Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (80)
k3es"t � CT ENGINEERING Structural Engineers, 180 Nickerson Street Suite 302 Seattle, WA 98109 INC. FEB 0 3 2016 206.285.4512 (V) 206.285.0618 (F) CITY OF TGA O #15238 Structural Calculations River Terrace „co PR o ,s Plan 5 „ a Elevation B ! ±d C EG9NA116. Tigard, OR � 22 \ 1,4,,? T GF��F Design Criteria: 2012 IBC (ORSC, OSSC) 09/14/2015 ASCE 7-10 Wind Speed: 120(ULT); 93(ASD); Kzt=1 .0 Seismic: Ss=0.972, S1 =0.423, SDC=D Roof Snow Load = 25 psf Site Class = D, Bearing = 2000 psf Client: Polygon Northwest Company 109 East 13th Street, Suite 200 Vancouver, WA 98660-3229 Ph: 360.695.7700 Fax: 360.693.4442 Architect: Milbrandt Architects 25 Central Way, Suite 210 Kirkland, WA 98033 Ph: 425.454.7130 Fax: 425.646.0945 C T E.N GI .N E `.E INC 180 Nickerson St. Suite 302 Seattle,WA 98109 (206)285-4512(V) (206)285-0618(F) Polygon Northwest Company Multiple locations in Tigard, OR DESIGN SUMMARY: The proposed project is to be single-family homes. We understand that these homes are to be constructed in multiple locations throughout Tigard, Oregon. Design parameters are as noted below: The structures are two-story wood-framed. Roof framing is primarily with pre-manufactured pitched chord wood trusses. Upper floor framing is primarily with pre-manufactured parallel chord wood trusses. Floor framing over crawlspace is primarily pre-manufactured wood joists. The foundations are to be conventional spread footings. Wind design is based on the ASCE 7-10 MWFRS (Envelope Procedure)for 120 mph ultimate wind speed, exposure category B, and with a Kzt value of 1.00. Lateral design is based on the ASCE 7-10"equivalent lateral force" procedure with Ss equal to or less than 1.10 and S1 equal to or less than 0.50 and with soil classification "D". Plywood or OSB shearwalls are the primary lateral force resisting system (R=6.5). . Foundations have been sized for Class 4 soils as defined in IBC 1806.2. Codes considered; 2012 IBC,and currently adopted ORSC and OSSC. SHEET TITLE: DEAD LOAD SUMMARY CT PROJECT#: CT# ROOF Roofing- 3.5 psf Roofing-future 0.0 psf 5/8" plywood (O.S.B.) 2.2 psf Trusses at 24"o.c. 4.0 psf Insulation 1.0 psf (1) 5/8"gypsum ceiling 2.8 psf Misc./Mech. 1.5 psf ROOF DEAD LOAD 15.0 PSF FLOOR floor finish 4.0 psf NO gypsum concrete 0.0 psf 3/4" plywood (O.S.B.) 2.7 psf joist at 12" 2.5 psf Insulation 1.0 psf (1) 1/2"gypsum ceiling 2.2 psf Misc. 2.6 psf FLOOR DEAD LOAD 15.0 PSF (2)2 c8 HDR ( )2x8 FOR (2 2x8 HpR R—— _ _ :..,:.: ——4 :`IIS'——.—ISI--— �] __II . RB.1 RB.2 RB.3 RB.4 .2B.5 xx 1 ,Ili .. I fV Ila T I i I �H 1 GT bl O� GT II i I 1 i t t E T, x ia 1 t oT� x " 7 r,,,,,,,-1 i I 0 1 x I _ v 1 nTH I ,La t it : t I , ROOF TRUSS d 24"O.0 1 8 o I 0 ... GT cT.b2 i i I, x t 'A 1 m . A E _ � �� 1 11 „ v...........:::::::. �^�, 2 8 HD' . a RB.2 3 ?`;rI O "R C iii' `I— '�— :moi-��. GABLE END TRUSS "® RB.1 [;ARI FFNn TRIMS GABLE END TRUSS OPLAN 5B PLAN 5B Roof Framing Plan 114"=V-O CT# 14051 2014.05.09 1/4" = 1' 0" (11x17) 0 . (P4) I 0 hd11 14, I II r I_ I I I � v) I s„ I I F I 1 aj ', err .i I r= I rnF II. IIi-4 I ,., „„,„„ {,.,,. F } FI I I II, I F i I „. II ( ., , ..F p I i ...!;:m ,, 1 „ ., L F 1111 . 11 Illi 4. a 4. I I e, 41:10 '- '-'1,- (1.0' d % 4.Te 4.T. 0 %V CIO a AIX 0 9 EY© 1' PLAN 5B PLAN 5B Top Floor Shear Plan 1/4" = 1'-0" (11x17) 1/4"= -0" CT# 14051 2014.05.09 a a , 14 STHD14 /� 1.Ma 4x10 HDR 1 Mb 3.5x9 GLB HDR 1 Mc 4x10 HDR 4x10 HDR 4x10 HDR ,,, / .fiFc4u '.,J7-us< �_r...�'---"-� er,lu�. ... .w..., 2 ....=rte- ." . -���—•�•• 14.1 `, B.2 B. ,...13.9 a.3 II I; -- A 2 l' rN _-r -1 'U m -�� 11 _- _�'i I •N I I `. pi II K 0 11 I in 1 1it 1 1 it II N 1 >, F _-_ _3.5x d�IG BEAM FB 3. x14 B B FBL 3.5x9�L6 HDR f� — ��0 �� B.11 'i'I0.12 £ I I I J i b I v - 1 a \ --------- - � -----— fj[aIHDR 4. I HDR N _,SlHD14 1111 STW 114 B-�i ..3.9....?,, r:n. ......,..w .., 3" 4'-0. 3• • I-1'-3•I T.O.S. 3 V'CONC.SLAB . -0'-71/2" za -3" -T.O.S. r J STHD14 STHD14 _ _ _ 'O 1 13 t3 - pr-: ........................ .................................................................. ...................... ... . ........ ....................::.•9:2"`O.C. ..P.U.N.O.:'.'.'.'.'.':'t.' .'.'.'.'.'.ADEQUATE.DRAINA ..':.. '.'.':.':::::.'::.•:.':.'.'..'.':.'.'.'.'.'.'.'.;o...'.':::.':.'::::'.':.'.'.'::.'.':.'.'.L' ;:::.'.'.'::.'.'::.'::::.•::.'..:::::.':® .':.'.'..•:.':::.•:�.'1:.'.'.'...;.....'.'.'............. ..I'::::::.::.'.'us .1:75x9:_.L�.. :.. I. ,'.'.':.':.'......'...:.'-':........... ..'.:'p.'. ':.:•..••.:187(8''10:;...G:'.'.'.':.-:.'.'.'.'.'.'.:•.:•.':':':.:•:.':'.'::.':. ':.'..'.'::�:•:'::io".'.':'.'::.'':.'.'.'.':.:.'.•:.':':::..:I. 1 x F.T. ............... ................ ...!. EACH.WAY.TYP.'.'. :.'.'. ::::.'.':.'.L'.:.'.::...::.'....'.':::.' .................... . ............ ;.'.'..'. ..':.'.'.'::::::.'::..':.'. .. 2x6'PONY4VALGFOR.'::...'.'. '..'::.':.'..':.':... ..'.'..' .'.'.' � .':'._.'.•::: .. ............ ............ J:.'.'.'.'.'.'.':.'..'.'.':..::.:•:.':'::.. ...,...':.'::.':.'.':.:'.'.':.':.'.'.:.':.).'.'.'.'�-'._.__._.—_,.:....1.n�.,��r r�. `�... - - I ........... . ................. —. 1.75•.WIDE'L '.TO MATC l'JOIS ........ ... ......... ................ '. + ..........: DEPTH Ag. PONY.WAL'S:'. � ............. . ............ .......... ............ .......... ft WH I STHD14 STHD14 j..:...'... '':' ''' '''''. )C P4 T.O.S. (P4) ',. . ::':30'x20.'x70'.ETG:...:'.':.'.':'.'.'::::1 J5"•WIDE.LVLTO TCH'•'•,•' ,'.':.'.'.'. ...... ............. ALL:.':':.... :'!. STHD,4'::.:! E.I........ .1:......' r'r r ----- __. .14 • 31/2"CONC.SLAB SLAB SLOPES 312• O1'-012 FROM BACK TO APRON :,':::'::'' :.•,•i i•:: VERIFY GARAGE SLAB HEIGHT WITH GRADING PLAN .',':...'..'.':..:'.'.'.'.':. :'.'I'::.'.:'.'.'.'.':.;o : _1'-0.1/2.'.":••.':i. 19'-10' j r---- I * ��H-- Hil 1 T.O.S. I........ a; i1"°'"3... .I ,,I:OE STHD14 STHD14 ' aL ....J' 16 1'612' I �r�, a _ '6.1 a @ L STHD14 STHD14 , i 3 1/2"CONC.SLAB SLOPED DOWN P3 1/4 :12 L -I I -—{ J 16 Q S6.1 43/ 2'-1' 16'-3" 2'-2" T-10" 8" CDPLAN 5B40'-� �' LAN 5� 'calf 14051 2014.05.09 ,2{4" = 1'-0" (11x17) CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 26 MAR 2014,429PM F E ep „s; a ? r e p erg.y p m Q1140517�11Eoo4051T go, MU�fiple Sllmple Beam. , %< "? ., . ' i. r_ `�is y,."e'`t `r od, rno )=NERCALC I�IC'1983-2014;Build<6 1,41 23 Ver614rt1 2,35 �l is #��Kw-06002997, engineering;; Description : PLAN 5.B Top Floor Framing Wood Beam Des(gn B.1 ;'a Calculations per2012 NDS,IBC 2012,;CBC 2013;ASCE 7,-10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Pill 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,0.0 to 2.670 ft,Trib=3.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.990, S=1.650 k @ 2.670 ft Design Summary D 00 •, Max fb/Fb Ratio = 0.795. 1 o 0o 0°4 10) • ' fb:Actual: 983.60 psi at 2.663 ft in Span#1 Fb:Allowable: 1,237.45 psi Load Comb: +D+0.750L+0.750S+H Max fv/FvRatio= 0.588: 1 A A fv:Actual: 121.63 psi at 3.485 ft in Span#1 a.zso rt,4x10 Fv:Allowable: 207.00 psi Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S W E Li Downward L+Lr+S 0.024 in Downward Total 0.038 in Left Support 1.05 0.87 0.92 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.60 0.87 1.84 Live Load Defl Ratio 2120>360 Total Defl Ratio 1333 >180 Wood Beam Deslgn B 2 e` ? r ,,tor Calcut t s'per2012 NDS,IBC 2012,GBC 2013 ASCE?10• BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Pr!! 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 6.50 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.560, S=0.9350 k @ 3.250 ft Design Summary . Max fb/Fb Ratio = 0.736. 1 • ' D(0. fb:Actual: 1,600.40 psi at 3.250 ft in Span#1 • Fb:Allowable: 2,175.87 psi FIMAER.FIRMEGIMMlik Load Comb: +D+0.750L+0.750S+H Max fv/FvRatio= 0.511: 1 fv:Actual: 182.08 psi at 5.352 ft in Span#1 6.50 ft, 1.75x14 Fv:Allowable: 356.50 psi Load Comb: +D+0.750L+0.7505+H Max Deflections Max Reactions (k) D L Lr S W E I Downward L+Lr+S 0.066 in Downward Total 0.104 in Left Support 1.43 1.33 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.97 1.33 2.02 Live Load Defl Ratio 1187>360 Total Deft Ratio 748 >180 Wood BeaPVP- B•3 L r Calculations er<2012 MOS,IBC 2012,CBC 20113,ASCE 7 10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-PrIl 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,1.50 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.560, S=0.9350 k @ 1.50 ft CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 2014,429PM Multiplez Simpt.e Beam .,. • ..." -c . _ � . 4051r1E0gr1140517 4. C 6 � ,, ? - .;.�ENERCALC.INC1983-2014,Bund.B.19.123,,Vec6;141.23 _; Lic.# KW-06002997 . ` : . .� ,-; ,,, ,` ' > Licensee;.c.t.engineering=. Design Summary * + • .t:0 .s7w Max fb/Fb Ratio = 0.681: 1DO. fb:Actual: 842.88 psi. at 1.941 ft in Span#1 Fb:Allowable: 1,237.45 psi .� Load Comb: +D+0.750L+0.7505+H Max fv/FvRatio= 0.502: 1AL A fv:Actual: 103.92 psi at 0.000 ft in Span#1 Fv:Allowable: 207.00 psi 4.250 ft, 4x10 Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) p L Lr s W E H Downward L+Lr+S 0.023 in Downward Total 0.036 in Left Support 1.17 0.87 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.34 0.87 1.40 Live Load Defl Ratio 2242>360 Total Defl Ratio 1411 >180 Wood Beam Designs B.4 Calculations"per 2012NDS,IBC 2012,CBC 2013,ASCE 7-10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Pr!! 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summaryee�'0J Max fb/Fb Ratio = 0.578. 1 1 '0Ye' 5.r'i ' i ' fb:Actual: 715.19 psi at 2.125 ft in Span#1 _ 4. Fb:Allowable: 1,237.45 psi . _.. Load Comb: +D+0.750L+0.750S+H Max fv/FvRatio= 0.401 : 1 A A fv:Actual: 83.02 psi at 3.485 ft in Span#1 Fv:Allowable: 207.00 psi 42501t 41,1e Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) 2 L Lr S W E H Downward L+Lr+S 0.020 in Downward Total 0.031 in Left Support 1.23 0.87 1.22 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.23 0.87 1.22 Live Load Defl Ratio 2591 >360 Total Defl Ratio 1632 >180 Wood Beam Design.: B 5 (Typ.) `,..Calculations _ �' _ tions-per�2012 NDS,IBC 2012,CBC 2073,ASCE7-10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pill 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary _ Max fb/Fb Ratio = 0.109; 1 fb:Actual: 127.33 psi at 1.375 ft in Span#1 Fb:Allowable: 1,169.59 psi Load Comb: +D+S+H Max fv/FvRatio= 0.092: 1 A fv:Actual: 15.85 psi at 0.000 ft in Span#1 Fv:Allowable: 172.50 psi 2.7502 2-2e8 Load Comb: +D+S+H Max Deflections Max Reactions (k) 2 L Lr S W E H Downward L+Lr+S 0.002 in Downward Total 0.003 in Left Support 0.23 0.06 0.17 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.23 0.06 0.17 Live Load Defl Ratio 19147 >360 Total Defl Ratio 9430 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 2014,4:29PM r q.g a s ,�,�, c� .,x 1 �, c Fk 4174051T 11E6 14051T 4,ECQ ; Multiple,Simple`Beam a ,k r<r j,"w ,zI ;s ENERCALC INC;1983-2014'Build&,14 1 23 Ver614 1 23 Lie.,#:KW-06002997 . . .:•':-"_,--.:'•••":;"::',.,,:':'-'..,;.. P .. .. _ ,. Licensee:.c.t.engineering'.' Wood Beam Design 13,6 . '. �4 Calculations per 2012 NDS;IBC 2012,`CBC 2013?ASCE7 10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pr!! 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary ,....f • e„ .: , Max fb/Fb Ratio = 0.520. 1 fb:Actual: 606.14 psi at 3.000 ft in Span#ISRF" `�' a, ., Fb:Allowable: 1,165.07 psi • ain , Load Comb: +D+S+H Max fv/FvRatio= 0.283: 1 A A fv:Actual: 48.83 psi at 5.400 ft in Span#1 Fv:Allowable: 172.50 psi 6.09.2-26 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.039 in Downward Total 0.079 in Left Support 0.51 0.12 0.38 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.51 0.12 0.38 Live Load Defl Ratio 1843>360 Total Defl Ratio 908 >180 Wood Beam Design B.7 `° ° ' _ ,„ _ Calcu_tatrons per 2012;NDS,iBC2012,CBC 2013;ASCE 7 10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Prll 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary Max fb/Fb Ratio = 0.292; 1 • ` % '._ fb:Actual: 340.95 psi at 2.250 ft in Span#1 iiim � m `l Fb:Allowable: 1,167.23 psi - �s piVs `'"' Load Comb: +D+S+H Max fv/FvRatio= 0.195: 1 A A fv:Actual: 33.57 psi at 0.000 ft in Span#1 Fv:Allowable: 172.50 psi 4.508 2.2=e Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.012 in Downward Total 0.025 in Left Support 0.38 0.09 0.28 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.38 0.09 0.28 Live Load Defl Ratio 4369 >360 Total Defl Ratio 2152 >180 Wood BeapvDesign B 8 trg-Pga ," .� :" , _� i, ,Cacua,ions per22NDSBG 2r# CBC #i7g:4SCE7 10. BEAM Size : 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Pill 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary D 0.2213 1 0.590 Max fb/Fb Ratio = 0.277. 1 __ fb:Actual: 298.88 psi at 1.750 ft in Span#I . - Fb:Allowable: 1,077.23 psi .. � � Load Comb: +D+L+H 4 4 Max fv/FvRatio= 0.205: 1 A A fv:Actual: 36.84 psi at 2.730 ft in Span#1 Fv:Allowable: 180.00 psi 3.5011 4+10 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Del Ratio 7745>360 Total Defl Ratio 5633 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: 1 (206)285 4512 Fax: (206)285 0618 Mu1fiple Simple Bear Fife° d1t4051TPri`1\En 114051T 4EC6 ; Lic #,-:ICW-06002997. ENERCALC INC 1983-2014,;Buid 6 141 236 Ver6141 23_ -•, • - •.. ,. Licensee ct:engineering:; Wood Beam Design B. 9 Calculations per 2.012 NDS,IBC 2012,CBC 2013,ASCE 7-10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Pill 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary t D(0221311:(0590) Max fb/Fb Ratio = 0.277. 1 ./4; fb:Actual: 298.66 psi at 1.750 ft in Span#1 Fb:Allowable: 1,077.23 psi ` ' Load Comb: +D+L+H Max fv/FvRatio= 0.205: 1 A fv:Actual: 36.84 psi at 2.730 ft in Span#1 Fv:Allowable: 180.00 psi 3.500 4,10 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr s W E H Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Defl Ratio 7745 >360 Total Defl Ratio 5633>180 Wood Beam Design : B• 10 Calculations per 2012 NOS,IBC 2012,CBC 2013,ASCE 7-10 BEAM Size 1.75x14,TimberStrand, Fully Unbraced UsingAllowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Pr!! 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary o(o2213)L(0.590) Max fb/Fb Ratio = 0.372. 1 i fb:Actual: 766.31 psi at 3.000 ft in Span#1 • . �� Fb:Allowable: 2,062.40 psi Load Comb: +D+L+H Max fv/FvRatio= 0.295: 1 2 �z 2 fv:Actual: 91.39 psi at 4.840 ft in Span#1 Fv:Allowable: 310.00 psi 6.0 ft.1.75x14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.028 in Downward Total 0.038 in Left Support 0.66 1.77 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.66 1.77 Live Load Dell Ratio 2581 >360 Total Defl Ratio 1877>180 :Wood Beam Design B 11 ' calculations per 2012 NDS,IBCr2012,CBC 2013 ASCE 7-10 BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Prll 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary D(02213 L(0.590) Max fb/Fb Ratio = 0.198. 1 fb:Actual: 431.05 psi at 2.250 ft in Span#1 a Fb:Allowable: 2,180.79 psi } Load Comb: +D+L+H Max fv/FvRatio= 0.175: 1 A fv:Actual: 54.39 psi at 0.000 ft in Span#1 Fv:Allowable: 310.00 psi 4.50 ft.1.75,14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.50 1.33 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.50 1.33 Live Load Defl Ratio 6120 >360 Total Defl Ratio 4451 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 26 MAR 2014,429PM 1T .Thr ' v a 3/sit E 5 a :q ;File Q 1140511 10014017 A E , Multiple S>Impie Beam r ry Y ;s:... . .... .. .. . .. •nr to r ENERCALC iNCJ1983-2014,Build 6 14 1 23,Verb 14[,23.,, Lic.,#:=KW-06002997,: ,. :, • >. ngiri . .rig; Y L°Icensee c.t:a eeri Wood Beam' Design B 12 � �, Caicalations per 2012 NOS IBC 2012 CBC 2013 ASCE 7.-10.' BEAM Size: 3.125x9,GLB, Fully Unbraced OR 3.125X10.5 Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-PrIl 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.0 ft Design Summary 0(0.210 L(0.560) Max fb/Fb Ratio = 0.736• ,..riRttioPR. .;a7,:sktelliz;A:.,:,...ATm73tztoigaii401310:Prglial3734MASE=rt-Wrin . fb:Actual: 1,752.18 psi at 4.000 ft in Span#1 Fb:Allowable: 2,379.75 psi itd 4 2 Load Comb: +D+L+H Max fv/FvRatio= 0.504: 1 fv:Actual: 133.60 psi at 0.000 ft in Span#1 Fv:Allowable: 265.00 psi 8.0 ft. 3.125x9 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.152 in Downward Total 0.209 in Left Support 0.84 2.24 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.84 2.24 Live Load Deft Ratio 632 >360 Total Dell Ratio 459 >180 r CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed.26 MAR 2014,426PM Multiple Simple Beam _ Lic.#`::KW-06002997 , r e; . . .....F4 L cen 1ee1 cat engineering ENERCALC INC 1963 201 Description : PLAN 5.B Top Floor Framing, Cont. . .. ___..... ......... .._ ..._ .. . WoodBeam Design B 13 g � Cal I_. cu ations per 2012 NDS,IBC 2012,CBC 2013,ASCE 7-10 BEAM Size: 3.5x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-PrIl 2 050.0 psi Fv 310.0 psi Ebend-xx 1 550.0 ksi Density32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi I Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.0 ft Unif Load: D=0.0150, L=0.10 k/ft,Trib=5.0 ft Design Summary g438D.}l04Yi Max fb/Fb Ratio = 0.422. 1 # x fb:Actual: 962.10 psi at 4.250 ft in Span#1 Fb:Allowable: 2,280.40 psi Load Comb: +D+L+H ffi Max fv/FvRatio= 0.310: 1 A fv:Actual: 95.96 psi at 7.338 ft in Span#1 Fv:Allowable: 310.00 psi 8.50 ft.3.5X14 Load Comb: +D+L+H Max Deflections Max Reactions (k) 2 L Lr S W E H Downward L+Lr+S 0.078 in Downward Total 0.097 in Left Support 0.83 3.49 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.83 3.49 Live Load Defl Ratio 1306 >360 Total Defl Ratio 1055 >180 Wood Beam Design : 814 Calculations per 2012 NOS,IBC.2012,CBC 2013,ASCE 7-10 BEAM Size: 5.125x18,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-PrIl 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=12.0 ft Design Summary Max fb/Fb Ratio = 0.634; 1 D(0.180)L(0.480) fb:Actual: 1,466.89 psi at 10.125 ft in Span#1 .- + Fb:Allowable: 2,313.03 psi Load Comb: +D+L+H g , . , Max fv/FvRatio= 0.350: 1 20.250 ft, 5.125x18 fv:Actual: 92.72 psi at 18.765 ft in Span#1 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E Fl Downward L+Lr+S 0.407 in Downward Total 0.560 in Left Support 1.82 4.86 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.82 4.86 Live Load Defl Ratio 596 >360 Total Defl Ratio 433>180 Wood Beam Design 'B 15 v i _Calculations pec 2012 NDS 1(3C-2012,CBC 2013,ASCE 7-10 BEAM Size: 4x12,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-PrIl 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: 0=0.0150, L=0.040 k/ft,Trib=9.50 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=2.750 ft Design Summary D40355) Max fb/Fb Ratio = 0.893. 1 fb:Actual: 876.94 psi at 4.375 ft in Span#1 ", Fb:Allowable: 982.26 psi Load Comb: +D+L+H Max fv/FvRatio= 0.411: 1 A A fv:Actual: 73.91 psi at 0.000 ft in Span#1 Fv:Allowable: 180.00 psi 8.750 n,4x12 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.090 in Downward Total 0.126 in Left Support 0.80 1.66 0.30 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.80 1.66 0.30 Live Load Defl Ratio 1172 >360 Total Defl Ratio 831 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 2014,4:28PM MutileSimle. Beam V s jyER1z 04u14U51T 1121E3ng14051T pp , a Si FA ,r N s. ECAt,C1NC,1983-2d614 Ve614 tEC23 Lie:#:KW-06002997• _ 6 . '.. , ' r r, .,,_. . . Licensee c.t.edgineeiing Wood Beam Design B.16 r 201 013;ASCE 7-10, ,�. �;� �, _ Calculat(ons,pe< 2 NDS IBC 2012 CBC 2 BEAM Size: 5.125x12,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-Prll 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=2.0 ft Design Summary Max fb/Fb Ratio = 0.771 • 1 , .. '' ' fb:Actual: 1,834.37 psi at 8.250 ft in Span#1 '�1� "M's•.. Fb:Allowable: 2,37923 psi A Load Comb: +D+L+H '° � �, • Max fv/FvRatio= 0.369: 1 A A fv:Actual: 97.83 psi at 0.000 ft in Span#1 16.50 ft, 5.125x12 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.543 in Downward Total 0.760 in Left Support 1.42 3.14 0.41 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.42 3.14 0.41 Live Load Defl Ratio 364 >360 Total Defl Ratio 260 >180 W:,,',...1 ::),:.:76.,,....;;, od,'.7,,,,,,,,71,,,,,,';'),,,,,,,,,i, am Desin B 17 y -� ..,, Begv, „ , ,S,.;Calculat!onsF per 20;12 NDS,,It3C2012,.CBG 2013 ASGE.7;10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850 psi Fc-Pill 1300 psi Fv 150 psi Ebend-xx 1300 ksi Density 27.7 pcf Fb-Compr 850 psi Fc-Perp 405 psi Ft 525 psi Eminbend-xx 470 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.250 ft Design Summary D(0.1238 L(0.330) Max fb/Fb Ratio = 0.312. 1 fb:Actual: 317.25 psi at 1.750 ft in Span#1 Fb:Allowable: 1,016.71 psi r . Load Comb: +D+L+H Max fv/FvRatio= 0.241 : 1 A A fv:Actual: 36.14 psi at 2.905 ft in Span#1 Fv:Allowable: 150.00 psi 3.50 ft.2-2x8 Load Comb: +D+L+H Max Deflections Max Reactions (k) g L Lr S W E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.22 0.58 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.22 0.58 Live Load Defl Ratio 4643>360 Total Defl Ratio 3377 >180 Wood Beam Design B.18 P.V.W. ,. ' _ e<`. ... a; ���<. cV. ., , .3 ... . .-� ..est .„.�.. P_, ;ASCE 7419P,. � ,� � � Galculations er 2012 NDS,IBC 2012,CSC 2013, BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Frit 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.250 ft Design Summary D 0.1238 L 0.330 Max fb/Fb Ratio = 0.312. 1 , fb:Actual: 317.25 psi at 1.750 ft in Span#1 � � Fb:Alllowwable: 1,016.71 psi Load Comb: +D+L+H Max fv/FvRatio= 0.241 : 1 A A fv:Actual: 36.14 psi at 2.905 ft in Span#1 Fv:Allowable: 150.00 psi 3.50 ft.2-2e8 Load Comb: +D+L+H Max Deflections Max Reactions (k) co_ L Lr S W E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.22 0.58 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.22 0.58 Live Load Dell Ratio 4643 >360 Total Defl Ratio 3377 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 2314,428PM Muff.;r, Simr, Beam Fle 0t14051T 11Engr114051T 4EC6 IC.,#ip,e 6002997 r ENERCALC INC 1983-2014 Build 6.14 1 23 Vec814 t 23 _ • . • _ ;Licensee c t.engrneering'; Wood Beam Design B.19 Calculations per 2012 NDS,IBC 2012,CBC 2013,ASCE 7-10 BEAM Size: 4x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Prll 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=3.50 ft Design Summary Max fb/Fb Ratio = 0.593 1 n(0.052501 S(0.08750) fb:Actual: 791.49 psi at 5.375 ft in Span#1 -x + Fb:Allowable: 1,334.07 psi .. 404 Load Comb: +D+S+H Max fv/FvRatio= 0.192: 1 fv:Actual: 39.74 psi at 10.177 ft in Span#1 10.750 ft, 4x8 Fv:Allowable: 207.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.149 in Downward Total 0.238 in Left Support 0.28 0.47 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.28 0.47 Live Load Defl Ratio 867 >360 Total Defl Ratio 542 >180 CT Engineering Project Title: Engineer: Project ID: 180 Nickerson,Suite 302 En g Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MPR 2014,9:51AM r 44, �, z s File (11140517(11E0140517 1ECf Ml.l1fiple Simpi Beam , �' a e t o � �...: s `s M` s ,ENERCALC'INC1983-2014 Build 6 741 23�Vej-6 14 1 23_ Lic._#.:.KW-06002997. ,_.. . ._ ngineer'n x Description : PLAN 5•B 2nd floor wall Headers Wood Beam Design Typical Partial/Non-Bearing Header(6 clear span Pax., 6'trib max,)w '-'"'-''''''''''''''''''''r7''''''-'''''''''''''' KCalculations per 2012'NDS;IBC 2012,CBC 2013;ASCE 7 10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pr!! 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 klft,Trib=5.0 ft Design Summary D(0.0750 S(0.1250) Max fb/Fb Ratio = 0.476. 1 . fb:Actual: 482.28 psi at 3.250 ft in Span#1 Fb:Allowable: 1,013.55 psi r l Load Comb: +D+S+H L, Max fv/FvRatio= 0.245: 1 fv:Actual: 36.76 psi at 0.000 ft in Span#1 Fv:Allowable: 150.00 psi 6.50 n, 2-2x6 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.041 in Downward Total 0.065 in Left Support 0.24 0.41 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.24 0.41 Live Load Defl Ratio 1913>360 Total Defl Ratio 1196 >180 Wood Beam Design Typical Full w• idth Bearing Header(4'clear span max, 23'Tnb Max s , -1 - ,F t Calcutations per2012•NDS,IBC 2012;CBC 2013,ASCE 110 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: 0=0.0150, S=0.0250 kilt,Trib=23.0 ft Design Summary D(0.3450 S(0.5750) Max fb/Fb Ratio = 0.934; 1 . 0� Fw ' . fb:Actual: 948.44 psi at 2.125 ft in Span#1 Fb:Allowable: 1,015.94 psi Load Comb: +D+S+H Max fv/FvRatio= 0.647: 1 !!� fv:Actual: 97.08 psi at 3.655 ft in Span#1 Fv:Allowable: 150.00 psi 4.250 n,2-2X8 Load Comb: +D+S+H Max Deflections Max Reactions (k) 2 L Lr S W E H Downward L+Lr+S 0.034 in Downward Total 0.055 in Left Support 0.73 1.22 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.73 1.22 Live Load Deft Ratio 1488 >360 Total Defl Ratio 930 >180 `Wood Beam Design Header RB 9 B f: ,, . . ,,., :.,,c.., Calculations per 2012 NDS,IBC 2012,GBC 2013,ASCE 710 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft • Point: D=1.010, S=1.680 k @ 0.50 ft Design Summary "41°" ' Max fb/Fb Ratio = 0.597. 1 D(00750 S(01250) fb:Actual: 696.61 psi at 1.348 ft in Span#I �, f cT7H' Fb:Allowable: 1,166.16 psi � � '" . , Load Comb: +D+S+H Max fv/FvRatio= 0.265: 1 A fv:Actual: 45.67 psi at 4.655 ft in Span#1 Fv:Allowable: 172.50 psi 5.250 ft,2-2x6 Load Comb: +D+S+H Max Deflections Max Reactions (k) 2 L Lr S W E H Downward L+Lr+S 0.038 in Downward Total 0.060 in Left Support 1.11 1.85 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.29 0.49 Live Load Defl Ratio 1671 >360 Total Defl Ratio 1044>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MFR 2014,9:51AM Multiple Simple Beam =, File Q•114051T 11Eri 14051T iEC6 : ; ENERCALC INC.1983-2014,'Build 6 14 1 23V er614 t 23 #:,,KW=06002997 , , • _;Licensee ,c t.engineering, Wood Beam Design t Header RB.17.B Calculations per 2012 N'DS,IBC 2012,CBC 2013,ASCE 7-10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Point: D=0.90, S=1.50 k@0.50ft Desiqn Summary Max fb/Fb Ratio = 0.556. 1 D(007501S(0.1250) ; fb:Actual: 648.22 psi at 1.488 ft in Span#1 Fb:Allowable: 1,166.16 psi Load Comb: +D+S+H Max fv/FvRatio= 0.254: 1 A iv:Actual: 43.76 psi at 4.655 ft in Span#1 Fv:Allowable: 172.50 psi 5.250 ft,2-2x8 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr s w E H Downward L+Lr+S 0.036 in Downward Total 0.057 in Left Support 1.01 1.69 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.28 0.47 Live Load Defl Ratio 1774 >360 Total Defl Ratio 1108 >180 CT Engineering Project Title: Engineer: Project ID: 180 Nickerson,Suite 302 En g Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Ported 6MAR 2014 922AM a a E 8�z- 8N320F14= 0/14051IE- 14051E 6 1u ipleSimp�esBen Buld614 123 Ver6141t24. Lic.#:KW-06002997. '; - , • • . Licensee c.t.engineering.� Description : PLAN 5.B Crawlspace Framing Wood Beam Design CB.1 Calculations per 2012 NDS,IBC 2012,;CBC 2013;ASCE 7-10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-PrIl 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 klft,Trib=9.50 ft Design Summary 0(0.1425)L(0.380) Max fb/Fb Ratio = 0.823: 1 I + : 'y I fb:Actual: 883.28 psi at 3.750 ft in Span#1 Fb:Allowable: 1,073.71 psi Load Comb: +D+L+H Max fv/FvRatio= 0.403: 1 A A fv:Actual: 72.63 psi at 0.000 ft in Span#1 Fv:Allowable: 180.00 psi 7.50 n, 4x10 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.074 in Downward Total 0.101 in Left Support 0.53 1.43 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.53 1.43 Live Load Defl Ratio 1222>360 Total Defl Ratio 888 >180 TJI JOISTS and RAFTERS -- --- -- •------_-- �- 2828 Code Code ( Code Suggest Suggest Suggest Lpick _Lpick Lpick y Lpick _ Joist b d pa. LL DL M max V maxi EI .•_L fb_••• L fv� L TL240 L LL360•L_max_ •-_TL_den. 1 LL dell. __�L TL360 L LL480 L max 'TL den.TL deft.LL def LL deg. size8grede width(in.) depth(in.)_ L _(Psi (P's (ft-Ibs1_.:eSi) ��(P.si1..- -._�itL.._.._...ft:1._._.._.(n•) _._ ..-.-._ (ft.)•• in.) . in. «ft..- • --(ii.):::.._ .._._.S. 1 (_) �...1 (ft.) Qn� ratio ratio I •--•-••----•---__._ 2888._ _-•-•---•----.__...._._.._._._._._._ 9.5"TJI 110 1.75 9.5 19.2 40 15 2380 1220 1.40E+08 14.71 27.73 15.23 14.80 14.71 0.661 0.48 13.31 13.45 13.31 0.44 360 0.3_21 495 _._ 8228_____. -._.._._...._. __._.__..._.___._..__...._._ 8222_ 8288 _ J 110 1.75 9.5 16 40_ 15 2380 1220 1.40E+.08___16,11. 33.27 16.19_._15.73.__15.73 0.721 0.52 14.14 14,29 14.14' 0.47 360....._0.341.�__495 88 _.�._._-2828..--17.16--175- __._ _ ._.__._ __._.._.___._._..__._._... .-__ _____._._..__ 215.___ 9.5"TJI 110 1.75 9�5-__-t2 �_ 40�• 152380 1220 1.40E+08•-18;61. 44.36 77.82 17.31 17.31 0.791 0.58 15.57 15.73 ' 15.57� 0.52--360 0.38!« 495 .64�._ 18.64 62 -8882__ 4036_.. -._. 0.41. 8888_ 9.5"TJI 110 1.75 9.5 9.6 40 15 2380 1220 1.40E+08 20.80 55.45 19.19 18.64 18.64 0.851 0.62 16.77 16.94' 16.77 0.56 360 0.411 495 •-•--_.�.__-•-••-__ -•__•--2822_.__...._._.._8228_.__._.._._._...._8882_.-8,228 2222«8228 3 ._.._._._.�...__-- ...-_-••8888. .«-_••-•__-•- _..-2282 _ ___ __ 9.5"TJI 110 1.75 9.5 19.2 40 10 2500 1220 1.57E+08 15.81 30.50 16.34 15.37 15.37 0.641 0.51 14.27 13.97 13.97 0.44 384 0.35 480 9.5"TJI 110 1.75 9.5 16 40 10 2500' 1220 157E+08 17.32 36,60 17.36 1634 18.34 0,68 0.54 15,17 14.84 14.84 0A6 384 0,37 480 9.5"TJI 110 1.75 9.5 12 40 10 2500 1220 1.57E+08 20 00 48.80 19,11 17.98 17.98 0.751 0.60 1639 16.34 16 34 0,51 384 0,41' 480 .._.._.__ -_-2282 2828 8228. ..- .._._..._ 8282___ .,.._.____._.._... .- ..__._._._.._.-.._._.._._._..__. _..._-2«88.2-•--• .1.._..___ 1888..__._ ._.._._. .. 9.5"TJI 110•�-1.759_5 9.6_.._._40 _•_10 .__ 2500 1220 1.57E+08•_•_2236 6100 20.58 19.37 19.37 0.811 0.65 .8828. 17.96 17:600 17.60�•- .... 84 0.44! 480 -. ..__...._.._..___._._._;_._ 9.5"TJI 210 2.0625 9.5 19.2 40 101 3000 1330 187E+08 17.32 33.25 17.32 16.30 16.30 0.681 0.54 15.13 14.81' 14.81 0.466 384 0.37; 480 9.5"TJ1 210 2.0625 9.5 16 40 10 3000 1330 1.87E+08 18.97 39.90 18,40- 1732 1732 0.72 0.58 16.08 15.74 15.74 0:49 384 039 480 _9.5"TJI 210 2.0625 9.5 12 40 101 3000 1330 1.87E+08 21.91 53.20 20.26 19.06 19.06 0.79' 0.64 17.70 17.32 17.32 0.54 384 0.43 480 _._ __..._.._._. 9.5"TJI 210 2.0625 9.5 9.6 40 10 3000 1330 1.87E+08 24.49 66,50 21.82 20.53 20.53 1 0.68 ' 0.58 384 0.471 480 -_»..-. 8282 0.86._ 19.06 18.66 18.66 _ _._-_..«._.._._.__�_ 9.597-2i0 • 1 2.3125 - 9.5 19.2 40 10 3330 1330 2,06E+08 18.25 33.25 17.89 16.83 16.83 0.70' 0.56 15.63 15.29 15.29 0.48 384 0.38: 480 9.5"T..11230 23125 9,5 16 40 10 3330 1330 2.06E+08 =1939 39.90 1931 1739 17.89 0.75 0.60 1630 16,25 16.25 0.51 384 0,41 480 _•_ 9 5"TJI 230 2.3125 9.5 1240 10 3330 1330 2.06E+08 23.08 53.20 20.92 19.69 19.69 0_82 0.66 18.28 17.89 17.89 0.56 384 0.451 480 2828 8888.__....._._ ...._._._.. 9.5"TJI 230 2.3125 9.5 9.6 40 10 3330 1330 2.06E+08 25.81 66.50 22.54 21.21 21.21 0.881 0.71 19.69 19.27 19.27 0,60 384 0.481 480 88 671 _._. .5_ 820.528_._._..__._.._..:.__.__._ 11.875"TJI 110 1.75 11.875 19.2 40 10 3160 1560 2.67E+08 17.78 39.00 19.50 18.35 17.78 0.671 0.54 17.04 16.67 16.67 0.52 384 0.421 480 11.875"TJI 110 1:75 11.875 16 "40 10 3160 `-1560 2.67E+08 19.47 '46.80 20.72 19.50 19.47 0,81 0.65 18.10 17.72 17,72 0.55 384 0,44 480 11.875"TJI 110_ 1.751_ 11.875 12 40 _ 10 3160 1560 267E+08 22.49 62.40 _22,81 21.46 21.46 0,891 0,72 19,93 _ 19,50 19.50' 0.61 384 0.49; 480 11.875"TJI 110 1.75 11.875 9.6 40 10 3160 1560 2.67E+08 25.14 78.00 24.57 23.12 2.888 23.12 0.961 0.77 21.46 21.01 21.01 0.66 384 0.531 480 _--40 10__.._._._ ._._._._._..._._.�_.._. __._....--•.46 21._.._ - •-••--" -" __._«._._._._8844•-_ ._.._._.�.__.__ 1 _ 11.875'TJI 210 2.0625 11.875 19.2 40 10 3795 16551 3,15E+08 19.48 41.38 20,61 19.39 19.39 0,81 0.65 18,00 17.62 17 62-.-Ea-6.---38-4 -0A41 480 11;875"TJI 210 2:0625 11:875 16 ';40 10 3795 1655 3.15E+08 21.34 ,4965 2130 20.61;` 20.61 0:86 0.69 19.13 "18.72 18,72 039 384 0.47 480 11.875"TJI 210 2.0625 11.875 12 40 10 3795 1655 3.15E+08 24.64 66.20 24.10 22.68 22.68 0.951 0.761 21.05 20.61 20.61 _0.64 _3_84__0.521_ 480 11.875"TJI 210 2.0625 11.875 9.6 40 10 3795 1655 3.15E+08 27.55 82.75 25.96 24.43 24.43 1.021 0.81 22.68 22.20 22.20 0.69 384 0.551 ^480 11.875"TJI 230 2.3125 11.875 19.2 40 10 4215 1655 3.47E+08 20.53 41.38 21.28 20.03 20.03 0.831 0.671 18.59 18.20 18.20 0.57 384 0,45' 480 11.875"TJI 230 23125 11375 16 40 10 4215 >'1655 3,47E+08 `'22,49 49.65 22.62 21,28 21.28 0.89 0.71 19,76 19.34 19.34' 0.60 384 0,48 480 11.875 TJI 230 2.31251 11.875 12 40 101 4215 16551 3.47E+08 25.97 66.20 24.89 23.42 23.421 0.981 0.78 21.74 21.28 21.28 0.671 384 0.531 480 11.875 TJI 230 2.31250.84 23.42 22.93 1.05 82,75 26.81 25,23 25. 29.03 23 1 22.93' 0.72 384 0.571 480 ._..__._.._.____._._.._._..._._._._._.._�.y 11.875 9.6 40 10 4215 1655 3.47E+08_._4228 1 .�_._.___.__._82242888.4282.__._.._._._.._._.._.. _.._.._._._.._._ __.___ 1. 5"RFPI 400 2.0625 11.875 19.2 40 10 4315 1480 330E+08 20.77 37.00 20.93 19.69 19.69 0321. 0.66 1 18.28 17.899 17.89 0.56 384 0.4._.._._._.._5.._.1 480 11.875'RFPI 400: 23625 11.875 16 40 10 4315 ' 1480 3.30E+08 '22.76 "44.40 22,24 20.93 20.93'` 037. 0.70 19.43 19.01 19.01 0,59 384 0A8 480 11.875"RFPI 400 2.0625 11.875 12 401 101 4315 14801 3,30E+08 26.28 59.20 24.48 23.03 23.03 0.961 0.77 21.38 20.93 20.93 035 384 0.52 480 11.875"RFPI 400 2.0625 11.875 9.6 40 10 4315 1480 3.30E+08 29.38 74.00 26.37 24.81 24.81 1.031 0.83 1 23.03 22.54 22.54 0.70 384 0.561 480 Page 1 D+L+S CT#14051-4015.2 Twin Creek I LOAD CASE (12.12) (BASED ON ANSIIAF&PA NDS-1007) SEE SECTION: 2.3.1 2.3.1 2.3.1 17.1 3.7.1 Ke 1.00 Design Buckling Factor D+L+S , c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 Cf(Fb) Cf(Fc) 1997 NDS Cb (Varies), > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NDS 3.9.2 Max.Wall duration duration factor factor use Stud Grade Wdth Depth Spadng Height Le/d Vert.Load Hor.Loa <e 1.0 Load @ Plate Cd(Fb)Cd(Fc) Cf Cf Cr Fb Fc perp Fc E Fb' Fc perp' Fc' Fce Fie fc IGF'c lb fb/ in. In. In. ft. pif psf pit (Fb) (Fe) psi psi psi psi psi psi psi psi psi psi psi F1)-(1-fr./Fee) H-F Stud 1.5 3.5 16 7.7083 26.4 1730 0.9916 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 966 515.42 441.22 439.37 1.00 0.00 0.000 H-F Stud 1.5 3.5 16 9 30.9 1340 0.9966 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 966 378.09 340.90 340.32 1.00 0.00 0.000 H-F Stud 1.5 3.5 12 8 30.8 1785 0.9947 2657.8 1.00 1.15 1.1 1.05 1.15 675 405 800 1.200,000 854 506 966 378.09 340.90 340.00 1.00 0.00 0.000 l'4-F Stud 1.5 3.5 16 8.25 28.3 1550 0.9921 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 966 449.95 395.22 393.65 1.00 0.00 0.000 1-1-F Stud 1.5 3.5 12 8.25 28.3 2070 0,9953 2657.8 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 966 449.95 395.22 394.29 1.00 0.00 0.000 H-F Stud 1.5 3.5 8 8.25 28.3 3100 0.9921 3986.7 1.00 1.15 1.1 1.05 1.15 675 405 800 1.200,000 854 506 986 449.95 395.22 393.65 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 7.7083 26.4 1695 0.9952 2091.8 1.00 1.15 _1.0 1.05 1.15 675 425 _725 1,200,000 854 531 875.438 515.42 431.52 430.48 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 9 30.9 1320 0.9944 _ 2091.8 1.00 1.15 1.1 1.05 1.15 875 425 725 1.200.000 854 531 875.438 378.09 336.17 335.24 1.00 0.00 0.000 SPF Stud 1.5 3.5 12 9 30.9 1760 0.9844 2789.1 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 378.09 336.17 335.24 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 8.25 28.3 1525 0.9957 2091.8 1.00 1.15 1.1 1.05 1.15 675_ 425 725 1,200,000 854 531 875.438 448.95 388.13 387.30 1.00 0.00 0.000 SPF Stud 1.5 3.5 12 8.25 28.3 2030 0.9925 2789.1 1.00 1.15 1.1 1.05 1.15 675 425 725 1.200,000 854 531 875.438 449.95 388.13 386.67 1.00 0.00 0.000 SPF Stud 1.5 3.5 8 825 28.3 3050 0.9957 4183.6 1.00 1.15 1.1 1.05 1.15 675 425, 725 1.200.000 854 531 875.438 449.95 388.13 387.30 1.00 0.00 0.000 H-F#2 1.5 5.5 16 7.7083 16.8 3132 0.2408 3132.4 1.00 1.15 1.3 1.10 1.15 85D 405 1300 1,300,000 1,271 508 1644.5 1378.83 1031.58 506.18 0.49 0.00 0.000 H-F#2 1.5 5.5 16 9 19.8 3132 0.3852 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1.300.000 1.271 506 1644.5 1011.45 837.57 506.18 0.60 0.00 0.000 H-F#2 1.5 5.5 16 8.25 18.0 3132 0.2858 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300_1,300,000 1,271 506 1644.5 1203.70 946.77 506.18 0.53 0.00 0.000 SPF#2 1.5 5.5 16 7.7083 16.8 3287 0.2737 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1484,89 101545 531.23 0.52 0.00 0.000 SPF#2 1.5 5.5 16 8 19.6 3287 0.3905 3287.1 1.00_ 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1089.25 850.16 531.23 0.62 0.00 0.000 SPF#2 1.5 5.5 16 8.25 18.0 3287 0.3158 3287.1 1.00 1.15_ 1.3 1.10 1.15, 875 425 1150 1.400,000 1,308 531 1454.75 1296.30 945.38 531.23 0.56 0.00 0.000 SPF Stud 1.5 3.5 16 14.57 50.0 545 0 0.9913 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 144.26 139.02 138.41 1.00 0.00 0.000 SPF#2 1.5 5.5 16 19 41.5 1450 0 0.9917 3287.1 1.00 1.15 1.3 1.10 1.15, 875 425 1150 1,400,000 1.308 531 1454.75 244.40 235.32 234.34 1.00 0.00 0.000 H-F#2 1.5 5.5 16 19 41.5 1360 0 0.9969 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 506 1644.5 226.94 220.14 219.80 1.00 0.00 0.000 Page 1 • D+L+W CT#14051-4015.2 Twin Creek I LOAD CASE (12-13) (BASED ON ANSI/AFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Bucklln,Factor D+L+W c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 Cf(Fb) Cf(Fc) 1997 NOS Cb (Vedes > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NDS 3.9.2 Max.Wall duration duration factor factor use Stud Grade Width Depth Spacing Height Le/d Vert.Load Hor.Load .r.1.0 Load©Plate Cd(Fb)Cd(Fc) Cf CI Cr Fb Fc perp Fc E Fb' Fc perp' Fc* Fce F'c fc fc/F'c Ib fb/ In. In. In. ft. plf psf pit (Fb) (Fc) psi psi psi psi psi psi psi psi psi psi psi Fb'•(1-fc/Fce) H-F Stud 1.5 3.5 16 7.7083 26.4 1075 9.71 0.9951 1993.4 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 840 515.42 427.08 273.02 0.64 376.78 0.586 H-F Stud 1.5 3.5 16 9 30.9 755 8.46 0.9942 1993.4 1,60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1.366 506 840 378.09 333.99 191.75 0.57 447.52 0.685 H-F Stud 1.5 3.5 12 9 30.9 1140 8.46 0.9998 2657.8 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 840 378.09 333.99 217,14 0.65 335.64 0.577 H-F Stud 1.5 3.5 16 8.25 28.3 970 8,13 0.9943 1993.4 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 840 449.95 384.87 246.35 0.64 361.37 0.585 H-F Stud 1.5 3.5 12 8.25 28.3 1425 8.13 0.9974 2657.8 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 840 449.95 384.87 271.43 0.71 271.03 0.500 H-F Stud 1.5 3.5 8 8.25 28.3 2355 8.13 0.9991 3986.7 1,60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 840 449.95 384.87 299.05 0.78 180.69 0.394 SPF Stud 1.5 3,5 16 7.7083 28.4 1060 9.71 0.9971 '2091.8 1.60 1.00 1.1 1,05 1.15 675 425 725 1,200,000 1,366 531 761.25 515.42 415.53 269.21 0.65 376.78 0.577 SPF Stud 1.5 3.5 18 9 30.9 700 8.46 0.9115 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 781.25 378.09 328.30 177.78 0.54 447.52 0.618 SPF Stud 1.5 3.5 12 9 30.9 1125 8.46 0.9931 2789.1 1.60 1.00 1.1 1.05 1.15 675 425 725 1.200,000 1,366 531 761.25 378.09 328.30 214.29 0.65 335.64 0.587 SPF Stud 1.5 3.5 16 8.25 28.3 960 8.13 0.9970 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 449.95 376.35 243.81 0.65 381.37 0.577 SPF Stud 1.5 3.5 12 8.25 28.3 1405 8.13 0.9952 2789.1 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1.366 531 761.25 449.95 376.35 267.62 0.71 271.03 0.490 SPF Stud 1.5 3.5 8 8.25 28.3 2320 8.13 0.9959 4183.6 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1.366 531 761.25 449.95 376.35 294.60 0.78 180.69 0.383 H-F#2 1.5 5.5 16 7.7083 16.8 3132 9,71 0.3909 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 1378.83 969.91 506.18 0.52 152.58 0.119 H-F#2 1.5 5.5 16 9 19.6 3132 8.48 0.5743 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300.000 2,033 506 1430 1011.45 804.50 506.18 0.63 181.23 0.178 H-F#2 1.5 5.5 16 8.25 18.0 3132 8.13 0.4411 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 1203.70 899.13 506.18 0.56 146.34 0.124 SPF#2 1.5 5.5 16 7.7083 16.8 3287 9.71 0.4327 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2.093 531 1265 1484.89 940.30 531.23 0.56 152.58 0.114 SPF#2 1.5 5.5 16 B 19.6 3287 8.46 0.6033 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1265 1089.25 806.08 531.23 0.66 181.23 0.169 SPF#2 1.5 5,5 16 8.25 18.0 3287 8.13 0,4790 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1265 1296.30 884,69 531.23 0.60 146.34 0.118 SPF Stud 1.5 3.5 16 14.57 50.0 70 8.46 0.9957 2091.8 1.80 1.00 1.1 1.05 1.15 675 425 725 1,200.000 1,366 531 761.25 144.26 138.14 17.78 0.13#6###4 0.979 SPF#2 1.5 5.5 16 19 41.5 860 9.71 0.9941 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2.093 531 1265 244.40 233.80 106.67 0.48 927.02 0.786 H-F#2 1.5 5.5 16 19 41.5 800 9.71 0.9921 3132.4 1,80 1.00 1.3 1.10 1.15 950 405 1300 1,300,000 2,033 506 1430 226.94 219.02 96.97 0.44 927.02 0.796 Page 2 D+L+W+.SS CTR 14051-4015.2 Twin Creek I LOAD CASE I (12-14) I (BASED ON ANSI/AFSPA NOS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling Factor D+L+W+S/2 c 0.80(Constant)> Section 3.7.1.5 _ Cr KcE 0.30(Constant)> Section 3.7.1.5 Cl(Fb) Cf(Fc) 1997 NDS Cb (Varies), > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fe) Eq.3.7-1 NDS 3.9.2 Max.Wa9 duration duration factor factor use Stud Grade Width Depth Sparing Height Le/d Vert.Load Hor.Load <e 1.0 Load @ Plate Cd(Fb)Cd(Fc) Cf Cl Cr Fb Fc perp Fc E Fb' Fc perp' Fc' Fce F'e fc IUF'c fb tb/ in. In. In. ft. pll psf pif _(Fb) (Fe) psi psi psi psi psi psi psi psi psi psi psi Fb"(1-fc/Fce) H-F Stud 1.5 3.5 16 7.7083 26.4 1095 9.71 0.9962 1993.4 1.60 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,366 506 968 515.42 441.22 278.10 0.63 378.78 0.599 H-F Stud 1.5 3.5 ' 16 9 30.9 765 8.48 0.9988 1993.4 1.60 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,368 506 966 378.09 340.90 194.29 0.57 447.52 0.674 H-F Stud 1.5 3.5 12 9 30.9 1150 8.46 0.9969 2657.8 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,368 506 966 378.09 340.90 219.05 0.64 335.64 0.584 H-F Stud 1.5 3.5 16 8.25 28.3 985 8.13 0.9963 1993.4 1.60 1.15 1,1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 250.16 0.63 361.37 0.598 H-F Stud 1.5 3.5 12 8.25 28.3 1445 8.13 0.9959 2657.8 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 275.24 0.70 271.03 0.511 H-F Stud 1.5 3.5 8 8.25 28.3 2390 8.13 0.9960 3986.7 1.60 1.15 1.1 1.05 1.15 675 405 800 1.200,000 1.366 506 966 449.95 395.22 303.49 0.77 180.69 0.406 SPF Stud 1.5 3.5 16 7.7083 26.4 1080 9.71 0.9935 2091.8 1.60 1.15 1.1 1.05 1.15 675425 725 1,200,000 1,366 531 875.438 515.42 431.52 274.29 0.64 376.78 0.589 SPF Stud 1.5 3.5 16 9 30.9 760 8.46 0.9988 2091.8 1.60 1.15 1.1 1.05 1.15 675 l 425 725 1,200,000 1,366 531 675.438 378.09 336.17 193.02 0.57 447.52 0.669 SPF Stud 1.5 3.5 12 9 30.9 1140 8.46 0.9944 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 378.09 336.17 217.14 0.65 335.64 0.577 SPF Stud 1.5 3.5 16 8.25 28.3 975 8.13 0.9952 2091.8 1.80 _ 1.15 1.1 1.05 1.15 675 425 725 1.200,000 1.366 531 875.438 449.95 388.13 247.62 0.64 361.37 0.588 SPF Stud 1.5 3.5 12 825 28.3 1430 8.13 0.9952 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 272.38 0.70 271.03 0.503 SPF Stud 1.5 3.5 8 8.25 28.3 2360 8.13 0.9922 4183.6 1.60 1.15, 1.1 1.05 1.15 675 425 725 1,200,000 1.386 531 875.438 449.95 388.13 299.68 0.77 180.69 0.396 H-F#2 1.5 5.5 16 7.7083 16.8 3132 9.71 0.3593 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644,5 1378.83 1031.58 506.18 0.49 152.56 0.119 H-F#2 1.5 5.5 16 9 19.8 3132 8.46 0.5437 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1011.45 837.57 506.18 0.60 181.23 0.178 H-F#2 1.5 5.5 16 8.25 18.0 3132 8.13 0.4100 , 3132.4 1.60 1.15 1.3 1.10 1.15 850 405- 1300 1,300,000 2,033 506 1644.5 1203.70 946.77 506.18 0.53 148.34 0.124 SPF#2 1.5 5.5 16 7.7083 16.8 3287 9.71 0.3872 3287.1 1.60 1.15 1.31 1.10 1.15' 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 152.58 0.114 SPF#2 1.5 5.5 18 9 19.6 3287 8.46 0.5595 3287.1 1.80 1.15 1.3 1.10 1.15, 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.18 53113 0.62 181.23 0.169 SPF#2 1.5 5.5 16 8.25 18.0 3287 8.13 0.4342 3287.1 1.60 , 1.15 1.3 1.10 1.15_ 875 425 1150 1,400,000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 146.34 0.118 SPF Stud 1.5 3.5 16 14.57 50.0 70 8.46 0.9955 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 17.78 0.13 OferPe= 0.979 SPF#2 1.5 5.5 18 19 41.5 660 9.71 0.9914 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 244.40 235.32 108.67 0.45 927.02 0.786 H-F#2 1.5 5.5 16 19 41.5 600 9.71 0.9901 3132.4 1.60_ 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 226.94 220.14 96.97 0.44 827.02 0.796 Page 3 D+L+S+,SW • CT#14051-4015.2 Twin Creek I LOAD CASE ' (12-15) (BASED ON ANSI/AFBPA NDS-1997 SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Bucktin.Factor D+L+S+Wl2 c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 Cf(Fb) Cl(Fc) 1997 NOS Cb (Varies) > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NDS 3.9.2 Max.Wall duration duration factor factor use Stud Grade Width Depth Spacing Height Leld Vert.Load Her.Load c=1.0 Load()II Plate Cd(Fb)Cd(Fc) Cf Cf Cr Fb Fc perp Fc E Pb' Fc perp' Fc' Fee Pc fe 1c/Fc tb Ib/ In. in. In. ft. pit psi pit (Fb) (Fc) psi psi psi psi psi psi psl psi psi psi psi Fb"(1-tc/Fce) H-F Stud 1.5 3.5 16 7.7083 26.4 1335 4,855 0.9935 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 515.42 441.22 339.05 0.77 188.39 0.403 H-F Stud 1.5 3.5 16 9 30.9 970 4.23 0.9923 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 246.35 0.72 223.76 0,470 H-F Stud 1.5 3.5 12 9 30.9 1380 4.23 0.9976 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 262.86 0.77 167.82 0.403 H-F Stud 1.5 3.5 16 8.25 28.3 1195 4.065 0.9960 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1.200.000 1,366 508 966 449.95 395.22 303.49 0.77 180.69 0.408 H-F Stud 1.5 15 12 8.25 28.3 1680 4.065 0.9990 2657.8 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 320.00 0.81 135.51 0.343 H-F Stud 1.5 3.5 8 8.25 28.3 2665 4.065 0,9999 3986.7 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,386 506 986 449.95 395.22 338.41 0.88 90.34 0.267 SPF Stud 1.5 3.5 16 7.7083 26.4 1315 4.855 0.9907 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 333.97 0.77 188.39 0.392 SPF Stud 1.5 3.5 16 9 30.9 965 4.23 0.9970 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1.200.000 1,366 531 875.438 378.09 338.17 245.08 0.73 223.76 0.466 SPF Stud 1.5 3.5 12 9 30.9 1370 4.23 0.9890 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 378.09 336.17 260.85 0.78 167.82 0.386 SPF Stud 1.5 3.5 16 8.25 28.3 1180 4.065 0.9922 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200.000 1,366 531 875.438 449.95 388.13 299.68 0.77 180.69 0.396 SPF Stud 1.5 3.5 12 8.25 28.3 1660 4.065 0.9973 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 316.19 0.81 135.51 0.334 SPF Stud 1.5 3.5 8 8.25 28.3 2630 4.065 0.9989 4183.6 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449,95 388.13 333,97 0.88 90.34 0.257 H-F#2 1.5 5.5 16 7.7083 16.8 3132 4.855 0.3001 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 508 1644.5 1378.83 1031.58 506.18 0.49 76.29 0.059 H-F#2 1.5 5.5 16 9 19.6 3132 4.23 0.4544 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2.033 506 1844.5 1011.45 837.57 506.18 0.80 90.61 0.089 H-F#2 1.5 5.5 18 8.25 18.0 3132 4.065 0.3479 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 ,1,300,000 2.033 506 1644.5 1203.70 946.77 506.18 0.53 73.17 0.062 SPF#2 1.5 5.5 16 7.7083 18.8 3287 4.855 0.3304 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 76.29 0.057 SPF#2 1.5 5.5 16 9 19.6 3287 4.23 0.4750 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400.000 2,093 531 1454.75 1089.25 850.18 531.23 0.62 90.61 0.085 SPF#2 1.5 5.5 16 8.25 18.0 3287 4.065 0.3750 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150'1,400.000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 73.17 0.059 SPF Stud 1.5 3.5 16 14.57 50.0 255 4.23 0.9959 2091,8 1.60 1.15 1,1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 64.76 0.47 588.43 0.779 OFF#2 1.5 5.5 16 19 41.5 935 4.855 0.9925 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 244.40 235.32 151.11 0.64 463.51 0.580 H-F#2 1.5 5.5 16 19 41.5 885 4.855 0.9970 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 226.94 220.14 139.80 0.64 463.51 0.594 Page 4 D+L+S+.7E CT#14051-4015.2 Twin Creak I LOAD CASE I (12-16) I (BASED ON ANSIIAFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Bucklinr Factor D+L+6+E11.4 __ _ c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 Cl(Fb) Cf(Fc) 1997 NDS Cb (Varies), > Section 2.3.10 Bending Comp. Size Size Rep. _ Cd(Pb) Cb Cd(Fc) Eq.3.7-1 NDS 3.9.2 Mez.Wall duration duration factor factor use Stud Grade Wdth Depth Spadng Height Le/d Vert.Load Hot.Load <>1.0 Load @ Plate Cd(Fb)Cd(Fc( Cf Cf Cr Fb Fc perp Fc E Fb' Fc perp' Fc' Fce Pc is lc/Pc fb fb/ In. In. In. ft. p11 psf plf (Fb) (FcL psi psi psi psi psi psi psi psi psi psi psi Fb"(1-fc/Fce) H-F Stud 1,5 3.5 16 7.7083 26.4 1415 3.57 0.9983 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800_1,200,000 1,366 506 966 515.42 441,22 359.37 0.81 138,53 0.335 H-F Stud 1.5 3.5 16 9 30.9 1010 3.57 0.9960 1993.4 1.60 1.15 1.1 1.05 1.15 8751 405 800 1,200,000 1,388 506 986 378.09 340.90 256.51 0.75 188.85 0.430 H-F Stud 1.5 3.5 12 9 30.9 1420 3.57 0.9937 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 270.48 0.79 141.63 0.364 H-F Stud 1.5 3.5 16 8.25 28.3 1225 3.57 0.9961 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 311.11 0,79 158.68 0.376 H-F Stud 1.5 3.5 12 8.25 28.3 1710 3.57 0.9947 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 325.71 0.82 119.01 0.315 H-F Stud 1.5 3.5 8 8.25 28.3 2700 3.57 0.9968 3988.7 1.60 1.15 1.1 1.05 1.15-675 405 800 1,200,000 1,366 506 968 449.95 395.22 342.86 0.87 79.34 0.244 SPF Stud 1.5 3.5 16 7.7083 26.4 1395 3.57 0.9984 2091,8 1.60 1.15 1.1 1.05 1.15 675 425 725 1.200,000 1,366 531 875.438 515.42 431,52 354.29 0.82 138.53 0.324 SPF Stud 1.5 3.5 16 9 30.9 1000 3.57 0.9918 2091.8 1.60 1.15 1.1 1.05 1.15_675 425 725 1,200,000 1,366 531 875.438 378.09 336.17 253.97 0.76 188.85 0.421 SPF Stud 1.5 3.5 12 9 30.9 1410 3.57 0.9962 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 378.09 338.17 268.57 0.80 141.63 0.358 SPF Stud 1.5 3,5 16 8.25 28.3 1210 3.57 0.9932 2091,8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 307.30 0.79 158.68 0.366 SPF Stud 1.5 3.5 12 8.25 28.3 1690 3.57 0.9940 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 321.90 0.83 119.01 0.306 SPF Stud 1.5 3.5 8 8.25 28.3 2670 3.57 0.9987 4183.8 1.80 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,368 531 875.438 449.95 388.13 339.05 0.87 79.34 0.236 H-F#2 1,5 5.5 16 7.7083 16.8 3132 3.57 0.2844 3132.4 1.60 1.15_ 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1378.83 1031.58 506.18 0.49 56.10 0.044 H-F#2 1.5 5.5 16 9 19.6 3132 3.57 0.4405 3132.4 1.60 1.15 1.3 1.10 1.15 8501 405 1300 1,300,000 2,033 506 1644.5 1011.45 837.57 506.18 0.60 78.47 0.075 H-F#2 t5 5.5 16 _ 8.25 18,0 3132 3.57 0.3404 3132.4 1.60 , 1.15 1.3_1.10 1.15 850 405 1300 1,300,000 2,033 506 1844.5 1203.70 948.77 506,18 0.53 64.28 0.055 SPF#2 1.5 5.5 18 7.7083 16.8 3287 3.57 0.3154_ 3287.1 1.60 1.15 1.3 1.10 1.15 875 4251150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 58.10 0.042 SPF#2 1.5 5.5 16 9 19.6 3287 3.57 0.4618 3287.1 1.60 1.15 1,3 1.10 1.15 875 425` 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23 0.82 76.47 0.071 SPF#2 1.5 5.5 16 8.25 18.0 3287 3.57 0.3678 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75,1296.30 945.38 531.23 0.56 64.26 0.052 SPF Stud 1,5 3.5 16 14.57 50.0 285 3.57 0.9981 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 144,26 139.02 72.38 0.52 494.93 0.727 SPF#2 1.5 5.5 16 19 41.5 1020 3.57 0.9910 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150_1,400.000 2,093 531 1454.75 244.40 235.32 164.85 0.70 340.83 0.500 H-F#2 1.5 5.5 16 19 41.5 945 3.57 0.9939 3132.4 _ 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1844.5 226.94 220.14 152.73 0.69 340.83 0.513 Page 5 • • ' z tir va+j -t;. * _" i„..:;:g'er 180 Nickerson St. C T n.4E;:�N GltI t4:, EzgE 'R. i AlN t°,97;4 • Suite 302 .-�- r^ I N C. Seattle,WA Project: 1 tl/�/ 7Y� Date: 48109 J �p ,,p} (206)285-9512 Client: 5)�" ) •"Li/ `�" �"�L i,6, Page Number: (206)285-0618 C t 3 :. mow.- - p _.?v�o_ _ ,�....., G.y .- , CL�knS 4-.,. 5 .Z_�D , =P�� - (y►at• . 4 . F C P47142, 4 t • • • • { w(A2L -7=7-7-17-77-r77-1-1--r-71-7 s � i�,SL-sit" (�l�l rs� 'rz . 7 f t,tia L t 41 1-la • 9. ,: t,�-.-. , T nom._... . € i � b� ,. -� 5< G . . s E „ E • f V 6114,10),‘„,41,4 : W .i..'[_ }, i �' L t ��.! ir. M1 K/ 2$^� £,..y 3/6, s4 6.. + ! 1 s z § �s F 1} s Y € _t E E Y # # t t i r # 7 s x I,I , } t t € a t ;? a s --:;--;;;-;--7";-''''1 ';;-1.--;--.''-'t '.;-'t'-'" ; g.'1 J--°';'--1.-;-•1 -1- 1;"";` , i ; ; : - : . , : • . 0...:,......."tl 1-gy tin ; ; , ..a wt'I 2 : ..� + } '4 Y0.. D �l x z i t *Y r -T 1.'-- - Structural Engineers / 180IQickenon St. ` WO E N G E N E E R 1 i' C. suite 3oz / •M C 48109 • Seattle.SNA Project: 4(-• :_. .,_ i' nate: ._. ....._ .__ - (206)Z85 4512 , FAX: Client: Page Number (206)285-0618 • r Z 6)I9 c p p a-. 04 . i v , _( 50 v-- G • ,..,„, . 04\ (.2.4)--: 6 _120 • , „.. _ -) — - ..ri,..r. p KoirE . wmet._ ,tr.. lox, . (4 365- Whit, 1O ft a. ‘ .yi iz._ ,(.4-r,I 6) 7---- .36S____ . ir& oktrifl, to J ,'Sr + . t • 14),_, nik, .. .. . "c„ , ii:-..... 7i> gr r .1-1 \)-1-1 ct le glt -4. 65.y( 2..k? ..,. 4.5-3Cistl 46- _ 0„ ,, . --,--a. ,. :... asr-a v.-.- Locp. q3a 4,.. 2:Aro.1- cit4 •-..-• . 7-14,--1-4” l' '. �, y 3,5 4 r�P y ew ' 191P ft:Y.' IT---11,31:z- 0-..- 2..,16,t` 5 Structural Engineers Design Maps Summary Report Page 1 of 1 OW -ag N. „. Design Maps Summary Report User-Specified Input Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 45.43123°N, 122.77149°W Site Soil Classification Site Class D -"Stiff Soil" Risk Category I/II/III s000m = B averton ` - ,, ti - 1ZO/ ti:;,:;:::;:ik-g:itwileiftri ,_-,,______:_::::::;:__I'':;-''::Ifis,--7,,, 1� i � ' rSLt.Ltr ,frv:r .r• 413°-,..•'.'1:: w f" e 1-� ;PP Milwaukieay mingf°n [ j; u5yfa moi w' 1•" Sch°its ,, NO:,.-,.,.,.e.,.0,,i'.RTH7.• ,t7 0 King City ,0,. A-1 -1 Cc AMERICA;'� O20 , t1' UPSt ,.' 15 MapQtu-., >,�..,.. ,j�5L ... . 3pQuest � e �� USGS-Provided Output S5 = 0.972SMS = 1.080S = 0.720 g °S g g S3 = 0.423 g s,., 0.667 g Sm = 0.445 g For information on how the SS and S1 values above have been calculated from probabilistic(risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEHRP"building code reference document. NICER Response Spectrum Design Response Spectrum 0,82 1.10 0.80 0.95 0.'72 0,88- 0.24 0.77 052 Iii 0,66 0.48 sit055 t a 0.40 f 0.x4 0.32 0.2) 0.24 0.22 4.1s 0.11 0.02 0,00 0.000.00 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.90 2.00 0.20 0.40 0.20 0.80 1.00 1.20 1.40 1.20 1.20 2.00 Period,T(sec) Period,T(sec} Although this information is a product of the U.S.Geological Survey,we provide no warranty,,expressed or implied,as to the accuracy of the data contained therein.Thiw s tool is not a substitute for technical subject-matter knowledge. http://ehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?template=minimal&latit... 9/14/2015 2012 IBC SEISMIC OVERVIEW SHEET TITLE: 2012 IBC SEISMIC OVERVIEW CT PROJECT#: Elevation B Step# 2012 IBC ASCE 7-10 1. RISK CATEGORY TYPE=II Table 1604.5 Table 1.5-1 OCCUPANCY CATEGORY 2. IMPORTANCE FACTOR IE= 100x;; '! Section 1613.1 ->ASCE Table 1.5-2 3. Site Class-Per Geo. Engr. S.C.= D ` ' Section 1613.3.5 Section 11.4.2/Ch.20 Table 1613.3.3(2) Table 20.3-1 4. 0.2 Sec.Spectral Response Ss= 0.97 Figure 1613.3.1(1) Figure 22-1 5. 1.0 Sec.Spectral Response Si= 0.43 Figure 1613.3.1(2) Figure 22-2 Latitude= 45.46 N Longitude= -122.89" W N/A (Or by ZIP code) (Or by ZIP code) http://earthquake.usqs.qov/research/hazmaps/ http://geohazards.usqs.qov/designmaps/us/application.php 6. Site Coefficient(short period) Fa 1.11''' Figure 1613.3.3(1) Table 11.4-1 7. Site Coefficient(1.0 second) Fv= 1.58 : Figure 1613.3.3(2) Table 11.4-2 SMs=F.*Ss SMs= 1.08 EQ 16-37 EQ 11.4-1 SMI=F„*Si Styli= 0.68 EQ 16-38 EQ 11.4-2 Sps=2/3*SMS Sos= 0.72 EQ 16-39 EQ 11.4-3 5D1=2/3*SM1 SD1= 0.45 EQ 16-40 EQ 11.4-4 8. Seismic Design Category 0.2s SDCs= D Table 1613.3.5(1) Table 11.6-1 9. Seismic Design Category 1.0s SDC1 = D Table 1613.3.5(2) Table 11.6-2 10. Seismic Design Category SDC= D Max. Max. 11. Wood structural panels " - - N/A Table 12.2-1 12. Response Modification Coef. R= 6.5 N/A Table 12.2-1 13. Overstrength Factor Co= 3.0 N/A Table 12.2-1 14. Deflection Amplification Factor Cp= 4.0 N/A Table 12.2-1 15. Plan Structural Irregularities - No N/A Table 12.3-1 16. Vertical Structural Irregularities - No ; N/A Table 12.3-2 17. Permitted Procedure Equiv. Lateral Force ., - Table 12.6-1 Page 2 2012 IBC EQUIV.LAT.FORCE SHEET TITLE: 2012 IBC EQUIVALENT LATERAL FORCE PROCEDURE PER ASCE 7-10 CT PROJECT#: Elevation B SDs= 0.72 h = 18.00(ft) S01= 0.45 X = 0.75 ASCE 7-05(Table 12.8-2) R= 6.5 0.020 ASCE 7-05(Table 12.8-2) IE= 1.0 T= 0.175 ASCE 7-05(EQ 12.8-7) S1= 0.43 k= 1 ASCE 7-05(Section 12.8.3) T�= 6 ASCE 7-05(Section 11.4.5:Figure 22-15) Cs=SDs/(R/IE) 0.111 W ASCE 7-05(EQ 12.8-2) Cs=S01/(T*(R/IE)) (for T<TL) 0.399 W ASCE 7-05(EQ 12.8-3)(MAX.) Cs=(S01*TO/(T2*(R/IE)) (for T>TL) 0.000 W ASCE 7-05(EQ 12.8-4)(MAX.) Cs=0.01 0.010 W ASCE 7-05(EQ 12.8-5)(MIN.) Cs=(0.5 Si)/(RAE) 0.033 W ASCE 7-05(EQ 12.8-6)(MIN.if S1>0.6g) CONTROLLING DESIGN BASE SHEAR= 0.111 W VERTICAL DISTRIBUTION OF SEISMIC FORCES PER ASCE 7-10 SECTION 12.8.3 (EQ 12.8-11) (EQ 12.8-12) C,„, = DIAPHR. Story Elevation Height AREA DL w, w, 'h,k wx *hxk DESIGN SUM LEVEL Height (ft) h; (ft) (sqft) (ksf) (kips) (kips) Ew, *h,k Vi DESIGN Vi Roof - 18.00 18.00 1666 0,022 36.652 659.7 0.58 3.88 3.88 2nd 8.00 10.00 10.00 1712 0.028 47.936 479.4 0.42 2.82 6.70 1st(base) 10.00 0.00 SUM= 84.6 1139.1 1.00 6.70 E=V= 9.38(LRFD) E/1.4= 6.70(ASD) DIAPHRAGM FORCES PER ASCE 7-10 SECTION 12.10.1.1 (EQ 12.10-1) Design Fpx = DIAPHR. F; E F1 W1 E w, Fpx= EF,=wpx 0.4*SDs*IE"WP 0.2*SDs*IE.Wp LEVEL (kips) (kips) (kips) (kips) (kips) Ew, Fp, Max. Fp, Min. Roof 3.88 3.88 36.7 36.7 5.28 3.88 10.56 5.28 2nd 2.82 6.70 47.9 84.6 6.91 3.80 13.81 6.91 1st(base) 0.00 0.00 0.0 84.6 0.00 0.00 0.00 0.00 Page 3 ASCE 7-10 WIND Part2 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 2 CT PROJECT#: Elevation B NS E-W F-B S-S 2012 IBC ASCE 7-10 Ridge Elevation(ft)= 30.00 30.00ft. Roof Plate Ht.= 18.00 18.00 Roof Mean Ht.= 24.00 24.00 ft. - - Building Width= r 40.0 48.01 ft. V u/t. Wind Speed 3Sec.Gust= 120 120 mph Figure 1609 Fig. 26.5-1Athru C V asd. Wind Speed 3 Seo Gust=:''''''','-',/,',-*:•EF 93 mph (EQ 16-33) Exposure= B B lw= 1.0 1.0 N/A N/A Roof Type= Gable Gable Ps3oA= 28.6 28.6 psf Figure 28.6-1 ps30e= 4.6 4.6 psf Figure 28.6-1 Ps3o c= 20.7 20.7f psf Figure 28.6-1 ps30 o= 4.7 47 psf Figure 28.6-1 N= 1.00 1.00' Figure 28.6-1 Krt= 1.00 1.00` Section 26.8 windward/lee= 1.00 1.00(Single Family Home) X•Ka•i : 1 1 Ps=A•Kzt•l•Psso= (Eq.28.6-1) PSA= 28.60 28.60 psf (LRFD) (Eq.28.6-1) Pee= 4.60 4.60 psf (LRFD) (Eq.28.6-1) Psc= 20.70 20.70 psf (LRFD) (Eq.28.6-1) Pso= 4.70 4.70 psf (LRFD) (Eq.28.6-1) PsAand caverage= 24.7 24.7 psf (LRFD) Pse and 0average= 4.7 4.7 psf (LRFD) a= 4 4 Figure 28.6-1 2a= 8 8 width-2.2a= 24 32 MAIN WIND-ASCE 7-10 CHAPTER 28 PART 2 Areas(N-S) Areas(E-W) (N-S) (E-W) Wind(N-S)(LRFD) Wind(E-W) (LRFD) width factor roof-> 1.00`: 1.00', 1.00` 1.00 16 psf min. 16 psf min. width factor 2nd-> 1.00 1.00 wind(LRFD)wind(LRFD) DIAPHR. Story Elevation Height AA AB Ac AD AA AB Ac AD per 28.4.4 per 28.4.4 WIND SUM WIND SUM LEVEL Height (ft) hi(ft) h(ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) Vi(N-S) V(N-S) Vi(E-W) V(E-VV) 30.00 12.0 0 192 0 288 0 192 0 384 Roof - 18.00 18.00 4.0 64 0 96 0 64 0 128 0 10.2 12.3 6.05 6.05 7.17 7.17 2nd 8.00 10.00 10.00 9.0 144 0 216 0 144 0 288 0 5.8 6.9 8.59 14.64 10.08 17.25 1st(base) 10.00 0.00 0.00 0 0.00 0.00 As= 1000 AF= 1200 16.0 19.2 V(n-s). 14.64 V(e-w)= 17.25 kips(LRFD) klps(LRFD) kips kips Page 4 ASCE 7-10 Part 1 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 1 CT PROJECT#: Elevation B SEE SEAW RAPID SOLUTION SPREADSHEET AND INSERT VALUES BELOW MAIN WIND-7-10 CHAPTER 28 PART 1 Wind(NS) Wind(E-W) Min/Part 2(Max.) Min/Method 1(Max.) Wind(N-S)(LRFD) Wind(E-W)(LRFD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Vi(N-S) V(N-S) Vi(E-W) V(E-VV) Roof - 18.00 18.00 0.00 0.00 0.00 0.00 10.24 1024 12.29 12.29 2nd 8.00 10.00 10.00 0.00 0.00 0.00 0.00 5.76 16.00 6.91 19.20 1st(base) 10.00 0.00 0.00 V(n-s). 0.00 V(e-w)= 0.00 V(n-s)= 16.00 V(e-w)= 19.20 kips kips kips(LRFD) kips(LRFD) DESIGN WIND-Min./Part 2/Part 1 ASD Wind(NS)(LRFD) Wind(E-W)(LRFD) Wind(N-S)(ASD) Wind(E-W)(ASD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Roof 8 10 10 10.24 10.24 12.29 12.29 7.93 7.93 9.52 9.52 2nd 10 0 0 5.76 16.00 6.91 19.20 4.46 12.39 5.35 14.87 1st(base) 0 0 0 V(n-s)= 16.00 V(e-w)= 19.20 V(n-s)= 12.39 V(e-w)= 14.87 kips(LRFD) kips(LRFD) kips(ASD) kips(ASD) Part 1 Base Shear Part 2 Base Shear = 0.0 0.0 ratio ratio Page 5 SHEET TITLE: SDPWS SHEARWALL VALUES PER TABLE 4.3A CT PROJECT#: Elevation B SHEATHING THICKNESS tsheaming= 7/16" NAIL SIZE nail size= 0.131"dia.X 2.5"long STUD SPECIES SPECIES= H-F or SPF SPECIFIC GRAVITY S.G.= 0.43 ANCOR BOLT DIAMETER Anc. Bolt dia.= 0.625 ASD F.O.S.= 2.0 SHEARWALL TYPE Table 4.3A Seismic Table 4.3A Wind 7/16"w/8d common V seismic V sallowable V wind V wallowable (15/32"values per (SDPWS-2008) modify per S.G. (SDPWS-2008) modify per S. G. footnote 2) (divide by 2.0 FOS) (divide by 2.0 FOS) (for ASD) (for ASD) __I 0 1 0 1 P6TN 150 150 150 150 P6 520 242 730 339 P4 760 353 1065 495 P3 980 456 1370 637 P2 1280 595 1790 832 2P4 1520 707 2130 990 2P3 1960 911 2740 1274 2P2 2560 1190 3580 1665 N.G. 10000 4650 10000 4650 GYPSUM THICKNESS tsheathing= 1/2" NAIL SIZE nail size= 1 1/4"long No.6 Type S or W Response Modification Coef. R= 6.5 SHEARWALL TYPE Table 2306.4.7 Seismic Wind 1/2"w/1 1/4"screw v allowable V sallowable V wallowable Blocked (PER 2009 IBC) modify G7 125 R>2 not allowed R>2 not allowed G4 150 R>2 not allowed R>2 not allowed 2G7 250 R>2 not allowed R>2 not allowed 2G4 300 R>2 not allowed R>2 not allowed 2G4 300 150 A SHEET TITLE: LATERAL N-S(front to back-up/down) CT PROJECT#: Elevation B Diaph.Level: Roof Panel Height 8 ft. Seismic V i= 3.88 kips Design Wind N-S V I= 7.93 kips Max.aspect= 3.5 SDPWS Table 4.3.4 Sum Seismic V i= 3.88 kips Sum Wind N-S V I= 7.93 kips Min.Lwall= 2.29 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pc= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL elf. C 0 w dl V level V abv.V level V abv. 2w/h v i Type Type vi OTM ROTM Unet Usum OTM ROTM Unet Dsum Usum HD (sqft) (ft) (ft) (kif) (kip) (kip) (kip) (kip) p (pIf) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext. A.T1 416 15.0 46.0 1.00 0.15 1.98 0.00 0.97 0.00 1.00 1.00 65 P6TN P6TN 132 7.76 26.12 -1.28 -1.28 15.86 31.05 -1.06 -1.06 -1.06 Ext. A.T2 139 5.0 46.0 1.00 0.15 0.66 0.00 0.32 0.00 1.00 1.00 65 P6TN P6TN 132 2.59 8.71 -1.41 -1.41 5.29 10.35 -1.17 -1.17 -1.17 Ext A.T3 278 10.0 46.0 1.00 0.15 1.32 0.00 0.65 0.00 1.00 1.00 65 P6TN P6TN 132 5.17 17.41 -1.31 -1.31 10.58 20.70 -1.08 -1.08 -1.08 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 " 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 ` 1.00 ` 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ext. B.T1 150 5.0 , 47.0 1.00 0.15 0.71 0.00 0.35 0.00 1.00 1.00 70 P6TN P6TN 143 2.80 8.90 -1.41 -1.41 5.72 10.58 -1.12 -1.12 -1.12 Ext B.T2 300 10.0 47.0 1.00 0.15 1.43 0.00 0.70 0.00 1.00 1.00 70 P6TN P6TN 143 5.59 17.79 -1.31 -1.31 11.43 21.15 -1.04 -1.04 -1.04 Ext B.T3 143 4.8 47.0 1.00 0.15 0.68 0.00 0.33 0.00 1.00 1.00 70 P6TN P6TN 143 2.66 8.45 -1.42 -1.42 5.43 10.05 -1.13 -1.13 -1.13 Ext. B.T4 240 8.0 47.0 1.00 0.15 1.14 0.00 0.56 0.00 1.00 1.00 70 P6TN P6TN 143 4.47 14.23 -1.33 -1.33 9.15 16.92 -1.06 -1.06 -1.06 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00, 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 -- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 " 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 -- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00' 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00' 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 " 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--• - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1666 57.8 57.8=L eff. 7.93 0.00 3.88 0.00 EVwind 7.93 EVE0 3.88 Notes: * denotes with shear transfer ** denotes perferated shear wall iSB denotes iSB Shear Panel SHEET TITLE: LATERAL N-S(front to back-up/down) CT PROJECT#: Elevation B Diaph.Level: 2nd Panel Height 9 ft. Seismic V I= 2.82 kips Design Wind N-S V I= 4.46 kips Max.aspect= 3.5 SDPWS Table 4.3.4 Sum Seismic V I= 6.70 kips Sum Wind N-S V 1= 12.39 kips Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W perSDPWS-2008 pc= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.G. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall Logy en. C 0 w di V level V abv.V level V abv. 2w/h v i Type Type v i OTM RorM Unet U. OTM RoTM Unet Veurn V:um HD (sqft) (ft) (ft) (kit) (kip) (kip) (kip) (kip) p (pIf) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext. A.Ma.r 621 29.0 46.0 1.00 0.15 1.62 2.88 1.02 1.41 1.00 1.00 84 P6TN P6 155 21.85 50.50 -1.01 -2.29 40.43 60.03 -0.69 -1.75 -1.75 Ext. A.Mb .235 11.0• 46.0 1.00 0.15' 0.61 1.09 0.39 0.53 1.00 1.00 84 P6TN P6 155 8.29 19.16 -1.05 -2.46 15.34 22.77 -0.72 -1.89 -1.89 - - 0 0.0: 0.0 ,,1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 -1.31 0.00 0.00 0.00 -1.08 -1.08 - - 0 0.0 0]0 ':1.00 .•0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 00',; 1.00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 ` 0.0 1.00 0.00- 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 : 1.00 "0.001 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00; 0.001 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0: 1.00 : 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ext.' B.Ma. 571 10.0 47.0 1.00 0.15' 1.49 2.64 0.94 1.29 1.00 1.00 223 P6 P4 413 20.09 17.79 0.25 -1.16 37.18 21.15 1.72 0.60 0.60 Ext. B.Mb 285 -'5.0 47.0 1.00 ',, 0.15': 0.74 1.32 0.47 0.65 1.00 1.00 223 P6 P4 413 10.05 8.90 0.27 -1.04 18.59 10.58 1.85 0.81 0.81 - - 0 0.0 0.0 1.00. :000': 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 -1.42 0.00 0.00 0.00 -1.13 -1.13 - - 0 0.0 0.0 '1.00 0.00. .: 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 -1.33 0.00 0.00 0.00 -1.06 -1.06 t - - 0 0.0..:0.0 `1.00. 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 •- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0- 0.0 1.00 0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 " 0.0 0.0 1.00 . 0.00': 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0 --- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0 0 1 00- 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 00 1.00 1' 0.001 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 00 1.00,'.'0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00. ,0.00': 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 . 0.0 1.00 0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00; 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0' 0.0 1 00 :;0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0; 0.0 `-0.0 1.00'l' 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00, 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1712 55.0 55.0=L eff. 4.46 7.93 2.82 3.88 1.00 EV,„nd 12.39 EVE° 6.70 Notes: * denotes with shear transfer ** denotes perferated shear wall iSB denotes iSB Shear Panel SHEET TITLE: LATERAL E-W(side to side-left/right) CT PROJECT#: Elevation B Diaph.Level: Roof Panel Height. 8 ft. Seismic V I= 3.88 kips Design Wind E-W V I= 9.52 kips Max.aspect= __3.5 SDPWS Table 4.3.4 Sum Seismic V I= 3.88 kips Sum Wind E-W V I= 9.52 kips Min.Lwall= 2.29 ft. (0.6-0.14Sds)D+0.7pQe 0.6D+W per SDPWS-2008 pi= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall Logy elf. C 0 w dl V level V abv. V level V abv. 2w/h vi Type Type v i OTM RoTM Unet Usum OTM ROTM Unet Usum Us.m HD (sqft) (ft) (ft) (kif) (kip) (kip) (kip) (kip) p (pIf) (pif) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Rear 1.Ta* 283.6 8.0 40.0 1.00 0.15 1.62 0.00 0.66 0.00 1.00 1.00 83* * 203 5.28 12.11 -0.93 -0.93 12.96 14.40 -0.20 -0.20* Rear 2.Tb* 407.6 11.5 40.0 1.00 0.15 2.33 0.00 0.95 0.00 1.00 1.00 83* 203 7.59 17.41 -0.91 -0.91 18.63 20.70 -0.19 -0.19* Rear 3.Tc* 141.8 4.0 40.0 1.00 0.15 0.81 0.00 0.33 0.00 1.00 1.00 83* * 203 2.64 6.06 -1.02 -1.02 6.48 7.20 -0.22 -0.22* Rear 4.Td 0 0.0 0:0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int N/A 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int' N/A 0 0.0 0.0 1.00 ` 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int N/A 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0,00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0- 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Ta 148.7 2.5 11.0 1.00 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222* * 340 2.77 1.04 0.94 0.94 6.80 1.24 3.03 3.03" Front 4.Tb 148.7 2.5 11.0 1.00 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222* 340 2.77 1.04 0.94 0.94 6.80 1.24 3.03 3.03* Front 4.Tc r 119 2.0 9.7 1.00 0.15 0.68 0.00 0.28 0.00 1.00 0.50 277* * 340 2.22 0.73 1.11 1.11 5.44 0.87 3.43 3.43* Front 4.Td 119 2.0 9.7 1.00 0.15 0.68 0.00 0.28 0.00 1.00 0.50 277* * 340 2.22 0.73 1.11 1.11 5.44 0.87 3.43 3.43* Front 4.Te 148.7 2.5 11.7 1.00 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222" * 340 2.77 1.10 0.91 0.91 6.80 1.31 2.99 2.99* Front 4.Tf 148.7 2.5 11.7 1.00 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222* * 340 2.77 1.10 0.91 0.91 6.80 1.31 2.99 2.99* - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 < 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 ' 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 . 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 4 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1666 37.5 37.5=L eff. 9.52 0.00 3.88 0.00 EV nd 9.52 EVE° 3.88 Notes: * denotes with shear transfer *" denotes perferated shear wall iSB denotes iSB Shear Panel GARAGE ABWP SHEET TITLE: LATERAL E-W(side to side-left/right) . CT PROJECT#: Elevation B Diaph.Level: 2nd Panel Height r 9 ft. Seismic V I= 2.8 kips Design Wind E-W V I= 5.35 kips Max.aspect= 3.5 SDPWS Table 4.3.4 Sum Seismic V I= 6 0 kips Sum Wind E-W V I= 14.87 kips Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7pQe 0.6D+W per SDPWS-2008 pt= 1.00 Table 4.3.3.5 Wind Wind '.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max, Wall ID T.A. Lwall LDL eff. C 0 w di V level V abv level V abv. 2w/h v i Type Type v OTM RDTM Unet Veum OTM Rowet Veum Usum HD (sqft) (ft) (ft) (kif) (kip) (k'• (kip) (kip) p (pIf) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Rear 1.Ta 107.6 4.3 12.3 1.001:.0.151 0.3• 1.20 0.18 0.49 1.00 0.94 166* " 361 5.98 1.98 1.12 0.18 13.80 2.36 3.19 3.00* Rear 2.Tb 98.77 3.9 12.3:•;1,00' 0.15': 0.1 1.10 0.16 0.45 1.00 0.87 181 * * 361 5.49 1.82 1.14 0.23 12.66 2.16 3.25 3.06* Rear 3.Tc 158.3 6.3 19.5' 1.00; 015' '.50 1.76 0.26 0.72 1.00 1.00 156* • 361 8.80 4.61 0.75 -0.27 20.30 5.48 2.65 2.44* Rear 4.Td 63.31 2.5 19.5 1 00 0.15. ' 0.20 0.70 0.10 0.29 1.00 0.56 282* * 361 3.52 1.85 0.91 0.91 8.12 2.19 3.23 3.23" 0 0.0 0.0 1.00 0.'' 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 Int N/A 181.1 5.5 .5.5 1.001 =,151 0.57 0.00 0.30 0.00 1.00 1.00 54 P6TN P6TN 103 2.68 1.15 0.32 0.32 5.10 1.36 0.77 0.77 0.77 Int N/A 246.9 7.5 7.5 1.00- ,0.151 0.77 0.00 0.41 0.00 1.00 1.00 54 P6TN P6TN 103 3.66 2.13 0.22 0.22 6.95 2.53 0.65 0.65 0.65 - - 0 ' 0.0 0.0 1. 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 nt • 4 8' 10• 0.0 - .0' 0. .3• a 00 0 0 0.0' 00 1.00 70 P6TN P6TN 134 6.34 3.79 0.27 0.27 12.05 4.50 0.81 0.81 0.81 - - 0 ).0 0' 1.0' •x00 0.30 0.03 3.00 0./0 1.,' 0.00 0--- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Ta 117.1. 2.4 20.5 1.00` ,0.15. ' 0.37 0.89 0.19 0.62 1.-3 0.54 629 ABWP ABWP 785 7.35 1.88 3.13 4.07 17.06 2.23 8.46 11.51 ABWP Front 4.Tb 0 < 0.0, '-• 0.0. 1.00 0.151 0.00 0.00 0.00 0.00 1.1% 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Tc 0 0.0 0.0 1.00'' 0,15' 0.00 0.00 0.00 0.00 1.0. 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Td 117.1 2.4 20,5 1.00 .0.15' 0.37 0.89 0.19 0.62 1..` 0.54 629 ABWP ABWP 785 7.35 1.88 3.13 4.24 17.06 2.23 8.48 11.90 ABWP ro• T- 9. 91 0 11• "0' .• 5 0. ' '.4' • 16 0 .5 1.0' 0.44 569* 576 4.55 0.88 2.75 3.66 10.38 1.05 6.99 9.99* Front 4.Tf 96.91'. 2.0 11.7 1.00. '0.15 0.30 1,49 0.16 0.35 1.00 0.44 569* * 576 4.55 0.88 2.75 3.66 10.38 1.05 6.99 9.99* 0 0.0 0.0 1.00: •0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 . 1.00 0,00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0'>>':-0.0 0.0 1.00` 000 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 . 1.00.;. 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.001 0.001 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 `- 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ! 0.0 0.0 1.00; 0.001 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00' 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 .-'0.0 1.00: 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00,: 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 - 0.0 1.00' 0.00!: 0.00 0.00 0.00 0.00 1.00 0.00 0 -- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 1.0.0 0.0 1.00'.;0.00', 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0.. 0.0 1.00' 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 0.0 1.00 '.0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1712 48.7 48.7=L eff. 5.35 9.52 2.82 3.88 EV wind 14.87 EVED 6.70 Notes: * denotes with shear transfer ABWP Alternate Braced Wall Panel-2308.9.3.2 ** denotes perferated shear wall iSB denotes iSB Shear Panel . JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 4.Ta,4.Tb Roof Level w dl= 150 plf V eq 692.6 pounds V1 eq= 362.3 pounds V3 eq= 330.3 pounds V w= 1699.7 pounds V1 w= 889.1 pounds V3 w= 810.6 pounds ► v hdr eq= 63.4 plf ► 4'H head= A v hdr w= 155.7 plf 1 v Fdragl eq= 183 F2 eq= 166 • Fdragl w= ,.8 F2 -408 H pier= v1 eq= 127.9 plf v3 eq= 127.9 plf P6TN E.Q. 5.0 ` v1 w= 313.8 plf v3 w= 313.8 plf P6 WIND feet H total= 2w/h= 1 2w/h= 1 9 r Fdrag3 eq= - F4 e•- 166 feet • Fdrag3 w=448 F4 w=408 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 63.4 plf P6TN 3.0 EQ Wind v sill w= 155.7 plf P6 feet OTM 6234 15297 R OTM 4461 5363 r r UPLIFT 173 969 Up above 0 0 UP sum 173 969 H/L Ratios: L1= Z8 L2= 5.5 L3= 2.6 Htotal/L= 0.82 Hpier/L1= 1.76 4 0. 4 ►4 0^ Hpier/L3= 1.94 L total= 10.9 feet JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 4.Tc,4.Td. Roof Level w dl= 150 plf V eq 554.1! pounds V1 eq= 277.1 pounds V3 eq= 277.1 pounds V w= 1359.7', pounds V1 w= 679.9 pounds V3 w= 679.9 pounds — v hdr eq= 58.3 plf A H head= A v hdr w= 143.1 plf ;1 v Fdragl eq= 160 F2 eq= 160 A Fdragl w= +4 F2 •-394 H pier= vi eq= 173.2 plf v3 eq= 173.2 plf P6 E.Q. 5,0 „ vi w= 339.9 plf v3 w= 339.9 plf P6 WIND feet... H total= 2w/h= 0.8 2w/h= 0.8 9 • Fdrag3 eq= :0 F4 e.- 160 feet A Fdrag3 w=394 F4 w=394 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 58.3 plf P6TN 3.0 EQ Wind v sill w= 143.1 plf P6TN feet OTM 4987 12238 R OTM 3379 4061 v v UPLIFT 182 926 Up above 0 0 UP sum 182 926 H/L Ratios: L1= .2.0° L2= 5.5 L3= 2.0 Htotal/L= 0.95 I. 4 H Hpier/L1= 2.50 Hpier/L3= 2.50 L total= 9.5 feet JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 4.Te,4.Tf Roof Level w dl= 150 p/f V eq 692.6 pounds V1 eq= 346.3 pounds V3 eq= 346.3 pounds V w= 1699.7 pounds V1 w= 849.8 pounds V3 w= 849.8 pounds ► ► v hdr eq= 60.2 plf A H head= A v hdr w= 147.8 plf 1 v Fdragl eq= 196 F2 eq= 196 A Fdragl w= , 0 F2 -480 H pier= v1 eq= 138.5 plf v3 eq= 138.5 plf P6TN E.Q. 5.0 v1 w= 339.9 plf v3 w= 339.9 plf P6 WIND feet H total= 2w/h= 1 2w/h= 1 9 v Fdrag3 eq= s• F4 e•- 196 feet A Fdrag3 w=480 F4 w=480 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 60.2 Of P6TN 3.0 EQ Wind v sill w= 147.8 plf P6TN feet OTM 6234 15297 R OTM 4951 5951 y v UPLIFT 118 863 Up above 0 0 UP sum 118 863 H/L Ratios: L1= 2.5 L2= 6.5 L3= 25 Htotal/L= 0.78 4 ► 4 ►1 Hpier/L1= 2.00 4 Hpier/L3= 2.00 L total= 11.5 feet JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 1.Ma,1.Mb Roof Level w dl= 150 plf V eq 1275.1 pounds V1 eq= 677.4 pounds V3 eq= 597.7 pounds V w= 2940.6', pounds V1 w= 1562.2 pounds V3 w= 1378.4 pounds v hdr eq= 106.3 plf o- • •H head= A v hdr w= 245.0 plf 1 v Fdrag1 eq= 226 F2 eq= 199 A Fdrag1 w= -.1 F2 -459 H pier= v1 eq= 159.4 plf v3 eq= 159.4 plf P6 E.Q. 5.0 v1 w= 367.6 plf v3 w= 367.6 plf P4 WIND feet H total= 2w/h= 1 2w/h= 1 9 Fdrag3 eq= • F4 e.- 199 feet Fdrag3 w=521 F4 w=459 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 106.3 plf P6TN 3.0 r EQ Wind v sill w= 245.0 plf P6 feet OTM 11476 26465 R OTM 5391 6480 UPLIFT 537 1763 Up above 0 0 UP sum 537 1763 H/L Ratios: L1= 4.3 L2= 4.0 L3= 3.8 Htotal/L= 0.75 0 4 ►4 ► Hpier/L1= 1.18 o Hpier/L3= 1.33 L total= 12.0 feet JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 1.Mc,1.Md Roof Level w dl= 150 plf V eq 1368.9 pounds V1 eq= 977.8 pounds V3 eq= 391.1 pounds V w= 3157.1 pounds V1 w= 2255.0 pounds V3 w= 902.0 pounds ► 0. v hdr eq= 62.2 plf ► A H head= A v hdr w= 143.5 plf 1 V Fdragl eq= 589 F2 eq= 236 A Fdragl w= •58 F2 -543 H pier= vl eq= 156.4 plf v3 eq= 156.4 Of P6 E.Q. 5.0 vi w= 360.8 plf v3 w= 360.8 plf P4 WIND feet H total= 2w/h= 1 2w/h= 1 9Fdrag3 eq= F4 e•- 236 feet • Fdrag3 w=1358 F4 w=543 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 62.2 plf P6TN 3.0` EQ Wind v sill w= 143.5 plf P6TN feet OTM 12320 28413 R OTM 18119 21780 • • UPLIFT -272 311 Up above 0 0 UP sum -272 311 H/L Ratios: L1 6.3 L2= 13.3 L3= 2:5 Htotal/L= 0.41 4 ► 41 10 ► Hpier/L1= 0.80 ► Hpier/L3= 2.00 L total= 22.0 feet JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 4.Me,4.Mf Roof Level w dl= 150 plf V eq 1011.7 pounds V1 eq= 505.9 pounds V3 eq= 505.9 pounds V w= 2305.8, pounds V1 w= 1152.9 pounds V3 w= 1152.9 pounds vhdreq= 89.3 plf •H head= A v hdr w= 203.5 plf 1 � Fdragl eq= 327 F2 eq= 327 Fdragl w= .6 F2 -746 H pier= vi eq= 252.9 Of v3 eq= 252.9 plf P4 E.Q. 3.0 vi w= 576.5 plf v3 w= 576.5 p/f P3 WIND feet H total= 2w/h= 1 2w/h= 1 7 v Fdrag3 eq= F4 e.- 327 feet A Fdrag3 w=746 F4 w=746 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 89.3 plf P6TN 3.0 EQ Wind v sill w= 203.5 plf P6 feet OTM 7082 16141 R OTM 4805 5777 T t UPLIFT 213 972 Up above 118 863 UP sum 332 1835 H/L Ratios: L1= 2.0 L2= 7.3 L3= 2.0 Htotal/L= 0.62 4 11. 4 0 1 Hpier/L1= 1.50 Hpier/L3= 1.50 L total= 11.3 feet .t .s� "*'•-.4:1•2,1''''• •1 f 4,r ky. r 4 i® t f it 1� ®1 nal ' --A PA'. ' -' . - - . - ' - e .• . ,,,.. . „.„. ..... mo.. .-, • ..�. � .i Id ` .. I _ , ,, d 7 ' I. vt , ''V'''''''''1.::%-.,'.':';', TT-100F APRIL 2014 A Portal Frame with Hold Downs for Engineered Applications The APA portal-frame design,as shown in Figure 1,was envisioned primarily for use as bracing in conventional light- frame construction.However,it can also be used in engineered applications,as described in this technical topic.The portal frame is not actually a narrow shear wall because it transfers shear by means of a semi-rigid,moment-resisting frame.The extended header is integral in the function of the portal frame,thus,the effective frame width is more than just the wall segment,but includes the header length that extends beyond the wall segment.For this shear transfer mechanism,the wall aspect ratio requirements of the code do not apply to the wall segment of the APA portal frame. Cyclic testing has been conducted on the APA portal-frame design(APA 2012).Recommended design values for engi- neered use of the portal frames are provided in Table 1.Design values are derived from the cyclic test data using a rational procedure that considers both strength and stiffness. The Table 1 values in this report were developed using the CUREE cyclic test protocol(ASTM E2126),using a flexible load head.Earlier testing was conducted using rigid load heads and the sequential phased displacement(SPD)method, as outlined in SEAOSC(1997)Standard Method of Cyclic(Reversed)Test for Shear Resistance of Framed Walls for Buildings. The design values in Table 1 ensure that the code(IBC)drift limit and an adequate safety factor are maintained.For seismic design,APA recommends using the design coefficients and factors for light-frame(wood)walls sheathed with • wood structural panels rated for shear resistance(Item 15 of Table 12.2-1 of ASCE 7-10). See APA Report T2004-59 for more details.For designs where deflection may be less of a design consideration,for example,wind loading while the portal frames are used in tandem with each other,and not used as conventional shear walls,a load factor of 2.5, based on the cyclic test results is used. Since cyclic testing was conducted with the portal frame attached to a rigid test frame using embedded strap-type hold downs,design values provided in Table 1 of this document should be limited to portal frames constructed on similar rigid-base foundations,such as a concrete foundation,stem wall or slab,and using a similar embedded strap- type hold down. • • 1 0 2014 APA—Vic Engineered Wood Association PORTAL FRAME DESIGN (MIN. WIDTH =22 1/2"): • EQ=810#< EQ (ALLOW)= 1031# WIND = 1260#<WIND (ALLOW)= 1444# Table 1. Recommended Allowable De gn Val •s for APA Portal Frame Used on a Rigid-Base Minimum Width Maximu eight Allowable Design(ASD)Values per Frame Segment (in.) ) Shearl°•0(Ibf) Deflection(in.) Load Factor 8 850 (1190 WIND) 0.33 3.09 16 10 625 (875 WIND) 0.44 2.97 8 1,675 (2345 WIND) 0.38 2.88 24 e 0.51 3.42 1'-10 1/2" 8 1520 EQ(2128 WIND) 1'-10 1/2" 10 (a ti c 9)31 EQ(1444 WIND) Foundation for Wind or Seismic Loading (a) Design values are based on the use of Douglas-fir or Southern pine framing.For other species of framing,multiply the above shear design value by the specific gravity adjustment factor=(1-(0.5-SG)),where SG=specific gravity of the actual framing.This adjustment shall not be greater than 1.0. (b) For construction as shown in Figure 1. (c) Values are for a single portal-frame segment(one vertical leg and a portion of the header).For multiple portal-frame segments,the allowable shear design values are permitted to be multiplied by the number of frame segments(e.g.,two=2x,three=3x,etc.). (d) Interpolation of design values for heights between 8 and 10 feet,and for portal widths between 16 and 24 inches,is permitted. (e) The allowable shear design value is permitted to be multiplied by a factor of 1.4 for wind design. (f) If story drift is not a design consideration,the tabulated design shear values are permitted to be multiplied by a factor of 1.15.This factor is permitted to be used cumulatively with the wind-design adjustment factor in Footnote(e)above. Figure 1. Construction Details for APA Portal-Frame Design with Hold Downs • Extent of header with double portal frames(two braced wall panels) Extent of header with single portal frame I (one braced wall panels) Header to jack-stud strap F 2'to 18'rough width of opening per wind design min 1000 lbf for single or double portal on both sides of opening opposite side of sheathing Pony Illi • wall ,, height • t k. • ,. „„� .:, 4,,.. , -'�: S Fasten top plate to header •�1C`x 4�;at.. Min ri et�eeo e+° pa, "4.4#14.4*: 1 with two rows of 16d w Gt ?st P 6a et`�tita'Igo g't's";;a° sinker nails at 3"o.c.typ " CM3.>-.. �?._ �•.-w� r to..:::::':.* Fasten sheathing to header with 8d common or .:,.. /Min.3/8"wood structural 12' galvanized box nails at 3"grid pattern as shown panel sheathing total •"' r Header to jack-stud strap per wind design. wall �' r height Min 1000 lbf on both sides of opening opposite - 9 side of sheathing. r If needed,panel splice edges shall occur over and be 10' Min.double 2x4 framing covered with min 3/8" nailed to common blocking max ; '• thick wood structural panel sheathing with • • within middle 24"of portal ri 8d common or galvanized box nails at 3"o.c. height.One row of 3"o.c. height ': »- :„, in all framing(studs,blocking,and sills)typ. nailing is required in each panel edge. t, Min length of panel per table 1 Typical portal frame r'�, construction Min(2)3500 lb strap-type hold-downs I (embedded into concrete and nailed into framing) Min double 2x4 post(king -i, 3y1 and jack stud).Number of —Min reinforcin of foundation,one#4 bar --.I.-- .2: I jack studs per IRC tables top and bottom of footing Lap bars 15 min. t` R502.5(1)&(2). t t I n;``' f¢ ,r`- x; te,,,gam"'-?:t s !,x Y 412;` ,. Min footing size under opening is 12"x 12".A turned-down Min 1000 lb hold-down slab shall be permitted at door openings. device(embedded into concrete and nailed Min(1)5/8"diameter anchor bolt installed per IRC R403.1.6- into framing) with 2"x 2"x 3/16"plate washer 2 ©2014 APA—The Engineered Wood Association References APA, 2004, Confirmation of Seismic Design Coefficients for the.APA.Portal Frame, APA Report T2004-59, APA—The Engineered Wood Association,Tacoma,WA. APA,2012,Effect of Hold-Down Capacity on IRC Bracing Iviethod PFH and IBC Alternate Method,APA Report T2012L-24, APA—The Engineered Wood Association,Tacoma,WA. ASCE,2010,Minimum Design Load for Buildings and Other Structures.ASCE 7.American Society of Civil Engineers. Reston,VA. ASTM E2126-11,Standard Test Methods for Cyclic(Reversed)Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings,ASTM International.West Conshohocken,PA. SEAOSC, 1997,Standard Method of Cyclic(Reversed)Test for Shear Resistance of Framed Walls for Buildings,Structural Engineers Association of Southern California.Whittier,CA. • • We have field representatives in many major U.S.cities and in Canada who can help answer questions involving fint/W.tlpativdod:org APA trademarked products.For additional assistance in specifying engineered wood products,contact us: APA HEADQUARTERS:7011 So.19th SI.•Tacoma,Washington 98466•(253)565-6600•Fax:(253)565-7265 APA PRODUCT SUPPORT HELP DESK:(253)620-7400•E-mail:help@apowood.org Form No.TT-100F Revised April 2014 DISCLAIMER:The information contained herein is based on APA—The Engineered Wood Association's continuing programs of laboratory testing,product research,and comprehensive field experience.Neither APA nor its members make any warranty,expressed or implied,or assume any legal liability or responsibility for the use,application of,and/or reference to opinions,findings,conclusions,or recommendations included in this publication.Consult A PA your local jurisdiction or design professional to assure compliance wills code, construction, and performance requirements.Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used,it cannot accept responsibility of product performance or designs as actually constructed. 3 ©2014 APA—The En ineuzd WuoclAssociation 180 Nickerson St. C T E 'N G I°GN E ''E R I N G • Suite 302 {�'}� / R /{��� ��/►�j Seattle,WA Project: form 7 t061 e 13 i 0 A(ti rjbz_ Date: AO./ . , 98109 Q (206)285-9512 Client: 55 t r JJJ Page Number: FAX:(206)285-0618 ( I -v -5157)A • eo • 0.csSV-=-AJ (,41_60 • Q - V • -71 .a1 5(I • ® . X lb' )Z'( )(.. . P iakk : C ""mac' e - NSA D860046 ir td[ < &X0.2 -(•• 6o,» a= L►)Co,2)16,7) 10,3 (5 (C WZ.3)LI ) 2 roti (bo = '�v� • del h , ())(,2)//ae .,L8 t.. 44- 01- o, 86 • 5-Num -TD12XkZ /-'/ 4-` 112. ° ¢ ,;V • M lb)N6• �x1,(9 e P—n9V1) S . 374.> PIAL Aq0-) t P? t!M L. ct Si9e Structural Engineers • rtk9.)?.�,�{ ,r N a+.> .� -•`st'„- t S1 r'. PSI F tZ i >}.- la 1,-; r Xs S ",3c. �, �1�c C.2'+' .n . t, tt+ st .� °'t�> tier z �'��,:)t�r* '`t• ft}Yt. .,�j �.--=5e. �'.,. n �rYG"� �: � "gg`�,�",�,t3 r r�t�T 'ti,.4 0.1 '4 R7. t a , a-4 i< . Ja3k• 3. a7 >,..z -' rt.,'' �,;?, ,•ts 3+.,. S tw+t4 �3.ri : 1V-c* ;�•,, t*_T'r fk- -.r y 2 �i i -e Sit: � F .}`i°rg�r.�-9 4.�4w�•�st�:.L�Z'�t'��,.I„ .r;.�> azo,t�E.i •,: `� l.+ f S�_ �a i 5 ,t t .� = k 4-i y �r�. hie. y* r�Y. r -, y aS,Y •i},i,y a ,1 ,,� a3 :,. • av ?, ,.� i. r�u , ' 1{ ts WOOD;FRAME CON$1'RUC'�ION MANUAL" ,t',� , , c :. �,t G3 t ,,;i: 10,1%.,.!,:',...',e a'r.e,t ..5%,..,.;a:•,;.•-•,-:t.:..,-c,...1,,...4:,',ee "rY 7`c zaltYA: {t. �•T ti. ' .7'tY,V'€.1c V ,5- t :•, d's jarax `1 vxa qi -7 +Yl, ..�y3 .{Nn'.i„,. .:". ! '' M r {e., t. >,Y;,"ri r,. c'iF �, .t3� w;T� i+:. ,,.a N .. � �ts $^r+ t. r._-}. 7..-,--r.,..:a�ea::�?�* ''. . _S T -.� 7 ,:... .'S ?�n,�,'s,r KY,;. k). .. . F ?a, >... ,.nt.�..... tLY. ns,z7.., s t, Table 2.2A Uplift Connection Loads from Wind `�'' •• • . (For Roof-to-Wall,Wall-to-Wall,and Wali-to-Founda'tlon) • 700-yr.Wind Speed 110 115 120 130 140 150 160 170 180 195 3-second gust(mph) Roof/Ceiling Assembly a,a,s,6,� Design Dead Load Roof Span(ft) Unit Connection Loads(plf) 12. 118 128 140 164 190 219 249 281 315 369 Z 24 195 213 232 •272 315 362 412 465 521 612 a)0 psf8 36 272 298 324 380 441 506 576 650 729 856 M 48 350 383 417 489 567 651 741 836 938 1100 M 60 428 468 509 598 693 796 906 1022 1146 1345 0 • 12 70 80 92 116 142 171 201 233 267 321 24 111 129 148 188 231. 278 328 381 437 528 N 10 psf 36 152 178 204 260 321 386 456 530 609 736 16) 48 194 227 261 333 411 495 585 680 782 944 Z 60 236 276 317 406 501 604 714 830 954 1153 12. 46 56 68 92 118 147 177 209 243 297 24 69 87 106 146 189 236 286 339 395 486 15 psf 36 92- 118 144 200 261 326 396 470 549 676 48 116 149 183 255 333 417 507 602 704 866 60 140 180 221 310 405 508 618 734 858 1057' 12 22 32 44 68 94 123 153 185 219 273 24 27 45 64 104 147 194 244 297 353 444 • • • ; ' 20 psf 36 32 58 84 140 201 266 336 410 489 616 1 11:t1'i 48 38 71 105 177 255 339 429 524 626 788 ` 60 44 84 125 214 309 412. 522 638 762 961. 12 - 8 20 44 70 99 129 161 195 249 24 - 3 22 62 " 105 152 202 255 311 402 25 psf 36 - - 24 80 141 206 276 350 429 556 48 - - 27 99 177 261 351 446 548 710 60 - - 29 118 213 316 426 542 666 865 1 Tabulated unit uplift connection loads shall be permitted to be multiplied by 0.75 for framing not located within 6 feet of corners for buildings less than 30 feet in width(W),or W/5 for buildings greater than 30 feet In width. 2 Tabulated uplift loads assume a building located in Exposure 13 with a mean roof height of 33 feet. For buildings • located in other exposures,the tabulated values for 0 psf roof dead load shall be multiplied by the appropriate adjustment factor in Section 2.1.3.1 then reduced by the appropriate design dead load. 3 Tabulated uplift loads are specified in pounds per linear foot of wall. To determine connection requirements, f; multiply the tabulated unit uplift load by the multiplier from the table below corresponding to the spacing of the . connectors: Connection Spacing(in.) 12 16 19.2 24 48 Multiplier # 1.00 1.33 I 1.60 2.00 4.00 �•l • ° Tabulated uplift loads equal total uplift minus 0.6 of the roof/ceiling assembly design dead load. s Tabulated uplift loads are specified for roof-to-wall connections. When calculating uplift loads for wall-to-wall or wail-to-foundation connections,tabulated uplift values shall be permitted to be reduced by 73 plf(0.60 x 121 plf) 1 for each full wall above. ;lc.;:--.. 6 When calculating uplift loads for ends of headers/girders,multiply the tabulated unit uplift load by 1/2 of the (if � header/girder span(ft.). Cripple studs need onlybe attachedPer tyPical uplift requirements. 'cP'`'• ' For jack rafter uplift connections,use a roof span equal to twice the jack rafter length.The jack rafter length z includes the overhang length and the jack span. t•,.?-`s s Tabulated uplift loads for 0 psf design dead load are included for Interpolation or use with actual roof dead loads. t :ffigE: AMERICAN WOOD COUNCIL 180 Nickerson St. CT ENGINEERING suite 302 N 0 Seattle,WA A 9809 Protect: •. '�ty Date: (206)2854512 FAX: Client: Page Number: (206)285-0618 \A/1W' )- OPL Ve_L. 712Vii'$e) 7'?) 1/41t— v) A-P/6- '7-1.113L.6-:1,4 1 I 1 /0 iPf uL .. �„ 15P5 j DL CDMIALO -rMsS r6' :417-7 4'e • : ISM, lig I! (1120'lk C:0 4)(0 (04) : : . . t- • : . I • Q � s� 2� A� ( 4)(z) 1,0,) 6,0 . ; P, ' k r o 14-7- (1-6y 6Q/7)(0,,-5 (0,6 .� Iv& (t) -TY GvANtioEo e64. p .y. ,14 e 70.7as_ -0. ii,75(t_ ' 00)- ct--- (5Y ef44 Dtliod Structural Engineers TRUSS TO WALL CONNECTION ';I'I VAIlil #of TRUSS CONNECTOR TO TRUSS TO TOP PLATES I1l'I11I I1 PLIES 1 Ht (6) 0.131" X 1.5" (4) 0.131"X 2.5" 4011 ,IS 1 H2.5A (5) 0.131" X 2.5" (5) 0.131" X 2.5" 5:^.; 1111 1 SDWC15600 - 2 H10-2 (9) 0.148" X 1.5" (9) 0.148" X 1.5" •'I i(i 1(111 _.. 2 (2)H2.5A (5) 0.131" X 2.5" EA. (5) 0.131"X 2.5" EA. Iwo ;n 2 (2)SDWC15600 - - filo /.III 3 (3)SDWC15600 - - Hy.,_ . :RI ROOF FRAMING PER PLAN 8d AT 6" O.C. • 2X VENTED BLK'G. ' 0.131" X 3" TOENAIL ' Ili .1 - I -C H2.5A & SDWC15600 STYI F COMMON/GIRDER TRUSS -_. PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE 3/4"= 1'-0" (BEAM/HEADER AT SIMILAR) 14 TYP. RAISED HEEL TRUSS TO WALL CONNECTION [ TRUSS TO WALL CONNECTION 'SPI•_ VAI MS #OF SUSS CONNECTOR TO TRUSS TO TOP PLATES UPt Iii II PL11 Ht (6) 0.131" X 1.5" (4) 0.131" X 2.5" I00 415 1 H2.5A (5) 0.131" X 2.5" (5)0.131" X 2.5" 535 [ I11)1 1 SDWC15600 - - qfh • 115 • 2 H1D-2 (9) 0.148" X 1.5" (9) 0.148" X 1.5 IO7(1 --girl-- 2 (2)H2.5A (5) 0.131" X 2.5" EA. (5) 0.131"X 2.5" EA. -IOW.- 72.1•1-.- 2 (2)SOWCI5600 • - - .01 'LSO_... 3 (3)SDWC15600 - - 1455 145 ADD A35 0 48"0.C. ROOF FRAMING PER PLAN FOR.H2.5A AND 3d AT 6" O.C. SDWC STYLE CONNECTIONS • 2X VEN ED BLK'G IIIIIIIIIIInb,.)14% � ►is 11111 I 11 I H2.5A & SDWC15600 STYI F i COMMON/GIRDER TRUSS - PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE 3/4"= 1'-0" (BEAM/HEADER AT SIMILAR) 19 TYPICAL TRUSS TO WALL CONNECTION [