Loading...
Specifications (17) ()Lk-`7L a ?Dl S SW, C1G\ CL-k Opus Architects&Engineers,Inc. • A 10350 Bren Road West opus . Minnetonka,Minnesota 55343 952-656-4444 Fax 952-656-4529 STRUCTURAL CALCULATIONS FOR FINAL SHELL PERMIT III � in c_ Q BRIDGEPORT VILLAGE .fit `° •' ° c BUILDING R2 E.-) a '2'.0 1 TUALATIN,OREGO ki) c rn > i ' '' ilk u OFFICE COPY L-5 6,6. 2 i QIIOF lt, IRit 4,01 .E t � CITY OF rU � '. � Z_ C .2 O ., j Gj 'st f DMSION „,-- ;,,-..., ... top:i. 21, \ _4,,,,, BUILDING DIVISIONd ' ' 1,15— I. AEL E.VA.') This drawing apprcvcd;or constrvct.N.n:errors c.. co co y,`' or omissions excepted. Ei•3ctric:^,7k of r cIud td, co N .c c 0' cfo eh These plans and specifications to remain on fob site, c� m .5 CO PREPARED BY g (4 . ° OPUS •• HITECTS & ENGINEERS, INC.pe rmit Plo. 0 9- 3yY8 a ::::.,,, ,i,_, a I September 16,2004 u g� s 5` a CITY OF TUALATIN , 0 RECEIVED Opus Architects&Engineers,Inc.is an affiliate of the Opus Group of Companies—Architects,Contractors,Developers tC D A 7 2004 Chicago,Columbus,Dallas,Ft.Lauderdale,Milwaukee,Minneapolis,Orlando,Pensacola,Phoenix,Sacramento,San Francis , !.+ Seattle,Tampa,Washington D.C. ENGt{+ ERINfi 1 BUILDING DEPARTMENT Opus Architects&Engineers,Inc. • ^ 0ad West /, oPU�N M1innetonka350Bren Road Minnesota 55343 952-656-4444 Fax 952-656-4529 TABLE OF CONTENTS I. Gravity System A. Roof Design I.A.1 - 17 B. Column, Base Plate, &Foundations Design I.B.1 - 4 II. Lateral System—Seismic Analysis and Design A. Lateral Load Summary II.A.1 -4 B. Moment Frame Design ILB.1 -25 C. Diaphragm Design& Collector Elements II.C.1 - 14 D. Anchor Rod Design II.D.1 - 10 E. Frame Footing Design II.E.1 -15 III. Miscellaneous A. Turret Design III.A.1 - 14 B. Stud Wall,Jamb, &Header Designs III.B.1 - 18 • 110 Opus Architects&Engineers,Inc. • ^ /, OPUS. 10350 Bren Road West Minnetonka,Minnesota 55343 952-656-4444 Fax 952-656-4529 ROOF DESIGN S. 5 opus. Project Date 6/"L jo Opus Architects & Engineers By M6le..- Sheet • of • 110 ,.. . , . , .. . . . , , . . , , . , , , . . . : . , . : . . . . . , , ! . ,, ,, ,. , :. ! r ,,_, .,,: ,,,,o , ,,,_ . .. . 0„ e,„__,, , , ,,, .,, . 301 "f--._ .. . . .,f,„!...) . 12...1. ...�� � 52s 13.11 :�1 F i F ,srA-� 3 Li T.-f--4- V. (0 TL - fig p/ - f 410 ,.,' .. .. 117;44- a tki0 r 6. �� ._.. pis. .,.{.. v� .. .i, 5 1�N^ ' t • C'.v?G . Vv,- C.a f . .__ .Isr- ' 6 irr---t . . ♦ OPUCC Project t�2 S. Date 6lZ/o,-1 Opus Architects & Engineers By N16k, Sheet Z, of • G5 :J0 i 53 C----------X T—,, b e is 4.(G..c(t) N' �,c A— Vin,. k ??o ,,t:F (4<jF6-7.ls 1S= 4?S`30 E Mix ' - o t (`10, 6 1sc o ,ov,67 8y,1k I4- 'poi l<.,, i . tS - -i`l fees Ll Vk..0 X400ti .otc�. . ..,. la.o5,ak' %h. .._.. . ` 0 G' " 3 { • _.,.. : . Icts U ' ) 7p D lis 2-70,l '..(V�. s z /5)0 ( ��s3,� 7.3, 1 k f- ?&'_k,%:s? 1 3 c. 72..`i kc.s4 Uau g4 c ✓65.. . . /Act tc... .= //aq' e. .._ '_.._.. '" Project g.2 OPUS. Date 6/1 /6 Y' Opus Architects & Engineers . By '4" Sheet -5 of • , , - G GRIC. —x,—) I I S P----,-.----,=:) 1kckX ..- 27o e .-- fc,,,c,(4-.) /5-Da '— 777 '2.-- , ‘1... i ---,. " 2-7°, 4 C 416..3-c-ii /00 (44'5') -‘ cra9 le.ri-------- 8 5 1 14- , 7 , , 11,51:-_,'- -:-- 24 k,c.5; 9' r -1-_ z-et,0 0 1 .-; iLic,„ ,--- f I ; ; OPUS.S Project Bridgeport R2 r Date 6/2/2004 By MGK Opus Architects&Engineers Sheet tit of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid D-1 to 2 Filename: bm_dsgn.xls 6ti n i 1 +u't— By: DCP Beam Data RpL= 1.3 kips RpL= 1.3 kips = 1.1 kips Ru= 1.1 kips R„= 3.3 kips L= 32 ft R„= 3.3 kips coefficients Support feaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384El*coeff) pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 C fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25PSF 0.00 k/ft theft= 4.5'ft distance to adjacent beam on left d,1 = 1`ft distance to adjacent beam on right W b;b= 2.75 ft tributary width service L.F. ultimate DL= 0.08 k/ft * 13 = 0.10 k/ft LL= 0.07 k/ft * 1.6 = 0.11 k/ft W= 0.15 k/ft W„= 0.21 k/ft use W16x26 camber 0 in. Ru max= 4 kips Beam Properties FY= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 301 in4 moment of inertia Wt= 0.026 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Ma= 27 ft-kips Mu=WWL2/moment coeff. (Ma= 158 ft-kips o.k. Deflection allowable live load deflection=U 240 • �p�= 0.22 in ALL= 0.19 in = U 2067 o.k. A=(5WL4/384EI)/deflection coeff. ATL= 0.40 in = U 949 o.k. A. =DL+LL-camber 0 OPUS. Project Bridgeport R2 Date 6/2/2004 By MGK • Opus Architects&Engineers Sheet S of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid C-2 to 4 Filename: bm_dsgn.xls geaC! G Z4o `( By: DCP Beam Data RDL= 2.3 kips RDL= 2.3 kips RLL= 2.0 kips RLL= 2.0 kips R„= 5.9 kips L= 44.67 ft R„= 5.9 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384E1*coeff) C pin-pin pin-pin 2 8 1 r fixed-fixed fixed-fixed 2 16 2.5 r fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft dies= 6 ft distance to adjacent beam on left dught= 1 ft distance to adjacent beam on right • W trib= 3.50 ft tributary width service L.F. ultimate DL= 0.11 k/ft 12 = 0.13 k/ft LL= 0.09 k/ft * 1.6'' = 0.14 k/ft W= 0.19 k/ft Wu= 0.27 k/ft use W18x35 camber 0in. RU MEI:= 6 kips Beam Properties FY= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 510 in4 moment of inertia Wt= 0.035 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 66 ft-kips Mu=W„L2/moment coeff. 4-4Ah= 242 ft-kips o.k. Deflection allowable live load deflection=U 240 11111 ADL= 0.64 in ALL= 0.53 in = U 1011 o.k. A=(5WL4/384E1)/deflection coeff. An= 1.17 in = U 460 o.k. ATL=DL+LL-camber 0 OPUSProject Bridgeport R2 , OPUS Date 6/2/2004 By MGK • Opus Architects&Engineers Sheet 4 of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION- Grid B-4 to 5 Filename: bm_dsgn.xls C a i b F— u 4 c By: DCP Beam Data Rix= 1.8 kips ROS= 1.8 kips RLL= 1.3 kips RLL= 1.3 kips R„= 4.2 kips L= 41.33 ft Ru= 4.2 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384EI*coeff) t• pin-pin pin-pin 2 8 C fixed-fixed fixed-fixed 2 16 2.5 C fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft dieR= 4 ft distance to adjacent beam on left d,;aht= 1'-ft distance to adjacent beam on right • W = 2.50 ft tributary width service L.F. ultimate DL= 0.09 k/ft 1.2. _' = 0.10 k/ft LL= 0.06 k/ft * 1.6 = 0.10 k/ft W= 0.15 k/ft Wu= 0.20 k/ft use W18x35 camber 0 in. Rumex= 5 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 510 in4 moment of inertia Wt= 0.035 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 43 ft-kips Mu=WuL2/moment coeff. el3M„= 242 ft-kips o.k. Deflection allowable live load deflection=U'240 • ADL= 0.38 in ALL= 0.28 in = U 1788 o.k. A=(5WL4/384EI)/deflection coeff. An= 0.65 in = U 757 o.k. An=DL+LL-camber /� OPUS Project Bridgeport R2 Date 6/2/2004 • By MGK Opus Architects&Engineers Sheet 7 of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid E-7 to 8 Filename: bm_dsgn.xls GKtn A-- 7 l- By: DCP Beam Data Rm= 0.8 kips v „,„ = 0.8 kips RLL= 0.7 kips , RLL= 0.7 kips R„= 2.1 kips L= 21 ft R.= 2.1 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384E1•coeff) pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 C fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0:00 k/ft LL= 25 PSF 0.00I'k/ft diet= 4.5 ft distance to adjacent beam on left d,;aM= 1 ft distance to adjacent beam on right •` W mb= 2.75 ft tributary width service L.F. ultimate DL= 0.08 k/ft 1.2- = 0.09 k/ft LL= 0.07 k/ft 1.6' = 0.11 k/ft W= 0.15 k/ft W„= 0.20 k/ft use W14x22 camber 0 in. R„max= 3 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 199 in4 moment of inertia Wt= 0.022 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F13)or conservatively Cb=1.0 Moment M = 11 ft-kips M„=WWL2/moment coeff. = 116 ft-kips o.k. 41) Deflection allowable live load deflection=L/240 ADL= 0.06 in ALL -= 0.05 in U 4834 o.k. A=(5WL4/384E1)/deflection coeff. ATL= 0.11 in = U 2280 o.k. ATL=DL+LL-camber OPUSOPUS Project Bridgeport R2 Date 6/2/2004 III By MGK Opus Architects 8 Engineers Sheet g of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid 1 Filename: bm_dsgn.xls By: DCP Beam Data W + + + Rm.= 4.3 kips R1L= 4.3 kips Ru= 5.1 kips RLL= 5.1 kips R. = 13.3 kips L= 24.5,ft R. = 13.3 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL`/(384EI*coeff) pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 C fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0:00k/ft LL= 25 PSF 0:00 k/ft dna= 32 ft distance to adjacent beam on left S d,;gbr= 1 ft distance to adjacent beam on right W„�= 16.50 ft tributary width service L.F. ultimate DL= 0.35 k/ft 1.2 = 0.42 k/ft LL= 0.41 k/ft 1.6, = 0.66 k/ft W= 0.76 k/ft Wu= 1.08 k/ft use W14x22 camber 0 in. R,,,,,,,= 14 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 199 in4 moment of inertia Wt= 0.022 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment M.= 81 ft-kips M„=KL2/moment coeff. OM„= 116 ft-kips o.k. III Deflection - allowable live load deflection=U 240 AUL= 0.49 in ALL= 0.58 in U 507 o.k. A=(5WL4/384EI)/deflection coeff. ATL= 1.07 in = Li 274 o.k. ATL=DL+LL-camber 0 OPUS Project Bridgeport R2 • r V 7 Date 6/2/2004 By MGK • Opus Architects&Engineers Sheet q of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION- Grid 4-B to C Filename: bm_dsgn.xls Grid 5-A to B By: DCP Beam Data RDS= 2.0 kips RDS= 2.0 kips RLL= 2.4 kips , RLL= 2.4 kips Ru= 6.2 kips L= 8 ft R„= 6.2 kips coefficients Support reaction moment deflection Support Condition Condition WuUcoeff W„L2/coeff 5WL4/(384E1*coeff) (r. pin-pin 2 8 r fixed-fixed fixed-fixed 2 16 2.5 fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft dieft= 46.5 ft distance to adjacent beam on left • drtnM= 1 ft distance to adjacent beam on right W tro= 23.75 ft tributary width service L.F. ultimate DL= 0.49 k/ft * 12 s,, = 0.59 k/ft LL= 0.59 k/ft * 1.6 = 0.95 k/ft W= 1.09 k/ft Wu= 1.54 k/ft use W12x19 camber 0 in. Ru max= 7 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 130 in4 moment of inertia Wt= 0.019 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 12 ft-kips Mu=WuL2/moment coeff. = 81 ft-kips o.k. Deflection allowable live load deflection=L/240 • ADL= 0.01 in ALL= 0.01 in = L/ 6614 o.k. A=(5WL4/384E1)/deflection coeff. An= 0.03 in = U 3610 o.k. An=DL+LL-camber 0 OPUS. • Project Bridgeport R2 Date 6/2/2004 By MGK • Opus Architects&Engineers Sheet /,r) of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid 4-C to D Filename: bm_dsgn.xls By: DCP Beam Data W i 4 4 4 RDS= 10.7 kips ROS= 10.7 kips RLL= 12.9 kips . RLL= 12.9 kips R„= 33.5 kips L= 24 ft R„= 33.5 kips coefficients Support • reaction moment deflection Support Condition Condition WuUcoeff W„L2/coeff 5WL4/(384EI*coeff) (7 pin pin pin-pin 2 8 1 f fixed-fixed fixed-fixed 2 16 2.5 C fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25PSF 0.00 k/ft die= 44.67 ft distance to adjacent beam on left • d,;eh,= 41.33'ft distance to adjacent beam on right W bib= 43.00 ft tributary width service L.F. ultimate DL= 0.90 k/ft 1.2 = 1.07 k/ft LL= 1.08 k/ft * 1.6 = 1.72 k/ft W= 1.97 k/ft W„= 2.79 k/ft use W18x35 camber 0 in. R„RUM= 34 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= =-29000'ksi modulus of elasticity I= 510 in4 moment of inertia Wt= 0.035 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment M„= 201 ft-kips M„=W„L2/moment coeff. ‘13M„= 242 ft-kips o.k. Deflection allowable live load deflection=U 240 • ADL= 0.45 in Ai.i.= 0.54 in = U 531 o.k. A=(5WL4/384E1)/deflection coeff. An= 0.99 in = U 290 o.k. An=DL+LL-camber OPUSOPUS. Project Bridgeport R2 Date 6/2/2004 By MGK • Opus Architects&Engineers Sheet 1 t of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION- Grid 4-D to F Filename: bm_dsgn.xis By: DCP Beam Data W RDS= 11.0 kips RDl.= 11.0 kips RLL= 13.2 kips , RLL= 13.2 kips Ru= 34.2 kips L= 24.5 ft R = 34.2 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384EI•coeff) r7 pin pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 C fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25PSF 0.00'k/ft die= 44.67 ft distance to adjacent beam on left • d;ftM= 41.33 ft distance to adjacent beam on right W„�= 43.00 ft tributary width service L.F. ultimate DL= 0.90 k/ft 12 = 1.07 k/ft LL= 1.08 k/ft 1.6'- = 1.72 k/ft W= 1.97 k/ft Wu= 2.79 k/ft use W18x35 camber 0 in. Ru = 35 kips Beam Properties FY= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 510 in4 moment of inertia Wt= 0.035 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 210 ft-kips Mu=W„L2/moment coeff. d3M„= 242 ft-kips o.k. 11111 Deflection allowable live load deflection=U 240 ADL= 0.49 in ALL == 0.59 inU 499 o.k. A=(5WL4/384E1)/deflection coeff. On= 1.08 in = U 272 o.k. On=DL+LL-camber 0 OPUS Project Bridgeport R2 Date 6/2/2004 • By MGK Opus Architects&Engineers Sheet !2 of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid 5-B to D Filename: bm_dsgn.xls By: DCP Beam Data RpL= 15.0 kips RDL= 15.0 kips RLL= 17.6 kips RLL= 17.6 kips R„= 46.2 kips L= 32 ft R.= 46.2 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384E1*coeff) (Pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 C fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0:00 k/ft LL= 25 PSF 0.00 k/ft d,*ft= 41.33 ft distance to adjacent beam on left S d1 = 46.5 ft distance to adjacent beam on right W Lib= 43.92 ft tributary width service L.F. ultimate DL= 0.94 k/ft * 12 = 1.13 k/ft LL= 1.10 k/ft * 1.6 = 1.76 k/ft W= 2.04 k/ft Wu= 2.88 k/ft use W21x62 camber - 0 in. R.max= 47 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 1330 in4 moment of inertia Wt= 0.062 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 369 ft-kips M„=W„L2/moment coeff. mM.= 540 ft-kips o.k. • Deflection allowable live load deflection=L/240 = 0.58 in ���= 0.67 in = U 572 o.k. A=(5WL4/384E1)/deflection coeff. ATL= 1.25 in = U 308 o.k. DTI.=DL+LL-camber OPUS. Project Bridgeport R2 Date 6/2/2004 By MGK • Opus Architects&Engineers Sheet 13 of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid 5-D to F Filename: bm_dsgn.xls By: DCP Beam Data W i + + + RDS= 11.2 kips Rr L= 11.2 kips Ru= 13.4 kips , Ru.= 13.4 kips R. = 34.9 kips L= 24.5 ft R„= 34.9 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384E1*coeff) , f.' pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 C fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00'':k/ft deft= 41.33ft distance to adjacent beam on left • d,;ib= 46.5 ft distance to adjacent beam on right W,;b= 43.92 ft tributary width service L.F. ultimate DL= 0.91 k/ft 12 = 1.10 k/ft LL= 1.10 k/ft 1.6' = 1.76 k/ft W= 2.01 k/ft Wu= 2.85 k/ft use W18x35 camber 0 in. RI MaX= 35 kips Beam Properties Fr= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 510 in4 moment of inertia Wt= 0.035 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment M„= 214 ft-kips M„=W„L2/moment coeff. OK= 231 ft-kips o.k. • Deflection allowable live load deflection=U 240 ODS= 0.50 in = Du.= 0.60 inU 489 o.k. A—(5WL4/384Ei)/deflection coeff. On.= 1.10 in = U 267 o.k. On=DL+LL-camber 0 OPUS. Project Bridgeport R2 Date 6/2/2004 By MGK • Opus Architects&Engineers Sheet y of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION- Grid 7-A to C Filename: bm_dsgn.xls By: DCP Beam Data RDL= 5.6 kips RDL= 5.6 kips RLL= 6.8 kips RLL= 6.8 kips Ru= 17.5 kips L= 16 ft R„= 17.5 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384EI*coeff) C• pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 r fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00k/ft die= 46.5 ft distance to adjacent beam on left door= 21'ft distance to adjacent beam on right • W inb= 33.75 ft tributary width service L.F. ultimate DL= 0.70 k/ft * 1.2 = 0.84 k/ft LL= 0.84 k/ft * 1.6- = 1.35 k/ft W= 1.54 k/ft Wu= 2.19 k/ft use W14x22 camber 0 in. R„MEM= 18 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 199 in° moment of inertia Wt= 0.022 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment M„= 70 ft-kips M„=W„L2/moment coeff. cbM„= 110 ft-kips o.k. Deflection allowable live load deflection=U 240 • Doi= 0.18 in ALL= 0.22 in = U 891 o.k. A_(5WL4/384E1)/deflection coeff. Ott= 0.39 in = U 488 o.k. An=DL+LL-camber 0 OPUS. Project Bridgeport R2 r V Date 6/2/2004 By MGK • Opus Architects&Engineers Sheet / c of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid 7-C to E Filename: bm_dsgn.xls By: DCP Beam Data l RDS= 10.2 kips R1L= 10.2 kips RLL= 12.0 kips RLL= 12.0 kips R„= 31.5 kips L= 28.5 ft R„= 31.5 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384EI*coeff) r pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00k/ft LL= 25 PSF 0.00 k/ft deft= 46.5 ft distance to adjacent beam on left d,,gM= 21 ft distance to adjacent beam on right W = 33.75 ft tributary width service L.F. ultimate DL= 0.72 k/ft * 1.2'-- = 0.86 k/ft LL= 0.84 k/ft * 1.6 = 1.35 k/ft W= 1.56 k/ft W = 2.21 k/ft use W18x40 camber 0 in. R„max= 32 kips Beam Properties Fy= 50 ksi yield stress F1= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 612 in4 moment of inertia Wt= 0.040 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 224 ft-kips Mu=W„L2/moment coeff. = 276 ft-kips o.k. Deflection allowable live load deflection=U 240 • 0�= 0.60 in ALL= 0.71 in = U 485 o.k. A_(5WL4/384EI)/deflection coeff. ATL= 1.30 in = U 262 o.k. ATL=DL+LL-camber 0 OPUS Project Bridgeport R2 Date 6/2/2004 By MGK • Opus Architects&Engineers Sheet /6 of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Grid 7-E to F Filename: bm_dsgn.xls By: DCP Beam Data l f + RpL= 5.0 kips Roi.= 5.0 kips RLL= 5.9 kips , RLL= 5.9 kips R.= 15.5 kips L= 20 ft R = 15.5 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384EI*coeff) pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 C fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft = 46.5 ft distance to adjacent beam on left d,;ght= 1 ft distance to adjacent beam on right W b;b= 23.75 ft tributary width service L.F. ultimate DL= 0.50 k/ft 1.2 = 0.60 k/ft LL= 0.59 k/ft 1.6 = 0.95 k/ft W= 1.09 k/ft W„= 1.55 k/ft use W16x26 camber 0 in. R.MEM= 16 kips Beam Properties FY= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 301 in4 moment of inertia Wt= 0.026 k/ft beam self weight Lb= 5 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment M„= 78 ft-kips M.=WWL2/moment coeff. cl,M„= 158 ft-kips o.k. Deflection allowable live load deflection=U 240 • Doi= 0.21 in ALL= 0.24 in = U 980 o.k. A=(5WL4/384E1)/deflection coeff. ATL= 0.45 in = U 532 o.k. ATL=DL+LL-camber OPUS Project Bridgeport R2 ` f U Date 6/2/2004 By MGK • Opus Architects&Engineers Sheet 17 of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-beam parallel to moment frame Filename: bm_dsgn.xls By: DCP Beam Data 4 4 Ra= 3.1 kips RDL= 3.1 kips Ru= 2.9 kips RLL= 2.9 kips R„= 8.4 kips L= 46.5 ft Ru= 8.4 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384EI*coeff) (7 Pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft d1eft= 5 ft distance to adjacent beam on left • d;ab,= 5 ft W„ 5.00 ft distance to adjacent beam on right = tributary width service L.F. ultimate DL= 0.14 k/ft * 1.2'___= = 0.16 k/ft LL= 0.13 k/ft * 1,6 = 0.20 k/ft W= 0.26 k/ft W„= 0.36 k/ft use W18x35 camber 0 in. Rumex= 9 kips Beam Properties FY= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 510 in` moment of inertia Wt= 0.035 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment M„= 98 ft-kips M„=W„L2/moment coeff. cl)M„= 231 ft-kips o.k. Deflection allowable live load deflection=U 240 • Aot= 0.96 in ALL= 0.89 in = U 628 o.k. A=(5WL4/384E1)/deflection coeff. An= 1.85 in = U 302 o.k. An=DL+LL-camber Opus Architects&Engineers,Inc. • O p Minnet5nkaMinnesota 5343 952-656-4444 Fax 952-6564529 COLUMN, BASEPLATE, & FOUNDATION DESIGN •> • N ..t . .......si .„2_,,, ro_t_si t _ ami ro — avi 'p Q .0 Hi-- 9 -(H-- -,---}a)- r --H-•-••- -- --7^ - - - - -% - - - -^ T---- - "t - - -- -• • a i 4. 4.f..Z. 1 I Lg , 4 L2.9 i k 691-7 1 9b� t _ ; ! OPUS, Date 6/714,d 0 '„'' Opus Architects & EngineersBy (1`GG` Sheet ..2- of • • S 'LMPJ bi !sG/.) LL ..:,..2�n . 'i 2 Y1 2)- , 8 ! 0 Ac X f ' I 'q°I, G kc. k .. .,., 1 . P-4- !As ' ts x 5 : W I3$ Cl?Pw Pr !c_ ? i P iA, )k',_ , F ...... , � ...,.. ._, �..... _ _,. .'�. ,l.� _.......... .. ...... '. ,� ... .� ..d.. .. _ ate, ... P v i F t . 5 opus,. Project 1? 2--- lel Date 6/-z /ce/ Opus Architects & Engineers . . By - 646k Sheet - 3 of 0 . - , . ' . . . . . . , , - , . . , , . , . . . . . . . „ . . . . . . , . ; 11_ . . . .. Fe or i iv a or<-, A.) : : : : : t\t„(,.. ...16, Ge4' . 9-5 --• p .....: 5-6 k_ ; ' , — Lf . , ....- --___ . ..,..... , ' , f t . 1 -,- i , ' --4- i - : ---ir ';'• i , .. ,,, 1 i . ! ' --, - t, '.1 I !ec.. e-}, 4 - r•,:, --. , • ,,,,,,, ::. • ,,,.„(. - , 0 , . . . , , . .,, _:.., ,..„,': 1,.., :_..(3:77, :,.. '.' 3 k.•5 c'''' ; I •ir f 0 . ' fr , y , tt , -, bts-c--2 • ' 3 —0 K 3 ,-0- x 1-2. , (4 1-f -7 q ; 0 , , . 0 -, i„ OPUS Opus Group of Companies- Project Bridgeport R2 ♦ • Architects,Engineers,Contractors,Developers Date 6/2/2004 411. By MGK Sheet if of Design base plate with axial loads only DESCRIPTION > Typ Column Base Plate Filename: colbaspl.XLS > By: DCP BASE PLATE B = 16 in Base plate width N = 16 in Base plate length t= 0.75 in. Base plate thickness Fy= 36 ksi yield stress of base plate FOUNDATION fc' = 3 ksi compressive strength of concrete foundation b= 54 in foundation width I = 54 in foundation length A2= 2916 inA2 area of the supporting concrete foundation that is geometrically similar to the plate COLUMN column W10x33 bf= 7.96 in column flange width d = 9.73 in column depth dsg = W shape designation ULTIMATE LOADS Pu= 80 kips REQUIRED BEARING AREA Al = 25 inA2 Al = max[Pu/0.6*1.8fc', 1/A2*(Pu/0.65*0.85f0^2) B*N = 256 inA2 o.k. REQUIRED PLATE THICKNESS m = 3.38 in m = (N-0.95d)/2 n = 4.82 in n = (B-(0.8 W, 0.95 TS)bf)/2 tp= 0.67 in tp= max(m, n)*(2Pu/0.9FyBN)^0.5 t>tp, o.k. S I Opus Architects&Engineers,Inc. • • 10350 Bren Road West /, OpUSTm Minnetonka,Minnesota 55343 952-656-4444 Fax 952-656-4529 LATERAL LOAD SUMMARY • • OPUS. Project R 2- e Date 6/9/oy Opus Architects & Engineers . By • - , . , , . - Sheet I of , . . , . 60/L-Oik/a, 1A,A5. ' . - • \ . . , H g rr , Nokt-11 N . : . . . . . ' . , e41-- - - , . , „ii1.0.0..‘ .:•,,, ., ... , . .. , . . .. , , . C) \ iD 906 .--. Itrjop.:Pei'iz i,v',6-7---'-‹.. c.-- ' 5--oo • -,, , ,:, ,,, ,„:. , -;.4 ' Oi.... ...._ zo, ,,p C ? 6<i, Ty .... 1/J IMA-'.- —) ' iii-- ----- 73 q.kC (.' SOO 41-) '( 77....) — 2( 0 Vc..., . : , . e C(Art- ',. /vo,v,-r.iu'r prc4#4.*c:5 ki :"--- CS C/3 0 • k-- .. • , . OP 1S Project Bridgeport R2 S .• V �J • Date 6/9/2004 Opus Architects&Engineers,Inc. By MGK Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. Sheet 7s of Required Design Data SOS = 0.75 Design spectral response acceleration at short period, Section 1615.1.3 SD1 = 0.404 Design spectral response acceleration at 1-second period, Section 1615.1.3 S=:D Soil Profile Type Seismic Use Group I Seismic Design Category D Moment Frame System-Special Moment Frame R= 8.0 response modifciation factor, Table 1617.6 IE= 1.0 occupancy importance factor, Section 1616.2 Cd = 5 1/2 deflection amplification factor Equivalent Lateral Force Procedure V= CSW CS= 0.094 SDs/(R/IE) Ta= 0.270 seconds Ta= CThnx CT=110 : 0.028 x= 0.8' hn = 17.00feet Cu= 1.4 Table 1617.4.2 Tmax= 0.378 seconds Tmax= CuTa T= 0.270 seconds T=Ta Cs max= 0.187 Cs max= SDl/I(R/IE)Tl Cs min= 0.033 Cs min= 0.044SDSIE or 0.01 Cs= 0.094 V= 37 kips V= CSW Vertical Force Distribution of Seismic Forces k= 1.000 T<= 0.5 k= 1 T=> 2.5 k= 2 wx hx wxhxk Cvx Fx Mo level kips ft k*ft2 kips k*ft 111111 Roof 391 17.00 6647 1.00 37 623 391 6647 37 623 Bridgeport Date and Time: 7/7/2003 11:12:10 AM 3 MCE Ground Motion - Conterminous 48 States • Zip Code - 97062 Central Latitude = 45.369403 Central Longitude = -122.759583 Period . MCE Sa . (sec) (%g) 0.2 104.5 MCE Value of Ss, Site Class B 1.0 036.3 MCE Value of S1, Site Class B Spectral Parameters for Site Class D 0.2 SSS = FaSs, Fa = 1.08 1.0 0060.6 = FvS1, Fv = 1.67 Spectrumor.Site Class D Period MCE Sa (sec) (%g) 0.000 045.2 T = 0.0, Sa = 0.4FaSs 0.107 112.9 T = To, Sa = FaSs 0.200 112.9 T = 0.2, Sa = FaSs 0.537 112.9 T = Ts, Sa = FaSs 0.600 101.1 0.700 086.6 0.800 075.8 0.900 067.4 1.000 060.6 T = 1.0, Sa = FvS1 1.100 055.1 1.200 050.5 1.300 046.6 1.400 043.3 1.500 040.4 1.600 037.9 1.700 035.7 ��S z z73 Syyis = Z/5( /427) z 1.800 033.7 1.900 031.9 2.000 030.3 Sol z 2/3 Srn, % 51 0_(000 z °. D'f 110 9 Period,sec MCE Sa,g 0.00 0.462 Maximum Considered Earthquake Ground Motion 0.11 1.129 Site Class D Fa = 1.08 Fv = 1.67 Zip Code =97062 0.20 1.129 III Central Lat. =45.369403 deg Central Long. = -122.759583 deg 0.54 1.129 0.60 1.011 1.6 0.70 0.866 0.80 0.758 • 1.4 e 0.90 0.674 C O 1.00 0.606 co 1.2 • i 1.10 0.551 ca al 1 I 1.20 0.505 \\h*4N v 1.30 0.466 Q 0.8 1.40 0.433 0.6 1.50 0.404 Q 1.60 0.379 N 0.4 1.70 0.357 W 1.80 0.337 • 0.2 1.90 0.319 0 2.00 0.303 0 0.5 1 1.5 2 Period, sec • • _ Opus Architects&Engineers,Inc. . • • 0% opus. Minnetonka10350 ,Bren MinnesotaRoadWest 55343 952-656-4444 Fax 952-656-4529 MOMENT FRAME DESIGN • OPUS_ Project �Z OPUS_ Date Opus Architects & Engineers By __ ---- __ _ _ ------ Sheet of • - -- - I SPH..-:-C r4 , ., -r r1/_r--5 1o1 - % s(V'S.MiC, P20)I f04 r For S UCrt-ctAC S-T,-`Z /6,C 065" 4v2 F 7 o --a AN, -zoo Z A c Sc 3 y - o- S-> < r'rerbua 1 {,YJ Co n�Fc4�'t� 1 ,26 C H.- FgA4A- 3SO V • 1-) C9ED GttORE/AI FvnC d F!hA+6E - GJE E1 :✓E' CoA,/r‘1 C L✓u F-w) �c ct.C-t pot + C .a.N .tdr;`JS P s Se4-3 ;-hs to Ere S -E- 1 Ftck^ ec DC F?QJ. ^S b L . 30 E< + )O 2q;9o- _ 1,r•4 FCS-- f CoC6 4_ . Z M eh t- o-c- bac. g -el ex nnv SS's-, 4 2 .45— WCGs a� Co Lu++ 1. a�d 6-20 .r �� Cam 6, -aexu..p c'-J a: -€or ,«S h 3,ty(r' �f_ bc-Y as _ 2,sy f �' _ 64,R, fw Jj Pry/ V n P4 t..) tJ aFi \ Db7 Sec :n•S � = wa,:c W / h/trd L 5- w Sit 7,22 X car 531 68 , 71, 22) 132 , I ' T ) /76 / /93 Zit WIC x 31) yon cJ S-o -°?, ?)/ ?' / (Do G11g X 35- yo) `,'G Sv Ss Go j S/ 7 / 86 w-2 j x 4/v/ so 5-2 c2 93 W a4 x 53 6"Z, 76 • Project_ _ Opus Architects & Engineers By____._. M��L • Sheet_—_ Z" of 4.6 GAM„ — 4Pc . M�, 7 ► ,o ( p- No-f- cl / GLecK Oc.oO.ciia 4 �1.�a...,Q G ---S Ao,. btt,/pGi 5 w I tOJ arc, L,ctJ.5 Z)P1-.✓..2 ✓LGcct,,cF , cN1s ALL ,` c1 of fi� cre.,7 0-d A 06, -f— G��4 fJ,t- w t!( 6- . C' `` r 4.-Al� C0,v Al �/ S-D C 1730-A) ,s ‘L.4��s. 6.v�..� fa G G a-e f s tfF 1C Y-A`A- 3 , • _ G,FS t� �, f3 k a-c<R16 0 F /3A s -- t 5 Fj 12E/3.1._ s A o f O Z Fi7 b,F E-f-- i /, O���. Project f� Date 6/gII0Y Opus Architects & Engineers By A't6A.- . Sheet 3 of • W6s1• AkU"IF Al7 Pr?e4-MF '- 'c , • , i ,_ _.._. 3E4.0 C d ', r. �v;6z a � i 0 G, :L o- 2.0,0 ,4."i4,45 � z 7� ' t.F4. 4,e7 �'3L s . Nv A-d0rj`iailq-t G aN Cotit Purif1S ST Mc�-t Fd`J9" -r/t4;-,,,i.E'. <-0Ac i , , . - 12'3h ' ix1!—/0,' f2:—i , �A�'"�S �?nx. _ _... ' 4.. .C. } ?-off k/ 14`t 3 N° 4-OD f a 0 4 A c a.+,a.._. .0,/,„,i C o 4 .40i..4 OPUS Project 1Q7— 0 . Date ‘(q/c , A .4-- Opus Architects & Engineers • By ACI Sheet • 7 of 0 ; . . . . . , . , .. . . . , , . . . . . . , . , - .4 , • . . . . . . . . N 6#4-7-g ili.&l'A.6 A T.- 1: /f7,4104 le- 1.-'04-40S ' , g - (21== I . , , . • , ' . . . , , . . 01 ' . . . . , , . . . ' /6,,/....?4 -'----. , 1 i ....,..._ . . . tt ( : . : 14y.,,_. 7 s- -- .-t , ir . .,. : , 0 -zr . . ' I)07i._ •••• . C-0[a 0,,,„.ek. : 7 • , 0L l ) 0 •,... ., : „:sr, (,(2 •kt 1 .\— ca (17=2 7 ''''':: , , . ,..... 4_ i , i ,, s.....2:,,,,14.,„n„,,, . . o .., , . - A/. etA01.--'e-ft.;,,-....,() G0.—IL' . .. . . ----;..,,, ,-• 7' .• L' fa - ' ( -2: _ q c.t . It,t, ,..,.._.._ ) ..7_, .... 1_,...,... ,.. H -. . . . . , . . ' ' . . . ,. . . - . ' . ' . OPUS.. Project Date g/9/oct Opus Architects & Engineers By lilt'- , Sheet C of 50 ct'tH Ake rte./4-467 1'71 1c'— " r 16 / 4.044 2-0 /7"s (41:-zic.") • 53' ef itA4N, rir?4,44 / - Cot - F Zo,, t (52.1 f '1 ,6 L F ,F 2-°pC ."1 *1-1 — _(13-1 ) - Project e...2_ 0 opus Date • Opus Architects & Engineers . By Sheet • 4 of . . . , . . . , , . 0 i , . „ , . , , •', , , , • 1 . „ c-?/ F---;ii-c 7—ilit, I - • - ' , , : , , -. . : ,. . , f. , _ , , , , , , . ' • . - . . 11‘ - itr , . . . , 1: ctd ' ' V GettA...,,c 11,-+ ' fr1^4,•100_41"et*'-...a ia. C.ev, . , . file•-' IS Leo, .7 - .. -7= .. 6 ( C , . . , . . . . . . . . . . ... / — od. '-2.0 , , if i 9 i .d.... ,_ (2...5- .,._,., ': _,.... . 'i 2 . )4?0,4 CI 1.-,1 > l i t 5- : er) ,,__ Ak 0 , . . . , . . . , . . : . , , .... . . - . . . . . , . . . . , . . , . . : . . : . ,, . . , . . . . , . . . . . . . , : . . : - : - VisualAnalysis (version 4.00) - 7 West Mom Frame, Wed Jun 09 17:30:53 2004 Opus Architects& Engineers, Inc., Matthew Kahle, Bridgeport R2 . Seismic • s W16x40 W16x40 N2 RM 1 N4 RM7 N6 14.600 K theta=0 theta=0 00 o 00 o CO 0 .CI-v.- a 'Cr C\ n .4'C II VrC 7-rCa6 1-C zica f<,F+-- 53,2 $.r 4_,i,..- 41415-1...* .411.____1( 3 5 4,/.Y 5x a2 — Cir 33 u bill- d.Yi,,,, G4 ` cCri / , dZ,sI = 31,a 5i O J 3 /r J V '`'z�/ 35,841tag8 = , 355 (37) _ it 612 wr 0 0,00( iod(a.,,,es.e..,,t- = ,28 `r G vq so 0k '"" �. _ R3 ` cd,_ s.r 0 VisualAnalysis (version 4.00) - East Mom Frame, Wed Jun 09 17:30:34 2004 Opus Architects & Engineers, Inc., Matthew Kahle, Bridgeport R2 Seismic III W16x40 W16x40 W16x40 RMRM3 22.400 K HN2 R theta=0 �N4 theta=0 �N6 theta=0 �N$ 0 0 0 0 0 0 0 Xr- 11 NI- II XcY: II X� III m ca �. c rD C; C: .-s U SUE kq, I k, 44{ 5` ,16,4. 7oq,2Prti 1 X3 53, hetfr- - " S,01 stets 6, 1 �S'3v 41,06 12/1-2 - 6,02 I g,u-z _ _ 60,9E 60,s-% V ,016,-/ 613xn-t 3t ,r 7t _ , 6U5 : 7) - Zz,-y/c • e Uo = , 93 1( Ill VisualAnalysis (version 4.00) - North Mom Frame, Wed Jun 09 17:28:43 2004 Opus Architects & Engineers, Inc., Matthew Kahle, Bridgeport R2 Seismic III W16x40 W16x40 W16x40 18.500 K 7�sN2 RM1 �N4 RM7 �N6 RM3 �N8 theta=0 theta=0 theta=0 CO� l CO� it p XC II CO I fo co - coo x co �C� � m�� 15 , (; L �(; L 1- (---5 3i,i it- ,.f-F- 'fq,4 ,,,f"-- 1./11,2 31, 3 _Iciti1 357 -----y,,f f,oa 46-7/ lZ,`►? T a,oy \it2, 2I '1%1, 27_ IAv'i I-- ot.,<19f cc.c,�..ca, 4- , 0P - So,..G M,r�, SU 2c c I^ care/ F ? V = / 8,5IC III4,,,,,,,6 --,- ,stir G r 9 3 So O k 0 VisualAnalysis (version 4.00) - South Mom Frame, Wed Jun 09 17:28:54 2004 to Opus Architects & Engineers, Inc., Matthew Kahle, Bridgeport R2 Seismic • W16x40 W16x40 W16x40 RMRM'i 18.500 K HN2 R theta=0 �N4 theta0 +N6 theta=0 0N8 CO 0 0 CO OD 0 V.N- p mac` 11 V'cr; o "zrV I 7C 1) r� tt)t -L. L �L L 1Llv,6 krr� 3�Y.X 7 38,6 _Ait _3qt -44t 411Zi Siez �—c-o7 . o 3,58 T i,6,,,, y 1‘'3iY2 u oN.y 4- &5fiEG,.cE:.,,t `. . ! Cal Cel - 10.",'/4 _ *50 f c t, 41-1 v ig,Ck a, ._,6 _ .2, L ixu -5' 3 ,, 5-0 o • • ject Bridgeport II OPUC` Pr Date 6/10/2004 R2 By MGK Opus Architects & Engineers, Inc. Sheet ‘1 of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. This spreadsheet calculates the interaction equation for compact I-shaped members with combined axial &flexural forces, using AISC- LRFD latest edition. DESCRIPTION - Moment Frame Column Design Filename: axl-flex.XLS Worst Case West Mom Grid D-2 By: DCP APPLIED FORCES (ultimate) Pu = 34 kips required axial strength Mux= 73 ft*kips required moment capacity Muy= 0 ft*kips required moment capacity Cb= 1 use equation (F1-3) or conservatively Cb= 1.0 UNBRACED LENGTHS Lx= 17 ft Kx= 1 KLx= 17 ft Ly= 17 ft Ky= 1 KL = 17 ft LZ= 17 ft KZ= 1 KL,= 17 ft where Kx= effective length factor for the x-axis Ky= effective length factor for the y-axis • KZ= effective length factor for torsional buckling Lb= 17 ft distance between points braced against lateral displacement of the compression flange. BEAM = W14X48 Interaction Equation = 0.39 BEAM PROPERITIES: Xaxis Yaxis I = 484 51.4 in4 moment of inertia S = 70.2 12.8 in3 section modulus r= 5.85 1.91 in radius of gyration Z= 78.4 19.6 in3 plastic section modulus A= 14.1 in2 gross area J = 1.45 in4 torsional constant CW= 2240 in warping constant X1= 2580 ksi X1 =n/Sx(EGJA/2)6.6 X2x106 = 3250 (1/ksi)` X2=4C,N/Iy(Sx/GJ)2 Fy= 50 ksi yield stress F�= 10 ksi residual stress E = 29000 ksi modulus of elasticity G = 11600 ksi • 0 OPUS Project Bridgeport R2 ♦ OPUS. Date 6/10/2004 By MGK • Opus Architects& Engineers, Inc. Sheet -t of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. FLEXURAL DESIGN STRENGTH: bf/2tf= 6.75 < = Table B5.1 = 9.15 flange is compact hit,= 33.6 < = Table B5.1 = 77 web is compact Major Axis Bending: Lp= 81 in Lp= 1.76ry(E/Fy)05 (F1-4) Lr= 230 in Lr= ryX1/(Fy-Fr)*(1+(1+X2*(FY Fr)2)°.5)0.5 (F1-6) Mp= 327 ft*kips Mp= FyZx<= 1.5FySx (F1-1) Mr= 234 ft*kips Mr= (Fy-Fr)Sx (F1-7) (13Mnx= 225 ft*kips Lp < Lb < Lr if Lb < Lp �Mn= cl3Mp (F1-1) if Lp< Lb< Lr szl)Mn= Cb(Mp(Mp Mr)*(Lb-L,)/(Lr Lp)) <_ OMp (F1-2) • if Lb> Lr �Mn = OCbSXX,(2)o.s/(Lb/ry)*(1+Xt2X2/2/(Lb/ry)2)o.e (F1-13) Minor Axis Bending: Mp= 80 ft*kips Mp= FyZy<= 1.5FySy cDb = 0.9 dtMny= 72 ft*kips • OPUSOPUS. Project Bridgeport R2 . Date 6/10/2004 ByMGK • Opus Architects& Engineers, Inc. Sheet i1 of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. AXIAL COMPRESSIVE STRENGTH: bf/24= 6.8 < X,=Table B5.1 = 13.49 flange is compact hit,= 33.6 < = Table B5.1 = 132 web is compact KL/r,= 35 KL/ry= 107 Chapter E a.c= 1.41 kc= KL/rmax(Fy/E7t2)o.5 (E2-4) Fcr= 21.71 ksi <= 1.5 Fcr = (0.658nFy _ (E2-2) > 1.5 Fcr = (0.877/7 2)Fy (E2-3) Fy/2= 25 ksi ok Appendix E- E.3 Design Compressive Strength for Flexural-Torsional Buckling Fe= 60.19 ksi Fe= [7t2ECW/(KZI)2+GJj/(I),+ly) (A-E3-5) . = 0.91 = (Fy/Fe)o.s (A-E3-4) Fcr= 35.32 kSi 2.e <= 1.5 cl3Fcr = (0.658w2)Fy (A-E3-2) 2.e> 1.5 OF, _ (0.877/Xe2)Fy (A-E3-3) (Dc= 0.85 (DPI,= 260 kips OP, = OFO.Ag Fcr per chapter E (E2-1) INTERACTION EQUATION: Pu4Pn= 0.13 < 0.2 Me/cMnx= 0.32 Mu/c1)Mny= 0.00 if PAP,=> 0.2 PuicWn + 8/9(Mukt Mn) _ (H1-1a) if Pu/cDPn < 0.2 Pu/20Pn + MAMn = 0.39 o.k. (H1-1b) S OPUS. Project Bridgeport R2 Date 6/10/2004 By MGK lb Opus Architects & Engineers, Inc. Sheet tci of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. This spreadsheet calculates the interaction equation for compact I-shaped members with combined axial &flexural forces, using AISC - LRFD latest edition. DESCRIPTION - Moment Frame Beam Design Filename: axl-flex.XLS Worst Case West Mom By: DCP APPLIED FORCES (ultimate) Pu = 6 kips required axial strength Mux= 127 ft*kips required moment capacity Muy = 0 ft*kips required moment capacity Cb= 1 use equation (F1-3) or conservatively Cb = 1.0 UNBRACED LENGTHS Lx= 24 ft Kx= 1 KLx= 24 ft Ly= 6ft Ky= 1 KLy= 6 ft LZ= 24 ft KZ= 1 KLZ= 24 ft where Kx= effective length factor for the x-axis Ky= effective length factor for the y-axis KZ= effective length factor for torsional buckling • Lb= 6 ft distance betweenpoints braced against lateral displacement 9 of the compression flange. BEAM = W16X40 Interaction Equation = 0.48 BEAM PROPERITIES: Xaxis Yaxis I = 518 28.9 in4 moment of inertia S = 64.7 8.25 in3 section modulus r= 6.63 1.57 in radius of gyration Z= 73 12.7 in3 plastic section modulus A= 11.8 in2 gross area J = 0.794 in4 torsional constant CH,= 1740 in° warping constant X1= 1890 ksi X1 = rc/Sx(EGJA/2)o.6 X2x106 = 12700 (1/ksi)` X2 =4CW/ly(Sx/GJ)2 Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity G = 11600 ksi S 0 OPUS. Project Bridgeport R2 '� r VJ• Date 6/10/2004 By MGK 410 Opus Architects & Engineers, Inc. Sheet I 's of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. FLEXURAL DESIGN STRENGTH: bf/2tf= 6.93 < X,=Table B5.1 = 9.15 flange is compact 46.5 < X,p=Table B5.1 = 88 web is compact Major Axis Bending: Lp= 67 in Lp= 1.76ry(E/Fy)05 (F1-4) Lr= 176 in Lr= ryX1/(Fy-Fr)*(1+(1+X2*(Fy-Fr)2)o.$)o.5 (F1-6) Mp= 304 ft*kips Mp= FyZX<= 1.5FySx (F1-1) Mr= 216 ft*kips Mr= (Fy-Fr)Sx (F1-7) Mn = 270 ft*kips Lp < Lb < Lr if Lb< Lp OW= c13Mp (F1-1) if Lp < Lb< Lr cDMn = Cb(MP(Mp Mr)*(Lb-Lr)/(Lr-Lp)) <_ CDMp (F1-2) • if Lb> Lr (13Mn= (1)CbSXX,(2)o.5/(Ln/ry)*(1+X12X2/2/(Lb/ry)2)os (F1-13) Minor Axis Bending: Mp= 52 ft*kips Mp= FyZy<= 1.5FySy Of, = 0.9 OMny= 46 ft*kips S OPUS Project Bridgeport R2 ♦ 0 Date 6/10/2004 By MGK • Opus Architects & Engineers, Inc. Sheet !G of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. AXIAL COMPRESSIVE STRENGTH: bf/2tf= 6.9 < =Table B5.1 = 13.49 flange is compact h/t,,= 46.5 < =Table B5.1 = 136 web is compact KL/rx= 43 KL/ry = 46 Chapter E kc= 0.61 A,c= KL/rmax(Fy/E7t2)o.5 (E2-4) Fcr= 42.87 ksi <= 1.5 OF, _ (0.658xcA2)Fy (E2-2) kc> 1.5 OF, = (0.877/kc2)Fy (E2-3) Fy/2 = 25 ksi Fcr>Fy/2, see Appendix E Appendix E-E.3 Design Compressive Strength for Flexural-Torsional Buckling Fe= 27.82 ksi Fe= [7t2ECw/(Kzl)2+GJ]/(Ix+Iy) (A-E3-5) • Xe= 1.34 Xe= (Fy/Fe)o.s (A-E3-4) F,= 23.57 ksi X,e <= 1.5 OF, = (0.658xe"2)Fy (A-E3-2) �e> 1.5 Fcr = (0.877/Xe2)Fy (A-E3-3) c13c = 0.85 chPn = 236 kips cIPn = cDFcrAg Fcr per Appendix E (E2-1) INTERACTION EQUATION: P„/c13Pn= 0.03 < 0.2 M„/014Mnx= 0.47 M„/cIMny= 0.00 if P„/IPn => 0.2 PAPn + 8/9(M„/cDMn) = (H1-1a) if P„/OPn < 0.2 P„/2cIDPn + M„/c13Mn = 0.48 o.k. (H1-1b) • OPUS,. Project �� �Y�Z Date 6 f 7/6 Opus Architects & Engineers By 646/- Sheet I .7 of • 'FC 4.46 F (4E4, 64AF_IJ) ,14.),41EST Cie,-rk Ap 2 6(e SS s�c„b 514 F D k k _. %Z-t do A C2e-Q_ P0..o CA) 3 6 ak," SMF = `J Ott /p 11 ,1 1,3/we = 715- fess c>It. C.0 C u Y _y\ 12L. me,4-e C ' W t2 tA) • Co Pty-�S sl Sfi ( � 1�4Cs a�{ c{C(°etrko .�t c Kec74�,S t( ��� _ , 1.4e, c,,_ QG.r s, 04- co Lu h ,.J,e 6 ct -F� c. 6r1141."'"•• to G 4 S 3/gtt Pile04-- a t,,/ CSP W•e-Crik. aC( ' -t7 wruc -{n S(ti.475- ) g'e, w t. Ar rt s 5',3 kFQtktefE 70 7-AC K? EtD S7YQ4itlGn4 Fcjx. (o'J1iJ(10-zt PIJftz's red = , 6 -(7,c_ /t L dcoc. - 2 E '%] • w c.I )YG dc_c- = 13, f S(Y 1�c I�I� SI 1 k kJ M•^�+ - PV/c.c ,/i I l 3 1� �8 Cm) o 51/26 f/ Kt'_ OPUS Project Bridgeport R2 Date 6/10/2004 By MGK • Opus Architects&Engineers Sheet /$ of DESIGN OF A WELDED UNREINFORCED FLANGE-WELDED WEB CONNECTION USING FEMA 350. DESCRIPTION- WE S'(- r,€44-,A1. " Filename: connection design.xls By: MGK Column Properties Beam Properties size= W14x48 size= W16x40 do= 13.79 in column depth L= 23.67 ft beam length t..,= 0.340 in thickness web db= 16.01 in depth of beam tf= 0.595 in thickness of flange t"= 0.305 in thickness of web bf= 6.995 in width of flange h= 17 ft avg story height above&below tf= 0.505 in thickness of flange Fy= 50 ksi yield stress S,= 64.7 inA3 elastic section modulus F„= 65 ksi ultimate stress Z,,= 72.9 in"3 plastic section modulus Ry= 1.1 Table 1-6-1 Seismic Provisions wgt= 0.040 k/ft beam self weight E=::29000 ksi modulus of elasticity Load Additional Uniform Load .................. .................. DL= 20 PSF 0.00 k/ft .................. .................. LL= :::: 25 PSF 0:00 k/ft deft=.1::4467 ft distance to adjacent beam on left dfl9ht= 32 ft distance to adjacent beam on right W tnb= 38.34 ft tributary width service L.F. ultimate DL= 0.81 k/ft 1.2 : :: = 0.97 k/ft 1110 LL= 0.96 k/ft 1 6 = 1.53 k/ft W= 1.77 k/ft W = 2.50 k/ft Step 1:Calculate Mpr,at Hinge Location sh-Section 3.2.4 sh= 14.9 in dc/2+db/2 Cpr= 1.2 conservatively 1.2 or(Fy+Fu)/(2*Fy)= 1.15 Mpr= 401 k*in CPr*Ry*Zbe*Fy Step 2:Calculate Vp,at Hinge Location Sh-Section 3.2.5 L'= 21.2 ft L-2*sh/12 Vp= 56.5 k (MPr+MPr+PL'/2+wLi2/2)/L' Step 3:Calculate Mc and Cy-Sections 3.2.6&3.2.7 Mc= 471 k*ft Mpr+Vp*sh Cy= 0.740 1/(Cpr*Z4/Sb) Step 4:Calculate Required Panel Zone Thickness-Section 3.3.3.2 treq'd= 0.607 in > twc= 0.340 in N.G.-Doubler Plate Req'd treq'd= Cy*Mc*(h-db)/h tdp> 0.267 in. Min Doubler Plate Thickness .9*.6*Fyc*Ryc*dc*(db-tfb) Step 5:Continuity Plates Requirements•Section 3.3.3.1 tctregd= 1.17 in > tfc= 0.595 in N.G.-Continuity Plates Req'd For One-Sided(Exterior)Connections,top> 0.253 in top>t1b/2 For Two-Sided(Interior)Connections,top> 0.505 in tcp>tib Following Sec K1.9 of LRFD Spec.: • Width of Stiffener> 2.16 in wop>bfh/3-two/2 Thickness of Stiffener> 0.520 in tcp>max(teb/2 or bib*1.79*sgrt(Fy/E) OPUS0 Project Bridgeport R2 Date 6/10/2004 By MGK • Opus Architects&Engineers Sheet t ' of DESIGN OF A WELDED UNREINFORCED FLANGE-WELDED WEB CONNECTION USING FEMA 350. FA (140 DESCRIPTION- • Filename: connection design.xls cl l 3(Ar... By: MGK Column Properties Beam Properties size= W14x48 size= W16x40 do= 13.79 in column depth L= 9.17 ft beam length = 0.340 in thickness web db= 16.01 in depth of beam tf= 0.595 in thickness of flange t,= 0.305 in thickness of web bf= 6.995 in width of flange h=li:i'':'17 ft avg story height above&below tf= 0.505 in thickness of flange Fy= .. ...50 ksi yield stress S„= 64.7 inA3 elastic section modulus F„= 65 ksi ultimate stress Zx= 72.9 inA3 plastic section modulus Ry= 1.1 Table 1-6-1 Seismic Provisions wgt= 0.040 k/ft beam self weight E= :129000 ksi modulus of elasticity Load Additional Uniform Load ........ ............ DL= "" 20 PSF 0.00'.k/ft LL= 25 PSF 0:00 k/ft diet= :':::220.5 ft distance to adjacent beam on left dd9M= '- •'1 ft distance to adjacent beam on right W tnb= 10.75 ft tributary width service L.F. ultimate DL= 0.26 k/ft • 1.2 = 0.31 k/ft LL= 0.27 k/ft " 1.6 = 0.43 k/ft W= 0.52 k/ft W„= 0.74 k/ft Step 1:Calculate Mpr,at Hinge Location sh-Section 3.2.4 sh= 14.9 in dC/2+db/2 Cpr= 1.2 conservatively 1.2 or(Fy+Fu)/(2*Fy)= 1.15 Mpr= 401 k*in Cpr*Ry*Zbe*Fy Step 2:Calculate Vp,at Hinge Location sh-Section 3.2.5 L'= 6.7 ft L-2*sh/12 Vp= 121.7 k (Mpr+Mpr+PL'/2+wL'2/2)/L' Step 3:Calculate Mc and Cy-Sections 3.2.6&3.2.7 Mc= 552 k*ft Mpr+Vp*sh Cy= 0.740 1/(Cpr*Zo/Sb) Step 4:Calculate Required Panel Zone Thickness-Section 3.3.3.2 tregd= 0.711 in > twc= 0.340 in N.G.-Doubler Plate Req'd tregd= Cy*Mc*(h-db)/h tdp> 0.371 in. Min Doubler Plate Thickness .9*.6*Fyc*Ryc'dc*(db-tfb) Step 5:Continuity Plates Requirements-Section 3.3.3.1 taregd= 1.17 in > tfc= 0.595 in N.G.-Continuity Plates Req'd For One-Sided(Exterior)Connections,tep> 0.253 in top>4/2 For Two-Sided(Interior)Connections,t,p> 0.505 in tcp>tib Following Sec K1.9 of LRFD Spec.: • Width of Stiffener> 2.16 in w0,>bib/3-tWe/2 Thickness of Stiffener> 0.520 in tbp>max(4/2 or bib*1.79*sgrt(Fy/E) 0 OPUS Project Bridgeport R2 Date 6/10/2004 By MGK • Opus Architects&Engineers Sheet Z of DESIGN OF A WELDED UNREINFORCED FLANGE-WELDED WEB CONNECTION USING FEMA 350. DESCRIPTION- A'S1- "0 ret*1 etiC, Filename: connection design.xls 1�L '- 2" 13 Al By: MGK Column Properties Beam Properties size= W14x48 size= W16x40 du= 13.79 in column depth L= 18:17 ft beam length t„= 0.340 in thickness web db= 16.01 in depth of beam tf= 0.595 in thickness of flange tw= 0.305 in thickness of web bf= 6.995 in width of flange h= 17 ft avg story height above&below tf= 0.505 in thickness of flange Fy= 50 ksi yield stress Sx= 64.7 inA3 elastic section modulus F„= 65 ksi ultimate stress Zx= 72.9 inA3 plastic section modulus Ry= 1.1 Table I-6-1 Seismic Provisions wgt= 0.040 k/ft beam self weight E= 29000 ksi modulus of elasticity Load Additional Uniform Load DL= 20 PSF 0.00 k/ft . .. .. .... ....... LL= _ 25 PSF 0.00 k/ft deft= 20.5 ft distance to adjacent beam on left dho1= 1 ft distance to adjacent beam on right • W eib= 10.75 ft tributary width service L.F. ultimate DL= 0.26 k/ft * 1.2 = 0.31 k/ft • LL= 0.27 k/ft * 1.6 = 0.43 k/ft W= 0.52 k/ft W = 0.74 k/ft Step 1:Calculate Mpr,at Hinge Location sh-Section 3.2.4 sh= 14.9 in dc./2+4/2 Cpr= 1.2 conservatively 1.2 or(Fy+Fu)/(2*Fy)= 1.15 Mpr= 401 k*in Cpr*Ry*Zbe*Fy Step 2:Calculate Vp,at Hinge Location sh-Section 3.2.5 L'= 15.7 ft L-2*sh/12 Vp= 55.2 k (Mar+Mar+PL'/2+wL'2/2)/L' Step 3:Calculate Mc and Cy-Sections 3.2.6&3.2.7 Mc= 470 k*ft Mar+Vp*sh Cy= 0.740 1/(Cpr*Zb/Sb) Step 4:Calculate Required Panel Zone Thickness-Section 3.3.3.2 treq'd= 0.605 in > twc= 0.340 in N.G.-Doubler Plate Req'd treed= Cy*Mc*(h-db)/h tdp> 0.265 in. Min Doubler Plate Thickness .9*.6*Fyc*Ryc*dc*(d b-tfb) Step 5:Continuity Plates Requirements-Section 3.3.3.1 tcfreq'd= 1.17 in > tfc= 0.595 in N.G.-Continuity Plates Req'd For One-Sided(Exterior)Connections,tcp> 0.253 in tcp>tfb/2 For Two-Sided(Interior)Connections,tcp> 0.505 in tcp>t5 • Following Sec K1.9 of LRFD Spec.: Width of Stiffener> 2.16 in wap>bfl/3-tWe/2 Thickness of Stiffener> 0.520 in tcp>max(t1b/2 or bft,*1.79*sgrt(Fy/E) 0 OPUS Project Bridgeport R2 Date 6/10/2004 By MGK • Opus Architects&Engineers Sheet Z,f of DESIGN OF A WELDED UNREINFORCED FLANGE-WELDED WEB CONNECTION USING FEMA 350. DESCRIPTION- No 1-11 f' Sok1 i 4tw 'Fvt N eliE> Filename: connection design.xls By: MGK Column Properties Beam Properties size= W14x48 size= W16x40 de= 13.79 in column depth L= 12.83 ft beam length tV = 0.340 in thickness web db= 16.01 in depth of beam tf= 0.595 in thickness of flange t„,= 0.305 in thickness of web br= 6.995 in width of flange h= 17 ft avg story height above&below tf= 0.505 in thickness of flange Fy= 50 ksi yield stress S,= 64.7 inA3 elastic section modulus F„= 65 ksi ultimate stress Z„= 72.9 inA3 plastic section modulus Ry= 1 1 Table 1-6-1 Seismic Provisions wgt= 0.040 k/ft beam self weight E= 2900Q ksi modulus of elasticity Load Additional Uniform Load DL= ! 20 PSF 0.00 k/ft LL= 25 PSF 0 00 k/ft dien=. 5 ft distance to adjacent beam on left dnghc= 1 ft distance to adjacent beam on right W inn= 3.00 ft tributary width service L.F. ultimate DL= 0.10 k/ft * 1:2:' = 0.12 k/ft LL= 0.08 k/ft * 1 6: = 0.12 k/ft • W= 0.18 k/ft Wu= 0.24 k/ft Step 1:Calculate Mpr,at Hinge Location sh-Section 3.2.4 sh= 14.9 in de/2+db/2 Cpr= 1.2 conservatively 1.2 or(Fy+Fu)/(2*Fy)= 1.15 Mpr= 401 k*in Cpr*Ry*Zbe*Fy Step 2:Calculate Vp,at Hinge Location sh-Section 3.2.5 L'= 10.3 ft L-2*sh/12 Vp= 78.4 k (Mpr+Mpr+PL'/2+wL'2/2)/L' Step 3:Calculate Mc and Cy-Sections 3.2.6&3.2.7 Me= 498 k*ft Mpr+Vp*Sh Cy= 0.740 1/(Cpr*Zb/Sb) Step 4:Calculate Required Panel Zone Thickness-Section 3.3.3.2 treq'd= 0.642 in > twc= 0.340 in N.G.-Doubler Plate Req'd treed= Cy*Mc*(h-db)/h tdp> 0.302 in. Min Doubler Plate Thickness .9*.6*Fyc*Ryc*dc*(d b-tfb) Step 5:Continuity Plates Requirements-Section 3.3.3.1 ter req'd= 1.17 in > ffc= 0.595 in N.G.-Continuity Plates Req'd For One-Sided(Exterior)Connections,tep> 0.253 in tep>tt/2 For Two-Sided(Interior)Connections,tep> 0.505 in tep>t1b Following Sec K1.9 of LRFD Spec.: • Width of Stiffener> 2.16 in wep>lot/3-t.„„./2Thickness of Stiffener> 0.520 in tep>max(t1e/2 or bfe*1.79*sgrt(Fy/E) OPUS Project i b�Z OPUS Date 6 I"? ' Opus Architects & Engineers By Mrs. Sheet2'Z' of • 1,-41-Ea-C. 32A-C(Al G o mere.., al r F.f4E pE4 S (Jt6� Y� ✓� = 1, 57 6,S9S" " oz. (5-0 ) (6,?9 ( = 3, s ok S OPUS. Project 2 / 2— Date 6/7/03 Opus Architects & Engineers By_ Alt 6it- Sheet 3 of • 1 fl�S? 66/^ =c I Z 17r Y 3/8 x 3' Ply A7 _ 1 12 S ��, v,- _- • b/t — 3/37 s6 j r/F5 o 4_, _ L ` fro (to ,N) I 34 1.038 r J E ,/o 6-s ) J 2food 2 2 S2 — , 6,Y <tro� (st) - 2"2x9 ks) a3PN PA-, 5 = r 8S 6127) 62Z 'S) = 2( i r (<,_ 5 k 50 o c� TA.)s>OA $P", A _ , 9 (r.t2s) (36) - '36,5k ok PC5/3"YV';‘ 7Th oloOkr=gr PL 3/11" ?< or PY " LLfxYX /y Obr .J L� • T`p Rr< / 0 OPUS. Project 4+/2- i - — Date l 27 ie Opus Architects & Engineers By 714-6 Sheet 2`( of • OJ Lu NIA/ .:6 c r-F c tz ft = I, 19 4t,d_ 21 1 4 . -1-w _ . 3q , — 3, 1c_ ck. = )3i. _ ,mac ,^ h-- Ust,w.e T = I 0 ��r A-- L P5 - A- 5 70S- 1-<- tars Lod.A-c. gu,cko-tra _ 0 --- /',1 kcc, k t', b • IA,, : C7.,s k 4 AO R a +,,, t.-?. .c (t.t5) + / J 50 (,- ) = 2cs- k_ 7 2,1 Ok WR-6 C2t Plgt MG 4 _ ,7s---- A-t c c St, k /. 11 N > , 2 S 0 chaA) -4, `i ,,,J� I -f 1 A) , .94. S B F 4. ir- ci tqA., = ,7`�(44)(.*-i'11) ! --tf(I-0 _ ,z)(.1(} \ zi000 i./SZ3(.s 02i4- = I33 k- > ►2h Sndlc. 0 A OPUS,. Project / 1 2Z Date._. d� 5 /" Opus Architects & Engineers By e A- Sheet 5.— of • ��r3 (.0,m;/ “ ,:y 4) C i',! tJ G (c{ A c c �c c k (, 12,E = 2`1 f-A 3 E� / (Poems C2(-1) ( .3Y j `25c ,(- 41/1/4 j 7k- 4c l �W 4'^ cR of C C.n Y'..M / (.1.41 ;A-4 j �J 5U lAr6 PA-NV 2viv fz ft ( : ��j Ai s c 5e v k 1 7 e = 1.2 ( 70) ( g2l41) -}- 1.4 (2 ,$) G..) 5�•S 1� P� o-)y G , So " r 6 E ac EZN • CP-2 . `( ( 6 ) ` Sp) � ��'6 Y - 127 7 "."4 Ok. • Opus Architects&Engineers,Inc. • 011110 10350 Bren Road West ♦ 0 PU S.R, Minnetonka,Minnesota 55343 952-656-4444 Fax 952-656-4529 DIAPHRAGM DESIGN & COLLECTOR ELEMENTS • S 0 OPUS.. Project )2-2- t Date viii°/� ! Opus Architects & Engineers Byt l` Sheet I __ of • I0140Htc24GN1 0E1'1 0itl Fro ---- E `"l. s P5 SnW = ,2 (c 3) (i ) w, -.=. , / P P fp = . 1s (39 ? )ce) = 5-8,7 1-c !% i`3 aM t -r 4-e. ,,,ec fip c1 4 -iv '" -e pteccJci k,eN .!'i /t I 6_s,-, 5_,.,.tz_ -b 'r-2, s 1,a:, a.(,,,/, -f-,,-d ,=n -ts`t ,te-t c., cc,:'a+.Co1 d-e.0 A sLra{� (I*41e 1"? I•-2Z V ie_ b Co,•, a 41 ccaril /.33 re8• `o c • 0 OPUS,. Project k 2-- Date Date //0./ - Opus Architects & Engineers By M 6-4c. Sheet • Z— of • 1 -0,:sr Fi Si i .. f:?,--5-c4,4- 1 Sout1+ 1 0- 4 `I^uv, /8-5- ( 2`l w = F,,/4 ”Ylgt , 2? k/EL • L J. Nt' L kli o .Q I-1IZ 64r5 F V c)0 c l-Hcr/✓F7r i,-)Fc-r. /� /„�. y,).-.:, 4soC1 Olo 5K r--1-5 rioA ©r{rO 2Grr_ 9k 3DOr.c h _ 36y (.(L 26 k. 600 pec-- 23.V7.1,—44,5 r,. 43•'33 c4" is\Sf 1 %2 ` ZZ 9 e *c 4._ c....)/ —36/'? /fit 7 < c =�ct'A, - ` .f A i 0 OPUS, Project C Date Cr y/✓ : Opus Architects & Engineers Bye�7 _ Sheet 3 of • rrA. cc/4e,4,b, , $3 k% L. r0Tom_ V= 3= l �z pz -•" opc qv? 169,G? 6),i7 ‘/-z_" -� V,5 /Z 2.Z la. .� -c�C `J a �? i9lif l- lJ"r ..l,M1 � � r ..._: !(' ;r�t,. usC- e 2-c( " 0rC vd.t tsut (.f c I, Z� v cv ! d • Project eq. OPUS. f Date �/✓"1oci Opus Architects & Engineers By 1*'' Sheet of • 6114 Oi ikko 6M r2Ol1( A-A/ CaLLFC77, 5 D,u ply �o pct; c -7, -, ) -a- )R. :,. ,-g.i j2 . ,,fad^ a.5 Ccs eitsF 2-2 4-( ` c7-7 , t )( 3,0 - Iss1Alf "3 34.1- LP," rv\d 4c U �1h« r _ g 4rp/.F3;33-0-c 3S ? k- • Lo 4 /tort- i NwnR KA-.tet 014-Pet-44-e;r C4 t4 Svc. 365E st?-.. a Ps(S t_ 7-7S— C. y 3,0 = 52-6 pCF- rn c&:)o oCJa/�h-a br �arc`e_ e 7 q (6"7, r7 i a r L/ .1C_ C (C.eV .IV+`. -Z 4-6 /f �./ 712 kf E9; (:o, .r 3 I✓J SO,c-r N Mesvc O D! + 24-6 AA C--4 32.` (C AA f ice. 1'V ^�..' n �'j'':�'? f'� (. .1:.16 • Z fv � OA- /D1Q 4 33"7(`f 67) 2,c-, ., OPUS Project Bridgeport R2 Date 6/10/2004 By MGK • Opus Architects&Engineers Sheet t" of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND.EDITION. DESCRIPTION- Collector Beam Filename: bm_dsgn.xls Grid A-8 to 7 By: DCP Beam Data Rix= 0.7 kips• ♦ RDS= 0.7 kips RLL= 0.6 kips Ru.= 0.6 kips R„= 1.3 kips L= 20.5 ft R„= 1.3 kips coefficients Support reaction moment deflection Support Condition Condition WuUcoeff W„L2/coeff 5WL4/(384E1`coeff) pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft diet,= 4 ft distance to adjacent beam on left • dr;yh,= 1 ft distance to adjacent beam on right W Crib= 2.50 ft tributary width service L.F. ultimate DL= 0.07 k/ft 1.35 = 0.10 k/ft LL= 0.06 k/ft 0.5 = 0.03 k/ft W= 0.13k/ft Wu= 0.13k/ft use W14x22 camber 0 in. Ru max= 2 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 199 in° moment of inertia Wt= 0.022 k/ft beam self weight • L„= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 7 ft-kips Mu=WuL2/moment coeff. �M = 110 ft-kips o.k. Deflection allowable live load deflection=U 240 • OL= 0.05 in ALL= 0.04 in = Li 5716 o.k. A=(5WL4/384E1)/deflection coeff. = 0.09 in = L/ 2656 o.k. ATL=DL+LL-camber • iii,_. • t OPUS. Project Bridgeport R2 /1 [C Project Bridgeport R2 Date 6/10/2004 ♦ OPUS, Date 6/10/2004 By MGK By MGK Opus Architects&Engineers,Inc. Sheet of Opus Architects&Engineers,Inc. Sheet of Chicago,Minneapolis,Phoenix,Tampa,Washington D.G. Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. This spreadsheet calculates the interaction equation for compact I-shaped members FLEXURAL DESIGN STRENGTH: with combined axial&flexural forces,using AISC-LRFD latest edition. b,/2ts= 7,46 < 4=Table B5.1= 9.15 flange is compact DESCRIPTION-Collector Beam Filename:axl•flex.XLS h/t,„.= 53.3 < 4,=Table B5.1= 76 web is compact Grid A-8 to 7 By:DCP APPLIED FORCES(ultimate) Major Axis Bending: Pu= 17 kips required axial strength Lp= 44 in Lp=1.76ry(E/Fy)36 (F1-4) • Mux= 7 ft'kips required moment capacity Mux= 0 ft'kips required moment capacity z os os L,= 116 in L,=ryX,/(Fy-F,)'(1+(1+Xz'(F„-F,)) ) (F1-6) C1,= 1 . use equation(F1-3)or conservatively Cb=1.0. M,= 138 ft'kips Mr,=F,Z„<=1.5FyS„ (F1-1) UNBRACED LENGTHS M,= 97 ft'kips M,=(FY F,)S, (F1-7) L,= 20.5 ft K„= 1 KL„= 20.5 ft 'BMn„= 110 ft'kips Lp<Lb<Lr L,= 6 ft Ky= 1 KL,= 6 ft L,= 20.5 ft K,= 1 KL,= 20.5 ft if Lb<LP where 4 Mn_OM, (F1-1) K,=effective length factor for the x-axis if Lp<Lb<L, Ky=effective length factor for the y-axis IAA,=4,cb(MP(MP M,)'(Lb•L,)/(L LL0))<=4'M1 (F1-2) K,=effective length factor for torsional buckling • if Lb>L, OM„='C S„X 2 0•s/ z z°s 6 ft distance between points braced against lateral displacement b O (Lb/ry)'(1+X,Xz/2/(Lb/ry)) (F1-13) Lb= of the compression flange. Minor Axis Bending: BEAM= W14X22 Interaction Equation=0.16 MP= 18 ft'kips MP=FyZy<=/.SFYSy BEAM PROPERITIES: Xax a i',=, 'Db= 0.9 I= 199 7 in° moment of inertia 4'Mny= 16 ft'kips S= 29 2.8 in3 section modulus r= 5.54 1.04 in radius of gyration Z= 33.2 4.39 in3 plastic section modulus A= 6.49 in3 gross area J= 0.208 in° torsional constant C„.= 314 in° warping constant • X,= 1600 ksi X,=n/S„(EGJA/2)os • Xzx106= 27800(1/ksi)` Xz=4C„/ly(S„/GJ)z • Fy= 50 ksi yield stress • F,= 10 ksi residual stress • E= 29000 ksi modulus of elasticity G= 11600 ksi • • • OPUS. Project Bridgeport R2 f V J Date 6/10/2004 By MGK Opus Architects&Engineers,Inc. Sheet of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. AXIAL COMPRESSIVE STRENGTH: • • b,/2t,= 7.5 < I„=Table 95.1= 13.49 flange is compact h t„= 53.3 < X,=Table 95.1= 131 web is compact • • KUrx= 44 • • KUry= 69 Chapter E i = 0.92 X„=KUrmax(Fy/E52)os (E2-4) Fci= 35.22 ksi )<„<=1,5 • 4 F, =(0.658<2)Fy (E2-2) X.„>1.5 • 4)F,,_(0.877/1«2)Fy (E2-3) Fy/2= 25 ksi Fcr>Fy/2,see Appendix E Appendix E-E.3 Design Compressive Strength for Flexural-Torsional Buckling F.= 18.92 ksi Fe=[n2EC„/(K,I)2+GJ)/(I,+ly) (A-E3-5) • I I Xe= 1.63 X.=(Fy/Fe)as (A-E3-4) • Fc,= 16.59 ksi Aa<=1.5 • DF, _(0.658a'"2)F, (A-E3-2) • k,>1.5 4,Fc,=(0.877/ke2)Fy (A-E3-3) = 0.85 <I,P„= 92 kips 4,P,=4,F,,A9 Fcr per Appendix E (E2-1) INTERACTION EQUATION: P„/4,Pn= 0.19<0.2 M„/cIcMn„= 0.06 M„/4,Mny= 0.00 if P„/4,Pn=>0.2 P„/4,P„+8/9(M„k)Mn)= (H1-1a) • if P„/4,P,<0.2 P,/24>P„+MAW,= 0.16 o.k. (Hi-ib) • V ., OPUS Project Bridgeport R2 r V,7 Date 6/10/2004 By MGK • Opus Architects&Engineers Sheet `Q of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION- Collector Beam Filename: bm_dsgn.xls Grid F- 1 to 2 By: DCP Beam Data II W RDS= 1.5 kips ♦ ♦ ROL= 1.5 kips RLL= 1.3 kips RLL= 1.3 kips = 2.6 kips L= 32 ft R„= 2.6 kips coefficients Support reaction moment deflection Support Condition Condition W„Ucoeff W„L2/coeff 5WL4/(384E1'coeff) E pin-pin pin-pin 2 8 1 Cfixed-fixed fixed-fixed 2 16 2.5 fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft die„= 5.5 ft distance to adjacent beam on left • dbgh,= 1 ft distance to adjacent beam on right W crib= 3.25 ft tributary width service L.F. ultimate DL= 0.09 k/ft 1.35 = 0.12 k/ft LL= 0.08 k/ft 0.5 = 0.04 k/ft W= 0.17k/ft Wu= 0.16k/ft use W16x26 camber 0 in. Ru max= 3 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 301 in4 moment of inertia Wt= 0.026 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 21 ft-kips M„=W„L2/moment coeff. OM„= 150 ft-kips o.k. Deflection allowable live load deflection=L/240 • A..= 0.25 in 0u= 0.22 in = L/ 1749 o.k. A=(5WL4/384E1)/deflection coeff. �T�= 0.47 in = U 825 o.k. ATL=DL+LL-camber • 0 • /� OPUS. Project Bridgeport R2 /�:, Project Bridgeport R2 �, Date 6/10/2004 PUS° Date 6/10/2004 By MGK ! By MGK Opus Architects&Engineers,Inc. Sheet of Opus Architects&Engineers,Inc. Sheet of Chicago,Minneapolis,Phoenix,Tampa,Washington D.C. Chicago.Minneapolis,Phoenix,Tempa,Washington D.C. This spreadsheet calculates the interaction equation for compact I-shaped members FLEXURAL DESIGN STRENGTH: with combined axial&flexural forces,using AISC-LRFD latest edition. bl/2t,= 7.97 < )vp=Table B5.1= 9.15 flange is compact • h/t„= 56.8 < Xp=Table B5.1= 83 web is compact DESCRIPTION-Collector Beam Filename:axl-flex.XLS • Grid F-1 to 2 By:DCP APPLIED FORCES(ultimate) - Pi,= 11 kips required axial strength , Major Axis Bending: os • Mux= 21 frkips required moment capacity Lp= 47 in Lp=1.76ry(E/Fy) (F1-4) Muy= 0 ft'kips required moment capacity L= 2 os os 125 in L,=r,,X,/(FY F,)'(1+(1+XZ(FY F,)) ) (F1-6) • Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Mp= 184 ft'kips M,,=FyZ„<=1.5FyS, (F1-1) UNBRACED LENGTHS M,= 128 fl'kips M,=(Fy F,)S„ (F1-7) L„= 32 ft K,= 1 KL„= 32 ft •• • mMn„= 150 ft'kips Lp<Lb<Lr Ly= 6 ft Ky= 1 KL,= 6 ft • L,= 32 ft K,= 1 KL,= 32 ft it Lb<LP where bMn=OM, (F1-1) K„=effective length factor for the x-axis if LP<LD<L, Ky=effective length factor for the y-axis 1)M,=4,Cb(MP(Mo M,)`(Lb L,)/(L,Lp))<=4,Mp (F1-2) K,=effective length factor for torsional buckling if LD>L, Lb= 6 ft distance between points braced against lateral displacement d,Mn=d'CDS„X,(2)°s/(Lb/ry)'(1+X,2X2/2/(Lb/ry)2)os (F1-13) • of the compression flange. Minor Axis Bending: BEAM= W16X26 Interaction Equation=0.21 Mp= 22 ft'kips Mp=FyZy<=1.SFySy BEAM PROPERITIES: Xa„n Yens mi= 0.9 I= 301 9.59 in° moment of inertia • rbMny= 20 ft'kips 5= 38.4 3.49 in' section modulus •• r= 6.26 1.12 in radius of gyration Z= 44.2 5.48 in' plastic section modulus A= 7.68 in2 gross area J= 0.262 in° torsional constant C„.= 565 in° warping constant • X,= 1480 ksi X,=n/S„(EGJA/2)os • X2x106= 40300(1/ksi)` X2=4C„/ly(S„/GJ)2 • Fy= 50 ksi yield stress F,= 10 ksi residual stress E= 29000 ksi modulus of elasticity . • G= 11600 ksi • —0 • •, • 1 OPUS. Project Bridgeport R2 1'V Date 6/10/2004 By MGK Opus Architects&Engineers,Inc. Sheet of Chicago,Minneapolis,Phoenix,Tampa,WasMng,on D.C. AXIAL COMPRESSIVE STRENGTH: b1/21,= 8.0 < A,=Table 85.1= 13.49 flange is compact h/t„.= 56.8 < X,=Table 85.1= 134 web is compact I I KUrx= 61 KL/ry= 64 Chapter E ),n= 0.85 A=KUrmax(F,/En2)os (E2-4) Fc,= 36.96 ksi A.r_1.5 mFn, =(0.658x°^2)Fy (E2-2) >1.5 mF„_(0.877/A,2)Fy (EP-3) F,/2= 25 ksi Fcr>Fy/2,see Appendix E Appendix E-E.3 Design Compressive Strength for Flexural-Torsional Buckling Fe= 13.32 ksi Fe=[a2EC„/(K,I)2+GJJ/(1x+ly) (A-E3-5) • ]e= 1.94 X.=(F/F.)os (A-E3-4) • F.,= 11.68 ksi Xe<=1.5 =(0.6584e"2)Fy (A-E3-2) X.>1.5 UrF,_(0.877/e2)Fy (A-E3-3) 4,0= 0.85 d>Pn= 76 kips ArPn=4 F,A9 Fcr per Appendix E (E2-1) INTERACTION EQUATION: Pe/(1)P„= 0.14<0.2 M„/dbMnx= 0.14 M„/i6Mny= 0.00 if PAP,=>0.2 PAP,+8/9(M,/<bMn)= (H1-1a) . if Pe/MP„<0.2 Pe/24,Pn+M„/cPM.= 0.21 o.k. (H1-ib) D 0 OPUS Project Bridgeport R2 Date 6/10/2004 By MGK • Opus Architects& Engineers Sheet l( of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION- Collector Beam Filename: bm_dsgn.xls Grid F-2to4and 4to5 By: DCP Beam Data RDL= 2.2 kips RDL= 2.2 kips RLL= 1.8 kips RLL= 1.8 kips R„= 3.9 kips L= 44.67 ft R„= 3.9 kips coefficients Support reaction moment deflection Support Condition Condition W„L/coeff W„L2/coeff 5WL4/(384EI coeff) pin-pin pin-pin 2 8 1 C fixed-fixed fixed-fixed 2 16 2.5 fixed pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft den= 5.5 ft distance to adjacent beam on left dright= 1 ft distance to adjacent beam on right W,rib= 3.25 ft tributary width service L.F. ultimate DL= 0.10 k/ft 1.35 = 0.14 k/ft LL= 0.08 k/ft • 0.5 = 0.04 k/ft W= 0.18 k/ft Wu= 0.18 k/ft use W18x35 camber 0 in. Ru max= 4 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 510 in4 moment of inertia Wt= 0.035 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 44 ft-kips M„=W„L2/moment coeff. c1 M = 231 ft-kips o.k. Deflection allowable live load deflection=L/240 • ADL= 0.61 in OLL= 0.49 in = L/ 1089 o.k. A=(5WL4/384E1)/deflection coeff. ATL= 1.10 in = U 488 o.k. ATL=DL+LL-camber • • • •0 OPUS ,. Project Bridgeport R2 Date 6/10/2004 0OPUS. Project Bridgeport R2 Date 6/10/2004 By MGK • By MGK Opus Architects&Engineers,Inc. Sheet of Opus Architects&Engineers,Inc. Sheet of Chicago.Minneapolis,Phoenix.Tampa,Washington D.C. Chicago,Minneapolis,Phoenix,Tampa,Washington D.G. This spreadsheet calculates the interaction equation for compact I-shaped members FLEXURAL DESIGN STRENGTH: with combined axial&flexural forces,using AISC-LRFD latest edition. b1/211= 7.06 < Xp=Table 85.1= 9.15 flange is compact h/t„,= 53.5 < Xp=Table B5.1= 69 web is compact DESCRIPTION-Collector Beam Filename:axl-tlex.XLS Grid F-2 to 4 and 4 to 5 By:DCP APPLIED FORCES(ultimate) - Major Axis Bending: Pu= 40 kips required axial strength• . • Lp= 52 in Lp=1.76ry(E/F„)05 (F1-4) M .= 44 ft'kips required moment capacity • • • Muy= 0 ft'kips required moment capacity L,= 138 in L=ryX,/(Fy-F,)'(1+(1+X2(Fy-F,)2)°.5)°_5 (F1-6) • C2= 1 use equation(F1-3)or conservatively Cb=1.0 Mp= 277 ft'kips Mp=F,,Z,<=1.5F,S, (F1-1) • • Mr= 192 ft'kips M,=(F2--F,)S, (F1-7) UNBRACED LENGTHS • • • L,= 44.67 ft K,= 1 KL,= 44.67 ft• diMn,= 231 ft'kips Lp<Lb<Lr Ly= 6 ft Ky= 1 KL,= 6 ft L,= 44.67 ft K,= 1 KL,= 44.67 ft if Lb<Lp where NM„_4 Mp (F1-1) K,=effective length factor for the x-axis if Lp<Lb<L, Ky=effective length factor for the y-axis drM„= Cb(Mp(MpM,)'(Lb Lr)/(L,-Lp))<=OM, (F1-2) K,=effective length factor for torsional buckling if Lb>Lr • Lb= 6 ft distance between points braced against lateral displacement • NM„=mCbS,XI(2)°.5/(Lb ry)'(1+X,2X2/2/(Lb/ry)2)°5 (F1-13) of the compression flange. • Minor Axis Bending: BEAM= W 18X35 Interaction Equation=0.56 Mp= 32 ft'kips Mp=FyZy<=1.5FySy BEAM PROPERITIES: • Xaxi, Yax' mb= 0.9 I= 510 15.3 in' moment of inertia mMny= 29 ft'kips S= 57.6 5.12 in3 section modulus r= 7.04 1.22 in radius of gyration Z= 66.5 8.06 in' plastic section modulus • • A= 10.3 int gross area J= 0.506 in' torsional constant • C„.= 1140 in° warping constant • X,= 1590 ksi X,=rt/S,(EGJA/2)05 •• X2x 106= 30800(1/ksi)` X2=4C„Jly(Sx/GJ)2 Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity • G= 11600 ksi ' • • r) L • • • OPUS. Project Bridgeport R2 Date 6/10/2004 By MGK Opus Architects&Engineers,Inc. Sheet of Chicago.Minneapolis,Phoenix,Tampa,Washington D.C. AXIAL COMPRESSIVE STRENGTH: b,/2t,= 7.1 < X,=Table B5.1= 13.49 flange is compact h/t„= 53.5 < X,=Table B5.1= 129 web is compact KUr,= 76 KUry= 59 Chapter E >ti= 1.01 X =KUr,,,e,(F,/En2)os (E2-4) F,= 32.72 ksi )k<=1.5 r6Fe, _(0.658''`<)Fy (E2-2) )ti>1.5 d'F,=(0.877lk<2)Fy (EP_3) • • Fy/2= 25 ksi Fcr>Fy/2,see Appendix E Appendix E-E.3 Design Compressive Strength for Flexural-Torsional Buckling Fe= 13.34 ksi F.=[a2EC„/(K,I)2+GJ)/(I,+ly) (A-E3-5) • X.= 1.94 Xe=(Fy/Fe)°s (A-E3-4) • F,= 11 70 ksi )La<=1.5 OrFe, =(0.658''e`2)F< (A-E3-2) >1.5 MFe,_(0.877/X 2)Fy (A-E3-3) • • 0'y.= 0.85 dyPn= 102 kips 4,P„=d>F Ag Fcr per Appendix E (E2-1) • INTERACTION EQUATION: P„/d>Pn= 0.39=>0.2 M„/O'Mn,= 0.19 Mn/O>Mny= 0.00 if Pn/d,Pn=>0.2 P,JO,Pn+8/9(M,AMn)= 0.56 o.k. (H1-1a) if PnkllP.<0.2 P„!20>Pn+M„/04Mn= (H1-1b • • • 1 0 OPUS_ Project J 3 Date /, g1 Opus Architects & Engineers By (>u- • Sheet of . �v2c e is, CoMPU--.`_,.'Ly 'Jo`f_- 1 c 1 A-s 0n,,CA k "I?4.-5=' (3. A tAs K C.,,,, ,cc7-rt,- -s- _ --6c._ _ --6c /6 2d. /, y — 4 133 `=--0,.,- :•i- = , 133 6-> (-?...-25-4.- 2.)( 36 44.2 Z,33 Fp-_- , os- wt.:, So /J- S Ea ,.- O i.0.c .--"S AVEC, t- b-r,_ olinr,n ewl' -Q------ c2 ^c2 r ,'<ti. COG . a- F3-3 fCi roSI T2•.s,cN o,- Ca...-,p✓,p_p c- r • c`�{-S `i' Co,-e_,.--E-C.;-.\S M_"_ e)4- Fr, = , 13 5 S,os wP 173 (r7s) Ezvpvf 6•F•'— ) (`“--t0] = S'/D It,S %p _ , O( wj ,oC E20 r,c (4X')- ) bus -(-) ] 2-2O/ s sv -R--- Ju.31- c.) -cc ,4,n,-ac--_�5 s 12 -'4- GJ-- -,-�. (OSS - 22 S /S s ^3'3 ! : -/Ocv 1Ss i) 0 Opus Architects 10350Bren&Road Enginee Westrs,Inc. • /, OPUS. Minnetonka,Minnesota 55343 952-656-4444 Fax 952-656-4529 ANCHOR BOLT DESIGN • • West Mom Frame 13As Ptq f/k)c- /ortc VisualAnalysis 4.00 Report Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R2 File: G:\Bridgeport\S43_5220-r2\Struc\Calculations\West Mom Frame.vap SNodal Reactions Node Load Case FX FY MZ K K K-ft N1 16-19a -10.858 4.2369 121.268 16-19b 15.2618 17.2506 -147.75 16-20c -12.200 -2.1266 129.347 16-20d 13.9203 10.8871 -139.67 Dead 1.1468 5.8403 -6.8832 Live 1.3070 5.7186 -7.8979 Max Diaphragm -13.060 -6.5068 134.509 Seismic -4.4442 -2.2000 45.8176 N3 16-19a -16.005 33.8834 150.600 16-19b 19.1051 34.2333 -169.90 16-20c -16.968 13.2102 156.595 16-20d 18.1425 13.5601 -163.90 Dead 0.7829 17.8469 -4.8754 Live 0.9858 19.9302 -6.1399 Max Diaphragm -17.555 -0.1750 160.251 Seismic -5.8298 0.0061 53.1874 N5 16-19a -16.938 24.8253 155.776 16-19b 9.4358 11.4616 -115.34 16-20c -14.634 13.8673 143.366 16-20d 11.7400 0.5037 -127.75 Dead -1.9297 9.5807 10.4059 Live -2.2927 10.4190 12.3312 Max Diaphragm -13.187 6.6818 135.562 Seismic -4.3260 2.1939 44.4640 34-1 l� Co--\ 1 s it V,� .( A . et, Lp /Go S -1- -2- East Mom Frame Ans.rPLA-- /41.^vcti-o R VisualAnalysis 4.00 Report Company: Opus Architects S Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R2 File: G:\Bridgeport\S43_5220-r2\Struc\Calculations\East Mom Frame.vap •Nodal Reactions Node Load Case FX FY MZ K K K-ft N1 16-19a -7.3883 -2.0881 73.9653 16-19b 8.1352 10.5792 -77.875 16-20c -7. 6121 -4.4622 75.1372 16-20d 7.9113 8.2051 -76.703 Dead 0.1995 2.4953 -1.0443 Live 0.2083 1.7539 -1.0905 Max Diaphragm -7.7617 -6.3336 75.9204 Seismic -5.0113 -4.0601 49.0657 N3 16-19a -9.4310 12.8207 85.5659 16-19b 9.4525 6.4084 -85.389 16-20c -9.4374 7.2285 85.5130 16-20d 9.4461 0.8162 -85.442 Dead 0.0058 5.3631 0.0472 Live 0.0060 4.7487 0.0493 Max Diaphragm -9.4418 3.2062 85.4775 Seismic -5. 9514 2.1164 53.8430 N5 16-19a -10.142 -1.9344 89.4596 16-19b 9.5784 17.7837 -85.991 16-20c -9. 9734 -6.5137 88.4203 16-20d 9.7475 13.2044 -87.031 Dead -0.1507 4.4604 0.9261 Live -0.1573 3.8061 0.9671 Max Diaphragm -9.8605 -9.8590 87.7257 Seismic -6.1020 -6.0781 54.2859 1117 16-19a -8.7422 15.4929 81.4345 16-19b 8.5378 -10.480 -80.008 16-20c -8. 6809 14.1612 81.0073 16-20d 8.5991 -11.811 -80.436 Dead -0.0546 1.5663 0.3807 Live -0.0570 0.7838 0.3976 Max Diaphragm -8.6400 12.9865 80.7217 Seismic -5.3353 8.0219 49.8446 v 1 0k - S -1- North Mom Frame VisualAnalysis 4.00 Report Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R2 File: G:\Bridgeport\543_5220-r2\Struc\Calculations\North Mom Frame.vap • Nodal Reactions Node Load Case FX FY MZ K K K-ft N1 16-19a -11.801 -4.7670 114.088 16-19b 12.0866 12.4603 -115.46 16-20c -11.879 -6.8988 114.458 16-20d 12.0090 10.3285 -115.09 Dead 0.0864 2.2865 -0.4224 Live 0.0516 1.5198 -0.2333 Max Diaphragm -11.944 -8.6137 114.775 Seismic -4.1501 -2.9682 39.9270 N3 16-19a -15.031 6.4376 132.023 16-19b 14.9040 0.8659 -131.13 16-20c -14.994 4.5344 131.766 16-20d 14.9410 -1.0374 -131.39 Dead -0.0358 2.3314 0.2467 Live -0.0309 1.0088 0.2184 Max Diaphragm -14.967 2.7859 131.581 Seismic -5.0493 1.0354 44.3560 N5 16-19a -15.493 -3.7719 134.769 16-19b 15.4501 10.4934 -134.35 16-20c -15.482 -5.5214 134.654 16-20d 15.4614 8.7438 -134.46 Dead -0.0141 2.1483 0.1256 Live -0.0056 0.9212 0.0788 Max Diaphragm -15.471 -7.1326 134.560 Seismic -5.0838 -2.2917 44.2204 J7 16-19a -13.028 23.6705 121.458 • 16-19b 12.9154 -2.2503 -120.66 16-20c -12.999 17.2539 121.245 16-20d 12.9448 -8.6669 -120.87 Dead -0.0365 5.7246 0.2476 Live -0.0151 5.9637 0.1302 Max Diaphragm -12.972 12.9604 121.059 Seismic -4.2168 4.2245 39.3383 VU = IS. S-!c leu. a. 2-4 k q = I '3 C is • -1- South Mom Frame ,2 ,�/- - VisualAnalysis 4.00 Report � �` �4.1767 �C Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R2 vile: G:\Bridgeport\S43_5220-r2\Struc\Calculations\South Mom Frame.vap "'Nodal Reactions Node Load Case FX FY MZ IC K K-ft N1 16-19a -12.695 11.1602 120.478 16-19b 12.8065 32.5016 -121.20 16-20c -12.721 -2.1250 120.662 16-20d 12.7798 19.2164 -121.02 Dead 0.0387 11.3943 -0.2421 Live 0.0070 12.8973 -0.0773 Max Diaphragm -12.750 -10.670 120.844 Seismic -4.2850 -3.5789 40.6209 N3 16-19a -15.390 8.4506 134.373 16-19b 15.3241 -1.2349 -134.12 " 16-20c -15.370 6.5614 134.297 16-20d 15.3448 -3.1241 -134.20 Dead -0.0169 2.2915 0.0622 Live -0.0212 1.0287 0.0775 Max Diaphragm -15.357 4.8427 134.250 Seismic -5.1251 1.6424 44.7945 N5 16-19a -15.080 -1.0220 131.982 16-19b 15.1764 8.0156 -132.63 16-20c -15.110 -2.8424 132.183 16-20d 15.1467 6.1952 -132.43 Dead 0.0242 2.2352 -0.1648 Live 0.0303 0.9586 -0.2053 Max Diaphragm -15.128 -4.5188 132.307 1111 Seismic -5.0187 -1.4918 43.8913 47 16-19a -12.361 20.9828 116.715 If 16-19b 12.2208 0.2894 -116.07 16-20c -12.325 14.6365 116.558 16-20d 12.2565 -6.0569 -116.22 Dead -0.0460 5.7197 0.2199 Live -0.0161 5.8290 0.0497 Max Diaphragm -12.291 10.3467 116.393 Seismic -4.0712 3.4283 38.5524 Ute= Is. yk K k 111 krk4 • -1- • • 0.- • • • • • 0 OPUS Project Bridgeport R2 • Project Bridgeport R2 Date 600/2004 Date 6/10/2004 • By MGK By MGK Opus Architects&Engineers Sheet of Sheet of Design base plate with large eccentricities(e>N/6),i.e.anchor bolts in tension Ultimate Bearing Stress Al= 468 in` A,=B'N DESCRIPTION>Moment Frames Filename: colbaspl.XLS '1".= 0.65 ACI-02 9.3.2.4 . >Pu min By:DCP F.= 3.32 ksi Fp=0.854„P„(A2/A,)12<=1.74>c'fc' Ultimate Loads • _ P„_ •11 kips V„= 19 kips • Length of Bearing M.= 160 ft'kips N'= 23 in distance from compresion edge of plate to center of bolt in tension column • A'= 10 in distance from center of column • column W14x48 to center of bolt in tension • bf= 8.03 in column flange width e= 175 in eccentricity,e=M„/P„ e>N/6,o.k. d= 13.79 in column depth dsg= W shape designation f.= 686.2 kips f=(Fp BN')/2 Base Plate A= 2.7 in A=(f'-sgrt[f2-4(FPB/6)(P„A'+M„)]}/(F.B/3) B= 18 in Base plate width N= 26 in Base plate length t= 2 in Base plate thickness Anchor Bolt F.= 36 ksi yield stress of base plate T„= 31 kips T„=(FPAB/2-P„)/(nb/2) edge dist.= 3 in distance from tension edge of plate V.= 3.2 kips Vu=V Jnb to center of bolt in tension Anchor Bolts f,= 1.79 ksi k=VJAb bolt shear stress db= 1 1/2 in nominal bolt diameter F,= 45 ksi Table J3.5 Nominal Tension Stress ASTM A307 • nb= 6 total number of bolts in base plate mV„= 18 ksi Table J3.2 >fv,o.k. rh= 0.75 AISC Section J3.7 A5= 1.77 in` nominal bolt area (DT„= 60 kips m8T„=4'F,Ab >Tu,o.k. Foundation : Base Plate Thickness tc'= 3 ksi compressive strength of concrete foundation m= 6.45 in m=(N-0.95d)/2 b= 120 in foundation width n= 5.79 in n=(B-(0.8 W,0.95 TS)bf)/2 1= 120 in foundation length A2= 14400 in2 area of the supporting concrete foundation moment due to bearing stress • that is geometrically similar to the plate Mplu= 25.20 in-kips/in moment due to anchor bolts Mplu= 5.94 in-kips/in = 0.9 bending tp= 1.76 in t,,=(4Mplu_max/c6F..)12 t>tp,o.k. • • 1 • • • /�6 pf' Project Bridgeport R2 Project Bridgeport R2 _,I Date 6/10/2004 Date 6/10/2004 By MGK By MGK Opus Architects&Engineers Sheet of Sheet of Design base plate with large eccentricities(e>N/6),i.e.anchor bolts in tension Ultimate Bearing Stress •• A,= 468 in` A,=13•N DESCRIPTION>Moment Frames Filename: colbaspl.XLS mb= 0.65 ACI-02 9.3.2.4 >Pu max By:DCPvz Ultimate Loads FP= 3.32 ksi Fp=0.850P1',(Az/A,) e=1.70d1c' •- P„= 34 kips V„= 19 kips Length of Bearing M„= 160 tt'kips N'= 23 in distance from compresion edge of plate to center of bolt in tension column A'= 10 in distance from center of column column W14x48 • to center of bolt in tension bf= 8.03 in column flange width e= 56 in eccentricity,e=M„/P„ e>N/6,o.k. • d= 13.79 in column depth dsg= W shape designation f= 686.2 kips f'=(FP'BN')/2 • Base Plate A= 3.5 in A--(V-sgrt[f2-4(FPB/6)(P„A'+M„1])/(FPB/3) B= 18 in Base plate width N= 26 in Base plate length t= 2 in Base plate thickness • Anchor Bolt F7= 36 ksi yield stress of base plate • T„= 23 kips T„=(FPAB/2-P„)/(nb/2) edge dist.= 3 in distance from tension edge of plate • • V„= 3.2 kips Vu=V„nb to center of bolt in tension . Anchor Bolts f„= 1.79 ksi f„=V,/Ab bolt shear stress db= 1 1/2 in nominal bolt diameter F,= 45 ksi Table J3.5 Nominal Tension Stress ASTM A307 n„= 6 total number of bolts in base plate mV = 18 ksi Table J3.2 >fv,o.k. • .1)= 0.75 AISC Section J3.7 A7= 1.77 in` nominal bolt area • 4'T„= 60 kips NT„=4F,A7 >Tu,o.k. Foundation Base Plate Thickness fc'= 3 ksi compressive strength of concrete foundation m= 6.45 in m=(N-0.95d)/2 b= 120 in foundation width n= 5.79 in n=(8-(0.8 W,0.95 TS)bf)/2 • I= 120 in foundation length A2= 14400 in2 area of the supporting concrete foundation moment due to bearing stress that is geometrically similar to the plate Mplu= 30.43 in-kipsln moment due to anchor bolts '. Mplu= 4.44 in-kips/in d)= 0.9 bending tp= 1.94 in tP=(4Mplu_max/4'F7)12 t>tp,o.k. . • V OPUS Project Date 6/2-el l0Y By yt6,ez, Opus Architects & Engineers, Inc. Sheet 7 of Minneapolis,Chicago,Phoenix,Tampa,Bethesda,and Dallas • DESIGN OF EMBED WITH HEADED STUDS "From PCI Design Handbook-5th edition, section 6.5.2" Filename:Embed Plate Design,mcd By:DIW Description> X1,0 M-E�vvli fie4 f 4.4c Ka3vz /3 6t. T > .r- /.i 1) INPUT a) Dimensions: (Note:if there is not a free edge in one or more directions, use a value for de >le) Vu y:= 0•in del := 60•in de:= 76-in de3 x:= 12•in de2:= 60•in Pu de d 56 in deo e3 :_ de4:= 56•in del de2 b:= 12•in center-to-center distance between the outermost studs in the back row of the group h:= 24•in thickness of the concrete member(dimension out of plane) b) Stud information: fyt:= 45•ksi fys:= 24•ksi strength of the steel for the studs, tension &shear respectively • n:= 3 number of stud in the group ns:= 3 number of studs in the back row(for shear) le:= 18-in embedment length of the stud (for studs shorter than 4",use stud length minus the thickness of the head) db:= 1.5•in diameter of the stud dh:= db•2 dh=3 in diameter of the stud head for tension capacity of individual studs (This information should be obtained from the manufacturer) Ces:= 1 reduction factor for tension capacity of individual studs (delle <= 1) (Factor must be less than 1. Use an average value for all of the studs considered. r12 Remember to multiply factors together for each edge effecting the stud) Ab:= 7C•I dbJ Ab= 1.767 in area of a stud 2 4 steel 0.75 c) Concrete information: fe,:= 3000•psi concrete 28 day compressive strength _ coefficient to use for light weight concrete 1 =1 for normal weight concrete =0.75 for all-lightweight concrete =0.85 for sand-lightweight concrete • cone 0.85 factor used for P and V d) Loads applied to the embed: V,:= 19•kip shear force in the embed plate Pu:= 102•kip tension force in the embed plate -e /\ OPUS Project 2 Date Opus Architects & Engineers, Inc. By Jh Com. Sheet of Minneapolis,Chicago,Phoenix,Tampa,Bethesda,and Dallas • 2) TENSION CAPACITY OF THE STUDS: a) adjust "de"to account for if there is a free edge condition or not 'Tel if(del <le,del,le) d'el = 18in d'e2:= if(de2<le,de2,le) d'e2= 18 in d'e3 if(de3 <le,dei,le) d'e3 = 18 in d'e4 if(de4<le,de4,le) d'e4= 18 in b) tension capacity based on studs acting as a group z:= if(x<y,x,y) z=0 in (z+ 2.1e) hmin 2 hmin = 18 in (x+ d'el + d'e2) =4ft AR:= (x+ 2.1e-2•h)•(y+ 2.1e-2•h) AR= 0in2 Pci := 2.67 . .(x+ d'el + d'e2)'(Y+ d'e3 + d'e4) Pci =252.7 kip Ill P 2.67.7,,• f,. �s—i•��x+ d' + d' � � + d'e3 + d' A P 252.7 c2= V 1' el e2 ' Ye4 — R c2= kip Pc_glp:= if(h <hmin,Pc2,Pcl) Pc_grp=252.7 kir c) tension capacity based on individual stud failure cone 10.7 Pc ind:= •le•(le+ dh)•2• fc'- Psi'Ces •n Pc ind = 782 kip 4)cont Py:= Ah.(fyt).n Py=238.6 kip 4Py:= 4)steel'Py (I)Py = 178.9 kip Pycheck if(4)Py>—Pu,"O.K.","N.G.") Pycheck = "O.K." d) governing tension capacity for group Pc:= if(Pc grp<Pc_ind,Pc_grp,Pc_ind) Pc=252.7 kip (1)Pc:= 401Pc 4)Pc=214.8 kip • Pif P >P "O.K." "N.G.") P "O.K." ccheck:= c— u, , ccheck= /N OPUS Project 't 'e. Date g(;1',,.'“, Opus Architects & Engineers, Inc. By .t, e Sheet 1 of Minneapolis,Chicago,Phoenix,Tampa,Bethesda,and Dallas • 3) SHEAR CAPACITY OF THE STUD GROUP: Com,:= if ((1 + b <_ns,1 + b ,nsl CW= 1.045 L. 3.5•dej 3.5•de J Ct:= if h <_ 1, h ,1 Ct=0.243 1.3•de 1.3•de Cc1 := if 0.4+ 0.7.del <_ 1, 0.4+ 0.7•del ,1 Ccl =0.953 de j ` de / Ca:= if 0.4+ 0.7•del <_ 1, 0.4+ 0.7.--e2.(1 ),1 Cc2=0.953 de/ \, de Vcl := (12.5.de1.5 fc psi in) CN Cr Ccl Vcl = 109.7kip Vc2:= (12.5•d el'5.X..,[f- -i)psi i •Cw Ct•Cc2 Vc2= 109.7 kip Vc:= if(Vc2<Vcl,Vc2,Vc1) Vc= 109.7 kip • 4Vc 4)conc'Vc (I)Vc=93.3 kip Vccheck if(.1).Vc>_Vu,"O.K.","N.G.") Vccheck= "O.K." Vy:= (fys)•Ab•n Vy= 127.2 kip 4Vy:= 4steer Vy (iVy=95.4 kip Vycheck if(4Vy >_Vu,"O.K.","N.G.") Vycheck= "O.K." 4) COMBINED SHEAR AND TORSION a) For Concrete: (p \2 (Vu)21 Inters:= 1 u + Inters=0.227 (must be less than 1, (Pconc _ pc Vc b) For Steel Studs: /p 2 V 2 Inters := 1 u + u Inters = 0.273 (must be less than 1, steel Py Vy i 41, Notes: 1. The typical embed plate should be sized for thickness based on 2/3 of the stud diameter, unless a thicker plate is required by bending analysis. 2. The dimensions of the base plate should be sized such that the studs are in accordance with the A/SC design code for edge distances to the embed plate. OPUS. Project /�1 Date 6!Slokf Opus Architects & Engineers BY P1-6`C Sheet /° of —. I 1 e_ f � i Atom M IJIL(X 1,1k V [1:4-ye: I V 1 1 5-1ze Of 4 IV w-e 1 = ww}-e..n0 -f.t rz4...,e_rs — X1//6 1` A--(c c t-►e cc 32.26 P cts.r-e. lilt; o,L wu•-,...,6 r 1JJ I x Ye Gt = Sys LT • Pte..-v4u S7recR 1 - 3d We-C cry ' F1c�- � _ .54 - ar6 9'4 a^ !err wcty s 4\6 = "� �� V = J 5,0 �@ Suess FS k. 71 g so c p c. .:-...7 Cy c= cer,nem dZ 50 Al = -F 5 W � h u. r Sec 7, s S v (� R . O 4 h..(04 ck �iM 4f5 V 3� kr, /h4� - 5.S7 °C2- 4 $,3c (z bA) = 1 2 3 Imo. > M— 1ST wl 3 ofr— S Opus Architects&Engineers,Inc. 1110 014 10350 Bren Road West ♦ OPUSTm Minnetonka,Minnesota 55343, 952-656-4444 Fax 952-656-4529 FRAME FOOTINGS • S West Mom Frame f�, ,v 6 C l VisualAnalysis 4.00 Report > Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R2 File: G:\Bridgeport\S43_5220-r2\Struc\Calculations\West Mom Frame.vap WNodal Reactions Node Load CaseFX FY MZ 4f0 K K K-ft N1Dead L , 2 1.1468 5.8403 -6.8832 " LRFD 16-1 1.6055 8.1765 -9.6364 " LRFD 16-2a 3.4673 16.1582 -20.896 LRFD 16-3a 2.0296 9.8677 -12.208 " LRFD 16-5a -3.0870 8.1258 41.2817 /11y/0 `f 2-c/ r'{� " LRFD 16-5b 7.4903 13.3618 -67.764 " LRFD 16-6c -4.4285 1.7622 49.3606 LRFD 16-6d 6.1487 6.9983 -59.685 " Live 1.3070 5.7186 -7.8979 --V-i- 0"- " Seismic -4.4442 -2.2000 45.8176 -=7 '1?0, IC = S, _ri 2,6 '3`4-6 c k,.(4- N3 Dead 0.7829 17.8469 -4.8754 LRFD 16-1 n .--•'-t- 1.0961 24.9856 -6.8255 " LRFD 16-2a 2.5167 53.3045 -15.674 " LRFD 16-3a 1.4324 31.3813 -8.9204 " LRFD 16-5a -5.3876 34.0656 53.6413 q' 2 4(rr II LRFD 16-5b 8.4872 34.0511 -72.944 " LRFD 16-6c -6.3502 13.3924 59.6365 " LRFD 16-6d 7.5246 13.3779 -66.949 " Live 0.9858 19.9302 -6.1399 " Seismic -5.8298 0.0061 53.1874 ) 1'161 = 6 .9 k. 0 63, 3 ft.V.- N5 Dead -1.9297 9.5807 10.4059 I„ LRFD 16-1 -2.7016 13.4130 14.5682 " LRFD 16-2a -5.9840 28.1673 32.2170 • LRFD 16-3a -3.4620 16.7064 18.6527 " LRFD 16-5a -8.8994 20.7542 73.1256II x, Z� ,� LRFD 16-5b 1.3965 15.5327 -32.698 " LRFD 16-6c -6.5952 9.7963 60.7165 LRFD 16-6d 3.7007 4.5747 -45.107 " Live -2.2927 10.4190 12.3312 " Seismic -4.3260 2.1939 44.4640 ---') Y WC,C, S'( 2.`6I S2c5 k,e$- S -1- East Mom Frame7- �� r()G-s' VisualAnalysis 4.00 Report Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R2 File: G:\Bridgeport\S43_5220-r2\Struc\Calculations\East Mom Frame.vap Ilksiodal Reactions Node Load Case C216 FX FY MZ K K K-ft N1 Dead A- -/4 0.1995 2.4953 -1.0443 " LRFD 16-1 0.2793 3.4934 -1.4620 LRFD 16-2a 0.3435 3.8713 -1.7984 LRFD 16-3a 0.5727 5.8006 -2.9980 /07(0-K 0 (0y 2 L/ I/ " LRFD 16-5a -5.5900 -0.5860 56.4331 " LRFD 16-5b 6.3370 9.0771 -60.343 " LRFD 16-6c -5.8139 -2.9601 57.6049 LRFD 16-6d 6.1131 6.7030 -59.171 VN P„ ,h, Live 0.2083 1.7539 -1.0905 -.. "'- Seismic -5.0113 -4.0601 49.0657 7 X/. (R = 5, 96 1-f, F S- ,Il N3 Dead 8 , 6 -% 0.0058 5.3631 0.0472 " LRFD 16-1 0.0081 7.5083 0.0661 " LRFD 16-2a 0.0099 8.8101 0.0813 " LRFD 16-3a 0.0165 14.0336 0.1356 " LRFD 16-5a -7.0714 12.1330 64.1616 f 0.),f 0-7(-251 1 " LRFD 16-5b 7.0929 7.0960 -63.984 " LRFD 16-6c -7.0778 6.5408 64.1086 LRFD 16-6d 7.0865 1.5038 -64.037 " Live 0.0060 4.7487 0.0493 'Z,S- 64o! " Seismic -5.9514 2.1164 53.8430 -'1 1<lh(1 = 7,0% N5 Dead C ,m -% -0.1507 4.4604 0.9261 " LRFD 16-1 -0.2109 6.2446 1.2966 " LRFD 16-2a -0.2594 7.2556 1.5949 LRFD 16-3a -0.4325 11.4422 2.6588 1111 " LRFD 16-5a -7.5434 0.6916 66.3341 !DVS-S` 7( /0,S-ZcZ.y 11/ LRFD 16-5b 6.9793 15.1576 -62.866 " LRFD 16-6c -7.3744 -3.8877 65.2949 " LRFD 16-6d 7.1484 10.5783 -63.905 " Live -0.1573 3.8061 0.9671 " Seismic c, -6.1020 -6.0781 54.2859 X 1,19 7(3 7,2 b`(,6 N7 Dead Del 7. -0.0546 1.5663 0.3807 " LRFD 16-1 -0.0764 2.1928 0.5330 " LRFD 16-2a -0.0940 2.2714 0.6557 " LRFD 16-3a -0.1567 3.1336 1.0930 " LRFD 16-5a -6.4512 12.0524 60.0279 11 )c 1 ; 7,c/ I .. " LRFD 16-5b 6.2468 -7.0397 -58.602 " LRFD 16-6c -6.3899 10.7207 59.6007 (to e SFS, " LRFD 16-6d 6.3080 -8.3714 -59.029 Live -0.0570 0.7838 0.3976 / c� S- SY( 3 II Seismic -5.3353 8.0219 49.8446 7 KI`11' ~ 6`3 Fo°-';,s (--- c d. 0, 1 -- c„-., o"(s LtSt=- 41)-1 ti. 12 Z gra,,1- -.s_1 0 -1- North Mom Frame 7--iG5 VisualAnalysis 4.00 Report Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R2 File: G:\Bridgeport\S43_5220-r2\Struc\Calculations\North Mom Frame.vap SN odal Reactions Node Load Case G�/� FX FY MZ K K K-ft N1 Dead /n `t 0.0864 2.2865 -0.4224 II LRFD 16-1 0.1210 3.2010 -0.5914 " LRFD 16-2a 0.1295 3.5036 -0.6236 " LRFD 16-3a 0.1862 5.1754 -0.8803 /0)‘-(072-6/1/ " LRFD 16-5a -4.7962 0.3144 46.8261 " LRFD 16-5b 5.0811 7.3788 -48.200 " LRFD 16-6c -4.8739 -1.8173 47.1963 " LRFD 16-6d 5.0035 5.2470 -47.830 v... AA. M� " Live 0.0516 1.5198 -0.2333 ,, Seismic -4.1501 -2.9682 39.9270 -- k f,19' = it 1 `1` r 41 5- N3 Dead +1--- `-I.`( -0.0358 2.3314 0.2467 II LRFD 16-1 -0.0501 3.2639 0.3454 " LRFD 16-2a -0.0584 3.3021 0.4052 " LRFD 16-3a -0.0924 4.4118 0.6454 " LRFD 16-5a -6.0725 4.8839 53.2258 10"7c.(0-A -L[.f °( " LRFD 16-5b 5. 9449 2.4197 -52.341 " LRFD 16-6c -6.0356 2.9806 52.9686 " LRFD 16-6d 5.9819 0.5164 -52.598 " Live -0.0309 1.0088 0.2184 " Seismic -5.0493 1.0354 44.3560 -' X If t/ t.. 6 k_ I,t- c 2-z N5 Dead A- _ ,t, 7 -0.0141 2.1483 0.1256 ,, LRFD 16-1 ti -0.0198 3.0076 0.1759 " LRFD 16-2a -0.0198 3.0385 0.1902 LRFD 16-3a -0.0260 4.0518 0.2769 41) II LRFD 16-5a -6.0716 0.6336 52.8313 LRFD 16-5b 6.0278 6.0879 -52.413 /i..) ( ti p4. 1 4'rj " LRFD 16-6c -6.0603 -1.1159 52.7165 " LRFD 16-6d 6.0391 4.3383 -52.528 " Live -0.0056 0.9212 0.0788 " Seismic -5.0838 -2.2917 44.2204 > ?( f l.7 6, 1 2.7 52,b N7 Dead ,q.- ? -0.0365 5.7246 0.2476 II LRFD 16-1 -0.0511 8.0145 0.3466 " LRFD 16-2a -0.0513 9.8514 0.3622 ll LRFD 16-3a -0.0679 16.4115 0.5054 " LRFD 16-5a -5.0747 15.7373 47.2119 / / '4.-k02c ; " LRFD 16-5b 4.9612 5.6829 -46.413 " LRFD 16-6c -5.0453 9.3207 46.9983 " LRFD 16-6d 4.9906 -0.7337 -46.626 " Live -0.0151 5.9637 0.1302U, g Seismic -4.2168 4.2245 39.3383 ->X(, f9 = �g O Sr 0 S -1- South Mom Frame Lf VisualAnalysis 4.00 Report Company: Opus Architects & Engineers, Inc. Engineer: Matthew Kahle Billing: Bridgeport R2 File: G:\Bridgeport\S43_5220-r2\Struc\Calculations\South Mom Frame.vap •Nodal Reactions Node Load Case FX FY MZ git to K K K-ft Ni Dead E .--Li 0.0387 11.3943 -0.2421 " LRFD 16-1 0.0541 15.9520 -0.3390 " LRFD 16-2a 0.0499 20.1218 -0.3292 "ci Y--2-c-/ I/ " LRFD 16-3a 0.0576 34.3088 -0.4143 " LRFD 16-5a -5.0435 17.5720 47.9734 " LRFD 16-5b 5.1548 26.0899 -48.704 " LRFD 16-6c -5.0702 4.2868 48.1573 " LRFD 16-6d 5.1281 12.8046 -48.520 " Live 0.0070 12.8973 -0.0773 Vw P", P1,4A " Seismic -4.2850 -3.5789 40.6209 17 Yilc( = N3 Dead �'3 -0.0169 2.2915 0.0622 S�( �(. 3 �g 3 " LRFD 16-i -0.0237 3.2081 0.0871 " LRFD 16-2a -0.0309 3.2641 0.1134 " LRFD 16-3a -0.0542 4.3957 0.1986 " LRFD 16-5a -6.1323 5.5623 53.4281 /074/U)4 2 f " LRFD 16-5b 6.0655 1.6534 -53.182 " LRFD 16-6c -6.1116 3.6731 53.3520 LRFD 16-6d 6.0862 -0.2358 -53.258 " Live -0.0212 1.0287 0.07753.3 ,, Seismic -5.1251 1.6424 44.7945 - X!' (ct 6,1 WI S N5 Dead • -` ( 0.0242 2.2352 -0.1648 " LRFD 16-1 0.0339 3.1293 -0.2307 " LRFD 16-2a 0.0442 3.1615 -0.3004 • II" � LRFD 16-3a 0.0776 4.2160 -0.5262 1/ LRFD 16-5a -5.9243 1.7216 51.9055 � ' f! LRFD 16-5b 6.0201 5.2721 -52.555 " LRFD 16-6c -5.9540 -0.0988 52.1070 " LRFD 16-6d 5.9904 3.4517 -52.354 " Live 0.0303 0.9586 -0.2053 -� " Seismic -5.0187 -1.4918 43.8913 K 1' �1 '6'0 Org N7 Dead ' � -0.0460 5.7197 0.2199 " LRFD 16-1 -0.0644 8.0076 0.3079 " LRFD 16-2a -0.0633 9.7782 0.2888 " LRFD 16-3a -0.0810 16.1900 0.3435 II LRFD 16-5a -4.9149 14.7159 46.1991 '`' ;�. Vic/ I LRFD 16-5b 4.7746 6.5564 -45.555 LRFD 16-6c -4.8793 8.3695 46.0423 " LRFD 16-6d 4.8103 0.2101 -45.712 " Live -0.0161 5.8290 0.04974 $ y I 14?,-9Seismic -4.0712 3.4283 38.5524 4 (9 .7- 1 • -1- • • • 0OPUS• Project Date Bridgeport2R2 OPUS Project Bridgeport R2 Date 6/10/2004 By MGK By MGK Opus Architects&Engineers.Inc. Sheet of Opus Architects&Engineers.Inc. Sheet of Description Summary West Moment Frame Footings-Grid C-2 controls Footing Design OK Soil Pressure . am„= 684 psf Maximum Soil Pressure General Footing Analysis&Design author DCP as= 3,000 psf Allowable Soil Bearing Capacity - Codes. ACI 2002 checked IBC 2003 Ecc,= 0.00 in Eccentricity of Resulant along the X-axis ASCE 7-02 Eccy= 16.28 in Eccentricity of Resulant along the Y-axis 1.87 Y-axis minimum stability ratio General Information No OT X-axis minimum stability ratio a,= 3,000 psf Allowable Soil Bearing Capacity 1.00:1.0 Y-axis Minimum stability ratio to= 3,000 psi Concrete Compresive Strength 1.50:1.0 X-axis Minimum stability ratio Fy= 60,000 psi Reinforcement Yield Strength Shear Stress w,= 145 pcf Concrete Weight two-way one-way pm; = 0.0018 Minimum steel% vo= 27 psi v = 7 psi d'= 3.5 in Rebar Center to Edge Distance cliv„= 164 psi (pvc= 82 psi N,= 10 ft Width along X-X axis Moment Ny= 10 ft Width along Y-Y axis Rotations on Y-Y axis Rotations on X-X axis H= 24 in Footing Thickness M„= 37 k-in/ft M„= 56 k-in/ft A.raga= 0.52 in`/ft A,rqa= 0.52 in`/ft 14 in Column Dimension Along X-X axis A,,„,,.a= 0.55 in`/ft A, Prow= 0.55 in`/ft 14 in Column Dimension Along Y-Y axis 0 in Base Pedestal Height reinforcement left to right top to bottom d= 20.50 in effective depth of reinforcement 7 #8 7 #8 • • I LI OPUS. Project Bridgeport R2 • l.J Date 6/10/2004 By MGK Opus Architects & Engineers, Inc. ' Sheet . of Applied Vertical Loads D= 5.8 kips Dead Load EDL= 35 kips L= kips Live Load Lr= 5.7 kips Live Load - Roof W = kips Wind E = -2.6 kips Seismic (ultimate) ex= 0 in eccentricity along the X-axis ey= 0 in eccentricity along the Y-axis Overburden = 0 psf Applied Moments Rotations on Y-Y axis Rotations on X-X axis (pressure @ left& right) (pressure @ top & bot.) D = k-ft 6.9 k-ft L= k-ft k-ft L,= k-ft 7.9 k-ft SW = k-ft k-ft E = k ft 54.5 k-ft Applied Shears @ 2.00 foot above above toe of footing Rotations on Y-Y axis Rotations on X-X axis (pressure @ left& right) (pressure @ top & bot.) D= k 1.1 k L= k k Lr= k 1.3 k W = k k E= k 5.3 k S • 0 • . OP'vIC9 S Project Bridgeport R2 0 OPUS Project Bridgeport R2 J Date 6/10/2004 ♦ F UJ Date 6/10/2004 By MGK By MGK Opus Architects&Engineers.Inc. Sheet of Opus Architects&Engineers,Inc. Sheet of Description Summary East Moment Frame Footings-Grid E-8 controls Footing Design OK Soil Pressure om„= 477 psf Maximum Soil Pressure General Footing Analysis&Design 'author DCP o,= 3,000 psf Allowable Soil Bearing Capacity Codes ACI 2002 checked IBC 2003 Ecc,= 0.00 in Eccentricity of Resulant along the X-axis ASCE 7-02 Ecc,= 20.30 in - Eccentricity of Resulant along the Y-axis 1.67 Y-axis minimum stability ratio General Information No OT X-axis minimum stability ratio o,= 3,000 psf Allowable Soil Bearing Capacity 1.00:1.0 Y-axis Minimum stability ratio t,= 3,000 psi Concrete Compresive Strength 1.50:1.0 X-axis Minimum stability ratio F,= 60,000 psi Reinforcement Yield Strength Shear Stress w,= 145 pcf Concrete Weight two-way one-way Pc,,,= 0.0018 Minimum steel v„= 24 psi v,,= 6 psi d'= 3.5 in Rebar Center to Edge Distance w,,= 164 psi 4w,= 82 psi N,= 11 ft Width along X-X axis Moment N,= 11 tt Width along Y-Y axis Rotations on Y-Y axis Rotations on X•X axis H= 24 in Footing Thickness M„= 44 k-in/ft M„= 55 k-in/ft A,read= 0.52 in`/fl A,r,id= 0.52 in`/ft 14 in Column Dimension Along X-X axis A,proud= 0.57 in`/ft A,prove= 0.57 in`/fl 14 in Column Dimension Along Y-Y axis I 0 in Base Pedestal Height reinforcement left to right top to bottom 00:55 = 20.50 in effective depth of reinforcement 8 #8 8 #8 V OPUS Project Bridgeport R2 • J Date 6/10/2004 By MGK Opus Architects & Engineers, Inc. Sheet a of • Applied Vertical Loads D = 1.6 kips Dead Load IDL = 37 kips L = kips Live Load L1= 0.8 kips Live Load - Roof W = kips Wind E = -9.5 kips Seismic (ultimate) ex= 0 in eccentricity along the X-axis ey= 0 in eccentricity along the Y-axis Overburden = 0 psf Applied Moments Rotations on Y-Y axis Rotations on X-X axis (pressure @ left & right) (pressure @ top & bot.) D = k-ft 0.4 k-ft L= k-ft k-ft L = k-ft 0.4 k-ft • W = k-ft k-ft E = k ft 59.3 k-ft Applied Shears @ 2.00 foot above above toe of footing Rotations on Y-Y axis Rotations on X-X axis (pressure @ left& right) (pressure @ top & bot.) D= k 0.05k L= k k L,= k 0.05 k W = k k E = k 6.3 k • • • • Opt S Project Bridgeport R2 1 Project Bridgeport R2 f V Date 6/10/2004 OPUS. Date 6/10/2004 By MGK By MGK Opus Architects&Engineers.Inc. Sheet of Opus Architects&Engineers,Inc. Sheet of Description Summary North&South Moment Frame Footings-Grid A-5.7 controls Footing Design OK • Soil Pressure om.,= 565 psi Maximum Soil Pressure General Footing Analysis&Design author DCP g.. 3,000 psf Allowable Soil Bearing Capacity Codes ACI 2002 checked IBC 2003 Ecc,= 0.00 in Eccentricity of Resulant along the X-axis ASCE 7-02 Eccv= 18.68 in Eccentricity of Resulant along the Y-axis 1.85 Y-axis minimum stability ratio General Information No OT X-axis minimum stability ratio 00= 3,000 psi Allowable Soil Bearing Capacity 1.00:1.0 Y-axis Minimum stability ratio F,= 3,000 psi Concrete Compresive Strength 1.50:1.0 X-axis Minimum stability ratio F5= 60,000 psi Reinforcement Yield Strength Shear Stress wo= 145 pcf Concrete Weight two-way one-way pm;,,= 0.0018 Minimum steel% v„= 23 psi v„= 6 psi d'= 3.5 in Rebar Center to Edge Distance mvc= 164 psi wo= 82 psi N,= 10 ft Width along X-X axis Moment N5= 10 ft Width along Y-Y axis Rotations on Y-Y axis Rotations on X-X axis H= 24 in Footing Thickness M„= 32 k-in/ft M„= 47 k-in/ft A,,eq'd= 0.52 in`/ft A,rid= 0.52 in`/ft 14 in Column Dimension Along X-X axis A,proOd= 0.55 in`/ft Aspmvv= 0.55 fn`/tt 14 in Column Dimension Along Y-Y axis 0 in Base Pedestal Height reinforcement left to right top to bottom d= 20.50 in effective depth of reinforcement 7 #8 7 #8 . OPUS Project Bridgeport R2 • V Date 6/10/2004 By MGK Opus Architects & Engineers, Inc. Sheet /0 of Applied Vertical Loads D = 2.1 kips Dead Load EDL= 31 kips L = kips Live Load L,= 0.9 kips Live Load - Roof W = kips Wind E = -2.7 kips Seismic (ultimate) ex= 0 in eccentricity along the X-axis ey= 0 in eccentricity along the Y-axis Overburden = 0 psf Applied Moments Rotations on Y-Y axis Rotations on X-X axis (pressure @ left & right) (pressure @ top & bot.) D = k-ft 0.1 k-ft L= k-ft k-ft L,= k-ft 0.1 k-ft • W = k-ft k-ft E = k ft 52.6 k-ft Applied Shears @ 2.00 foot above above toe of footing Rotations on Y-Y axis Rotations on X-X axis (pressure @ left & right) (pressure @ top & bot.) D = k 0k L = k k Lr k 0 k W = k k E = k 6.1 k S • • • /� Project Bridgeport R2 /� C Project Bridgeport R2 i�l OPUS• Date 06/29/04 �i1 OPUS Date 06/29/04 By MGK By MGK Opus Architects&Engineers.Inc. Sheet of Opus Architects&Engineers.Inc. Sheet of Grade Beams Equations Soil wgt=L'W'soil cover'yeo;, Load Case 0.6DL+0.7E I Description: I West Mom Frame Grid 2 Conc wgt=L`W`d/12`Y<oP< , ' DL Total=DL+Soil+Conc , Material Properties P=0.6(DL Total)+0.7(Epen) •- YP•••i•e= 350 psf/ft Soil passive pressure ' V=0.7(Eno,,) Yeoi1= 110 pcl Density of soil F,=P'ye 'Nom= 145 pcf Density of concrete ! P9,ade beam.,=V;+P9,adebeaa,.;.1-f,,;-Pr.; (Positive=sliding) N. 0.35 Coefficient of Friction Footin• 1 2 3 4 5 6 7 8 9 Footings 1 2 Footings for frame Footing# 1 1 1 I Length 11 ft Length of footing in direction of load DL 5.8 17.8 9.6 Width 11 ft Width of footing perpendicular to load Soil wgt 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 height 24 in Height of footing Conc wgt 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 Wyb ft Width of grade beam DL Total 54.2 66.2 58.0 48.4 48.4 48.4 48.4 48.4 48.4 Location C-2 to E-2 Grids in frame of footings E„e„ -2.6 0 2.6 •Soil Cover 1 ft Depth of soil on top of footing . Ellod, 5.3 6.9 5.1 P 30.7 39.7 36.6 29.0 29.0 29.0 29.0 29.0 29.0 Passive Pressure V 3.7 4.8 3.6 0.0 0.0 0.0 0.0 0.0 0.0 350 psfGB? N N N PP 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 I I F, 10.7 13.9 12.8 10.2 10.2 10.2 10.2 10.2 10.2 Looting 1a„, Pgradebeam -22.4 -24,5 -24.6 -25.6 -25.6 -25.6 -25.6 -25.6 -25.6 PP Pg.edebeam,m•R= -22.4 k O.K. 1050.0 psi Legend Footing w/GB PP 15.4 k Passive pressure with grade beam Footing=Footing number in frame li Footing w/o GB Po 15.4 k Passive pressure without grade beam Footing a=Footing type DL=Dead Load,kips 0 pst Soil wgt=Soil Dead Load,kips Conc wgt=Weight of footing,kips E„ed=Seismic vertical load,kips Looting 2 Ebod,=Seismic horizontal load,kips NOMP=Factored total.vertical load,kips PP V=Factored total shear load,kips GB?=Grade Beam reducing the Passive Pressure 4 0.0 psf Pr=Passive Pressure,kips Footing WI GB PP 0.0 k Passive pressure with grade beam F,=Friction Force,kips Footing w/o GB Pr 0.0 k Passive pressure without grade beam P9,adebeam=Axial Load in Grade Beam,kips 0 I • I • • • 0 OPUSProject Bridgeport R2 /� OPUS. Pro ect Bridgeport R2 • Date 06/29/04 :, r 1 9 P Date 06/29/04 By MGK By MGK Opus Architects&Engineers,Inc. Sheet of Opus Architects&Engineers.Inc. Sheet of Grade Beams Equations Soil wgt=L'W'soil covery,a;, Load Case 0.60L+0.7E I Description: I East Mom Frame Grid 8 f Conc wgt=L'W'd/12'ypo DL Total=DL+Soil+Conc Material Properties P=0.6(DL Total)+0.7(Ep) ,. Ype,ai.e= 350 psf/f t Soil passive pressure V=0.7(E„) Y..i= 110 pcf Density of soil - F,=P•ya Y.oac= 145 pct Density of concrete P,e, =V,+P m,,am,; t ;-Pp,1 (Positive=sliding) g d beam,i- g d b 1 1, p.,= 0.35 Coefficient of Friction Footin. 1 2 3 4 5 6 7 8 9 Footings 1 2 Footings for frame Footing 8 1 1 1 1 Length 11 ft Length of footing in direction of load DL 2.5 5.4 4.5 1.6 Width 11 ft Width of footing perpendicular to load Soil wgt 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 height 24 in Height of footing Conc wgt 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 Wgb ft Width of grade beam DL Total 50.9 53.8 52.9 50.0 48.4 48.4 48.4 48.4 48.4 Location A-8-D.1-8 Grids in frame of footings Es,ad -4.8 2.5 -7.2 9.5 Soil Cover 1 ft Depth of soil on top of footing Eno: 6 7.1 7.3 6.3 P 27.2 34.0 26.7 36.7 29.0 29.0 29.0 29.0 29.0 Passive Pressure • V 4.2 5.0 5.1 4.4 0.0 0.0 0.0 0.0 0.0 350 psfGB? N. N N N \ Pp 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 / FI 9.5 11.9 9.3 12.8 10.2 10.2 10.2 10.2 10.2 l F°°tmg 1 P9,aaebeam -20.7 -22.3 -19.6 -23.8 -25.6 -25.6 -25.6 -25.6 -25.6 Pp Pg.ea.b..m,m.,= -19.6 k O.K. 1050.0 psf Legend • Footing w/GB PP 15.4 k Passive pressure with grade beam Fooling=Footing number in frame • Footing w/o GB Pp= 15.4 k Passive pressure without grade beam Footing 8=Footing type DL=Dead Load,kips 0 psf Soil wgt=Soil Dead Load,kips Conc wgt=Weight of footing,kips E,,,,,=Seismic vertical load,kips Footing 2 Enod:=Seismic horizontal load,kips IIIIIIM P=Factored total vertical load,kips Pp V=Factored total shear load,kips GB?=Grade Beam reducing the Passive Pressure 1 0.0 psf Pp=Passive Pressure,kips Footing w/GB Pp= 0.0 k Passive pressure with grade beam F,=Friction Force,kips Footing w/o GB PP 0.0 k Passive pressure without grade beam Pgmdebeam=Axial Load in Grade Beam,kips • • • 0 ODI IC Project Bridgeport R2 I Project Bridgeport R2 v•7 Date 06/29/04 ♦ OPUS. J Date 06/29/04 By MGK By MGK Opus Architects&Engineers.Inc, Sheet of Opus Architects&Engineers.Inc. Sheet of Grade Beams Equations Soil wgt=L'W'soil cover'7,,,, Load Case 0.6DL+0.7E I Description: I North Mom Frame Grid A I Conc wgt=L'W 4/12'7...0 DL Total=DL+Soil+Conc Material Properties P=0.6(DL Total)+0.7(Ep) 7pa,a„e= 350 psf/ft Soil passive pressure V=0.7(E) 7..0= 110 pct Density of soil • F,=P*7, 7....= 145 pcf Density of concrete P V; P fP gretle beam,i= + graEabeam,i�l I,i- p,i (Positive=sliding) µa= 0.35 Coefficient of Friction Footin. 1 2 3 4 5 6 7 8 9 Footings 1 2 Footings for frame Footing# 1 1 1 1 Length 11 ft Length of footing in direction of load DL 2.3 2.3 2.1 5.7 Width 11 ft Width of footing perpendicular to load Soil wgt 13.3 13.3 13.3 13.3 13,3 13.3 13.3 13.3 13.3 height 24 in Height of footing Conc wgt 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 W„ ft Width of grade beam ,' DL Total 50.7 50.7 50.5 54,1 48.4 48.4 48.4 48.4 48.4 Location A-4-A-7 Grids in frame of footings E,,,,, -3.5 1.2 -2.7 5 Soil Cover 1 ft Depth of soil on top of footing Ehori: 4.9 6 6.1 5 P 28.0 31.3 28.4 36.0 29.0 29.0 29.0 29.0 29.0 • Passive Pressure V 3.4 4.2 4.3 3.5 0.0 0.0 0.0 0.0 0.0 350 psfGB? N N N N k , Pp 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 F, p 9.8 10.9 9.9 12.6 10.2 10.2 10.2 10.2 10.2 Looting 1 g aa baam -21.8 -22.1 -21.1 -24.5 -25.6 -25.6 -25.6 -25.6 -25.6 Pp Pgraaa baam,m.a= -21.1 k O.K. 1050.0 psf Legend Footing w/GB Pp 15.4 k Passive pressure with grade beam Footing=Footing number in frame Footing wio GB Pp= 15.4 k Passive pressure without grade beam Footing#=Footing type DL=Dead Load,kips 0 psf Soil wgt=Soil Dead Load,kips Conc wgt=Weight of footing,kips IllikE,,,,,=Seismic vertical load,kips <Footing 2 Eno:=Seismic horizontal load,kips ORIEL • P=Factored total vertical load,kips Pp V=Factored total shear load,kips GB?=Grade Beam reducing the Passive Pressure 4 0.0 psf Pp=Passive Pressure,kips Footing w/GB Pp= 0.0 k Passive pressure with grade beam F,=Friction Force,kips Footing w/o GB PP 0.0 k Passive pressure without grade beam Pg,aa.baam=Axial Load in Grade Beam,kips • e: . •. • I 1O-P1 Project Bridgeport R2 /� Project Bridgeport R2 Date 06/29/04 . ��, OPUS.. Date 06/29/04 By MGK • • By MGK Opus Architects&Engineers.Inc. Sheet of i Opus Architects&Engineers,inc. Sheet of Grade Beams Equations Soil wgt=L'W'soil cover'y,,;, I Load Case 0.6DL+0.7E I Description: I South Mom Frame Grid E I • Conc wgt=L'W'd/12'yoo„. Material Properties DL Total=DL+Soil+Conc P=0.6(DL Total)+0.7(Ep) ?,mime= 350 psf/ft Soil passive pressure V=0.7(E„) Y.o.. 110 pcf Density of soil F,=P'y, yco„.= 145 pcf Density of concrete P„ V;+P m f P µ,= 0.35 Coefficient of Friction li ga.ream,i= g debeam.i-r- t i- p,i (Positive=sliding) • Footin. 1 2 3 4 5 6 7 8 9 Footings 1 2 Footings for frame Footing# 1 1 1 1 Length 11 ft Length of footing in direction of load DL 11.4 2.3 2.2 5.7 Width 11 ft Width of footing perpendicular to load Soil wgt 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 height 24 in Height of footing Conc wgt 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 Wgb ft Width of grade beam DL Total 59.8 50.7 50.6 54.1 48.4 48.4 48.4 48.4 48.4 Location E-4-E-7 Grids in frame of footings E,„i -4.3 2 -1.8 4.1 • Soil Cover 1 ft Depth of soil on top of footing E„o,, 5.1 6.1 6 4.8 P 32.9 31.8 29.1 35.3 29.0 29.0 29.0 29.0 29.0 Passive Pressure V 3.6 4.3 4.2 3.4 0.0 0.0 0.0 0.0 0.0 350 psf GB? N N N N Pp 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4 / F; 11.5 11.1 10.2 12.4 10.2 10.2 10.2 10.2 10.2 l Footing 1 Pgraa,b,.m -23.3 -22.3 -21.4 -24.4 -25.6 -25.6 -25.6 -25.6 -25.6 \ MEM Fp Pg,.a.b.,m,m..= -21.4 k O.K. 1050.0 psf Legend Footing w/GB Pp= 15.4 k Passive pressure with grade beam Footing=Footing number in frame • Footing w/o GB Pp= 15.4 k Passive pressure without grade beam Footing#=Footing type DL=Dead Load,kips 0 psf Soil wgt=Soil Dead Load,kips Conc wgt=Weight of footing,kips • E„,„=Seismic vertical load,kips <ooting 2 Ehoa:=Seismic horizontal load,kips NM& P=Factored total vertical load,kips Pp V=Factored total shear load,kips GB?=Grade Beam reducing the Passive Pressure 4 0.0sf P Pp=Passive Pressure,kips Footing w/GB PP 0.0 k Passive pressure with grade beam F,=Friction Force,kips • Footing w/o GB Pp= 0.0 k Passive pressure without grade beam Pgrae.bo,m=Axial Load in Grade Beam,kips • • • opus. Project 1 1Q Z Date 7 i 12 Opus Architects & Engineers By 446 lc_ • Sheet 1 of i • • 3 4I I, ! ! ; . FooT,- G I N r EK4-c n rW ,I./ A4401 G-._THS_4-TC _.__ . __ - I I „ { , • 4 I I ___1,____14.______, _.._ t I I t 1 , i ; oak vdi F Of '4+n �•ll I • � _f i 1 � I r rk 7 11,-1- : ; E . 7 1 .--.. -1 I 1i '; , 1! 1 1T-1-4 i .---T4- 1 . I i , i i " t I 1 ' I I t l , ' { 1 I a i I , - t j I 1' 3 I i 1 , , 1 tl-- r - i I r 7 1 � _ _ a ..r1 r.._ _ a._ fr, e o !S w::p li d ---i--- li ii—t- r....,... t , , i 1 t , ; I I +� )+ i r i I f T_._. ,1 , 312. 1 1 1 3+T3++, 1`�n+; �` s T' ' V 3�` !� 1�_.I_ 1 1 ! it __ti _ __� �4_�_ t . _ .. 1 ) I i d I • ± I I , i J { 1 1 I i 1 d ; 0 • I I w • I 1 C ,1 1 ! , — : �' _ _-I ;_.__.. __,.�__ #..__._ . �__ i.. M.! t x t l x !- �. It Z..__ I _ cKrwA- j I 11 I f • 1 1 3 j { 1 . �L -,4,2s�Nc �N i l)tN ` t I C 1 d 1 I ; t p , ,/- S r�� p t,� i i II � " d}€t e,9 T ' ' (1 7 (J TI- T f I I--; I? I I i I I 3 I I i t i -? . t 1 - 1 d II , ; 9' i i I 2i w�t �E !8l 'c T 41 �-O 4 T ._-..P I - A I<F,,.f-. d r4`�r5 , Opus Architects&Engineers,Inc. • /\ opus,. 10350 Bren Road West 4 Minnetonka,Minnesota 55343 952-656-4444 Fax 952-656-4529 TURRET DESIGN S S OPUS. Project R2 Date • 6730/0V Opus Architects & Engineers BY Sheet of • -' e I G 2 r o b1_.-E w-lba.,. Z G'.'41 i30 ' 1261-6" 01- Ili, Wr �3 f(flc €=s • 4 _ �iZ6,�-1(?) (2r- -t Z / .5) JF- _ �'��fZ l�S 13 u3 r t �( - i( 4 � pSL„o, 41 ,1 S (5 M t C j Cid.C C C&. C v/-2a ef sr 4 �f c 'e ,,, Aj C F, t. :0( eTe.p s: z.. ' x , y �. ��w2 : �,, ,7c-3 �:1,u - r,� /ate z, ?,s r-lo ! -r z �, 'L 5,,s. � 1,G S,s 4 0, /1.c.) . 3 Sps_ wp y ( t 4-- Qe C 9.c / r C(0 r* Y c- 4 2; -f' pp Ked- r, u P (2rG, _.. I OPUS. Project Date 6 A 3t/0,- Opus Architects & Engineers By ('6t Sheet • 2-- of • a-r C.o t,c/,.'t: (2, ,3 d .=,)fig . `C)( C-1) _ I, Ilk- X '-2 /,7k Z-4 .: �5.-� { ~ !{ '.r.. 1.71k- T /- i or, f1 f I I I ✓✓ 111 • Project g-2 OPUS. Date 613e o`f Opus Architects & Engineers By 'reit Sheet -3 of • IL S'44-c,F r 16 A ""j 11,6cam Z` 12..Bdelk. r 1 ArGoit14� F Z , rZ _ z b I -z _ 4 CPN ---t-- )5:1A-AAs 5E G o1's 03 12,4jj44 • 0 OPUS. Project Date 11-36/0Y Opus Architects & Engineers By ;144& Sheet of • F------- ki 6 44-e..,c. ,Y ev,i ,�e it I.k.er ii 6,$) i 1 FA,; CI,'",-,,,,..,C...:__ 101.--,-tc.-.r° 114111 , 4 4,6it_ -'— — L+rbAt, I/9.121c 9,321 b)A-C.:o 4t Ate-- Te..�c/a Cry,..1 G- = 13 P- • P►ti_ F,, _ _ 13 1 CO 14'-5 Ilk-SC L 3x3-)4, %Y 0 4,A,c rz xi �� OPUS. Project 2'�- • ♦ {,Jr" S. Date 7/1/2004 OPUS Architects & Engineers, Inc. By f$G..- Minneapolis,Chicago,Phoenix,Tampa,Bethesda,and Dallas Sheet ti! of APPLIED FORCES (ultimate) Filename angle.XLS Tu = 13 kips required axial strength By: DCP UNBRACED LENGTHS Lx 13 ft LY= 13 ft LZ= 13 ft angle = L3x3x0.25 F = 36 ksi yeild stress Fu= 58 ksi tensile stress E= 29000 ksi modulus of elasticity SECTION PROPERITIES Ag= 1.44 in` gross area X-axis Y-axis Z-axis r= 0.93 0.93 0.592 in radius of gyration • effective area U = 0.9 U = ratio effective area to gross area a. For members connected by bolting, the net area and effective net area shall be determined by from AISC LRFD Specification Section B1 to B3 inclusive. b. When load is transmitted by longitudal welds or a combination of longitudinal and transverse welds through just one leg of the angle, U shall be: U = (1 -x/1) <= 0.9 where x= connection eccentricity I = length of connection in the direction of loading c. When a load is transmitted by transverse weld through just one leg of the angle Ae is the area of the connected leg. Ae = 1.296 in` Ae =AgU slenderness ratio lir= 264 < 300 o.k. • OPUSOPUS• Project Bridgeport R2 Date 6/30/2004 • By MGK Sheet Architects&Engineers 6 of DESIGN OF A UNIFORMLY LOADED STEEL BEAM USING AISC-LRFD SECOND EDITION. DESCRIPTION-Turret Roof Beam Filename: bm_dsgn.xls By: DCP Beam Data 1 W RDL= 0.8 kips v RDL= 0.8 kips RLL= 0.9 kips RLL= 0.9 kips Ru= 1.6 kips L= 12.5 ft Ru= 1.6 kips coefficients Support reaction moment deflection Support Condition Condition WuUcoeff WuLZ/coeff 5WL4/(384E1*coeff) f•) pin-pin pin-pin 2 8 1 fixed-fixed fixed-fixed 2 16 2.5 l fixed-pin fixed-pin 1.67 11.66 1.7 Load Additional Uniform Load DL= 20 PSF 0.00 k/ft LL= 25 PSF 0.00 k/ft diatt= 10 ft distance to adjacent beam on left • d;ght= 2 ft W irib= 6.00 ft distance to adjacent beam on right tributary width service L.F. ultimate DL= 0.13 k/ft * 1.35 = 0.18 k/ft LL= 0.15 k/ft * 0.5 = 0.08 k/ft W= 0.28 k/ft Wu= 0.26 k/ft use W12x14 camber 0 in. Ru max= 2 kips Beam Properties Fy= 50 ksi yield stress Fr= 10 ksi residual stress E= 29000 ksi modulus of elasticity I= 88.6 in4 moment of inertia Wt= 0.014 k/ft beam self weight Lb= 6 ft distance between points braced against lateral displacement of the compression flange. Cb= 1 use equation(F1-3)or conservatively Cb=1.0 Moment Mu= 5 ft-kips Mu=WuLZ/moment coeff. OM„= 50 ft-kips o.k. • Deflection allowable live load deflection=L/240 ADL— 0.03 in ALL= 0.03 in = U 4677 o.k. A=(5WL4/384E1)/deflection coeff. �T�= 0.06 in = L/ 2470 o.k. ITL=DL+LL-camber Project 0 OPUS Date f 1/0Y Opus Architects & Engineers By (G4— Sheet 7 of • / ( – T� � Chi i io * " 4. c' Y 6 • -720r,..547 ` 6 = 12 [ x /,z / y /4. �L k s (6 _) 1 S-oc-.(r ;x f, a r c. 2w ttc- 61 61 LA. w L _ y k/c4_, i -Cr12 41, 8 /e. �4- g- A = - (,J LH` L L /O (17) _ , 3 �r ?6(3 360 � Y Tr'e� _ <L.( ., 70 fr�\( (d ) (12 3) 61q m y 3 711 (2-.a°) C 3 3) Tan F u Q j is ce Err G c k - M 'fig k (r7-) _ 117g F5 ( 9) ( 361,-) o v' Q a ,h 5,l-}v U ' "Z. ''l A'ra 2.c- P`'.3 S}( (a -CI,- Cor.✓e.,;'t ei`•^. • RAMSBEAM V2.0 - Load Diagram Licensed to: OPUS Architects Engineers Inc �7` Job: R2 Turret Beam Steel Code: LRFD Beam Size = W16X67 Span information (ft) : Length = 44 .67, Left Support at 0. 00, Right Support at 44.67 • (Zoo 6 F.rk- a Scue PO 2-7 INC, ra/2.4 -- . P1 P3 Load Dist DL LL+ LL- Max Tot P1 18 .00 0.700 0.000 -10. 000 -9.300 P2 30.00 1 .400 0.000 0.000 1.400 P3 42.00 0.700 0.000 -10.000 -9.300 0.00 0.267 0.000 0 .000 0.267 S _fl 4111fi2 18.00 0.267 0.000 0 .000 0.267 0.167 0.000 0.000 0.167 W3 42 .00 0.167 0.000 0.000 0.167 0.267 0.000 0.000 0.267 W4 44.67 0 .267 0.000 0.000 0.267 • RAMSBEAM V2 .0 - Gravity Beam Design Licensed to: OPUS Architects Engineers Inc Job: R2 Turret Beam Steel Code: LRFD Ct SPAN INFORMATION: Beam Size (User Selected) = W21X68 Fy = 50 .0 ksi Total Beam Length (ft) = 44 .67 11/1 Mp (kip-ft) = 666 .67 Top Flange Braced By Decking LOADS: Self Weight= 0'. 068 k/ft Point Loads (kips) : Flange Bracing Dist DL Pre DL LL Top Bottom 18 .00 0 .70 0.00 -10.00 Yes No 30 . 00 1.40 0.00 0.00 Yes No 42 .00 0.70 0.00 -10 .00 Yes No Line Loads (k/ft) : Distl Dist2 DL1 DL2 Pre DL1 Pre DL2 LL1 LL2 0.00 18.00 0.200 0.200 0.000 0 .000 0.000 0 .000 18 .00 42 .00 0.100 0.100 0.000 0.000 0. 000 0.000 42 . 00 44 .67 0.200 0.200 0 .000 0. 000 0.000 0.000 SHEAR (Ultimate) : Max Vu 1.2DL+1.6LL (kips) = 13 .98 0.90Vn = 245.32 MOMENTS: Span Cond LoadCase Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max + 1.4DL 94 .9 21.5 0.0 1 .00 0.90 600.00 Max - 1.2DL+1.6LL -109.1 18.0 44 .7 1 .00 0 .90 111.30 Controlling 1.2DL+1.6LL -109.1 18.0 44 .7 1 .00 0 .90 111.30 REACTIONS (Unfactored) (kips) : Left Right DL reaction 6.12 6.26 Max - LL reaction -6.57 -13 .43 Max + total reaction 6 .12 6.26 Max - total reaction -0.45 -7.18 DEFLECTIONS: (Camber = 1/2) 0Dead load (in) at 22 .34 ft = -0 .572 L/D = 937 Live load (in) at 20.55 ft = 0.840 L/D = 638 Total load (in) at 22.34 ft = -0.572 L/D = 937 III Project r`7_ OPUS„, Date /I R o=r Opus Architects & EngineersBy (04'1-64. Sheet I J of • 6-c?Ain) c ric?.J ,DES164) k b,,- 1'9.15' 4 9,76-1 _ /O, 3 Fc. TFy I ) 34,, ,, b A .2 5- PrN = c.t 6 Ft, S 5-7,c-tri - 47,5-.k ,' qJ✓. /0c3/ __ 2(6 ,f6,, �F) = 0 ,7 (2y ir c ) — J c. >-to 5,., Qk � // SaF- r Ti- ;.r0/y 2,5- k(6,, , r _ c - 7<s CStG ) - 4it.2s k< K5 67-4 • SSL C4) 74 " 4 A-3 2-r (13 if 2.4'] 0 _ o O ......-7 , 0 0 �1^ OPUS. Project kZ Date 7/6/o" Opus Architects & EngineersBy j4.._ Sheet t ` of • ti(31")eez cow 4_.. -c.„(--e dA) vr-,-;/G,r,) i a 8/4•cC -'`�0 - 6usSE-t- co nlA) TY`, `(Y „ rJJe,fck 4w,- S,S'7 k/,,.; P„ = 13 ! f e---si1. 'd _ ."`-- __ 11 _ 2,311( , ,ca 50 s rJk 4 V.1.ce e 6usser PLAT ct`eeIt -Pc--,,w yrerd -- ,,, eJk,it-A-ow! S-Fr'- 0( h: �V 6^ t!- .,l__rn-tt_n� ._ .F. �ro.�`. : .� {�W .:. '�''�.,.- J0) Lf f Z 7? • , CP n Ai ca r--,i, ' tq (Tic , ,. --, 3 1= > fK c> G he c 4c c cm,,,,, cc r ;:v., y a,S C c, r-- }< - 1.2 V' 7:- /J7-7L '' .715-/J-17-?- i tie Lub 6. c" f-- >k = /,,, ,-, . '.1. .._6, ,--'1 -74. .i?.-- /r.5 c, ,,6c &' %)c �.g i� . ' 1 -3g) = 2-?.5' k-5' Cp P.,u - 0 r=c = '^)w:.. = I 8S (-0,5- \) (,'3-) --'(,)(6`1.) - 53 k 7 0/t.. 0 OPUS, Project Date Opus Architects & Engineers By �.F Sheet . of • .,e, r,zc:lc i'0 CO( ,.- epi e ( 9 s ) = 27.-7(, r<. • c ` AA_ S; 4 = )3k sir )•'b Fe. Vtf, = Urn t° cosh ) ;Pr Co, 'e?.76 = /(,C k t � ( f 1t,c ) s — 3) _ - • = Mac _ 46, 33 2,2 ;h ltK & c -1-1a t i(0.s n r., 74,61-r• ` —G` )/ _ ) S°1 e �. 2r L �j <<�� ✓v u n k- Sc = 1r88 C.)2, = cc, oc, -- f($'C (, o) (4') (-6) P/c • ! OP S. Project '7_u Date 7 /6/0Y Opus Architects & Engineers By M 6 k Sheet of • ` ) � �rr., .r _:.,.. 3 V t f J CO, -L ,6)1•-• ,1„ {ti. F,- e s o.. 6a.c C e. P{v -Co c_7(-2 Uk� rt )viz 3 c lit) e ►o',,, = 6 s 5-S/�- )cd, 141 Vµ 7 (I3) _ 6, u y 14-41 Fo✓`C g c.,.. �.��_<_,. __ J', -- C's,r.._q t 1 f ren ?.S/c 4x6 -f 14,,6 = 2 .75 • /, OPUS„, Project !2Z Date 7/6/° Opus Architects & Engineers • By /fid`` Sheet '{ of • C_St -- o F.,y PALI,. LI,/ 3 — , /' 4 412r �Sa�! cam) %;- f�f 60 Le Sk4-0t,, m `_ Jho ` (or`{ ) k A 0 ( if )A = Z4(,4 K/5,>14- g6J � S8 k Pti. CM 0-et Gte -5 v 9 — +17-- 34r6 , ct G= kz L $ , ())2,0 = CL 3,set (i(0) ( 'f )(c4 1a3 A-, Ole. -;p - '34 ,1 • / 3 34, 6 .2 r „30lA e hsi a -/-** - - btc. .�.. 7,76 Us t 62t ` c w) e = 3c � !i 7cla /ti_) (Y 176 IC_ I�t� 5c� • Opus Architects&Engineers,Inc. • ^ opus. Minnetonka10350 ,Bren MinnesotaRoadWest 55343 952-656-4444 Fax 952-656-4529 STUD WALL, JAMBS, & HEADERS DESIGN • • OPUS. Project 8e- +�Z Date 7„iv Opus Architects & Engineers By M l� Sheet of • I _r--h'Ceek'. o✓C 4 t,JAL ,r 18 *4- 4/: t4: f--- /JF S urcT y 1! rj 6 r( di C. vv.d (o„, /S- S (A) {���> � _ (1z / )O z�� g 't L` C� ( i TINeco ej--('3,46) .)G3 s )Z00 (.070) (i s �` ' Z, 2g ,h`f r5 `.' iar icg w • '6 Gs� K �k = 3, szy Y GCS 1= ► 9� 14\h - Z6 7 7 /t. (Aoz - 2x.6 ! / , CO r.).0, C 776 A)S f uc2c -5 x.25 p - !, o .,red(e 6 Fr. 2. c /rte '� Sys .� w'}► , y (I'ZS) ( as\ta, tz) I5-- 5s W > ,(, d f/f )rS (:)cr \) (?o(s-) ZZ,SpS#' S 6 OPUS Project / Z V Date G!ZS/DY Opus Architects & Engineers By /146"4-- • Sheet Z" of ; + G -� r FA-i6'' Cc 4/F:/26i.t,, 6.7 FrNA-c- 6/Z5-/oy o o.,u,.v c J h,..\g -s--u..a s P-F aha Fri Samos -6 Te A.-r k s '17A--6 CZE 6ft_ 2090 _ CSS (z) )0"- / 77.. LST ve,-t,c.,C. + �y) Z,,- 12 9:, CsS HunoK,/./ * (3) g," - I2. yo. -t-r.,4-c 148ri•'`Z.., 1 (3) SSS CST 5&.-e. as ..4- - (LI) S - .2nfa. 6 sT -5. -e. a s A- Q (5-) Z'' - 205,, C s r Sa,,,-Q o c A- (Li) 3 ' - )11 y,- CS- (Z) is"- IL0, CST Vc,4-s +-(-J) ?fr- '4' CST Iter, • © (6) " - NI` c5 5cx,,4 a • 0 a) g' - i 9. ' (2-) fill- 145, cc, Ue,.+-. t Cb, i' - NI, CST ,4rra_, 4 (3) — %'' — /1-1 q u r.,r4 s- 14J,�� , T Y P 1'Z 4-r 41.416 = g a - 2O7 .i-v-tc e 16 " Q. C. 61 v6 G (-2-3 E" - )C ,c, cc-i- ue,-t-, 60 6 ' - /EG,l CST 1,1-ur, OCZ) 6„ - PI Tia cs +(3) ' - I?9,,k Tiro c4 c. Pr,-z , Al (3 )4 ;u CST- .--z-j s 1Liejr c 5. ve,.- , .t (./.-0b '_ ,14/y,. (S7,) ,:t;z, + „ r<j) : ( ) 6* ` Hy- csJ (Z) - 1-2 - pi 7a r.s.T Ue,a-- f(6{ 6(' - i'7t ., ..s..1.. i.,,?n-<i 4 c3j 6 .. IN 5 flu c(t. I-Far,”z • 1-Y1; F,?A it,IN 6- — 6`' - fg-9u S -refs () 16" 0. c . ! OPUS. Project `-z. Date C-/ :f Opus Architects & Engineers By /✓ ;t Sheet of • h 171. (2) 6`' ¶ 4c s (27) 6 ` s s J • C2, 6"S , ds 6t, 72-4-Ltr- • ! OPUS Project Date S/zr/U< Opus Architects & Engineers By 6<£ Sheet (t of • 6 r'r N Fir) t*E-0-r£=R ' f J2'yn. a e,-4.4,, Te y A- (2)— g „ _ J ' 9u Stk(.95 ve 6.3 r r° 0 ,53? J (3)— 6Tl.4-t4c i ,,A, t, = /, 6g ,0'13 '37c� . , c,,.{ 2 r ��� C l5 A °k2 -f z[ y y , e. 4 2(2 ,63=4) -E y ,lv8 f ,Y"7(2.371 )] -f Z f.oLi3 f ,3-7S( t = 32-, , 6 (-3-3 ..') (-32- _ 15't �- l�'yu`f 3 TX -1 T. 6" f- 2 C ,� g, -r- A-01:2-] ft ( i 0,6 EZ 9 ( 3i 6 J -f- Z C.16 - , 5-37 (13 Z),,, 2yr3 my - 6 _� OPUS � Project T �/ Date /2, ©r Opus Architects & Engineers By A6 h Sheet of • 114 't Iel �f _ .�_ f rC, — 4 (2.) S — 14 Sfka \)e& cr t.:, g r 3S ( •) 6 - 1<,cr 7."„ �.,,:`� 3, Sze , 2fg ,65a (3) b - 4.4 G ��.� ter. ,aY z, �+ ,OK'? set, � t = z Tx + y Ty ,p -t a� -t [ r �� "z_.1 2- (7.0 n) -/ 47' I.zrw f , .6g3(7,37r2 -+[,467 ,5r? CP ‘-f./‘ G ?- Tx h,:4_ -t 471- j, t -t 2 02-,7 -` /4-0 3(2,?"' ) f 9 (3'5-2(r) F a1X35 G •f • OPUS. Project Date S12//C Opus Architects & Engineers By M Sheet 6 of • E If n" N! � H-0 '•4,16 -' X25 Peed zx , A (6) --- 6 " - I 2 � , z r .633 6- f;• — 1 �G, r2a-r;, N<.,,{,.,<.� "Z .9�� , UGC a G /p405-I r S/� € 4 if( 2 l - ,6 1 3(11,3 7$)] f Z E067-4 (6 .1-)3 a,,-t,,-f - U 3 6 1 Al( `I i kit"- = 3 .1›, y- tc_ 4 _ s ZC zS 43.6.,,_ -4 A 04:2] ( 2r o,) "� �.(3(c c) -+ 2. �f2 -t 1112/ c � • • 1111 III Building R2 OAE Project Number S435190 Date: 07/02/04 JAMBS 15 psf Reactions 22.5 psf/1.4 Allow. Reactions Section Orig. Jambs @ Slab @ Girt @ Roof @ Slab @ Girt @ Roof Slab Conn Notes Max 904 491 2474 _ 969 526 2651 #PDFs 4/4.1 4--14 904 491 2474 969 526 2651 5 Girt@TWE 2--14 411 224 1125 440 240 1205 2 Girt@TWE 2--14 420 229 1151 450 245 1233 2 Girt@TWE. 5/4.1 3--14 551 1789 590 0 1917 3 3--14 482 1567 516 0 1679 3 2/4.2 3--14 628 1501 673 0 1608 3 4/4.2 3--14 785 1471 841 0 1576 4 1/4.3 3-14 720 470 2050 771 504 2196 4 Beam@TWE 3/4.4 2--14 382 884 409 0 947 2 INFILL STUDS 14 ga. @ 16 inch o.c. Verify 15 psf Reactions Section TWE TDE TSE if O.K. @ Slab @ Roof @ Girt Notes 2/4.1 119.5 117 100 O.K. 166 224 126 117 100 O.K. 122 398 3/4.1 130 117.5 100 O.K. 140 384 76 Girt@TWE 1/4.2 126 117 100 O.K. 122 398 3/4.2 123.5 116.67 100 O.K. 139 331 2/4.3 126.5-130 116.83 100 O.K. 140 384 76 Beam@TWE 1/4.4 122 116.83 100 O.K. 152 288 2/4.4 125.83 118.5 100 O.K. 156 361 OPUS. Project 22. Date 7/21/49c/ Opus Architects & Engineers By M G`‹._ Sheet `el of CO• . N A)t Ir.A1o �.:j.c R._ N'c i 6.4 Fit r 6,4 i--11:-74,4w r?S 9�e OeTu,'C }6/s6 o4/4S _ tk-sr-2--' IL( a 6 c✓'ck cA(civ, , �C�.,�c!�. 0( J. 13) {'` rt.i! L F G CRe: 2ci—f `, s it- 3 Ve 27 cr , 2 cecse 3200 ✓ •t c.{r, ct,'r C; y-.t r, 6`t.; _ SJ Z /6OO /.6s Ca(,aC,• '"3, o 1 i 2 s---c v i`7 i 7 4, 6.2 5 /6.r 01 c� yA ^f f p° S µ Ss� 6zs G So !Z scf.A.3 ,: Qac Ott• Y 2 tC4-L '017C: Qct -- �•'� 1c, co.Scc.fc� /4 'zoo "tear eck, 4-w,r Z, 5 C 1tF c}� n )1'7' ". . d C r f 4.:a ova s -e.Gos �� ; _ �r. /6 :F . • Project re' OPUS. ,r v.. Date Opus Architects & Engineers 13y FA Sheet CI' of 410 • Components and Cladding h <_30 ft. Table 6-3A Design Wind Pressures Simplified Procedure Enclosed Buildings Walls & Roofs 0 -- O i '© EPO ' oa I DESIGN WIND PRESSURE(PSF) Effective Location Zone Wind Basic Wind Speed V(MPH) • Area (SF) 85 90 100 110 120 130 140 150 160 170 10 +10 -13 +10 -15+10 -18-+10 -22 +11 -26 +12-30 +14 -35 +16 -40 +19 -46 +21 -52 1 20 +10 -13 +10-14 +10 -18 +10 21 +10 -25 +12,-30 +13 -34 +15 -39 +18 -45 +20 -51 100 +10.-12 +10;13+10 =16 +10 20 +10',-24 +10--28 +11 -32 +13 -37+15 -42 +17 -48 10 +10 -22 +10-24 +10 -30 +10 -36 +11 ,43 +12 -51° +14 -59 +16;-68 +19 -77 +21 $7 Roof 2 20 +10 -19 +10-22+10 47 +10 -33 +10 s39 +12 -46 +13 -53 +15 .-61 +18 -69 +20 -78 • 100 +10 44'+10;16+10 -19 +10 -24 +10-28 +10 -33 +11 -38 +13 -44 +15 -50 +17 -56 10 +10 -33 +10=37+10 -45 +10 -55 +11 -65 +12 -77'+14 -89 +16 402 +19 416 +21 431 3 20 +10 -27 +10 -30+10 -37 +10 -45 +10-54 +12 -63 +13 -73 +15 -84 +18 -96 +20-108 100 +10-14 +10,-16+10 -19 +10 :24 +10-28, +10 -33 +11 38 +13 -44 +15_;-50 +17 .756 10 +13 -14 +15.=16+18 -19 +22 .:24 +26-28 +30 -33+35 -38 +40 -44 +46 50 +52 -56 4 50 +12 -13 +13 -14 +16 48:119 -22 +23 -26 +27.-30+31 -35 +36 -40+41 -46 +46 -51 500 +10 -11 +11 -12+13 -15 +16 -18 +19-21: +23 -25 +26 =29 +30 -34 +34 -38 +39 -43 Walls 10 +13 -17 +15 -19+18 -24 +22 -29 +26 =35 +30 -41' +35 =47 +40 -54 +46 -62 +52 -70 5 50 +12 -15 +13 7:16 +16 -20 +19 -25 +23 -29 +27 -34 +31 -40 +36 -46 +41 -52 +46 -59 500 +10 -11'+11 -12 +13 -15 +16 -18 +19-21 +23 -25 +26 -29 +30 -34 +34 -38 +39 -43 Metric Conversion: 1 PSF=47.9.pascals 1 SF=0.0929 SM 1 MPH=0.447 M/S Notes: 1. Design wind pressures above represent the net pressure(sum of external and internal pressures) applied normal to all surfaces. 2. Values shown are for exposure B. For other exposures,multiply values shown by the following factor: exposure C: 1.40 and exposure D: 1.66. 3. Linear interpolation between values of tributary area is permissible. 4. Values shown are for an importance factor I= 1.0. For other values of I,multiply values shown by I. 5. Plus and minus signs signify pressure acting toward and away from the exterior surface,respectively. 6. All component and cladding elements shall be designed for both positive and negative pressures shown in the table. • 7. Notation: a: 10 percent of least horizontal dimension or 0.4 h,whichever is smaller,but not less than 4%of least horizontal dimension or 3 ft. h: Mean roof height in feet(meters). s OPUS. Project 6P-42- Date /1-/0`1 Opus Architects & Engineers By (lk 6 PL- Sheet LSheet `' of • era0 4��. frr�fe.F epi c Tw E = 7/6 t ivr 13 0 c4- ah isho 7-12 is — i I 5 J &Jr, Tl w u4o0,f = I 1 3 W jAkas Op e r;0(1'4.t 17.2 5 .C-k '7,83 www = IZ`1 ate Syfic.( 6a,4cF ew« cc v 9, 1 k 4, 1 k L1,2k (EA-crze,i SCc,ez = `1 D y `t 1 I q2,0 (east ROOF 25` ►1sr 1.1,60-6ter = LiF I 22 Li 2'L41 • c 7-- /14),-i5 ,-s h G,n = 76 S tkck c L<'' A 6 "° Tye T.4 FILL 51ues OJt- E=/ 2 it L_ Le�,5 7wG T/w i400k! 1-z, — I r3 = I") 4 n 1 itis � f<ov� 2�i j 16s r, t cF: -22 1 6s 41) OPUS,. Project 6P- A-z Date 7/"2-/04 Opus Architects & Engineers By `4k G Sheet of • 01-1:c/6,1,1 E-)t 2s f- 5pky, o2- - Lo - , 5 " ®��r •ei 4,0d fro„.„ .S p(,'-- 6.13-Iob) ,v /14 p(..F.. G s M yea-k L� LZ ( Iry , ( (r7.45-)2 =f 7<.,r..Cf= 5-0‘°r e, g Z z Ve,d:6uA ( j -i~ w .f (35,9-54.1)( = , 60 kf4� • ed t1e.�-f C--k.) t s C, 6) C f 7•Z St(J t (2 3) 7', 3wr 31sk ("artoQo)6550" Jt1 n2- 0-c4 _ L2 , 6 ( ( 7, tS-`-) _ Z 6? k in x g l t"' 2- td � !, r _ S. Z GtSG If€4oF iP 3 = So, z MLv.+ = 3 ,hQ,t4_ 13 6. ? > `' ,f t� (":'.F4 5-7.6 r r Project /� OPUS. Date —2 J�1 C)`'I Opus Architects & Engineers By M 6 Sheet '"- of • firer- I C4JT wruF r- c046( Fc)4, .5er/-4= c' \-30 I1 7 , c -F- 1 • r .. mo,A; G 27 Le -- 20 , 5- 1- Po qtr 6,0A-.0 511AA 76'; 1�S 0 t iJ7. L-tl/}O .,,. S h+cRC k fit�,ti t ,-,1,45 /01 1‘t 01 ISS) (/6 :n ) 7,6 A = 5-4,J4 r' L -2-015" c2, - 16g ?,r c - 366 / 36 01 l ", C(`a7 6 1/4r) 120,8 4) 6-2,1) z /5', 3 T (270oc )( 6?) MNk Z ur`n* h 4- 6A AQ 6p01,4., t{->-I. f 'f R2,,✓ , _ Z _ .076 2D(`S f $ k c• Cq. otA S f 3 -c- Poi„ _ , g f (1,6) (13 164 � FC ' o = 13 (z) 6-2.)36c.) fE�� �� ( $k) t �s 17. E 1./0, t„ y 0 OPUS Project Bridgeport R2 Date 7/2/2004 By MGK • Opus Architects&Engineers Sheet i ` of DESIGN OF ONE STORY JAMBS AND HEADERS FOR STUD WALLS USING VALUES FROM DIETRICH INDUSTRIES CATALOG. DESCRIPTION- South&East Elevation Section 4/A4.1 Filename: Stud Walls.xls By: MGK WALL PROPERTIES TWE= 130.00 ft girt at 130 A TDE= 11750 ft b'\ a v ♦------ T/windowl = "'113.00 ft=Header Elevation vTSE= 100.00 ft e < L > LOADS WL= 15 psf wind load Wtwo= 35 psf wall weight WtwIndo,„= !: 15 psf window weight HEIGHTS a= 3000 ft =TWE-TSE b= 1700 ft =TWE-T/windowl e= 1300 ft =T/windowl -TSE JAMB DESIGN Opening 1 Opening 2 Opening 3 L= 17 25 ft 7.83 ft 8 ft width or span of opening/header Aauow= 0.58 in 0.26 in 0.27 in Allowable deflection=L/360 w,*nd= 129.4 plf 58.7 plf 60.0 plf ww;nd=WL*U2 0 PwaN= 9.1 kips 4.1 kips 4.2 kips PwaN=Wtwan*U2*a #of 6"JAMB STUDS= 4-14 ga. 2-14 ga. 2-14 ga. TOP HEADER DESIGN Studs ww„aN= 0.595 k/ft 0.595 k/ft 0.595 k/ft wwaN=WtwaN*b Mmax= 266 k-in 55 k-in 57 k-in Mmax=wwaN*L2/8 Iraq= 71.09 in4 6.65 in4 7.09 in4 req=5wwaN*L4/(384*E*4allow) Reaction= 5.13 k 2.33 k 2.38 k Reaction=ww.a*U2 Track widthb;b= 23.5 ft 23.5 ft 23.5 ft widthwb=b+e/2 ., ww;nd= 0.353 k/ft 0.353 k/ft 0.353 k/ft ww;nd=WL`widtht#b Mmax= 157 k-in 32 k-in 34 k-in Mmax=wwind*L2/8 IfeQ= 42.11 in4 3.94 in4 4.20 in4 Ireq=5wwind*L4/(384*E*eaIIow) Reaction= 3.04 k 1.38 k 1.41 k Reaction=ww;nd*U2 TOP HEADER#_:: ::::::.:::::3 1 1: S 1 OPUSProject Bridgeport R2 • OPUS Date 7/2/2004 By MGK • Opus Architects&Engineers Sheet /a-d of DESIGN OF JAMBS AND HEADERS FOR STUD WALLS USING VALUES FROM DIETRICH INDUSTRIES CATALOG. DESCRIPTION- South&East Elevation Section 5/A4.5 Filename: Stud Walls.xls By: MGK WALL PROPERTIES TWE= 126:00 ft A TDE= 117.00 ft b v v .fT/window2= 117.50 ft=Top Header Elevation r\TeN72.-T-IZIkli a c<4_,--B/window2= . 113:00 ft div vTSE= 100.00 ft e r>-e'j♦ -"---T/windowl = 108.21 ft=Bottom Header Elevation L < > LOADS WL= .....15 psf wind load Wtwaii= 35 psf wall weight Wtwindow='.:"--.----:x'15 psf window weight ................... HEIGHTS a= 26.00 ft =TWE-TSE b= 8.50 ft =TWE-T/window2 c= 4.50 ft =T/window2-B/window2 d= 9.29 ft =T/window2-T/windowl e= 8.21 ft =T/windowl -TSE JAMB DESIGN Opening 1 Opening 2 Opening 3 L= 12 ft 10..5 ft ft width or span of opening/header • 4aiiow= 0.40 in 0.35 in 0.00 in Allowable deflection=U360 \wind= 90.0 plf 78.8 plf 0.0 plf \wind=WL*U2 Pwaii= 5.5 kips 4.8 kips 0.0 kips Pwaii=Wtway*U2*a #JAMB STUDS= .3-14 ga. 3-'14 ga. ga. TOP HEADER DESIGN Studs wwaii= 0.298 k/ft 0.298 k/ft N/A k/ft \wan=Wtwati b Mmax= 64 k-in 49 k-in #VALUE! k-in Mmax=wwaii*L2/8 Iraq= 11.97 in4 8.02 in4 #VALUE! in4 Ireq=5wwaB*L4/(384*E*4anow)., Reaction= 1.79 k 1.56 k #VALUE! k Reaction=ww.a*U2 Track widthtrib= 13.1 ft 13.1 ft N/A ft widthtrib=b+d/2 \wind= 0.197 k/ft 0.197 k/ft #VALUE! k/ft wwind=W L*widthtdb Mmax= 43 k-in 33 k-in #VALUE! k-in Mmax=\wind*L2/8 Iraq= 7.93 in4 5.31 in4 #VALUE! in4 Ireq=5wwind*L4/(384*E*Etaiiow) Reaction= 1.18 k 1.04 k #VALUE! k Reaction=wwaii U2 TOP HEADER#= 2 2 BOTTOM HEADER DESIGN: Studs wwaii= 0.235 k/ft 0.235 k/ft N/A k/ft wwau=Wtwall*(d-c)+Wtwindow*c Mmax= 51 k-in 39 k-in #VALUE! k-in Mmax=\wao*L2/8 Iraq= 9.46 in4 6.34 in4 #VALUE! in4 req=5wwaii*L4/(384*E*L aAow) Reaction= 1.41 k 1.23 k #VALUE! k Reaction=wwaii*U2 Track widthtrib= 8.8 ft 8.8 ft N/A ft widthtrib=d+e/2 \wind= 0.131 k/ft 0.131 k/ft #VALUE! k/ft \Nand=WL*widthtrib • - z Mmax- 28 k-in 22 k-in #VALUE! k-in Mmax=\w nd*I /8 'reel= 5.28 in4 3.54 in4 #VALUE! in4 req-5wwnd*L4/(384*E*Daiiow) Reaction= 0.79 k 0.69 k #VALUE! k Reaction=wwaii*U2 BOTTOM HEADER#= 2 2 /1 OPUS,.S Project Bridgeport R2 f Date 7/2/2004 By MGK • Opus Architects&Engineers Sheet t ', of DESIGN OF ONE STORY JAMBS AND HEADERS FOR STUD WALLS USING VALUES FROM DIETRICH INDUSTRIES CATALOG. DESCRIPTION- South Elevation Section 2/A4.2 Filename: Stud Walls.xls By: MGK WALL PROPERTIES TWE_. 123.50ft A TDE= 116.67 ft bA a T/windowl = 113.67 ft=Header Elevation v TSE= 100.00 ft e L LOADS WL= 15 psf wind load Wt,,,,ii= 35 psf wall weight ........... ....... WtwindoW= 15 psf window weight HEIGHTS a= 2350 ft =TWE-TSE b= 983 ft =TWE-T/windowl e= 1367 ft =T/windowl -TSE JAMB DESIGN Opening 1 Opening 2 Opening 3 L= 12.08 ft ft ft width or span of opening/header Aauow= 0.40 in 0.00 in 0.00 in Allowable deflection=U360 wwind= 90.6 plf 0.0 plf 0.0 plf ww,nd=WL*U2 IIIPwaii= 5.0 kips 0.0 kips 0.0 kips Pwaii=Wtwap*U2*a #of 6"JAMB STUDS= 3-14 ga. ga. ga. TOP HEADER DESIGN Studs wwaii= 0.344 k/ft N/A k/ft N/A k/ft Aiwa!'=Wtwap*b Mmax= 75 k-in #VALUE! k-in #VALUE! k-in Mmax=wwa,i*L2/8 IfeQ= 14.12 in4 #VALUE! in4 #VALUE! in4 req=5wwan*L4/(384*E*4auow) Reaction= 2.08 k #VALUE! k #VALUE! k Reaction=wwap*U2 Track widths b= 16.7 ft N/A ft N/A ft widthtrib=b+e/2 .. ww;nd= 0.250 k/ft #VALUE! k/ft #VALUE! k/ft wwind=WL*widthb;b Mmax= 55 k-in #VALUE! k-in #VALUE! k-in Mmax=wwind*L2/8 Iraq= 10.26 in4 #VALUE! in4 #VALUE! in4 'req=5wwind*L4/(384*E*ianow) Reaction= 1.51 k #VALUE! k #VALUE! k Reaction=wwird*U2 ..................... TOP HEADER#_ " 2 0 /r OPUS Project Bridgeport R2 OPUS o Date 7/2/2004 By MGK • Opus Architects&Engineers Sheet I,,, of DESIGN OF ONE STORY JAMBS AND HEADERS FOR STUD WALLS USING VALUES FROM DIETRICH INDUSTRIES CATALOG. DESCRIPTION- South Elevation Section 4/A4.2 Filename: Stud Walls.xls By: MGK WALL PROPERTIES TWE= 122.00 ft A TDE= 116.83 ft b" a v —T/windowl = 110.00 ft=Header Elevation V TSE= 100.00 ft e < L > LOADS WL= 15 psf wind load Wtwan= 35 psf wall weight Wtwindow=' - - - 15 psf window weight HEIGHTS a= 2200 ft =TWE-TSE b= 1200 ft =TWE-T/windowl e= 1000 ft =T/windowl -TSE JAMB DESIGN Opening 1 Opening 2 Opening 3 L= 13.67 ft ft ft width or span of opening/header Arnow= 0.46 in 0.00 in 0.00 in Allowable deflection=L/360 wwind= 102.5 plf 0.0 plf 0.0 plf ww;nd=WL*U2 • Pweii= 5.3 kips 0.0 kips 0.0 kips Pwaii=Wtwan*U2*a #of 6"JAMB STUDS= 3-14 ga. ga. ga. TOP HEADER DESIGN Studs wwan= 0.420 k/ft N/A k/ft N/A k/ft wweii=Wtweii*b Mmax= 118 k-in #VALUE! k-in #VALUE! k-in Mmax=wwaii*L2/8 IfeQ= 24.97 in4 #VALUE! in° #VALUE! in4 IreQ=5Wwaii*L4/(384*E*Aaiiow) Reaction= 2.87 k #VALUE! k #VALUE! k Reaction=wweii*U2 Track widthtrib= 17.0 ft N/A ft N/A ft widthb;b=b+e/2 .. Wwind= 0.255 k/ft #VALUE! k/ft #VALUE! k/ft wwind=WL*widthtrib Mmax= 71 k-in #VALUE! k-in #VALUE! k-in Mmax=wwind*L2/8 Ifeq= 15.16 in4 #VALUE! in4 #VALUE! in4 Ireq=5wwind*L4/(384*E*4auow) Reaction= 1.74 k #VALUE! k #VALUE! k Reaction=wwind*U2 TOP HEADER#= 2 0 0 OPUSProject Bridgeport R2 o OPUS Date 7/2/2004 By MGK • Opus Architects&Engineers Sheet .F---,. of DESIGN OF ONE STORY JAMBS AND HEADERS FOR STUD WALLS USING VALUES FROM DIETRICH INDUSTRIES CATALOG. DESCRIPTION- South Elevation Section 1/A4.3 Filename: Stud Walls.xls By: MGK WALL PROPERTIES TWE= 130.00 ft Beam at 130 A TDE= 116.83 ft bA a �/ ♦f T/windowl = 114.00 ft=Header Elevation v TSE_ 100.00 ft er\-1 / < L > LOADS WL= 15 psf wind load Wtweii= 35 psf wall weight Wtwindow -'-15 psf window weight HEIGHTS a= 3000 ft =TWE-TSE b= 1600 ft =TWE-T/windowl e= 1400 ft =T/windowl -TSE JAMB DESIGN Opening 1 Opening 2 Opening 3 L= 14 33 ft ft ft width or span of opening/header Aauow= 0.48 in 0.00 in 0.00 in Allowable deflection=U360 wwind= 107.5 plf 0.0 plf 0.0 plf wwind=WL*U2 • Pwaii= 7.5 kips 0.0 kips 0.0 kips Pwan=Wtwau*U2*a #of 6"JAMB STUDS= 3-14 ga. ga. ga. TOP HEADER DESIGN Studs wwaii= 0.560 k/ft N/A k/ft N/A k/ft wwan=Wtwan*b Mmax= 172 k-in #VALUE! k-in #VALUE! k-in Mmax=wwaii L2/8 'feQ= 38.36 in4 #VALUE! in4 #VALUE! in4 Ireq=5wwaii*L4/(384*E*4aiiow) Reaction= 4.01 k #VALUE! k #VALUE! k Reaction=wwaii*U2 Track widthtrib= 23.0 ft N/A ft N/A ft widthidb=b+e/2 wwin4= 0.345 k/ft #VALUE! k/ft #VALUE!"k/ft wwin4=WL"widthtrib Mmax= 106 kin #VALUE! k-in #VALUE! k-in Mmax=wwind*L2/8 Iraq= 23.63 in4 #VALUE! in4 #VALUE! in4 Ireq=5wwind*L4/(384*E*4apow) Reaction= 2.47 k #VALUE! k #VALUE! k Reaction=wwin4*U2 TOP HEADER#= 2 S /1 OPUSo Project Bridgeport R2 Date 7/2/2004 By MGK • Opus Architects&Engineers Sheet ,-cs of DESIGN OF ONE STORY JAMBS AND HEADERS FOR STUD WALLS USING VALUES FROM DIETRICH INDUSTRIES CATALOG. DESCRIPTION- South&West Elevation Section 3/A4.4 Filename: Stud Walls.xls By: MGK WALL PROPERTIES TWE= 12583 ft TDE= 118.50 ft b'' a � T/windowl 112.331 ft=Header Elevation v TSE 100.00'ft ej4. 1--- L LOADS WL= 15 psf wind load Wtwap= 35 psf wall weight Wtwindow= ".'. ...-:-15 psf window weight HEIGHTS a= 25.83 ft =TWE-TSE b= 13.50 ft =TWE-T/windowl e= 12.33 ft =T/windowl -TSE JAMB DESIGN Opening 1 Opening 2 Opening 3 L= _....._._6.5 ft 5'17 ft 6.33 ft width or span of opening/header '.avow= 0.22 in 0.17 in 0.21 in Allowable deflection=1J360 wwind= 48.8 plf 38.8 plf 47.5 plf wwind=W L*U2 IIIPwall= 2.9 kips 2.3 kips 2.9 kips Pwaa=Wtwall*U2*a #of 6"JAMB STUDS= 2-14 ga. 2-14'ga. 2-14'ga. TOP HEADER DESIGN Studs wwou= 0.473 k/ft 0.473 k/ft 0.473 k/ft w, 0=Wtwaii*b Mmax= 30 k-in 19 k-in 28 k-in Mmax=wwa0*L2/8 'req= 3.02 in4 1.52 in4 2.79 in4 Ireq=5wwall*L4/(384*E*4axow) Reaction= 1.54 k 1.22 k 1.50 k Reaction=w,,,aii*U2 Track widthtdb= 19.7 ft 19.7 ft 19.7 ft widths,b=b+e/2 .. wwiod= 0.295 k/ft 0.295 k/ft 0.295 k/ft wwind=W L*widthtrib Mmax= 19 k-in 12 k-in 18 k-in Wax=wwind*L2/8 Ireq= 1.89 in4 0.95 in4 1.74 in4 Ireq=5wwind*L4/(384*E*4auow) Reaction= 0.96 k 0.76 k 0.93 k Reaction=wwind*U2 ...................... TOP HEADER#= 1 1 1 S