Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (16)
catena consulting engineers • March 22,2018 Ms. Caroline Lemay Bassetti Architects 71 Columbia Street Suite 500 Seattle, WA 98104 RE: Tigard High School Renovation,Tigard, Oregon Foundation Permit Calculations catena project number: 2016135.00 Dear Caroline: The attached calculations verify that the portion of the Tigard High School Modernization submitted for foundation permit in Tigard, Oregon, meets the structural requirements of the 2014 Oregon Structural Specialty Code.The foundation permit includes, foundations, • concrete walls & pilasters, concrete slabs-on-grade, and steel elements embedded in concrete.The calculations are based upon the scope of work shown on signed and sealed structural drawing sheets S0.01 through S8.02 dated March 28, 2018.The unsigned sheets are for information only and will be issued for permit at a later date. Sincerely, catena consulting engineers UCTU �� A'q PRpc . faiblyir,;\.44 tjp fe .Et kocif cot, `0N k TH4�� •••••-- 5 -1• / EX' ':08/30/2018 Jason M.Thompson P.E.,S.E. Avery A. Morris, P.E., S.E. Principal Associate • a connected series at related elements 1500 ne irving street suite 412 portland oregon 97232 • 503.467.4980 , `503.467.4797 ca} n consulting fe a engineers Summaryand Design Approach Project 9 pp Summary The existing high h school was built over several decades with approximately eleven additions pp Y over the years.This modernization project will demolish a portion of the school.See the Demolition Sheets for clarity. We've also included a series of maps in these calculations to help describe the project. If you would like access to any of the construction documents for the existing buildings, please contact us and we will send you electronic copies. The current project is primarily a standalone addition that does not rely on the existing structures for gravity or lateral capacity.The new addition includes seismic separations where it is adjacent to an existing building.The addition is two story composite steel construction with shallow foundations.The lateral system consists primarily of BRBFs. Due to a gentle sloping site, there is a partial basement and split levels. On the east side of the new construction, the building is a one-story wood framed building that ties into the existing one- story wood framed building. If you have any questions while reviewing, please don't hesitate to contact us. 503 467 4980 Permitting • The Tigard HS Modernization structural scope of work is broken into two building permits.This calculation package includes elements related to the Foundation Permit only. Below is a list of items that is contained in each permit package. Foundation Permit The following items are part of the foundation permit: • Foundations • Concrete walls and pilasters below main level • Slabs on grade • Anchor rods and embed plates cast into concrete that is part of this permit • Phase 1 area only: all structural elements required to complete the gravity and lateral load path of the existing building (to remain) due to Phase 1 demolition. Phase 1 demolition is described in AD-series drawings and SD5.01. The structural drawings consist of all the items listed above on signed &sealed sheets.This set also includes information about the superstructure on unsigned 'For Information Only' (FIO) sheets. There are elements on signed sheets that are not part of the foundation permit that are considered FIO. Reference the list above which is also re-printed on S0.01. Superstructure Permit The superstructure permit set will include the balance of the structural information including: • Structural framing, including columns and baseplates • Elevated floors and roofs • Cold-formed steel and/or red iron backup support for exterior cladding • Lateral force-resisting system • • All structural elements required to complete the gravity and lateral load path of the existing building (to remain) due to Phase 2 demolition. a connected series of related elements 1500 ne irving street . suite 412 . portland oregon 97232 v 503.467.4980 * i 503.467.4797 catenaen g nsune iting i er s • The structural drawings will consist of all the items listed above on signed &sealed sheets. There will no longer be HO sheets. Previously permitted sheets will be resubmitted only if there is new superstructure information on those sheets.The future structural calculations will include calculations relevant to the superstructure permit only. Existing Building Compliance Method The existing HS was built over several decades with approximately eleven additions over the years. While the majority of the current project is an addition, it also includes alterations due to the partial demolition of the existing building.The addition will be mostly seismically separate from the existing building and will be designed in accordance with IBC & ASCE 7 (with Oregon edits). Our approach for the alterations is to analyze and strengthen,where appropriate, in accordance with 2014 OSSC 3404.3 &3404.4. Note that the exceptions listed in each section will be employed where possible to limit the extent of strengthening. We will only analyze the areas of the building we are affecting. In the case where an existing element's DCR will increase by more than 10%and it does not meet current code detailing provisions,we will use ASCE 41-13 (as permitted by SAM 08-05) to analyze the element. The calculations and any required strengthening will be submitted with the superstructure permit. Temporary Occupancy Condition • In order to keep the school operational during construction (June 2018- August 2020), this project includes phased demolition and construction. At the end of Phase 1, the existing building will be partially demolished, and the addition will be partially constructed. During the 2019-2020 school year (phase 2), the partially demolished existing building and the partially constructed addition will be occupied by students. For that period,we have employed the following design approach: Partially demolished building: For gravity loads, comply with OSSC 3404.3. For lateral loads, comply with OSSC 3404.4 except temporary vertical resisting lateral elements need not meet the 'Structural System Limitations' of ASCE 7-10 Table 12.2-1, i.e., the detailing provisions associated with the building's SDC (D) are not required.The temporary vertical resisting lateral elements have been designed for code-level earthquake forces. See calculations within and demolition sheets (AD-series and SD5.01). Partially constructed building: For gravity loads, comply with current code. For lateral loads, comply with current code except temporary vertical resisting lateral elements need not meet the 'Structural System Limitations' of ASCE 7-10 Table 12.2-1 and section 12.2.3.3 need not apply.Specifically, it appears that during the 2019-2020 school year there is one location where a temporary vertical resisting lateral element is needed to complete the lateral load path.The permanent lateral system is BRBFs but we intend to use a OCBF for the temporary braced frame. The drawings and design will be submitted with the superstructure permit. We believe the proposed approach is appropriate given the low probability of a code-level earthquake during temporary occupancy. Furthermore, this approach aligns with the provisions of ASCE 37-14 6.5.2 (While the OSSC doesn't reference ASCE 37,we think it is a • useful resource for establishing seismic criteria for the temporary condition at Tigard HS). a connected series of related elements 1500 ne Irving street = suite 412 • portland oregon 97232 • 503.467.4980 = r 503.467.4797 Catena e: °n ng °n Ieteing g r s • II Gravity 0 Page 1 of 268 Project:Tigard HS No:2016135.00 Page: caIen 4,4,-7......-nr Subject:Flat Loads By:AAM Date: Feb 18 0 STEEL FRAMED ROOF Deck Joists Columns Seismic Notes Model TPO Roofing 0.5 0.5 0.5 0.5 0.5 (2)5/8"DensDeck roof board 5.0 5.0 5.0 5.0 (2)layers;2.5 PSF/layer 5.0 7"(min)polyiso insulation 1.5 1.5 1.5 1.5 2.5 PCF 1.5 18 ga.Metal deck 3.5 3.5 3.5 3.5 Suspended M/E/P distribution 4.0 4.0 4.0 2.0 Does not include units 4.0 PV Arrays 0.0 0.0 0.0 0.0 None at this time.VERIFY moving forw 0.0 1/2"gyp bd.ceiling+framing 4.2 4.2 4.2 4.2 4.2 Steel OWJs 5.0 5.0 5.0 Columns 2.0 2.0 Misc. 3.0 3.0 3.0 3.0 3.0 Skin/Partitions 5.0 TOTAL DEAD LOAD: 22.0 27.0 29.0 32.0 18.2 TOTAL LIVE LOAD(SNOW)*: 27 27 27 *Snow drift loads calculated separately CANOPY ROOF Deck Beams Columns Seismic Notes TPO Roofing 0.5 0.5 0.5 0.5 0.5 (2)5/8"DensDeck roof board 2.5 2.5 2.5 2.5 2.5 18 ga.Metal deck 3.5 3.5 3.5 3.5 1/2"gyp bd.ceiling+framing 4.2 4.2 4.2 4.2 4.2 Beams 5.0 5.0 5.0 Columns 2.0 2.0 Misc. 2.0 2.0 2.0 2.0 2.0 Skin 0.0 TOTAL DEAD LOAD: 13.0 18.0 20.0 20.0 9.2 TOTAL LIVE LOAD(SNOW)*: 27 27 27 III *Snow drift loads calculated separately 2ND FLOOR Slab Beams Columns Seismic Notes Model Floor finish-carpet or VCT 1.4 1.4 1.4 1.4 1.4 4"NW cont fill on 3-18 gametal deck 75.5 75.5 75.5 75.5 Incl.1/2"add'l conc for avg deflection 6.3 Suspended M/E/P distribution 4.0 4.0 4.0 4.0 Does not include units 4.0 1/2"gyp bd.ceiling+framing 4.2 4.2 4.2 4.2 4.2 Steel WF framing 12.0 12.0 12.0 Columns 3.0 3.0 Partitions 10.0 Included in 80 psf live load Misc. 5.0 5.0 5.0 5.0 5.0 I Skin model model model TOTAL DEAD LOAD: 91.0 103.0 106.0 116.0 20.9 TOTAL LIVE LOAD: 80.0 80.0 80.0 WOOD ROOF Deck Joists Columns Seismic Notes Model I TPO Roofing 0.5 0.5 0.5 0.5 (2)5/8"DensDeck roof board 5.0 5.0 5.0 5.0 7"(min)polyiso insulation 1.5 1.5 1.5 1.5 5/8"Plywood 2.0 2.0 2.0 2.0 1/2"gyp bd.ceiling+framing 4.2 4.2 4.2 4.2 I-joists 2.5 2.5 2.5 Columns 1.0 1.0 Walls 5.0 Misc. 3.0 3.0 3.0 3.0 I TOTAL DEAD LOAD: 17.0 19.0 20.0 25.0 TOTAL LIVE LOAD: 50.0 50.0 50.0 III Page 2 of 268 Project:TIGARD HS No: 2016135.00 Page: cafes aon�elflnq a " Subject: Gravity By: JY Date:3/19/2018 Spread Ftg • Foundation Reactions Foundation Reactions,First- order linear Supports ASD Gravity Envelop Source Loadcase Reactions F„e" Fvert Grid Intersection,U.O.N. [kip] [kip] Ftg SizeA I' ft (square) 0 Self weight-excluding slabs 3.3 1 Slab self weight 0.1 SCSA/S9.2 2 Dead 4.9 14.25 3.00 5 Unreduced live 0.1 SC= steel column. s snow 6.0 0 Self weight-excluding slabs 6.7 1 Slab self weight 21.8 SC ND/C4 2 Dead 24.8 85.14 6.00 5Unreduced live 24.3 8 Snow 18.2 0 Self weight-excluding slabs 3.7 1 Slab self weight 11.0 SC ND/N1 2 Dead 9.0 36.66 4.00 • 5 Unreduced live 12.3 8 Snow 4.9 0 Self weight-excluding slabs 6.7 1 Slab self weight 35.1 SC ND/N2 2 Dead 27.7 109.91 7.00 5 Unreduced live 39.2 8 Snow 14.7 0 Self weight-excluding slabs 7.8 1 Slab self weight 46.8 SC ND/N5 2 Dead 34.0 140.87 7.00 5 Unreduced live 52.3 8 Snow 17.1 0 Self weight-excluding slabs 8.4 1 Slab self weight 46.8 SC ND/N6 2 Dead 35.5 143.70 7.00 5 Unreduced live 52.2 8 Snow 18.4 0 Self weight-excluding slabs 8.0 1 Slab self weight 43.3 SC ND/N7 2 Dead 32.0 131.70 7.00 5 Unreduced live 48.3 8 Snow 16.3 • Page 6 of 268 Project:TIGARD HS No: 2016135.00 Page: catenc can"1"" r •: u r e Subject: Gravity By: JY Date:3/19/2018 • Spread Ftg 0 Self weight-excluding slabs 6.8 1 Slab self weight 27.6 SC ND/N9 2 Dead 21.8 90.72 6.00 5 Unreduced live 30.8 8 Snow 15.3 0 Self weight-excluding slabs 0.4 2 Dead 0.8 SC CLRM CANOPY @ N7.5 2.23 2.00 8 Snow 1.0 0 Self weight-excluding slabs 1.0 2 Dead 3.1 SC CLRM CANOPY @ N8.5 8.02 2.00 8 Snow 3.9 0 Self weight-excluding slabs 1.1 2 Dead 3.1 SC CLRM CANOPY @ N9.5 8.09 2.00 8 Snow 3.9 0 Self weight-excluding slabs 1.2 2 Dead 3.0 • SC CLRM CANOPY @ N10.2 7.90 2.00 8 Snow 3.7 0 Self weight-excluding slabs 1.1 2 Dead 3.1 SC CLRM CANOPY @ N10.5 8.12 2.00 8 Snow 3.9 0 Self weight-excluding slabs 0.5 2 Dead 1.8 SC CANOPY @ EXT.GYM-1 4.39 2.00 8 Snow 2.2 0 Self weight-excluding slabs 0.7 2 Dead 3.5 SC CANOPY @ EXT.GYM-2 8.49 2.00 8 Snow 4.3 • Page 7 of 268 Project:TIGARD HS No:2016135.00 Page: \►UIIS�� t0flfplliflq 1A pq{pOpf9 Subject: Gravity By: JY Date:3/19/2018 Spread Ftg • 0 Self weight-excluding slabs 0.7 2 Dead 3.5 SC CANOPY @ EXT.GYM-3 8.49 2.00 8 Snow 4.3 0 Self weight-excluding slabs 1.2 2 Dead 3.5 SC CANOPY @ EXT.GYM-4 9.03 2.00 8 Snow 4.3 0 Self weight-excluding slabs 0.9 2 Dead 1.8 SC CANOPY @ EXT.GYM-5 4.79 2.00 8 Snow 2.2 0 Self weight-excluding slabs 2.8 2 Dead 3.0 SC COMMON ENTRANCE @CH 9.54 2.00 8 Snow 3.7 0 Self weight-excluding slabs 2.8 2 Dead 3.0 SC COMMON ENTRANCE @CH 9.55 2.00 • 8 Snow 3.7 0 Self weight-excluding slabs 4.9 1 Slab self weight 0.0 SC NORTH OF CA/C0 2 Dead 17.3 41.88 4.00 5 Unreduced live 0.0 8 Snow 19.6 0 Self weight-excluding slabs 4.6 2 Dead 14.1 SC C1/CC 36.08 4.00 8 Snow 17.3 0 Self weight-excluding slabs 4.8 2 Dead 14.2 SC C1/CD 36.36 4.00 8 Snow 17.4 0 Self weight-excluding slabs 4.9 2 Dead 14.4 SC Cl/CE 37.03 4.00 8 Snow 17.7 • Page 8 of 268 Project:TIGARD HS No: 2016135.00 Page: catend t9O7 V'i�llp nptnetre Subject: Gravity By: JY Date:3/19/2018 Spread Ftg • 0 Self weight-excluding slabs 4.0 2 Dead 10.6 SC C1/CF 27.68 4.00 8 Snow 13.1 0 Self weight-excluding slabs 5.2 1 Slab self weight 2.9 SC C1/SA 2 Dead 10.9 31.40 4.00 5 Unreduced live 3.3 8 Snow 12.4 0 Self weight-excluding slabs 2.1 2 Dead 9.2 SC C2/CB 20.73 3.00 8 Snow 9.4 0 Self weight-excluding slabs 2.8 2 Dead 10.3 SC C2/CC 25.78 3.00 8 Snow 12.7 0 Self weight-excluding slabs 2.9 2 Dead 10.3 • SC C2/CD 25.86 3.00 8 Snow 12.6 0 Self weight-excluding slabs 2.6 2 Dead 10.5 SC C2/CE 26.04 3.00 8 Snow 12.9 0 Self weight-excluding slabs 1.9 2 Dead 6.9 SC C2/CF 17.22 3.00 8 Snow 8.5 0 Self weight-excluding slabs 4.4 2 Dead 21.0 SC C3/CE 51.32 5.00 8 Snow 25.8 0 Self weight-excluding slabs 4.6 2 Dead 20.5 SC C3/CF 50.12 5.00 8 Snow 25.1 • Page 9 of 268 Project:TIGARD HS No: 2016135.00 Page: eaten Ton 7=1 Subject: Gravity By: JY Date:3/19/2018 � .. Spread Ftg • 0 Self weight-excluding slabs 3.1 2 Dead 6.7 SC C3/CH 18.02 3.00 8 Snow 8.2 0 Self weight-excluding slabs 2.9 2 Dead 15.1 SC C4/CB 36.64 4.00 8 Snow 18.6 0 Self weight-excluding slabs 4.4 2 Dead 21.0 SC C4/CE 51.32 5.00 8 Snow 25.8 0 Self weight-excluding slabs 4.2 2 Dead 20.5 SC C4/CF 49.81 5.00 8 Snow 25.1 0 Self weight-excluding slabs 2.9 2 Dead 6.7 SC C4/CH 17.81 3.00 • 8 Snow 8.2 0 Self weight-excluding slabs 1.5 2 Dead 3.9 SC CS/CE 10.16 2.00 8 Snow 4.8 0 Self weight-excluding slabs 1.6 2 Dead 3.8 SC C5/CF 10.05 2.00 8 Snow 4.6 0 Self weight-excluding slabs 1.1 2 Dead 1.8 SC C5/CH 5.12 2.00 8 Snow 2.2 0 Self weight-excluding slabs 4.9 2 Dead 12.7 SC CA/C0 31.49 4.00 8 Snow 13.9 Page 10 of 268 Project:TIGARD HS No: 2016135.00 Page: catenc canarl"nq tii ii n9(naars Subject: Gravity By: JY Date:3/19/2018 • Spread Ftg 0 Self weight-excluding slabs 1.9 SC COMMON&CLRM 1 Slab self weight 12.9 INTERSECTION @ CA 2 Dead 3.8 32.91 4.00 5 Unreduced live 14.4 0 Self weight-excluding slabs 5.2 2 Dead 16.9 SC CH/S4 41.65 4.00 8 Snow 19.6 0 Self weight-excluding slabs 1.2 2 Dead 3.7 SC CLRM CANOPY @N8 9.47 2.00 8 Snow 4.6 0 Self weight-excluding slabs 1.1 2 Dead 3.1 SC CLRM CANOPY @N9 8.08 2.00 8 Snow 3.9 0 Self weight-excluding slabs 5.3 1 Slab self weight 14.5 SC N10/ND 2 Dead 9.6 46.39 4.00 5 Unreduced live 16.2 8 Snow 6.5 0 Self weight-excluding slabs 6.9 1 Slab self weight 20.9 SC N10/NB 2 Dead 17.6 73.52 5.00 5 Unreduced live 23.4 8 Snow 14.0 0 Self weight-excluding slabs 0.8 2 Dead 1.7 SC CLRM CANOPY @N13 4.58 2.00 8 Snow 2.1 0 Self weight-excluding slabs 1.0 2 Dead 1.8 SC N13/NB 4.96 2.00 8 Snow 2.2 0 Self weight-excluding slabs 1.4 2 Dead 1.9 SC CLRM CANOPY @N4.5 5.66 2.00 8 Snow 2.4 • Page 11 of 268 Project:TIGARD HS No:2016135.00 Page: cater con�rliinp ��iF i�"ii 4n p t n e r r t Subject: Gravity By: JY Date:3/19/2018 Spread Ftg • 0 Self weight-excluding slabs 0.7 2 Dead 0.6 SC NA/N4 2.02 2.00 8 Snow 0.7 0 Self weight-excluding slabs 1.4 2 Dead 2.2 SC NA/N5 6.17 2.00 8 Snow 2.6 0 Self weight-excluding slabs 1.6 2 Dead 3.1 SC NA/N6 8.56 2.00 8 Snow 3.8 0 Self weight-excluding slabs 1.6 2 Dead 3.5 SC NA/N7 9.46 2.00 8 Snow 4.3 0 Self weight-excluding slabs 2.5 1 Slab self weight 0.8 SC NB/N1 2 Dead 3.9 10.31 2.00 5 Unreduced live 0.9 8 Snow 3.1 0 Self weight-excluding slabs 6.6 1 Slab self weight 32.8 SC NB/N3 2 Dead 23.3 99.27 6.00 5 Unreduced live 36.6 8 Snow 11.5 0 Self weight-excluding slabs 4.7 1 Slab self weight 21.7 SC NB/N4 2 Dead 15.8 66.48 5.00 5 Unreduced live 24.2 8 Snow 8.2 0 Self weight-excluding slabs 4.8 1 Slab self weight 21.6 SC NB/N5 2 Dead 17.6 69.75 5.00 5 Unreduced live 24.1 8 Snow 10.2 0 Self weight-excluding slabs 6.7 1 Slab self weight 32.8 SC NB/N6 2 Dead 26.3 104.61 6.00 5 Unreduced live 36.6 8 Snow 15.3 • Page 12 of 268 Catena Project:TIGARD HS No:2016135.00 Page: eanar': n o •r r e Subject: Gravity By: JY Date:3/19/2018 • . Spread Ftg 0 Self weight-excluding slabs 6.6 1 Slab self weight 32.8 SC NB/N7 2 Dead 27.1 105.84 6.00 5 Unreduced live 36.6 8 Snow 15.9 0 Self weight-excluding slabs 7.2 1 Slab self weight 32.8 SC NB/N8 2 Dead 30.3 112.58 7.00 5 Unreduced live 36.6 8 Snow 19.8 0 Self weight-excluding slabs 5.7 1 Slab self weight 1.6 SC NB/N10 2 Dead 12.8 35.24 4.00 5 Unreduced live 1.8 8 Snow 15.2 0 Self weight-excluding slabs 4.1 2 Dead 6.9 SC NB/N11 19.36 3.00 8 Snow 8.4 0 Self weight-excluding slabs 3.8 1 Slab self weight 9.0 • SC NC/N1 2 Dead 8.9 33.12 4.00 5 Unreduced live 10.0 8 Snow 5.3 0 Self weight-excluding slabs 7.9 1 Slab self weight 47.1 SC NC/N3 2 Dead 34.6 142.12 7.00 5 Unreduced live 52.6 8 Snow 17.6 0 Self weight-excluding slabs 7.5 1 Slab self weight 47.0 SC NC/N4 2 Dead 32.4 139.36 7.00 5 Unreduced live 52.5 8 Snow 15.7 0 Self weight-excluding slabs 7.9 1 Slab self weight 47.2 SC NC/N5 2 Dead 33.5 141.31 7.00 5 Unreduced live 52.7 8 Snow 16.6 0 Self weight-excluding slabs 8.1 1 Slab self weight 47.2 SC NC/N6 2 Dead 36.1 145.08 7.00 • 5 Unreduced live 52.7 8 Snow 18.8 • Page 13 of 268 11 Project:TIGARD HS No:2016135.00 Page: cafes �!OI�SY ISI IIA /aten ne a Y rt Subject: Gravity Spread Ftg By: JY Date:3/19/2018 • 0 Self weight-excluding slabs 7.8 1 Slab self weight 47.2 SC NC/N7 2 Dead 35.3 143.52 7.00 5 Unreduced live 52.7 8 Snow 18.2 0 Self weight-excluding slabs 7.2 1 Slab self weight 47.2 SC NC/N8 2 Dead 34.7 142.04 7.00 5 Unreduced live 52.7 8 Snow 17.8 0 Self weight-excluding slabs 3.1 1 Slab self weight 3.1 SC NE/N1 2 Dead 4.7 15.96 3.00 5 Unreduced live 3.4 8 Snow 3.2 0 Self weight-excluding slabs 5.6 1 Slab self weight 19.2 SC NE/N2 2 Dead 15.9 63.34 5.00 5 Unreduced live 21.4 8 Snow 8.7 0 Self weight-excluding slabs 4.8 1 Slab self weight 21.6 SC NE/N3 2 Dead 15.1 65.59 5.00 • 5 Unreduced live 24.1 8 Snow 7.4 0 Self weight-excluding slabs 5.6 1 Slab self weight 21.6 SC NE/N4 2 Dead 19.2 73.90 5.00 5 Unreduced live 24.1 8 Snow 12.6 0 Self weight-excluding slabs 8.5 1 Slab self weight 32.3 SC NE/N5 2 Dead 32.8 115.95 7.00 5 Unreduced live 36.1 8 Snow 20.3 0 Self weight-excluding slabs 7.4 1 Slab self weight 28.5 SC NE/N6 2 Dead 27.7 100.09 6.00 5 Unreduced live 31.9 8 Snow 16.7 0 Self weight-excluding slabs 1.5 2 Dead 4.8 SC S1/SA 12.14 3.00 8 Snow 5.8 n • Page 14 of 268 /►. -Gg Project:TIGARD HS No: 2016135.00 Page: ,1►a�enc "" liI" �1► ir1,{�i n m ergSubject: Gravity By: JY Date:3/19/2018 • Spread Ftg 0 Self weight-excluding slabs 2.1 2 Dead 11.4 SC S1/194 27.53 4.00 8 Snow 14.0 0 Self weight-excluding slabs 2.5 2 Dead 8.6 SC 52/179 21.75 3.00 8 Snow 10.6 0 Self weight-excluding slabs 3.5 2 Dead 20.9 SC 52/SB 49.83 5.00 8 Snow 25.4 0 Self weight-excluding slabs 4.0 2 Dead 10.7 SC S2/SJ 27.74 4.00 8 Snow 13.1 0 Self weight-excluding slabs 2.9 1 Slab self weight 32.6 • SC S4/SL 2 Dead 9.5 81.39 6.00 5 Unreduced live 36.4 0 Self weight-excluding slabs 2.7 2 Dead 13.3 SC S4/SC 29.66 4.00 8 Snow 13.6 0 Self weight-excluding slabs 5.4 2 Dead 26.2 SC S5/SA 51.51 5.00 8 Snow 19.9 0 Self weight-excluding slabs 5.6 2 Dead 19.2 SC S6/SA 44.76 4.00 8 Snow 20.0 0 Self weight-excluding slabs 3.7 1 Slab self weight 2.1 SC SA/S9 2 Dead 5.5 17.48 3.00 5 Unreduced live 2.4 8 Snow 5.9 • Page 15 of 268 Project:TIGARD HS No: 2016135.00 Page: oaten COOf9�1r1� n s r r r Subject: Gravity By: JY Date:3/19/2018 Spread Ftg • 0 Self weight-excluding slabs 5.4 1 Slab self weight 0.9 SC SA/S7 2 Dead 11.3 31.11 4.00 5 Unreduced live 1.0 8 Snow 13.5 0 Self weight-excluding slabs 2.9 2 Dead 14.5 SC SB/S4 33.54 4.00 8 Snow 16.1 0 Self weight-excluding slabs 3.5 2 Dead 15.6 SC SB/S5 35.43 4.00 8 Snow 16.4 0 Self weight-excluding slabs 3.1 2 Dead 13.8 SC SB/S6 33.10 4.00 8 Snow 16.2 0 Self weight-excluding slabs 4.1 1 Slab self weight 8.1 SC SB/S7 2 Dead 11.9 39.63 4.00 • 5 Unreduced live 9.0 8 Snow 11.7 0 Self weight-excluding slabs 5.0 1 Slab self weight 26.5 SC SB/S8 2 Dead 27.0 88.25 6.00 5 Unreduced live 29.6 8 Snow 10.0 0 Self weight-excluding slabs 5.1 1 Slab self weight 18.3 SC SB/S9.2 2 Dead 20.5 65.17 5.00 5 Unreduced live 20.5 8 Snow 7.9 0 Self weight-excluding slabs 2.1 2 Dead 11.4 SC SC/S1 27.62 4.00 8 Snow 14.0 0 Self weight-excluding slabs 2.8 2 Dead 16.3 SC SC/52 38.34 4.00 8 Snow 19.2 • Page 16 of 268 rI /�}Ln -pg Project:TIGARD HS No: 2016135.00 Page: {►1ii Sr 1, •t r' Subject: Gravity By: JY Date:3/19/2018 • Spread Ftg 0 Self weight-excluding slabs 3.0 2 Dead 11.1 SC SC/S5 27.75 4.00 8 Snow 13.6 0 Self weight-excluding slabs 4.9 1 Slab self weight 28.3 SC SC/S8 2 Dead 35.6 102.31 6.00 5 Unreduced live 31.6 8 Snow 13.1 0 Self weight-excluding slabs 4.6 1 Slab self weight 31.6 SC SC/S9 2 Dead 24.0 95.36 6.00 5 Unreduced live 35.2 8 Snow 7.5 0 Self weight-excluding slabs 5.0 2 Dead 12.8 SC SD/S2 33.46 4.00 8 Snow 15.7 0 Self weight-excluding slabs 13.8 2 Dead 28.1 • SC SD/S4 76.64 6.00 8 Snow 34.7 0 Self weight-excluding slabs 13.8 2 Dead 27.5 SC SD/S5 74.62 5.00 8 Snow 33.4 0 Self weight-excluding slabs 14.1 2 Dead 27.2 SC SD/S6 74.60 5.00 8 Snow 33.3 0 Self weight-excluding slabs 5.3 1 Slab self weight 5.0 SC SD/S7 2 Dead 11.9 35.95 4.00 5 Unreduced live 5.6 8 Snow 12.8 0 Self weight-excluding slabs 1.7 2 Dead 9.5 SC SE/S1 22.88 3.00 8 Snow 11.7 • Page 17 of 268 Project:TIGARD HS No: 2016135.00 Page: /�►!'11'Qn tonitrifini 4Obbii iv'i LLLMMAAA ngiaott0 Subject: Gravity By: JY Date:3/19/2018 Spread Ftg • 0 Self weight-excluding slabs 3.1 2 Dead 10.9 SC SE/S2 27.25 4.00 8 Snow 13.3 0 Self weight-excluding slabs 1.0 1 Slab self weight 7.7 SC SE/S7 2 Dead 2.3 19.68 3.00 5 Unreduced live 8.6 0 Self weight-excluding slabs 2.9 1 Slab self weight 37.4 SC SE/S9 2 Dead 11.0 92.96 6.00 5 Unreduced live 41.7 0 Self weight-excluding slabs 1.2 1 Slab self weight 8.7 SC SF/S7 2 Dead 2.5 22.08 3.00 S Unreduced live 9.7 0 Self weight-excluding slabs 2.9 1 Slab self weight 37.0 SC SF/S9 2 Dead 10.9 92.06 6.00 • 5 Unreduced live 41.3 0 Self weight-excluding slabs 6.1 1 Slab self weight 19.9 SC SF/S10 2 Dead 17.8 69.46 5.00 5 Unreduced live 22.3 8 Snow 11.9 0 Self weight-excluding slabs 1.2 1 Slab self weight 9.8 SC SG/S7 2 Dead 2.9 24.95 3.00 5 Unreduced live 11.0 0 Self weight-excluding slabs 10.7 1 Slab self weight 26.9 SC SG/S8 2 Dead 33.7 114.37 7.00 5 Unreduced live 30.0 8 Snow 27.6 0 Self weight-excluding slabs 2.9 1 Slab self weight 37.4 SC SG/S9 2 Dead 11.0 92.96 6.00 5 Unreduced live 41.7 • Page 18 of 268 "'^ Project:TIGARD HS No: 2016135.00 Page: caValueansr': ten�.i npino II Subject: Gravity By: JY Date:3/19/2018 • -- Spread Ftg 0 Self weight-excluding slabs 6.2 1 Slab self weight 20.1 SC SG/S10 2 Dead 16.9 69.40 5.00 5 Unreduced live 22.5 8 Snow 12.4 0 Self weight-excluding slabs 6.2 2 Dead 10.8 SC SH/S2 30.37 4.00 8 Snow 13.4 0 Self weight-excluding slabs 0.4 1 Slab self weight 1.2 SC SH/53.2 2 Dead 0.4 3.34 2.00 5 Unreduced live 1.4 8 Snow 0.0 0 Self weight-excluding slabs 14.7 1 Slab self weight 6.2 SC SH/S4 2 Dead 28.3 81.69 6.00 5 Unreduced live 6.9 8 Snow 32.5 0 Self weight-excluding slabs 14.0 1 Slab self weight 9.3 • SC SH/S5 2 Dead 30.8 88.69 6.00 5 Unreduced live 10.3 8 Snow 34.6 0 Self weight-excluding slabs 15.5 1 Slab self weight 9.2 SC SH/S6 2 Dead 29.7 87.57 6.00 5 Unreduced live 10.2 8 Snow 33.2 0 Self weight-excluding slabs 6.2 1 Slab self weight 8.7 SC SH/S7 2 Dead 12.4 43.63 4.00 5 Unreduced live 9.7 8 Snow 12.1 0 Self weight-excluding slabs 3.1 2 Dead 9.1 SC S1/51 23.25 3.00 8 Snow 11.1 0 Self weight-excluding slabs 3.1 1 Slab self weight 7.4 SC SJ/S3 2 Dead 7.5 29.10 4.00 5 Unreduced live 8.3 8 Snow 6.5 • Page 19 of 268 Project:TIGARD HS No:2016135.00 Page: }► + ten/ cansulilnp �s4t�Vii 11,, nptn�ars Subject: Gravity Spread Ftg By: JY Date:3/19/2018 • 0 Self weight-excluding slabs 5.1 1 Slab self weight 28.5 SC SJ/S4 2 Dead 21.2 90.34 6.00 5 Unreduced live 31.7 8 Snow 15.7 0 Self weight-excluding slabs 4.6 1 Slab self weight 22.6 SC SJ/S7 2 Dead 15.5 69.72 5.00 5 Unreduced live 25.2 8 Snow 10.9 0 Self weight-excluding slabs 4.6 1 Slab self weight 25.7 SC SJ/S8 2 Dead 17.2 77.94 6.00 5 Unreduced live 28.7 8 Snow 11.9 0 Self weight-excluding slabs 4.5 1 Slab self weight 30.3 SC SJ/S9 2 Dead 14.9 83.61 6.00 5 Unreduced live 33.9 8 Snow 7.4 0 Self weight-excluding slabs 3.6 1 Slab self weight 10.6 SC SJ/S10 2 Dead 7.9 35.49 4.00 • 5 Unreduced live 11.9 8 Snow 5.9 0 Self weight-excluding slabs 2.9 1 Slab self weight 12.8 SC SL/S3 2 Dead 5.7 35.78 4.00 5 Unreduced live 14.3 8 Snow 2.4 0 Self weight-excluding slabs 3.2 1 Slab self weight 41.6 SC SL/SS 2 Dead 12.2 103.54 6.00 5 Unreduced live 46.5 0 Self weight-excluding slabs 3.2 1 Slab self weight 41.6 SC SL/S6 2 Dead 12.2 103.54 6.00 5 Unreduced live 46.5 0 Self weight-excluding slabs 3.7 1 Slab self weight 29.8 SC SL/S7 2 Dead 13.3 79.97 6.00 5 Unreduced live 33.2 8 Snow 5.6 410 Page 20 of 268 }1 Project:TIGARD HS No: 2016135.00 Page: catencatend """: d npia eare Subject: Gravity By: JY Date:3/19/2018 • ihrt- Spread Ftg 0 Self weight-excluding slabs 4.2 1 Slab self weight 18.3 SC SL/S8 2 Dead 13.4 58.54 5.00 5 Unreduced live 20.4 8 Snow 9.9 0 Self weight-excluding slabs 4.1 1 Slab self weight 10.4 SC SL/S9.2 2 Dead 8.6 36.95 4.00 5 Unreduced live 11.6 8 Snow 6.8 0 Self weight-excluding slabs 5.5 1 Slab self weight 27.5 SC SM/S4 2 Dead 22.9 92.54 6.00 5 Unreduced live 30.7 8 Snow 18.2 0 Self weight-excluding slabs 6.4 1 Slab self weight 26.9 SC SM/S7 2 Dead 22.7 89.47 6.00 5 Unreduced live 30.1 8 Snow 14.6 0 Self weight-excluding slabs 4.6 1 Slab self weight 18.9 • SC SM/SS 2 Dead 14.3 61.08 5.00 5 Unreduced live 21.1 8 Snow 10.1 0 Self weight-excluding slabs 6.6 1 Slab self weight 24.6 SC SM/S9.2 2 Dead 19.2 80.16 6.00 5 Unreduced live 27.5 8 Snow 12.2 0 Self weight-excluding slabs 6.3 1 Slab self weight 27.7 SC SM/S11 2 Dead 27.7 92.72 6.00 5 Unreduced live 30.9 8 Snow 10.4 0 Self weight-excluding slabs 9.7 1 Slab self weight 43.2 SC SN/S4 2 Dead 25.8 127.10 7.00 5 Unreduced live 48.3 8 Snow 16.2 0 Self weight-excluding slabs 11.2 1 Slab self weight 53.4 SC SN/S5 2 Dead 31.7 155.89 8.00 5 Unreduced live 59.6 8 Snow 19.7 • Page 21 of 268 Project:TIGARD HS No:2016135.00 Page: caten aa pne�„ 44nSubject: Gravity By: JY Date:3/19/2018 _ Spread Ftg • 0 Self weight-excluding slabs 11.0 1 Slab self weight 52.9 SC SN/S6 2 Dead 37.3 160.21 8.00 5 Unreduced live 59.0 8 Snow 18.9 0 Self weight-excluding slabs 9.0 1 Slab self weight 35.2 SC SN/S7 2 Dead 32.7 116.12 7.00 5 Unreduced live 39.3 8 Snow 7.9 0 Self weight-excluding slabs 4.0 1 Slab self weight 22.3 SC SN/S8 2 Dead 25.1 76.31 6.00 5 Unreduced live 24.9 8 Snow 8.4 0 Self weight-excluding slabs 6.1 1 Slab self weight 36.3 SC SN/59.2 2 Dead 24.1 107.18 6.00 5 Unreduced live 40.6 8 Snow 13.7 0 Self weight-excluding slabs 7.0 1 Slab self weight 37.9 SC SN/S11 2 Dead 33.7 122.22 7.00 • 5 Unreduced live 42.3 8 Snow 15.7 0 Self weight-excluding slabs 3.4 1 Slab self weight 7.4 SC SN/S12 2 Dead 8.3 30.50 4.00 5 Unreduced live 8.3 8 Snow 7.0 0 Self weight-excluding slabs 8.1 1 Slab self weight 43.0 SC SO/S11 2 Dead 27.0 127.31 7.00 5 Unreduced live 48.0 8 Snow 17.6 0 Self weight-excluding slabs 4.8 1 Slab self weight 16.9 SC SO/S12 2 Dead 12.1 54.55 5.00 5 Unreduced live 18.8 8 Snow 8.8 0 Self weight-excluding slabs 6.4 1 Slab self weight 23.3 SC SP/S8 2 Dead 14.1 69.91 5.00 5 Unreduced live 26.0 8 Snow 8.9 • Page 22 of 268 ]]]1 t� Project:TIGARD HS No: 2016135.00 Page: �y11�1 �i 2Op(M1 sif! Subject: Gravity Spread Ftg By:JY Date:3/19/2018 • 0 Self weight-excluding slabs 6.2 1 Slab self weight 26.9 SC SP/S9.2 2 Dead 16.0 79.14 6.00 5 Unreduced live 30.0 8 Snow 10.0 0 Self weight-excluding slabs 7.4 1 Slab self weight 32.8 SC SP/S11 2 Dead 19.7 96.51 6.00 5 Unreduced live 36.6 8 Snow 12.3 0 Self weight-excluding slabs 4.6 1 Slab self weight 16.4 SC SP/S12 2 Dead 9.8 49.13 5.00 5 Unreduced live 18.3 8 Snow 6.2 • • Page 23 of 268 RTWall -RESTRAINED RETAINING WALL-INITIAL CONDITION DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Project Information -Basics Design Criteria: Code used: 2015 IBC F.S.withouth seismic= 1.5 F.S.with seismic= 1.1 Design Assumptions: Wall is restrained against sliding: YES Soil weights are factored as dead load: YES Vertical component of active pressure is used in stability checks: YES Surcharge load vertical component is used in stability checks: YES Combine passive pressure resultant force with friction force to resist sliding=YES The weight of the soil over the toe is neglected for strength design of the toe:YES Bearing pressure beneath the heel is neglected for strength design of the heel: YES Vertical bars are developed at the top of the stem: NO Project Information - Geometry Backfill: • H (from top of footing)= 8 ft Slope= 10° Soil Over Toe: H (from top of footing)=0 ft Depth of soil over toe to ignore=0 ft Stem: H (from top of footing)= 8 ft Wall type: RC Cantilever Thickness at top = 8 in. Extra thickness at bottom(heel-side)=0 in. Extra thickness at bottom(toe-side)=0 in. Footing: Thickness= 16 in. Heel width=2 ft Toe width = 2.33 ft Project Information -Materials Backfill Soil: y= 110 pcf Analysis type: EFP YEFP =35 psf/ft Angle of external friction=20° • Soil Over Toe: S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 0067 Page 1 of 14 RTWall - RESTRAINED RETAINING WALL-INITIAL CONDITION DATE: 03/22/2018 Project: THS 1111 Prepared by: ETH • Company: catena consulting engineers Phone: Email: y = 100 pcf Analysis type: Neglect 4) =350 Soil under the Footing: Allowable bearing pressure=3000 psf Footing-soil friction coefficient=0.35 Water: 7water =62.4 pcf (I)saturated = 30° Ysaturated= 130 pcf Structure: Yconcrete = 150 pcf Stem concrete fe =4000 psi Footing concrete fc =4000 psi fy =60000 psi Project Information -Loads Surcharge: Uniform surcharge pressure= 100 psf 1111 Concentrated loads at the top of the stem: Axial loads: Dead load=400 plf Live load=0 plf Lateral loads-Wind: Shear= 100 plf and Moment=0 lbs-ft/ft Project Information -Reinforcement Stem reinforcement: Longitudinal bars(main layer):#7 @ 12 in. -cover=4 in. from backfill Embedment type: Hooked Transverse bars:#5 @ 12 in. Top reinforcement: Main bars: #5 @ 12 in. -cover=2 in. from the top of the footing Bottom reinforcement: Main bars:#5 @ 12 in. -cover=3 in. from the bottom of the footing Footing transverse reinforcement: #5 @ 12 in. • S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL6o0067 Page 2 of 14 . . . . RTWa -RESTRAINED RETAINING WALL-INITIAL CONDITION DATE: 0332218 Project: THS • Prepared Company: Catena consulting engineers Phone: Email: Backfill Pressure ^1 � 9.69 ft 1641.8 lb/ft .23 ft}>« y , . • /�� 539.02/ )y. < \ f/f Analysis Method: Equivalent Fluid Pressure(EFP) o1 =3 7EFP =(9.69 ft)(35 p£f=339.0 p f . • S. K. Gh s Associates LLC. I 334 Colfax St,P&t0 I eel Page 30 14 RTWa -RESTRAINED RETAINING WALL-INITIAL CONDITION DATE: 03/22/20 18 Project: THS Prepared by: ETH ___________ 1111Compa Company: Catena consulting engineers 20.01 lb/ft Phone: Email: Uniform Surcharge Pressure A \ . , \ 40 ft [ ° ] § \ , ¢6 R } ( 318pf ., 30821 /§ # PI i } / Z - «84 2 _ i ^\. _/\©. 4r� »\� \ . az\ \. . . \ d» � : .y�t % 2 29 \ Analysis Method: Equivalent Fluid Pressure(EFP Ka= y / 7=35/110=0.3 asur Ka Psur =(a2(1Ogpj=31.8pfIII III S. K. Ghosh Associates LLC. I 334 Colfax St.,Pabee I 399 7 Page 4 of 14 RTWall -RESTRAINED RETAINING WALL- INITIAL CONDITION DATE: 03/22/2018 Project: THS . Prepared by: ETH Company: catena consulting engineers Phone: Email: DL=400.0 lb/ft LL=0.0 lb/ft Concentrated Loads at the Top V= 100.0 lb/ft 9.33 ft 2.66 ft t: S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine IL 60067 Page 5 of 14 RTWall -RESTRAINED RETAINING WALL-INITIAL CONDITION DATE: 03/22/2018 Project: THS III Prepared by: ETH . Company: catena consulting engineers Phone: Email: Weights k x° 800.0 :.'''''';'..,,. 174)8.8 lb/ft Y 1 Y. y Y 999.3 lb/ft 411 Summary of Force Calculations Load Vert. Comp. Moment Arm Horiz. Comp. Moment Arm Force Type (lb/ft) (ft) (lb/ft) (ft) Active Pressure H 0.0 5.00 1641.8 3.23 Water Pressure F --- --- 0.0 0.00 Passive Pressure H --- --- 0.0 0.00 Uniform Surcharge L -200.0 4.00 308.2 4.84 Uni. Lateral Pressure W --- --- 0.0 0.00 Axial Dead Load D -400.0 2.66 --- --- Axial Live Load L 0.0 2.66 --- --- Applied Shear at top W --- --- 100.0 9.33 Applied Moment at top W 0.0 lb-ft/ft Adjacent Footing L 0.0 0.00 0.0 0.00 Seismic E 0.0 0.00 0.0 4.33 Stem Weight D -800.0 2.66 --- --- Footing Weight D -999.3 2.50 --- --- Shear Key Weight D 0.0 0.00 --- --- Backfill Soil Weight D -1798.8 4.00 --- --- IIII Passive Soil Weight D 0.0 NaN --- --- S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine I6 000687 Page 6 of 14 RTWall -RESTRAINED RETAINING WALL-INITIAL CONDITION DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Stability Checks: D + H+ F+L +W+0.7E (IBC Section 1807.2.3) Bearing (lb/ft) Sliding(lb/ft) Overturning(ft-lb/ft) Destabilizing Loads Active Pressure(Horz.) --- 1641.8 5300.9 Uniform Surcharge(Horz.) --- 308.2 1492.6 Applied Shear at Top --- 100 933.3 Fsliding= 2050 Moverturning= 7726.8 Resisting Loads Uniform Surcharge(Vert.) 200 --- 799.3 Axial Dead Load(Vert.) 400 --- 1065.3 Stem Weight(Vert.) 800 --- 2130.7 Footing Weight(Vert.) 999.3 --- 2496.7 Backfill Soil Weight(Vert.) 1798.8 --- 7202.1 Fresisting= 0 Mresisting= 13694.1 Rtotal= 4198.1 • Overturning: Mresisting/Moverturning = 13694.1/7726.8= 1.8 >F.S.(w/o seismic)= 1.5 ...OK Bearing Pressure: e =(Bfooting/2) - [(Mresisting- Moverturning) /Rtotal _(5/2) - [( 13694.1 - 7726.8)/ 4198.1] = 1.08 ft >(Bfooting/6)_ .83 ft Note:bearing pressure resultant is outside the middle third of the footing. 6applied=R/(0.75B- 1.5e) = 4198.1/(0.75x 5 - 1.5x 1.08)= 1969 psf 6a11owable / 6applied = 3000/ 1969= 1.5> 1.0 ...OK Sliding: The wall is restrained against sliding. • S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 60067 Page 7 of 14 RTWall -RESTRAINED RETAINING WALL-INITIAL CONDITION DATE: 03/22/2018 Project: THS Prepared by: ETH • Company: catena consulting engineers Phone: Email: Stem Structural Design • (top)0.0 2.0 Stem Height(ft) r + 4.0 •. ---- 6.0 • • • ••A) 8.0 -13.8 -9.2 -4.6 0.0 4.6 9.2 13.8 Moment(kip-ft/ft) • 0.0(top) ,- • 2.0 Stem Height(ft) , 4.0 • ---- 6.0 8.0 -6.3 -4.2 -2.1 0.0 2.1 4.2 6.3 Shear(kip/ft) ---- Factored Load Design Strength(Straight Bars) ---- Design Strength(Hooked Bars) • S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 60067 Page 8 of 14 RTWall -RESTRAINED RETAINING WALL-INITIAL CONDITION DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Based on the governing values from all load combinations and#7 bars with hooked embedment: z [from top] (ft) 0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 Vu (kips/ft) 0.10 0.13 0.20 0.30 0.45 0.65 0.89 1.16 1.47 1.82 2.20 +Mu (kip-ft/ft) 0.00 0.09 0.22 0.41 0.71 1.12 1.70 2.45 3.49 4.80 6.41 +As, req (sq.in/ft) 0.00 0.01 0.01 0.03 0.04 0.07 0.11 0.16 0.23 0.32 0.44 -Mu (kip-ft/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -As, req (sq.in/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 For stem material: Ld=db { (3/40) (fy/X,T ) Wt We Ws/ [(Cb+Ka.) /db)] } > 1.0 ft =(0.8 in.) { (3/40) [(60000 psi)/(1.0) J(4000 psi)] (1.0) (1.0) (1.0) [(4.44+0.0)/(0.8 in.)] } =2.08 ft • For footing material: Ld=2.08 ft; Ldh=0.97 ft; and Lprovided= 1.08 ft Governing positive moment(at 7.84 ft from the top of the stem): a=As fy/0.85f,=(0.6 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.84 in. Mn= [Lavailable/Ld]4) As fy(d-a/2) = [1.24/2.08] (0.9) (0.6 in.2/ft)(60000 psi) [(3.56 in.) -(0.44 in.)]= 8.43 kip-ft/ft >Mu(= 6.06 kip-ft/ft) ...OK Governing shear(at 8.00 ft from the top of the stem): Vn=4 2?dr', d =(0.75)(2) (1) ( psi)(3.56 in.) =4.06 kip/ft >Vu(= 2.20 kip/ft) ...OK Other structural checks: Maximum vertical steel: Et=0.003[d/(a/131 )- 1] =0.003[(5.52 in.)/(0.84 in./0.85)- 1] =0.013>0.004...OK ACI 318 Section 9.3.3.1 Minimum positive vertical steel: Mn(= 8.43 kip-ft/ft) >(4/3)Mu(= 8.08 kip-ft/ft) • Although the minimum vertical steel check does not apply per ACI 318 Section 9.6.1.3, it is still illustrated below: S. K. Ghosh Associates LLC. 1334 Colfax St., Palatine I )60067 Page 9 of 14 RTWall -RESTRAINED RETAINING WALL-INITIAL CONDITION DATE: 03/22/2018 Project: THS Prepared by: ETH III Company: catena consulting engineers Phone: Email: As,min =max{3 IT/fy, 200/fy} bW d ACI 318 Section 9.6.1.2 = (0.0033)(12 in.) (3.6 in.)=0.143 in.2/ft<As,provided(= 0.600 in.2/ft) Maximum vertical steel spacing: sv= 12 in.<sv,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 Minimum horizontal steel: Pt=As,h/sh t=(0.31 in.2)/(12 in.)(8.00 in.)=0.0032 �Pt,min (= 0.0020) ...OK ACI 318 Section 11.6.1 Maximum horizontal steel spacing: sh= 12 in.<sh,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 • • S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 600067 Page 10 of 14 RTWall -RESTRAINED RETAINING WALL-INITIAL CONDITION DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Heel Structural Design Based on the governing load combination for moment [1.2(D+F) + 1.6(L+H)]: 1 1 1 1 1 1 1 ! 160.0 psf-uniform surcharge 46.6 psf- soil weight(sloped portion) ,',:f1„.,11111111111111110111 1056.0 psf- soil weight 240.0 psf- concrete self-weight •Critical Section for Moment and Shear ioAt the critical section: Mu=2.97 kip-ft/ft<Mu,stem(= 6.41 kip-ft/ft); no reduction is required. a=As fy/0.85fc=(0.3 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.48 in. 4 Mn=4 Asfy(d-a/2) =(0.9)(0.3 in.2/ft)(60000 psi) [(13.68 in.) -(0.24 in.)]= 18.78 kip-ft/ft >Mu(= 2.97 kip-ft/ft) ...OK Required development length for#5 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.19 ft Hooked embedment: Ldh=0.69 ft Based on the governing load combination for shear [1.4(D+F)]: V„=42X.f d =(0.75)(2) (1) ( psi)(13.68 in.) = 15.58 kip/ft >Vu(= 3.08 kip/ft) ...OK Other structural checks: Maximum steel: et=0.003[d/(a/(3i )- 1] . =0.003[(13.68 in.)/(0.48 in./0.85)- 1] =0.074>0.004...OK ACI 318 Section 9.3.3.1 S.K. Ghosh Associates LLC. I 334 Colfax St.,PalateIL 6300p87 Page 11 of 14 RTWall -RESTRAINED RETAINING WALL-INITIAL CONDITION DATE: 03/22/2018 Project: THS 1111 Prepared by: ETH Company: catena consulting engineers Phone: Email: Minimum steel: 4) Mn(= 18.78 kip-ft/ft) >(4/3)Mu(= 3.97 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min= [0.0018 x 60,000/fy] bw,d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (13.68 in.)=0.296 in.2/ft <As,provided(= 0.310 in.2/ft) ...OK Maximum steel spacing: s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As,t/st t= (0.62 in.2)/(12 in.)(16.00 in.)=0.0032 ?-Pt,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 Maximum transverse steel spacing: st= 12 in. < st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 • • S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IIL 600067 Page 12 of 14 RTWall -RESTRAINED RETAINING WALL-INITIAL CONDITION DATE: 03/22/2018 Project: THS Prepared by: ETH Company: catena consulting engineers Phone: Email: Toe Structural Design Based on the governing load combination for moment [0.9D+ 1.0W+ 1.6H]: (Bearing pressure is simply factored by an average value of 1.4.) 180.0 psf- concrete self-weight 111111111111111111111 2756.6 psf- soil bearing pressure 1111111111116 1338.0 psf Critical Section for: Shear Moment • At the critical section for moment: M„=5.71 kip-ft/ft>Mu,stem(= 5.58 kip-ft/ft); therefore M„=5.58 kip-ft/ft a=As fy/0.85fc=(0.3 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.48 in. 4) Mn=4) Asfy(d-a/2) =(0.9) (0.3 in.2/ft)(60000 psi) [(12.72 in.) -(0.24 in.)]= 17.38 kip-ft/ft >Mu(= 5.58 kip-ft/ft) ...OK Required development length for#5 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.19 ft Hooked embedment: Ldh=0.69 ft At the critical section for shear: Based on the governing load combination for shear [0.9D+ 1.0W+ 1.6H]: 4) Vn=4) 2Xricd =(0.75)(2) (1) psi)(12.72 in.)= 14.44 kip/ft >Vu(= 2.79 kip/ft) ...OK Other structural checks: Maximum steel: et=0.003[d/(a/(31 )- 1] =0.003[(12.72 in.)/(0.48 in./0.85)- 1] =0.068>0.004...OK ACI 318 Section 9.3.3.1 S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 60067 Page 13 of 14 RTWall -RESTRAINED RETAINING WALL-INITIAL CONDITION DATE: 03/22/2018 Project: THS Prepared by: ETH III al Company: catena consulting engineers Phone: Email: Minimum steel: 4 Mn(= 17.38 kip-ft/ft) >(4/3)M„(= 7.44 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min= [0.0018 x 60,000/fy] b,d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (12.72 in.)=0.274 in.2/ft <As,provided(= 0.310 in.2/ft) ...OK Maximum steel spacing: s= 12 in. <smx(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As,t/ st t=(0.62 in.2)/(12 in.)(16.00 in.)=0.0032 �t,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 Maximum transverse steel spacing: st= 12 in. <st max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 • • S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine I4L4 000687 Page 14 of 14 RTWall -RESTRAINED RETAINING WALL- FINAL CONDITION DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Project Information - Basics Design Criteria: Code used: 2015 IBC F.S.withouth seismic= 1.5 F.S.with seismic= 1.1 Design Assumptions: Wall is restrained against sliding: YES Soil weights are factored as dead load: YES Vertical component of active pressure is used in stability checks: YES Surcharge load vertical component is used in stability checks: YES Combine passive pressure resultant force with friction force to resist sliding=YES The weight of the soil over the toe is neglected for strength design of the toe:YES Bearing pressure beneath the heel is neglected for strength design of the heel: YES Vertical bars are developed at the top of the stem: NO Project Information - Geometry Backfill: • H(from top of footing)= 8 ft Slope= 10° Soil Over Toe: H (from top of footing)=0 ft Depth of soil over toe to ignore=0 ft Stem: H (from top of footing)= 8 ft Wall type: RC Cantilever Thickness at top = 8 in. Extra thickness at bottom(heel-side)=0 in. Extra thickness at bottom(toe-side)=0 in. Wall is restrained at 8 ft from the bottom of the stem. Footing: Thickness= 16 in. Heel width=2 ft Toe width = 2.33 ft Project Information -Materials Backfill Soil: y= 110 pcf Analysis type: EFP YEFP =50 psf/ft • Angle of external friction=20° S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine IL 600067 Page 1 of 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS Prepared by: ETH • Company: catena consulting engineers Phone: Email: Soil Over Toe: y = 100 pcf Analysis type: Neglect 4) =350 Soil under the Footing: Allowable bearing pressure=3000 psf Footing-soil friction coefficient=0.35 Water: Ywater =62.4 pcf (l)saturated =30° Ysaturated= 130 pcf Structure: Yconcrete = 150 pcf Stem concrete fc =4000 psi Footing concrete fc =4000 psi fy =60000 psi Project Information -Loads Surcharge: • Uniform surcharge pressure= 100 psf Concentrated loads at the top of the stem: Axial loads: Dead load=400 plf Live load=0 plf Lateral loads: Seismic load on backfill: Fseismic=600 plf applied at 3 ft from the top of the footing. Project Information -Reinforcement Stem reinforcement: Longitudinal bars(main layer):#7 @ 12 in. -cover=4 in. from backfill Embedment type: Hooked Transverse bars:#5 @ 12 in. Top reinforcement: Main bars: #6 @ 12 in. -cover=2 in. from the top of the footing Bottom reinforcement: Main bars: #6 @ 12 in. -cover= 3 in. from the bottom of the footing S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine I ,6600067 Page 2 of 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Footing transverse reinforcement: #5 @12 in. • • S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine IL 60067 Page 3 of 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS III 411° Prepared by: ETH Company: catena consulting engineers Phone: Email: Backfill Pressure I y 9.69 ft 3 j 2345.5 lb/ft 1 .23ft F : "u . 484.3 psf „ of:*: Analysis Method: Equivalent Fluid Pressure(EFP) a 1 =H YEFP =(9.69 ft)(50 psf/ft) =484.3 psf • II S. K. Ghosh Associates LLC. 1334 Colfax St.,PalateIL 6000687 Page 4 of 17 RTWa -RESTRAINED RETAINING WALL- FINAL CONDITION DATE: 03/22/20 18 Project: THS Prepared by: ETH11111 Company: catena consulting engineers 20.0 lb/ft Phone: Email: Uniform Surcharge Pressure I 2 4 4.00# "7,} I 9.69 fl 45.5 ps 440.3 ƒ% \ / .84 ft 1 } • «a � ty \\ +/»» . 9y § y 2/ � : < 4" � »\Z} Analysis Method: Equivalent Fluid Pressure(E£P £o= yF/ 7=50/110=0.45 • e_£o@_ = (0.45)(100.0 psf)=45.5 psf S.K. Ghosh Associates LLC. 334 Colfax Sl,P la I,6399p87 Page 5o 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS Prepared by: ETH III Company: catena consulting engineers Phone: Email: DL=400.0 lb/ft LL=0.0 lb/ft Concentrated Loads at the Top 2.66 ft n. . tea • • S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 600687 Page 6 of 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS 111 • Prepared by: ETH Company: catena consulting engineers Phone: Email: Seismic Pressure 99.1 psf I :I.IIIi:; s ; 600.01b/ft I f 4.33 f$. . 24.8 psf Geotechnical Report Values: Strength-level Fseismic =600.00 plf applied at 3.0 ft from the top of the footing. III atop= 8/5 H Fseis = 8/5 (9.69)(600.00)=99.11 psf bottom=2/5 H Fseis =2/5 (9.69)(600.00)=24.78 psf • S.K. Ghosh Associates LLC. 1334 Colfax St.,PalatinSeIL 0067 Page 7 of 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS Prepared by: ETH III Company: catena consulting engineers Phone: Email: Weights 800 0 - k tl 1798.8lb/ft 4. 4 g„- 4'4 ry • (h t.wM'N'' 999.3 lb/ft • Summary of Force Calculations Load Vert. Comp. Moment Arm Horiz. Comp. Moment Arm Force Type (lb/ft) (ft) (lb/ft) (ft) Active Pressure H 0.0 5.00 2345.5 3.23 Water Pressure F --- --- 0.0 0.00 Passive Pressure H --- --- 0.0 0.00 Uniform Surcharge L -200.0 4.00 440.3 4.84 Uni. Lateral Pressure W --- --- 0.0 0.00 Axial Dead Load D -400.0 2.66 --- --- Axial Live Load L 0.0 2.66 --- --- Applied Shear at top W --- --- 0.0 9.33 Applied Moment at top W 0.0 lb-ft/ft Adjacent Footing L 0.0 0.00 0.0 0.00 Seismic E 0.0 0.00 600.0 4.33 Stem Weight D -800.0 2.66 --- --- Footing Weight D -999.3 2.50 --- --- Shear Key Weight D 0.0 0.00 --- --- Backfill Soil Weight D -1798.8 4.00 --- --- • Passive Soil Weight D 0.0 NaN --- --- S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 6000687 Page 8 of 17 RTWall -RESTRAINED RETAINING WALL- FINAL CONDITION DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Restraint Reactions (Unfactored) from Various Loading Conditions (lb/ft) (Numbering starts from the bottom restraint) Restraint 1 Backfill Pressure -332.04 Fluid Pressure 0.00 Passive Pressure 0.00 Surcharge Load -132.59 Adjacent Footing 0.00 Uniform Lateral Load 0.00 Seismic Load 0.00 • Moment from Axial DL 0.00 Moment from Axial LL 0.00 Shear and Moment at Top 0.00 • S. K. Ghosh Associates LLC. I 334 Colfax St.,Palatine IL6o0067 Page 9 of 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS Prepared by: ETH • Company: catena consulting engineers Phone: Email: Stability Checks: D + H+F+L+W+0.7E (IBC Section 1807.2.3) Bearing (lb/ft) Sliding(lb/fl) Overturning(ft-lb/ft) Destabilizing Loads Active Pressure(Horz.) --- 2345.5 7572.7 Uniform Surcharge(Horz.) --- 440.3 2132.2 Seismic - QE(Horz.) --- 420 1820 Fsliding= 3205.7 Moverturning= 11524.9 Resisting Loads Restraint Reactions(Horz.) --- 464.6 4336.6 Uniform Surcharge(Vert.) 200 --- 799.3 Axial Dead Load(Vert.) 400 --- 1065.3 Seismic - QE(Vert.) 0 --- 0 Stem Weight(Vert.) 800 --- 2130.7 Footing Weight(Vert.) 999.3 --- 2496.7 Backfill Soil Weight(Vert.) 1798.8 --- 7202.1 Rtotal= 4198.1 Fresisting= 464.6 Mresisting= 18030.7 • Overturning: Mresisting/Moverturning = 18030.7/ 11524.9 = 1.6 >F.S.(seismic)= 1.1 ...OK Bearing Pressure: e =(Bfooting/2) - [(Mresisting- Moverturning) /Rtotal =(5/2) - [( 18030.7- 11524.9)/ 4198.1] = .95 ft >(Bfooting/6)= .83 ft Note:bearing pressure resultant is outside the middle third of the footing. a applied=R/(0.75B - 1.5e) = 4198.1/(0.75x 5 - 1.5x.95)= 1806 psf aa11owable / aapplied = 3000/ 1806= 1.7> 1.0 ...OK Sliding: The wall is restrained against sliding. S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine I 4 00067 Page 10 of 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS Prepared by: ETH IIICompany: catena consulting engineers Phone: Email: Stem Structural Design (top)0.0 • • 2.0 Stem Height(ft) 4.0 • • • ` • • 6.0 • 8.0 -8.4 -5.6 -2.8 0.0 2.8 5.6 8.4 1111 Moment(kip-ft/ft) :op) . Stem Heght(ft) a ---- 4.0 `_. ---- 6.0 • 8.0 -4.1 -2.7 -1.4 0.0 1.4 2.7 4.1 Shear(kip/ft) ---- Factored Load Design Strength(Straight Bars) ---- Design Strength(Hooked Bars) • S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 6000687 Page 11 of 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS 411 Prepared by: ETH Company: catena consulting engineers Phone: Email: Based on the governing values from all load combinations and#7 bars with hooked embedment: z [from top] (ft) 0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 Vu (kips/ft) -0.74 -0.66 -0.52 -0.34 0.16 0.47 0.82 1.22 1.66 2.15 2.69 +Mu (kip-ft/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 1.83 3.35 5.29 +As, req(sq.in/ft) 0.00 0.01 0.01 0.03 0.04 0.07 0.11 0.04 0.12 0.22 0.36 -Mu (kip-ft/ft) 0.00 0.56 1.04 1.39 1.57 1.54 1.26 0.68 0.00 0.00 0.00 -As,req(sq.in/ft) 0.00 0.04 0.07 0.09 0.10 0.10 0.08 0.04 0.00 0.00 0.00 For stem material: Ld=db { (3/40) (fy/X\rf7) Wt We Ws/ [(cb+Ktr) /db)] } > 1.Oft =(0.8 in.) { (3/40) [(60000 psi)/(1.0) 4(4000 psi)](1.0) (1.0)(1.0) [(4.00+0.0)/(0.8 in.)] } =2.08 ft For footing material: Ld=2.08 ft; Ldh=0.97 ft; and Lprovided= 1.08 ft • Governing positive moment(at 7.84 ft from the top of the stem): a=As fy/0.85fe=(0.6 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.84 in. Mn= [Lavailable/Ld]4) As fy(d-a/2) = [1.24/2.08] (0.9) (0.6 in.2/ft)(60000 psi) [(3.56 in.) -(0.44 in.)]= 8.43 kip-ft/ft >Mu(=4.87 kip-ft/ft) ...OK Governing negative moment(at 3.52 ft from the top of the stem): a=As fy/0.85fu=(0.6 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.84 in. Mn= 4 As fy(d-a/2) = (0.9) (0.6 in.2/ft)(60000 psi) [(3.56 in.) -(0.44 in.)]= 8.43 kip-ft/ft >Mu(= 1.58 kip-ft/ft) ...OK Governing shear(at 8.00 ft from the top of the stem): Vu=0 2 A4T d =(0.75)(2) (1) (475:7 psi)(3.56 in.)=4.06 kip/ft >Vu(= 2.69 kip/ft) ...OK Other structural checks: Maximum vertical steel: Et=0.003[d/(a/1 i )- 1] • S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine I.,6 00067 Page 12 of 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: =0.003[(3.6 in.)/(0.84 in./0.85)- 1] =0.007 >0.004...OK ACI 318 Section 9.3.3.1 Minimum positive vertical steel: Mn(= 8.43 kip-ft/ft) >(4/3)Mu(= 6.49 kip-ft/ft) Although the minimum vertical steel check does not apply per ACI 318 Section 9.6.1.3, it is still illustrated below: As,min=max{3 4Tic /fy, 200/fy} bw d ACI 318 Section 9.6.1.2 =(0.0033)(12 in.) (3.6 in.)=0.143 in.2/ft<As,provided(=0.600 in.2/ft) Minimum negative vertical steel: 4) Mn(= 8.43 kip-ft/ft) >(4/3)Mu(= 2.11 kip-ft/ft) Although the minimum vertical steel check does not apply per ACI 318 Section 9.6.1.3, it is still illustrated below: As,min=max{3 Ify, 200/fy} bW d ACI 318 Section 9.6.1.2 =(0.0033)(12 in.) (3.6 in.) =0.143 in.2/ft<As,provided(=0.600 in.2/ft) Maximum vertical steel spacing: • sv= 12 in.<sv max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 Minimum horizontal steel: Pt=As,h/sh t=(0.31 in.2)/(12 in.)(8.00 in.)=0.0032 �Pt,min (=0.0020) ...OK ACI 318 Section 11.6.1 Maximum horizontal steel spacing: sh= 12 in. <sh,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 • S. K. Ghosh Associates LLC. 1 334 Colfax St.,Palatine IL 6000687 Page 13 of 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS Prepared by: ETH III Company: catena consulting engineers Phone: Email: Heel Structural Design Based on the governing load combination for moment [1.2(D+F)+ 1.6(L+H)]: 1 1 1 1 1 1 160.0 psf-uniform surcharge ....lng111111111111 46.6 psf- soil weight(sloped portion) .1110111E1110 1056.0 psf- soil weight 240.0 psf- concrete self-weight Critical Section for Moment and Shear At the critical section: • M„=2.97 kip-ft/ft<Mu,stem(= 3.21 kip-ft/ft); no reduction is required. a=As fy/0.85fu=(0.4 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. 4 Mn=4 As fy(d-a/2) =(0.9) (0.4 in.2/ft)(60000 psi) [(13.68 in.) -(0.3 in.)]=26.34 kip-ft/ft >Mu(= 2.97 kip-ft/ft) ...OK Required development length for#6 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.42 ft Hooked embedment: Ldh=0.83 ft Based on the governing load combination for shear [1.4(D+F)]: 4:0V„=42X‘rf77d =(0.75)(2) (1) ( 4000 psi)(13.68 in.)= 15.51 kip/ft >Vu(= 3.08 kip/ft) ...OK Other structural checks: Maximum steel: Et=0.003[&(a/(31 )- 1] =0.003[(13.68 in.)/(0.6 in./0.85)- 1] =0.051 >0.004...OK ACI 318 Section 9.3.3.1 • S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 600687 Page 14 of 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Minimum steel: Mn(=26.34 kip-ft/ft) >(4/3)Mu(= 3.97 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min = [0.0018 x 60,000/fy] b,d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (13.68 in.)=0.294 in.2/ft <As,provided(=0.440 in.2/ft) ...OK Maximum steel spacing: s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As,t/st t= (0.62 in.2)/(12 in.)(16.00 in.)=0.0032 ?-Pt,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 Maximum transverse steel spacing: st= 12 in. <st max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 • • S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 60067 Page 15 of 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS Prepared by: ETH III III Company: catena consulting engineers Phone: Email: Toe Structural Design Based on the governing load combination for moment [0.9(D+F) + 1.0E+ 1.6H]: (Bearing pressure is simply factored by an average value of 1.4.) 180.0 psf- concrete self-weight 111111111111111111.1111C ''1' , 2528.4 psf- soil bearing pressure 1278.8 psf Critical Section for: Shear Moment At the critical section for moment: • Mu=5.24 kip-ft/ft>Mu,stem(= 5.09 kip-ft/ft); therefore M„=5.09 kip-ft/ft a=As fy/0.85fn=(0.4 in.2/ft) (60000 psi)/(0.85)(4000 psi)=0.6 in. 4 Mu=4 Asfy(d-a/2) =(0.9) (0.4 in.2/ft)(60000 psi) [(12.6 in.) -(0.3 in.)]=24.36 kip-ft/ft >Mu(= 5.09 kip-ft/ft) ...OK Required development length for#6 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.42 ft Hooked embedment: Ldh=0.83 ft At the critical section for shear: Based on the governing load combination for shear [0.9D+ 1.0W+ 1.6H]: V„=(I) 2A�d =(0.75)(2) (1) NI 4000 psi)(12.6 in.)= 14.37 kip/ft >Vu(= 2.56 kip/ft) ...OK Other structural checks: Maximum steel: et=0.003[d/(a/Pi )- 1] III =0.003[(12.6 in.)/(0.6 in./0.85)- 1]=0.047>0.004...OK ACI 318 Section 9.3.3.1 S.K. Ghosh Associates LLC. 1334 Colfax St.,PalateIL 600687 Page 16 of 17 RTWall -RESTRAINED RETAINING WALL-FINAL CONDITION DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Minimum steel: Mn(=24.36 kip-ft/ft) >(4/3)Mu(= 6.79 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min= [0.0018 x 60,000/fy] bW d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (12.6 in.)=0.273 in.2/ft<As,provided(=0.440 in.2/ft) ...OK Maximum steel spacing: s= 12 in.<smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As,t/st t=(0.62 in.2 )/(12 in.)(16.00 in.)=0.0032 ?Pt,min (=0.0018) ...OK ACI 318 Section 24.4.3.1 Maximum transverse steel spacing: st= 12 in. <st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 • • S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 60067 Page 17 of 17 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS Prepared by: ETH • Company: catena consulting engineers Phone: Email: Project Information -Basics Design Criteria: Code used: 2015 IBC F.S.withouth seismic= 1.5 F.S.with seismic= 1.1 Design Assumptions: Wall is restrained against sliding: YES Soil weights are factored as dead load: YES Vertical component of active pressure is used in stability checks: YES Surcharge load vertical component is used in stability checks: YES Combine passive pressure resultant force with friction force to resist sliding=YES The weight of the soil over the toe is neglected for strength design of the toe:YES Bearing pressure beneath the heel is neglected for strength design of the heel:YES Vertical bars are developed at the top of the stem: NO Project Information - Geometry Backfill: H(from top of footing)= 8 ft Slope= 10° • Soil Over Toe: H (from top of footing)=0 ft Depth of soil over toe to ignore=0 ft Stem: H (from top of footing)= 8 ft Wall type: RC Cantilever Thickness at top = 8 in. Extra thickness at bottom(heel-side)=0 in. Extra thickness at bottom(toe-side)=0 in. Footing: Thickness= 16 in. Heel width=2 ft Toe width = 2.33 ft Project Information -Materials Backfill Soil: y = 110 pcf Analysis type: EFP YEFP =35 psf/ft Angle of external friction=20° Soil Over Toe: • S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 6006$7 Page 1 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: y = 100 pcf Analysis type: Neglect =350 Soil under the Footing: Allowable bearing pressure=3000 psf Footing-soil friction coefficient=0.35 Water: Ywater =62.4 pcf saturated =300 Ysaturated= 130 pcf Structure: Yconcrete = 150 pcf Stem concrete fc =4000 psi Footing concrete fc =4000 psi fy =60000 psi Project Information -Loads Surcharge: IIIUniform surcharge pressure= 100 psf Concentrated loads at the top of the stem: Axial loads: Dead load=400 plf Live load=0 plf Lateral loads-Wind: Shear= 100 plf and Moment=0 lbs-ft/ft Lateral loads: Seismic load on backfill: Fseismic=320 plf applied at 3 ft from the top of the footing. Project Information -Reinforcement Stem reinforcement: Longitudinal bars(main layer):#6 @ 12 in. -cover=2 in. from backfill Embedment type: Hooked Transverse bars:#5 @ 12 in. Top reinforcement: Main bars: #6 @ 12 in. -cover=2 in. from the top of the footing Bottom reinforcement: Main bars: #6 @ 12 in. -cover=3 in. from the bottom of the footing • Footing transverse reinforcement: S.K. Ghosh Associates LLC. I 334 Colfax St.,Palatine IL 600067 Page 2 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS Prepared by: ETH 111 • Company: catena consulting engineers Phone: Email: #5 @12 in. • • S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine e IL40 60067 Page 3 of 16 al RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Backfill Pressure 9.69 ft 1641.8 lb/ft 3.23 ft ry .: ._ 339.0 psf Analysis Method: Equivalent Fluid Pressure(EFP) 61 =H YEFP =(9.69 ft)(35 psf/ft) = 339.0 psf • • S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 600687 Page 4 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS Prepared by: ETHIII 1III Company: catena consulting engineers 200.0 lb/ft Phone: Email: Uniform Surcharge Pressure ......_.... 4.00 ft 9.69 ft ,. 4 31.8psf 308.2 lb/ft y I " ' :.' d 'h '. .84 ft Analysis Method: Equivalent Fluid Pressure(EFP) Ka= YEFP/ Y =35/110=0.32 a sur Ka Psur =(0.32)(100.0 psf)=31.8 psf III II S. K. Ghosh Associates LLC. I 334 Colfax St.,Palatine IL,660067 Page 5 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: DL=400.0 lb/ft Concentrated Loads at the Top LL=0.0 lb/ft V= 100.0 lb/ft 9.33 ft 2.66 ft ,44.14 • • S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 600687 Page 6 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS Prepared by: ETH • Company: catena consulting engineers Phone: Email: Seismic Pressure 52.9 psf :. I ': I} 320.01b/ft 4.33f 13.2 psf Geotechnical Report Values: Strength-level Fseismic = 320.00 plf applied at 3.0 ft from the top of the footing. • atop= 8/5 H Fseis = 8/5 (9.69)(320.00)= 52.86 psf abottom=2/5 H Fseis =2/5 (9.69)(320.00)= 13.21 psf • S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 006.7 Page 7 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS 1111 Prepared by: ETH • Company: catena consulting engineers Phone: Email: Weights 800 0 - 1798.8lb/ft . 3 ` 3x. ,,,4,!,. + •F ip , u`=w 999.3 lb/ft • Summary of Force Calculations Load Vert. Comp. Moment Arm Horiz. Comp. Moment Arm Force Type (lb/ft) (ft) (lb/ft) (ft) Active Pressure H 0.0 5.00 1641.8 3.23 Water Pressure F --- --- 0.0 0.00 Passive Pressure H --- --- 0.0 0.00 Uniform Surcharge L -200.0 4.00 308.2 4.84 Uni. Lateral Pressure W --- --- 0.0 0.00 Axial Dead Load D -400.0 2.66 --- --- Axial Live Load L 0.0 2.66 --- --- Applied Shear at top W --- --- 100.0 9.33 Applied Moment at top W 0.0 lb-ft/ft Adjacent Footing L 0.0 0.00 0.0 0.00 Seismic E 0.0 0.00 320.0 4.33 Stem Weight D -800.0 2.66 --- --- Footing Weight D -999.3 2.50 --- --- Shear Key Weight D 0.0 0.00 --- --- • Backfill Soil Weight D -1798.8 4.00 --- =_ _ Passive Soil Weight D 0.0 NaN S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 600067 Page 8 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS Prepared by: ETH Company: catena consulting engineers Phone: Email: Stability Checks: D + H+ F+L+W+0.7E (IBC Section 1807.2.3) Bearing (lb/ft) Sliding(lb/ft) Overturning(ft-lb/ft) Destabilizing Loads Active Pressure(Horz.) --- 1641.8 5300.9 Uniform Surcharge(Horz.) --- 308.2 1492.6 Applied Shear at Top --- 100 933.3 Seismic - QE(Horz.) --- 224 970.7 Fsliding= 2274 Moverturning= 8697.5 Resisting Loads Uniform Surcharge(Vert.) 200 --- 799.3 Axial Dead Load(Vert.) 400 --- 1065.3 Seismic - QE(Vert.) 0 --- 0 Stem Weight(Vert.) 800 --- 2130.7 Footing Weight(Vert.) 999.3 --- 2496.7 Backfill Soil Weight(Vert.) 1798.8 --- 7202.1 Rtotal= 4198.1 Fresisting= 0 Mresisting= 13694.1 • Overturning: Mresisting/Moverturning = 13694.1/ 8697.5= 1.6 >F.S.(seismic)= 1.1 ...OK Bearing Pressure: e = (Bfooting/2) - [(Mresisting- Moverturning) /Rtotal _(5/2)-[( 13694.1 - 8697.5)/ 4198.1] = 1.31 ft >(Bfooting/6)_ .83 ft Note:bearing pressure resultant is outside the middle third of the footing. 6applied=R/(0.75B - 1.5e) = 4198.1/(0.75x 5 - 1.5x 1.31)= 2351.5 psf aa11owable / 6applied = 3000/2351.5 = 1.3> 1.0 ...OK Sliding: The wall is restrained against sliding. • S.K. Ghosh Associates LLC. I 334 Colfax St.,Palatine IL 600687 Page 9 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Stem Structural Design (top)0.0 2.0 Stem Height(ft) r + ,---- 4.0 ---- 6.0 • • , 8.0 -13.8 -9.2 -4.6 0.0 4.6 9.2 13.8 • Moment(kip-ft/ft) 0.0(top) - 2.0 Stem Height(ft) ---- 4.0 ---- 6.0 . 8.0 -6.4 -4.3 -2.1 0.0 2.1 4.3 6.4 Shear(kip/ft) ---- Factored Load Design Strength(Straight Bars) ---- Design Strength(Hooked Bars) S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine�,eIL 0067 Page 10 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS III Prepared by: ETH • Company: catena consulting engineers Phone: Email: Based on the governing values from all load combinations and#6 bars with hooked embedment: z [from top] (ft) 0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 Vu (kips/ft) 0.10 0.13 0.20 0.31 0.49 0.69 0.93 1.20 1.50 1.84 2.21 +Mu (kip-ft/ft) 0.00 0.09 0.22 0.41 0.71 1.12 1.75 2.60 3.68 5.01 6.63 +As, req(sq.in/ft) 0.00 0.00 0.01 0.02 0.03 0.04 0.07 0.10 0.15 0.20 0.27 -Mu (kip-ft/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -As, req (sq.in/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 For stem material: Ld=db { (3/40) (fy/ai) Wt We Ws/ [(cb+Ktr) /db)] } > 1.O ft = (0.6 in.) { (3/40) [(60000 psi)/(1.0) J(4000 psi)] (1.0) (1.0) (0.8) [(2.38+0.0)/(0.6 in.)] } = 1.42 ft For footing material: Ld= 1.42 ft; Ldh=0.83 ft; and Lprovided= 1.08 ft • Governing positive moment(at 7.84 ft from the top of the stem): a=As fy/0.85fe_ (0.4 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. 4) Mn= [Lavailable ILd](I) As fy(d-a/2) = [1.24/1.42] (0.9) (0.4 in.2/ft)(60000 psi) [(5.63 in.) -(0.32 in.)]= 10.50 kip-ft/ft >Mu(= 6.28 kip-ft/ft) ...OK Governing shear(at 8.00 ft from the top of the stem): 4) Vn=4) 2AJ d =(0.75)(2) (1) OF-0T psi)(5.63 in.) =6.40 kip/ft >Vu(= 2.21 kip/ft) ...OK Other structural checks: Maximum vertical steel: ct=0.003[d/(a/13i )- 1] =0.003[(5.64 in.)/(0.6 in./0.85)- 1] =0.019>0.004...OK ACI 318 Section 9.3.3.1 Minimum positive vertical steel: 4) Mn(= 10.50 kip-ft/ft) >(4/3)Mu(= 8.38 kip-ft/ft) Although the minimum vertical steel check does not apply per ACI 318 Section 9.6.1.3, it is still illustrated below: 1111 S.K. Ghosh Associates LLC. I 334 Colfax St.,Palatin&IL 000687 Page 11 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: As,min =max{3 /fy, 200/fy lb,d ACI 318 Section 9.6.1.2 = (0.0033)(12 in.) (5.64 in.) =0.225 in.2/ft<As,provided(=0.440 in.2/ft) Maximum vertical steel spacing: sv= 12 in. <sv max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 Minimum horizontal steel: Pt=As,h/sh t=(0.31 in.2)/(12 in.)(8.00 in.)=0.0032 �Pt,min (= 0.0020) ...OK ACI 318 Section 11.6.1 Maximum horizontal steel spacing: sh= 12 in.<sh,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 • S.K. Ghosh Associates LLC. 334 Colfax St.,Palatine IL o90687 Page 12 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS Prepared by: ETH11111 • Company: catena consulting engineers Phone: Email: Heel Structural Design Based on the governing load combination for moment [1.2(D+F) + 1.6(L+H)]: 1 1 1 1 1 1 160.0 psf-uniform surcharge _ imemitgoill11111 46.6 psf- soil weight(sloped portion) MOON1056.0 psf- soil weight MIIIIIIIIIII 240.0 psf- concrete self-weight u Critical Section for Moment and Shear At the critical section: III Mu=2.97 kip-ft/ft<Mustem(= 6.41 kip-ft/ft); no reduction is required. a=As fy/0.85fe=(0.4 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. 4) Mn=4) Asfy(d-a/2) =(0.9) (0.4 in.2/ft)(60000 psi) [(13.68 in.) -(0.3 in.)]=26.34 kip-ft/ft >Mu(= 2.97 kip-ft/ft) ...OK Required development length for#6 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.42 ft Hooked embedment: Ldh=0.83 ft Based on the governing load combination for shear [1.4(D+F)]: 4) V„=4) 22,id =(0.75)(2) (1) ( 4000 psi)(13.68 in.)= 15.51 kip/ft >Vu(= 3.08 kip/ft) ...OK Other structural checks: Maximum steel: et=0.003[d/(a/(31 )- 1] =0.003[(13.68 in.)/(0.6 in./0.85)- 1] =0.051 >0.004...OK ACI 318 Section 9.3.3.1 • S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 0067 Page 13 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Minimum steel: Mn(=26.34 kip-ft/ft) >(4/3)Mu(= 3.97 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min= [0.0018 x 60,000/fy] bµ,d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (13.68 in.)=0.294 in.2/ft<As,provided(=0.440 in.2/ft) ...OK Maximum steel spacing: s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As,t/st t=(0.62 in.2)/(12 in.)(16.00 in.)=0.0032 �Pt,min (=0.0018) ...OK ACI 318 Section 24.4.3.1 Maximum transverse steel spacing: st= 12 in. <5t,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 • S.K. Ghosh Associates LLC. I 334 Colfax St.,Palatine�eI 0067 Page 14 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS Prepared by: ETH1111 . Company: catena consulting engineers Phone: Email: Toe Structural Design Based on the governing load combination for moment [1.2(D+F) + 1.0E+0.5L+ 1.6H]: (Bearing pressure is simply factored by an average value of 1.4.) 240.0 psf- concrete self-weight wpm }y }� ¢ �. „2 R n 3292.1 psf- soil bearing pressure 111111111 1568.9 psf Critical Section for: Shear Moment At the critical section for moment: • A4.= 6.73 kip-ft/ft>Mu,stem(= 6.63 kip-ft/ft); therefore Mu=6.63 kip-ft/ft a=As fy/0.85fe=(0.4 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. Mn=(I) Asfy(d-a/2) = (0.9) (0.4 in.2/ft)(60000 psi) [(12.6 in.) -(0.3 in.)]=24.36 kip-ft/ft >Mu(= 6.63 kip-ft/ft) ...OK Required development length for#6 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.42 ft Hooked embedment: Ldh=0.83 ft At the critical section for shear: Based on the governing load combination for shear [0.9D+ 1.0W+ 1.6H]: 4 Vit=(I:, 2aTd =(0.75)(2) (1) 4000 psi)(12.6 in.)= 14.37 kip/ft >Vu(= 3.37 kip/ft) ...OK Other structural checks: Maximum steel: et=0.003[d/(a/Rt )- 1] =0.003[(12.6 in.)/(0.6 in./0.85)- 1] =0.047>0.004...OK ACI 318 Section 9.3.3.1 • S.K. Ghosh Associates LLC. I 334 Colfax St.,Palati3e'e L o00687 Page 15 of 16 RTWall -CANTILEVERED RETAINING WALL DATE: 03/22/2018 Project: THS 4, Prepared by: ETH Company: catena consulting engineers Phone: Email: Minimum steel: 4 Mn(=24.36 kip-ft/ft) >(4/3)Mu(= 8.84 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min= [0.0018 x 60,000/fy] bW d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (12.6 in.)=0.273 in.2/ft<As,provided(= 0.440 in.2/ft) ...OK Maximum steel spacing: s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As,t/st t= (0.62 in.2)/(12 in.)(16.00 in.)=0.0032 �Pt,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 Maximum transverse steel spacing: st= 12 in. <st max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 • S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine T/0067 Page 16 of 16 RTWall -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS Prepared by: ETH Company: catena consulting engineers Phone: Email: Project Information - Basics Design Criteria: Code used: 2015 IBC F.S.withouth seismic= 1.5 F.S.with seismic= 1.1 Design Assumptions: Wall is restrained against sliding: NO Soil weights are factored as dead load: YES Vertical component of active pressure is used in stability checks: YES Surcharge load vertical component is used in stability checks: YES Combine passive pressure resultant force with friction force to resist sliding=YES The weight of the soil over the toe is neglected for strength design of the toe:YES Bearing pressure beneath the heel is neglected for strength design of the heel: YES Vertical bars are developed at the top of the stem: NO Project Information - Geometry Backfill: H(from top of footing)=9 ft Slope=0° • Soil Over Toe: H (from top of footing)=2 ft Depth of soil over toe to ignore=0 ft Stem: H (from top of footing)=9 ft Wall type: RC Cantilever Thickness at top = 8 in. Extra thickness at bottom(heel-side)=0 in. Extra thickness at bottom(toe-side)=0 in. Wall is restrained at 9 ft from the bottom of the stem. Footing: Thickness= 16 in. Heel width=3.8333 ft Toe width = 1.5 ft Project Information -Materials Backfill Soil: Y= 110 pcf Analysis type: EFP YEFP =50 psf/ft Angle of external friction=20° . S. K. Ghosh Associates LLC. I 334 Colfax St.,Pala tin&Il 0067 Page 1 of 18 RTWall - RESTRAINED RETAINING WALL- NO BOTTOM SLAB DATE: 03/22/2018 Project: THS • Prepared by: ETH 1111 Company: catena consulting engineers Phone: Email: Soil Over Toe: y= 100 pcf Analysis type: EFP YEFP =250 psf/ft Soil under the Footing: Allowable bearing pressure=3000 psf Footing-soil friction coefficient=0.35 Water: Ywater =62.4 pcf 4saturated =300 Ysaturated= 130 pcf Structure: Yconcrete = 150 pcf Stem concrete fc =4000 psi Footing concrete fc =4000 psi fy =60000 psi • Project Information Loads Surcharge: Uniform surcharge pressure= 100 psf Concentrated loads at the top of the stem: Axial loads: Dead load=400 plf Live load=0 plf Lateral loads: Seismic load on backfill: Fseismic= 600 plf applied at 3 ft from the top of the footing. Project Information - Reinforcement Stem reinforcement: Longitudinal bars(main layer):#6 @ 12 in. -cover=4 in. from backfill Embedment type: Hooked Transverse bars: #5 @ 12 in. Top reinforcement: Main bars: #5 @ 12 in. -cover=2 in. from the top of the footing • Bottom reinforcement: Main bars: #5 @ 12 in. -cover=3 in. from the bottom of the footing S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine 79 0067 Page 2 of 18 RTWall -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS III Prepared by: ETH II Company: catena consulting engineers Phone: Email: Footing transverse reinforcement: #5 @12 in. • • S.K. Ghosh Associates LLC. I 334 Colfax St.,Palatine IL 0067 Page 3 of 18 RTWa -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/20 18 Project: THS ask� PeaebyEH 1111 Company: Catena consulting engineers Phone: . Email: Backfill Pressure . .... . , .. . . 10 I � � 2669.4! /8 # « � � m i 3.4'} I 444°4+ , m»\/ d»/rra� r x° > 516.7pf Analysis Method: Equivalent Fluid Pressure(EFP) al =H YEFP =(10.33 ft)(50 psf/ft)=516.7 psf • • S. K. Gh s Associates LLC. I 334 Colfax St.,PaaeeeI 6p9 7 Page 4 of 18 RTWall -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS Prepared by: ETH Company: catena consulting engineers Phone: Email: Passive Pressure A Al .33ft 1388.9 lb/ft 833.3 ps Analysis Method: Equivalent Fluid Pressure(EFP) a =H YEFP = (3.33 ft)(250 psf/ft)= 833.3 psf . • S.K. Ghosh Associates LLC. 1334 Colfax St.,PalateIL 6000687 Page 5 of 18 RTWall -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS 0 Prepared by: ETH III Company: catena consulting engineers Phone: Email: 383.3 ib/ft Uniform Surcharge Pressure 0, N k 40 4,0 10 t r 45.5 psf 469.71b/ft I 1 51 , P Analysis Method: Equivalent Fluid Pressure(EFP) Ko= YEFP/ y=50/110=0.45 • sur Ko Psur =(0.45)(100.0 psf)=45.5 psf III S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL 6o00g87 Page 6 of 18 RTWall - RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS Prepared by: ETH ___________ 41°Company: catena consulting engineers Phone: Email: DL=400.0 lb/ft LL=0.0 lb/ft Concentrated Loads at the Top Iv 83 ft,yr • S.K. Ghosh Associates LLC. 1334 Colfax St.,Palatine I46o00687 Page 7 of 18 RTW] -RESTRAINED RETAINING WALL- NO BOTTOM SLAB DATE: 03/22/20 18 Project: THS goPr pa e by E H romp n: Catena consulting engineers Phone: Email: Seismic Pressure 92.9 ps 6 . . . .. ... . ' 600.0ƒ% 4.3, .4 > : . . . » . . \ \ © < �� � < . » . » � - . «f �5wad \ � 23.22/ Geotechnical Report Values: Strength-level Feisc =6 0.00/fa applied at 3.0 ft from the top of the foming. 11111 atop= 8/5 H F„is = 8/5 (10.33) (600.00)= 92.90 psf cybUm=25\Feis =2/5 (10.33) (600.00)=23.23 psf • S. K. Ghosh Associates LLC. I 334 Colfax Sl,P a I 9 7 Page 8 of 18 RTWall -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS II 111) Prepared by: ETH Company: catena consulting engineers Phone: Email: Weights 900.0 s I 3795.6 lb/ft 300.0 lb/ft 1200.0 lb/ft • Summary of Force Calculations Load Vert. Comp. Moment Arm Horiz. Comp. Moment Arm Force Type (lb/ft) (ft) (lb/ft) (ft) Active Pressure H 0.0 6.00 2669.4 3.44 Water Pressure F --- --- 0.0 0.00 Passive Pressure H --- --- -1388.9 1.11 Uniform Surcharge L -383.3 4.08 469.7 5.17 Uni.Lateral Pressure W --- --- 0.0 0.00 Axial Dead Load D -400.0 1.83 --- --- Axial Live Load L 0.0 1.83 --- --- Applied Shear at top W --- --- 0.0 10.33 Applied Moment at top W 0.0 lb-ft/ft Adjacent Footing L 0.0 0.00 0.0 0.00 Seismic E 0.0 0.00 600.0 4.33 Stem Weight D -900.0 1.83 --- --- Footing Weight D -1200.0 3.00 --- --- Shear Key Weight D 0.0 0.00 --- --- Backfill Soil Weight D -3795.0 4.08 --- --- • Passive Soil Weight D -300.0 0.75 --- --- S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL,6 0067 Page 9 of 18 RTWall -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS Prepared by: ETH Company: catena consulting engineers Phone: Email: Restraint Reactions (Unfactored) from Various Loading Conditions (lb/ft) (Numbering starts from the bottom restraint) Restraint 1 Backfill Pressure -418.60 Fluid Pressure 0.00 Passive Pressure 6.95 Surcharge Load -149.64 Adjacent Footing 0.00 Uniform Lateral Load 0.00 Seismic Load 0.00 Moment from Axial DL 0.00 Moment from Axial LL 0.00 Shear and Moment at Top 0.00 • S.K. Ghosh Associates LLC. I 334 Colfax St.,Palatka I o00g87 Page 10 of 18 RTWall -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS Prepared by: ETH Company: catena consulting engineers • Phone: Email: Stability Checks: D + H+F+L+W+0.7E (IBC Section 1807.2.3) Bearing (lb/ft) Sliding(lb/ft) Overturning(ft-lb/ft) Destabilizing Loads Active Pressure(Horz.) --- 2669.4 9194.8 Uniform Surcharge(Horz.) --- 469.7 2426.8 Seismic - QE(Horz.) --- 420 1820 Fsliding= 3559.1 Moverturning= 13441.5 Resisting Loads Passive Pressure(Horz.) --- 1388.9 1543.2 Restraint Reactions(Horz.) --- 561.3 5800 Uniform Surcharge(Vert.) 383.3 --- 1565.3 Axial Dead Load(Vert.) 400 --- 733.3 Seismic - QE(Vert.) 0 --- 0 Stem Weight(Vert.) 900 --- 1650 Footing Weight(Vert.) 1200 --- 3600 Backfill Soil Weight(Vert.) 3795 --- 15496.1 • Passive Soil Weight(Vert.) 300 --- 225 Rtotal= 6978.3 Fresisting= 1950.2 Mresisting= 30612.8 Overturning: Mresisting/Moverturning = 30612.8/ 13441.5 =2.3 >F.S.(seismic)= 1.1 ...OK Bearing Pressure: e =(Bfooting/2) - [(Mresisting- Moverturning) /Rtotal ] _(6/2)-[(30612.8- 13441.5)/ 6978.3] = .54 ft <(Bfooting/6)= 1 ft 6applied=(R/B)+ (6Re/B2 )=(6978.3/6)+(6x 6978.3x.54/36)= 1790.3 psf 6allowable / 6applied = 3000/ 1790.3 = 1.7> 1.0 ...OK Sliding: R= 6978.3 lbs Friction force: Ffriction = t R= .35x 6978.3 = 2442.4 lbs Fresisting = 1950.2+ 2442.4 = 4392.6 lbs Fresisting/Fsliding = 4392.6/3559.1 = 1.2 >F.S.(seismic)= 1.1 ...OK • S. K. Ghosh Associates LLC. 1334 Colfax St.,Palatine IL6o0067 Page 11 of 18 RTWall -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Stem Structural Design (top)0.0 • • • • • • --r 2.3 • Stem Height(ft) 't 4.5 • • • • • • • • • • • 6.8 9.0 -6.5 -4.4 -2.2 0.0 2.2 4.4 6.5 Moment(kip-ft/ft) 0.0 (top) ---- 2.3 Stem Height(ft) • •• ---- 4.5 __ ---- 6.8 9.0 -4.1 -2.8 -1.4 0.0 1.4 2.8 4.1 Shear(kip/ft) ---- Factored Load — Design Strength(Straight Bars) ---- Design Strength(Hooked Bars) 411 S. K. Ghosh Associates LLC. I 334 Colfax St.,Palatkis,eIb,6399p87 Page 12 of 18 RTWall -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS Prepared by: ETHIII • Company: catena consulting engineers Phone: Email: Based on the governing values from all load combinations and#6 bars with hooked embedment: z [from top] (ft) 0.0 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1 9.0 Vu (kips/ft) -0.90 -0.80 -0.64 -0.41 0.16 0.53 0.96 1.45 1.99 2.36 2.47 +Mu (kip-ft/ft) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.75 2.27 4.25 6.45 +As, req(sq.in/ft) 0.00 0.01 0.01 0.03 0.04 0.07 0.11 0.05 0.14 0.28 0.43 -Mu (kip-ft/ft) 0.00 0.77 1.42 1.90 2.14 2.09 1.69 0.88 0.00 0.00 0.00 -As, req (sq.in/ft) 0.00 0.05 0.09 0.12 0.13 0.13 0.11 0.05 0.00 0.00 0.00 For stem material: Ld=db { (3/40) (fy/A T ) yft We Ws/ [(cb+Ktr) /db)] } > 1.0 ft =(0.6 in.) { (3/40) [(60000 psi)/(1.0) (4000 psi)] (1.0) (1.0) (0.8) [(4.00+0.0)/(0.6 in.)] } = 1.42 ft For footing material: Ld= 1.42 ft; Ldh=0.83 ft; and Lprovided= 1.08 ft • Governing positive moment(at 8.82 ft from the top of the stem): a=AS fy/0.85fe=(0.4 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. 4) Mn= [Lavailable/Ld]4 As fy(d-a/2) = [1.26/1.42] (0.9) (0.4 in.2/ft)(60000 psi) [(3.63 in.) -(0.32 in.)]=6.54 kip-ft/ft >Mu(= 6.00 kip-ft/ft) ...OK Governing negative moment(at 3.96 ft from the top of the stem): a=As fy/0.85fe= (0.6 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.6 in. Mn= 4) As fy(d-a/2) = (0.9) (0.6 in.2/ft)(60000 psi) [(3.63 in.) -(0.32 in.)]=6.54 kip-ft/ft >Mu(= 2.16 kip-ft/ft) ...OK Governing shear(at 9.00 ft from the top of the stem): Vn=4) 2 XT d =(0.75)(2) (1) ( psi)(3.63 in.)=4.13 kip/ft >Vu(= 2.47 kip/ft) ...OK Other structural checks: Maximum vertical steel: • Et=0.003[d/(a/131 )- 1] S. K. Ghosh Associates LLC. I 334 Colfax St.,Palatine IL 600687 Page 13 of 18 RTWall -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: =0.003[(3.6 in.)/(0.6 in./0.85) - 1] =0.011 >0.004...OK ACI 318 Section 9.3.3.1 Minimum positive vertical steel: As,min=max{3 Nrfc/fy, 200/fy} bW d ACI 318 Section 9.6.1.2 =(0.0033)(12 in.) (3.6 in.)=0.145 in.2/ft<As,provided(= 0.440 in.2/ft) ...OK Minimum negative vertical steel: Mn(= 6.54 kip-ft/ft) >(4/3)Mu(= 2.88 kip-ft/ft) Although the minimum vertical steel check does not apply per ACI 318 Section 9.6.1.3, it is still illustrated below: As,min =max{3 /fy, 200/fy} bW d ACI 318 Section 9.6.1.2 =(0.0033)(12 in.) (3.6 in.)=0.145 in.2/ft<As,provided(=0.600 in.2/ft) Maximum vertical steel spacing: sv= 12 in.<sv,max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 Minimum horizontal steel: • pt=As,h/sh t= (0.31 in.2)/(12 in.)(8.00 in.) =0.0032 �t,min (= 0.0020) ...OK ACI 318 Section 11.6.1 Maximum horizontal steel spacing: sh= 121n. <sh max(= 18.0 in.) ...OK ACI 318 Section 11.7.2.1 • S. K. Ghosh Associates LLC. I 334 Colfax St.,Palatine IL 600067 Page 14 of 18 �'"°� Project' No:�}{��,�Jy�/�j Page: cons l t i n g �' Oma `5 "" ' 6/ 500 Catena engineers Subject. By: Date: 51\ -64�` `�-'5 5410rI)2 („20e4 (k r IN i4 ecl I v t c,- OffiLS c6 4 C b 20I 2 �s �a�� - 3cDolos- P • 5iNA -For .4fi IV $. Tr, b. : /6/X 1676 2611 .��Z QC--- 200z = 5;Z50 9\ ? sr - Z6, z 1304 rev - S 250 -r of /3oE6ffszS J T76. : 23i x 161-6" ^ 360 D � = 7 6c1+ 5W ( 260 1* k-icrot = 5 c`6 3/x37 • Trr.6. : Zo/ �� - " = 330 42 64.00 ,S _ g gio# 14, 5.1T44.2- Page 92 of 268 Project: No: /T�` es//) // /�� Page: Catena e n gsi n'e{e�sI ( 744 WY J�( �s"VSubject: J By: D7722.0/11, �42 AN& t -174,1‘_s (co/1 -. ) D Tr;(D. Z6' 20' - SZo Atz ��. 10,Y02* sM = ) ( ovo# reifj = 'K. /54z- 3 (K 37 0 T- ). 23 "x /b ' _ 37-6 fPz • A, ``°re((0. = � 2 M'{,. : Z3`- '' x25*' = 9gg 742 DC� 1 6.0W' S = /5, go4- 4/rid = 9 2 (4 > t`X y ('/ 0 73 (4 ' X JS ` - 350(fz 7090 S 9y 5-04f (4) -= 5.r 4' 3x37 • Page 93 of 268 89Z 10 176 a6bd V '/'irvit-'1\' i C2� lv -4- -7-o- '' < ,,y_.1129 2 _ -'- ~'h,”) 2 Z"•6 . '5210, . )2'® _ -111C# x,21 •h • 50' „ 1b •0 09•2'129V - �� i .st/ — , 5 s4 (2) .)-1- ~ogib ,q = 7 �_J J$d h :sd ooi,1 -97 >»'9v 10 cov- S2 x 2 l rd v;41, .svIN '54Y7s t'''f �S ifJ /� /'D � '‘",9‘°°J* J 402 Ill pis it "V z fog : 9-,22 )( ,qf •GrJL • fob - 5 #02.2. - ? 1 2.1-± 9 = f 2 )cl9-i : •y ')j g . "C-P/o9) 449r9 )(\i, vt'"*(1 • 2llzzA wt-YY :9104 :Ag :p ignS f , aa � � 6 nua4no e2 l/ 9/612, � le- ,���JJJ':}IllBu (� nsuoa :a6pd I :off �afo�d catena Project' I&AC-0 No: 70 I(0' I 35 Page: Subject: By. Date: \ ENASS I t.1 ESS LOW ae: 3-tmsTs )L6e€-•iot- 2-5 PSS L L mAy tb" So * CT - 3DiS+ 117"0t _cnow &rift øIbPi ( jPcC- ..1. 1111110,L,bps•F b b) 0,4 Cr • 35 = Lit ibs T Te - STY"' fbcYflN - 5 = zs SL Pf INALL 5TzLT-biT 77- tii-P5F ( � ) x5 ixi41 000 P/Pa I I4 USE i Fr As,r) 300 W11)-6 pr( Page 99 of 268 RTWall -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS Prepared by: ETH Company: catena consulting engineers Phone: Email: Heel Structural Design Based on the governing load combination for moment [1.2(D+F)+ 1.0E+0.5L+ 1.6H]: 50.0 psf-uniform surcharge 1188.0 psf- soil weight k 44 240.0 psf- concrete self-weight Da- Critical Section for Moment and Shear At the critical section: • M„= 10.86 kip-ft/ft>Mu,stem(= 6.45 kip-ft/ft); therefore M„=6.45 kip-ft/ft a=As fy/0.85fe=(0.3 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.48 in. � Mn=4) Asfy(d-a/2) =(0.9) (0.3 in.2/ft)(60000 psi) [(13.68 in.) -(0.24 in.)]= 18.78 kip-ft/ft >MU(= 6.45 kip-ft/ft) ...OK Required development length for#5 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.19 ft Hooked embedment: Ldh=0.69 ft Based on the governing load combination for shear [1.4(D+F)]: 4) Vn=(I) 2X, d = (0.75)(2) (1) ( 4000 psi)(13.68 in.)= 15.58 kip/ft >Vu(= 6.39 kip/ft) ...OK Other structural checks: Maximum steel: Et=0.003[d/(a/[31 )- 1] =0.003[(13.68 in.)/(0.48 in./0.85) - 1] =0.074>0.004...OK ACI 318 Section 9.3.3.1 • S.K. Ghosh Associates LLC. 1334 Colfax St.,PalatimeIL 6Q0.67 Page 15 of 18 RTWall -RESTRAINED RETAINING WALL- NO BOTTOM SLAB DATE: 03/22/2018 Project: THS • Prepared by: ETH Company: catena consulting engineers Phone: Email: Minimum steel: Mn(= 18.78 kip-ft/ft) >(4/3)Mu(= 8.60 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min= [0.0018 x 60,000/fy] bW d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (13.68 in.)=0.296 in.2/ft <As,provided(= 0.310 in.2/ft) ...OK Maximum steel spacing: s= 12 in. < amax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As,t/st t=(0.62 in.2)/(12 in.)(16.00 in.)=0.0032 �t,min (= 0.0018) ...OK ACI 318 Section 24.4.3.1 Maximum transverse steel spacing: st= 12 in. < st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 • S. K. Ghosh Associates LLC. I 334 Colfax St.,PalatizeIL 600.67 Page 16 of 18 RTWall -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS Prepared by: ETH • Company: catena consulting engineers III Phone: Email: Toe Structural Design Based on the governing load combination for moment [0.9D+ 1.0W+ 1.6H]: (Bearing pressure is simply factored by an average value of 1.4.) 180.0 psf- concrete self-weight rw + 2506.4 psf- soil bearing pressure III. 111. 2067.4 psf Critical Section for: Shear Moment At the critical section for moment: • M„=2.45 kip-ft/ft<Mu,stem(= 3.26 kip-ft/ft); no reduction is required. a=As fy/0.85fc=(0.3 in.2/ft)(60000 psi)/(0.85)(4000 psi)=0.48 in. � Mn=4) Asfy(d-a/2) =(0.9) (0.3 in.2/ft)(60000 psi) [(12.72 in.) -(0.24 in.)]= 17.38 kip-ft/ft Mu(= 2.45 kip-ft/ft) ...OK Required development length for#5 bars: ACI 318 Sections 25.4.2 and 25.4.3 Straight embedment: Ld= 1.19 ft Hooked embedment: Ldh=0.69 ft At the critical section for shear: Based on the governing load combination for shear [0.9D+ 1.0W+ 1.6H]: ( Vn=4) 2aid =(0.75)(2) (1) 4000 psi)(12.72 in.)= 14.44 kip/ft >Vu(= 1.00 kip/ft) ...OK Other structural checks: Maximum steel: Et=0.003[d/(a/R1 )- 1] • =0.003[(12.72 in.)/(0.48 in./0.85) - 1] =0.068>0.004...OK ACI 318 Section 9.3.3.1 S. K. Ghosh Associates LLC. 1334 Colfax St.,PalatigeIL 60Q67 Page 17 of 18 RTWall -RESTRAINED RETAINING WALL-NO BOTTOM SLAB DATE: 03/22/2018 Project: THS Prepared by: ETH Company: catena consulting engineers Phone: Email: Minimum steel: Mn(= 17.38 kip-ft/ft) >(4/3)Mu(= 3.27 kip-ft/ft) ACI 318 Section 9.6.1.2 does not apply per ACI 318 Section 9.6.1.3 Also: As,min= [0.0018 x 60,000/fy] b,,,d ACI 318 Section 7.6.1.1 =(0.0018)(12 in.) (12.72 in.)=0.274 in.2/ft<As,provided(= 0.310 in.2/ft) ...OK Maximum steel spacing: s= 12 in. <smax(= 18.0 in.) ...OK ACI 318 Section 7.7.2.3 Minimum transverse steel: Pt=As,t/st t=(0.62 in.2)/(12 in.)(16.00 in.)=0.0032 ?-Pt,min (=0.0018) ...OK ACI 318 Section 24.4.3.1 Maximum transverse steel spacing: st= 12 in.<st,max(= 18.0 in.) ...OK ACI 318 Section 24.4.3.3 • . S. K. Ghosh Associates LLC. 1334 Colfax St.,PalatizeIL 60c167 Page 18 of 18 Ienaconsun lting e n g i e e r s • r • Lateral • Page 104 of 268 Project:Tigard HS No:2016135.00 Page: Catend Subject:Seismic Forces By:AAM Date: 1.26.2018 • 2012 IBC Equivalent Lateral Force Procedure Base Shear&Vertical Force Distribution Per ASCE 7-10 Risk Category = Substantial Hazard to Human Life if Fail -► Seismic Importance Factor,IE = 1.25 (IBC Table 1604.5) Site Class = D -► Stiff soil profile = D (ASCE Table 20.3-1) from ICC provided CD: S s = 96.0 %g -► Site Coefficient for S5,F a = 1.12 (MCE Spectral Response Acceleration @ 0.2-second Period) Site Coefficient for SI,F„ = 1.58 from ICC provided CD: S i = 42.0 %g (MCE Spectral Response Acceleration @ 1.0-second Period) Modified Short Period Acceleration,SMS=F,•S. = 1.071 Modified 1 sec.Period Acceleration,SMI =F V•S i = 0.664 2/3*SMS = SDS = 0.714 g Seismic Design Category per Sps = D 2/3*Snot = SDi = 0.442 g Seismic Design Category per SDI = D Seismic Design Category per SDS&SD, = D (ASCE Table 12.8-1) Coefficient,Cu = 1.40 Basic Resisting System = Building Frame Systems -► Response Modification Coefficient = 8 R System Overstrength Factor = 2 1/2 SZo Buckling-restrained braced frames, Lateral Resisting Elements = moment-resisting beam-column connections Deflection Amplification Factor = 5 Cd (ASCE Table 12.2-1) Numerical Coefficient,Cf = 0.03 Numerical Coefficient,x = 0.75 Period per Substantiated Analysis,T = 0.400 Second(s) Structure Height,h„ (ft) = 44 Approximate Fundamental Period,Ta = 0.51 Second(s) • Structure Height Limit(ft) = 160 Period Upper Limit,T,„ax < 0.72 Second(s) Design Period,T = 0.40 Second(s) ASCE Formula(12.8-2) = Sas /(R/I) W = 0.112 W ...but not greater than: ASCE Formula(12.8-3) = SDI / T / IR/1) W = 0.173 W ...and not less than: ASCE Formula(12.8-5 and-6) = )1Wtor 0.5Si /(R/I)Wwhere SI >0.6g) = 0.039 W The Base Shear Coeff.: (12.8-2) need not exceed(12.8-3)and shall not be less than(12.8-5) -► DESIGN BASE SHEAR = 0.112 W (Eh) ...using allowable stress design: ASCE Section 2.4.1 -► TOTAL DESIGN BASE SHEAR = 0.078 W (0.7 Eh) IBC Section 1605.3.2 -► TOTAL DESIGN BASE SHEAR = 0.080 W (Eh/1.4) Structure Weight,W(kips) = 6750 -► DESIGN BASE SHEAR = 753.3 kips 0.80 2012 IBC Design Response Spectrum 0.70 - • 0.4 cN 0.60 - Ho 0.50 - °°30.40 - m g 0 0.30 rna 0.20 - • 0.10 - 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Period(s) Note: For info only. Seismic analeyssiis06ofand design is performed using Tekla Structural Designer Project Job Ref. TIGARD HIGH SCHOOL 2016135.00 Tea, Structure Sheet no. a 2016135-THSr7rTR Tcarenawudeau • a Calc.by Date Catena Consulting Engineers JY 3/22/2018 Structure Seismic Loading Summary Structure details Height to highest level 41'0" ft,in Ignore seismic in floor(and below) none Number of storeys 2 Max earthquake spectral response 8fsblertatibH s)period 95.00 %g Si 1.0 s period 42.00 %g Site Class D-Stiff soil ASCE7-10 Table 20.3-1 Risk Category III ASCE7-10 Table 1.5-1 Design spectral response acceleration ehttt4t's2 s)period 70.93 %g ASCE7-10 Cl.11.4-3 SDI.1.0 s period 44.24 %g ASCE7-10 Cl.11.4-4 Seismic Importance Factor,le 1.250 ASCE7-10 Table 1.5-2 Seismic Design Category D ASCE7-10 Cl.11.6 T1 long period transition period 16.0 sec Ts(SoS/Sos) 0.6 sec Effective Seismic Weight,W 6764.3 kip ASCE7-10 Cl.12.7.2 Structure Type ASCE7-10 Table 12.8-2 Direction Dirt Eccentrically braced steel frames Direction Dir2 Eccentrically braced steel frames Basic seismic force resisting system ASCE7-10 Table 12.2-1 Direction Dirt B.Building Frame Systems • 25.Buckling-restr.braced frames Direction Dir2 B.Building Frame Systems 25.Buckling-restr.braced frames Direction Dirt Direction Dir2 Response Modification Factor,R 8.000 8.000 System Over-Strength Factor,00 2.500 2.500 Deflection Amplification Factor,Cd 5.000 5.000 Redundancy Factor,p 1.300 1.300 ASCE7-10 Cl.12.3.4.2 Approximate fundamental period,Ta[sec] 0.5 0.5 ASCE7-10 Cl.12.8.2.1 Structure fundamental period[sec] 0.4 0.3 Exponent related to structural period k 1.000 1.000 Seismic response coefficient,Cs 0.111 0.111 ASCE7-10 Cl.12.8.1.1 Seismic base shear,V[kip] 749.7 749.7 Structure Plan Irregularities-User Defined ASCE7-10 Table 12.3-1 Plan irreg la-torsion No Plan irreg lb-extreme torsion No Plan irreg 2-re-entrant corners Yes Plan irreg 3-diaphragm discontinuity No Plan irreg 4-out of plane No Plan irreg 5-Non parallel systems Yes Structure Vertical Irregularities-User Defined ASCE7-10 Table 12.3-2 Vert irreg la-soft story No Vert irreg lb-extreme soft story No Vert irreg 2-weight mass No Vert irreg 3-geometric No Vert irreg 4-in plane No • Vert irreg 5a-weak story No Vert irreg 5b-extreme weak story No Tekla Structural Designer,version: 17.1.4.95 Loading Summary to BRBF Strip Footings dom Project:TIGARD HS No: 2016135.00 Page: cater --""a • {\✓✓ ^Plaes„ Subject:STRIP FTG By: JY Date:3/19/2018 strip footing size (calculations Elevation Grid shown on 1 on Sheet intersections upcoming S3.01 Vertical Force(kips) pages) Load Case Bay Width (ft) Self weight-excluding slabs Z5 11.5 1 Slab self weight 19.0 54.7 D LENGTH 2 Dead 24.2 WIDTH 26.33 4 Unreduced live 21.2 21.2 L DEPTH 1.5 N9/NB W 10X68 8 Snow 19.7 19.7 S 15 Seismic Dirl 40.9 16 Seismic Dir2 53.9 53.9 E 19 Seismic Torsion 100.00%Dirt 30.00%Dir2 5.6 3.01-1 20 Seismic Torsion 30.00%Dirt 100.00%Dirt 5.8 16.33 0 Self weight-excluding slabs 7.4 1 Slab self weight 22.8 47.6 D 2 Dead 17.3 5 Unreduced live 25.5 25.5 L N9/NC W 10X68 8 Snow 11.5 11.5 S 15 Seismic Dirl -40.8 16 Seismic Dirt -53.8 53.8 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -5.6 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -5.9 0 Self weight-excluding slabs 6.9 11111 1 Slab self weight 9.3 23.8 D LENGTH 32 2 Dead 7.6 WIDTH 4 5 Unreduced live 10.4 10.4 L DEPTH 1.5 N11/ND W 10X68 8 Snow 6.1 6.1 S 15 Seismic Dirt -7.1 16 Seismic Dir2 -43.4 43.4 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -8.8 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -9.2 3.01-220 0 Self weight-excluding slabs 3.7 1 Slab self weight 4.3 10.8 D 2 Dead 2.8 5 Unreduced live 4.8 4.8 L N11/NC W 10X68 8 Snow 1.7 1.7 S 15 Seismic Dirl 10.4 16 Seismic Dir2 41.3 41.3 E 19 Seismic Torsion 100.00%Dirt 30.00%Dir2 8.8 20 Seismic Torsion 30.00%Dir1100.00%Dir2 9.2 0 Self weight-excluding slabs 3.2 3.01-7 1 Slab self weight 1.4 16.4 D LENGTH 23.67 2 Dead 11.8 WIDTH 4 5 Unreduced live 1.6 1.6 L DEPTH 1.5 Cl/CA W 8X40 8 Snow 8.3 8.3 S 15 Seismic Dirl 39.5 16 Seismic Dir2 -12.1 39.5 E 19 Seismic Torsion 100.00%Dir130.00%Dir2 0.2 3.01-3 20 Seismic Torsion 30.00%Dir1 100.00%Dir2 0.2 13.67 0 Self weight-excluding slabs 3.6 1 Slab self weight 1.4 14.6 D 2 Dead 9.6 5 Unreduced live 1.5 1.5 L C1/CB W 8X40 8 Snow 10.2 10.2 S 15 Seismic Dirl 16.8 16 Seismic Dir2 -39.4 • 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 0.8 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 0.9 39.4 E Page 108 of 268 "° Project:TIGARD HS No: 2016135.00 Page: cater consolilep MM Li RG"r'11,, 4 pot n e i r' Subject:STRIP FTG By: JY Date:3/19/2018 • 0 Self weight-excluding slabs 2.2 1 Slab self weight -0.3 4.6 D LENGTH 31.33 2 Dead 2.7 WIDTH 4 5 Unreduced live -0.3 -0.3 L DEPTH 1.5 C5/CC W 8X40 8 Snow 3.4 3.4 S 15 Seismic Dirl 1.5 16 Seismic Dir2 20.7 20.7 E 19 Seismic Torsion 100.00%Dir130.00%Dir2 3.7 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 3.9 3.01-427.33 0 Self weight-excluding slabs 2.4 1 Slab self weight 0.3 6.4 D 2 Dead 3.7 _ • 5 Unreduced live 0.3 0.3 L C5/CD W 8X40 8 Snow 4.5 4.5 S 15 Seismic Dirl -1.5 16 Seismic Dir2 -20.7 20.7 E 19 Seismic Torsion 100.00%Dir130.00%Dir2 -3.7 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -3.9 0 Self weight-excluding slabs 5.6 4 COLUMNS 1 Slab self weight 11.0 27.3 D LENGTH 36.67 0 2 Dead 10.7 WIDTH 4 5 Unreduced live 12.2 12.2 L DEPTH 1.5 NB-n4 W 8X40 8 Snow 6.9 6.9 S 15 Seismic Dirl -107.5 16 Seismic Dir2 65.5 107.5 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 4.8 20 Seismic Torsion 30.00%Dir1100.00%Dir2 5.0 3.01-5 1 0 Self weight-excluding slabs 4.4 11 1 Slab self weight 11.4 24.2 D 2 Dead 8.5 5 Unreduced live 12.7 12.7 L NB-MID W 8X40 8 Snow 4.7 4.7 S 15 Seismic Dirt 106.5 16 Seismic Dir2 -64.6 106.5 E 19 Seismic Torsion 100.00%Dir1 30.00%Dir2 -4.7 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -4.9 0 Self weight-excluding slabs 7.9 1 Slab self weight 22.4 49.3 D LENGTH 38 2 Dead 18.9 WIDTH 4 5 Unreduced live 25.0 25.0 L DEPTH 1.5 N5/NB W 8X40 8 Snow 10.8 10.8 5 15 Seismic Dirl 45.8 16 Seismic Dir2 _ 68.8 19 Seismic Torsion 100.00%Dir130.00%Dir2 -3.9 68.8 E 3.01-6 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -4.0 28 0 Self weight-excluding slabs 10.5 1 Slab self weight 46.4 89.1 D 2 Dead 32.3 5 Unreduced live 51.8 51.8 L N5/NC W 8X40 8 Snow 16.1 16.1 S 15 Seismic Dirl -43.1 16 Seismic Dir2 -70.6 70.6 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 3.8 II 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 3.9 Page 109 of 268 Project:TIGARD HS No: 2016135.00 Page: ha ten eonealstleare� • �r G LLLIII . Subject:STRIP FTG By: JY Date: 3/19/2018 0 Self weight-excluding slabs 5.1 share same column w/3.01-3 1 Slab self weight -2.8 22.0 D LENGTH 34 2 Dead 19.7 WIDTH 4 5 Unreduced live -3.1 -3.1 L DEPTH 1.5 CA/C1 W 8X40 8 Snow 14.6 14.6 S 15 Seismic Dirl -56.4 16 Seismic Dir2 51.5 56.4 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -1.0 3.01 7 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -1.0 22 0 Self weight-excluding slabs 3.2 1 Slab self weight 1.4 16.4 D 2 Dead 11.8 5 Unreduced live 1.6 1.6 L CA/C2 W 8X40 8 Snow 8.3 8.3 S 15 Seismic Dirl 39.5 16 Seismic Dir2 -12.1 39.5 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 0.2 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 0.2 0 Self weight-excluding slabs 3.3 0 1 Slab self weight 0.0 6.8 D LENGTH 26 2 Dead 3.5 WIDTH 4 5 Unreduced live -0.1 -0.1 L DEPTH 1.5 CF/C1 W 8X40 8 Snow 4.3 4.3 S 15 Seismic Dirl -10.4 16 Seismic Dir2 0.1 10.4 E 19 Seismic Torsion 100.00%Dir130.00%Dir2 -2.8 3.01-8 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -2.9 22 0 Self weight-excluding slabs 3.3 1 Slab self weight 0.1 8.2 D 2 Dead 4.8 5 Unreduced live 0.1 0.1 L CF/C2 W 8X40 8 Snow 6.0 6.0 S 15 Seismic Dirl 10.5 16 Seismic Dir2 -0.3 10.5 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 2.8 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 2.9 0 Self weight-excluding slabs 9.9 1 Slab self weight 48.8 95.0 D LENGTH 36.67 2 Dead 36.3 WIDTH 4 5 Unreduced live 54.4 54.4 L DEPTH 1.5 NC/N3 W 10X68 8 Snow 18.6 18.6 S 15 Seismic Dirl -67.2 16 Seismic Dir2 37.9 67.2 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 1.3 3.01-9 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 1.4 32.67 0 Self weight-excluding slabs 11.2 1 Slab self weight 45.2 99.5 D 2 Dead 43.1 5 Unreduced live 50.5 50.5 L NC/N4 W 10X68 8 Snow 25.2 25.2 S 15 Seismic Dirl 66.6 16 Seismic Dir2 -38.1 66.6 E • 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -1.2 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -1.3 Page 110 of 268 ---Nikii Project:TIGARD HS No: 2016135.00 Page: cateryg co"rlflnp onp;new Subject:STRIP FTG By: JY Date:3/19/20180 0 Self weight-excluding slabs 4.8 4 COLUMNS 1 Slab self weight 12.0 25.8 D 2 Dead 9.1 5 Unreduced live 13.4 13.4 L LENGTH 36.67 NE-N3 W 10X68 8 Snow 5.1 5.1 S WIDTH 4 15 Seismic Dirl -84.5 DEPTH 1.5 16 Seismic Dir2 47.2 84.5 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 0.4 3.01-10 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 0.5 11 0 Self weight-excluding slabs 3.7 1 Slab self weight 9.6 21.1 D 2 Dead 7.8 5 Unreduced live 10.7 10.7 L NE-MID W 10X68 8 Snow 4.5 4.5 S 15 Seismic Dir1 84.6 16 Seismic Dir2 -47.2 84.6 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -0.4 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -0.5 0 Self weight-excluding slabs 12.6 1 Slab self weight 26.4 78.4 D LENGTH 39III 2 Dead 39.4 WIDTH 4 5 Unreduced live 29.5 29.5 L DEPTH 1.5 S8/SE W 10X68 8 Snow 27.3 27.3 S 15 Seismic Dirl 2.2 16 Seismic Dir2 97.8 97.8 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 1.9 3.01-11 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 2.1 25 0 Self weight-excluding slabs 12.9 1 Slab self weight 27.1 81.3 D 2 Dead 41.2 5 Unreduced live 30.3 30.3 L S8/SF W 10X68 8 Snow 27.6 27.6 S 15 Seismic Dir1 -4.0 16 Seismic Dir2 -96.2 96.2 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -1.3 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -1.6 0 Self weight-excluding slabs 7.6 1 Slab self weight 17.3 42.1 D LENGTH 36 2 Dead 17.2 WIDTH 4 5 Unreduced live 19.4 19.4 L DEPTH 1.5 N2/NB W 10X68 8 Snow 10.1 10.1 5 15 Seismic Dirl 33.9 16 Seismic Dir2 51.3 51.3 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -11.3 3.01-12 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -11.8 28 0 Self weight-excluding slabs 8.6 1 Slab self weight 31.8 65.2 D 2 Dead 24.8 5 Unreduced live 35.5 35.5 L N2/NC W 10X68 8 Snow 13.2 13.2 S 15 Seismic Dirl -33.8 16 Seismic Dir2 -51.0 51.0 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 11.2 • 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 11.7 Page 111 of 268 l -'4441 11 �1hg Project:TIGARD HS No: 2016135.00 Page: cafend e o n t a t 11 • catend nilnarre Subject:STRIP FTG By: JY Date:3/19/2018 0 Self weight-excluding slabs 6.4 1 Slab self weight 10.8 26.7 D LENGTH 39.5 2 Dead 9.5 WIDTH 4 5 Unreduced live 12.1 12.1 L DEPTH 1.5 S10/SC W 10X68 8 Snow 4.4 4.4 S 15 Seismic Dirl -19.9 16 Seismic Dir2 63.8 63.8 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 9.9 3.01-13 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 8.7 25.5 0 Self weight-excluding slabs 9.6 1 Slab self weight 20.3 51.4 D 2 Dead 21.4 5 Unreduced live 22.7 22.7 L S10/SE W 10X68 8 Snow 14.1 14.1 S 15 Seismic Dirl 19.7 16 Seismic Dir2 -63.9 63.9 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -9.8 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -8.7 0 Self weight-excluding slabs 9.8 • ill 1 Slab self weight 32.7 68.6 D LENGTH 37.83 2 Dead 26.0 WIDTH 4 5 Unreduced live 36.5 36.5 L DEPTH 1.5 SJ/S5 W 10X68 8 Snow 19.5 19.5 S 15 Seismic Dirl -81.5 16 Seismic Dir2 3,7 19 Seismic Torsion 100.00%Dir130.00%Dir2 0.6 81.5 E 3.01-14 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 0.4 27.83 0 Self weight-excluding slabs 9.5 1 Slab self weight 31.0 65.0 D 2 Dead 24.6 5 Unreduced live 34.5 34.5 L SJ/S6 W 10X68 8 Snow 19.7 19.7 S 15 Seismic Dirl 80.9 16 Seismic Dir2 -3.8 80.9 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -0.7 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -0.5 • Page 112 of 268 "444S{g Project:TIGARD HS No: 2016135.00 Page: cater eonrolafrinrq a • Subject:STRIP FTG By:JY Date: 3/19/2018 0 Self weight-excluding slabs 4.9 1 Slab self weight 6.4 17.8 D LENGTH 27.5 2 Dead 6.4 WIDTH 4 5 Unreduced live 7.2 7.2 L DEPTH 1.5 S12/SM PIPE STD6 8 Snow 5.3 5.3 S max q 2796 15 Seismic Dirt -1.7 16 Seismic Dir2 55.0 55.0 E 19 Seismic Torsion 100.00%Dir130.00%Dir2 9.7 3.02-1 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 8.7 13.5 0 Self weight-excluding slabs 4.7 1 Slab self weight 14.3 24.1 D 2 Dead 5.1 5 Unreduced live 16.0 16.0 L S12-M12 PIPE STD6 8 Snow 0.8 0.8 S 15 Seismic Dirl 1.7 16 Seismic Dir2 -55.0 55.0 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -9.7 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -8.7 0 Self weight-excluding slabs 9.2 • 1 Slab self weight 29.7 71.7 D LENGTH ,.2825"� 2 Dead 32.8 WIDTH 4 5 Unreduced live 33.1 33.1 L DEPTH 1.5 SO/S8 W10X68 8 Snow 15.4 15.4 S 15 Seismic Dirl -45.2 16 Seismic Dir2 -1.2 45.2 E 19 Seismic Torsion 100.00%Dir130.00%Dir2 -6.8 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -6.3 24.25 3.02-2 0 Self weight-excluding slabs 9.9 1 Slab self weight 41.6 75.2 D 2 Dead 23.7 5 Unreduced live 46.4 46.4 L SO/59.2 W10X68 8 Snow 15.0 15.0 S 15 Seismic Dirt 46.5 16 Seismic Dir2 1.4 46.5 E 19 Seismic Torsion 100.00%Dir130.00%Dir2 7.1 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 6.6 0 Self weight-excluding slabs 10.3 1 Slab self weight 36.9 82.1 D LENGTH 29.67 2 Dead 34.9 WIDTH 4 5 Unreduced live 41.2 41.2 L DEPTH 1.5 57/SN W10X68 8 Snow 9.3 9.3 S 15 Seismic Dirt -6.3 16 Seismic Dir2 -33.5 33.5 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 1.1 3.02-3 20 Seismic Torsion 30.00%Dir1100.00%Dir2 0.8 23.67 0 Self weight-excluding slabs 6.7 1 Slab self weight 25.2 52.5 D 2 Dead 20.5 5 Unreduced live 28.2 28.2 L 57/SM W10X68 8 Snow 13.2 13.2 S 15 Seismic Dirt 5.4 16 Seismic Dir2 33'7 33.7 E • 19 Seismic Torsion 100.00%Dir130.00%Dir2 -1.3 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -0.9 Page 113 of 268 ii Project:TIGARD HS No: 2016135.00 Page: caf@fl censelilnq • \A1ii nylnaers Subject:STRIP FTG By: JY Date: 3/19/2018 0 Self weight-excluding slabs 10.6 1 Slab self weight 15.1 35.1 D LENGTH 28.67 2 Dead 9.5 WIDTH 4 5 Unreduced live 16.8 16.8 L DEPTH 1.5 53/SN W10X68 8 Snow 7.2 7.2 S 15 Seismic Dir1 -5.5 16 Seismic Dir2 -41.0 41.0 E 19 Seismic Torsion 100.00%Dir130.00%Dir2 8.9 3.02 4 20 Seismic Torsion 30.00%Dirt 100.00%Dir2 8.0 23.67 0 Self weight-excluding slabs 5.6 1 Slab self weight 12.7 26.6 D 2 Dead 8.3 5 Unreduced live 14.2 14.2 L S3/SM W10X68 8 Snow 4.6 4.6 S 15 Seismic Dirt 5.6 16 Seismic Dirt 41.0 41.0 E 19 Seismic Torsion 100.00%Dir130.00%Dir2 -8.9 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -7.9 • 0 Self weight-excluding slabs 10.2 1 Slab self weight 39.0 81.6 D LENGTH 37.83 2 Dead 32.4 WIDTH 4 5 Unreduced live 43.5 43.5 L DEPTH 1.5 SM/S5 W10X68 8 Snow 23.5 23.5 S 15 Seismic Dirl -78.3 16 Seismic Dir2 -25 78.3 E 19 Seismic Torsion 100.00%Dirt 30.00%Dir2 -6.0 3.02-5 20 Seismic Torsion 30.00%Dirl 100.00%Dirt -5.7 27.83 0 Self weight-excluding slabs 8.9 1 Slab self weight 34.9 71.3 D 2 Dead 27.5 5 Unreduced live 39.0 39.0 L SM/S6 W10X68 8 Snow 23.3 23.3 S 15 Seismic Dirl 78.3 16 Seismic Dirt 3.1 78.3 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 5.9 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 5.6 0 Self weight-excluding slabs 3.5 SPREAD FTG @SC/S6 1 Slab self weight 12.0 30.1 D LENGTH 37.83 2 Dead 14.6 WIDTH 4 5 Unreduced live -62.3 -62.3 L DEPTH 1.5 SC/S6 W8X40 8 Snow 1.1 1.1 S 15 Seismic Dir1 5.6 16 Seismic Dir2 5.4 6.0 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -6.0 3.02-7 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -5.7 27.83 0 Self weight-excluding slabs 3.9 1 Slab self weight 7.1 20.2 D 2 Dead 9.2 5 Unreduced live 7.9 7.9 L SC/S7 W8X40 8 Snow 9.0 9.0 S 15 Seismic Dirl 56.4 • 16 Seismic Dir2 0.0 56.4 E 19 Seismic Torsion 100.00%Dir1 30.00%Dir2 -5.1 20 Seismic Torsion 30.00%Dir1 100.00%Dir2 -4.9 Page 114 of 268 //++pp}}nn`tppv�� i Project:TIGARD HS No: 2016135.00 Page: calenc can�anleilenrp nple • Subject:STRIP FTG By: JY Date:3/19/2018 0 Self weight-excluding slabs 3.1 1 Slab self weight 0.0 13.3 D LENGTH 29 2 Dead 10.2 WIDTH 4 5 Unreduced live 0.0 0.0 L DEPTH 1.5 51/SF W8X40 8 Snow 12.5 12.5 S 15 Seismic Dir1 3.6 16 Seismic Dir2 10.7 10.7 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -2.7 3.02-8 20 Seismic Torsion 30.00%Dir1 100.00%Dir2 -2.5 25 0 Self weight-excluding slabs 2.5 1 Slab self weight 10.5 D 2 Dead 8.0 5 Unreduced live 0.0 0.0 L S1/SG W8X40 8 Snow 9.9 9.9 S 15 Seismic Dirt -3.5 16 Seismic Dir2 -10.7 10.7 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 2.7 20 Seismic Torsion 30.00%Dir1 100.00%Dir2 2.5 0 Self weight-excluding slabs 6.3 1 Slab self weight -0.1 21.5 D LENGTH 31 ill 2 Dead 15.3 WIDTH 4 5 Unreduced live -0.1 -0.1 L DEPTH 1.5 52/SF W8X40 8 Snow 19.0 19.0 S 15 Seismic Dirl 2.9 16 Seismic Dir2 35.1 35.1 E 19 Seismic Torsion 100.00%Dir130.00%Dir2 -3.8 3.02-9 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -4.0 25 0 Self weight-excluding slabs 4.9 1 Slab self weight 0.1 16.1 D 2 Dead 11.1 5 Unreduced live 0.1 0.1 L S2/SG W8X40 8 Snow 13.3 13.3 S 15 Seismic Dir1 -3.0 16 Seismic Dir2 • -35.1 35.1 E 19 Seismic Torsion 100.00%Dir130.00%Dir2 3.8 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 4.0 0 Self weight-excluding slabs 3.6 1 Slab self weight -0.2 7.3 D LENGTH 30 2 Dead 3.9 WIDTH 6.5 5 Unreduced live -0.2 -0.2 L DEPTH 2 178/C5 W8X40 8 Snow 4.8 4.8 S TEDDS 15 Seismic Dirt -64.6 16 Seismic Dir2 11.2 64.6 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -3.6 3.02-10 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -3.8 18 0 Self weight-excluding slabs 3.4 1 Slab self weight 0.2 7.0 D 2 Dead 3.4 5 Unreduced live 0.2 0.2 L 178/C6 W8X40 8 Snow 4.2 4.2 S 15 Seismic Dirt 64.6 16 Seismic Dir2 -11.2 64.6 E . 19 Seismic Torsion 100.00%Dir1 30.00%Dir2 3.6 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 3.8 Page 115 of 268 I Project:TIGARD HS No: 2016135.00 Page: catend conte lilt • catend Subject:STRIP FTG By: JY Date: 3/19/2018 0 Self weight-excluding slabs 5.2 SPREAD FTG INSTEAD 1 Slab self weight -0.3 25.2 D 2 Dead 20.3 5 Unreduced live -0.3 -0.3 L C4/CC PIPE STD6 8 Snow 25.0 25.0 S 15 Seismic Dirt 1.4 16 Seismic Dir2 16.6 16.6 E 19 Seismic Torsion 100.00%Dir130.00%Dir2 2.6 3.02-11 20 Seismic Torsion 30.00%Dir1100.00%Dir2 2.7 27.33 0 Self weight-excluding slabs 5.4 1 Slab self weight 0.3 26.2 D 2 Dead 20.5 5 Unreduced live 0.3 0.3 L C4/CD PIPE STD6 8 Snow 25.1 25.1 S 15 Seismic Dir1 -1.4 16 Seismic Dir2 -16.6 16.6 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -2.6 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -2.7 • 0 Self weight-excluding slabs 5.5 Use Spread Footing 1 Slab self weight 18.6 44.4 D 2 Dead 20.4 5 Unreduced live 20.8 20.8 L C3/CA PIPE STD6 8 Snow 15.4 15.4 S 15 Seismic Dirl -2.3 16 Seismic Dir2 9.4 9,4 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -0.5 3.02-12 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -0.5 13.67 0 Self weight-excluding slabs 5.0 1 Slab self weight 3.8 29.0 D 2 Dead 20.1 5 Unreduced live 4.3 4.3 L C3/CB PIPE STD6 8 Snow 21.6 21.6 S 15 Seismic Dirl 2.4 16 Seismic Dir2 -9.4 9A E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 0.5 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 0.5 0 Self weight-excluding slabs 6.4 Use Spread Footing 1 Slab self weight 0.9 29.1 D 2 Dead 21.7 5 Unreduced live 1.0 1.0 L C3/CC PIPE STD6 8 Snow 26.0 26.0 S 15 Seismic Dirt -7.9 16 Seismic Dir2 12.2 12.2 E 19 Seismic Torsion 100.00%Dirl 30.00%Dir2 -2.0 3.02-14 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 -2.1 27.33 0 Self weight-excluding slabs 5.9 1 Slab self weight -0.9 24.5 D 2 Dead 19.5 5 Unreduced live -1.0 -1.0 L C3/CD PIPE STD6 8 Snow 24.7 24.7 S 15 Seismic Dirl 7.9 0 16 Seismic Dir2 -12.2 12.2 E 19 Seismic Torsion 100.00%Dir130.00%Dir2 2.0 20 Seismic Torsion 30.00%Dirl 100.00%Dir2 2.1 Page 116 of 268 }n Project:TIGARD HS No: 2016135.00 Page: a end c a osl nfe it v Subject:STRIP FTG By: JY Date:3/19/2018 • Wall Footing Calculations Project Title: TIGARD HS rDL,LL Project No: 2016135.00 Wall Loc'n: 3.01-1 .dist 1 Input Unfactored Lateral Forces at Top of Wail*: A E L S +M M= 0.0 k-ft +v V= 0.0 kips Jos= U./I0 a *Except for ME and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < Lag > Dag Foundation Dimensions: Depth (ft) I Width(ft) Length (ft) )(end VI) I Notes: 16.33'Bay Wall Footing 1.50 4.00 26.33 0.00 Surcharge 1.50 A Unfactored Gravity Loads: Load D(kips) I L(kips) I S(kips) E(kips) Dist.(ft) I Description/Location P1 54.7 21.2 19.7 53.9 5.00 P2 47.6 25.5 11.5 -53.8 21.3 P3 • P4 P5 P6 P7 P8 P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = allow net +(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +y Ma = F (Pr,+L/Dist.), +ML+VL*(Dwall +Dttg) = 2477.28 kip-ft R = F PD+t = 190.07 kips x = F Ma/R = 13.03 feet e = I x-(L1tg/2) I = 0.13 < 4.39 ft = LLitg/6 Wreq'd = 2.35 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 max = 1859 at dist. = 0.00 ft gm,„ = 1751 at dist. = 26.33 ft 1751 1859 Page 117 of 268 Project: TIGARD HS No: 2016135.00 Page: . catenc F°i:t°t Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1,Eq.16-10) +I Ma = I(PD+s*Dist.); +Ms+Vs*(Dwall +Ng) = 2171.58 kip-ft R = I PD+s = 174.57 kips x = I Ma/R = 12.44 feet e = I x-(L»g/2) I r 0.73 < 4.39 ft = L,tg/6 Wregd = 2.44 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 1932 at dist. = 0.00 ft gmin = 1383 at dist. = 26.33 ft 1383 1932 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Eq.16-11) +I Ma = I(PD+o.75(L+s)*Dist); +M0.75)L+S) +V0.75)L+S) * (DWaii +Dftg 2572.58 kip-ft R = I PD+0.75(L+s) = 201.80 kips x = I Ma/R = 12.75 feet . e I x (Lffg/2) 10.42 < 4.39 ft = Lng/6 Wregd = 2.65 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 2098 at dist. = 0.00 ft gmin = 1734 at dist. = 26.33 ft [ LW 1734 2098 Load Case 4: (1.0+0.14$ 1D+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +I Ma = I(P(1.0+0.14sds)D+0.7E*Dist.)i+M0.7E+V0.7E*(DWan+Dffg) = 1396.34 kip-ft R = I P)1.o+o.l4sd:)D+0.7E 157.70 kips x = I Ma/R = 8.85 feet e = I x-(L+rg/2) I r 4.31 < 4.39 ft = Lffg/6 Wragg = 2.85 feet I (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 2968 at dist. = 0.00 ft gmin = 27 at dist. = 26.33 ft 27 Llta 2968 • Page 118 of 268 Project:TIGARD HS No: 2016135.00 Page: eaten aonivltinq rot l n e e r i Subject:STRIP FTG By: JY Date: 3/19/2018 , Load Case 5: (1.0+0.145naD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +f Ma = F(P(1.o+0.14sds)D-.7E*Dist.)(-M0.7E-Vo.7E*(Dwall+Dng) = 2623.35 kip-ft R = F P(1.0+0.14Sds)D-0.7E 157.56 kips x = I Ma/R = 16.65 feet e = I x-(Lffg/2) I 3.49 < 4.39 ft = Lffg/6 Wregd = 2.58 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 ("max = 2684 at dist. = 26.33 ft gmin = 308 at dist. = 0.00 ft • 1-4 2684 Load Case 6: (1+0.105Sr )D+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = E(P(1+0.105Sds)D+0.525E+0.75L+0.755 Dlst.)i+M0.525E+V0.525E*(Dw 2248.74 kip-ft R = F PD+o.525E+o.75L+.a7: 212.54 kips x = I Ma/R = 10.58 feet e = I x-(Lag/2) I 2.58 < 4.39 ft = Lffg/6 Wreq'd = 3.08 feet (See Load Case 1 for equations) O.K. • For Wffg= 4.00 ., gm= = 3207 at dist. = 0.00 ft gmin = 829 at dist. = 26.33 ft 3207 Load Case 7: (1+0.1055„aD-0.525E+0.75L+0.755 (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = I(P(1+0.105Sds)D-0.525E+0.75L+0.755 Dist.)i-M0.525E-V0.525E*(Dwaii 3169.00 kip-ft R = F P(1+0.105Sds)D-0.5251 212.44 kips x = E Ma/R = 14.92 feet e = I x-(Lag/2) I = 1.75 < 4.39 ft = Lffg/6 Wregd = 2.71 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 2823 at dist. = 26.33 ft gmin = 1212 at dist. = 0.00 ft c Lrt, 1212 2823 • Page 119 of 268 i ttq, Project:TIGARD HS No: 2016135.00 Page: catenc a.n�.11ing • \r L� 1" Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +F Ma = Z(P(0.6-.14s0D+0.7E*Dist.)i+M0.7E+V0.7E*(Dwall+Dffg) = 483.37 kip-ft R = F P(0.6-O 14sds(D+0.7E 95.30 kips x = I Ma/R = 5.07 feet e = I x-(Efts/2) I 8.09 > 4.39 ft = Lffg/6 Wr.q'd = 3.01 feet (See Load Case 1 for equations) O.K. For Wft9= 4.00 gmax = 3132 at dist. = 0.00 ft gmin = 0 at dist. = 15.22 ft 0 3 Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +F Ma = I(P10.6-.14Sds)D-0.7E*Dist.)i-M0.7E-Vo.7E*(Dwaii+Dag) = 1710.39 kip-ft R = I P(0.6-0.14Sds(D-0.7E 85.95 kips x = I Ma/R = 19.90 feet . =I x-(Lftg/2) I 6.73 > 4.39 ft = Lffg/6 W�.qd = 2.14 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 2227 at dist. = 26.33 ft gmin = 0 at dist. = 7.04 ft 0 Lfte 2227 S Page 120 of 268 Project:TIGARD HS No: 2016135.00 Page: ��1��� "'Till"tulll" ytaaIII va • Subject:STRIP FTG By: JY Date: 3/19/2018 Wall Footing Calculations Project Title: TIGARD HS PDL,LL Project No: 2016135.00 Wall Loc'n: 3.02-12 dot 1 Input Unfactored Lateral Forces at Top of Wall*: < >I 5 Dw,1 E L S +M M= 0.0 k-ft +v V= 0.0 kips a 1 JDS= U./I U *Except for ME and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. I< Ln¢ 1 Dfts Foundation Dimensions: Depth(ff) I Width (ft) I Length (N)I )(end tiff Notes: 13.67 Bay Wall Footing 1.50 I 4.00 17.67 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load D(kips) I L(kips) ) S(kips) ) E(kips) Dist.(ft) I Description/Location PI 44.4 20.8 15.4 9.4 15.67 P2 29.0 4.3 21.6 -9.4 2.0 P3 P4 P5 •P6 P7 P8 P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q avow gross = 4165 psf* *q allow gross = Ballow net+ (displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +F Ma = I(PD,L/Dist.), +Mt+VL*(Duvall+Dffg)= 1331.82 kip-ft R = F PD+L = 126.07 kips x =F Ma/R = 10.56 feet e = I x-(4tg/2) I = 1.73 < 2.95 ft = Lffg/6 Wrega = 3.58 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 anox = 2831 at dist. = 17.67 ft gmin = 736 at dist. = 0.00 ft l-fte 1 leo ttsa II Page 121 of 268 • oaten Project:TIGARD HS No: 2016135.00 Page: °.n,e(Ilep �tnp(neer, Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1,Ea.16-10) +F Ma = I(PD+s*Dist.); +Ms+Vs*(Dwa;;+Dft9)= 1281.80 jkip-ft R = I PD+s = 137.97 kips x = I Ma/R = 9.29 feet e = I x-(Lft9/2) I = 0.46 < 2.95 ft = Ltt9/6 Wreq'a = 2.85 feet (See Load Case 1 for equations) O.K. For Wtt9= 4.00 ., gmax = 2254 at dist. = 17.67 ft gmin = 1650 at dist. = 0.00 ft I0 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1,Ea.16-11) +Y Ma = I(PD+o.75a+s)*Dist.); +M0.75(1+s)+V0.75(1+s)*(Dwau+D1t9) 1461.58 kip-ft R = E PD,0.75(1+s) = 147.54 kips x = I Ma/R = 9.91 feet e = I x-(4t9/2) I = 1.07 < 2.95 ft = Lftg/6 W,egd = 3.60 feet (See Load Case 1 for equations) O.K. • For Wft9= 4.00 •., gmax = 2847 at dist. = 17.67 ft q,, = 1328 at dist. = 0.00 ft `T9 843 1098 Load Case 4: (1.0+0.14SaJD+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +f Ma = I(P(1.0+0.14sds)D+0.7E*Dist.);+M0.7E+V0.7E*(Dwall+Dft9) = 1186.37 kip-ft R = F P11.0+0.145ds)D+0.78 1 11.00 kips x = I Ma/R = 10.69 feet e = I x-(Log/2) I = 1.85 < 2.95 ft = Lft9/6 Wregd = 2.46 feet (See Load Case 1 for equations) For Wft9= 4.00 gmax = 2559 at dist. = 17.67 ft gmin = 582 at dist. = 0.00 ft 0 dna 179 • Page 122 of 268 Project:TIGARD HS No: 2016135.00 Page: VV 11// �i�ii MM optna6tl Subject:STRIP FTG By: JY Date:3/19/2018 • Load Case 5: (1.0+0.14Snc)D-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +E Ma = I(P(1.ow.4sdgD-0.7E*Dist.);-Ma.70-V0.7E*(Dwan+Dffg) = 1006.47 kip-ft R = I P(1.0+0.14sd6)0-0.7E 111.00 kips x = I Ma/R = 9.07 feet e = I x-(Lftg/2) I = 0.23 < 2.95 ft = Lftg/6 W,egd = 1.63 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 1694 at dist. = 17.67 ft grain = 1447 at dist. = 0.00 ft 0 2025 Load Case 6: (1+0.105Snc)D+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = I(Pli+0.1055ds1D+0.525E+0.750-0.75s*Dist.)i+M0.525E+V0.525E*(Dwa 1603.39 kip-ft R = I PD+0.525E+0.75L+,075 155.07 kips x = I Ma/R = 10.34 feet e = I x-(Lftg/2) I = 1.50 < 2.95 ft = Lffg/6 W,egd = 3.18 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 Qmax = 3315 at dist. = 17.67 ft . grain = 1073 at dist. = 0.00 ft 1668 Load Case 7: (1+0,105Sne)D-0.525E+0.75L+0.75S (ASCE 7-1012.4.2.3,Eq.6b) +I Ma = I(P11+0.105Sds1D-0.525E+0.75L+0.755*Dist.)1-M0.5250-V0.525E*(Dwall4 1468.46 kip-ft R = I P11+o.105sds)D-0.525E 155.07 kips x = I Ma/R = 9.47 feet e = I x-(Lffg/2) I = 0.63 < 2.95 ft = Lffg/6 Wreq'd = 2.56 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 2667 at dist. = 17.67 ft gain = 1721 at dist. = 0.00 ft 121 ung 1935 • Page 123 of 268 /+� Project:TIGARD HS No: 2016135.00 Page: catend enc cO1e111ne • M ngtneetl Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +f Ma = (P(0.6-.145ds)D+°.7E*Dist.);+MO.7E+V0.7E*(Dwall+Dftg) = 688.32 kip-ft R = F P(0.6-0.14Sds)D+0.7E 67.19 kips x = I Ma/R = 10.25 feet e = I x-(L4,9/2) I = 1.41 < 2.95 ft = Lag/6 r W1eq•d = 1.35 feet (See Load Case 1 for equations) O.K. For Wft9= 4.00 arlax = 1406 at dist. = 17.67 ft grain = 495 at dist. = 0.00 ft 'Tg Load Case 9: (0,6)D-0.7E (ASCE 7-1012.4.2.3,Eq.8b) +E Ma = I(PI0.6-.14sd)D-0.7E*Dist.);-M0.7E-V0.7E*(Dwau+Deg) = 508.42 kip-ft R = F P(0.6-0.14Sdg)D-0.7E ' 60.58 kips x = I Ma/R = 8.39 feet e = I x-(Lag/2) I = 0.44 < 2.95 ft = Lftg/6 . W1eq d = 0.95 feet (See Load Case 1 for equations) O.K.For Wftg= 4.00 gmnax = 986 at dist. = 0.00 ft grain = 728 at dist. = 17.67 ft a o 2796 • Page 124 of 268 Project:TIGARD HS No: 2016135.00 Page: catenc acn,v': n O 1 n s n r, • Subject:STRIP FTG By: JY Date: 3/19/2018 Wall Footing Calculations Project Title: TIGARD HS PDL,LL Project No: 2016135.00 Wall Loc'n: 3.01-5 F.dist 1 a Input Unfactored Lateral Forces at Top of Wall*: n E L S +M M= 0.0 k-ft �` +v V= 0.0 kips a l `� SOS= u.710 I*Except for ME and VE,which shall be strength-based and shall include pnd 10%or 25%reduction per ASCE 7-05 section 12.13.4. � > n 8 Foundation Dimensions: Depth (ft) I Width(ft) I Length (ft)I xend(til I Notes: 32.67 Bay Wall Footing 1.50 4.00 36.67 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load D(kips) I L(kips) I S(kips) I E(kips) I Dist.(ft) I Description/Location Pi 42.1 24.2 8.2 0.0 2.00 P2 27.3 12.2 6.9 -107.5 13.0 P3 24.2 12.7 4.7 106.5 24.0 • P4 47.9 25.6 10.5 0.0 35.0 P5 P6 P7 Pg P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = allow net +(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +f Ma = F (PD+L/Dist.), +ML+VL*(Duvall +Dfig) = 5153.06 kip-ft R = E PD+L = 273.41 kips x = E Ma/R = 18.85 feet e = I x-(Lfig/2) I 0.51 < 6.11 ft = Lfig/6 Wrea'd = 2.55 feet (See Load Case 1 for equations) O.K. For Wfig= 4.00 gmax = 2020 at dist. = 36.67 ft gmin = 1708 at dist. = 0.00 ft • Lim 1708 2020 Page 125 of 268 Project:TIGARD HS No: 2016135.00 Page: caten :; 11411411,-. Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1,Ea.16-10) +I Ma = I(PD+s*Dist.); +Ms+Vs*(DWan +Deg) = 4331.66 kip-ft R = I PD+s = 229.01 kips x = I Ma/R = 18.92 feet e = I x-(Leg/2) I = 0.58 < 6.11 ft = Lftg/6 Wregd = 2.16 feet I (See Load Case 1 for equations) O.K. For Wffg= 4.00 max = 1709 at dist. = 36.67 ft Amin = 1413 at dist. = 0.00 ft 1413 1709 Load Case 3:D+0.75(L+S) (IBC 1605.3,1,Ea.16-11) +f Ma = I (PD+0.750L+s)*Dist.)i +M0.75(L+s) +V0.75(L+s) *(Dwaii +Dffg 5240.91 kip-ft R = I PD+0.75(L+s) = 277.46 kips x = I Ma/R = 18.89 feet x-(Lffg/2) I 0.55 < 6.11 ft = Lfig/6 Wr.gd = 2.61 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 2063 at dist. = 36.67 ft gain = 1720 at dist. = 0.00 ft 1720 2063 Load Case 4: (1.0+0.14Sna)D+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +f Ma = I(P(1.o+o.14sds1D+0.7E*Dist.) +M0.7E+V0.7E*(DWan+Dffg) = 4928.49 kip-ft R = I P(1.o+o.14sds)D+0.7E 217.76 kips x = I Ma/R = 22.63 feet e = I x-(Leg/2) I = 4.30 < 6.11 ft = Lffg/6 --- - ----- ----- Wreg d = 2.43 feet I (See Load Case 1 for equations) CCK For Wftg= 4.00 qmax = 2529 at dist. = 36.67 ft grain = 441 at dist. = 0.00 ft r ... Lim 2529 1110 Page 126 of 268 "tpk Project:TIGARD HS No: 2016135.00 Page: }w0#en l aen8,eltlnp �r Li e o 1"e'r Subject:STRIP FTG By: JY Date: 3/19/2018 . Load Case 5: (1.0+0.14Sr,JD-0.7E (ASCE 7-1012.4.2.3,Eq.5b) +F Ma = I(P(1.0+0.14Sds)D-0.7E*Dist.)i-M0.7E-V0.7E*(Dwall+Dffg) = 3306.59 kip-ft R = I P(1.0+0.14sds)D-0.7E 219.16 kips x = I Ma/R = 15.09 feet e = I x-(Lffg/2) I r 3.25 < 6.11 ft = Lffg/6 Wreq'd = 2.20 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 ., gmax = 2288 at dist. = 0.00 ft gmin = 700 at dist. = 36.67 ft Lw 700 2288 Load Case 6: (1+0.105Snc)D+0.525E+0.751+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = I(P(1+0.105Sds)D+0.525E+0.75L+0.755 Dist.);+M0.525E+V0.525E*(DW 6128.33 kip-ft R = F PD+o.525E+0.75L+.07: 291.74 kips x = E Ma/R = 21.01 feet e = I x-(Lftg/2) I ' 2.67 < 6.11 ft = Lffg/6 Wreq'd = 2.74 feet (See Load Case 1 for equations) O_K. III For Wttg= 4.00 max = 2858 at dist. = 36.67 ft 9 gmin = 1 120 at dist. = 0.00 ft 1120 2858 Load Case 7: (1+0.105S„AD-0.525E+0.751+0.755 (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = I(Po+0.105Sds)D-0.525E+0.75L+0.75S Dist.);-M0.5250-V0.525E*(Dwall 4911.90 kip-ft R = I P(1+o.105sds)D-0.525I 292.79 kips x = E Ma/R = 16.78 feet e = I x-(L110/2) I = 1.56 < 6.11 ft = Lftg/6 Wreq'd = 2.41 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 ., max = 2505 at dist. = 0.00 ft gmin = 1487 at dist. = 36.67 ft II 87 2505 III Page 127 of 268 Project: TIGARD HS No: 2016135.00 Page: atenc }I Otetf e' • Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 8: !(0,6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +F Ma = F(P(o.b.14sds)D+0.7E*Dist.);+M0.7E+V0.7E*(Dwall+Dft9) = 3058.10 kip-ft R = F P(0.6-0.14Sds)D+0.7E 131.26 kips x = E Ma/R = 23.30 feet e = I x-(Lftg/2) I 4.96 < 6.11 ft = Lttg/6 Wreq'd = 1.56 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 1622 at dist. = 36.67 ft gmin = 168 at dist. = 0.00 ft r 1622 Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +E Ma = I(P(0.6-.14Sds)D-0.7E*DISt.)i-M0.7E-V0.7E*(Dwan+Deg) = 1436.20 kip-ft R = F P(0.6-0.14Sds)D-0.7E 119.92 kips x = I Ma/R = 11.98 feet . e = I x-(Lltg/2) I 6.36 > 6.1 1 ft = Leg/6 Wreq'd = 1.60 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 qmax = 1669 at dist. = 0.00 ft gmin = 0 at dist. = 35.93 ft o L9 166• • Page 128 of 268 Project:TIGARD HS No: 2016135.00 Page: ftenr n°0�ne�r,,., S S Subject:STRIP FTG By: JY Date: 3/19/2018 0 Wall Footing Calculations Project Title: TIGARD HS rDL,LL Project No: 2016135.00 Wall Loc'n: 3.01-10 ..dist 1 < >I x`" D,..0 Input Unfactored Lateral Forces at Top of Wall*: A E L S /'\ +M M= 0.0 kft +v -. V= 0.0 kips a j 1 T os= 0./Iu _ *Except for ME and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < Lne Foundation Dimensions: Depth (ft) I Width(ft) I Length (ft)I )(end in) Notes: 32.67 Bay Wall Footing 1.50 I 4.00 j 36.67 0.00 Surcharge 1.50 \,\\ Unfactored Gravity Loads: Load D(kips) I L(kips) I S(kips) E(kips) Dist.(ft) I Description/Location P1 41.5 24.1 7.4 0.0 2.00 P2 25.8 13.4 5.1 -84.5 13.0 P3 21.1 10.7 4.5 84.6 24.0 III P4 46.4 24.1 12.6 0.0 35.0 PS P6 P7 P8 Py P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow grow = gallow,set +(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +f Ma = /(PD-H./Dist.), +ML+V1* (Duvall +Dttg) = 4920.36 kip-ft R = F Pp+L = 264.31 kips x = E Ma/R = 18.62 feet e = I x-(Lttg/2) I , 0.28 < 6.11 ft = Lttg/6 Wregd = 2.38 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 gmax = 1885 at dist. = 36.67 ft (Amin = 1719 at dist. = 0.00 ft t Litg III 1719 1885 Page 129 of 268 Project: TIGARD HS No: 2016135.00 Page: 110 catenc tiIno;n':;rs Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1,Ea.16-10) +I Ma = F(PD,s*Dist.); +Ms+Vs*(Dwaii +Dttg) = 4227.76 kip-ft R = f PD+s = 221.61 kips x = I Ma/R = 19.08 feet e = I x-(Lffg/2) I 0.74 < 6.11 ft = Lftg/6 W,eq d = 2.14 _ feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 ., gm0x = 1694 at dist. = 36.67 ft gmin = 1327 at dist. = 0.00 ft L 1327 1694 Load Case 3: D+0.75(L+S) (IBC 1605.3.1,Ea.16-11) +f Ma = E(PD+o.75)L+s)*Dist.) +Mo.75)L+s) +Vo.75(L+s) *(Dwaii +Dttg 5062.26 kip-ft R = F PD+0.75)L+s) = 268.43 kips x = I Ma/R = 18.86 feet e = I x (Lttg/2) I = 0.52 < 6.11 ft = Lffg/6 W�egd - 2.51 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 1987 at dist. = 36.67 ft gmin = 1673 at dist. = 0.00 ft c L 1673 1987 Load Case 4: (1.0+0.14S„c)D+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +I Ma = I(P(1.0+0.14Sds)D+0.7E*Dist.)i+M0.78+V0.7E*(Dwaii+Deg) = 4607.59 kip-ft R = F P)1.o+0.14sds)D+0.7E 211.16 kips x = I Ma/R = 21.82 feet e = I x-(Lttg/2) I = 3.49 < 6.11 ft = Lffg/6 Wreq d = 2.17 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 ., gram = 2261 at dist. = 36.67 ft grain = 619 at dist. = 0.00 ft 619 �0 2261 Page 130 of 268 /�Rr.//��{� Project:TIGARD HS No: 2016135.00 Page: ca1en eptn1sihi Subject:STRIP FTG By: JY Date: 3/19/2018 • Load Case 5: (1.0+0.14S„aD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +f Ma = F(P(1.o+o.14sd:)D-0.7E*Dist.);-M0.7E-V0.76 (Dwan+Dft0) = 3302.93 kip-ft R = F P(1.0+0.14Sds)D-0.7E 211.02 kips x = F Ma/R = 15.65 feet e = I x-(Lf,9/2) I = 2.68 < 6.11 ft = L„g/6 Wfegd = 1.99 feet J (See Load Case 1 for equations) Q K For Wflg= 4.00 gmax = 2070 at dist. = 0.00 ft gmin = 807 at dist. = 36.67 ft c L� 807 2070 Load Case 6: (1+0.105SaJD+0.525E+0.751+0.755 (ASCE 7-10 12.4.2.3,Eq.6a) + Ma = F(P(1+0105sds)D+0.525E+0.75L+0.755 Dist.);+M0.5256+V0.525E*(Dw 5819.71 kip-ft R = f PD+o.s25E+o.75L+.07: 282.80 kips x = f Ma/R = 20.58 feet e = I x-(L19/2) I ` 2.24 < 6.11 ft = Lftg/6 Wfeq'd = 2.53 feet (See Load Case 1 for equations) O.K. For W00= 4.00 ., gmax = 2636 at dist. = 36.67 ft gmin = 1220 at dist. = 0.00 ft 1 1220 2636 Load Case 7: (1+0.105Sac)D-0.525E+0.751+0.755 (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = F(P(1+0.105Sds)D-0.525E+0.75L+0.75S Dlst.)i-M0.5258-V0.525E*(Dwaii 4841.22 kip-ft R = I P)1+0.105Sds)D-0.5251 282.69 kips x = I Ma/R = 17.13 feet e = I x-(L110/2) I 1.21 < 6.11 ft = L119/6 Wfegd = 2.22 feet (See Load Case 1 for equations) O.K. For W110= 4.00 gm.„ = 2309 at dist. = 0.00 ft gmin = 1546 at dist. = 36.67 ft c Lx, 1546 2309 11111 Page 131 of 268 Project:TIGARD HS No: 2016135.00 Page: cotend aoniolliny • b MM 1 Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +I Ma = (P(0.6-.14sds)Di0.7E*Dist.);+M0.7E+V0.7E*(Dwall+Dffg) = 2810.92 kip-ft R = F P(0.6-0.14Sds)D+0.7E 127.41 kips x = F Ma/R = 22.06 feet e = I x-(Lftg/2) I 3.73 < 6.11 ft = Lftg/6 W,.qd = 1.34 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 1398 at dist. = 36.67 ft gm;n = 339 at dist. = 0.00 ft 339 1-142 1398 Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +I Ma = F(P(o.6-.14s0D-0.7E*Dist.);-M0.7E-V0.7E*(Dwall+Dftg) = 1506.26 kip-ft R = F P(0.6-0.14sds)D-07E 115.13 kips x = I Ma/R = 13.08 feet • e= x-(L119/2) I = 5.25 < 6.11 ft = Lftg/6 Keg: 1.40 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 1459 at dist. = 0.00 ft gm;n = 110 at dist. = 36.67 ft 145, • Page 132 of 268 Project: TIGARD HS No: 2016135.00 Page: catenc ""vn a 0 i n e e r a Subject:STRIP FTG By: JY Date: 3/19/2018 • Wall Footing Calculations Project Title: TIGARD HS pDL,LL Project No: 2016135.00 Wall Loc'n: 3.02-11 dist Input Unfactored Lateral Forces at Top of Wall*: � om° M= 0.0 k-ft +v + i V= 0.0 kips DS= 0./I0 a *Except for ME and VE,which shall be strength-based and shall include p T and 10%or 25%reduction per ASCE 7-05 section 12.13.4. I< Lflg >I D flg Foundation Dimensions: Depth (ft) I Width (ft) I Length (ft)I )(end MI I Notes: 27.33'Bay Wall Footing 1.50 4.00 31.33 I 0.00 Surcharge 1.50 \\ Unfactored Gravity Loads: Load D(kips) I L(kips) I S(kips) I E(kips) Dist. (ft) I Description/Location P1 25.2 -0.3 25.0 16.6 2.00 P2 26.2 0.3 25.0 -16.6 29.3 P4 P4 P5 P6 P7 P6 P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = gallaw net +(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +F Ma = E(Pp+L/Dist.), +ML+VL*(Dwall +Dffg) = 1 591.87 kip-ft R = F PD+L = 100.27 kips x = IMa/R = 15.88 feet e = ) x-(Lftg/2) I 0.21 < 5.22 ft = Lftg/6 Wr.gd = 1.05 feet (See Load Case 1 for equations) QA_(. For Wftg= 4.00 gmax = 832 at dist. = 31.33 ft gmin = 768 at dist. = 0.00 ft • 768 832 Page 133 of 268 catiiieProject:TIGARD HS No: 2016135.00 Page: --.lrain.srin;rf G' Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-10) +I Ma = I(PD+s*Dist.); +Ms+Vs*(DWaO +D119) = 2366.18 kip-ft R = F PD+S = 150.27 kips x = I Ma/R = 15.75 feet e = ) x-(Lffg/2) I 0.08 < 5.22 ft = Lffg/6 Wr.q d 1.54 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 1218 at dist. = 31.33 ft gmin = 1 181 at dist. = 0.00 ft Lm 1181 1218 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea. 16-11) +F Ma = F(PD.0.75(L+s)*Dist.); +M0.75(L+S) +V0.75(L+S) * (DWan +Dftg 2176.70 kip-ft R = f PD.0.75(L+s) = 137.77 kips x = I Ma/R = 15.80 feet e = ) x-(Lff9/2) I ° 0.13 < 5.22 ft = Lff9/6 Wr.gd = 1.43 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 1 128 at dist. = 31.33 ft gmin = 1071 at dist. = 0.00 ft c L, 1071 1128 Load Case 4: (1.0+0.14Sna1D+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +f Ma = I(P(1.0+0.14Sds)D.0.7E*Dist.);+M0.7E+V0.7E*(DWan+Dft9) = 1423.88 kip-ft R = I P(1.0+0.14Sds)D+0.7E 110.24 kips x = I Ma/R = 12.92 feet e = I x-(Lffg/2) I 2.75 < 5.22 ft = L119/6 Wregd = 1.29 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 1343 at dist. = 0.00 ft gain = 417 at dist. = 31.33 ft 417 1343 411 Page 134 of 268 e Project:TIGARD HS No: 2016135.00 Page: .y 1 A1. catenc Subject:STRIP FTG By: JY Date: 3/19/2018 • Load Case 5: (1.0+0,1451,JD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +g Ma = E(P(1.ow.14sd:)D-0.7E`Dist.);-M0.75-V0.7E*(Dwal+Deg) = 2058.33 kip-ft R = !P)1.0+0.l4sds)D-0.7E 110.24 kips x = E Ma/R = 18.67 feet e = I x-(Lffg/2) I = 3.01 < 5.22 ft = Leg/6 Wregd = 1.33 feet 1 (See Load Case 1 for equations) O.K. For Wffg= 4.00 ., gmax = 1386 at dist. = 31.33 ft gmin = 373 at dist. = 0.00 ft 373 1386 Load Case 6: (1+0.105SAc)D+0.525E+0.75L+0.755 (ASCE 7-10 12.4.2.3,Eq.6a) + Ma = (P)1+0.105Sds)D.o525E+0.75L+0.75s Dist.)i+M0.525E+V0.525E*(Dw 2056.85 kip-ft R = F PD+o.525E+o.75L+.07: 145.25 kips x = E Ma/R = 14.16 feet e = I x-(Lftg/2) I 1.50 < 5.22 ft = Lffg/6 W,egd = 1.43 feet (See Load Case 1 for equations) O.K. 411 For Wffg= 4.00 gmax = 1493 at dist. = 0.00 ft gmin = 825 at dist. = 31.33 ft t L 825 1493 Load Case 7: (1+0.105SAJ)D-0.525E+0.75L+0.755 (ASCE 7-10 12.4.2.3,Eq.6b) +1 Ma = F(P)1+0.1o5sds)Do.525E+0.75L+0.75s Dist.);-M0.525E-V0.525E*(Dwall 2532.68 kip-ft R = E P)1+O.105Sds)D-0.5251 145.25 kips x = F Ma/R = 17.44 feet e = I x-(L1f9/2) I 1.77 < 5.22 ft = Lffg/6 Wreq'd = 1.49 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 1552 at dist. = 31.33 ft gmin = 766 at dist. = 0.00 ft I 766 1552 • Page 135 of 268 -.44344 Project:TIGARD HS No: 2016135.00 Page: ktend �°r,v„vt^r. • e � Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +I Ma = I (P)0.6-.14sds)D+0.7E*Dist.)i+M0.7E+V0.7E*(Dwall+Dftg) = 632.98 kip-ft R = I P)0.6-0.14Sds)D+0.7E 64.79 kips x = I Ma/R = 9.77 feet e = I x-(Lttg/2) 15.90 > 5.22 ft = Lttg/6 Wr.q'd = 1.06 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 gmax = 1105 at dist. = 0.00 ft Grain = 0 at dist. = 29.31 ft 770 Load Case 9: (0.61D-0.7E (ASCE 7-10 12.4.2.3, Eq.8b) +I Ma = I(P)0.6-.14Sds)D-0.7E*Dist.)i-Mo.7E-V0.7E*(Dwan+Dftg) = 1267.44 kip-ft R = I P)0.6-0.14Sds)D-0.7E 60.16 kips x = /Ma/R = 21.07 feet e = I x-(Lftg/2) I 5.40 > 5.22 ft = Lftg/6 wed = 0.94 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 .. max = 977 at dist. = 31.33 ft grain = 0 at dist. = 0.54 ft 0 1-4 977 I Page 136 of 268 Project:TIGARD HS No: 2016135.00 Page: catenc a to rneer■ • Subject:STRIP FTG By: JY Date: 3/19/2018 Wall Footing Calculations Project Title: TIGARD HS PDL•LL Project No: 2016135.00 Wall Loc'n: 3.02-1 . dist 1 >nd Dweu Input Unfactored Lateral Forces at Top of Wall*: E L S +M M= 0.0 k-ft +v V= 0.0 kips 1 Jos= 0./IU a T *Except for ME and V5.which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < Lfts > Dns Foundation Dimensions: Depth (ft) I Width(ft) Length (ft)I Xend(til I Notes: 13.5'Bay Wall Footing 1.50 I 4.00 27.50 0.00 \` y Surcharge 1.50 Unfactored Gravity Loads: Load D(kips) I L(kips) I S(kips) E(kips) Dist. (ft) I Description/Location P1 17.8 7.2 5.3 55.0 7.00 P2 24.1 16.0 0.8 -55.0 20.5 I P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = gallow net +(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +F Ma = E(PD+L/Dist.), + +Vc*(Dwall +Dffg) = 1586.93 kip-ft R = E Pp+L = 108.00 kips x = E Ma/R = 14.69 feet e = I x-(Log/2) I = 0.94 < 4.58 ft = Lng/6 Wreq'd = 1.50 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 1 184 at dist. = 27.50 ft groin = 780 at dist. = 0.00 ft Gm • 1 780 ;184 Page 137 of 268 Project:TIGARD HS No: 2016135.00 Page: catend °an,a111na • �apine°rt Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1,Ea.16-10) +I Ma = I(PD+s*Dist.); +Ms+Vs*(DWaii +Ng) = 1262.03 kip-ft R = F PD+s = 90.90 kips x = I Ma/R = 13.88 feet e = I x-(kg/2) I 0.13 < 4.58 ft = Lftg/6 Wr.q'd = 1.07 feet 1 (See Load Case 1 for equations) O.K. For Wttg= 4.00 .. gmax = 850 at dist. = 27.50 ft gmin = 802 at dist. = 0.00 ft c L, 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea. 16-11) +F Ma = I (PD+0.75(L+s)*Dist.); +Mo.75(L+s) +Vo.75(L+s) * (DWaii +Dftg 1532.45 kip-ft R = F PD+0.751L+s) = 106.78 kips x = I Ma/R = 14.35 feet e = I x-(Lftg/2) I r 0.60 < 4.58 ft = Lffg/6 Wreq'd = 1.39 feet _ -- (See Load Case 1 for equations) O.K. For Wfig= 4.00 gmax = 1098 at dist. = 27.50 ft gmin = 843 at dist. = 0.00 ft L 843 1098 Load Case 4: (1.0+0.14Snc)D+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +F Ma = I(P(1.0+0.14sds1D+0.7E*Dist.);+M0.7E+V0.7E*(DWaii+Dfrg) = 808.90 kip-ft R = F P(1.o+o.14sds)D+o.7E 93.23 kips x = I Ma/R = 8.68 feet e = I x-(Lftg/2) I r 5.07 > 4.58 ft = kg/6 Wregd = 1.72 feet j (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 1791 at dist. = 0.00 ft gmin = 0 at dist. = 26.03 ft Lfw r 0 17' • Page 138 of 268 Project:TIGARD HS No: 2016135.00 Page: cciten coniolilnq �\rr 444,44_i n e a r• Subject:STRIP FTG By: JY Date: 3/19/2018 • Load Case 5: (1.0+0.14SnaD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +g Ma = E(P(1.o+0.14sd0-o.7E*Dist.);-Mo.7E-Vo.7E*(Dwaii+Deg) = 1848.40 kip-ft R = F P(1.o+o.14sds)o-o.7E 93.23 kips x = F Ma/R = 19.83 feet e = I x-(Leg/2) I r 6.08 > 4.58 ft = Lee/6 r L Wreq'd = 1.94 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 gmax = 2025 at dist. = 27.50 ft gmin = 0 at dist. = 4.48 ft � 2025 Load Case 6: (1+0.105SaaD+0.525E+0.75L+0.755 (ASCE 7-10 12.4.2.3,Eq.6a) +F Ma = (Pi 1+0.1055d,)D+o.525E+0.75L+0.755 Dist.);+M0.5250+V0.525E*(Dw 1232.73 kip-ft R = !PD+0.525E+0.75L+.07: 113.10 kips x = E Ma/R = 10.90 feet e = I x-(Leg/2) I r 2.85 < 4.58 ft = Litg/6 Wreq'd = 1.60 feet (See Load Case 1 for equations) O.K. • For Wftg= 4.00 gmax = 1668 at dist. = 0.00 ft grain = 389 at dist. = 27.50 ft 914 1668 Load Case 7: (1+0.105Sr,JD-0.525E+0.75L+0.755 (ASCE 7-10 12.4.2.3,Eq.6b) +F Ma = I(P(1+0.105sds)D-0.525E+0.75L+0.75s Dist.);-M0.5259-V0.525E*(Dwall 2012.36 kip-ft R = F P(1+o.1o5sds)D-0.5251 1 13.10 kips x = E Ma/R = 17.79 feet e = I x-(Lftg/2) I = 4.04 < 4.58 ft = Leg/6 Wreq'd = 1.86 feet (See Load Case 1 for equations) O.K. For W1tg= 4.00 gmax = 1935 at dist. = 27.50 ft grain = 121 at dist. = 0.00 ft 121 L re 1935 S Page 139 of 268 Project: TIGARD HS No: 2016135.00 Page: catend " a • o 1 n.•r Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 8: 10.610+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +F Ma = F(P(0.6-.14sds)D+0.7E*Dist.)i+M0.7E+V0.7E*(Dwali+Dftg) = 205.37 kip-ft R = F P)0.6-0.14Sds)D+0.7E 54.65 kips x = I Ma/R = 3.76 feet e = ) x-(Lng/2) ( 9.99 > 4.58 ft = Lng/6 Wregd = 2.33 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 2424 at dist. = 0.00 ft gmin = 0 at dist. = 11.27 ft Load Case 9: 10.61D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +E Ma = F(P)o.6-.14sds)D-0.7E*D1st.)i-M0.7E-V0.7E*(Dwaii+Dng) = 1244.87 kip-ft R = F P(0.6-o.14sds)D-0.7E 50.88 kips x = I Ma/R = 24.47 feet e = I x-(Lftg/2) I 10.72 > 4.58 ft = Lng/6 Wr.qd = 2.68 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 2796 at dist. = 27.50 ft gmin = 0 at dist. = 18.40 ft 2796 • Page 140 of 268 Project:TIGARD HS No: 2016135.00 Page: catenc ynoEn Subject:STRIP FTG By: JY Date: 3/19/2018 • Wall Footing Calculations Project Title: TIGARD HS pDL,LL Project No: 2016135.00 Wall Loc'n: 3.01-3 F dist_ X"'d D,� Input Unfactored Lateral Forces at Top of Wall*: A E L S +M M= 0.0 k-ft +v • V= 0.0 kips JDs= O./10 a *Except for ME and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < Lt flg Foundation Dimensions: Depth (ft) I Width(ft) I Length (ft)I )(end(r?) I Notes: 13.67 Bay Wall Footing 1.50 4.00 23.67 0.00 Surcharge 1.50 r -N.,7‘ Unfactored Gravity Loads: Load D(kips) I L(kips) I S(kips) E(kips) Dist. (ft) I Description/Location P1 16.4 1.6 8.3 39.5 5.00 P2 14.6 1.5 10.2 -39.4 18.7 P3 • P4 P5 P6 P7 P8 P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = Ballow net +(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +F Ma = E(Pp+L/Dist.), +ML+VL*(Duvall +Dffg) = 827.60 kip-ft R = E Pp+L = 71.03 kips x = F Ma/R = 11.65 feet e = ) x-(Lffg/2) I * 0.18 < 3.95 ft = Lttg/6 Wregd = 0.99 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 785 at dist. = 0.00 ft gmin = 715 at dist. = 23.67 ft 411 Gm 715 785 Page 141 of 268 Project: TIGARD HS No: 2016135.00 Page: • catenci Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-10) +I Ma = F(PD+s*Dist.); +Ms+Vs*(Dwaii +Dftg) = 1023.53 kip-ft R = FPD+s = 86.43 kips x = I Ma/R = 11.84 feet e = I x-(L19/2) I = 0.01 < 3.95 ft = L119/6 T Wregd = 1.16 feet -I (See Load Case 1 for equations) O.K.. For Wftg= 4.00 gmax = 915 at dist. = 23.67 ft gmin = 911 at dist. = 0.00 ft c Le 911 915 Load Case 3: D+0.75(L+S) (IBC 1605.3.1,Ea.16-11) +g Ma = E(PD.075(L+s)*Dist.); +M0.75(L+S) +V0.75(L+s) *(Dwaii +Dftg 992.55 kip-ft R = F PD+0.75(L+s) = 84.13 kips x = I Ma/R = 11.80 feet e I x-(Lftg/2) I = 0.04 < 3.95 ft = Lftg/6 Wegd 1.13 feet 1 (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 897 at dist. = 0.00 ft groin = 880 at dist. = 23.67 ft C Le 897 880 Load Case 4: (1.0+0.14Snc)D+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +I Ma = F(P(1.o+0.14Sds)D+0.7E*Dist.)t+M0.7E+Vo.7E*(Dwau+Dftg) = 493.61 kip-ft R = }•P(1.o+o.14sds)D+o.7E 74.75 kips x = I Ma/R = 6.60 feet e = I x-(Lffg/2) I = 5.23 > 3.95 ft = 69/6 Wreq d - 1.81 feet I (See Load Case 1 for equations) O.K. For Wf10= 4.00 gmax = 1886 at dist. = 0.00 ft gmin = 0 at dist. = 19.81 ft 0 Oro 188. • Page 142 of 268 Project:TIGARD HS No: 2016135.00 Page: eaten coneelllnp epineer� Subject:STRIP FTG By: JY Date: 3/19/2018 • Load Case 5: (1.0+0.14SnaD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +g Ma = Z(Pn.a0.145d0D-0.7E*Dist.);-M0.78-V0.7E*(Dwan+Dftg) = 1246.94 kip-ft R = F Po.o+0.145ds)D-0.7E 74.61 kips x = I Ma/R = 16.71 feet e = I x-(Lt�9/2) I 4.88 > 3.95 ft = Lttg/6 ...Wreq'd = 1.72 feet (See Load Case 1 for equations) O.K. For Wn9= 4.00 qmax = 1787 at dist. = 23.67 ft (Amin = 0 at dist. = 2.80 ft 1787 Load Case 6: (1+0.105SnJD+0.525E+0.75L+0.755 (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = F(P(1+o 1055ds)D+o.525E+0.75L+0.755 Dist.);+M0.525E+V0.525E*(Dw 769.06 kip-ft R = F PD+o.525E+o.75L+.07: 89.24 kips x = I Ma/R = 8.62 feet e = I x-(Lftg/2) I 3.22 < 3.95 ft = Lttg/6 Wreq'd = 1.64 feet (See Load Case 1 for equations) O.K. 411/ For Wttg= 4.00 ., gmax = 1711 at dist. = 0.00 ft (Amin = 174 at dist. = 23.67 ft r 1�7a 1711 Load Case 7: (1+0.105Sm1D-0.525E+0.75L+0.755 (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = (P)1+0.1055ds)D-0.525E+0.75L+0.755 Dist.)i-M0.525E-V0.525E*(Dwaii 1334.06 kip-ft R = F P)1+o.1o55ds)D-0.525 89.14 kips x = I Ma/R = 14.97 feet e = I x-(Lftg/2) I = 3.13 < 3.95 ft = Lttg/6 Wreq'd = 1.62 feet (See Load Case 1 for equations) O.K.. For Wttg= 4.00 gmax = 1689 at dist. = 23.67 ft (Amin = 194 at dist. = 0.00 ft L 1689 • Page 143 of 268 catend Project: TIGARD HS No: 2016135.00 Page: catend °oa#al,ley �a0lnaara • Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 8: !(0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +f Ma = !(P/0.6-.14sds)D+0.7E*Dist.);+M0.7E+V0.7E*(Dwau+Dn9) = 98.29 kip-ft R = I P)0.6-0.14Sds)D+0,7E 43.62 kips x = I Ma/R = 2.25 feet e = I x-(Lf�9/2) I 9.58 > 3.95 ft = L„9/6 Wraq'd = 3.10 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 3226 at dist. = 0.00 ft clmin = 0 at dist. = 6.76 ft o 4m Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +f Ma = f(P)o.6-.14s0D-o.7E*Dist.),-M0.7E-V0.7E*(Dwau+Dng) = 851.62 kip-ft R = I P)0.6-0.14sds)D-0.7E 40.69 kips x = F Ma/R = 20.93 feet • e = I x-(Lftg/2) I 9.10 > 3.95 ft = L„g/6 Wray'd = 2.38 feet (See Load Case 1 for equations) O.K. For Wng= 4.00 ., gmax = 2477 at dist. = 23.67 ft gmin = 0 at dist. = 15.46 ft o ° 4m 2477 • Page 144 of 268 Project:TIGARD HS No:2016135.00 Page: catena cpnsanleeting enylrs Subject:STRIP FTG By: JY Date:3/19/2018 • Wall Footing Calculations Project Title: TIGARD HS pDL,LL Project No: 2016135.00 Wall Loc'n: 3.01-2 dist < ] a Dw.rr Input Unfactored Lateral Forces at Top of Wall*: E L S +M M= 0.0 k-ft +v Ir V= 0.0 kips JDS= U./I U a i -r *Except for ME and V,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < I'ng > D Rg Foundation Dimensions: I Depth(ft) I Width (ft) I Length(ft)I Xend(TT) I Notes: 20'Bay Wall Footing 1.50 4.00 32.00 0.00 Surcharge 1.50 Un factored Gravity Loads: Load I D(kips) I L(kips) I S(kips) I E(kips) I Dist.(ft) I Description/Location Pi 23.8 10.4 6.4 -43.4 6.00 P2 10.8 4.8 1.7 41.3 26.0 P3 P4 • P5 P6 P7 P8 P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = Clallow net+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +F Ma = I(PD+t/Dist.), +ML+VL*(Dwall+Dffg)= 1409.52 kip-ft R = F PD+L = 99.72 kips x = I Ma/R = 14.13 feet e = I x-(Lftg/2) I = 1.87 < 5.33 ft = Log/6 W,eq'd = 1.33 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 gmax = 1052 at dist. = 0.00 ft qmin = 507 at dist. = 32.00 ft 1 780 }}sa III Page 145 of 268 c°^'•"'^o Project:TIGARD HS No:2016135.00 Page: . Catena •^•'"'°`` Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-10) +E Ma = I(Po+s*Dist.); +Ms+Vs*(Dwaii+Dff9)= 1304.92 kip-ft R = F PD+s = 92.62 kips x = I Ma/R = 14.09 feet e = I x-(Lff9/2) I = 1.91 < 5.33 ft = Lff9/6 Wreq'd = 1.24 feet (See Load Case 1 for equations) O.K. For Wff9= 4.00 gmax = 983 at dist. = 0.00 ft Amin = 464 at dist. = 32.00 ft c 4, 802 850 Load Case 3:D+0.75(L+S) ABC 1605.3.1.Ea.16-11) +F Ma = F(Po+o.75)L+s)*Dist.); +Mo.75)1.+s)+Vo.7s(L+s)*(Dwaii+Dftg) 1424.67 kip-ft R = I PD+0.75(L+5) = 102.00 kips x = I Ma/R = 13.97 feet e = I x-(Lff9/2) I = 2.03 < 5.33 ft = Lff9/6 • W, .d = 1.39 feet (See Load Case 1 for equations) O.K. For Wff9= 4.00 gmax = 1 100 at dist. = 0.00 ft gmin = 493 at dist. = 32.00 ft L, 843 1098 Load Case 4: (1.0+0.14SJD+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +F Ma = I(PII.o+o.l4sds)D+0.7E*Dist.)i+M0.78+V0.7E*)Dwaii+Dftg) = 1913.20 kip-ft R = F P)1.o+0.14sds)D+0.7E 91.45 kips x = I Ma/R = 20.92 feet e = I x-(L1�9/2) I a 4.92 < 5.33 ft = Lftg/6 Wregd = 1.32 feet (See Load Case 1 for equations) O.K. For Wff9= 4.00 gmax = 1374 at dist. = 32.00 ft gmin = 55 at dist. = 0.00 ft ` 19 179 • Page 146 of 268 Project:TIGARD HS No:2016135.00 Page: catena • enpineers Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 5: (1.0+0.14SaJD-0.7E (ASCE 7-1012.4.2.3,Eq.5b) +E Ma = F(P)jA+0.14sds)D-o.7E*Dist.)i-Mo.7E-Vo.7E*(Dwali+Dfig) = 774.44 kip-ft R = E P(1.o+o.14sd$)D-0.7E 94.39 kips x = I Ma/R = 8.20 feet e = I x-(Leg/2) = 7.80 > 5.33 ft = Leg/6 Wreq'd = 1.84 feet -I (See Load Case 1 for equations) O.K. For Wfig= 4.00 gm0x = 1917 at dist. = 0.00 ft Grain = 0 at dist. = 24.61 ft 0 Ls 2025 Load Case 6: (1+0.105S1,aD+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = F(P)1+0.105Sds)D+0.525E+0.751+0.755*Dist.);+M0.525E+V0.525E*(Dwc 1942.83 kip-ft R = F PD+0.525E+0.75+.075 107.19 kips x = I Ma/R = 18.12 feet e = I x-(Lftg/2) I = 2.12 < 5.33 ft = L09/6 Wreq'd = 1.12 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 ., gmax = 1 171 at dist. = 32.00 ft grain = 504 at dist. = 0.00 ft kip 1668 Load Case 7: (1+0.105Snn)D-0.525E+0,75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6b) +/Ma = F(P(I+o.1o5sds)D-0.525E+0.75L+o.75s*Dist.)i-M0.5255-V0.525E*(Dwain 1088.76 kip-ft R = F P)1+o.1055ds)D-0.525E 109.40 kips x = I Ma/R = 9.95 feet e = I x-(Leg/2) I = 6.05 > 5.33 ft = Lfig/6 Wreq'd = 1.76 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 1832 at dist. = 0.00 ft grain = 0 at dist. = 29.86 ft 121 1-ne 1935 Page 147 of 268 Project:TIGARD HS No: 2016135.00 Page: • Catenaeonevlt•rS a n ng l n e e r s Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) + Ma = I(P(0.6-.14sds)D+0.7E*Dist.);+M0.7E+Vo.7E*(Dwao+Dns) = 1302.77 kip-ft R = F P(o.6-0.14sds)D+o.7E 52.36 kips x = F Ma/R = 24.88 feet e = I x-(Lng/2) I = 8.88 > 5.33 ft = Lng/6 Wregd = 1.18 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 1226 at dist. = 32.00 ft gmin = 0 at dist. = 10.65 ft o ° Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +F Ma = I(P(0.6-.14sds)D-0.7E*Dist.);-M0.7E-V0.7E*(Dwaii+Des) = 164.01 kip-ft R = F P(0.6-0.14sds)D-o.7E ` 52.18 kips x = F Ma/R = 3.14 feet . e = I x-(Lftg/2) I = 12.86 > 5.33 ft = Ln9/6 Wreq•d = 2.66 feet (See Load Case 1 for equations) O.K. For Wng= 4.00 gmax = 2767 at dist. = 0.00 ft groin = 0 at dist. = 9.43 ft o ° Lao 2796 • Page 148 of 268 -"- Project:TIGARD HS No:2016135.00 Page: catena °°n °n1ef1aop engi� rs • Subject:STRIP FTG By: JY Date:3/19/2018 Wall Footing Calculations Project Title: TIGARD HS PDL,LL Project No: 2016135.00 Wall Loc'n: 3.02-13 E_dist 1 < Pao D,,,,,,Input Unfactored Lateral Forces at Top of Wall*: E L S +M-., m= 0.0 k-ft +v V= 0.0 kips l + r_, DS= U./10 a *Except for ME and VE,which shall be strength-based and shall include p and 10%or25%reduction per ASCE 7-05 section 12.13.4. < Lit > DR s Foundation Dimensions: Depth (ft) I Width (ft) I Length(ft)I Xend ITTI I Notes: 18'Bay Wall Footing 1.50 4.00 22.00 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load ( D(kips) ( L(kips) I S(kips) I E(kips) I Dist.(ft) I Description/Location P1 44.4 20.8 15.4 9.4 2.00 P2 29.0 43 21.6 -9.4 20.0 P3 P4 ID P6 P7 Pg P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = Ballow net+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +1 Ma = E(Po+t/Dist.), +ML+VL*(Dwap+Dttg)= 1173.92 kip-ft R = F Pp+L = 132.82 kips x = 1 Ma/R = 8.84 feet e = I x-(Lftg/2) I = 2.16 < 3.67 ft = Lttg/6 Wread = 3.03 feet (See Load Case 1 for equations) O.K. For W110= 4.00 ., gmax = 2399 at dist. = 0.00 ft groin = 620 at dist. = 22.00 ft L.,,1 780 • ttsa Page 149 of 268 Project:TIGARD HS No:2016135.00 Page: • catena ccnse(11ng engineers Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-10) +F Ma = E(P1+5*Dist.); +MS+VS*(Dwaii+Dag)= 1509.12 kip-ft R = E Po+s = 144.72 kips x = F Ma/R = 10.43 feet e = I x-(Lftg/2) I = 0.57 < 3.67 ft = Lftg/6 Wreq'd = 2.40 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 1901 at dist. = 0.00 ft gm;,, = 1388 at dist. = 22.00 ft „ 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea.16-11) +E Ma = F(PD*0.75(L+s)*Dist.); +M0.75(L+S)+V0.75(L+5)*(Dwaii+Dftg) 1489.12 kip-ft R = F PD+0.75(L+S) = 154.30 kips x = F Ma/R = 9.65 feet e = I x-(Lftg/2) I = 1.35 < 3.67 ft = Lftg/6 • 4.00 Wreqd = 3.03feet (See Load Case 1 for equations) O.K.For Wftg= claw. = 2398 at dist. = 0.00 ft gmin = 1 108 at dist. = 22.00 ft L, 843 1098 Load Case 4: (1.0+0.14S„JD+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +E Ma = F(P(1.0+0.14Sds)D+0.7E*Dist.);+Mo.7E+V0.7E*(Dwal+Dftg) = 1031.88 kip-ft R = I P(1.o+0.14sd5)D+0.7E 118.43 kips x = F Ma/R = 8.71 feet e = I x-(Lftg/2) I = 2.29 < 3.67 ft = Lftg/6 Wreqd = 2.10 feet (See Load Case 1 for equations) O.K.. For Wftg= 4.00 gmax = 2185 at dist. = 0.00 ft grain = 506 at dist. = 22.00 ft 179 • Page 150 of 268 Project:TIGARD HS No:2016135.00 Page: catena • e a 1 n e e r r Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 5: (1.0+0.14S„JD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +F Ma = F(P(1.o+0.14sds)D-0.7E*Dist.);-M0.7E-V0.7E*(Dwall+Dng) = 1268.76 kip-ft R = F P(1.o+0.14sds)D-0.7E 118.43 kips x = I Ma/R = 10.71 feet e = I x-(Lft9/2) I = 0.29 < 3.67 ft = Lftg/6 Wreq'd = 1.39 feet (See Load Case 1 for equations) O.K.. For Wftg= 4.00 gmax = 1451 at dist. = 0.00 ft gmin = 1241 at dist. = 22.00 ft 0 �8 2025 Load Case 6: (1+0.105SaJD+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = I(P(1+0.105sd0+0.525E+0.75L+0.755*Dist.);+M0.5255+V0.525E*(Dwa 1478.29 kip-ft R = F PD+0.525E+0.75L+.075 162.33 kips x = I Ma/R = 9.11 feet e = I x-(Lffg/2) I = 1.89 < 3.67 ft = Lttg/6 Wreq'd = 2.69 feet (See Load Case 1 for equations) O.K. . For Wffg= 4.00 gmax = 2797 at dist. = 0.00 ft gmin = 892 at dist. = 22.00 ft 1888 Load Case 7: (1+0.105S,,aD-0.525E+0.75L+0.75S (ASCE 7-1012.4.2.3,Eq.6b) +I Ma = F(Pi1+o.1o5sdsiD-0.525E+o.75L+0.75s*Dist.);-M0.5250-V0.525E1Dwain 1655.95 kip-ft R = F Pi1+o.1o5sd0-0.s25E 162.33 kips x = I Ma/R = 10.20 feet e = I x-(Lffg/2) I = 0.80 < 3.67 ft = Lftg I 6 Wreq'd = 2.16 feet (See Load Case 1 for equations) O.K. For W119= 4.00 gmax = 2246 at dist. = 0.00 ft qm;n = 1443 at dist. = 22.00 ft 121 dna 1935 • Page 151 of 268 Project:TIGARD HS No:2016135.00 Page: • catena °°°°1f1ea �np1n°° Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) + Ma = I(P(0.6-.14sds(D+o.7E*Dist.);+M0.7E+V0.7E*(Dwaii+Dffg) = 509.35 kip-ft R = F P(o.6-0.14$ds)D+o.7E 71.24 kips x = I Ma/R = 7.15 feet e = ( x-(Log/2) I = 3.85 > 3.67 ft = Log/6 L Keg. = 1.59 feet (See Load Case 1 for equations) O.K.. For Wf�9= 4.00 gmax = 1661 at dist. = 0.00 ft gmin = 0 at dist. = 21.45 ft 0 I YIg Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +F Ma = I(P(0.6-.14sds)D-0.7E*Dist.)i-Mo.7E-Vo.7E*(Dwaii+Dff9) = 746.23 kip-ft R = I P(o.6-0.14Sds(D-0.7E = 64.63 kips x = I Ma/R = 11.55 feet e = I x-(Log/2) I = 0.55 < 3.67 ft = Lff9/6 . Wreq'd = 0.81 feet (See Load Case 1 for equations) O.K. For Wog= 4.00 ., gmax = 844 at dist. = 22.00 ft gmin = 625 at dist. = 0.00 ft 0 2798 S Page 152 of 268 Project:TIGARD HS No:2016135.00 Page: catena f °n1 •°0 •11*r. Subject:STRIP FTG By: JY Date:3/19/2018 • '1 Wall Footing Calculations Project Title: TIGARD HS r DL,LL Project No: 2016135.00 Wall Loc'n: 3.02-10 dist _I Input Unfactored Lateral Forces at Top of Wall*: < 1 D„,,, E L S (-NI+mM= 0.0 k-ft +v V= 0.0 kips , + DS= U./IU a+ � . � *Except for ME and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < Log > D flg Foundation Dimensions: Depth (ft) ( Width(ft) I Length(ft)I xend 1111 I Notes: 18'Bay Wall Footing 1.50 4.00 44.00 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load I D(kips) I L(kips) I S(kips) I E(kips) I Dist.(ft) I Description/Location P1 7.3 -0.2 4.8 64.6 2.00 P2 7.0 0.2 4.2 -64.6 20.0 P3 29.4 16.2 6.5 42.0 P4 P5 •P6 P7 P8 P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = Clallow net+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +1 Ma = F(PD+L/Dist.( +ML+V1*(Dwall+Dffg)= 3583.48 kip-ft R = F PD+L = 128.54 kips x = F Ma/R = 27.88 feet e = I x-(Lfrg/2) I = 5.88 < 7.33 ft = Lfrg/6 Wreq'd = 1.66 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 ., gmax = 1316 at dist. = 44.00 ft grain = 145 at dist. = 0.00 ft 1 � 780 1184 • Page 153 of 268 Project:TIGARD HS No:2016135.00 Page: • Catena °onnng °n1ff aleelir s Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea,16-10) +I Ma = F(PD+s*Dist.); +Ms+Vs*(DWa;;+Dftg)= 3266.08 kip-ft R = F Pp+s = 127.84 kips x = I Ma/R = 25.55 feet e = I x-(Lftg/2) I = 3.55 < 7.33 ft = Lftg/6 Wreq'd = 1.36 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 1078 at dist. = 44.00 ft gmin = 375 at dist. = 0.00 ft L 802 850 Load Case 3:D+0.75(L+S) (IBC 1605,3.1.Ea.16-11) +E Ma = F(PD+o.75(L+s)*Dist.)i +M0.75(L+S)+V0.75(L+S)*(DWaii+Dftg) 3687.43 kip-ft R = I PD+0.75(1+5) = 136.12 kips x = I Ma/R = 27.09 feet e = I x-(Lftg/2) I = 5.09 < 7.33 ft = Lftg/6 • Wreq'd = 1.66 feet (See Load Case 1 for equations) O.K.For Wftg= 4.00 gmax = 1310 at dist. = 44.00 ft gmin = 237 at dist. = 0.00 ft L 843 1098 Load Case 4: (1.0+0.14S.JD+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) + Ma _ I(P0.0+0.14sds)D+0.71*Dist.);+M0.7E+V0.7E*(DWaii+Dftg) = 2373.73 kip-ft R = F P(1.o+0.14sd0+0.7E 123.51 kips x = I Ma/R = 19.22 feet e = I x-(Lftg/2) I = 2.78 < 7.33 ft = Lftg/6 Wreq'd = 0.93 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 968 at dist. = 0.00 ft gmin = 436 at dist. = 44.00 ft La 179 S Page 154 of 268 Project:TIGARD HS No:2016135.00 Page: catena e n n l ni:111 • Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 5: (1.0+0.145„JD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +F Ma = I(P(1.0+0.14sds)D-0.7E*Dist.);-M0.70-V0.7E*(Dwall+Dft9) = 4001.65 kip-ft R = F P(1.0+0.14Sds)D-0.7E 123.51 kips x = I Ma/R = 32.40 feet e = I x-(69/2) I = 10.40 > 7.33 ft = Lft9/6 Wreq'd = 1.70 feet (See Load Case 1 for equations) O.K.. For Wn9= 4.00 gmax = 1775 at dist. = 44.00 ft qm;n = 0 at dist. = 9.20 ft 0 2025 Load Case 6: (1+0.105SaJD+0.525E+0.751+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = I(P(1+0.105Sds)D,0.525E,0.75E+0.755*Dist.);+M0.5250+V0.525E1Dw0 3293.12 kip-ft R = F PD+0.525E+0.75L+075 144.49 kips x = I Ma/R = 22.79 feet e = I x-(Ltt9/2) I = 0.79 < 7.33 ft = Lf�9/6 Wreq'd = 0.87 feet (See Load Case 1 for equations) O.K. • For Wff9= 4.00 gmax = 910 at dist. = 44.00 ft qm;n = 732 at dist. = 0.00 ft 1888 Load Case 7: (1+0.105SaJD-0.525E+0.75E+0.75S (ASCE 7-1012.4.2.3,Eq.6b) +I Ma = I(P(1,0.105Sds)D-0.525E+0.75L+0.755*Dist.);-Mo.525E-V0.525E*1Dwa;;1 4514.06 kip-ft R = F P(1+0.105Sds)D-0.525E 144.49 kips x = I Ma/R = 31.24 feet e = I x-(L1�9/2) I = 9.24 > 7.33 ft = Ltt9/6 Wreq'd = 1.81 feet (See Load Case 1 for equations) O.K. For Wff9= 4.00 gmax = 1887 at dist. = 44.00 ft gmin = 0 at dist. = 5.72 ft 121 L9 1935 11110 Page 155 of 268 Project:TIGARD HS No:2016135.00 Page: • catena Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +E Ma = F(P(0.6-.14sds)D+0.7E*Dist.)i+M0.7E+V0.7E*(Dwall+Dftg) = 925.73 kip-ft R = F P(o.6-0.14sd5)D+o.7E 71.34 kips x = I Ma/R = 12.98 feet e = I x-(Lftg/2) I = 9.02 > 7.33 ft = Lftg/6 Wreq'd = 0.88 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 916 at dist. = 0.00 ft groin = 0 at dist. = 38.93 ft o ° 2 Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +F Ma = I(P(0.6.14sdo-0.7E*Dist.);-M0.7E-V0.7E*(Dwaii+Dffg) = 2553.65 kip-ft R = F P(o.6-0.14sds)D-0.7E = 67.40 kips x = I Ma/R = 37.89 feet e = I x-(Lftg/2) I = 15.89 > 7.33 ft = Lffg/6 • Wreq'd = 1.76 feet (See Load Case 1 for equations) O.K.. For Wftg= 4.00 gmax = 1837 at dist. = 44.00 ft (Amin = 0 at dist. = 25.66 ft o--- ° 2796 • Page 156 of 268 Project:TIGARD HS No:2016135.00 Page: catena °°°r°1f1ea en9lnsere Subject:STRIP FTG By:JY Date:3/19/2018 • Wall Footing Calculations Project Title: TIGARD HS pDL,LL Project No: 2016135.00 Wall Loc'n: 3.01-7 —dist __ (-->1'ed Dwdl Input Unfactored Lateral Forces at Top of Wall*: A E L S / \ +rvt M= 0.0 k-ft +v V= 0.0 kips —► y1 Jos= U./10 a 4– *Except for ME and VE,which shall be strength-based and shall include p and 10%or25%reduction per ASCE 7-05 section 12.13.4. < Lflg > Dug Foundation Dimensions: Depth(ft) I Width (ft) I Length (ft)I xend 1111 I Notes: 22 Bay Wall Footing 1.50 4.00 34.00 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load I D(kips) I L(kips) I S(kips) I E(kips) I Dist.(ft) I Description/Location P1 22.0 -3.1 14.6 -56.4 6.00 P2 16.4 1.6 8.3 39.5 28.0 P3 P4 P5 III P6 P7 Pa P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 Q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = sallow net+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +f Ma = F(P0.t/Dist.); +ML+VL*(Dwall+Dftg)= 1519.08 kip-ft R = F Pp+t = 89.94 kips x = F Ma/R = 16.89 feet e = I x-(Lftg/2) I = 0.11 < 5.67 ft = Lttg/6 Wreq'd = 0.85 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 674 at dist. = 0.00 ft clmin = 648 at dist. = 34.00 ft 1 1-.1,780 1164 • Page 157 of 268 Project:TIGARD HS No: 2016135.00 Page: • catena consulting engineers Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-10) +7 Ma = I(PD+s*Dist.); +Ms+Vs*(Dwaii+Dftg)= 1812.88 kip-ft R = F PD+s = 114.34 kips x = I Ma/R = 15.86 feet e = I x-(Lttg/2) I = 1.14 < 5.67 ft = Lftg/6 Wreq'd = 1.28 feet (See Load Case 1 for equations) O.K. For Wng= 4.00 gmax = 101 1 at dist. = 0.00 ft gmin = 671 at dist. = 34.00 ft 1-Ito 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea.16-11) +F Ma = I(PD+o.75)L+s)*Dist.); +M0.75)L+S)+V0.75(L+S)*(Dwaii+Dttg) 1752.53 kip-ft R = F PD+0.75)L+s) = 107.49 kips x = I Ma/R = 16.30 feet e = I x-(Lftg/2) I = 0.70 < 5.67 ft = Lftg/6 • Wreq'd = 1.12 feet (See Load Case 1 for equations) O.K. For Wig= 4.00 gmax = 887 at dist. = 0.00 ft gmin = 693 at dist. = 34.00 ft L 843 1098 Load Case 4: (1.0+0.14S. )D+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +I Ma = I(P)I.0+0.145ds)D+0.7E*Dist.);+M0.7E+V0.7E*(Dwaii+Dfig) = 2178.59 kip-ft R = F P11.0+0.14Sds)D+0.75 88.70 kips x = I Ma/R = 24.56 feet e = I x-(Lftg/2) I = 7.56 > 5.67 ft = Lftg/6 Wreq'd = 1.50 feet (See Load Case 1 for equations) O.K. For Wng= 4.00 gmax = 1566 at dist. = 34.00 ft (Amin = 0 at dist. = 5.68 ft 179 • Page 158 of 268 Project:TIGARD HS No:2016135.00 Page: catena consulting • engineers Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 5: (1.0+0.14Sr,JD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +F Ma = F(P(1.o+0.14sd:)D-0.7E*Dist.);-M0.70-V0.7E*(DwaII+Df�g) = 1103.95 kip-ft R = P)1.0+0.14Sds)D-0.7E 112.36 kips x = I Ma/R = 9.83 feet e = I x-(Lftg/2) I = 7.17 > 5.67 ft = Lf�9/6 Wreq'd = 1.83 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 1906 at dist. = 0.00 ft grain = 0 at dist. = 29.48 ft 0 L 2025 Load Case 6: (1+0.105SnJD+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) + Ma = is(PiI+0.105Sds)D+0.525E+0.75L+0.755*Dist.);+M0.525E+V0.525E*(Dwo 2266.81 kip-ft R = F PD+0.525E+0.75L+.075 105.43 kips x = F Ma/R = 21.50 feet e = I x-(Lfts/2) I = 4.50 < 5.67 ft = Lftg/6 Wreq'd = 1.34 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 1391 at dist. = 34.00 ft gmin = 160 at dist. = 0.00 ft 40) 1668 Load Case 7: (1+0.105SnJD-0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = I(P(1+0.105Sds)D-0.525E+0.75L+0.755*Diist.)i-M0.525E-V0.525E*(Dwain 1460.83 kip-ft R = F P)1+0.105sds)Dv.525E 123.18 kips x = I Ma/R = 11.86 feet e = I x-(Lffg/2) I = 5.14 < 5.67 ft = Lftg/6 Wreq'd = 1.66 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 •, gmax = 1727 at dist. = 0.00 ft grain = 84 at dist. = 34.00 ft 121 L 1935 Page 159 of 268 I Project:TIGARD HS No:2016135.00 Page: 0 Catena CRQSOHing e n p I n e e r s Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 8: (0.61D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +1 Ma = E(P10.6-.14sds)D+0.7E*Dist.)i+Mo 7E+V0.7E*(Dwaii+Dftg) = 1433.05 kip-ft R = F P(0.6-0.14sds)D+0.7E 46.49 kips x = F Ma/R = 30.82 feet e = I x-(Lff9/2) I = 13.82 > 5.67 ft = Lft9/6 Wreq'd = 2.34 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 ., gmax = 2440 at dist. = 34.00 ft gmin = 0 at dist. = 24.47 ft 0 t-e Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +I Ma = I(P10.6-.14$d0-0.7E*Dist.);-M0.7E-V0.7E*(Dwali+Dftg) = 358.41 kip-ft R = I PI0.6-0.14sds)D-0.7E ` 66.69 kips x = I Ma/R = 5.37 feet IIIe = I x-(Lffg/2) I = 11.63 > 5.67 ft = Lftg/6 Wregd = 1.99 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 ., gmax = 2068 at dist. = 0.00 ft gmin = 0 at dist. = 16.12 ft 0 0 L.e 2796 S Page 160 of 268 Project:TIGARD HS No:2016135.00 Page: catena e n ng 31 un let e r s Subject:STRIP FTG By: JY Date:3/19/2018 • Wall Footing Calculations Project Title: TIGARD HS pDL,LL Project No: 2016135.00 Wall Loc'n: 3.01-8 dist > < x:„a Input Unfactored Lateral Forces at Top of Wall*: E L S +rrt M= 0.0 k-ft +v Y V= 0.0 kips a l`' � dos= u./I U *Except for Mr and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < Lag Dflg Foundation Dimensions: I Depth(ft) I Width(ft) I Length(ft)I xend 1111 I Notes: 22'Bay Wall Footing 1.50 4.00 26.00 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load ( D(kips) I L(kips) I S(kips) ( E(kips) I Dist.(ft) I Description/Location P1 6.8 -0.1 4.3 -10.4 2.00 P2 8.2 0.1 6.0 10.5 24.0 P3 P4 P5 • P6 P7 Pg P9 Plo Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = gallow net+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +F Ma = F(POOL/Dist.), +ML+VL*(Dwall+Dffg)= 739.88 kip-ft R = F Pp+L = 55.56 kips x =F Ma/R = 13.32 feet e = I x-(L119/2) I = 0.32 < 4.33 ft = Lfig/6 Wregd = 0.72 feet (See Load Case 1 for equations) O.K. For W110= 4.00 clmax = 573 at dist. = 26.00 ft gm,,, = 495 at dist. = 0.00 ft 1 780 •1184 Page 161 of 268 • Project:TIGARD HS No:2016135.00 Page: • Catena °°°r°(((e9 Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-10) +I Ma = I(PD+s*Dist.); +Ms+Vs*(Davao+D1tg) = 890.28 kip-ft R = F PD+S = 65.86 kips x = I Ma/R = 13.52 feet e = I x-(Lftg/2) I = 0.52 < 4.33 ft = Lftg/6 L Wreq'd = 0.90 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 ., gmax = 709 at dist. = 26.00 ft grain = 558 at dist. = 0.00 ft c L 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea.16-11) +F Ma = F(PD+0.75(L+s)*Dist.); +Mo.75(L+s)+Vo.7s(L+s)*(Dwaii+Dftg) 853.78 kip-ft R = I PD+0.75(L+s) = 63.29 kips x = I Ma/R = 13.49 feet e = I x-(L119/2) I = 0.49 < 4.33 ft = Lftg/6 • 4.00 Wreqe0.86feet (See Load Case 1 for equations) O.K.For Wffg= qr. = 677 at dist. = 26.00 ft Grain = 540 at dist. = 0.00 ft 843 1098 Load Case 4: (1.0+0.145.4D+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) + Ma = I(P(1.0+0.14sd0+0.7E*Dist.)i+M0.7E+V0.7E*(Dwall+Dftg) = 972.85 kip-ft R = I P(1.0+0.14Sds)D+0.7E 61.15 kips x = I Ma/R = 15.91 feet e = I x-(Lftg/2) I = 2.91 < 4.33 ft = Lftg/6 Wreq'd = 0.94 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 max = 983 at dist. = 26.00 ft grain = 193 at dist. = 0.00 ft 0 �e 179 • Page 162 of 268 Project:TIGARD HS No:2016135.00 Page: catena a nn I n1e i • Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 5: (1.0+0.14S„JD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +g Ma = E(P(1.o+o.l4sds)D-o.7E*Dist.)i-M0.7E-V0.7E*(Dwaii+Dftg) = 649.17 kip-ft R = F P)1.0+0.14sds)D-0.7E 61.01 kips x = 7 Ma/R = 10.64 feet e = I x-(Efts/2) I = 2.36 < 4.33 ft = Lf�g/6 Wreq'd = 0.87 feet (See Load Case 1 for equations) O.K. For Wft9= 4.00 gmax = 906 at dist. = 0.00 ft grain = 267 at dist. = 26.00 ft 0 L0 2025 Load Case 6: (1+0.105SnJD+0.525E+0.75L+0.75S (ASCE 7-1012.4.2.3,Eq.6a) +7 Ma = I(P)1+0.105Sds)D+0.525E+0.75L+0.755*Dist.)i+M0.5255+V0.525E*(Dwo 1030.15 kip-ft R = F PD+0.525E+0.75L+.075 67.48 kips x = I Ma/R = 15.27 feet e = I x-(69/2) I = 2.27 < 4.33 ft = Lffg/6 Wreq'd = 0.95 feet (See Load Case 1 for equations) O.K. • For Wffg= 4.00 max = 988 at dist. = 26.00 ft (Amin = 310 at dist. = 0.00 ft 1668 Load Case 7: (1+0.105SnJD-0.525E+0.75E+0.75S (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = 7(Po+0.105Sds)D-0.525E+0.75L+0.755*Dist-)i-M0.525E-V0.525E*(Dwain 787.39 kip-ft R = F P11+0.105Sds)D-0.525E 67.37 kips x = I Ma/R = 11.69 feet e = I x-(Lfr9/2) I = 1.31 < 4.33 ft = Lttg/6 Wreq'd = 0.81 feet (See Load Case 1 for equations) O.K. For Wff9= 4.00 gmax = 844 at dist. = 0.00 ft ciao, = 452 at dist. = 26.00 ft 121 any 1935 • Page 163 of 268 Project:TIGARD HS No:2016135.00 Page: catena angio ting a n g I n e e r s Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +F Ma _ F(P(0.6.14Sds(D+0.7E*Dist.);+M0.7E+V0.7E*(Dwaii+Deg) = 604.45 kip-ft R = F P(0.6-0.14Sds(D+0.7E 34.76 kips x = I Ma/R = 17.39 feet e = I x-(Lftg/2) I = 4.39 > 4.33 ft = Litg/6 Wreq'd = 0.65 feet (See Load Case 1 for equations) O.K. For Weg= 4.00 (Amax = 673 at dist. = 26.00 ft (Amin = 0 at dist. = 0.17 ft 0 Lffe Load Case 9: (0.6)D-0.7E (ASCE 7-1012.4.2.3,Eq.8b) + Ma = 1(P(0.6-.14sd0-0.7E*Dist.);-Mo.7E-V0.7E*(DwaO+Dftg) = 280.77 kip-ft R = F P(0.6-0.14sds)D-0.7E ' 33.27 kips x = I Ma/R = 8.44 feet e = I x-(Efts/2) I = 4.56 > 4.33 ft = Lftg/6 • W,eq'd = 0.63 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 (Amax = 657 at dist. = 0.00 ft (Amin = 0 at dist. = 25.32 ft o ° Le 2796 • Page 164 of 268 Project:TIGARD HS No:2016135.00 Page: catena ee :voun fl en0lrs • Subject:STRIP FTG By: JY Date:3/19/2018 Wall Footing Calculations Project Title: TIGARD HS PDL LL Project No: 2016135.00 Wall Loc'n: 3.02-3 __dist __ xaid Input Unfactored Lateral Forces at Top of Wall*: < D^ E L S '1 +na M= 0.0 k-ft +v '__i V= 0.0 kips DS = U./10 a 1,. T` *Except for ME and VE,which shall be strength-based and shall include p and 10%or25%reduction per ASCE 7-05 section 12.13.4. < Lng > Da, fl_ Foundation Dimensions: Depth(ft) I Width(ft) Length(ft) xend(11) I Notes: 23.67'Bay Wall Footing 1.50 4.00 29.67 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load D(kips) I L(kips) I S(kips) I E(kips) Dist.(ft) I Description/Location P1 82.1 41.2 9.3 -33.5 3.00 P2 52.5 28.2 13.2 33.7 26.7 P3 P4 P5 P66 • P7 P8 P9 F10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q avow gross = 4165 psf* *q allow gross = Clallow net+(displaced soil wt./ffg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +I Ma = F(PD.L/Dist.), +ML+Vi*(Duvall+Dttg)= 3211.23 kip-ft R = F PD5 = 250.29 kips x = F Ma/R = 12.83 feet e = ( x-(Lttg/2) I = 2.00 < 4.95 ft = Lng/6 Wreq'd = 3.75 feet (See Load Case 1 for equations) O.K.. For Wttg= 4.00 gm= = 2964 at dist. = 0.00 ft gmin = 1254 at dist. = 29.67 ft 1 780 • 1184 Page 165 of 268 Project:TIGARD HS No:2016135.00 Page: catena consulting engineers Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-101 +I Ma = F(PD+s*Dist.); +Ms+Vs*(Dwaii+D110)= 2715.03 kip-ft R = F PD+S = 203.39 kips x = F Ma/R = 13.35 feet e = I x-(Lttg/2) I = 1.49 < 4.95 ft = Lftg/6 L Wreg'd = 2.82 feet (See Load Case 1 for equations) O.K. For Wf�9= 4.00 gmax = 2229 at dist. = 0.00 ft gmin = 1 199 at dist. = 29.67 ft C `9 802 850 Load Case 3:D+0.75(L+S) ABC 1605.3.1.Ea.16-11) +F Ma = F(PD+0.750f+s)*Dist.); +Mo.75)L+s)+Vo.7511+51*(Dwaii+Dftg) 3277.35 kip-ft R = F PD+0.75)L+s) = 249.81 kips x = F Ma/R = 13.12 feet e = I x-(Lff9/2) I = 1.72 < 4.95 ft = Lttg/6 . Wreq'd = 3.58 feet (See Load Case 1 for equations) O.K.For Wife= 4.00 gmax = 2835 at dist. = 0.00 ft gm;„ = 1375 at dist. = 29.67 ft II 843 1098 Load Case 4: (1.0+0.14Sae)D+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +E Ma = F(P(1.0+0.14sds)D+0.7E*Dlst.)i+M0.7E+Vo.7E*(Dwan+Dft9) = 3126.26 kip-ft R = I P)1.0+0.14sds)D+0.7E 199.01 kips x = F Ma/R = 15.71 feet e = I x-(Lff9/2) I = 0.87 < 4.95 ft = Lftg/6 Wreq d = 1.90 feet (See Load Case 1 for equations) O.K. For Wft9= 4.00 max = 1973 at dist. = 29.67 ft gmin = 1380 at dist. = 0.00 ft 0 r*e 779 • Page 166 of 268 Project:TIGARD HS No:2016135.00 Page: catena : ' 't' e n o n e e : • Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 5: (1.0+0.14S„JD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +I Ma = E(P(1.o+o.14sds)D-o.7E*Dist.)i-Mo.7E-Vo.7E*(Dwau+Dn9) = 2007.26 kip-ft R = F P(1.o+o.lasdS)D-0.7E 198.73 kips x = I Ma/R = 10.10 feet e = I x-(Lff9/2) I = 4.73 < 4.95 ft = Ltt9/6 Wreq'd = 3.15 feet (See Load Case 1 for equations) O.K. For W1�9= 4.00 max = 3278 at dist. = 0.00 ft groin = 71 at dist. = 29.67 ft 2025 Load Case 6: (1+0.105S.)D+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +F Ma = (P(1+0.105Sds)D+0.525E+0.75L+0.755*Dist.)i+M0.525E+V0.5255*(Dwc 3871.03 kip-ft R = F PD+0.5255+0.75L+.075 263.40 kips x = I Ma/R = 14.70 feet e = I x-(L1�9/2) I = 0.14 < 4.95 ft = Lft9/6 WfeQd = 2.19 feet (See Load Case 1 for equations) O.K. • For Wttg= 4.00 ., gmax = 2282 at dist. = 0.00 ft groin = 2157 at dist. = 29.67 ft Yem 1668 Load Case 7: (1+0.105S„)D-0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = F(Pi1+o.1o5sds)D-0.525E+o.75L+o.75s*Dist.)i-M0.5255-V0.525E*(Dwane 3031.77 kip-ft R = F P11.0.105Sds)D-0.5255 263.19 kips x = I Ma/R = 11.52 feet e = I x-(L119/2) I = 3.32 < 4.95 ft = L1�9/6 Wreq'd = 3.56 feet (See Load Case 1 for equations) O.K. For Wft9= 4.00 ., gmax = 3705 at dist. = 0.00 ft groin = 731 at dist. = 29.67 ft 121 LNI 1935 • Page 167 of 268 Project:TIGARD HS No:2016135.00 Page: • catena enylneers Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +E Ma = F(P(0.6-.14sds)D+o.7E*Dist.)i+M0.7E+V0.7E*(Dwap+Dng) = 1960.32 kip-ft R = I P)0.6-0.14sds)D+0.7E 120.79 kips x = I Ma/R = 16.23 feet e = I x-(Lftg/2) I = 1.39 < 4.95 ft = Lftg/6 Wreq'd = 1.25 feet (See Load Case 1 for equations) O.K. For Wng= 4.00 gmax = 1305 at dist. = 29.67 ft grain = 731 at dist. = 0.00 ft � o Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +E Ma = F(P(0.6-.14sds)D-0.7E*Dist.),-M0.7E-V0.7E*(Dwau+Dng) = 841.31 kip-ft R = f P)0.6-0.14sds)D-0.7E = 108.39 kips x = I Ma/R = 7.76 feet e = I x-(Lftg/2) I = 7.07 > 4.95 ft = Lftg/6 Wreq d = 2.24 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 2327 at dist. = 0.00 ft grain = 0 at dist. = 23.29 ft a ° �e 2796 • Page 168 of 268 lT} //�� Project:TIGARD HS No:2016135.00 Page: catena e n p 1 nietenr s Subject:STRIP FTG By:JY Date:3/19/2018 • Wall Footing Calculations Project Title: TIGARD HS PDL LL Project No: 201 61 35.00 Wall Loc'n: 3.02-4 dist Input Unfacfored Lateral Forces at Top of Wall*: < Dwv E L S , +m M= 0.0 k-ft +v V= 0.0 kips SDS= U./IU a *Except for Mr and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < Lag ` DA, Foundation Dimensions: Depth (ft) I Width(ft) I Length (ft)I )(end(11) I Notes: 23.67'Bay Wall Footing 1.50 4.00 28.67 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load I D(kips) I L(kips) I S(kips) I E(kips) I Dist.(ft) I Description/Location F1 35.1 16.8 7.2 -41.0 2.50 P2 26.6 14.2 4.6 41.0 26.2 F3 F4 PS •P6 F7 P8 F9 F10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = Ballow net+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +F Ma = I(PD+t/Dist.), +ML+VL*(Dwat+Dftg)= 1839.85 kip-ft R = F PD+L = 137.43 kips x = F Ma/R = 13.39 feet e = I x-(Lng/2) ( = 0.95 < 4.78 ft = Lftg/6 Wregd = 1.81 feet (See Load Case 1 for equations) O.K. For Mfg= 4.00 ., gmax = 1436 at dist. = 0.00 ft (Amin = 961 at dist. = 28.67 ft 1 780 •1184 Page 169 of 268 Project:TIGARD HS No:2016135.00 Page: catena enpineari Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-10) +E Ma = E(PD*s*Dist.); +Ms+Vs*(Dwaii+Dffg)= 1564.33 kip-ft R = F PD+S = 118.23 kips x = E Ma/R = 13.23 feet e = I x-(Lffg/2) I = 1.10 < 4.78 ft = Lftg/6 Wreq'd = 1.60 feet (See Load Case 1 for equations) O.K. For Wf1g= 4.00 gma), = 1269 at dist. = 0.00 ft gmin = 793 at dist. = 28.67 ft 0 �s 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea.16-11) +1 Ma = E(PD+o.75(L+s(*Dist.); +Mo.75(L+s)+V0.75(L+s)*(Dwao+D119) ' 1840.23 kip-ft R = E PD+o.7s(L+s( = 138.53 kips x = I Ma/R = 13.28 feet e = I x-(Leg/2) I = 1.05 < 4.78 ft = Lfjg/6 • Wreq'd = 1.86 feet (See Load Case 1 for equations) O.K. For We9= 4.00 qmax = 1474 at dist. = 0.00 ft (Amin = 942 at dist. = 28.67 ft Le 843 1098 Load Case 4: (1.0+0.14SnjD+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +F Ma = E(P(1.0+0.14Sds(D+0.7E*Dist.);+M0.7E+V0.7E*(Dwaii+Deg) = 2247.72 kip-ft R = E P(1.0+0.14sds(D+o.7E 117.00 kips x = E Ma/R = 19.21 feet e = I x-(Lf1g/2) I = 4.88 > 4.78 ft = Lff9/6 Wreq'd = 1.98 feet (See Load Case 1 for equations) O.K.. For Wfr9= 4.00 gmax = 2062 at dist. = 28.67 ft gmin = 0 at dist. = 0.29 ft 0 179 • Page 170 of 268 Project:TIGARD HS No:2016135.00 Page: Catenac°n on e llsinrg • a p l + Subject:STRIP FTG By:JY Date:3/19/2018 Load Case 5: (1.0+0.145„JD-0.7E (ASCE 7-1012.4.2.3,Eq.5b) +F Ma = 7(P(1.o+o.14sds)D-0.7E*Dist.);-M0.70-V0.7E*(Dwaii+Dn9) = 887.34 kip-ft R = 7 P(1.0+0.14Sds)D-0.7E 117.00 kips x = I Ma/R = 7.58 feet e = I x-(Lftg/2) I = 6.75 > 4.78 ft = Lftg/6 W,egd = 2.47 feet (See Load Case 1 for equations) O.K.. For Wf19= 4.00 gmax = 2571 at dist. = 0.00 ft gmin = 0 at dist. = 22.75 ft 0 L,B 2025 Load Case 6: (1+0.105ShJD+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = F(P;1.0.10ssds1D+0.525E+0.75L+0.75s*Dist.);+M0.525E+V0.525E*(Dwa 2456.66 kip-ft R = F PD+0.525E+0.75L+.075 146.46 kips x = I Ma/R = 16.77 feet e = I x-(Lftg/2) ) = 2.44 < 4.78 ft = Lftg/6 W,eq'd = 1.85 feet (See Load Case 1 for equations) O.K. • For Wft9= 4.00 gmax = 1929 at dist. = 28.67 ft gmin = 625 at dist. = 0.00 ft 419 1668 Load Case 7: (1+0.105S„JD-0.525E+0.75L+0.75S (ASCE 7-1012.4.2.3,Eq.6b) +7 M0 = F(Po+0.105sds)D-0.525E+0.75L+0.75s*Dist.)i-M0.525E-V0.525E*(Dwane 1436.38 kip-ft R = F PI1+O.lo5sds)D-0.525E 146.46 kips x = I Ma/R = 9.81 feet e = I x-(Lftg/2) I = 4.53 < 4.78 ft = Lftg/6 W,eq d = 2.39 feet (See Load Case 1 for equations) O.K. For Wfig= 4.00 max = 2487 at dist. = 0.00 ft gmin = 67 at dist. = 28.67 ft 121 Lns 1935 • Page 171 of 268 catena Project:TIGARD HS No:2016135.00 Page: • conaolting .n a 1 n e e a Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +F Ma = E(P(o.6.14sd:(D+o.7E*Dist.);+M0.7E+V0.7E*(Dwall+Dftg) = 1535.67 kip-ft R = E P(0.6-0.14Sds(D+0.7E 69.41 kips x = E Ma/R = 22.13 feet e = I x-(Efts/2) I = 7.79 > 4.78 ft = Ltt9/6 Wreq d = 1.70 feet (See Load Case 1 for equations) O.K.. For Wfi9= 4.00 ., gmax = 1768 at dist. = 28.67 ft gmin = 0 at dist. = 9.04 ft c o �e Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +E Ma = E(P(0.6-.14sds(D-0.7E*Dist.);-Mo.7E-V0.7E*(Dwao+Dfig) = 175.29 kip-ft R = E P(0.6-0.14Sds)D-0.7E ' 63.86 kips x = E Ma/R = 2.75 feet • e = I x-(Lfi9/2) I = 11.59 > 4.78 ft = Lff9/6 Wreq'a = 3.72 feet (See Load Case 1 for equations) O.K. For Wft9= 4.00 gmax = 3877 at dist. = 0.00 ft qm;n = 0 at dist. = 8.24 ft 0 0 • 2796 Page 172 of 268 _, Project:TIGARD HS No:2016135.00 Page: catena e n 9 l nle err i Subject:STRIP FTG By: JY Date:3/19/2018 • Wall Footing Calculations Project Title: TIGARD HS PDLLL Project No: 2016135.00 Wall Loc'n: 3.02-2 —dist 1 Input Unfactored Lateral Forces at Top of Wall*: < A X.nd Dµ,*„ E L S r'- ' +mt M= 0.0 k-ft +v V= 0.0 kips l> DS= U./I U a *Except for ME and VE,which shall be strength-based and shall include p and 10%or25%reduction per ASCE 7-05 section 12.13.4. I< Leg I D ftg Foundation Dimensions: Depth (ft) I Width (ft) I Length (ft) xend(11) Notes: 24.25'Bay Wall Footing 1.50 4.00 28.25 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load I D(kips) I L(kips) S(kips) E(kips) Dist.(ft) I Description/Location PI 71.7 33.1 15.4 -45.2 2.00 P2 75.2 46.4 15.0 46.5 26.3 P3 P4 III P5 P6 P7 P8 P9 Pio Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = Ballow net+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +F Ma = E(Pp+L/Dist.); +ML+VL*(Dwall+Df}g)= 4024.09 kip-ft R = I Pp+L = 270.47 kips x = I Ma/R = 14.88 feet e = I x-(Lffg/2) I = 0.75 < 4.71 ft = Lttg/6 Wreq'd = 3.51 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 ., qrnax = 2776 at dist. = 28.25 ft gmin = 2011 at dist. = 0.00 ft 1 4w leo ltea 411 Page 173 of 268 Project:TIGARD HS No:2016135.00 Page: 9e: • catena :v° e°i Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-10) + Ma = E(PD+s*Dist.); +Ms+Vs*(Dwaii+Dn9) = 3164.44 kip-ft R = E PD+s = 221.37 kips x = E Ma/R = 14.29 feet e = I x-(Lftg/2) I = 0.17 < 4.71 ft = Lftg/6 Wregd = 2.57 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 max = 2030 at dist. = 28.25 ft gmin = 1888 at dist. = 0.00 ft C L*g 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea.16-11) +F Ma = E(PD+o.75(L+s)*Dist.)i +M0.75)L+S)+V0.75)L+S)*(Dwaii+Dag) 4021.45 kip-ft R = E PD+0.7slL+s) = 273.40 kips x = E Ma/R = 14.71 feet e = I x-(Lftg/2) I = 0.58 < 4.71 ft = Lftg/6 • 4.00 Wreqd = 3.44feet (See Load Case 1 for equations) O.K.For Wftg= gmax = 2720 at dist. = 28.25 ft gmin = 2119 at dist. = 0.00 ft L 843 1098 Load Case 4: (1.0+0.145„S)D+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +F Ma = E(Pti.o+0.14sd0D+0.7E*Dist.)i+M0.7E+V0.7E*(Dwaii+Dftg) = 3803.39 kip-ft R = E P(1.0+0.14Sds)D+0.7E 210.86 kips x = I Ma/R = 18.04 feet e = I x-(Lftg/2) I = 3.91 < 4.71 ft = Lf19/6 Wreq'd = 3.28 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 q 03 = 3417 at dist. = 28.25 ft gmin = 315 at dist. = 0.00 ft 0 `Tg 179 Page 174 of 268 Project:TIGARD HS No:2016135.00 Page: ca#ena • •npinsrs Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 5: (1.0+0.145„JD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +F Ma = I(P(1.0+0.14sds)D-0.7E*Dist.);-M0.7E-V0.7E*(Dwaii+Dffg) = 2221.08 kip-ft R = F P)1.o+o.14sds)D-0.7E 209.04 kips x = I Ma/R = 10.63 feet e = I x-(Lft9/2) I = 3.50 < 4.71 ft = Lffg/6 Wreq'd = 3.10 feet (See Load Case 1 for equations) O.K. For Wf�9= 4.00 gmax = 3225 at dist. = 0.00 ft gmin = 475 at dist. = 28.25 ft 4r, 2025 Load Case 6: (1+0.105SnaD+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = I(P(1+0.1053ds)D+0.525E+0.75L+0.755*Dist.);+M0.525E+V0.525E*(Dwc 4819.08 kip-ft R = F PD+0.525E+0.75L+.075 288.31 kips x = I Ma/R = 16.71 feet e = I x-(Lftg/2) I = 2.59 < 4.71 ft = Lffg/6 Wreq'd = 3.80 feet (See Load Case 1 for equations) O.K. • For Wftg= 4.00 cimax = 3955 at dist. = 28.25 ft gmin = 1 148 at dist. = 0.00 ft 1688 Load Case 7: (1+0.105SnJD-0.525E+0.75L+0.75S (ASCE 7-1012.4.2.3,Eq.6b) +I Ma = F(P(1+0.105Sds)D-0.525E+0.75L+0,755*Dist.)i-M0.525E-V0.525E*(Dwain 3632.34 kip-ft R = F P)1+o.1o5sds)D-0.525E 286.95 kips x = I Ma/R = 12.66 feet e = I x-(Efts/2) I = 1.47 < 4.71 ft = Lffg/6 Wreq'd = 3.20 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 3330 at dist. = 0.00 ft gmin = 1748 at dist. = 28.25 ft • 121 Lrtg 1935 • Page 175 of 268 j Proect:TIGARD HS No:2016135.00 Page: • Catena engin e teinrg a n p 1 n s Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 8: (0.MD+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +F Ma _ F(P10.6-.I4Sds1D+0.7E*Dist.)i+Mo.7E+Vo 7E*(Dwa1l+Dftg) = 2435.09 kip-ft R = F P(0.6-0.14Sds)D+0.7E 128.71 kips x = I Ma/R = 18.92 feet e = I x-(L09/2) I = 4.79 > 4.71 ft = Lft9/6 Wreq'd = 2.21 feet (See Load Case 1 for equations) O.K.. For Wfta= 4.00 gmax = 2299 at dist. = 28.25 ft groin = 0 at dist. = 0.26 ft 0 2 Load Case 9: (0.61D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +F Ma = I(P(0.6-.14Sds)D-0.7E*Dist.)i-M0.7E-V0.7E*(Dwa11+Dag) = 852.78 kip-ft R = F P(o.6-0.14sds)D-0.7E = 113.67 kips x = I Ma/R = 7.50 feet e = I x-(Lft9/2) I = 6.62 > 4.71 ft = Lag/6 • Wreq'd = 2.43 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 ., gmax = 2525 at dist. = 0.00 ft groin = 0 at dist. = 22.51 ft o 0 E*e 2796 • Page 176 of 268 Project:TIGARD HS No:2016135.00 Page: Catena ceonrulfing ngineers Subject:STRIP FTG By: JY Date:3/19/2018 • Wall Footing Calculations Project Title: TIGARD HS PDL,LL Project No: 2016135.00 Wall Loc'n: 3.02-8 —dist 1 Input Unfactored Lateral Forces at Top of Wall*: E L S M= 0.0 k-ft +v `�+tvt V= 0.0 kipsY JDs= U./IU *Except for ME and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < LRg > 13,5 Foundation Dimensions: Depth (ft) I Width (ft) Length(ft)I xend 1111 Notes: 25'Bay Wall Footing 1.50 4.00 29.00 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load D(kips) ) L(kips) ) S(kips) ) E(kips) Dist.(ft) I Description/Location Fi 13.3 0.0 12.5 10.7 2.00 P2 10.5 0.0 9.9 -10.7 27.0 P3 P 4 P5 •P6 P7 P 8 P9 Flo Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = . 4165 psf* *q allow gross = Ballow net+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +I Ma = F(P0,1/Dist.), +ML+VL*(Duvall+Dftg)= 966.08 kip-ft R = F PD+t = 69.04 kips x = F Ma/R = 13.99 feet e = I x-(60/2) I = 0.51 < 4.83 ft = Lttg/6 Wreq'd = 0.83 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 gmax = 658 at dist. = 0.00 ft gmin = 533 at dist. = 29.00 ft I-ft 1 780 1184 • Page 177 of 268 Project:TIGARD HS No:2016135.00 Page: • catena Consulting engineers Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-10) +E Ma = F(PD+s*Dist.); +Ms+Vs*(Dwain+Des)= 1258.38 ]kip-ft R = FPD+s = 91.44 kips x = F Ma/R = 13.76 feet e = I x-(Lftg/2) I = 0.74 < 4.83 ft = Lffg/6 Wreq'd = 1.15 feet (See Load Case 1 for equations) O.K.. For Wftg= 4.00 gmax = 909 at dist. = 0.00 ft ciao, = 668 at dist. = 29.00 ft 0 L 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea.16-11) +1 Ma = F(PD+0.75a+s)*Dist.); +Mo.75(r+s)+V0.75(L+s)*(Dwaii+Dfrs) 1185.31 kip-ft R = F PD+0.75)L+s) = 85.84 kips x = I Ma/R = 13.81 feet e = I x-(Lffg/2) ) = 0.69 < 4.83 ft = Lffg/6 • Wreq'd = 1.07 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 qmax = 846 at dist. = 0.00 ft gm*, = 634 at dist. = 29.00 ft L1, 843 1098 Load Case 4: (1.0+0.14SnJD+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +F Ma = I(PIL0+0.14sds)D+0.7E*Dist.);+M0.7E+V0.7E*(Dwan+Dreg) = 874.86 kip-ft R = F P(1.0+0.14Sds)D+0.7E 75.90 kips x = I Ma/R = 11.53 feet e = I x-(Lffg/2) I = 2.97 < 4.83 ft = Lftg/6 Wreq'd = 1.02 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 1057 at dist. = 0.00 ft clam = 252 at dist. = 29.00 ft 0 �e 179 • Page 178 of 268 Project:TIGARD HS No:2016135.00 Page: catenaeeoonoaiene.r�ltlep • Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 5: (1.0+0.14S.)D-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +E Ma = F(Pl1.o+o.14sd:10-o.7E*Dist.)i-Mo.7E V0.7E1Dwaii+Dftg) 1249.36 kip-ft R = F P)1.o+o.14sds)D-0.7E 75.90 kips x = F Ma/R = 16.46 feet e = I x-(Lftg/2) I = 1.96 < 4.83 ft = Lftg/6 Wreq'd = 0.88 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 Qmax = 920 at dist. = 29.00 ft Qmin = 389 at dist. = 0.00 ft 0 s �e 2025 load Case 6: (1+0.105Sh)D+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +F Ma = F(P;;*0.lossd,)D,0525E.0.75E+o.75s*Dist.);+M0.525E+V0.525E*(Dwc 1 116.89 kip-ft R = F PD,0.525E+0.75L+.075 90.99 kips x = I Ma/R = 12.28 feet e = I x-(Lftg/2) I = 2.22 < 4.83 ft = Lttg/6 Wreq'd = 1.10 feet (See Load Case 1 for equations) O.K.. For Wfig= 4.00 Qmax = 1 145 at dist. = 0.00 ft Qmin = 423 at dist. = 29.00 ft 1668 Load Case 7: (1+0.105S„JD-0.525E+0.75E+0.75S (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = F(P(1+0.1o5sds)D-0.525E+0.75L+0.755*Dist.)iM0.525E-V0.525E*(Dwain 1397.76 kip-ft R = F P)1+o.1o5sds)D-0.525E 90.99 kips x = I Ma/R = 15.36 feet e = I x-(L119/2) I = 0.86 < 4.83 ft = Lftg/6 Wreq'd = 0.89 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 Qmax = 924 at dist. = 29.00 ft Qmin = 644 at dist. = 0.00 ft 121 L, 1935 • Page 179 of 268 Project:TIGARD HS No:2016135.00 Page: catena consulting engineers Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +f Ma _ F(P(o.6-.14sds(D+0.7E*Dlst.)1+Mo 7E+Vo 7E*(Dwa;;+Dng) = 392.40 kip-ft R = F P(o.6-0.14sds)D+o.7E 43.57 kips x = F Ma/R = 9.01 feet e = I x-(Lttg/2) I = 5.49 > 4.83 ft = Lftg/6 Wreq'a = 0.77 feet (See Load Case 1 for equations) O.K.. For Wftg= 4.00 .. gmax = 806 at dist. = 0.00 ft gmin = 0 at dist. = 27.02 ft 0 Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +E Ma = I(P(0.6-.14sds(D-0.7E*Dist.);-Mo.7E-V0.7E*(Dwaii+Dftg) = 766.90 kip-ft R = I P(o.6-0.14sds)D-o.7E = 41.42 kips x = I Ma/R = 18.51 feet • e = I x-(Lttg/2) I = 4.01 < 4.83 ft = Ltrg/6 Wregd = 0.63 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 max = 654 at dist. = 29.00 ft gmin = 61 at dist. = 0.00 ft 0 � Lt, 2798 Page 180 of 268 ; Project:TIGARD HS No:2016135.00 Page: Catena e n s I niete1 i Subject:STRIP FTG By: JY Date: 3/19/2018 • Wall Footing Calculations Project Title: TIGARD HS PDLLL Project No: 2016135.00 Wall Loc'n: 3.02-9 <_dot 1 Input Unfactored Lateral Forces at Top of Wall*: D"" E L Sl^1 +mM= 0.0 k-ft +v ' V= 0.0 kips —� DS= U./I U a I-A- *Except for ME and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < Lit 1 D flg Foundation Dimensions: Depth (ft) I Width (ft) I Length (ft)I xend(T1) I Notes: 25'Bay Wall Footing 1.50 4.00 31.00 1 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load I D(kips) I L(kips) I S(kips) I E(kips) I Dist.(ft) I Description/Location P1 21.5 -0.1 19.0 35.1 3.00 P2 16.1 0.1 13.3 -35.1 28.0 P3 P4 P5 P6 4111 P7 P8 P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = Ciallow net+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +I Ma = I(PD+t/Dist.); +ML+VL*(Dwall+Dttg)= 1267.38 kip-ft R = FPD+L = 85.96 kips x = F Ma/R = 14.74 feet e = I x-(Lttg/2) I = 0.76 < 5.17 ft = Lftg/6 Wreq'd = 1.00 feet (See Load Case 1 for equations) O.K. For W00= 4.00 ., gmax = 795 at dist. = 0.00 ft clmin = 592 at dist. = 31.00 ft I-N, 1 780 1184 Ill Page 181 of 268 -.,,.. Project:TIGARD HS No:2016135.00 Page: catena/ B On, �t�nO • / 9 1'In e e r s Subject:STRIP FTG By: JY Date: 3/19/2018 qua Load Case 2:D+S (IBC 1605.3.1,Ea.16-10) +F Ma = E(PD+s*Dist.); +Ms+Vs*(Dwaii+Dftg) = 1694.28 kip-ft R = I PD+S = 1 18.26 kips x = I Ma/R = 14.33 feet e = I x-(Lft9/2) I = 1.17 < 5.17 ft = Lft9/6 Wreq'd = 1.48 feet (See Load Case 1 for equations) O.K. For Wft9= 4.00 gmax = 1 170 at dist. = 0.00 ft gmin = 737 at dist. = 31.00 ft L 802 850 Load Case 3:D+0.75(1+S) (IBC 1605.3.1.Ea.16-11) +F Ma = F(PD+o.75(L+s)*Dist.); +Mo.7s(L+s)+Vo.75(L+s)*(Dwao+Dftg) 1588.81 kip-ft R = I PD+0.75)1.+s) = 110.19 kips x = I Ma/R = 14.42 feet e = I x-(Ltt9/2) I = 1.08 < 5.17 ft = Lft9/6 • Wreq d = 1.36 feet (See Load Case 1 for equations) O.K. For Wft9= 4.00 gmax = 1074 at dist. = 0.00 ft gr.,* = 703 at dist. = 31.00 ft Le 843 1098 Load Case 4: (1.0+0.145 JD+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) + Ma = I(P(1.0+0.145ds)D+0.7E*Dist.);+M0.7E+V0.7E*(DwaIi+Dftg) = 776.36 kip-ft R = F P(1.o+o.14sd$)D+o.7E 94.50 kips x = I Ma/R = 8.22 feet e = I x-(L119/2) I = 7.28 > 5.17 ft = Lft9/6 Wreq'd = 1.84 feet (See Load Case 1 for equations) O.K. For Wft9= 4.00 ., gmax = 1917 at dist. = 0.00 ft gmin = 0 at dist. = 24.65 ft �9 179 • Page 182 of 268 • Project:TIGARD HS No:2016135.00 Page: catena °n,�1t1n9 enyloaar, Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 5: (1.0+0.14S„JD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +F Ma = F(P(I.o+0.145ds)D-0.70*Dist.)1-M0.7E-Vo.7E*(Dwau+Dn9) = 2004.86 kip-ft R = F P(1.0+0.14sdS)D-0.7E 94.50 kips x = I Ma/R = 21.21 feet e = I x-(Lftg/2) I = 5.71 > 5.17 ft = Lft9/6 Wregd = 1.55 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 qmax = 1610 at dist. = 31.00 ft gmin = 0 at dist. = 1.64 ft 0 r �e 2025 Load Case 6: (1+0.105SnaD+0.525E+0.751+0.75S (ASCE 7-1012.4.2.3,Eq.6a) +I Ma = F(P(1+0.105Sds)D+0.525E+0.751+0.755*Dist.)i+M0.525E+V0.525E*(Dwo 1222.41 kip-ft R = F PD+0.525E+0.751+.075 116.59 kips x = I Ma/R = 10.48 feet e = I x-(Lftg/2) I = 5.02 < 5.17 ft = Lftg/6 Wregd = 1.78 feet (See Load Case 1 for equations) O.K. • For Wftg= 4.00 ., gmax = 1853 at dist. = 0.00 ft gmin = 27 at dist. = 31.00 ft 1668 Load Case 7: (1+0.1055.1D-0.525E+0.751+0.75S (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = I(Po+o.1o5sds)D-0.525E+0.751+o.75s*Dist.)i-M0.5250-V0.525E*(Dwarf 2143.79 kip-ft R = F P(1+0.105Sd5)D-0.525E 116.59 kips x = I Ma/R = 18.39 feet e = I x-(I-fig/2) I = 2.89 < 5.17 ft = Lftg/6 Wreq d = 1.41 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 1466 at dist. = 31.00 ft gmin = 415 at dist. = 0.00 ft 121 any 1935 • Page 183 of 268 Project:TIGARD HS No:2016135.00 Page: • Catena a n p i n e e r s Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +F Ma = I(P(0.6-.14sds(D+0.7E*Dist.);+M0.7E+V0.7E*(Dwail+Dftg) = 144.68 kip-ft R = 7 P(O.6-0.14Sds)D+0.7E 54.96 kips x = 7 Ma/R = 2.63 feet e = I x-(Lftg/2) I = 12.87 > 5.17 ft = Ltt9/6 Wreq•d = 3.34 feet (See Load Case 1 for equations) O.K.. For Wn9= 4.00 gmax = 3480 at dist. = 0.00 ft gmin = 0 at dist. = 7.90 ft �e Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) + Ma = 7(P(0.6..14sds)D-0.7E*Dist.);-Mo.7E-V0.7E*(Dwan+Dftg) = 1373.18 kip-ft R = F P(o.6-0.14Sds)D-0.7E ' 51.58 kips x = F Ma/R = 26.62 feet • e = I x-(Lh9/2) I = 11.12 > 5.17 ft = Lftg/6 Wreq'd = 1.89 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 1965 at dist. = 31.00 ft gmin = 0 at dist. = 17.87 ft 0 0 2796 i Page 184 of 268 Project:TIGARD HS No:2016135.00 Page: catena °°;',un • . a I e •r 3 Subject:STRIP FTG By: JY Date:3/19/2018 Wall Footing Calculations Project Title: TIGARD HS PDL,LL Project No: 2016135.00 Wall Loc'n: 3.01-11 dist 1 < >I"a'° D„,gi Input Un factored Lateral Forces at Top of Wall*: E L S +tut M= 0.0 k ft +v ,� Y V= 0.0 kips a k DS= U./1U *Except for ME and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. I< Lk \ Dag Foundation Dimensions: I Depth (ft) I Width(ft) I Length(ft)I xend 011 I Notes: 25'Bay Wall I Footing 1.50 1 4.00 39.00 0.00 Surcharge I 1.50 Unfactored Gravity Loads: Load I D(kips) I L(kips) I S(kips) ) E(kips) ) Dist.(ft) I Description/Location P1 78.4 29.5 27.3 97.8 7.00 P2 81.3 30.3 27.6 -96.2 32.0 P3 P4 •P5 P6 P7 P8 P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = gallow net+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +F Ma = I(PD,_/Dist.); +ML+VL*(Dwall+Dftg)= 5512.88 kip-ft R = I PD+L = 280.34 kips x = E Ma/R = 19.66 feet e = I x-(Lttg/2) I = 0.16 < 6.50 ft = Lttg/6 Wreq'd = 2.33 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 ., qmax = 1843 at dist. = 39.00 ft gm,,, = 1751 at dist. = 0.00 ft 1 780 1184 • Page 185 of 268 Project:TIGARD HS No:2016135.00 Page: . catena Subject:STRIP FTG By:JY Date:3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-10) +F Mo = I(PD+s*Dist.); +Ms+VS*(Dwa;;+Deg)= 5411.08 kip-ft R = I PD+S = 275.44 kips x = I Ma/R = 19.65 feet e = I x-(Lftg/2) I = 0.15 < 6.50 ft = Lffg/6 Wreq'd = 2.28 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 ., gmax = 1805 at dist. = 39.00 ft gmin = 1726 at dist. = 0.00 ft C fine 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1,Ea.16-11) +E Ma = E(PD+0.75)L+s)*Dist.)i +M0.75)L+S)+V0.75)L+5)*(Dwain+Deg) 6024.58 kip-ft R = I PD+0.75)L+s) = 306.57 kips x = F Ma/R = 19.65 feet e = I x-(Lftg/2) I = 0.15 < 6.50 ft = Lttg/6 • Wreq'd = 2.54 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 2011 at dist. = 39.00 ft gmin = 1919 at dist. = 0.00 ft L, 843 1098 Load Case 4: (1.0+0.145 )D+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +Z Ma = I(PII.0+0.14sds)D+0.7E*Dist.)i+M0.7E+V0.7E*(Dwaii+Dffg) = 3092.20 kip-ft R = F P)1.0+0.14Sds)D+0.7E 243.58 kips x = I Ma/R = 12.69 feet e = I x-(L110/2) I = 6.81 > 6.50 ft = Lf,g/6 Wreq'd = 3.07 feet (See Load Case 1 for equations) O.K. For Weg= 4.00 .. gmax = 3198 at dist. = 0.00 ft grain = 0 at dist. = 38.08 ft 0 179 • Page 186 of 268 Project:TIGARD HS No:2016135.00 Page: catena conrulting • a n g l n e e r r Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 5: (1.0+0.14Sn)D-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +I Ma = E(P(1.o+o.14sd:,D-o.7E*Dist.);-Mo.7E-Vo.7E*(Dwan+Dttg) = 6443.52 kip-ft R = F P11.o+o.lasds)D-0.75 241.34 kips x = F Ma/R = 26.70 feet e = I x-(Lttg/2) I = 7.20 > 6.50 ft = Lft9/6 WfeQ'd = 3.14 feet (See Load Case 1 for equations) O.K.. For Wft9= 4.00 ., rax = 3270 at dist. = 39.00 ft groin = 0 at dist. = 2.10 ft L„, 2025 Load Case 6: (1+0.105SnaD+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +F Ma = 1.(Pn+0.105Sds)D+0.525E+0.75L+0.75s*DISI.);+M0.5255+V0.525E1Dwc 5091.14 kip-ft R = F PD+05255+0.75L+.075 323.85 kips x = F Ma/R = 15.72 feet e = I x-(L09/2) I = 3.78 < 6.50 ft = Lfr9/6 Wreq d = 3.15 feet (See Load Case 1 for equations) O.K. • For Wf�9= 4.00 gmax = 3283 at dist. = 0.00 ft groin = 869 at dist. = 39.00 ft Ytie 1688 Load Case 7: (1+0.105S.)D-0.525E+0.75L+0.75S (ASCE 7-1012.4.2.3,Eq.6b) +I Ma = F(P(1+0.105Sds)D-0.525E+0.75L+0.755*Dist.);-M0.5255-V0.525E*(Dwall1 7604.63 kip-ft R = F P11+0.1oSsds)D-0.5255 322.17 kips x = I Ma/R = 23.60 feet e = I x-(L110/2) I = 4.10 < 6.50 ft = L09/6 Wreq d = 3.24 feet (See Load Case 1 for equations) O.K. For W1tg= 4.00 ., gmax = 3369 at dist. = 39.00 ft groin = 761 at dist. = 0.00 ft 121 Lk, 1935 • Page 187 of 268 Project:TIGARD HS No: 2016135.00 Page: Catena • ° ` Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 8: (0.61D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +E Ma = F(P(0.6-.14sds1D+o.7E*Dist.);+M0.7E+V0.7E*(Dwap+Dffg) = 926.41 kip-ft R = F P(0.6-0.14Sds(D+0.7E 147.82 kips x = I Ma/R = 6.27 feet e = I x-(Lff9/2) I = 13.23 > 6.50 ft = Lffg/6 Wreq d = 3.78 feet (See Load Case 1 for equations) O.K.. For Wfkg= 4.00 max = 3931 at dist. = 0.00 ft gmin = 0 at dist. = 18.80 ft o Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +F Ma = F(P(o.6-.14sds1D-o.7E*Dist.);-M0.7E-V0.7E*(Dwaii+Dffg) = 4277.73 kip-ft R = F P(o.6-0.14sds)D-0.7E = 131.20 kips x = E Ma/R = 32.60 feet e = I x-(Lffg/2) I = 13.10 > 6.50 ft = Lffg/6 4110 Wreq•d = 3.28 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 max = 3419 at dist. = 39.00 ft gmin = 0 at dist. = 19.81 ft o ° 2796 • Page 188 of 268 Project:TIGARD HS No:2016135.00 Page: catena °°° an1efa r 1p i e n p l t Subject:STRIP FTG By: JY Date: 3/19/2018 Wall Footing Calculations Project Title: TIGARD HS pDLLL Project No: 2016135.00 Wall Loc'n: 3.01-13 dist > < 1 D„, Input Unfactored Lateral Forces at Top of Wall*: E L S ^ +M'. M= 0.0 k-ft +v / 4, _. V= 0.0 kips i DS= U./10 a�` rT *Except for ME and VE,which shall be strength-based and shall include p and 10%or25%reduction per ASCE 7-05 section 12.13.4. < Lag >I D flg Foundation Dimensions: Depth(ft) I Width(ft) Length(ft)I Xend(Ill I Notes: 25.5 Bay Wall Footing 1.50 4.00 39.50 1 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load D(kips) I L(kips) S(kips) I E(kips) I Dist.(ft) I Description/Location Pt 26.7 12.1 4.4 63.8 7.00 P2 51.4 22.7 14.1 -63.9 32.5 P3 P4 P5 • I P6 P7 P8 P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = Ciallow net+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +E Ma = E(Po+t/Dist.), +ML+VL*(Dwatt+Dttg)= 3896.85 kip-ft R = F Pp+1 = 174.52 kips x = F Ma/R = 22.33 feet e = I x-(Lftg/2) I = 2.58 < 6.58 ft = Lttg/6 Wreq'd = 1.94 feet (See Load Case 1 for equations) O.K. For W11g= 4.00 gmax = 1537 at dist. = 39.50 ft gmin = 672 at dist. = 0.00 ft � 1 780 neoill Page 189 of 268 Project:TIGARD HS No:2016135.00 Page: Catenaconsolfing e n p l n e e r on Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-10) +E Ma = F(PD+s*Dist.); +Ms+Vs*(Dwau+Dftg)= 3563.45 kip-ft R = F PD+s = 158.22 kips x = F Ma/R = 22.52 feet e = I x-(Lff9/2) I = 2.77 < 6.58 ft = Lftg/6 Wreq d = 1.80 feet (See Load Case 1 for equations) O.K.. For Wftg= 4.00 ., gmax = 1423 at dist. = 39.50 ft (Amin = 580 at dist. = 0.00 ft E (Ac 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1,Ea.16-111 +I Ma = F(PD+0.750.+s)*Dist.)i +Mo.75(L+s)+Vo.75(L+s)*(Dwau+D»g) 4058.02 kip-ft R = F PD+0.75(L+s) = 179.70 kips x = E Ma/R = 22.58 feet e = I x-(Lft9/2) I = 2.83 < 6.58 ft = Lf�9/6 • 4.00 Wregd = 2.06feet (See Load Case 1 for equations) O.K.For Wftg= gmax = 1627 at dist. = 39.50 ft (Amin = 648 at dist. = 0.00 ft L 843 1098 Load Case 4: (1.0+0.145.1D+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +F Ma = E(P0.0+0.14Sds)D+0.7E*Dist.);+M0.75+V0.7E*(Dwau+Dftg) = 2238.88 kip-ft R = I P(1.0+0.145ds)D+0.7E 153.54 kips x = I Ma/R = 14.58 feet e = I x-(Lft9/2) I = 5.17 < 6.58 ft = Lftg/6 Wreq'd = 1.67 feet (See Load Case 1 for equations) O.K. For Ng= 4.00 ., gmax = 1735 at dist. = 0.00 ft (Amin = 209 at dist. = 39.50 ft 0 �e 179 • Page 190 of 268 Project:TIGARD HS No:2016135.00 Page: co onngsunletel Subject:STRIPFTG BY: JY Date: 3/19/2018 • Catena i Load Case 5: /(1.0+0.145 JD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) + Ma = I(P(1.0+0.14sds)D.o 7E*Dist.);-Mo.7E-V0.7E'(Dwa;;+Dffg) = 4521.09 kip-ft R = I P(1.0+0.14Sds)D-0.7E 153.68 kips x = I Ma/R = 29.42 feet e = I x-(Lffg/2) I = 9.67 > 6.58 ft = Lffg/6 Wreq d = 2.44 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 2541 at dist. = 39.50 ft gmin = 0 at dist. = 9.26 ft 1 0 �Xg 2025 Load Case 6: (1+0.105SnaD+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +F Ma = F(P(1+0.105Sds)D+0.525E+0.75L+0.755*Dist.);+M0.5255+V0.525E*IDwc 3431.39 kip-ft R = F PD+0.525E+0.75L+.075 190.06 kips x = I Ma/R = 18.05 feet e = I x-(Lfig/2) I = 1.70 < 6.58 ft = Lng/6 Wfeq•d = 1.45 feet (See Load Case 1 for equations) O.K. • For Wng= 4.00 gmax = 1513 at dist. = 0.00 ft gmin = 893 at dist. = 39.50 ft 1668 Load Case 7: (1+0.1055 JD-0.525E+0.75L+0.75$ (ASCE 7-1012.4.2.3,Eq.6b) +F Ma = E(P(1+0.105Sds)D-0.525E+0.75L+0.755*Dist.( -M0.525E-V0.525E*(Dwarf 5143.04 kip-ft R = F P(1+0.105sd5)D-0.525E 190.16 kips x = F Ma/R = 27.05 feet e = I x-Nig/2) I = 7.30 > 6.58 ft = Lf1g/6 Wreq'd = 2.44 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 2545 at dist. = 39.50 ft gmin = 0 at dist. = 2.14 ft 121 ;s, 1935 • Page 191 of 268 Project:TIGARD HS No:2016135.00 Page: • catena e n ngi nlet eni a Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 8: (0.61D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +f Ma = (P)0.6-.14sds)D+0.7E*Dist.);+M0.7E+V0.7E*(Dwall+Dftg) = 703.53 kip-ft R = F P(0.6-o.14sd:)D+0.7E 90.79 kips x = I Ma/R = 7.75 feet e = I x-(Lftg/2) I = 12.00 > 6.58 ft = Lff9/6 Wregd = 1.88 feet (See Load Case 1 for equations) O.K. For Wn9= 4.00 ., gmax = 1953 at dist. = 0.00 ft gmin = 0 at dist. = 23.25 ft o ° �c Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +F Ma = F(P)0.6-.14sds)D-0.7E*Dist.);-M0.7E-V0.7E*(Dwall+Dftg) = 2985.74 kip-ft R = F P)o.6-0.14sds)D-o.7E ` 83.90 kips x = I Ma/R = 35.59 feet e = I x-(Lftg/2) I = 15.84 > 6.58 ft = Lftg/6 • Wregd = 3.43 feet (See Load Case 1 for equations) O.K. For Wf�9= 4.00 max = 3573 at dist. = 39.50 ft gmin = 0 at dist. = 27.76 ft o ° Ana 2798 • Page 192 of 268 Project:TIGARD HS No: 2016135.00 Page: catend confw.d & • n p i n s r r e Subject:STRIP FTG By: JY Date: 3/19/2018 Wall Footing Calculations Project Title: TIGARD HS PDLLL Project No: 2016135.00 Wall Loc'n: 3.01-4 dist < Xend D.V.1 Input Unfactored Lateral Forces at Top of Wall*: E L S / ,+h4 M= 0.0 k-ft +v i V= 0.0 kips = U./ID *Except for M,and V5,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. a >I DR, Foundation Dimensions: Depth (ft) I Width(ft) I Length(ft)I Xend Iris Notes: 27.33'Bay Wall Footing 1.50 4.00 31.33 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load ( D(kips) ( L(kips) ) S(kips) E(kips) Dist.(ft) I Description/Location P1 4.6 -0.3 3.4 20.7 2.00 P2 6.4 0.3 4.5 -20.7 29.3 P3 P4 P5 P6 P7 P8 P9 F10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = gallow net+ (displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +F Ma = F(P051/Dist.), +ML+VL*(Dwall+Dffg)= 970.73 kip-ft R = F Pp+L = 59.87 kips x =I Ma/R = 16.21 feet e = I x-(Litg/2) I = 0.55 < 5.22 ft = Lfig/6 Wreq'd = 0.67 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 genas = 528 at dist. = 31.33 ft gmin = 428 at dist. = 0.00 ft I-se 1 780 }}s4 • Page 193 of 268 Project:TIGARD HS No: 2016135.00 Page: • c tenci --i".4 Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 2:D+S (IBC 1605.3.1,Ea.16-10) +F Ma = F(PD+5*Dist.); +Ms+Vs*(Dwaii+Dn9)= 1101.32 kip-ft R = E Pp+s = 67.77 kips x = Ma/R = 16.25 feet e = I x-(Lft9/2) I = 0.58 < 5.22 ft = Ln9/6 Wreq'd = 0.76 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 , c}„ax = 601 at dist. = 31.33 ft gmin = 480 at dist. = 0.00 ft < L,9 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1,Ea.16-11) +E Ma = F(PD.o.759+5i*Dist.); +t`t0.754+s1+V0.750.+s1*(Dwaii+Dn9)- 1072.77 kip-ft R = F PD4-0.75(L+s) = 65.80 kips x = I Ma/R = 16.30 feet e = I x-(Ln9/2) I = 0.64 < 5.22 ft = Ln9/6 • W,eq'd = For Wn9 0.74 feet (See Load Case 1 for equations) O.K.= 4.00 gmax = 589 at dist. = 31.33 ft gmin = 461 at dist. = 0.00 ft Ln9 843 1098 Load Case 4: (1.0+0.14SnaD+0.7E �(ASCE 7-10 12.4.2.3,Eq.5a) +I Ma = E(PU.o+o.i4sds;D+o.7E*DiSt.)i A +" 0.75+V0.7E*(Dwall+Dn9) = 662.20 kip-ft R = F Pl1.o+0.14sds)D+0.7E 65.83 kips x = I Ma/R = 10.06 feet e = I x-(69/2) I = 5.61 > 5.22 ft = Lng/6 Wreg'd = 1.05 feef (See Load Case 1 for equations) O.K. For Wf1g= 4.00 c}„ax = 1091 at dist. = 0.00 ft gm;n = 0 at dist. = 30.18 ft 0 Le 179 • Page 194 of 268 fr-caten Project:TIGARD HS No: 2016135.00 Page: ern�rliinp n p f n e r¢t Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 5: (1.0+0.14SaaD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +F Ma = I(P(1.0+0.14sds10-0.7E*Dist.);-M0.7E-Vo.7E*(Dwaii+Df19) = 1454.22 kip-ft R = F P(1.o+0.14sds)D-0.7E 65.83 kips x = F Ma/R = 22.09 feet e = I x-(L /2) I = 6.43 > 5.22 ft = Lff9/6 Wregd = 1.14 feet (See Load Case 1 for equations) O.K. For Wf,9= 4.00 °max = 1 188 at dist. = 31.33 ft grain = 0 at dist. = 3.62 ft 0 L 2025 Load Case 6: (1+0.105Snc)D+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = I(P11+0.105Sds10+0.525E+0.75L+0.755*Dist.)i+M0.525E+V0.525E*(Dwa 847.52 kip-ft R = FPD+0.525E+0.75L+.075 70.26 kips x = I Ma/R = 12.06 feet e = I x-(Ln0/2) I = 3.60 < 5.22 ft = Lff0/6 Wreq'd = 0.91 feet (See Load Case 1 for equations) O.K. 41111 For Wff9= 4.00 anax = 948 at dist. = 0.00 ft grain = 174 at dist. = 31.33 ft 1668 Load Case 7: (1+0.105SnaD-0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = I(Pii+0.1055ds)D-0.525E+0.75L+0.755*Dist.);-M0.525E-V0.525E*(Dwain 1441.54 kip-ft R = I Pl1+0.105Sds)D-0.525E 70.26 kips x = I Ma/R = 20.52 feet e = I x-(Ln9/2) I = 4.85 < 5.22 ft = Lff9/6 Wreq•d = 1.04 feet (See Load Case 1 for equations) O.K. For Wft9= 4.00 omax = 1082 at dist. = 31.33 ft gm;, = 40 at dist. = 0.00 ft 121 1935 • Page 195 of 268 /► n Project:TIGARD HS No: 2016135.00 Page: • cate i 14•$10••,eont�lilnq e Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +E Ma = F(P(0.6-.14sd:)D+o.7E*Dist.)i+M0.7E+V0.7E*(Dwall+Dag) = 181.51 kip-ft R = I P)0.6-0.14Sds)D+0.7E 36.91 kips x = I Ma/R = 4.92 feet e = I x-(Lng/2) I = 10.75 > 5.22 ft = Ln9/6 Wreq'd = 1.20 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 omax = 1251 at dist. = 0.00 ft gmin = 0 at dist. = 14.75 ft 0 0 `fig Load Case 9: (0.6)D-0.7E (ASCE 7-1012.4.2.3,Eq.8b) + Ma = I(P10.6-.14Sd:)D-0.7E*Dist.)i-M0.70-Vo.70*(Dwaii+Dftg) = 973.53 kip-ft R = F P(0.6-o.14sd:)D-0.7E = 35.92 kips x = I Ma/R = 27.10 feet e = I x-(4tg/2) I = 11.43 > 5.22 ft = Lttg/6 • Wreq•d = 1.36 feet (See Load Case 1 for equations) O.K. For Wn9= 4.00 &aax = 1415 at dist. = 31.33 ft gmin = 0 at dist. = 18.64 ft 0 0 fig 2796 • Page 196 of 268 Project:TIGARD HS No:2016135.00 Page: catena conaoliing . Subject:STRIP FTG By: JY Date:3/19/2018 Wall Footing Calculations Project Title: TIGARD HS PDL,LL Project No: 2016135.00 Wall Loc'n: 3.02-14 dist 1 Input Unfactored Lateral Forces at Top of Wall*: < x,, D,, M= 0.0 k-ft +v V= 0.0 kips Y Jos= U./10 a LA._ *Except for ME and V5,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < LRg >I D Rg Foundation Dimensions: Depth (ft) I Width (ft) Length (ft) Xend(r?) Notes: 27.33'Bay Wall Footing 1.50 4.00 31.33 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load D(kips) I L(kips) I S(kips) E(kips) Dist.(ft) I Description/Location PI 29.1 1.0 26.0 12.2 2.00 P2 24.5 -1.0 24.7 -12.2 29.3 P3 P4 P5 •Pb P7 Ps P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = gallawnet+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +F Ma = F(Pp.L/Dist.), +ML+VL*(Dwall+D110)= 1515.08 kip-ft R = F Pp+t = 102.47 kips x = I Ma/R = 14.78 feet e = I x-(Litg/2) I = 0.88 < 5.22 ft = L0g/6 Wreq d = 1.21 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 ., gmax = 956 at dist. = 0.00 ft gmin = 680 at dist. = 31.33 ft 1a 1 780 i1184 • Page 197 of 268 Project:TIGARD HS No:2016135.00 Page: catena ffnV(et(en9 enginrs Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 2:D+S (IBC 1605,3.1.Ea.16-10) +F Ma = F(PD+s`Dist.); +Ms+Vs*(Dwall+Dft9)= 2318.86 kip-ft R = F PD+s = 153.17 kips x = F Ma/R = 15.14 feet e = I x-(Lf�9/2) I = 0.53 < 5.22 ft = Lffg/6 Wregd = 1.70 feet (See Load Case 1 for equations) O.K. For Wft9= 4.00 ., gmax = 1345 at dist. = 0.00 ft gmin = 1099 at dist. = 31.33 ft ; 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea.16-11) +E Ma = F(PD+0.7511.+s)*Dist.); +M0.75(LES)+Vo.7s(L*s)*(Dwall+Dfts) 2104.25 kip-ft R = F PD+0.75(L+s) = 140.50 kips x = I Ma/R = 14.98 feet e = I x-(Lag/2) I = 0.69 < 5.22 ft = Lff9/6 • Wregd = 1.60 feet (See Load Case 1 for equations) O.K.For Wft9= 4.00 gram = 1269 at dist. = 0.00 ft gmin = 973 at dist. = 31.33 ft 843 1098 Load Case 4: (1.0+0.14SnJD+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +E Ma = F(Pp.o+o.14sdsto+o.7E*Dist.);+M0.7E+V0.7E*(Dwall+Dtt9) = 1462.33 kip-ft R = F P(1.0+0.14sds)D+0.7E 112.66 kips x = I Ma/R = 12.98 feet e = I x-(Lf�9/2) I = 2.69 < 5.22 ft = Lff9/6 Wreq'd = 1.31 feet (See Load Case 1 for equations) O.K. For Wtt9= 4.00 gmax = 1361 at dist. = 0.00 ft gmin = 437 at dist. = 31.33 ft 1-4179 • Page 198 of 268 Project:TIGARD HS No:2016135.00 Page: Catena consuming • engineers Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 5: (1.0+0.14S„JD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +F Ma = I(P(1.04-0.14sd:)D-0.7E*Dist.);-M0.7E-V0.7E*(Dwaii+Dtt9) = 1929.12 kip-ft R = I P)1.o+o.14sds)D-0.7E 112.66 kips x = I Ma/R = 17.12 feet e = I x-(Lft9/2) I = 1.46 < 5.22 ft = Lffg/6 Wreq'd = 1.10 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 1 150 at dist. = 31.33 ft groin = 648 at dist. = 0.00 ft 0 2025 Load Case 6: (1+0.105SaJD+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = I(P(1+0.105sds)D,0.525E+0.75L+0.75s*Dist.);+M0.5250+V0.525E*(Dwc 2044.19 kip-ft R = I P0,0.525E+0.75L+.075 148.14 kips x = I Ma/R = 13.80 feet e = I x-(Lftg/2) I = 1.87 < 5.22 ft = Lffg/6 Wreq'd = 1.54 feet (See Load Case 1 for equations) O.K. III For Wffg= 4.00 ., gmax = 1604 at dist. = 0.00 ft qm;n = 760 at dist. = 31.33 ft 613 1668 Load Case 7: (1+0.105Sr.1D-0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = I(P(1+0.105sds)D-0.525E+0.75L+0.75s*Dist.)i-M0.525E-V0.525E*(Dwain 2394.28 kip-ft R = I P)1+0.1055ds)D-0.525E 148.14 kips x = I Ma/R = 16.16 feet e = I x-(Lag/2) I = 0.50 < 5.22 ft = Lftg/6 WfeQ'd = 1.24 feet (See Load Case 1 for equations) O.K.. For Wffg= 4.00 gmax = 1295 at dist. = 31.33 ft cim;n = 1069 at dist. = 0.00 ft 121 L 1935 • Page 199 of 268 Project:TIGARD HS No:2016135.00 Page: • catena 0°nrelting engineers Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +F M, = F(P(0.6.14Sds)D+0.7E*Dist.)i+M0.7E+V0.7E*(Dwaii+Dffg) = 692.05 kip-ft R = I P(0.6-0.14Sds)D+0.7E 66.31 kips x = I Ma/R = 10.44 feet e = I x-(Lf�9/2) I = 5.23 > 5.22 ft = Lff9/6 Wreq'd = 1.02 feet (See Load Case 1 for equations) O.K. For Wf�g= 4.00 gm= = 1059 at dist. = 0.00 ft gmin = 0 at dist. = 31.31 ft o ° L.c Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) + Ma = I(P(0.6.14sds)D-0.7E*Dist.)i-M0.7E-V0.7E*(Dwall+D»9) = 1158.84 kip-ft R = F P(0.6-0.14Sds)D-0.7E = 61.48 kips x = I Ma/R = 18.85 feet e = I x-(Lftg/2) I = 3.18 < 5.22 ft = Lftg/6 . Wreq d = 0.76 feet (See Load Case 1 for equations) O.K. For Wff9= 4.00 gmax = 790 at dist. = 31.33 ft gmin = 192 at dist. = 0.00 ft o ° 2796 Page 200 of 268 - Project:TIGARD HS No:2016135.00 Page: catenae°°n° °nI.orl°a a°i + Subject:STRIP FTG By: JY Date:3/19/2018 • Wall Footing Calculations Project Title: TIGARD HS PDL LL Project No: 2016135.00 Wall Loc'n: 3.01-14 _dist Input Unfactored Lateral Forces at Top of Wall*: Dwv E L S r+M M= 0.0 k-ft +vim V= 0.0 kipsi� JDS= U./10 a *Except for ME and V5,which shall be strength-based and shall include p and 10%or25%reduction per ASCE 7-05 section 12.13.4. < Le, > D flg Foundation Dimensions: Depth (ft) I Width(ft) I Length(ft)I )(end In) Notes: 27.83'Bay Wall Footing 1.50 4.00 37.83 0.00 Surcharge 1.50 . Unfactored Gravity Loads: Load D(kips) ( L(kips) I S(kips) ( E(kips) Dist.(ft) I Description/Location P1 68.6 36.5 19.5 -81.5 5.00 P2 65.0 34.5 19.7 80.9 32.8 P3 P4 PS SIP6 P7 P8 P9 Pio Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = Clallow net+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +F Ma = E(POOL/Dist.), +Mt+VL*(Dwall+Dryg) = 4905.36 kip-ft R = F PD+L = 263.61 kips x = F Ma/R = 18.61 feet e = I x-(Lttg/2) I = 0.31 < 6.31 ft = Lit,/6 Wreq'd = 2.31 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 , gmax = 1827 at dist. = 0.00 ft gmin = 1657 at dist. = 37.83 ft 1 780 1184 III Page 201 of 268 Project:TIGARD HS No:,2016135.00 Page: • catena conseniting eers engi Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 2:D+S (IBC 1605.3.1,Ea.16-101 +I Ma = I(PD+s*Dist.); +Ms+Vs*(Dwa11+Dffg)= 4334.92 kip-ft R = I Pts = 231.81 kips x = I Ma/R = 18.70 feet e = I x-(Lftg/2) I = 0.22 < 6.31 ft = Lt,g/6 Wregd = 2.00 feet (See Load Case 1 for equations) O.K. For Wfrg= 4.00 gmax = 1584 at dist. = 0.00 ft gmin = 1480 at dist. = 37.83 ft c L 802 850 Load Case 3:D+0.75(1+S) (IBC 1605.3.1.Ea.16-11) +F Ma = F(PD+o.75(1+5)*Dist.); +Mo.75)L+s)+Vo.7s(f+s)*(Dwaii+Dftg)' 5134.58 kip-ft R = I PD+0.75)L+s) = 275.26 kips x = I Ma/R = 18.65 feet e = I x-(Lttg/2) I = 0.26 < 6.31 ft = Lng/6 • Wreq'd = 2.39 feet (See Load Case 1 for equations) O.K.For Wttg= 4.00 gmaX = 1895 at dist. = 0.00 ft gmin = 1744 at dist. = 37.83 ft L 843 1098 Load Case 4: (1.0+0.14Snc1D+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) + Ma = F(P0.o+o.l4sd0+o.7E*Dist.);+M0.7E+Vo.7E*(Dwaii+Dftg) = 5520.45 kip-ft R = F P)1.0+0.145ds)D+0.7E 211.34 kips x = I Ma/R = 26.12 feet e = I x-(Lftg/2) I = 7.21 > 6.31 ft = Lrrg/6 Wreq'd = 2.89 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 3008 at dist. = 37.83 ft gmin = 0 at dist. = 2.70 ft �e 179 • Page 202 of 268 Project:TIGARD HS No:2016135.00 Page: catena ens::eting • enginers Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 5: (1.0+0.14SaJD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +E Ma = F(P(1.o+o.14sdsio-0.7E*Dist.);-Mo.7E-V0.7E*(Dwou+Dn9) = 2376.02 kip-ft R = F P(1.0+0.14sd0-0.7E 212.18 kips x = I Ma/R = 11.20 feet e = I x-(Lttg/2) I = 7.72 > 6.31 ft = Lfg/6 Wreq'd = 3.03 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gm= = 3158 at dist. = 0.00 ft gm;n = 0 at dist. = 33.59 ft 0 1.,, 2025 Load Case 6: (1+0.105SnJD+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +F Ma = F(P(1+0.105sds)D+0.525E+0.75L+0.75s*Dist.);+M0.525E+V0.525E*IDwo 6581.47 kip-ft R = F PD+o.525E+0.75L+.075 289.31 kips x = I Ma/R = 22.75 feet e = I x-(Lft9/2) I = 3.83 < 6.31 ft = Lft9/6 Wreq'd = 2.95 feet (See Load Case 1 for equations) O.K. • For Wftg= 4.00 (Amax = 3074 at dist. = 37.83 ft (Amin = 749 at dist. = 0.00 ft 1668 Load Case 7: (1+0.105SnJD-0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = I(P(1+0.105sds)D-0.525E+0.75L+0.75s*Dist.);-M0.525E-V0.525E*(Dwaai 4223.15 kip-ft R = F P(1+o.1o5sds)D-0.525E 289.94 kips x = I Ma/R = 14.57 feet e = I x-(Log/2) I = 4.35 < 6.31 ft = Lft9/6 Wreq'd = 3.11 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 (Amax = 3238 at dist. = 0.00 ft groin = 594 at dist. = 37.83 ft 121 ung 1935 • Page 203 of 268 Project:TIGARD HS No:2016135.00 Page: • Catena e n 9 vet i Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +F Ma = E(P(0.6.14sds(D+o,7E*Dist.);+MD.7E+V0.7E*(DwaH+Dn9) = 3726.97 kip-ft R = E P(o.6-0.14sd:)D+o.7E 127.17 kips x = E Ma/R = 29.31 feet e = I x-(I-ng/2) I = 10.39 > 6.31 ft = Lftg/6 Wreq a = 2.39 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 2487 at dist. = 37.83 ft gmin = 0 at dist. = 12.26 ft ° I Ylg Load Case 9: (0.61D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +E Ma = E(P(0.6.14sds(D-0.7E*Dist.)i-M0.7E-V0.7E*(Dwaii+Dn9) = 582.54 kip-ft R = E P(0.6-0.14sds(D-0.7E = 115.99 kips x = I Ma/R = 5.02 feet e = I x-(Lfr9/2) I = 13.89 > 6.31 ft = Lftg/6 411 Wreq'd = 3.70 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 3849 at dist. = 0.00 ft grain = 0 at dist. = 15.07 ft o ° LXg 2798 • Page 204 of 268 Strip tooting reintorcing design Project: TIGARD HS No: 2016135.00 Page: c ate n a e n y t n letni nr gs Subject: strip footing By: JY Date: 3/19/2018 reinforcing design Strip Footing Distance Amplified soil Width of Type(Ref. from column allowable Depth of strip * Longitudinal Actual Req'd Provided Area of strip shear force moment (kip- phi Vn shear 4/3 As 4/55.01 to concrete bearing footing Reinf As req'd Rho_min As rebars As Strip footing edge pressure (lbs) in/ft) (in) (lbs) check (inA2/ft) req'd (inA2) (inA2) Footing (ft) (ft) (plf/ft) Shcedule) 2 4 2 4000 32000 96 18 91073.6 OK 0.12 0.59 0.16 0.16 0.31 No.5 at 12 4 2.5 4000 40000 150 18 91073.6 OK 0.19 0.59 0.25 0.25 0.31 No.5 at 12 3 4 3 4000 48000 216 18 91073.6 OK 0.27 0.59 0.36 0.36 0.44 No.6 at 12 6 4 4 4000 64000 384 18 91073.6 OK 0.48 0.59 0.64 0.59 0.6 No.7 at 12 7 4 5 4000 80000 600 18 91073.6 OK 0.75 0.59 1.00 0.75 0.79 No.8 at 12 8 4 6 4000 96000 864 24 127503 OK 0.77 0.83 1.02 0.83 1 No.9 at 12 4 7 4000 112000 1176 24 127503 OK 1.05 0.83 1.40 1.05 1 No.9 at 12 SAMPLE CALC Shear demand =4 ft*2 ft* 12in/ft* 12in/ft*4000psi=32000 lbs Moment demand = 4000psi*2 ft*2 ft/2* 12 in/ft*1 kip/1000 lbs=96 kip-in per 1 ft footing width Shear capacity=0.75*2*sqrt (4000*psi) *4 ft* 12in/ft* (18 in-3 in cover) =91074 lbs Return OK when shear demand <shear capacity n. -ry = T�l IAC! 31 M 11 •-- - d - A- S ,c.. ( a a n �. .-r--Li I" r.21--.1. , P,ovk1a '��tf C' 'Y rtP r {(it,R.v� ivy o.0033 (n/ L-X Ce-L --f t = k-S-t." Ac H„,0_m1, c,003 l -Lv Cali e(.x/nae Asrip 0,o033 Y .i f' -- v, R-'> 1 _10 .. per r-r -(t tJ- t- UriI ess Al,,,v«Ie. /. As y,cd . Pagf 268 • Project:TIGARD HS No:2016135.00 Page: • Catena auo$olting •npinaeri Subject:STRIP FTG By: JY Date:3/19/2018 Wall Footing Calculations Project Title: TIGARD HS PDLLLProject No: 2016135.00 Wall Loc'n: 3.02-5 dist _I Input Unfactored Lateral Forces at Top of Wall*: x, V= 0.0 kips Y DS= O./IU a� 1-1 r■`� *Except for ME and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < Las > Dng Foundation Dimensions: I Depth (ft) I Width (ft) I Length (ft)I xend lrrl I Notes: 27.83'Bay Wall Footing 1.50 4.00 37.83 0.00 Surcharge 1:50 Unfactored Gravity Loads: Load ( D(kips) I L(kips) I S(kips) I E(kips) I Dist.(ft) I Description/Location P1 81.6 43.5 23.5 -78.3 5.00 Pz 71.3 39.0 23.3 78.3 32.8 P3 P4 • PS P6 P7 P8 P9 Pio Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 g avow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* * s acesoilwt./ftg.allow gross = gallow net+(dil(displaced g•area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +E Ma = I(Po+L/Dist.), +ML+VL*(Dwan+Dog)= 5359.60 kip-ft R = F PD+L = 294.41 kips x = I Ma/R = 18.20 feet e = I x-(L»g/2) I = 0.71 < 6.31 ft = Lttg/6 Wreq'd = 2.74 feet (See Load Case 1 for equations) O.K. For Wng= 4.00 gmax = 2165 at dist. = 0.00 ft gmin = 1726 at dist. = 37.83 ft Lk,1 780• 1184 Page 206 of 268 Project:TIGARD HS No:2016135.00 Page: Catena consunitng englsi • Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-101 +F Ma = is(Puts*Dist.); +Ms+Vs*(Dwain+Ng)= 4744.64 kip-ft R = F PD+s = 258.71 kips x = I Ma/R = 18.34 feet e = I x-(Lffg/2) I = 0.58 < 6.31 ft = Lffg/6 Wreq'd = 2.36 feet (See Load Case 1 for equations) O_K. For Wftg= 4.00 gmax = 1866 at dist. = 0.00 ft grain = 1554 at dist. = 37.83 ft C fine 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea.16-111 + Ma = F(PD.o.75)L+s)*Dist.)1 +M0.75)L+S)+V0.75)L+S)*(Dwaii+Dffg) 5646.73 kip-ft R = E PD+0.75(L+s) = 308.89 kips x = I Ma/R = 18.28 feet e = I x-(Lttg/2) I = 0.63 < 6.31 ft = Lffg/6 Wreq'd = 2.84 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 Qmax = 2247 at dist. = 0.00 ft Qmin = 1836 at dist. = 37.83 ft L99 843 1098 Load Case 4: (1.0+0.14Snc)D+0.7E (ASCE 7-1012.4.2.3,Eq.5a) +g Ma = F(P(1.o+0.14sds)D+0.7E*Dist.)i+M0.75+V0.78*(Dwaii+Dffg) = 5770.60 kip-ft R = F P1i.0+0.14sd:)D+0.7E 232.98 kips x = I Ma/R = 24.77 feet e = I x-(L1f0/2) I = 5.85 < 6.31 ft = Lffg/6 Wreq'd = 2.85 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 Qmax = 2969 at dist. = 37.83 ft Qmin = 110 at dist. = 0.00 ft 0 I "99 179 • Page 207 of 268 Project:TIGARD HS No:2016135.00 Page: • catena consulting engineers Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 5: (1.0+0.14S„JD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +F Ma = F(P0.0+0.14sd,iD-o.7E*Dist.);-M0.7E-V0.7E1Dwan+Dftg) = 2723.16 kip-ft R = E P(1.o+0.14sdS)D-0.7E 232.98 kips x = F Ma/R = 11.69 feet e = I x-(Lffg/2) I = 7.23 > 6.31 ft = Ln9/6 Wreq a = 3.19 feet (See Load Case 1 for equations) O.K.. For Wffg= 4.00 gmax = 3322 at dist. = 0.00 ft gmin = 0 at dist. = 35.07 ft 0 �e 2025 Load Case 6: (1+0.105Sm1D+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) + Ma = E(P(1+0.1055d0+0.525E+0.75L+0.755*Dist.);+M0.5250+V0.525E"(Dwa 7077.50 kip-ft R = F PD+0.525E+0.75L+.075 324.69 kips x = I Ma/R = 21.80 feet e = I x-(Lf,9/2) I = 2.88 < 6.31 ft = Lffg/6 • Wreq'd = 3.00 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 ., (Amax = 3127 at dist. = 37.83 ft (Amin = 1 165 at dist. = 0.00 ft c � 1888 Load Case 7: (1+0.105S„JD-0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6b) +F Ma = F(P(1+0.1055d0-0.525E+0.75L+0.755*Dist.);-M0.5255-V0.525E*(DwaIi 1 4791.93 kip-ft R = F Pit+o.1o55d$)D-0.525E 324.69 kips x = I Ma/R = 14.76 feet e = I x-(Lftg/2) I = 4.16 < 6.31 ft = Lftg/6 Wreq d = 3.42 feet (See Load Case 1 for equations) O.K.. For Wffg= 4.00 gmax = 3560 at dist. = 0.00 ft gmin = 731 at dist. = 37.83 ft 121 1935 • Page 208 of 268 Project:TIGARD HS No:2016135.00 Page: Catena e n 9'I n,ereur i Y Subject:STRIP FTG B : JY Date: 3/19/2018 • J Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +E Ma = F(P(0.6.14Sds)D+0.7E*Dist.)i+M0.7E+V0.7E*(Dwaii+Dftg) = 3841.46 kip-ft R = P(0.6-0.14sdS)D+o.7E 140.91 kips x = F Ma/R = 27.26 feet e = I x-(Lttg/2) I = 8.35 > 6.31 ft = Lff9/6 W,egd = 2.13 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 ., gmax = 2222 at dist. = 37.83 ft Grain = 0 at dist. = 6.13 ft t 0 ung z Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +E Ma = I(P(0.6-.145ds)D-0.7E*Dist.)i-M0.7E-V0.7E*(Dwap+Df�9) = 794.02 kip-ft R = F P(0.6-o.14sdS)D-0.7E = 127.15 kips x = I Ma/R = 6.24 feet e = I x-(Efts/2) I = 12.67 > 6.31 ft = Lff9/6 • W,egO.K.d = 3.26 feet (See Load Case 1 for equations) For Wtt9= 4.00 gmax = 3393 at dist. = 0.00 ft clmin = 0 at dist. = 18.73 ft 0 0 Yg 2796 • Page 209 of 268 Project:TIGARD HS No:2016135.00 Page: i Catena e°nrultln, n a i n..r Subject:STRIP FTG By: JY Date:3/19/2018 Wall Footing Calculations Project Title: TIGARD HS PDL LL Project No: 2016135.00 Wall Loc'n: 3.02-7 —dist 1 Input Un factored Lateral Forces at Top of Wall*: < :I «b Dw.11 E L S +mt' M= 0.0 k-ft +v V= 0.0 kips i JDs= u./10 a�' �� *Except for ME and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < Lit > 13 Rg Foundation Dimensions: I Depth (ft) I Width(ft) I Length (ft)I xend(r?) I Notes: 27.83'Bay Wall Footing 1.50 5.00 37.83 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load I D(kips) I L(kips) I S(kips) I E(kips) I Dist.(ft) I Description/Location P1 30.1 -62.3 1.1 -6.0 5.00 P2 20.2 7.9 9.0 56.4 32.8 P3 P4 Ps P6 P7 P8 P9 P10 Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* *q allow gross = Callow net+(displaced soil wt./ftg.area) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +f Ma = E(PD+L/Dist.), +Mt+VL*(Dwan+Dttg)= 2156.01 kip-ft R = F PD+L = 69.67 kips x = F Ma/R = 30.95 feet e = I x-(Lttg/2) I = 12.03 > 6.31 ft = Lttg/6 Wreq'd = 2.13 feet (See Load Case 1 for equations) O.K. For Wftg= 5.00 gmax = 1350 at dist. = 37.83 ft gm,„ = 0 at dist. = 17.18 ft 1 780 i 11184 Page 210 of 268 Project:TIGARD HS No:2016135.00 Page: Catena con9ltlg e n g sl o n a e r Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-10) +F Ma = I(PD+s*Dist.); +Ms+Vs*(Dwa;;+Dff9)= 2509.09 Jkip-ft R = F PD+S = 134.17 kips x = I Ma/R = 18.70 feet e = I x-(L510/2) I = 0.21 < 6.31 ft = Ln9/6 W,egd = 1.16 feet (See Load Case 1 for equations) O.K.. For Wtt9= 5.00 qmax = 733 at dist. = 0.00 ft gmin = 685 at dist. = 37.83 ft C L„, 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea.16-11) +Y Ma = F(PD+0.750L+s)*Dist.); +M0.75(L+s)+V0.75(L+s)*(Dwaii+Dttg) 2394.63 kip-ft R = F PD+0.75)1+s) = 90.84 kips x = I Ma/R = 26.36 feet e = I x-(Ltt9/2) I a 7.44 > 6.31 ft = Ltt9/6 W,egd = 1.67 feet (See Load Case 1 for equations) O.K. For Wftg= 5.00 qmax = 1056 at dist. = 37.83 ft gmin = 0 at dist. = 3.42 ft 843 1098 Load Case 4: (1.0+0.14SaJD+0.7E (ASCE 7-10 12.4.2.3,Eq.5a) +I Ma = I(PI1.0+0.14sds)D+0.7E*Dist.);+M0.7E+V0.7E*(Dwall+Dft9) = 3701.85 kip-ft R = F P11.0+0.14sds)D+0.7E 171.68 kips x = I Ma/R = 21.56 feet e = I x-(L119/2) I a 2.65 < 6.31 ft = Lft9/6 W,eq'd = 1.55 feet (See Load Case 1 for equations) O.K. For Wff9= 5.00 ., qmax = 1289 at dist. = 37.83 ft gmin = 527 at dist. = 0.00 ft 0 179 • Page 211 of 268 Project:TIGARD HS No:2016135.00 Page: Catena engltlns engi neers Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 5: (1.0+0.145 JD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +F Ma = I(P(1.o+0.14sds(D-0.7E*Dist.);-M0.75 Vo.7E*(Dwao+Dftg) = 1153.96 kip-ft R = I P(1.0+0.14sds)D-0.7E 101.12 kips x = I Ma/R = 11.41 feet e = I x-(Lf�9/2) I = 7.50 > 6.31 ft = Lft9/6 Wreq'd = 1.42 feet (See Load Case 1 for equations) O.K. For Wftg= 5.00 gmax = 1 181 at dist. = 0.00 ft gmin = 0 at dist. = 34.24 ft L4 2025 Load Case 6: (1+0.105Sas)D+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = I(P(I+0.105Sds(D+0.525E+0.75L+0.755*Dist.)1+M0.525E+V0.525E*(Dwo 3514.72 kip-ft R = F PD+0.525E+0.75L+.075 126.55 kips x = I Ma/R = 27.77 feet e = I x-(Lft9/2) I = 8.86 > 6.31 ft = Lftg/6 • Wreq'd = 2.01 feef (See Load Case 1 for equations) O.K. For Wftg= 5.00 ., gmax = 1678 at dist. = 37.83 ft gmin = 0 at dist. = 7.66 ft 1669 Load Case 7: (1+0.105Sa5)D-0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma _ F(P(1+0.105Sds(D-0.525E+0.75L+0.755*Dist.);-M0.5255-V0.525E*(Dwain 1603.81 kip-ft R = E P(1+0.1o5sdS)D-0.525E 73.63 kips x = I Ma/R = 21.78 feet e = I x-(Lit,/2) I = 2.87 < 6.31 ft = Lfi9/6 Wreq'd = 0.68 feet (See Load Case 1 for equations) O.K. For Wftg= 5.00 ., gmax = 566 at dist. = 37.83 ft qm;n = 212 at dist. = 0.00 ft 121 1935 • Page 212 of 268 Project:TIGARD HS No:2016135.00 Page: catena °°`°)f ne f e e n 9 1 a Subject:STRIP FTG By: JY Date:3/19/2018 • Load Case 8: (0.6)D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +E Ma = E(R(0.6-.14sd:)o+o.7E*Dist.);+M0.7E+Vo.7E*(Dwaii+Deg) = 2598.98 kip-ft R = E P1o.6-0.14sd:)D+o.7E 114.25 kips x = E Ma/R = 22.75 feet e = I x-(Lffg/2) I = 3.83 < 6.31 ft = Leg/6 W,eQd = 1.17 feet (See Load Case 1 for equations) O.K. For Wffg= 5.00 ., gmax = 971 at dist. = 37.83 ft grain = 237 at dist. = 0.00 ft ° Ene Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +z Ma = I(Pi0.6-.14sds)D-0.7E*Dist.);-Mo.7E-Vo.7E*(Dwaii+Dffg) = 51.09 kip-ft R = E P1o.6-0.14sds)D-0.7E = 39.16 kips x = I Ma/R = 1.30 feet e = I x-(Lffg/2) I = 17.61 > 6.31 ft = Leg/6 W,eq'd = 4.80 feet (See Load Case 1 for equations) O.K. • For Wffg= 5.00 ., max = 4002 at dist. = 0.00 ft grain = 0 at dist. = 3.91 ft o ° E„e 2798 Page 213 of 268 Project:TIGARD HS No:2016135.00 Page: • Catena cone n grl nIe e r$ Subject:STRIP FTG By: JY Date:3/19/2018 Wall Footing Calculations Project Title: TIGARD HS PDL,LL Project No: 2016135.00 Wall Loc'n: 3.01-12 E_dist _I < ,I xma D.wi Input Unfactored Lateral Forces at Top of Wall*: E L S +Nt M= 0.0 k-ft +v V= 0.0 kips DS= U./IU a �� *Except for ME and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < Lfl 8 Deb Foundation Dimensions: Depth (ft) I Width(ft) I Length(ft)I )(end Oil I Notes: 28'Bay Wall Footing 1.50 4.00 33.00 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load ) D(kips) I L(kips) I S(kips) l E(kips) ) Dist.(ft) I Description/Location P1 42.1 19.4 10.1 51.3 2.50 P2 65.2 35.5 13.2 -51.0 30.5 P3 P4 • P5 Ps P7 P8 P9 Plo Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* * s aced soil wt./ftg•area) allow gross = Ballow net+(displaced p where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +E Ma = E(PD.L/Dist.), +ML+VL*(Dwall+Dttg)= 4074.52 kip-ft R = I Pp+L = 213.68 kips x = F Ma/R = 19.07 feet e = I x-(Lftg/2) I = 2.57 < 5.50 ft = Lftg/6 Wreq'd = 3.00 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 ., gmax = 2375 at dist. = 33.00 ft an, = 863 at dist. = 0.00 ft � 1 780 III 1184 Page 214 of 268 Project:TIGARD HS No: 2016135.00 Page: Catena consulting • engineers Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-101 +F Ma = 7(Pf,+s*Dist.); +Ms+Vs*(DWap+Dftg)= 3371.12 kip-ft R = 7 Pp+s = 182.08 kips x = 7 Ma/R = 18.51 feet e = I x-(Lttg/2) I = 2.01 < 5.50 ft = Lftg/6 Wregd = 2.38 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 1885 at dist. = 33.00 ft gmin = 874 at dist. = 0.00 ft 11 C Lgg 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea.16-111 +Y Ma = 7(P0+o.75)L+s)*Dist.); +Mo.75(L+s)+V0.75(r+s)*(Dalaii+Dttg) 4112.60 kip-ft R = 7 PO+o.75)f+s) = 217.43 kips x = 7 Ma/R = 18.91 feet e = I x-(Lttg/2) I = 2.41 < 5.50 ft = Lftg/6 Wreq'd = 3.00 feet (See Load Case 1 for equations) O.K. . For Mfg= 4.00 ., gmax = 2370 at dist. = 33.00 ft grain = 924 at dist. = 0.00 ft L9 843 1098 Load Case 4: (1.0+0.14SnJD+0.7E (ASCE 7-10 12.4.2.3,Eq.So) +F Ma = 7(P(1.o+o.14sd)D+o.7E*Dist.);+Mo.78+V0.7E*(Dalai;+Dttg) = 2236.76 kip-ft R = 7 PI1.0+0.145ds)D+0.7E 174.77 kips x = 7 Ma/R = 12.80 feet e = I x-(Lftg/2) I = 3.70 < 5.50 ft = Lttg/6 Wreq'd = 2.13 feet (See Load Case 1 for equations) O.K. For Mfg= 4.00 gmax = 2215 at dist. = 0.00 ft gmin = 433 at dist. = 33.00 ft 0 4lg 179 • Page 215 of 268 Project:TIGARD HS No:2016135.00 Page: c a to n a e n 9 I n Ie el liri Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 5: (1.0+0.14SnJD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +E Ma = F(Pn.o+o.l4sds)D-0.7E*Dist.),-Mo.7E-VD.7E*(Dwaii+Deg) = 4234.91 kip-ft R = I P)1.0+0.14Sds)D-0.7E 174.35 kips x = F Ma/R = 24.29 feet e = I x-(Leg/2) I = 7.79 > 5.50 ft = Leg/6 Wreq'd = 3.20 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 ., q,„ax = 3336 at dist. = 33.00 ft gmin = 0 at dist. = 6.87 ft 2025 Load Case 6: (1+0.105S1,JD+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) + Ma - (PO+0.105Sds)D+0.525E+0.75L+0.755*D'Ist.)i+M0.525E+V0.525E*(Dwc 3582.71 kip-ft R = F PD+0.525E+0.75L+.075 229.42 kips x = I Ma/R = 15.62 feet e = ) x-(Lftg/2) I = 0.88 < 5.50 ft = Lftg/6 • Wreq d = 1.94 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 gmax = 2017 at dist. = 0.00 ft gmin = 1459 at dist. = 33.00 ft c � 1668 Load Case 7: (1+0.105S.JD-0.525E+0.75L+0.75$ (ASCE 7-10 12.4.2.3,Eq.6b) +F Ma = F(Pn+o.lo5Sds)D-0.525E+0.75L+0.75S*DiSt.)i-M0.525E-V0.525E*(Dwain 5081.32 kip-ft R = F P)1+0.105Sds)D-0.525E 229.11 kips x = I Ma/R = 22.18 feet e = ) x-(Lftg/2) ) = 5.68 > 5.50 ft = Lft9/6 Wreq•d = 3.39 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 3529 at dist. = 33.00 ft gmin = 0 at dist. = 0.54 ft 121 , Lny 1935 • Page 216 of 268 Project:TIGARD HS No:2016135.00 Page: con,uiting • Catena engineers Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 8: (0.61D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +E Ma = F(P(o.6-.14sds1D+o.7E*Dist.)i+M0.7E+V0.7E*(Dwall+Dffg) = 766.89 kip-ft R = F P(o.6-0.14sds)D+o.7E 105.14 kips x = I Ma/R = 7.29 feet e = I x-(Lag/2) I = 9.21 > 5.50 ft = Lft0/6 Wreq d = 2.31 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 qmax = 2402 at dist. = 0.00 ft gmin = 0 at dist. = 21.88 ft o I `flg Load Case 9: (0.61D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +F Ma = F(P(0.6..14sds1Do.7E*Dist.);-Mo.7E-V0.7E*(Dwaii+Dftg) = 2765.04 kip-ft R = F Pio.6-0.14sd510-0.7E = 95.06 kips x = F Ma/R = 29.09 feet e = I x-(Lffg/2) I = 12.59 > 5.50 ft = Lffg/6 • WreQd = 3.89 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 qmax = 4050 at dist. = 33.00 ft gmin = 0 at dist. = 21.26 ft 0 0 Ylg 2796 • Page 217 of 268 A Project:TIGARD HS No:2016135.00 Page: 0 Catena e n nsunlere�s Subject:STRIP FTG By: JY Date: 3/19/2018 Wall Footing Calculations Project Title: TIGARD HS PDLLL Project No: 2016135.00 Wall Loc'n: 3.01-6 _.dist �I < AX., 11 nwv, Input Unfactored Lateral Forces at Top of Wall*: ^ E L S (-**),+m M= 0.0 k-ft +v i V= 0.0 kips - ' ``-'� SDs= U./I U a l — i� *Except for ME and VE.which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < Lit Dfl8 Foundation Dimensions: Depth (ft) I Width(ft) I Length(ft)I )(end 1111 Notes: 28'Bay Wall Footing 1.50 4.00 38.00 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load D(kips) I L(kips) I S(kips) l E(kips) Dist.(ft) I Description/Location P1 49.3 25.0 10.8 68.8 5.00 P2 89.1 51.8 16.1 -70.6 32.0 P3 P4 • P5 P6 P7 Ps P9 p10 Allowable Soil Bearing Pressures: Dead Load: 3000 q a11ow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf * dis acesoil wt./ftg.= (Aallownet+( ldg•area p ) where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +E Ma = E(PD+L/Dist.), +ML+VL*(Duva11+D110)= 6006.62 kip-ft R = FPD+L = 274.48 kips x = F Ma/R = 21.88 feet e = I x-(L1tg/2) I = 2.88 < 6.33 ft = Lng/6 Wreq'd = 3.32 feet (See Load Case 1 for equations) O.K. For Mfg= 4.00 gmax = 2628 at dist. = 38.00 ft (Amin = 984 at dist. = 0.00 ft l-ss 1 780 III 1184 Page 218 of 268 Project:TIGARD HS No:2016135.00 Page: Catena °°°ru1fer • enylneers Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1.Ea.16-10) +F Mo = I(PD+s*Dist.); +Ms+Vs*(Dwaii+Dftg)= 4793.22 kip-ft R = F PD+s = 224.58 kips x = E Ma/R = 21.34 feet e = I x-(Lftg/2) I = 2.34 < 6.33 ft = Ln9/6 L Wreq•d = 2.56 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 2024 at dist. = 38.00 ft groin = 931 at dist. = 0.00 ft C L^9 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea.16-111 +F Ma = F(PD+o.75(L+5)*Dist.); +M0.75(L+S)+V0.75(L+5)*(Dwa11+Dn9) 5987.87 kip-ft R = F PD+o.75(L+s) = 275.46 kips x = I Ma/R = 21.74 feet e = I x-(Ln9/2) I = 2.74 < 6.33 ft = Ltt9/6 Wreq'd = 3.28 feet (See Load Case 1 for equations) O.K. • For Wff0= 4.00 ., gmax = 2596 at dist. = 38.00 ft groin = 1029 at dist. = 0.00 ft 1 843 1098 Load Case 4: (1.0+0.145 JD+0.7E (ASCE 7-1012.4.2.3,Eq.5a) +E Ma = F(P;1.o+o.14sds)D+o.7E*Dist.);+M0.7E+VD 7E*(Dwall+Dttg) = 3303.25 kip-ft R = I P(1.0+0.14Sds)D+0.7E 216.07 kips x = I Ma/R = 15.29 feet e = I x-(Lftg/2) I = 3.71 < 6.33 ft = Lftg/6 Wreq'd = 2.17 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 2255 at dist. = 0.00 ft groin = 588 at dist. = 38.00 ft 0 L 179 • Page 219 of 268 Project:TIGARD HS No:2016135.00 Page: • catena connulting e p sl n e e r s Subject:STRIP FTG By: JY Date:3/19/2018 Load Case 5: (1.0+0.14SnjD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +F Ma = F(P(1.ow.l4sds)D-0.7E*Dist.) -Mo.7E-V0.7E*(DwaIi+Dftg) = 5984.53 kip-ft R = F P(1.0+0.14Sds)D-0.7E 218.59 kips x = I Ma/R = 27.38 feet e = I x-(Lng/2) I = 8.38 > 6.33 ft = Lftg/6 Wregd = 3.29 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 ., gmax = 3430 at dist. = 38.00 ft gmin = 0 at dist. = 6.13 ft 0 1 Lfig 2025 Load Case 6: (1+0.105SnJD+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = I(P(I+0.1o5SdsiD.0.525E.0.75E+0.755*Dist.)i+M0.525E+V0.525E*(Dwa 5297.29 kip-ft R = I PD.0.525E+0.75L+.075 289.25 kips x = I Mo/R = 18.31 feet e = I X-(Lttg/2) I = 0.69 < 6.33 ft = Lfjg/6 • Wreq'd = 2.03 feet (See Load Case 1 for equations) O.K. For Wng= 4.00 gmax = 2109 at dist. = 0.00 ft gmin = 1697 at dist. = 38.00 ft c � 1668 Load Case 7: (1+0.105SnjD-0.525E+0.75E+0.75S (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = F(P(1+0.1055ds)D-0.525E+0.75L+0.755*Dist.);-Mo.525E-V0.525E*(DwaIIl 7308.25 kip-ft R = I P(1+o.1o5sdS)D-0.525E 291.14 kips x = I Ma/R = 25.10 feet e = I x-(Lftg/2) I = 6.10 < 6.33 ft = Lng/6 Wreq d = 3.61 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 3761 at dist. = 38.00 ft gmin = 70 at dist. = 0.00 ft 121 LRg 1935 • Page 220 of 268 dr'-N. Project:TIGARD HS No:2016135.00 Page: Catena e n g i vet le e1 s Subject:STRIP FTG By:JY Date: 3/19/2018 • ... Load Case 8: (0.61D+0.7E (ASCE 7-10 12.4.2.3,Eq.8a) +E Ma = E(P(os.14sds)D+o.7E*Dist.)i+M0.7E+V0.7E*(Dwaii+Dftg) = 1193.77 kip-ft R = E P1o.6-0.14sds)D+0.7E 129.80 kips x = E Ma/R = 9.20 feet e = I x-(Lftg/2) I = 9.80 > 6.33 ft = Lftg/6 Wreq'd = 2.26 feet (See Load Case 1 for equations) O.K. For Wft9= 4.00 ., gmax = 2352 at dist. = 0.00 ft gmin = 0 at dist. = 27.59 ft c 0 I Yg 2 Load Case 9: (0.61D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +Y Ma = E(Plo.6..14sdo.0.7E*Dist.);-Mo.7E-Vo.7E*(Dwaii+Dftg) = 3875.05 kip-ft R = E P(o.6-0.14sds)D-0.7E ' 119.87 kips x = E Ma/R = 32.33 feet e = I x-(Lffg/2) I = 13.33 > 6.33 ft = Lff9/6 • Wregd K.= 3.38 feet (See Load Case 1 for equations) O For Wftg= 4.00 ., max = 3522 at dist. = 38.00 ft (Amin = 0 at dist. = 20.98 ft u a "^. • Page 221 of 268 Project:TIGARD HS No:2016135.00 Page: Catena con,ue n 9 I nlete�s Subject:STRIP FTG By: JY Date: 3/19/2018 Wall Footing Calculations Project Title: TIGARD HS PDL LL Project No: 2016135.00 Wall Loc'n: 3.01-9 dist 1 Input Unfactored Lateral Forces at Top of Wali*: X.r< ' D"fi +m M= 0.0 k-ft +v ' i V= 0.0 kips —~ Y SDS= U./IL) a `T Except for ME and VE,which shall be strength-based and shall include p and 10%or 25%reduction per ASCE 7-05 section 12.13.4. < LRS ` Dfls Foundation Dimensions: Depth (ft) I Width (ft) Length(ft)I xend 111) I Notes: 32.67'Bay Wall Footing 1.50 4.00 36.67 0.00 Surcharge 1.50 Unfactored Gravity Loads: Load I D(kips) I L(kips) I S(kips) I E(kips) I Dist.(ft) I Description/Location P1 95.0 54.4 18.6 -67.2 2.00 P2 99.5 50.5 25.2 66.6 34.7 P3 P4 • P5 P6 P7 P8 P9 Plc) Allowable Soil Bearing Pressures: Dead Load: 3000 q allow gross = 3165 psf* Dead+Live Loads: 3000 q allow gross = 3165 psf* Dead+Live+Seismic: 4000 q allow gross = 4165 psf* * s acesoilw./ area) allow gross = Ballow net+(displaced pg• where soil density is 110 pcf. Load Case 1: D+L (IBC 1605.3.1,Eq.16-9) +f Ma = F(PD+t/Dist.), +ML+VL*(Duvall+D1tg)= 6548.16 kip-ft R = F PD+t = 356.61 kips x = I Ma/R = 18.36 feet e = I x-(Lftg/2) I = 0.03 < 6.11 ft = Lttg/6 Wreq'd = 3.09 feet (See Load Case 1 for equations) O.K. For Wttg= 4.00 ., gmax = 2442 at dist. = 36.67 ft grnln = 2420 at dist. = 0.00 ft Lk,1 7804110 1184 Page 222 of 268 Project:TIGARD HS No:2016135.00 Page: Catena consulting • engineers Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 2:D+S (IBC 1605.3.1,Ea.16-10) +F Ma = E(PD+s*Dist.); +Ms+Vs*(DWaii+Dftg)= 5599.41 kip-ft R = F PD+s = 295.51 kips x = I Ma/R = 18.95 feet e = I x-(Lftg/2) I = 0.61 < 6.11 ft = Leg/6 WfeQ d = 2.80 feet (See Load Case 1 for equations) O.K. For Wng= 4.00 gmax = 2217 at dist. = 36.67 ft gmin = 1812 at dist. = 0.00 ft C L 802 850 Load Case 3:D+0.75(L+S) (IBC 1605.3.1.Ea.16-11) +F Ma = E(PD+o.75(L+s)*Dist.)i +Mo.7s(L+s)+Vo.75(L+s)*(Dwao+Dftg) 6766.41 kip-ft R = F PD+/175)1+5) = 363.23 kips x = I Ma/R = 18.63 feet e = I x-(Leg/2) I = 0.29 < 6.11 ft = Leg/6 Wreq d = 3.28 feet (See Load Case 1 for equations) O.K. 4111 For Wng= 4.00 max = 2595 at dist. = 36.67 ft gmin = 2357 at dist. = 0.00 ft 843 1098 Load Case 4: (1.0+0.14Sat)D+0.7E (ASCE 7-1012.4.2.3,Eq.5a) +F Ma = F(P(1.o+o.14sds)D+o.7E*Dist.);+Mo.7E+Vo.7E*(DWau+Dng) = 6676.80 kip-ft R = F P)1.o+o.l4sd:)D+0.7E 276.30 kips x = I Ma/R = 24.16 feet e = I x-(Lftg/2) I = 5.83 < 6.11 ft = Lftg/6 Wreq d = 3.53 feet (See Load Case 1 for equations) O.K. For Wftg= 4.00 gmax = 3681 at dist. = 36.67 ft gmin = 87 at dist. = 0.00 ft 0 179 • Page 223 of 268 Project:TIGARD HS No:2016135.00 Page: • catena COnsultin0 e n y l neer s Subject:STRIP FTG By: JY Date: 3/19/2018 Load Case 5: (1.0+0.14SnaD-0.7E (ASCE 7-10 12.4.2.3,Eq.5b) +Y Ma = F(P(1.ow.14sds)D-o.7E*Dist.)i-Mo.7E-Vo.70*(Dwaii+Dttg) = 3632.33 kip-ft R = F P(1.o+o.14Sds)D-0.7E 277.14 kips x = F Ma/R = 13.11 feet e = I x-(Lftg/2) I = 5.23 < 6.11 ft = Lftg/6 Wreq a = 3.37 feet (See Load Case 1 for equations) O.K.. For Wft9= 4.00 max = 3506 at dist. = 0.00 ft gmin = 273 at dist. = 36.67 ft 0 L 2025 Load Case 6: (1+0.105Sne1D+0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6a) +I Ma = I(PiI+0.105Sds1D+0.525E+0.75L+0.755*Dist.)i+M0.525E+V0.525E1Dwa 8257.62 kip-ft R = F PD+0.525E+0.75L+.075 381.68 kips x = I Ma/R = 21.63 feet e = I x-(Lftg/2) I = 3.30 < 6.11 ft = Lftg/6 • Wreq'd = 3.85 feet (See Load Case 1 for equations) O.K. For Wffg= 4.00 max = 4007 at dist. = 36.67 ft gmin = 1197 at dist. = 0.00 ft 1668 Load Case 7: (1+0.105SnaD-0.525E+0.75L+0.75S (ASCE 7-10 12.4.2.3,Eq.6b) +I Ma = I(PiI+0.1055ds,D-0.525E+0.75L+0.755*Dist.)i-M0.5256-V0.525E*(DwaIIl 5974.26 kip-ft R = F Pl1+0.105Sds)D-o.525E 382.31 kips x = I Ma/R = 15.63 feet e = I x-(Lftg/2) I = 2.71 < 6.11 ft = Lftg/6 Wreq d = 3.61 feet (See Load Case 1 for equations) O.K. For Wft9= 4.00 gmax = 3761 at dist. = 0.00 ft gmin = 1451 at dist. = 36.67 ft 121 Le 1935 Page 224 of 268 Project:TIGARD HS No:2016135.00 Page: hatena e n g i vet Subject:STRIP FTG By: JY Date:3/19/2018 • Load Case 8: (0.6)D+0.7E (ASCE 7-1012.4.2.3,Eq.8a) +E Ma = /(P(0.6.14sd$)D+0.7E*Dist.);+M0 7E+V0.7E*(DwaII+Df1g) = 4335.35 kip-ft R = I P(0.e-0.14sd$)D+0.7E 168.11 kips x = I Ma/R = 25.79 feet e = I x-(Lftg/2) I = 7.45 > 6.11 ft = Le9/6 p W,ey d = 2.47 feet (See Load Case 1 for equations) O.K. For Wf�9= 4.00 .. gmax = 2575 at dist. = 36.67 ft grain = 0 at dist. = 4.03 ft 0 0 Lw 2 Load Case 9: (0.6)D-0.7E (ASCE 7-10 12.4.2.3,Eq.8b) +F Ma = I(P(os.l4sd:)D-0.7E*Dist.);-M0.7E-V0.7E*(Dwall+Deg) = 1290.88 kip-ft R = I P(0.e-0.14sdS)D-0.7E ` 151.44 kips x = I Ma/R = 8.52 feet e = I x-(Lffg/2) I = 9.81 > 6.11 ft = Leg/6 W,eq'd = 2.84 feet (See Load Case 1 for equations) O.K.. III For Wff9= 4.00 max = 2961 at dist. = 0.00 ft grain = 0 at dist. = 25.57 ft 00 1-". 2798 • Page 225 of 268 • Project:TIGARD HS No: 2016135.00 Page: atienA aonfriileq 1A �i it^a °'"r Subject:BRB Size Calc By: JY Date: 3/19/2018 =MAX(MAX. COMP, MAX TENSION) BRB Design Design according to the / max axial capacity of BRB of different area of steel Elevation 1 on Reference Req'd area of common BRB area of steel Sheet S3.01 Length Max.Compression Max.Tension Maximum Axial steel [ft] [kip] [kip] [kip] [inA2] 3.01 1 SBR N9/NB-2 21.6 73.5 63.5 73.5 2.5 Asc phi*38ksi*Asc 3.01-1 SBR N9/NB-1 21.6 147.8 -110.5 147.8 4.5 2 68.4 3.01-2 SBR N11/NC-2 28.3 30.8 -23.1 30.8 2 2.5 85.5 3.01-2 SBR N11/NC-1 24.4 128.5 -104.7 128.5 4 3 102.6 Max. axial 3.01-3 SBR FRM Cl/CA 19.6 132.3 -99.3 132.3 4 3.5 119.7 capacity of BRB 3.01-4 SBR C5/CD 31.2 75.1 -75.0 75.1 2.5 4 136.8 3.01-5 SBR NB/C1-2 17.7 71.0 -55.6 71.0 2.5 4.5 153.9 3.01-5 SBR NB/C1-2 17.7 165.3 -179.6 179.6 5.5 5 171 3.01-6 SBR FRM N5-41 19.8 116.8 -115.5 116.8 3.5 5.5 188.1 3.01-6 SBR FRM N5-40 19.8 117.9 -115.5 117.9 3.5 6 205.2. 3.01-6 SBR FRM N5-36 19.8 52.6 -41.6 52.6 2 6.5 222.3 3.01-6 SBR FRM N5-35 19.8 43.0 -50.3 50.3 2 7 239.4 3.01-7 SBR CA/C1 28.7 119.1 -134.0 134.0 4 7.5 256.5 3.01-8 SBR SEISMICJOINT 28.7 36.8 -35.8 36.8 2 8 273.6 3.01-9 SBR ND/N3-2 35.5 96.9 -99.8 99.8 3 3.01-9 SBR ND/N3-1 35.5 180.5 -157.8 180.5 5.5 3.01-10 SBR NE/N3-2 17.7 31.6 -24.1 31.6 2 3.01-10 SBR NE/N3-1 17.7 114.4 -86.9 114.4 3.5 3.01-11 SBR FRM S8/SE-2 18.1 56.3 -56.6 56.6 2 3.01-11 SBR FRM S8/SE-2 18.1 58.4 -55.3 58.4 2 3.01-11 SBR FRM S8/SE-1 18.8 126.2 -122.1 126.2 4 3.01-11 SBR FRM 58/SE-1 18.8 123.2 -124.4 124.4 4 3.01-12 SBR FRM N2/NB-1 19.8 161.4 -163.6 163.6 5 3.01-12 SBR FRM N2/NB-1 19.8 165.7 -160.3 165.7 5 3.01-12 SBR FRM N2/NB-2 19.8 46.8 -49.3 49.3 2 3.01-12 SBR FRM N2/NB-2 19.8 51.4 -45.6 51.4 2 3.01-13 SBR FRM 510/SC-2 16.5 41.2 -44.1 44.1 2 3.01-13 SBR FRM S10/SC-2 16.5 46.1 -40.1 46.1 2 3.01-13 SBR FRM S10/SC-1 18.9 106.8 -109.7 109.7 3.5 3.01-13 SBR FRM S10/SC-1 18.9 111.6 -105.7 111.6 3.5 3.01-14 SBR FRM SJ/S5-2 20.3 50.1 -50.2 50.2 2 3.01-14 SBR FRM SJ/S5-2 20.3 52.3 -49.0 52.3 2 3.01-14 SBR FRM SJ/S5-1 19.7 100.0 -103.1 103.1 3.5 • 3.01-14 SBR FRM SJ/S5-1 19.7 105.2,'ag134)6 105.2 3.5 • • 0 • /r�11} Project:TIGARD HS No:2016135.00 Page: Aten ensineers tiA i-i. IMM 144 n`�T n a r r L Subject: BRB Size Calc By: JY Date:3/19/2018 (con'd) 3.02-1 SBR S12/SM-2 16.5 34.0 -31.7 34.0 2 3.02-1 SBR S12/SM-1 18.3 84.9 -80.9 84.9 2.5 3.02-2 SBR 50/58-1 28.0 118.4 -95.0 118.4 3.5 3.02-2 SBR SO/S8-2 27.6 50.1 -40.2 50.1 2 3.02-3 SBR FRM 57-13 27.5 108.0 -85.6 108.0 3.5 3.02-4 SBR S3/SM-2 26.3 38.4 -38.0 38.4 2 3.02-4 SBR S3/SM-1 27.5 116.0 -115.5 116.0 3.5 3.02-5 SBR FRM SM/55-2 20.3 39.0 -45.7 45.7 2 3.02-5 SBR FRM SM/55-2 20.3 47.8 -37.8 47.8 2 3.02-5 SBR FRM SM/S5-1 19.7 111.0 -121.0 121.0 4 3.02-5 SBR FRM SM/S5-1 19.7 123.0 -109.8 123.0 4 3.02-7 SBR SC/S6 32.9 140.3 -142.4 142.4 4.5 3.02-8 SBR FRM S1/SF 16.4 32.1 -27.0 32.1 2 3.02-9 SBR S2/SF-2 29.3 52.6 -54.8 54.8 2 3.02-9 SBR S2/SF-1 27.4 58.6 -55.2 58.6 2 3.02-10 SBR CB/C5-2 22.8 67.7 -71.9 71.9 2.5 3.02-10 SBR CB/C5-1 22.8 81.1 -85.9 85.9 3 3.02-11 SBR FRM C4/CC 19.6 41.1 -39.5 41.1 2 3.02-11 SBR FRM C4/CC 19.6 41.3 -39.7 41.3 2 3.02-12 SBR FRM C3/CC 19.6 33.6 -42.7 42.7 2 3.02-12 SBR FRM C3/CC 19.6 44.8 -32.4 44.8 2 3.02-14 SBR C3/CA 19.6 56.2 -16.9 56.2 2 Page 230 of 268 Project:TIGARD HS No: 2016135.00 Page: caten • J 44LLii ��iirr11,, Subject:STRIP FTG By: JY Date:3/19/2018 Tension and Shear Demands at Foundation based on Expected Strength of Brace • BRB Size[inA2] width [ft] height[ft] Tension [kips] Shear[kips] Elevation 1 on Sheet S3.01 2.5 16.33 14 67.36 3.01-1 4.5 16.33 14 121.26 141.44 3.01-2 2 20 19 57.03 4 20 14 94.97 135.66 3.01-3 4 13.67 14 118.48 115.69 3.01-4 2.5 27.33 14 47.19 92.12 3.01-5 2.5 11 14 81.38 2.5 11 14 81.38 63.94 3.01-6 2.5 28 14 73.19 3 28 14 87.82 120.49 3.01-7 4 22 14 88.91 139.71 3.01-8 2 22 14 44.45 69.86 3.01-9 3 32.67 13.5 47.43 5.5 32.67 14 89.69 209.29 3.01-10 2 11 14 65.11 3.5 11 14 113.94 89.52 • 3.01 11 2 25 13 59.68 4 25 14 123.53 159.47 3.01-12 2 28 14 58.55 5 28 14 146.37 200.82 3.01-13 2 25.5 14 61.22 3.5 25.5 14 107.13 139.73 3.01-14 2 27.83 14 58.73 3.5 27.83 14 102.77 140.52 3.02-1 2 13.5 13.67 58.91 2.5 13.5 14 74.50 71.84 3.02-2 2 24.25 13.67 40.66 3.5 24.25 14 72.45 125.49 3.02-3 3.5 23.67 14 73.77 3.02-4 2 . 23.67 13.67 41.41 3.5 23.67 14 73.77 124.72 3.02-5 2 27.83 13.67 58.03 4 27.83 14 117.45 160.60 3.02-7 4.5 27.83 20.33 109.89 150.44 3.02-8 2 25 14 61.76 79.73 3.02-9 2 25 13 38.20 2 25 14 40.46 72.24 • 3.0210 2.5 18 14.75 65.60 3 18 14 76.25 98.04 Max.expected BRB axial strength Tension = phi*46ksi* BRB Size*sin[arctan(height/width)] Shear= phi*46ksi* BRB Size *cos[arcta 4Filge ht/v 2J68h)] 11 -pg Project:TIGARD HS No: 2016135.00 Page: Cid@nC eon�olilnp Lp ii �i npin:1" Subject:STRIP FTG By: JY Date:3/19/2018 • d Elevation 1 on Sheet S3.01 Frame# Max Tension (neg.) Max Shear(abs.) baseplate width 1.01 188.62 141.44 18 1.02 151.99 135.66 18 1.03 118.48 115.69 18 1.04 __ _ 47.19 92.12 18 1.05 162.77 63.94 18 1.06 161.01 120.49 18 1.07 88.91 139.71 18 1.08 44.45 69.86 18 1.09 137.12 209.29 18 1.10 179.04 89.52 18 1.11 183.21 159.47 18 1.12 204.92 200.82 18 1.13 168.35 139.73 18 1.14 161.50 140.52 18 2.01 133.42 71.84 18 2.02 113.11 125.49 18 • 2.03 73.77 0.00 18 2.04 115.18 124.72 18 2.05 175.48 160.60 18 2.07 109.89 150.44 18 2.08 61.76 79.73 18 2.09 78.66 72.24 18 2.1 141.85 98.04 18 Max tension =tension from both up and lower level braces (Ref. previous page) Max Shear=shear from only the lower level braces (Ref. previous page) Note: 1) 2.06&2.13 is deleted from the project. 2) 2.11 and 2.12 only have braces on upper level.No shear force into the footing therefore no shear lug needed. • Page 232 of 268 Project:TIGARD HS No: 2016135.00 Page: fr---4*'*'18catenconreltlep�rnptneeft Subject:STRIP FTG By: JY Date:3/19/2018 Elevation 1 on S3.01 • A.B. grade of steel Max Tension Fra e# (neg.) Anc►• .ge Type V "crane"= hooked 1.01 188.62 GR55 W/crane< ,,r reinforcement 1.02 151.99 GR5Wit crane: 1.03 118.48 GR55 W/crane 1.04 47.19 GR36 w/o crane 1.05 162.77 W/crane 1.06 101.83 GR55 W/crane 1.07 88.91 GR55 W/cram 1.08 44.45 GR36 w/o crane Anchorage Type Max. Capacity 1.09 137.12 5 NA,/creme' 1.10 179.04 GR55 1A//crane (4) Grade 36 1 1/2"Anchor Bolts 61 kips 1.11 119.11 GR55 W/°crane. 1.12 129.60 GR55 VV/crane (4) Grade 55 1 1/2"Anchor Bolts 1.13 109.58 GRw55 W/ a with hooked tensionrr 300 kips 1.14 102.33 GR55 W/ reinforcement (ref.2, 5, 7/S8.01) yw.„ , 2.01 133.42 G` 5 W/; A 2.02 113.11 GR55 W/;ra See Hilti Calc following this page III 2.03 73.77 GR55 W/ ra ,�7_ 2.04 115.18 GR55 W/# 2.05 110.92 GR55 W/ 2.07 109.89 GR55 WY4, a,„3 / 2.08 40.46 GR36 w/o crane 2.09 78.66 GR55 W crane 2.1 141.85 85 crane 1 , Note: 1) 2.06&2.13 is deleted from the project. 2) 2.11 and 2.12 only have braces on upper level.No shear force into the footing therefore no shear lug needed. r Page 233 of 268 1■■1116T1 www.hilti.us Profis Anchor 2.7.5 Company: Page: 2 Specifier: Project: Address: Sub-Project I Pos.No.: • Phone I Fax: I Date: 1/10/2018 E-Mail: 2 Load case/Resulting anchor forces •y Load case:Design loads O3 O4 Anchor reactions[Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 75000 0 0 0 2 75000 0 0 0 0 'x 3 75000 0 0 0 Tension 4 75000 0 0 0 max.concrete compressive strain: -[%o] max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 300000[Ib] O 1 O 2 resulting compression force in(x/y)=(0.000/0.000):0[Ib] 3 Tension load Load Nua[Ib] Capacity N„[Ib] Utilization riN=Nun/.N„ Status Steel Strength* 75000 79312 95 OK Pullout Strength* 75000 43966 171 not recommended Concrete Breakout Strength**' N/A N/A N/A N/A Concrete Side-Face Blowout,direction** N/A N/A N/A N/A *anchor having the highest loading **anchor group(anchors in tension) • 'Tension Anchor Reinforcement has been selected! 3.1 Steel Strength Nsa =Ase,N'ruts ACI 318-11 Eq.(D-2) 4, Nsa Z Nua ACI 318-11 Table D.4.1.1 Variables Ase,N[in.2] uta[Psi] 1.41 75000 Calculations Nsa[Ib] 105750 Results Nsa[Ib] I)steel 4) Nsa[Ib] Nua[lb] 105750 0.750 79312 75000 • input data and results must be checked for agreement with the existing conditions and fgcR,lausilLi�y�.QCf�bil PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Tradem rktl9si {qW� MITI www.hilti.us Profis Anchor 2.7.5 Company: Page: 3 • Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/10/2018 E-Mail: 3.2 Pullout Strength No =W c p Np ACI 318-11 Eq.(D-13) Np =8 Abre fc ACI 318-11 Eq.(D-14) NpN z Nua ACI 318-11 Table D.4.1.1 Variables WapAbrg[In.2] A.a fc[ps7 1.000 2.62 1.000 4000 Calculations Np[Ib] 83744 Results N.[Ib] 4)concrete 4)seismic 4)nonductile 4) Npn[Ib] Nua[Ib] 83744 0.700 0.750 1.000 43966 75000 • Input data and results must be checked for agreement with the existing conditions and fgR,lausisility} Q� PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Tradem r*-tS- p?e © III www.hilti.us Profis Anchor 2.7.5 Company: Page: 4 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/10/2018 E-Mail: 4 Shear load Load V.[Ib] Capacity$V„[Ib] Utilization Jv=V,,,/$V„ Status Steel Strength* N/A N/A N/A N/A Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength* N/A N/A N/A N/A Concrete edge failure in direction** N/A N/A N/A N/A *anchor having the highest loading **anchor group(relevant anchors) 5 Warnings • The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations(ETAG 001/Annex C,EOTA TR029,etc.).This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor.Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used.The c factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D, E or F is given in ACI 318-11 Appendix D,Part D.3.3.4.3 (a)that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,the connection design(tension)shall satisfy the provisions of Part D.3.3.4.3(b),Part D.3.3.4.3(c),or Part D.3.3.4.3(d).The connection design (shear)shall satisfy the provisions of Part D.3.3.5.3(a),Part D.3.3.5.3(b),or Part D.3.3.5.3(c). • • Part D.3.3.4.3(b)/part D.3.3.5.3(a)require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.Part D.3.3.4.3(c)/part D.3.3.5.3(b)waive the ductility requirements and require the anchors to be designed for the maximum tension/shear that can be transmitted to the anchors by a non-yielding attachment.Part D.3.3.4.3(d)/part D.3.3.5.3(c)waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension/shear obtained from design load combinations that include E,with E increased by wo. • The design of Anchor Reinforcement is beyond the scope of PROFIS Anchor.Refer to ACI 318-11,Part D.5.2.9 for information about Anchor Reinforcement. • Anchor Reinforcement has been selected as a design option,calculations should be compared with PROFIS Anchor calculations. Fastening does not meet the design criteria! 4111 Input data and results must be checked for agreement with the existing conditions and fq4.lnus t i 4 Q� PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Tradem r Iq� 1■■11`TI www.hilti.us Profis Anchor 2.7.5 Company: Page: 5 • Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/10/2018 E-Mail: 6 Installation data Anchor plate,steel:- Anchor type and diameter:Hex Head ASTM F 1554 GR.55 1 1/2 Profile:S shape(AISC);3.000 x 2.330 x 0.170 x 0.260 in. Installation torque:- Hole diameter in the fixture:df=1.563 in. Hole diameter in the base material:-in. Plate thickness(input):2.500 in. Hole depth in the base material:24.000 in. Recommended plate thickness:not calculated Minimum thickness of the base material:25.500 in. Drilling method:- Cleaning:No cleaning of the drilled hole is required A 9.000 9.000 • • • • 0 ri 3 4 ' of 0 • 0 r' • ► N x O O O 1 2 • ri • • 3.000 12.000 3.000 • • • Coordinates Anchor in. • Anchor x y c_X c.x cr c+y 1 -6.000 -6.000 18.000 30.000 30.000 2 6.000 -6.000 30.000 18.000 - 30.000 3 -6.000 6.000 18.000 30.000 - 18.000 4 6.000 6.000 30.000 18.000 - 18.000 Input data and results must be checked for agreement with the existing conditions and fq6 m .Iausibiit Q{,� PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trader PitfPRG chti MIE;a3 www.hilti.us Profis Anchor 2.7.5 Company: Page: 6 Specifier: Project: Address: Sub-Project I Pos.No.: • Phone I Fax: Date: 1/10/2018 E-Mail: 7 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. • • Input data and results must be checked for agreement with the existing conditions and fq gIausisilbityk Q f PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Tradem rk tSfJ RG chi 1=1EI www.hilti.us Profis Anchor 2.7.6 Company: Catena Consulting Engineers Page: 2 Specifier: JY Project: Tigard HS • Address: Sub-Project I Pos.No.: 2016135.00 Phone I Fax: I Date: 3/22/2018 E-Mail: 2 Load case/Resulting anchor forces y Load case:Design loads 0304 Anchor reactions[Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 15,250 0 0 0 2 15,250 0 0 0 Tension Dx 3 15,250 0 0 0 4 15,250 0 0 0 max.concrete compressive strain: -[%e] max.concrete compressive stress: -[psi] 00 resulting tension force in(x/y)=(0.000/0.000): 61,000[Ib] 1 2 resulting compression force in(x/y)=(0.000/0.000):0[Ib] 3 Tension load Load N.[Ib] Capacity+N„[Ib] Utilization AN=Nua/+N„ Status Steel Strength* 15,250 61,335 25 OK Pullout Strength* 15,250 43,966 35 OK Concrete Breakout Strength** 61,000 63,648 96 OK Concrete Side-Face Blowout,direction** N/A N/A N/A N/A • *anchor having the highest loading **anchor group(anchors in tension) 3.1 Steel Strength Nsa =Ase,N futa ACI 318-11 Eq.(D-2) Nsa 2 Nua ACI 318-11 Table D.4.1.1 Variables Ase,N[in.2] foto[psi] 1.41 58,000 Calculations Nsa[Ib] 81,780 Results Nsa[lb] steel Nsa[lb] Nua[Ib] 81,780 0.750 61,335 15,250 Input data and results must be checked for agreement with the existing conditions and fq5, , PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Tradem rk tSN MO 1■■11`TI www.hilti.us Profis Anchor 2.7.6 Company: Catena Consulting Engineers Page: 3 • Specifier: JY Project: Tigard HS Address: Sub-Project I Pos.No.: 2016135.00 Phone I Fax: I Date: 3/22/2018 E-Mail: 3.2 Pullout Strength NpN =W c,p Np ACI 318-11 Eq.(D-13) Np =8 Abre( ACI 318-11 Eq.(D-14) 4) NpN z Nua ACI 318-11 Table D.4.1.1 Variables W c,p Abre[in.2] X a fc[Psi] 1.000 2.62 1.000 4,000 Calculations Np[Ib] 83,744 Results Npn[Ib] 4)concrete 4)seismic 4J nonductile 4) Npn[Ib] Nua[Ib] 83,744 0.700 0.750 1.000 43,966 15,250 3.3 Concrete Breakout Strength Ncbg = (AN�)W ec,N W ed,N W c,N W cp,N Nb ACI 318-11 Eq.(D-4) 4) Ncbg z Nua ACI 318-11 Table D.4.1.1 ANc see ACI 318-11,Part D.5.2.1,Fig.RD.5.2.1(b) ANco =9 het ACI 318-11 Eq.(D-5) 1 • W ec,N = (1 +2 eN <_1.0' ACI 318-11 Eq.(D-8) 3 haf W ed,N =0.7+0.3(Gamin)s 1.0 ACI 318-11 Eq.(D-10) `1.5hf W C cp N •=MAX Camin 1.5hef)c 1.0 ac ' Cac ACI 318-11 Eq.(D-12) Nb =16 X a"hef3 ACI 318-11 Eq.(D-7) Variables hef[in.] ect,N[in.] ec2,N[in.] ;pin[in.] W c,N 12.000 0.000 0.000 18.000 1.000 cac[in.] kc X a lc[psi] - 16 1.000 4,000 Calculations ANc[in.2] ANcO[in.2] W ect,N W ec2,N W ed,N W cp,N Nb[Ib] 2,304.00 1,296.00 1.000 1.000 1.000 1.000 63,648 Results A A A Ncbg[Ib] 4)concrete 4)seismic 4)nonductile 4) Ncbg[Ib] Nua[Ib] 113,152 0.750 0.750 1.000 63,648 61,000 • Input data and results must be checked for agreement with the existing conditions and fo,.lausi4Ji PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Tradem4r"•'3�iItRte,%MTV" [:=Sal www.hilti.us Profis Anchor 2.7.6 Company: Catena Consulting Engineers Page: 4 Specifier: JY Project: Tigard HS Address: Sub-Project I Pos.No.: 2016135.00 • Phone I Fax: I Date: 3/22/2018 E-Mail: 4 Shear load Load Vua[Ib] Capacity,*V„[Ib] Utilization iiv=Vua/+v,, Status Steel Strength* N/A N/A N/A N/A Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength* N/A N/A N/A N/A Concrete edge failure in direction** N/A N/A N/A N/A anchor having the highest loading **anchor group(relevant anchors) 5 Warnings • The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations(ETAG 001/Annex C,EOTA TR029,etc.).This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor.Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used.The 0 factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D, E or F is given in ACI 318-11 Appendix D,Part D.3.3.4.3 (a)that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case,the connection design(tension)shall satisfy the provisions of Part D.3.3.4.3(b),Part D.3.3.4.3(c),or Part D.3.3.4.3(d).The connection design • (shear)shall satisfy the provisions of Part D.3.3.5.3(a),Part D.3.3.5.3(b),or Part D.3.3.5.3(c). • Part D.3.3.4.3(b)/part D.3.3.5.3(a)require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.Part D.3.3.4.3(c)/part D.3.3.5.3(b)waive the ductility requirements and require the anchors to be designed for the maximum tension/shear that can be transmitted to the anchors by a non-yielding attachment.Part D.3.3.4.3(d)/part D.3.3.5.3(c)waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension/shear obtained from design load combinations that include E,with E increased by ws. Fastening meets the design criteria! • Input data and results must be checked for agreement with the existing conditions and focp ausisibij�cl Q{ PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Tradem rk tSd CMS www.hilti.us Profis Anchor 2.7.6 Company: Catena Consulting Engineers Page: 5 . Specifier: JY Project: Tigard HS Address: Sub-Project I Pos.No.: 2016135.00 Phone I Fax: I Date: 3/22/2018 E-Mail: 6 Installation data Anchor plate,steel:- Anchor type and diameter:Hex Head ASTM F 1554 GR.36 1 1/2 Profile:S shape(AISC);3.000 x 2.330 x 0.170 x 0.260 in. Installation torque:- Hole diameter in the fixture:df=1.563 in. Hole diameter in the base material:-in. Plate thickness(input):2.500 in. Hole depth in the base material: 15.000 in. Recommended plate thickness:not calculated Minimum thickness of the base material: 16.500 in. Drilling method:- Cleaning:No cleaning of the drilled hole is required ♦y 9.000 9.000 • 0 0 0 ri 3 0 4 • 0 • of 0 0 4" r 0 0 0 • 1 2 • 0 c+i • 3.000 12.000 3.000 • Coordinates Anchor in. 110 Anchor x y c.x c.5 c-y 1 -6.000 -6.000 18.000 30.000 30.000 2 6.000 -6.000 30.000 18.000 - 30.000 3 -6.000 6.000 18.000 30.000 - 18.000 4 6.000 6.000 30.000 18.000 - 18.000 Input data and results must be checked for agreement with the existing conditions and fQQ,,•lausitijy;Q f PROFIS Anchor(c)2003-2009 Hilt AG,FL-9494 Schaan HIM is a registered Tradem�•.°Al n CMS =3:ZI www.hilti.us Profis Anchor 2.7.6 Company: Catena Consulting Engineers Page: 6 Specifier: JY Project: Tigard HS Address: Sub-Project I Pos.No.: 2016135.00 • Phone I Fax: I Date: 3/22/2018 E-Mail: 7 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. • . Input data and results must be checked for agreement with the existing conditions and f alausisil�iVi Q�h3 $ PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Tradem rk tSd M c 0IY SHEAR LUG DESIGN /�R//��} Project: TIGARD HS No: 2016135.00 Page: 4trplent aontvllinV • IT n gin e•r Subject:SHEAR LUG DESIGN By: JY Date: 3/19/2018 Distance shear lug from shear shear lug Max Shear Width of baseplate bearing Check if shear Frame# Vu lug to Ft (W) width(B) thickness height(H-Avc(inA2) Vcb(kips) Controlling Vn lugdesign is ok (Vu) concrete g (t) g g edge(L) G) 1.01 141.4 4 5 18 2 5 1590 341.9 199.0 OK 1.02 135.7 4 5 18 2 5 1590 341.9 199.0 OK 1.03 115.7 2 4 18 2 5 678 145.8 145.8 OK 1.04 92.1 2 4 18 2 5 678 145.8 145.8 OK 1.05 63.9 12.8 4 18 2 5 3788.4 814.6 199.0 OK 1.06 120.5 4 5 18 3 8 1686 362.5 199.0 OK 1.07 139.7 4 6.5 18 2 5 2094 450.3 199.0 OK 1.08 69.9 2 4 18 2 5 678 145.8 145.8 OK 1.09 209.3 6 4 18 3 8 1896 407.7 318.5 OK 1.10 89.5 18.33 4 18 2 5 5381.04 1157.1 199.0 OK 1.11 159.5 4 6 18 2 5 1926 414.2 199.0 OK 1.12 200.8 4 4 18 3 8 1320 283.8 283.8 OK 1.13 139.7 4 6 18 2 5 1926 414.2 199.0 OK 1.14 140.5 4 5 18 2 5 1590 341.9 199.0 OK 2.01 71.8 7 4 18 2 5 2118 455.4 199.0 OK 2.02 125.5 3 4 18 2 5 966 207.7 199.0 OK 2.03 0.0 3 4 18 2 5 966 207.7 199.0 OK 2.04 124.7 3 4 18 2 5 966 207.7 199.0 OK 2.05 160.6 3 5 18 2 5 1230 264.5 199.0 OK • 2.07 150.4 2 4 18 2 5 678 145.8 145.8 Ref.4/55.07 2.08 79.7 3 4 18 2 5 966 207.7 199.0 OK 2.09 72.2 7.5 4 18 2 5 2262 486.4 199.0 OK 2.1 98.0 6 6.5 18 2 5 3030 651.6 199.0 OK 2.14 80.6 2 4 18 3 8 744 160.0 160.0 OK Note: 1) 2.06&2.13 is deleted from the project. 2) 2.11 and 2.12 only have braces on upper level.No shear force into the footing therefore no shear lug needed. SEE SAMPLE CALC ON NEXT PAGE • Page 246 of 268 Ccat_,..., ena : `47,5run'.' ';',1 Project: Subject: Ti eiAR-b u S. No: .2_04 11; By: jr Page: Date: ch .air Li&/ Eaffk O.Pc 3/ ,./is • 0(#7,10P .., StQfxr t il.. 2 / I \A) lvDtAt -4 i )-,1 ,, („,(, /,2 ;n depth A cF1&I = S '' / 90 /-'012- og Y 1 g " bels-e ?tc-le } Vile, ©�bs , a 1,s Y 4- x k, pci 0 T.- ixltALT--me- :sf- ID r 6- or',-: (iftvi .1% f ' , Oveiskear. .31k Ns V L.:. txcirn 1 0 41) CA-V1 Cif Vki I 1 1, =_- (m-1,1p -f49 Le.),11-k - e,1 wIciA-t- )/2 iI 1 I , V\J ft — Wi 4441 Of Ftl [116Cf C Vv 14 1/1 ( I a '' ) L , " t 1' ------- ,_311-eA'r 1449 ILtickYiess (-z._ or 0 / O ( S341 - I ov 1101 0 el ,51Fetlx- /LI -1Yeert,W) Tv eja„Artk 9e,)ahtvi / s- . /r tr. i ir"• 17 41 0 .},yt am‘ ixlvee bvevri e\A-t_ illoro ,,,olq-e a-f (veft- ..) t S" — r6V68, :,_ Dies y 4 x ig,c) x -1 -N = 34-i, 9 Ic. ..? (4 fI.Are -il„t ) )\ oy,“.rett_, , 401.1A)rS-1 Ore./Lk/KT .7' ---> ( 56 Vpt = im-f‘r ( 9S V4 dl-ieta- øv ) 1 1. tAii . J 1441_S (a3iz, e3"14 ' 0 , Page 247 of 268 Catena cong sl un leting THS 2016135 1 e n e r s Project: No.: Page: Subject: By: Date: Pilaster BRB Baseplate ETH 3/15/2018 • COLUMN BASE PLATE DESIGN This is for the BRBF column anchorage In accordance with RISC 360-10 in area SI on grid SI between grids SC &SJ and at grid SC/S7. Tedds calculation version 2.1.01 Bolt diameter-1.0" 2.0" _i_ r I ,: Bolt embedment-24.0" W 8x40 I I Shear lug-18.0"x 2.0"x 6.0" •0.0 kips Lug/base weld-0.4" I I 1 Flange/base weld-0.3" mWeb/base weld-0.3" f 1.,... __ 120.0 2.0" 4- � lai To1214 26" ' 0.12"I 50.0 kips I 50.0 kips Plan on baseplate Elevation on baseplate Design forces and moments Axial force Pu=-100.0 kips (Tension) Bending moment Mu=0.0 kip_in Shear force F5= 120.0 kips Eccentricity e=ABS(Mu/Pu)=0.000 in Anchor bolt to center of plate f=Oin=0.000 in Column details Column section W 8x40 IIIDepth d=8.250 in Breadth bf=8.070 in Flange thickness tt=0.560 in Web thickness tw=0.360 in Baseplate details Depth N=30.000 in Breadth B= 18.000 in Thickness to=2.000 in Design strength Fy=50.0 ksi Foundation geometry Member thickness ha= 100.000 in Dist center of baseplate to left edge foundation xce1 =24.000 in Dist center of baseplate to right edge foundation xce2=24.000 in Dist center of baseplate to bot edge foundation ycel =20.000 in Dist center of baseplate to top edge foundation yce2= 12.000 in Holding down bolt and anchor plate details Total number of bolts Nbolt=4 Bolt diameter do= 1.000 in Bolt spacing sbolt= 14.000 in Edge distance el =2.000 in Minimum tensile strength, base plate Fy=50 ksi III Minimum tensile strength,column Fycoi=50 ksi Compressive strength of concrete fc=4 ksi Strength reduction factors Page 248 of 268 4 Project: No.: Page: Catena ` on un heteenr g THS 2016135 2 e g i Subject: By: Date: Pilaster BRB Baseplate ETH 3/15/2018 • Compression (pc=0.65 Flexure =0.90 Weld shear $v=0.75 Bolt tension force Tension force in one half of bolts Tu=ABS(Pu)/2=50.0 kips Max tension is single bolt Trod=Tu/Nbolty=25.0 kips Compression force in concrete fp,max=0 ksi Base plate yielding limit at tension interface Distance from bolt CL to plate bending lines x=abs((N-0.95 x d)/2-el)=9.081 in Plate thickness required tp,req=2.11 x'I((Tu x x)/(B x Fy))= 1.499 in PASS-Thickness of plate exceeds required thickness Shear lug Length of shear lug hug=18.00 in Thickness of shear lug tug=2.00 in Height of shear lug hug=6.00 in Grout pad thickness G=2.00 in Effective depth of shear lug diug=hug-G=4.000 in Distance from center of column base plate xhug=0.000 in Depth of shear lug required dug,req=Fv /(4c X 0.85 x fc X hug)=3.017 in PASS-Depth of shear lug exceeds required depth of shear lug Dist-top edge of shear lug to top edge of conc a1,ug=ycez-liug/2=3.000 in Dist-bot edge of shear lug to bot edge of conc az,iug=ycel-liug/2= 11.000 in Dist-front edge of shear lug to front edge of conc bl,iug=xcez-tug/2-xiug=23.000 in Length of projected shear area LAv=min(a,,hug, blhug)+min(az,hug, b,,hug)+hug=32.000 in Depth of projected shear area DAv=min(b,,ug+thug, ha)=27.000 in Projected shear area Av=(LAv x DAv)-(hug X Chug)=792.000 in2 Shear strength of concrete in front of shear lug 4Vu=4 x x I(fc x 1 psi)x Av=150.27 kips PASS-Shear strength of concrete exceeds applied shear force Moment in shear lug Mui=Fv x(G+Chug/2)=480.00 kip_in Thickness of shear lug required tiug,req=(4 x Mui/(alb x Fy x Ihug))05=1.540 in PASS- Thickness of shear lug exceeds required thickness of shear lug Lug weld leg length Dweid,hug=0.375 in Distance between centroids of welds s=thug+2 x Dweid,ug x 1/3=2.250 in Axial force on weld per inch fc=Mui/(s x hug)= 11.85 kips/in Shear force on weld per inch fv= Fv/(hug x 2)=3.33 kips/in Resultant weld load fr=((fc)2+(f02)0'5= 12.31 kips/in Nominal weld stress Fw= x 0.60 x FExx x(1.0+0.5 x(sin(90deg))1.5)=47.25 ksi Weld resistance 4Rn= Fw x Dweid,iug x 1 /(2)05= 12.53 kips/in PASS-Strength of shear lug exceeds required strength of shear lug ANCHOR BOLT DESIGN In accordance with ACI318-11 Tedds calculation version 2.1.11) Page 249 of 268 Project: No.: Page: catena °n' t ' nr g THS 2016135 3 e n g I e e Subject: By: Date: Pilaster BRB Baseplate ETH 3/15/2018 Anchor bolt geometry Type of anchor bolt Cast-in headed end bolt anchor Diameter of anchor bolt da= 1 in Number of bolts in x direction NboIt =2 Number of bolts in y direction Nbolty=2 Total number of bolts ntotai_(Nboltc x 2)+(Nbolty-2)x 2=4 Total number of bolts in tension ntens=(NboitN x 2)+ (Nbolty-2)x 2=4 Spacing of bolts in x direction sbottx=26 in Spacing of bolts in y direction Sbolty=14 in Number of threads per inch nt=8 Effective cross-sectional area of anchor Ase=n/4 x(da-0.9743 in/nt)2=0.606 in2 Embedded depth of each anchor bolt her=24 in Material details Minimum yield strength of steel fya=36 ksi Nominal tensile strength of steel futa=58 ksi Compressive strength of concrete fo=4 ksi Concrete modification factor =1.00 Modification factor for cast-in anchor concrete failure Aa= 1.0x?= 1.00 Strength reduction factors • Tension of steel element 4t,s=0.75 Shear of steel element 4v,s=0.65 Concrete tension (Ike=0.65 Concrete shear 4 ,o=0.70 Concrete tension for pullout 4t,oe=0.70 Concrete shear for pryout 4v,oe=0.70 Steel strength of anchor in tension(D.5.1) Nominal strength of anchor in tension Nsa=Ase X futa=35.13 kips Steel strength of anchor in tension 4Nsa=4t,s x Nsa=26.35 kips PASS-Steel strength of anchor exceeds max tension in single bolt • Page 250 of 268 Project: No.: Page: Catena e n = °ho e i n g THS 2016135 5 Subject: By: Date: Pilaster BRB Baseplate ETH 3/15/2018 • Pullout strength(D.5.3) Net bearing area of the head of anchor Abrg= 1.5 in2 Mod factor for no cracking at service loads lllc,p= 1.000 Pullout strength for single anchor Np=8 x Abrg x f c=48.00 kips Nominal pullout strength of single anchor Npn=llfc,P x Np=48.00 kips Pullout strength of single anchor 4Npn=4t,cB x Npn=33.60 kips PASS-Pullout strength of single anchor exceeds maximum axial force in single bolt Side face blowout strength(D.5.4) The sideface blowout will be checked in the y direction as the edge distance for these bolts are less than het/2.5 Check y direction Axial force in group of anchors Nob=Ni/Nbolty+N2/Nbolty=50.00 kips Edge distance cal =5.00 in ca2= 11.00 in Side face blowout strength for single anchor Nsb=(160 x cal x 4(Abrg)x a,a x'I(fc x 1 psi))=61.97 kips Distance between outer anchors along the edge s=(NboitN-1)x sbotbc=26 in Nom side face blowout strength multiple anchors Nsbg=(1 +s/(6 x cal))x Nsb= 115.67 kips Side face blowout strength for multiple anchors 4Nsbg=$t,c x Nsbg=75.19 kips PASS-Sideface blowout strength exceeds tension in bolts • • Page 252 of 268 Project: No: ^J/r/�� Page: eon :ulrinp... 7 (� I " I613�� catonq enylneers $UbjBCt: �p /� 11 (�.5 f Req. By: Date:Iii /to .„., This occurs in area Si on P' ( kr 'j ( ( grid Sl between grids SC 3 I„K; i ,la_s-- 47,,,,,e ,,,,„,, -- ,s-' K t ri.5 -f(e,s 7 ifs t 7.,o. ...._ (@a ,,, as — 1 20{ • ,,,,,,,,,,,x),, e ,nj4,h ..„............._,,Q0K 4- 31K -.17... i)ikP 's' 1 p; 1 OS-Kr Pte'` 2-1,13 Co-bi , Se, .L-- (00.,,)/ 641 ilof. IQ_, f ,.t e(c 61- 119 = t-tig.,,, ,-1)2,,,, 1 ,--3 2 7 ( IC) -4:4 0 Page 253 of 268 Project:catena No: �!le Page: " ° " ° ° ` : Subject: By: Date: • Th 14.,s10 (2-7",7 Ver,1;6 ,( S fre( = 220;''► -7-72 of) lA _ 2-, 2 z 9 - :Je (6) bcp- :7 Q. s 3;i1/604.- (t) # ' ?;face do no corex loo-d ( 'io ` d S � + res c-r 2(.r, Cif <-S, ( 22Q; 2.2;47, 40k5; .2.--2-4-eq .,2 A rit 0 - gtk Pti E 5 n Thvis. Reef. ? 12.3- ' -:pie - Sped Q d 2 1E1-16 Lt 4;es Page 254 of 268 Project: No: 4 / 1 !W Page: consulting Subject: By: G / Date: Z 2 asief /ip k5vvWI/1f 0 9rt -5-1 44c) -la( ikP r • ,2,(, ._32„„ Ufa s-feei A = 9;412 41 (---) -7) 0-0 . ., Vt,•/-7(g) A I-11 z-- P„ 7 (-1)g9;i0,1---9-,, 9'4 iyii) (DO .4 /(q FoK ^Tkls. gf l f pen 2.4.11),3- = �,2, t 'Te 5 e • Page 255 of 268 No: T► 1[� J oi06!3 S.0Q Page: Catena : 74$11/ $Ub)8Ctj By: Date: M M • (i f /c "1 o1 s v)*tI* ''1d 41-. C ) 19L-:161fj M A.L.AAvI('s i n el 4Se2 d�r;n btr pliA5c. � (�-�t'�� �j'�. ©c4—as. Ref. A-DZ.I1 Arl 5 5,01 . — De-5)R acn^ttJ (..) 0 d g Cle(61 ( gpoi -300 CP- CA?"4,. 6. 61(9. X I ( 2. 'pc 20/c DL .(5-o fa.,,!--.f(i ivY -26 (c In! 7C0422 1 S t cZ Z6c ( - 2 • Ula- 07)04 '9all. .�/ � s4n. = - -:. 0. 1g . /y V - v' OW• z g = x.031 / ?,6 „ ^ ��( Ste. 1/f51) 5.01 n . - (5/a " ply00p61 1//4((,c' 4-17 v. - 405o %3.57 _ z 1L < oU,� pg �P 11-\ckor o‘z--ru4c 57e?t. Tye, 0.7 -i9 i>-= ,1(01.F • Va - (. 6 t 3 j r g04r 63, t-- 0f.D 5 leLof 268i'' Project: No: Page: Catena e` °n ° = ° ' ' ° 4 � 1 t U-5 e t6 gtneers Subject: ✓ By: Date: 441 3/22/gi • --- V e 5,` _, -e,, 9f7 $/'ecu ,J( (60A1:).. . - bi.„5,.;.1 SVlt1*Gs e f C.. eAd-\ Si`k 0- coctr434rd5 . K4 2/.5�. c7( 9 t!`v,(( (a11-6, :-- (1' pow-- '6 35V-42 t\19e0 .1'" 57752 . p tfrier' / ede, r 0 • Page 268 of 268