5 43F.,_(0.877/Ae2)Fy (A-E3-3) = 0.85 cbPn= 102 kips mPn=cbF Ag Fcr per Appendix E (E2.1) INTERACTION EQUATION: PAP,= 0.24=>0.2 M„/4'Mnx= 0.17 M„/BBMny= 0.00 if P./4,P,=>0.2 P„/4/Pn+8/9(M,A4Mn)= 0.39 o.k. (H1-1a) it P./OP„<0.2 P,A2'Pn+M„ahMn= (H1-1b) • 1 1 OPUS_ Project Date %/Fs`A)3 • Opus Architects & Engineers By frl6/� Sheet /S.- of • 1,----lXLc e ,sh c,,i+^pc,. .- . A.)0 -- if c g-.3, f*-S i='r 4; i''re.V-7 s' 13 Fi4 Ps c 't (�-c r,"-cc-FY.--% 5 - -'/S�- /6 2d. /, Y 133 <:::;c2c ...,en, t 133 6-2c- 2d,7< (ZZ,r` 1�.)( 3a 40 — 2./3 I k� gyp= , OS— we — .0 � E`w,-sf "z"?5 -- 12)( 3 (:))-11 — if 17 k_ <0 - E Fa r. 5 u c_c n f.Zz.4_4-Y,S i J-- 06S r,n eS r�� c Gk.+'.' t Co 6-42 / 2.33 fes;is 1 T .i,-.. a. (--- ?� ;trrQ tS t-1,-N. t . :,1' e4-0-1,---4-k_ 0.i'tiv^-3 -)nrr_ . Jo:s-i-s- `6 Co,.,e<-fz.--.S (M\.,.F J.L 1-p= , !3 50s Gip 133 6.7s) E20ps,( ( 6.F-'— ) (TS-S0..1 -- S{/u tG, . 0c ,..)0 l `� ,0S E20 r 1 C (b ry ) �us ) t = Z'7Ois v - + 2S 4- Gs--. ...4 toss : 22-S/Ss t i ^3'3 -e! ' L/ lbs ) Opus Architects&Engineers,Inc. • /, opus 10350 Bren Road West r Minnetonka,Minnesota 55343 952-656-4444 Fax 952-656-4529 ANCHOR ROD DESIGN S • 0 West Mom Frame 8As -rum r5- ( MAIC 1404 &OCT' . VisualAnalysis 4.00 Report Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R1 File: G:\Bridgeport\S43_5210-r1\Struc\Calculations\West Mom Frame.vap SNodal Reactions S Node Load Case FX FY MZ K K K-ft N1 16-19a -7.2208 0.7464 72.0540 " 16-19b 8.7098 13.3215 -79.661 " 16-20c -7.6744 -3.3630 74.3716 " 16-20d 8.2562 9.2121 -77.344 " Dead 0.3879 3.8994 -1.9817 " Live 0.4418 3.5397 -2.2571 II Max Diaphragm -7.9653 -6.2876 75.8578 " Seismic -4.3428 -3.4016 41.4030 N3 16-19a -9.6980 20.2508 85.6998 " 16-19b 9.7454 13.9912 -85.428 " 16-20c -9.7125 9.9956 85.6171 " 16-20d 9.7309 3.7360 -85.511 " Dead 0.0123 9.1544 0.0707 " Live 0.0140 9.5251 0.0805 " Max Diaphragm -9.7217 3.1298 85.5641 " Seismic -5.1641 1.7498 45.4184 N5 16-19a -10.614 6.0756 90.5976 16-19b 9.5895 22.5596 -84.486 " 16-20c -10.302 -2.4716 88.7359 " 16-20d 9.9017 14.0124 -86.348 " Dead -0.2670 7.6939 1.5918 ll Live -0.3041 7.8617 1.8131 1 II Max Diaphragm -10.102 -8.2420 87.5420 II, Seismic -5.2575 -4.2676 45.5589 :T7 16-19a -8.9945 15.6764 81.5852 " 16-19b 8.4833 -7.1231 -78.311 16-20c -8.8388 13.2469 80.5878 " 16-20d 8.6391 -9.5526 -79.308 " Dead -0.1332 2.4629 0.8529 " Live -0.1517 1.9035 0.9714 " Max Diaphragm -8.7389 11.3997 79.9482 " Seismic -4.5356 5.9193 41.4920 Vu.= {I fr k- r.,,,,,,Y\ - -Jot, 0 -1- (2) East Mom Frame 6,4-,sgetArr 4AI c 14t>t 6o t,TS VisualAnalysis 4.00 Report Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R1 File: G:\Bridgeport\S43_5210-rl\Struc\Calculations\East Mom Frame.vap • Nodal Reactions Node Load Case FX FY MZ K K K-ft N1 16-19a -8.9833 5.4058 100.111 16-19b 13.5724 16.2328 -126.32 16-20c -10.381 -1.0096 108.107 16-20d 12.1742 9.8174 -118.32 Dead 1.1951 5.8719 -6.8142 Live 1.3623 5.7845 -7.8147 Max Diaphragm -11.277 -5.4135 113.218 Seismic -3.8437 -1.8322 38.6285 N3 16-19a -14.033 32.5776 128.005 16-19b 16.5229 33.6726 -142.90 16-20c -14.808 12.4722 132.648 16-20d 15.7471 13.5671 -138.26 Dead 0.6255 17.3595 -3.7415 Live 0.8010 19.3794 -4.7962 Max Diaphragm -15.278 -0.5475 135.454 Seismic -5.0711 -0.1231 44.9334 N5 16-19a -15.089 23.3011 133.690 16-19b 8.0103 11.3791 -96.295 16-20c -12.915 12.8308 122.212 16-20d 10.1843 0.9089 -107.77 Dead -1.8207 9.1598 9.6260 Live -2.1632 9.9488 11.4042 Max Diaphragm -11.549 5.9610 114.992 Seismic -3.7852 1.9553 37.6814 VIA 7- IblsK- k 1(3,7 k G kwts VA Mk )n\ 1`f3 k 4 S -1- ) North Mom Frame 8A-s�-(i.-* / c ii- n vrr (s/ VisualAnalysis 4.00 Report Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R1 File: G:\Bridgeport\S43_5210-r1\Struc\Calculations\North Mom Frame.vap Nodal Reactions Node Load Case FX FY MZ K K K-ft N1 16-19a -11.165 17.1612 104.026 " 16-19b 11.1589 39.4928 -104.35 16-20c -11.157 -0.1720 104.097 " 16-20d 11.1666 22.1596 -104.28 " Dead 0.0058 14.6584 -0.1262 II Live -0.0224 17.0764 0.0098 " Max Diaphragm -11.162 -11.165 104.192 " Seismic -3.7518 -3.7456 35.0293 N3 16-19a -13.382 8.2971 115.600 " 16-19b 13.3282 -1.5279 -115.66 " 16-20c -13.365 6.5189 115.620 " 16-20d 13.3450 -3.3061 -115.64 " Dead -0.0136 2.1419 -0.0193 " Live -0.0173 0.9861 -0.0178 " Max Diaphragm -13.355 4.9125 115.634 " Seismic -4.4563 1.6683 38.5788 N5 16-19a -12.940 0.4820 112.729 16-19b 13.1388 5.8687 -114.18 " 16-20c -13.000 -1.1533 113.168 " 16-20d 13.0794 4.2334 -113.74 II Dead 0.0527 2.0533 -0.3838 II Live 0.0557 0.8066 -0.4183 Max Diaphragm -13.039 -2.6933 113.456 1111 " Seismic -4.3239 -0.8849 37.6215 N7 16-19a -10.547 12.4576 99.3282 " 16-19b 10.4101 -5.4358 -98.943 " 16-20c -10.512 10.5235 99.2495 " 16-20d 10.4451 -7.3699 -99.022 " Dead -0.0449 2.1024 0.1516 II Live -0.0160 1.3453 -0.0245 " Max Diaphragm -10.478 8.9467 99.1358 " Seismic -3.4680 2.9622 32.8073 Vi,. = '3 . 4-I L (),„ kr.(5 eu, = 3 ti, S k f i a L= - I 1 k 1^ti,, 116 k, - • -1- Lt South Mom Frame #4KF 441,Atckhrit o-cm VisualAnalysis 4.00 Report Company: Opus Architects S Engineers, Inc. Engineer: Matthew Kahle Billing.: Bridgeport R1 File: G:\Bridgeport\S43_5210-rl\Struc\Calculations\South Mom Frame.vap "'Nodal Reactions Node Load Case FX FY MZ K K K-ft N1 16-19a -10.663 -2.4383 99.6850 16-19b 10.7405 19.0438 -100.02 16-20c -10.681 -7.3420 99.7578 16-20d 10.7220 14.1401 -99.948 Dead 0.0271 4.5320 -0.1270 Live 0.0044 4.3690 0.0068 Max Diaphragm -10.701 -10.741 99.8531 Seismic -3.7518 -3.7456 35.0293 N3 16-19a -13.012 7.7064 112.596 16-19b 12.9223 -1.5288 -112.01 16-20c -12.984 6.1117 112.414 16-20d - 12.9503 -3.1235 -112.19 Dead -0.0228 1.9922 0.1468 Live -0.0286 0.7987 0.1880 If Max Diaphragm -12.967 4.6176 112.304 Seismic -4.4563 1.6683 38.5788 N5 16-19a -12.830 0.5828 111.836 16-19b 12.9495 6.2269 -112.40 16-20c -12.865 -1.1947 111.999 16-20d 12.9147 4.4494 -112.23 Dead 0.0327 2.1698 -0.1587 Live 0.0305 0.9513 -0.1360 Max Diaphragm -12.890 -2.8221 112.118 Seismic -4.3239 -0.8849 37.6215 41,7 16-19a -10.573 29.5625 99.9224 16-19b 10.4679 11.6714 -99.254 16-20c -10.548 17.0395 99.7556 16-20d 10.4932 -0.8516 -99.421 Dead -0.0369 10.7920 0.2228 Live -0.0063 12.0955 0.0663 Max Diaphragm -10.520 8.9455 99.5885 Seismic -3.4680 2.9622 32.8073 v _ 13 119+4►.y 2ct, 6k etA.. ,ri -I I 1 t 3 k� k- -1- • . • 0 OPUS Project Bridgeport Al Project Bridgeport R1 f NJd Date 6/8/2004 Date 6/8/2004 By MGK By MGK Opus Architects&Engineers Sheet of Sheet of Design base plate with large eccentricities(e>N/6),i.e.anchor bolts in tension Ultimate Bearing Stress A,= 468 in` A,=B'N DESCRIPTION>Moment Frames Filename: colbaspl.XLS (b,= 0.65 ACI-02 9.3.2.4 - >Pu min By:DCP Fp= 3.32 ksi Fp=0.85cb,f',(Az/A,)''2<=1.74 c'fc' Ultimate Loads P„= -11 kips V„= 16.5 kips Length of Bearing M„= 143 ft'kips N'= 23 in distance from compresion edge of plate to center of bolt in tension column A'= 10 in distance from center of column column W14x48 to center of bolt in tension bf= 8.03 in column flange width e= 156 in eccentricity,e=M„/P„ e>N/6,o.k. d= 13.79 in column depth dsg= W shape designation V= 686.2 kips V=(F,91'4)/2 Base Plate B= 18 in Base plate width A= 2.4 in A=(V-sgrt[f'Z-4(FpB/6)(P„A+M„))}/(FpB/3) N= 26 in Base plate length t= 2 in Base plate thickness Anchor Bolt F,= 36 ksi yield stress of base plate T„= 28 kips T„=(FpAB/2-P„)/(nb/2) edge dist.= 3 in distance from tension edge of plate V„= 2.8 kips Vu=Vint, to center of bolt in tension Anchor Bolts f„= 1.55 ksi f„=V,/Ab bolt shear stress db= 1 1/2 in nominal bolt diameter F,= 45 ksi Table J3.5 Nominal Tension Stress ASTM A307 nb= 6 total number of bolts in base plate rbV„= 18 ksi Table J3.2 >fv,o.k. m= 0.75 AISC Section J3.7 Ab= 1.77 in` nominal bolt area ( GT„= 60 kips GT„='VF,Ab >Tu,o.k. Foundation Base Plate Thickness ic'= 3 ksi compressive strength of concrete foundation m= 6.45 in m=(N-0.95d)/2 b= 120 in foundation width n= 5.79 in n=(B-(0.8 W,0.95 TS)bf)/2 I= 120 in foundation length A2= 14400.int area of the supporting concrete foundation moment due to bearing stress that is geometrically similar to the plate Mplu= 22.68 in-kips/in moment due to anchor bolts Mplu= 5.33 in-kips/in G.= 0.9 bending . tp= 1.67 in tp=(4Mptu_max/d)F,,)"2 t>tp,o.k. 1 • 00 1 0 OPUS Project Bridgeport Rt Date 6/8/2004 Project Bridgeport R7 By MGK Date 6/8/2004 By MGK Opus Architects&Engineers Sheet of Sheet of Design base plate with large eccentricities(e>N/6),i.e.anchor bolts in tension Ultimate Bearing Stress A,= 468 in` A,=B'N DESCRIPTION>Moment Frames Filename; colbaspl.XLS cric= 0.65 ACI-02 9.3.2.4 >Pu max By:DCP Ultimate Loads Fp= 3.32 ksi Fp=0.85m f(AC/A,)irz<=1.7c13c'tc' • P„= 40 kips V„= 16.5 kips Length of Bearing M„= 143 ft'kips N'= 23 in distance from compresion edge of plate to center of bolt in tension column A'= 10 in distance from center of column column W14x48 to center of bolt in tension bf= 8.03 in column flange width e= 43 in eccentricity,e=M„/P„ e>N/6,o.k. d= 13.79 in column depth dsg= W shape designation V= 686.2 kips f'=(FP BN')/2 Base Plate B= 18 in Base plate width A= 3.2 in A=(f'-sgrt(i z-4(F,B/6)(P„A'+M„)j)/(FpB/3) • N= 26 in Base plate length t= 2 in Base plate thickness Anchor Bolt F,= 36 ksi yield stress of base plate To= 19 kips To=(F,AB/2-P„)/(nb/2) edge dist.= 3 in distance from tension edge o1 plate to center of bolt in tension V„= 2.8 kips Vu=V Jnb Anchor Bolts f,= 1.55 ksi f,=V jAb bolt shear stress db= 1 1/2 in nominal bolt diameter F,= 45 ksi Table J3.5 Nominal Tension Stress ASTM A307 nb= 6 total number of bolts in base plate 'BV,= 18 ksi Table J3.2 >fv,o.k. 0= 0.75 AISC Section J3,7 Ab= 1.77 in` nominal bolt area 0T„= 60 kips dT„=OF,Ab >Tu,o.k. Foundation Base Plate Thickness Ic'= 3 ksi compressive strength of concrete foundation m= 6.45 in m=(N-0.95d)/2 b= 120 in foundation width n= 5.79 in n=(B-(0.8 W,0.95 TS)bf)/2 I= 120 in foundation length A2= 14400 in' area of the supporting concrete foundation moment due to bearing stress that is geometrically similar to the plate 1 Mplu= 28.80 in-kips/in moment due to anchor bolts Mplu= 3.61 in-kips/in 0= 0.9 bending tp= 1.89 in tp=(4Mplu_max/OF,)'1> t>tp,o.k. • C OPUS. Project IR 1 Date 6/8"0r Opus Architects & Engineers By ICS Sheet, , . . . . - , . , , of s . . , , , . . . . . Arc , , , . , . n. , , •