Loading...
Specifications ` \1PQvo — (7-,_-_,c) ./ STRUCTURAL, CALCULATIONS FOR RIVERTERRACE EAST CONDOMINIUMS 22 PLEX p% 7 -:;-. OLYGON NORTHWEST) JUL 1 0 2O13 OFFICE COP ,. c '4 GINF1 S 15472 tc REV Goti * -[ JAZtl EXPIRE$ 51 1 MARCH 20,2018 JOB NUMBER: 17-T174 , 41 4114, ,,, 10,,, tli FROELICH ENGINEERS * * * LIMITATIONS * * * ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT, WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND/OR LIABILITY IS ASSUMED BY,OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS. A Main Office A Central Oregon 17700 SW Upper Boones Ferry Rd#115 745 NW Mt.Washington Dr.#205 Portland,Oregon 97224 Bend,Oregon 97701 503-624-7005 www.froelich-engineers.com 541-383-1828 � F FROELICH ENGINEERS4 Scope of Work Client: West Hills Development Project: River Terrace East Project Number: 16-T100 Date: December 15, 2016 By: YSP Scope of Work: Froelich Consulting Engineers, Inc. (FOE) has provided full structural lateral and gravity design of the project per the 2012 International Building Code (IBC). Froelich Consulting Engineers, Inc. has provided details only to the areas pertaining to our design. Froelich Consulting Engineers, Inc. did not design or review the details for the entire project. Project Description: This new three-story multi-family apartment building wood sheathed wood framed wall structure is constructed with gang-nailed wood roof trusses, wood framed floors, with slab on grade main floor. Conventional foundations (concrete continuous footings and stem walls and spread footings) are used for building support. A Main Office FROELICH ENGINEERS A Central Oregon 6969 SW Hampton St. 745 NW Mt.Washington Dr.#205 Portland, Oregon 97223 Bend,Oregon 97701 503-624-7005 www froef ch-engineers.corn 541-383-1828 f. 4 Ghent: 'Xi:si hills Deveiivin,eiril Project: River i'sr rs L:titsi it . . , . Proj.td: I6-710'..3 Date: 12;15/2016 VSP FROELICH e tJ 4:i f 341 EER I Project Design Criteria Project Description New three-stony multi-tnntily apartment buildnI5,c. (3:tngenulled wood roof trusses. Wood Fronted Floor. Liittii.iidttted wood sheathed wood wails, Slab on Grade Convention tl Foundations Project Location Portland,OR 45.548°N 322.84°W Average Elevation=350 it(tsllprsrxitnute) General r Building Department Building Official Phone Number: , Building Code(s): 2012 International Building Code(IBC) 2014[healon Structural Specialty Code(OSSC) ASCE7-10 Roof Live Load: Ground Snow Load 15 oaf(Snow Load Analysis for Oregon 2007) • Minimum Roof Snow Load_ 25 psf (Snow Load Analysis for Oregon 21107) Snow Importance Factor(Is)— 1,00 Deflection Criteria= 1,1240 Floor Live Loads: Residential Live Load- 40 psf (IBC Table 1607 1) Corridor Live Load— 100 psf (113C Table 1607,1) Wind Load: Basic(s'-Second Gust)Wind Speed=— 120 mph(OSSC Figure 1609) Exposure= B Wind Importance Factor(1w)— 1,110 Seismic Load: Occupancy Category°- i1 (IBC,'Table 1604 5) Seismic importance Factor(Ie) 1.DO Site Class— 0 Mapped Spectral Acceleration Values(Ss) 0.915 F Mapped Spectral Acceleration Values(S1)= 0.36 1 Design Spectral Response Parameter (Sr)s)= t?726 s, Design Spectral Response Parameter(Sm)- 0,403 g Seismic Design Category- D Response Modification Coefficient(R) 6.5 Light-framed wails sheathed with wood panels Shear Walls(Bearing Wall System) Soils Data: Allowable Bearing Pressure= 2500 psi* Exterior Footing Depth= 18 inches* client: ,,,'es i;?�, ) :'t:.i:,t`"'.. , Project; K're. USt Proj.#: 16,Tc,, ,40 Date: 12:151)(1?) By: YSP FROELICH e e is,t-ice.is23 Dead Load Calculations Roof Dead Load Top Chord of Truss Com,i tient Wei.hts Neural(ni) Comments Framing 4 hoot"i rosins Roof sheathinga 2 S:8 shth , Roofing(Asphalt Shingles) 3 Mise, € Total , 10,0 pat Bottom Chord of Truss Corn+orientWelt tits Actua€l w() Comments Mechanical 1.5 m Ceiling 2.8 I;5/'S`g Batt Insulation 1.5 Sprinklers I Misc. 1 2 Total '4. .6 `psi 4psf added for Seismic Base Shear 'total Roof Dead Load= 18.0 psi" Cale. Floor Dead Load Component Wei.hts AetuolI is Comments En 111 .111111.111111111111111 'o'st Framin EMMIIIIIIIII 7'8'Atli Floor Covering. 1.23 2-ioot"fon Una(Gvacrete 105 lbsitt3 Mechanical Fluorin Sprinklers 'Wise 1.4 €'otal 27.0 psI 8psfadded for Seismic Base Shear Cale, Corridor Floor Dead Load Comneot Weights Actual frit Comments Framing I Joist Framing, Sheathing 3 '1II ahth Floor Covering €:i S Floor Topping(Concrete 150 lbs/t131 Mechanical 1 Ceiling 5.5' 2)5X m'p Flooring 0 Sprinklers 1 Mise, 1.4 Fetal.. 27x0 psi Exterior Wall Dead Load Com,onent Wei is jAcrualI tsftl Comments Framing Sheathing 1.5 1;2'slith Interior Gyp Finish 2 8 5/8" n Insulation 1.5 Siding 2.3 Filer Cement Siding Misc. 0.1 Total-- 10 `€psf Interior Wall/Partition Wall Dead Load Coni.neat Weights Actual( sf) Comments Framing2 6.{8 16'c.,-;.Interior G 4,Finish IM 5.8"'rv.each side Insulation 0._5 Fiberglass Ball L;sulation as occurs Misc. L 0.2 'I pull 3 psi 1 4Client: ,s,„„,?Mitis;, veioprTr i Project: River't no=.:°.1'a.'. Date: ,i/V'014 By: lo-TRal VSP FROELICH ENQ,NEERs4 Flat Roof Snow-Load Calculation: Based on the following Codes: 2010 OSSC ASCE 7-05 Snow Load Analysis for Oregon 3rd ed.December 2007 Maximum Elevation: 450 ft Ground Snow Load(P9)= 15 psf Detetinined from Snow I Analaysis for Oregon(3rd ed.December 2007) Terrian Category= B(Partial Exposed) per ASCE 7-05 Table 7-2 Snow Exposure Factor(Ce)= 1.0 per ASCE 7-05 Table 7-2 Thermal Factor(CI)= 1.0 per ASCE 7-05 Table 7-3 Importance Factor(I)= 1.0 per ASCE:7-05 Table 7-4 Flat Roof Snow Load(pr)= 10.5 psf Pf=0.7*Ce*C,*i*P9 Where p9 s 20 psf(pf Min)= 15 Where p9>20 psf(pr Min)= 10.5 Use(pf)= 15 psf Use(pf)= 25 psf per 2010 OSSC 1608.1 ID r v %wv,2i , (:)02i, - =. . . < , . , • , 7 1 I Ily 1 'moos.. 1 .... , 1 1, 1 11 '11,1": ''1 4 1.11''1'1'.1'. ,i ail 11 1 11........ ,, 1 1 1 V 11M V 1 1 1 1 14R• ,, 4,4 1 ,,,I4vat,,, ,\ y 1 —11_1 , f • ' i .1,3,.......w ,: i ' ".P.A, I Afii I 1 4, : fat= ',.. t 4 I S\t4.344 fr-T` -':' 34.4, i Millilt ,-,, , : . t44'..., . ,,.„..,„,..,„10, „ 1 i ; , .oarA ,,; „...; ,, ..,,,,=4,...;,... ,____!: .ri, 1 - 1 , , ...,..‹,,.. , ,,------ r ;I , ' vei,...,,,,-„,,,,<,... , ,. ,1 , i Watty ,i,evoly..fe' ..A.'ee,"=46 .,;::..- :. 4 . I . ,____. _k 1 , •...9ept,,,*dt 1 It ' / ' tI1 -'-'1 '.. _ , V,-,11 ."'2 ' .4-4, 4,-4li 4*4V4 6:i.e.(^;".. 144,44,4," , 44 - . - 1 ill ,,I / , , ';itk?..4. i Niiikik,4'P : ' ; 4.,‘%44'. i I , '''; 1,1,Wr. ',, /' 0 1 , 1 1.e.... _II 44 "4 'mil 4+44 1. i I .. 1:.'i, : 1 0 ' I, . , . , . , , i i ._ , 1 i 1 I'' ttk,":44.,' 1-.. --,,,,1 , ..L, —r,--,, --',.---—,A41‘41.3.-• , 1 , , , 4,-t:;14:,z.,.•:, ..4,Atky,,,14 , e ; i 1 ; ..n.;;;;;•.;;;;,>;;;;4;;;;;;;A:A., i . —lir— , , ''OX;;;;;,0;e; -..! ..;,„•-,.;f.'f';?' 4"'"'''' 4,:;; 1 rr-'-'1 i--4 . ',.• I '"I'---7:1 1 L - r ' — kats,_ .._._....'.1 ............:.:tk,....., 64 •- t, % ',,e...§..wv / i ,,f,,,,c,tet,,,,„- ujrzi „,..,.. I 1 -.:NP. .....,k,...,.,,,,, .- 10' • ....„ i .: "pW - 'F.' 'VW t t t : r ,,?..0.,,, 4441 / %, ,x„.4 > W5' 1 *, , '....", •i / ; f t.r.„,.„1 , , tt , / T.4.' , . .....i.... _F- 1 1 ih . ......, ......... .... - i . ....___„ .... ...........chimmi • : . • • : . • • ! :•• 1 , • CLIENT: 5969 SW Hoinpion 'a,Ofi .� _ PC1r'liu,i _,. 503-62,1-7C05 PROJECT: jr- 745 NW M1 t rR %4 NUMBER: Bond,Oregcwil 97, 541-383-1820 FROELICH DATE: ENGINEERS ; 113:'3 Airport Way Stun Broomfield,Colorado ur21 72G-56G-2269 BY: 400 , :-: 4 f1 es r , ooh 064D 6-64 I 604D- ' C,1 mak, &-USS : f:001Z. "i ,1 " ) t PAN 2,3 . t2 515 . , RA - DL tc:600 -5L x 2050 spAA 2.3 --0 (5) 2- i 2.5F RA x 1 00 €fir .sem iS3- R ) .c 5° g 12050 , . , ,.. ,t,,Yort't SW--10-tIpt-on S,. 24-7005 CLIENT. PROJECT: •''L',""' '''.1' -'' NUMBER: '',:-.,. .i,•:P''''' F3(2r.:1 Or,r.,COn 9.7 7(;:i :5,11--3E3-18'28 FROELICH _ --, - ----- DATE: 1 23D3.At-porl V1(1,./Suito 2CC, .001'n,fletd Cdkt.trod.:,SOC2-i BY. „ 0 - 2(731 (4. : sL s-(25 (25) c T'-'° - zSL, ' z• .,.,,,,,„),,.. , ii (,,,,, -,7 1.,-- 14.40"c 1 t4.-1.- DL_g 0,cii I -- 0 pc Fr,,00,A. R GI) • 51 .---4---Ci:)(25 ) c. 2-5° Di_ 130,0# ,------- - ----- St— (-) 600-4 ... ..-- Rc) F /11), ' :t RH ) : / ,,, p,a,e-,.:1 r ,..3 —0 I' : Di— r pt,i4 kg ) c aco Pc‘c , F>c ia-",- Gr-k re...06:X- TE- ) 00* r--- t:32 A Aj f 6, —0 e.,,,J I ,. DL s (1,4,1) 5L r (t tli ),5) _r--2.:7-5 I COMPANY PROJECT T if dWo i1<Ss 3 41- Aug,31,2019 09:29 PH1 wwo Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: i e5d TYPe Cdnit1bViior 5,6. i5,2iio5M5,e1irde Mile 11ta2i, End ima.,-�.,.d 1 e..^ La.:'. Partial U:u. 4 55 ,2. 115.6 1275.0 plG !.Dazs :sed llc.lnl - lb Load. Send Paint. 151n Stan • 1q6i. Ded fell 691 5,G pit. Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): t . , _ .,—_., __...__ 3'-1.9- - ,„ I ff 39r tlnia..:to red: Dead '15 1113 Snow '.34:0 1425 Fa -:edc 1111 1111. 1111. Total1635 2.511 Dealinu: Capac.i.T.S ,.kt Deem 1645 25'` Suppere 161.1 *0111 Anal/Gen 1p'am 1.0:) 1.0tr Doppeet 0.90 0.90 t.L.,ad n..rt,comb G 42,75 t.45 Min-reted t7.15 1,16 CO 1,00 1,011 ':b min 1.09 1,00 Cb .appeet 1,11 1,11 'c.,; svp 02.:x.. en Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7.114") Supports:All-Timber-soft Beam,6,Fir-L No.2 Total length:31-1.9';volume=0,6 mit; Lateral support.top=at supports.bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: Crittrl AM141;yssa Yale 1410.140 -e .. 4:4 90s93cea nr:. Shear fu-n, 1.31 -1 1 z .- (°.P: rtsrd1n9411 ft, 931 60' -339 661 .'ailS -. 0.70 end Celll' ,01 21,7 99 :l1', 0.01 . <1.2990 13.10 r 1. 0 .. 0.11 561.1 Defe'a :1,002. 411999 1,15 _ 1/2,10 ,,.. 6..15 Additional Data: FAS'lot1S: 3lt.lt.s 3CE CM C, Cl. GC Cie ._.. Cie, Ci C. LC4 {Y' 100 Ii15 1.00 1.G0 - -. .. - 1.00 1.9e ..!)e Pb'- 900 1,75 1.00 1.00 0,995 1.910 .40 1.G0 1.00 - e 9.op' c25 - 1n:.,) 1,00 ,. P,' 7.0:al.11ton 1.00 1.00 - - - • 11,00 1.00 - 0 Emir' 0.50 onl)sor, 1_00 1_0') - - - ... 1.0.1 1.90 - 2 CRITICAL LOAD COMBINATIONS: .nbeat i LC 42 = 10.1 Y- 2521, 1'J ign 2109 10_ L.aad ..iW4.1' LC 41 M:. 2.119 31:5 o [infi:i.rm:tien: LC 40 - try•^ .`:.rr:i 111 112 = DoS itet.4.3) 4=daad Loliv Sots-new'R,tlnd Il-impact Lr=r:ool live 1c-cmnceemi,ted 11=earinquake 411. LC'n ate lisle= 1.9 9)00 A6elys:ls 3,45314' Lood ;-,001st dors: ASCE 7-10 / S0-:2012 CALCULATIONS: Cefiection: SI o 1110,01 lb-1.2 'Lioe"deflection it Deflection from s1_ a :dead 100:99 ;live, wind, erode) TVts1 De;le--t.,3) I..S1l'7ead Lend Deflection; a Live Ided Def.1. .e. ..at4c61 44.btl.1 , 341: 1.. - 3'-11.94" .,F. - 6'-1.1.2 :.S _ 6,%1 Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012).the National Design Specification(NOS 2012).and NOS Design Supplement. . 2,Please verify that the default deflection limits are appropriate for your application. 3,Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1.. . COMPANY PROJECT WO o d works® Aug ,31,2214 II9:29 0H2 w•aro Design Check Calculation Sheet Woodworks Sizer 10.42 Loads: 1,08,12 Snow 9911 aLL. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) ic .8`43`. r nooj 92.9 Uhou 04:7 840 Te+tat :e. . 1470 r ep8c1r.y eosin 1470 1421 A;,a. ._.., 91909, 1.03 1.:?;i Suppyrt U.5€3 0.80 faLv) 007.89 42 Leudte 8.57 r,47 Min _ed'l t.00 1.80 C9 van 1.09 1.00 Ch 0upectr. 1.11 ,>. _nig 421 ._., Lumber-soft,D.Fir-L,No.2,4x6(3-112"x7.114") Supports:All-Timber-soft Beam,D.Fir-L No 2 Total length:8'-1.3';volume=1.1 cult; Lateral support:lop=at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection usino NOS 2012: Ctt. enio:': V4i,t l R:.7r 1-felve 1144 L:...;. ..x.Gea08104 t Sha:tc t',v V• . 21, He:x:7;,ig1 t l 49 4 908 _t, .# 1189 :„9 .A .'L+• v. 9.61 0,0,0 Ce. 04 4 9l4158 Live 0,0411, U.05- 07../890 m.27 - 141417 90 4.29 to181 G,._t'., 7.10 114191 . - . tr, Additional Data: FACTORS; PIEtpailCG ,._ .._ ..__ Ci 04 CM {:r. Fv 9 ..29 - - - 1.00 _.1") r 2 Ft,' 5190 00 1.012 Fop 625 .0:8 .. _ - .00A 1.00 CtUtT,CAL WAO COM'3tNAT€CNS'. alieat 04 - 1151, 0 um. 2 1164 19.2 0ef1$ct)ort: 02 Lc 42 2. 122:11 000,81.i 1*dk0e1 L 11ve 1:99,099 :a;> - <. ,,_. .__. .. _acc'.t54sako 011 174°'9 _. '9 are - A, the^ tai90 a Lonat_ow.>t A422 '-10 1 _. ,; ..,.r CALCULATIONS' Deflect toff: El 4 174406 .1-10.1 "0.1.:00. 08910,1900 m Deti.or10 - - voost 1 Deflection = . .._ ,. :bt _ Later.,. 81091 .09 . 4'9U.14.2 ..,.i 7.11 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(!BC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. 2.Please verify that the default defleclton limits are appropriate for your appacaiion. 3..Sawn lumber bending members shall be laterally supported accomirg to the provisions of NOS Clause 4,4.1.. CLIENT: / . 6969 SW Hampton St Per-hand,Ctegon 97223 503-624-7005 PROJECT: i__: ..,-;w1,-,10,"•."-.. 745 NV,'iv Washing,on Dr.#205 NUMBER: Bena Oingor 97703 641-383-1828 FROELICH i 1 ..,..„ /,„:-_,,ff,,,,, DATE: 12303 Airport Way Suite 200 ENGINEERS ; Broomfield,Colorado 80021 720-560-2269 BY: WI AiDo ,i I-1 Cl - C.(.. ,,,‹ .. Dal_ raP f)L.,. ,.-- . ' ,....F I , , vj IG ( — ,,"' (...„$!;,( tic)iilr) ' i f ,„--- (IX 3 I r i., P.,5c 1 A11* 5 I (2 W.3—<, , 1' i 1,i ,...j , (./ 1 0". w -1 1 , 1 i i .24),r, # L.---1='* i'e,6"` CLO Tc6- Ali Client: Project: Project#: Date: FROELICH ENGINEERS ! WIND FORCE CALCULATION-C&C Walls ASCE 7-10 SECTION 30.6,30.7 (Third Printing) Design Wind Loads on Components and Cladding- Walls Basic Wind Speeds Input 3 Second Gust Vas= 120 mph Exposure Category= B Wind Directionality Factor Kd= 0.85 Table 26.6-1 (page 194) Mean Height of Roof, h= 40 ft Topographic Effects Input Hill Height H= 0 ft Table 26.8-1 (page 196) Length of 1/2 hill height Lh= 1000 ft Table 26.8-1 (page 196) Dist.From Crest to Bldg. x= 100 ft Table 26.8-1 (page 196) Height Above Local Grade z= 15 ft Table 26.8-1 (page 196) Horizontal Attenuation Factor m= 1.5 Table 26.8-1 (page 196) Height Attenuation Factor g= 3 Table 26.8-1 (page 196) Shape Factor KI/(H/Lh)= 1.3 Table 26.8-1 (page 196) Output-Topographic Multipliers K1 = 0.00 K2= 0.93 K3 = 0.96 Topographic Factor Ke= 1.00 Terrain Exposure Constants nominal height of boundary zg= 1200 Table 26.9-1 (page 199) 3-s gust exponent a= 7.00 Table 26.9-1 (page 199) Pressure Coefficients Input Velocity Pressure Exposure Coefficients Kh (see below) Table 30.3-1 (page 259) Height(ft) Kh qh (psf) Velocity 15 0.70 22.0 Pressure 20 0.70 22.0 Output qZ - 25 0.70 22.0 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 I h= 40 0.76 23.8 qh External Pressure Coefficients (GCS,)--Use Figure 30A-1 for h <60 ft,30.6-1 for h>60 ft GC/A=+1- 0.18 Table 26.11-1 (page 201) Pressure Coefficients on Exterior Surfaces of Walls Zone GCS, Zone 4 (+) 0.90 Figure 30.4-1 for h<=60(page 277) Zone 5 (+) 0.90 Figure 30.6-1 for h>60(page 290) Zone 4 (-) -0.90 Zone 5 (-) -1.80 Calculate Wind Pressure,p,per Equation 30.4-1 or 30.6-1, using cth Exterior Face of Surface Zone p(psf) Zone 4 (+) 25.74 with Positive Internal Pressure Zone 5 (+) 25.74 with Positive Internal Pressure Zone 4 (-) -25.74 with Negative Internal Pressure Zone 5 (-) -47.19 with Negative Internal Pressure ' COMPANY 6 PROJECT ( WoodWorks® =.e)rnW,a€a+FOR a t 3,k5,;Wti Dec.13.2016 09:39 Beam i Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: i !i'liw!, alz., 1',,ti.:.,n l'at Location Eft) Magnitude Unit ):ern rr End Start End Maximum Reactions(lbs), Bearing Capacities(lbs)and Bearing Lengths(in): 9•, Dead Kind 327 32., Total 0+ i�� 196 Bearing: . Capaglt.y Ben, 2209 Support rt. . 2209. Beam 5.00 Su;;;*;rt. i:i5 9 3.09 Le:0 c-:8> =a 2 Length f3, 0' 14314 reg'd 0.50 0.503' 0,50 Cn 00 1.00 Cb 14171100 28 ssuoor.[. 1.00 l.1.00 . Fez:, �;E";: c 7.i Ei25 ;Z S --`Minimum imanrg length setting used:1f2"for end supports Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7-1/4") Supports:All-Timber-soft Beam,D Fir-L No.2 Total length:9'-1.0';volume=1 6 cult.; Lateral support:top=at supports,bottom=at supports;Oblique angle:90.0 deg; Analysis vs.Allowable Stress and Deflection using NDS 2012: fCr :ioa; 'Analysis Value Design V.31:e Unit. Ana ,is/Pesin Shear x-x hv ?i vl = 289 kips e/Pv - 0.00 y-y `v m 11 £v' _ 289 psi fv/Fv' = 0,04 Be d ng(+i a-x fh - 0 Fb' -: 1931 kip-ft "b/Pb' _ 0,00 - :35e Fb' = 1900 k:ip-ft fb/Fb' _ 0.19 Dead 11'n T negiig .:ble _,v. De 'n d.145 _ 8/092 0.45 « 21290 In 0.35 Total. Dell'o 3,11 1:692 0.45 _4, 1/240 ,35 Additional Data: y FACTORS: ;t4'.,.i1Ci CM Cl CL OF Cro Cfrt Ci Cm10 ivy' 100 1.60 1.00 ,003 - ., t 1.00 1.00 - IFIeg' 900 1.140 1.00 1.00 1.000 1.300 1.05 1.00 1.00 1.00 - 2 Epp' 425 - 1.00 1.00 - - 1.00 1,03 - -- ;c.i1i«n 1.001.00 -. - - .00 1.00 - min' 0, ., v _li.en 1.00 1.00 - - -- 1.00 1.00 - 2 CRITICAL LOAD COM1OINATiONS: Shear . 1.i: _ .61)+.6:s, V = '1.45, V design - 18:2 I.bs l:ienc9dngi+;: LC `2 = .604,6W, M = 441 lbs-St Pef.' eCtz;)n: T.C. 02 ... .6144.6W (live; LC: ;. ... .64+,6F; (total) D==dcaaae:i,.. ,: - n*.?�,e W=w�.rtr: -4.xl;a;:t - =r.*.:o C' live Lc-concentrated zated )r=en-triqu>k.�, Al.l. CC': are 1.3-4+0 in Analysisoutput Load comb1natiens: ASCE 7-10 , IOC 2012 CALCULATIONS: DeflectionlectIon El .- 178e00 ib-1n2 Ely ... 41,4•,,06 1h-.i-n2 'Livc' deflection - Deflection from ai1 mon-dead loads ilive, Wed, Snow-) Total Ikr:).ec i::i.nn = 1.,'3:Ibeoci 0-ned Deflection) 4 Live Lead Deflection. t:a.ter.=: stability j+;: 1.5 0-0.50 Le e 16'-7.63" £i5 3.65 Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement 2.Please verity that the default deflection limits are appropriate for your application. 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 1 : I I '5 /35 / 1 1 ti 1 rrn mil ' . . . 466, —"idol li , E . 1 1 I I, 11 1 1 1 , 1,1 ---- 0 Jr ; , -1- 3 il , • 1.......,....1 e,...--: - -'f 1' , , , , . 5 I- r7, r----- ill 1 1 1 1 IF 1E I € ' I ...._.....*, I, I , 1111111Mil '7:..' ,.t. , f 1 .. . . I ' I 11111B11 -1 , .... ,miaiiiii... --. 117 1 1 II 11 .. if 1 t ----1 er , 1 i—I . Th 11. tf,,,,c6.r....L.....r-3 ti..., 3F8% ,,. [ fi --,1-71 1.---, r f I i 1 . II ,... ri LJ ' , i , , ' 1 it , - 1 , , , , . 1 3 .. . , . 1111111111111111111 1 . ' I - - j•-^ '- 'pi7,, „--77- , t: --- ”''' ‘' I Egagf'I'F' • . . . , 2.iPe x .... e. ss rxeraie fieek , ----—-, • ( LN : ;t:93Q :t(,.54ton S• 507-51.d-7005 PROJEC 74,5 mtt washt.--t.ctiton 420z) NUMBER (17733 40 512.8 Ti ICH L] DATE: 12303 Aort Vyby StJile 200 G E E En' 4 Brctoritfte!t'. Coiorctdc.t8CO21 720-540-2269 BY. AAA AJ GA, 0 0'40 0 i4LeLLi ies:e(,):tie .60, 4:4)3: Oc t°4-4610440 4e. s . AAJ ZO SA' f /5 PAS E,p A IQ t 5- ( CQ sc-r-, or 4 PA'J A 1-22 ' Roseburg2:45x1 l of Fic.n i 2017.3.0.5 • (Bourrogine 2017.1.0.4 uai:d.<D.u:diasc 1562 Member Data )ascription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None standard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 17 9 0 17 9 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift 0' 0.000" Wall Not Checked N/A 1.750" 799# 17' 9.000" Wall Not Checked N/A 1.750" 799# — ,1aximum Load Case Reactions isedkracorng port Ismis(a Gelam)tocaningmambas Live Dead 477#(3580) 322#(242p1f) 477#(358p1f) 322#(242p1f) )esign spans 1710.750" Product: 11 7/8" RFPI-400 16.0" O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. 411owable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 3576.'# 4315.'# 82% 8.87' Total Load D+L ;hear 799.# 1480.# 54% 0' Total Load D+L 1 Deflection 0.5684" 0.8948" L/377 8.87' Total Load D+L .L Deflection 0.3393" 0.4474" L/632 8.87' Total Load L ;ontrol:Pos.Moment DOLS Live=100°/Snovv�115%Roof=125%Wind=160% SIMPSON` M roiG a gaetraanalsdS reQat ea a5 Kami L.Henderson yew EWP Manager Cgpnigl(C)23161y Sown Gragliie Conroy Irc.A11 RIGHTS RESERVED. Pacific Lumber&Truss ssirgis daredas e6utfe mamba,(Ica last,besot o gra sums;mtlis da<ig meets ggkdkdesrr alma fa L,gS,tmig Catkias,ad Spans Waal His sheet The dairy must be re�ferai 4'aq.�Aiai Beaverton.Oreaon - RoseburgF3 1.22 2:46,,1 1 of 20i7.71 5 iR i,finsinc 2017.1.(1.4 tui.1s Dw: use 1562 Member Data Description: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None >tandard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total Jead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 JT 15 2 0 / 15 2 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift I 0' 0.000" Wall Not Checked N/A 1.750" 821# — ? 15' 2.000" Wall Not Checked N/A 1.750" 821# — 1aximum Load Case Reactions Isedfa apiyig Iril Irk(a ie lock)tocaryig mentr s Live Dead 490#(306p1f) 331#(207p1f) 490#(306p1f) 331#(207p1f) Design spans 15'3.750" Product: 11 7/8" RFPI-400 19.2"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. Rllowable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 3142.'# 4315.'# 72% 7.58' Total Load D+L -Shear 821.# 1480.# 55% 0' Total Load D+L FL Deflection 0.3714" 0.7656" L/494 7.58' Total Load D+L L Deflection 0.2218" 0.3828" L/828 7.58' Total Load L :ontrol:Pos.Moment DOLS:Live=100°/Snow=115%Roof=125%Wind=160 SIMPSON Al"dd r,d'e aetr "di's d thdrr1ive°""°s Kami L.Henderson EWP Manager cql ifl(c)SAE by smp.al sere CoripeN Inc.ALL RIGHTS R te. Pacific Lumber&Truss ssma is dAr I as vias tFe mend,Floc just,barn v 9 shin a tFis d'aal�meas }ic e d oitaia tLr k CarMo ad SFns Gey m tFis sly.The dasql must Le revicw.ed 1N a cpi6ol Beaverton.Oregon C I-22- Roseburg ' 2:46p1 of k4 un 2017.3.05 Rl:o nHieinc 2017.1.0.=' t i;d.e Aanturc 1562 Nember Data Description: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None >tandard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total Dead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beams • J47-77,7 T T / 2240 © 22 4 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift 0' 0.000" Wall Not Checked N/A 1.750" 1004# - ? 22' 4.000" Wall Not Checked N/A 1.750" 1004# - Naximum Load Case Reactions Isoi fa�}dyig pdrt l¢xk(a Fe lrgis)to car�drg mantas Live Dead 599#(45000 405#(303p1f) 599#(450p1f) 405#(303p1f) Design spans 22'5.750" Product: DBL 11 7/8" RFPI-400 16.0"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. 41lowable Stress Design Actual Allowable Capacity Location Loading 2ositive Moment 5643.'# 8630.'# 65% 11.17' Total Load D+L ;hear 1004.# 2960.# 33% 0' Total Load D+L L Deflection 0.7327" 1.1240" L/368 11.17' Total Load D+L I.Deflection 0.4375" 0.5620" L/616 11.17' Total Load L :onto!:LL Deflection DOLs:Live=100°/Snow=115%Roof=125%Wind=160% SIMPSON a Red a��aetra naks d the r e ov as Kami L.Henderson EWP Manager .R i, Cgarticf7(C)H716675nram 5rogTe CanrayI SLLRIGHTS RF_SERVED. Pacific Lumber&Truss ssng's d#ied as the manha,fled'jrist,lean a shnsn m tfis dating meets a> des • • fa Lam$Lm[irg CadtH at SR+s'sled m this shed.The d mud he re ia+Ed b7 a gsafial Beaverton.Oreaon p 1-22-i Roseburg2:47pt ;i. 1 of I un 2017 3.05 d3cvnEneinc 7017.1.11.4 naicds D.¢:�:�c 1567 dlember Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None Standard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total Dead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 T 19 4 0 19 4 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift I 0' 0.000" Wall Not Checked N/A 1.750" 1044# - ? 19' 4.000" Wall Not Checked N/A 1.750" 1044# - Naximum Load Case Reactions Isa7 fawig pdrt Irak(a ie lark)to artYal menbas Live Dead 623#(390p11) 421#(263p1f) ! 623#(390p1f) 421#(263p1f) )esign spans 19'5.750" Product: DBL 11 7/8" RFPI-400 19.2"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. Miowable Stress Design Actual Allowable Capacity Location Loading o ositive Moment 5084.'# 8630.'# 58% 9.67' Total Load D+L Shear 1044.# 2960.# 35% 0' Total Load D+L FL Deflection 0.4976" 0.9740" L/469 9.67' Total Load D+L L Deflection 0.2971" 0.4870" L/786 9.67' Total Load L :ontrol:LL Deflection DOLs:Live=100%Snow=115%Roof=125%Wind=160% SIMPSON °'"cdd n'nES aet'a2C"a4S d W r 1r"e°'"'� Kami L.Henderson EWP Manager • Ccpyrigh(C) a6tySmpsa,slrag-Tieca"pa-yIrc.ALL RIGHTS RESERVED . Pacific Lumber&Truss sshg is[hired as itihtn the manta,fiat.joist,bean a grcia sham as Ids daig meas cgig,adaiafa Loads,Ioacirg cadtios,ad Stas idea m this sheet The desky must Le reaiensl ty a 4aited Beaverton.Oregon F I-22- Roseburg2:DIpI of :134:J112017.305 • diconEneirx 2017.I.Od axials(}t:h e 1562 Vlember Data Description: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None Standard Load: 'Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total Dead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beaml 19 6 0 19 6 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift 0' 0.000" Wall Not Checked N/A 1.750" 658# — ? 19' 6.000" Wall Not Checked N/A 1.750" 658# -- Naximum Load Case Reactions Ise1 fe Torim1641 ket(a ine loads)to caTYig mentees Live Dead 393#(393p1t) 265#(265p4f) 393#(393plf) 265#(2650) Design spans 19'7.750" Product: 11 7/8" RFPI-400 12.0"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. 411owable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 3232.'# 4315.'# 74% 9.75' Total Load D+L Shear 658.# 1480.# 44% 0' Total Load D+L FL Deflection 0.6290" 0.9823" L/374 9.75' Total Load D+L L Deflection 0.3755" 0.4911" U627 9.75' Total Load L )ontrol:LL Deflection DOLs:Live=100%Snov115%Roof=125%Winck160% SIMPSON "' renes are t'a"31's d tte respe],re s Kami L.Henderson cql(C)2016 IN pso Sroig le Cay Irc N1 RIGHTS RESERVED. EWP Manager " Pacific Lumber&Truss sari'sd i das Wai the menta,floe jdst,Ian cinch;Ja+n m lis long mew agicafe d oleia fe ISS,tracing Ccrdtivs,asi has islet m eis lm.The desig'mist he reienei bi a gIgeiai _ Beaverton.Oregon 0+ lEt-t3 a t ""i` 3rd Floor, Span 5'-0"(Corridor Joists) PA„SSED 1 piece(s) 2 x 6 Hem-Fir No. 2@ 16” OC Overall Length:5'7" 0 5, All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual @ Location Allowed Result LDF 1 Load:Combination(Pattern) System:Floor Member Reaction(lbs) 455 @ 2 1/2" 1367(2.25") Passed(33%) -- 1.0 D+1.0 L(All Spans) Member Type:Joist Shear(lbs) 346 @ 9" 825 Passed(42%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 565 @ 2'9 1/2" 801 Passed(71%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 Live Load Defl.(in) 0.079 @ 2'9 1/2" 0.129 Passed(L/784) -- 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load Defl.(in) 0.100 @ 2'9 1/2" 0.258 Passed(L/617) -- 1.0 D+1.0 L(All Spans) TJ-Prov"Rating N/A N/A -- -- -- • Deflection criteria:LL(L/480)and TL(L/240). •Top Edge Bracing(Lu):Top compression edge must be braced at 5'5"o/c unless detailed otherwise. • Bottom Edge Bracing(Lu):Bottom compression edge must be braced at 5'5"o/c unless detailed otherwise. •A 15%increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NDS. •No composite action between deck and joist was considered in analysis. Bearing Length Loads to Supports(lbs) Supports Total Available Required Dead Floor Total Accessories >.>.Live 1-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board 2-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live Loads Location(Side) .-Spacing ':'::(0.90) (1.00) Comments 1-Uniform(PSF) 0 to 5'7" 16" 27.0 100.0 Residential-Living Areas Weyerhaeuser',Notes ! •SUSTAINABLE FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator Forte Software are Operator Job Notes 31612018 4:01--1-i,PM Forte v5.2,resign Frigine , r;0.1.1 "ar:ii It Ea om)oc, I f^IZt3':y fn✓fry'IIC':-!?_ :^ u'T' Dago 1 {?f1 Rn -1-* r: MEMBER REPORT 3rd Floor, Span 6'-0"(Deck Joists) 1 • 1 piece(s) 2 x 6 Hem-Fir No. 2 © 16" OC ... , - 1 E g All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. DeSi.t1 Results Actual @ Location f Allowed 1 Result LDF Load:Combination(Pattern) , System:Floor Member Reaction(lbs) 285 @ 2 1f2j 1367(2.25") Passed(21%) -- 1.0 D+1.0 L(All Spans) Member Type:Joist Shear(ibs) 227©9" 825 Passed(28%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 425 @ 3 3 1/2" 801 Passed(53%) 1.00 1.0 D+1.0 L(All Spans) Building code:IBC 2012 Live Load Den.(In) 0.064 @ 3'3 1/2" 1 0.154 Passed(I_/999+) — 1.00+1.0 1(All Spans) Design Methodology:ASD Total Load Defl,(In) 0.108 @ 3'3 1/2" 0.308 Passed(L/688) — 1.0 D+1.0 L(All Spans) fl-Pro"Rating N/A N/A -- -- — - Deflection criteria:LL(L/480)and-Ti.(I/240). •Bracing(Lu):All compression edges(top and bottom)must be braced at 6'4 1/2"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A 15%increase in the moment capacity has been added to account for repetitive member usage. -Applicable calculations are based on NDS. • No composite action between deck and joist was considered in analysis. --ti Searing Length loads to Supports(lbs) i SupportsI Floor Total Available Required Dead - TOtai Accessories 1-Stud wall-SPF 3.50" 2.25" ' 1.50" I 119 176 295 1 1/4"Rico Board ,2-Stud wall-SPF , 3.50"— 2.25" 1 1.50' i 119 176 295 11/4"Rim Board . I •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. . I Dead Floor live Loads Location(Side) Spacing (0.90) (1..00) Comments 1-Uniform(PSF) 0 b6'7" 16" 27.0 140.0 Residential-Living Areas Weyerhaeuser Notes H. Weyerhaeuser warrants that the sizing of it product will be in accordance with Weyerhaeuser product design criteria and published design values. ;Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels arid Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation Is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://vnvw.woodbywy.com/services/s_Codelleportaspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator .....,,„„, ,.......... 1 Forte Software Operator Job Notes 1 8/2412016 9:00:37 AN Forte v5.1,Design Engine:V6,5.1.' yashar Sarraf P,.T.,r ProcCon EnTroe.-s Joists elk (503)924.631, § CLIENT: • dC)r-‘i",r F.:03-624-7r).35 PROJECT: ..„ ,1 :2)( '2C5 NUMBER: FROELICH DATE: 17.30;i po,1- ENGINEERS r3f"00,r,":-Yd, a00-2I RD . . . . . „ /C2-CCoit, iSeA AA'S 'SIPA r - 0 DLs. 0 5 1) 2.7 4-kto P t (151) (440 ) 1.- 6c SPA') b r DLO1h2-7 ) 4 44 90 7.2c, /Pi_kr 3FS3/ : AAJrLO DL r ( -6 ) (2:7- (-L/C Pt/c FB 0 LL (3) ) s' 3.0 PL. ',SPA Aj - DL (3'1)C27),x- *SI el-F s- 12-° COMPANY PROTECT • 11%10 0 V ^._/ L i Aug.31,2016 00:42 3F81 wwb 904 00050,' Design Check Calculation Sheet W'oodWorks Sizer 10 42 Loads: Load TYP9 etas t., L▪oad2 Live 0•61: plf S alf—.sefght 5ead 2411. 3.0 n.... Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): 9'-42 . 04a0 1165 1960 Livp 26,25 2405 Total 476': 476 1640.1099 6444 4755 4765 33p69,. o513 5073 An0l;r)e3 Bead 1.00 1.00 22ppott. 5.91 0.34 Lord 0606 62 62 Length 2.09 2.09 94.0 req'd 2.09 2.03 'iib 1,50 1.00 Cr.min 6.00 1.00 914 sten x'f: 1.11 1,1.1 /''t>�909' 525 Glulam-Unbar.,West Species,24F-1,8E WS,3-1/2"x11-718" fl lotninatians.3.102'tnaxielu66 Width, Supports:All-Timber-soft Beam,DFir-L No.2 Total length:9'-42';volume= 27 cult., Lateral support top=full,bottom at supports; Analysis vs.Allowable Stress and Deflection„sing NDS 2012: Ctt to elvri AAAky0,4 04)34 Daaidd 991196 1:090'•0 dr.a t /044141 5616f 12= _. 1+2.5x, 3e.noincfr: fig 4 1563 FP =2161 psi 0,95 toad /40'n 5.064' 11/9999 Limn Ilef7.'n 0.10 4 41/999 9.31 = ' 360 0r 0,30 Total of l',. 0.22 w 1/433 0.16 ...r. .49 Additional Data: Ft,1T061: 37Eipsi1CD051 .. Cr_ !:0 2.50r,"'Cvr 106 Fr` 26 .00 06 00 ._ _. FP'', 2400 1.00 ,0:3 1,05 .,. 2 Fop` 650 - 1.30 .00 _ '. .. ,. 1.6 edition 1.00 - E miny' 0.65 million 1.00 1.0r _ 2 CRITICAL LOAD COMSINATiONS, gear 1,0 42 = 4-L, 0510, 2 Oepi.d. - 1559 --„ ndiagi L<;42 - -..... Deflection: LC 42 - D02, 10: 8:' - 1001, pot,a11 r-dead L l.x+'e 3 sn.x 65,44001 .....,..... - .,.'._ All LC'_ -e:t e A. ',o _ .. ..._..s_ c ....r__ r.. Load combinat;ons: SSC0, 7-10 , 150 2012 CALCULATIONS: 0e:lection: 0 9'7 J406 1P...i,n2 "Lo',e"'lefleorion.. Limildctoo, t:o,n all r..».o x.: :.iso, x.:.;:, 9,200.'. Tote) Oe:':(nor ic.;,, = 1,50 Geed tong ftec:: _r 1_-... _a.... "1:....'00..ion, Design Notes: t..WoodWorks analysis and design are in accordance with the ICC international Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Soppier-non!. 2,Please verify that the default deflection limits are appropriate for your application.. 3 Giulam design values are for materials conforming to ANSI 117-2010 and manufactured In accordance with ANSI A190.1-2007 4 GLOLAM:bad=actual breadth x actual depth. 5.Glulam Beams shall be laterally supported according to the provisons of NDS Clause 13.3 S.GLULAM:bearing length based an smaller of Fcp(tenslan),Fcp(comp'n). COMPANY PROJECT 440" # j?) 44 WOO WO r <s Aug.31,2015 03:42 3F62 wwb 4E00" - —. Design Check Calculation Sheet woodworks Soot 10 42 Loads: 40;60 6926 046,4 1.0631 949a 749ii 4,30 cif 109412 1.661, 4'911 9101 I ,3,, 011 946g-9,13h, 1169,1 29;1 993 1 9, Maximum Reactions(Ills),Bearing Capacities(Ws)and Bearing Lengths(in): tr.r.r G0factor6d; ileac! 1268 L190 2261 2261 Fact9c44; ,------ non 91 2229 9929 4444,631 4 39p4;;;.2y Beam 2229 2929 30pholt. 4016 9076 AaaliDes 843m 1,00 1,00 Supper5 0.94 1.94 Chad aaron 02 42 Logon 1,66 1,18 Min 6664rd 1.48 1.69 Cl, 1,00 1.01 Ch mIra L.W1 1,24 Cl, 06pport I. 1-11 46p 9016 ,5za Giulam-Unbal.,West Species,24F-1.6E WS,3-1/2"x11-715" 8 iaalinalivrtS,3-1/2 maximum width, Supports:Ali-11mbehso6 Beam DPiht.No 2 Toiai length:0-3 4';volume x f.8 Cu if: Lateral suppoo:1O5 PuP,bohorn=at supports; Analysis vs.Allowable Stress and Deflection uaing NDS 2012 CrlterLon .464661.2.0194 34,61ph -1,1m36690 Valor 12613. u0.1Ts,3/066;69 256,95 59 6 69 662' 6 4263 416 2; 839 766' 6 2493 ps6 Coal 04610 0.02 2 41'9'199 1v, 04,1346 9.02 9 63/119 2,20 6 2/326 66 9,13 T09,61 49.6621'54 9.99 9 6.19'499 9,21. 6 Additional Data: 4,4232022, 2/2';h0114:9 CM Ch 511. 221 Cf!, 4', 9f,, 99,69 26•Cyr LC6 962 1.00 1,00 1.09 - - 4.69 i.11 1,12 3 21'6 2400 1.00 1.30 1.09 1,204 1.909 1.90 1 09 1,99 .61 - 2 Fcp. 633 - 1,00 1.6 11.0a 1,40 1,0n - 2 Fminy' 0.41 million 1.410 1,00 9 1,;;) - CRITICAL LOAD COMEINAMNS: Shepe ; LC 82 =0+1, v= 3744, 1 Jon 106 2 .2 445112:2(6i, LC 42 761., 14 6 5743 1.1,24,544 Defleat.629, LC ;1500; 1.0 112 6 063, P14,09:1; 11,6,19661 11.6.1i664.366,now 1:694.12,0 19ia,p6612. 5,60095 1;99 , , AL. CC'S .9,6, 116,,661 In 41,Ana1y619 0646;64, Laud 606;b1.066.1903., 7422.2. 7-10 11,25; 2.11.2 CALCULATION'S: ben eric:km: Er - t1174ibu I 1i-tn2 41213,6," .-19510ction 6 943.41001,90n 57,36266 631 non-e469,3 1963, ;1,3,, 0,39. 9236.; 3206.91 DeE1242,14,20 6 1.21;9493 ;2:62; 06.-flect1029 6 9214,9 1036, 20219,4,09. Design Notes: 1 WoodWarks analysis and design are in accordance with the ICC international Building Code SSC 2012),the National Design Sae:Au:Mon(MOO 2012),and NOS Design Supplement 2 Please verify that the default deflection limns are appropriate for your application, 3 Glulam design values are for materials conforming In ANSI 117-2010 and inanGfaoured in accordance with ANSI A190.1-2007 4,GLULAM:bed ri actual breadth a actual depth. 5,Glutam Beams shall be laterally supported according to the provisions Cl NOS Clause 3 13 B,GLULAIMi beartivg length based an smaller of Frep(lension),Fcp(comp'n) _.___- COMPANY PR10J'wEvCiT Vood\Norks® _ 11 �' 2:`eOS4` 3Fe3b Design Check Calculation Sheet g0,gY,crus.S4cr 10 42 Loads: _ EMU. 512. 222.2 ` Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 12-3'- Y -Z0. ,24i.5- 35 2 1.5'3e factot2u_ _. 790i 0 Dcsd loss Total 5122 11654 Searing: , 9 L Beair...r r 1562 1245 0262 Sispec t 1552 .hcal/Der 1.00 Beam 1.02 ..54 Support 94 52 ::ad comb -:-02i-52 Sic955 1.40 r 1.40 .70 15 Fain 11. .00 :;c 1 <.22 Fg.0 tgo 625 _ Glulam-tlnbal.,West Species,24F-4.8E WS,3-112"x44.718" 8 laminations,3-172"maximum width. Supports:Ai!-Timber-soft Beam,D.Fir-L No 2 Total length:12'-3.0 volume= 3.5 wit.; Lateral support:top=fut!,bottom=at supports; Analysis vs.Allowable Stress and Deflection....Intl Nos 2012: A..a Y�1 Vail.. Ines oe Value045 ;< p sl;ns 1 s:tear Fly v i. D.:4 geud r 1, - 5 _2 o pro 5'5/55` 51 99: 4 ;atel lSoll n 1.9' .i_ G. = 1/242 1.1. Additional Data: FACTORS; 25'E' D _ -.. V -.v Cr '. . t a 106 265 .55 0 1.E5 a - _ 1.5E 1.00 LOG LFb'i 2402 4.50 1.55 1.230 1.055 1..00 1. 1-00 1.00 - E' 1.5 -- 1.55 - ..55 .. 2 Emany` V _,'S CRITICAL LOAD COME:NAT i ONS.. LC - design: 2554 Sts tsecd:cas , LC 42 .-,s Fm.:E1.,ebtior:: LC 02 iintalT D.dead L,>i e n1 7xopac _ f live. br . onceoti . earibobabo Z1:i. L:'n .ed in t1:R : is eEteet bcad iamb e:at:.c s c ASCE r ..- . 055 1512 CALCULATIONS' Deflec-tacr'. 53 - 373r.0c 1!:-3a2 "Live" d„='...-o-:-n c J-.' :5x Etott ell n., <sad load. .yi,m '..:i, 35-..erl Thick le ti-a- " ' 55-14 L.3,i Sef5actionk . 2,1 Lted Deflection. - Design ems ion.- Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement. 2,Please verify that the default deflection limits are appropriate for your application: 3 Glulam design values are for material conforming to ANSI 117.2010 and mertutaduted in accordance with ANSI A150 1-2007 4 GLULAM:bxd a actual breadth x actual depth. 5 Giutam Beams shalt be laterally supported according to the provisions of NOS Clause 3.:3..3. B.GLULAM:bearing length based an smaller of Fcp(tersion),Fcp(comp'n). _. ...-.___._..... COMPANY PROJECT _____________ COMPANY ii ort<s`�� Aug.31,2038 00:40 3FE4 verb ',03.4,2221,=- >r;f'Fr;Of 104 in CF,.'0tie,`t Design Check Calculation Sheet W000Wo:ks Sizer 10.42 Loads: ;ad2 Lib pr alt'-..right 504a ec11 301 9.e __. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): } _............._.._.. --- I . .A.-. ._ --, ,...-u.,,_,„.._. —.. .., ., ..-.w..>.__..._................._-__ .-.....—....-.,.., rd,: °cfaccored: Head 23 305 30 Live 305 Factored; • TnEai. 535 535 Capacity Sear 1:37 1137 Support 12:1 iSiS Aaalfeer. Beam, ,..7 0,47 Sucp::ct: 0.44 0.444 Laud crc,l, 42. 42 Length O.SC• C.50+ ui.n rrq`d 0.504 0.504 ;b 1.00 .00 Lb_cin 1.00 l.ii(J Cb cuppa.cty.11. .11 Pyr .say , 525 x.525 •Mleimam bearing lanpbt Setting used 1t2"140 end 50000,01 Glulam-UnbaL,West Species,24F-1.8E WS,3-1!2"x11-718" 8 laminations,3-1/T maximum width, Supports:Ad-Timber-soft Beam,D,Fir-L No.2 Total length:5%1.0';volume= 1,5 cu fl; Lateral support.lop=lull.bottom=al Supports; Analysis vs.Allowable Stress and Deflection uxtng NOS 2012: OO.(tec:iau A.e yat a 'OSISO e ?:n=t ::>.la psi,20aai cr Shear z. > 8audingi-1 a, 93 - 312,e pal .. r DeAd DeEi'n 0.00 . <?,: Live Defl'n 0.10.. .. 1:3Se In 0.01 Total Defi'n 0.03 o .,2139 0.23 . _._v_ _r Additional Data: FACTORS: 8/Sipa! CD `M 2, c1 Ce 042 .._ ,0s _ 205 1.50 3 - -. - - - 1 . -2 'o 2400 1.00 t. 1.,.,+ ..00 1.3.. 1.0e 1,0. - 2 rep' 550 - 1.00 1.CC = 2.0 million 1.00 - - -. Eminy' 0.05 million 1.00 1.00 - -- _ - •- 2 CRITICAL LOAD COMBINATIONS: Shear i LC 41 - - 310 ..::1 3eu,1.rg i 11 C COi .. CO,516o Deflection, LC 23 LC d2 = DoL ;.OaS, 5,:5,ad. L Hive Soaealr Worn_ i _mpa.._r --- AllLe s Ixated 1 Coo a_a; .La ,E0cEt Lead c - ASCErisms, ASE . .. . 1 . 2012 CALCULAI'IONS: Deflection.: - a "defiact_on - Deflaetien Soa._2 1 ,,,,,j,..! 1,,,I, ,11,,, w.- C,r,,,:l €3.f..o:Lica 1.>e1t4,1 l',..d . --,e ;,ca, Design Notes: 1.WoudWorks analysis and design are in accordance with the ICC International Budding Code(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. 2.Please verify that the default deflection hinds are appropriate for your application. 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A100..1-2007 4 GLULAM:bad=actual breadth x actual depth. 5 Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6.GLULAM:bearing length based on smaller of Fcp(tension),Fep(cdmp't).. COMPANY PROJECT Works® Sep.9,2016 11.00 3FB5wwb Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: Load TYPe toir. Start Ead Star:: fcr:1 Dead al.8 Lead i Live 120.0 Sal wea:rnt Lead _if Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 13'-16" ��am { a 13'.0•t3` Dead 093 593 .:ivy* 799 78a Total 1381 1.281 'Bearing: cpac rJt.Ly Beam 1381 1861. 1.1311 analiDea Beam 1.00 1.90 `i!;i:pert 0.72 91.12 Load comb 0 42 Length 0.19 0.39 141r raced 0.79 0.79 Co 1.30 1.00 tb min 1.00 .00 Cb s ac',,' 1.11 1.11 rcm .aro r ., 62. Lumber-soft,D.Fir-L,No.2,4x12(3-112"x11-114") Supports:All-Timber-soft Beam,D.Fir-L Not Total length:13'-1.6";volume=3.6 cu fl; Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012; erite.8031.0h 4,1141W1is C044411 °l4100 t,1°t Ana:/A`«$IDus,s991, sbat -- 4i 1 08. fv0401 St.Ading:41 ib .. . 792 pei 11bt:.. - 0.92 Bead ,3e i'f: ..i9 9;99 Live Detl'n .f „`I.7<; _ ,350 C.29 Total. ,:t.'31'x_ 1 ._ 9,63 - 1,124.0. :1.11 Additional Data: 0141CTwF.S: ._. Cr LC i4 Fe' 18+0• �1. _ n,3 1,03 2 a' 901; 80 1.08 1,03 1.30 03 - 2 Fcz,' 329 _ :. .. ..., - .. 1.0f _ -. .- F.' 1.6 1.89 . _ _. _ 0 -.95 - 2m:(n' 0.0,, a.11: un 1.03 1.00 " - 1,00 .95 2 CRITICAL.LOAD COMBINATIONS: Shear LC 02 = 8 = 1314. V deaign = 1170 1ns Deflection: LC 42 LC 42 D-dead i t.:s 5-show a mr= .. :.->a ..-.. <;:i° :.e15c=coacearcots ... ea......;.7 ,K 371.11 .. Load�corbinetic.^s. Af.CE . __ . ISC 291.2 CALCULATIONS Deflection: E: - "Live aa 1ert_..:f - r .. :live, Total Deflection - .11'. ;.... ,, c...,... _ice t ....,.1„.3.31...... r...,.. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NOS Design Supplement. 2 Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4,4.1 CLIENT: nPf:)n 4, ti,71n1,Ort:>gon 97:,123 • t,:24-70)5 PROJECT: , . -.5-5 1t 'NC D, 5-.705 NumBFR: 'L'ef 9771_13 .1=-11:.1133-1S28 FROELICH -. Li- DATE: 123C0 AirP0rt`vvoy, 200 ENGINEENSi' ,?rcc•mtleld:Colcrodo 8UO2 I 710,550-2269 BY: ; PAIz3O D ) '171, PLF L L - 0 boo P4-4 COMPANY PROJECT lAlood \V r l s Aug,37,2015 09.43 is H•awr Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: I. ^?p69.6009:66"..,0- 'a ' kIni end Ga. _ '�x 606.4t 061£ >c24i4.1 .300,0 plf :loll weight 04,44 _ ,') ,:016 Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): 3r Urfa 0150011: _ Dead 64.1 641 ne i 336 .?ante;red:Total i.:':" 1577 "searing: Capacity Seam 154,7 1027 Snpnor 1744 172E Ana.lfO _ Toot' -,:i0 1,00 Support0.50 Load ;-.,•eb J 112 62 10170: 4,02 0.72 44in re3'4 0.72 0.72 Cb 1.00 1.011 1011E 1..00 1.00 CS .5014400 1.11 1.11 l'co sup.. n.1 52.5 lumber-soft,D.Pir-L,No.2,4x8(3-112"x7-114") Supports:All-Timber-soft Beam,D.Fir-L Not Total length:3'-1.4';volume=0.5 Cu It Lateral support:top=at supports,!whom=at supports: Analysis vs.Allowable Stress and Deflection„ging Nos 20121 Cr4.ter:a0 2,4441.)-4.4. .:r:;u 2 yr. `a - .s_). A ya.lai 61rtn Si, Al t,re - 4,1111 Eten::ing;*i 465 . 1-63 ,.-... fbt!`v' m 0.40 Read 0e'_i`. Li ye Oe ,.07 -f.: ..1... ,,,... ... 11 0.110 Additional Data: FACTORS: F1£i443:i.I OD 30 C_ Ci Co 100 130 - - -. .- 1.096 6.0,1 1.00 2 CC' 400 _.07 _ ...-f. 1.06, 1.00 1,30 1.00 1.00 - 2 Cop' 025 - 1.00 - - - - 1.00 ?.00 - E' 1.6 16.13 ioo 1.50 I -. -. _. ... 1.00 1.00 - lOzin' ,513 z - - - .. 1.90 1.00 - « CRITICAL LOAD COMBINATIONS: She'- Lc 112 _ _ 906 1b0, Herding '); 11 .112 - .1. _on-C' Ceslec.l.,.s :.0 B>. 1..-r' .act :...:..+i aa... 9:7 ..a,y. .. v6 ..:.r n.:e:a,a4.. .:xx:tr'5:xke All. 1.6:'s are .:cud I, 006 1,61y617, 03-.:64,0t s,c:ad o0e3 r:ati.:115: ,...'F; . 1091 ?x'12 CALCULATIONS' e04,:i 14440:4 e-44..,40. -.. e .>.,. e<6.-0,10d lo,l.s '.:.1'.£, wind, 600N.:.: To.:_ R.fiac_0,,. - _ - ;11.•0. _Ve.f_e-zicm, Laor,051. , . 3,_r, „c a _. -- 1.00 Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification 0ND5 2012).and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application. 3 Sawn lumber bending rnembers shall be laterally supported according to the provisions of NDS Clause 4.4,1 • ;...E.; •' ; . 1 ; ? : 1 , •. ,.....,_, ,,..., .. ..; .. . ' .... .;...„ H , „ ,. , 1 . 1 .• , . 1 1ft i 1; I 1 ; 14' i 1 .. I ; g ft 1[L,,,,_ I. i . . I ..i t i I.i i L 7,..17 7 7,, i 1 i 1 l' i _il .., . 4 - ;.!.........,.... ,,,L,.' :4,',.=1.....,..,..-=...,°:‘,..1 -,,,, ',. __ 1 : . ., I. 11 7 ,.. .. ., ri • ,,,.. „, „., ._ ,,,, ,,, , I I ..... t,,•.',,,i I I • :1 1 i • 1, '',i I • tr- , :T -- . , Ili : . , I1; 4 i ii 11-1. ..........,. .. ,..,..._:., ,r1 r -- .I [ -- *; ...,,.. - 1 4 .......... .. ... ' ...- . i . :: I • J .. ......... . ....,,.... . 4 i . . .... . , , .• Li 0 . ' i I It , ..: 1 ..., . ... . . . , . . . . .4 st 4 I E i ' . ,..,.....„......,—.77 l''..* I 1 ; I I;:,........,,...: ' — 1 _..r.,, ., . ._...... 1 , . .. •:04, • r›.64 , 2 I P4 6-,k _ 2 t-t..4:xl.e Frees t/kJ GN f. 77:- A '7,9 5'-;','7,-;H CI.I.-Pi f...-:- `S, 503 e-24 7-00.17- CLIENT: PROJECT: NUNABER: FROELICH :--; :,-------D'--- DATE: ENGINEERS; Broomii6,:d,Colcy-ado '..g..).2 720-560-2269 BY Se-- `g' 7..... „.„,„, .4.1yve ' ? ---Xg7cy,12 311 )z¢iy r+ V3.__.., i V I'----....._.. 11.2.,'14...L......--:..'-,..._ ,, . .. ... , , , .. . , ,,,,,:_,,,__ i � e , t.5 5 . : u 1 i 1 "I , i5 5 k•. i � 99; 5 E55y.L E.7,-,) .t i F i E i t 3 j d 1. 9 t E j fi¢ F , i t t' + 1 J t a'E t I a i I e a µ tj{. i w�wiwc tee ._C a W e '� �. Its � } t. f; - I ..f- «1a 1 i , ,,''', .7-' :41 t ! JE i s 3 ,ii, 1 ai, a a'a 1,,3,,,, 1 g Ii al . . tll Volm S3% -1- —41111111111111111.114111.11—r "r. 0. w €.E, t'..;4,p +7 iSCy^ .Tr ' ""It =,i t.t a 31x; i, . x 1 CLIENT: 696c S ,r; Por i .rid G. n 97 123 503-624-7005 PROJECT: Li 745 NW 7 1?, h hr ct r Cr.#2205 NUMBER: Bend,Cregor,9770-3 541-38'3-1823 FROELICHDATE: T2-303 AirpOrt Suire 20 E N G F N E E R .* Broemrreta,Colorado 800021 7205602.299 BY: vF V-e> I.€ De2.7 P5F ;tie LOA 3 0 ' F 4 De40: Dom 611,/6 - 100 F F F.:3:11: C • 9 LL. PSF( 1 g t�x.)�. ,k )cal} {A r t,.t 1 , t o 12- ‘C-10 PLF .. ,, r(2. t5 i 12-ov PLF of PROJECT. ER. 5.; 977C3 FROELICH E N G t N E E R S d 1230 r irp t: ay,`U`Fs 200 3f t Cc...t7,Color-co 8C,K21 7.23-560-2269 R' iCecche. 864 OAS: F es If DLs(4)(1$) 42 PLS' s(4')(?,., 1Z.$) 2..exct PL.F (c.{')(1?),c 12-0-r<<-4 )(V2--1112-0-1-(q)(12-)-42-0 y'.) s 52o PLF LL„ (- )cc4t)( c-lo ) s-(4?oPt,F- SLs < <-tt) (Z5)xtoo e 17- A Ai 2 2- r 2-0t S. ' 2 -ttz L ,25t_15 e1, use ... ( iS ( 440 '4 - PLF"I Ar y 2 CLIENT ( • UO3 PROJECT. „at NUMBER. rmri DATE 23(. . .‘,r :IL ; 721k:6,U-225Q BY E 441,, o 5e-e- 1F83/.. DL s 390 4t. L s- t1 - DLz I2,o llo -r( 131)(z4 ) 020 Jr 2- ) \\Zo LL 131t )3(1. 2!) ((40) s 62.0 ?LP 1FB6/: SPAN s 46 -0 c1/4..) C)L I OW CIS) el 2-0 (4.4 )(2,-7)t I ac ti;t451:2:-1-) 1)10 950FLP -spA Ai r 121-6 t * E:14-x PLF' s/e/a F5 Z-ookoi",)Cy LL s k.k,2-0 Pi-P 5PAAis ( '1( ) 9 LL.,- (6, )(440 ) (a) x. 72.0 pc,c: PLF CLIENT: - , • 24 0(35 PROJECT: NUMBER: FROELICH DATE: ENGENEEF2Si • 30'22 • I F EV)/ • tA spAAjci Dt_t vre ) 12_ PLF SI—r )(2-5 1.2-5) S50 136C s -O f 17-o ) F tm ( )(7,1 Lt ) at-2,0 I P .7:Sfj;: -2:;• P'c,,k Air /-cgAt AT 2-01q. IF B10) DL.s q 000. f /74,--v)* SL -8,50 COMPANY PROJECT 4:47 n';' 'Vito o d W { o r k s® a.3 31 {,to, 1Fa1b Design Check Calculation Sheet WoodWcrks Sizer 10.42 Loads: -_.r 5t -a :art. Fad Loani Dead 75,0 pli Load2 3aaw -:: 01. L i 14 .�°. 1a7 .. w%r Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): ft Dafactoroor 242 Dead ene Soo: 600 _.. Ba::.toced: ES i. Tot ,canal) Capacity L334 Seam 211 AI:al/Des 0.70 Beam 6.78 4.70 hoods ct C.70 02 Load raa t O. T KincJ ten 6.5.• p,tb. 60n tom'd .aa Cb 1.00 C2,min 1,00 L-11 Ob Jupport 1.11 c,-- Pro suu 725 .7ffiarabnt bearing tortoni retteg ono:lit"for earl supp 1r1'0 Lumber-soft,D.Fir-L,No.2,4x10(3-112"x9-1/4") Supports:An-Timber-soft Seam,D:Fir-L Nn.2 Total length:0'-1.0-;volume=1.d mil.: Lateral Support:top=full,bottom=at supports: Analysis vs.Allowable Stress and Deflection,tesi NDS 2012: .-..o l 5-,1al 11.00 00£1- :.^34ayo1,s/be r:. Na rid, .. .242 poi n .t Dowd Deft'. 57 Live <1.1500 0.20 , 60 .6 T...a: eOl a. 67 .06 240 to R.r#` Additional Data: FRC:CR0:e - O- C6 Cfu Cr Cfra _ _ 106 12. 0„ _ 940 1.1. 1. 1.27 06 2 bp' 625 1.5:4liLi',n 7., 1,05 . - ' 2 ; f 0 Bolin' 0.57 al/C.711o, CRITICAL LOAD C ,4D11AfrO'S Shea_ , ,.2. 42 .. _. .1<0. V sign= 623 roo ,Yid: `:1 LC 112 - = 02<0 .75 Deflecc.,-.0 42 D,5 :Idou - LC 62 .. total: D>lead ',live s To,o c s . live „ oaeatta^ed ?-=ear-- xe L C All 1:iate.: 'l:2 ;.s -,.1 - - -pat L:oad ,nhi'atinn• R 2 . 1161 1012 CALCULAT1O14S: Deflar_tior.: F,1 - 3L,fcOsi ,ie. „ < LL•.1,14 7 _-1 .a':rdr G'::'n..; Totalchnll . :: .1 .x.: 00fleornr.' .'nr Loam:.r: 1<r:r. Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the Natienat Design Specification(NDS 2012),and NOS Design Supplement. 2 Please verily that the default deflection Omits are appropriate for your application. 3,Sawn)umber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.I. o 3 ____, COMPANY PROJECT ., WoodWorks`' .Aug-31,2050 1'v2 1,161.2'.evb Design Check Calculation Sheet W odWarr Sizer 10.42 Loads: 7— —et Z;554trat5e5 14r. 4/45,r '515 e5er.47470 0514 3d r reri t. �� 10,1121 _ .. !1 ) 611 ear4147 025 3.: 4r0 p.10. 10252 tf : - -__ 10O plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): _ I --I f 1 I 444 • 4.1.3' 0,4. 2211 Liv, 1040 2040 566, 125 425 1.4e1 45_. 4554. ropaelty Aeam 4521 4554 in i F:e,, Beau' 1;00 .'10 2544,bert 5,Ce 4.31 42 1,21 3.27 axr: 1.27 : 2.03 Fer 654; 625 625 Glulam-Unbat.,West Species,24F-1.8E WS,5-1!2"x9" 6 laminations,5-112•maximum width, Supports:All-Timber-soft Beam,D FirS.No 2 Total length:8'-8.5';volume= 30 w.ft.; Lateral support:top=atsupports,bottom=at supports; Analysis vs.Allowable Stress and Deflection,,sing NOS 2012: - t aa V.1412 Q.211n: Val,. ,Aib A.Aly21,tpeAlla pea. NAPA' _., 238. ps -.>._-, " 0.-i 2,4a eetl'a .2 . 14241 0,4 .. 0.13 3..34 Tana'. arc..;,. c. 22 - 7.453.l 5,42 _ 12240 In 2.,176. Additional Data: • 40, CL CV rf, Cr -?:'7. 50 5.01 5,51 - _,00 2 745'. 2e55 .55 1.e0 4,55 0.552 1-000 1-00 00J 1.7Q 1.05 I 1'4 - 1.00 1.00 ,. .. 5' n .' Eminy. ).s „ _ a CRITICAL LOAD COMBINATIONS: :Meer Oeflectlea, L2 22 . 5.-5 1414,1 LC 21 - mi 521.455 13-dead »: ',a.c. lave t...-=ot.e..t.t.,.J 5.earthgvake All .. leered 15 rev Ara1y5i2 aurpe CALCULAr1t.317.. 5efina11054 15 . 501.75 1r-452 ..a ._i.c+5 _. ..e` ..',.__'. -r...:. . ,,,:,s .;nu .....n,.xr il.'.ve. wird, reow,b -label ..0,1ead 15,51 trefleariae; . live• 154. D.PleatIon, Late e1 0,4,,i 'o - 10'.13,31" PB = ,,c,. Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Speciticatian(NDS 2012),and NOS Design Supplement 2 Please verify that the default deflection limits are appropriate for your application. 3 Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A100 1-2007 4 GLULAtt bxd=actual breadth x aCual depth.. 5,Gluiem Beams shaft be laterally supported according Is the provisions of NOS Clause 3.13. 6,GLUk.AM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). !, COMPANY PROJECT s`J/ ,Avg 31,201511:6.4 1F63 rnws Design Check Calculation Sheet 'v`:'ocd W ons Sizer 10.42 Loads: 3.119V.9 tAl 15/12 9.11 001 Pit Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 21-69' Snrattr used; itran 19501 11095 59 11195 TvtAl 29'.4 25292 tapaPitv ne990 5/452 30410, SAppart 20693 20296 0.9:; :.app- 1,05 15.gtlr 0.2A r.3h 555 1.55 1.00 Ca mAA 1.05 1-50 Ch up:> r t ., �() 525 "fart.ntiart Geo€ti g length 9t elhed by de rebtUreFrif111 u1 tOre 6.201teiaM9 fh6IPPe: Glulam-Unbal.,West Species,24F-1.SE WS,6-314"x28-112" 19 laminations,6-314-maximum width. Supports:All-Timber-soft Seam,D.Fir-L No 2 Total length:23'-1,911;volume= 30.9 Co ft.: Lateral support:top=full,bottom=full; Analysis vs.Allowable Stress and Deflection using NOS 2092: „ .n-t..rn r- Tar, Valva 0519i :a Live i' 1!46 F a 0011'n 0-5./ n 3.fi 1-129 :n -. Additional Data: 191557,00C: 9/66.r.5110 - _„ CV .-t_ ._. - 2.9 .20 1.00 05 - 10 . - 3132 1.00 2.02 .00 1.000 a >, - 1,000 - 1,2 0111,on 1..00 -.00 ., A -' _. @.:'.i;.o,' 0,65 L.os 0-1 .. CR TlCAi.60513 CO1.'h'fLATIONS: 9hs, N.2 - V- 2:9561, V daaiqr, 2,.a..... 5cridir,q..1: LC A2 - 101219 Ino-ft ile.i1A o_ _- LC 116 a nit, ve.1.- e_. 9.0 02 'ti-. 1.5./AaA 151Ava 0.rpow lir z,o Ialapatt _. 1-55,0racantratne ._,a.c.:.. <,r. All L0`5 Ara Liate515.1..ice a.65 a 1_6,1 0,aninAtionA: A0CE 7-10 t012 2012 CAL"ULAT€DNS Dr-.ft er,t2tin4.39,1', .Y.- 'L:_:'e defle._xon a Defiettion Ito'-..'n_7. .-„'-.,e. 1.,,:'., 121.9, vtAA, 955,21 Design Notes: 1.WoodWorlr analysis and design are in accordance with the ICC International Sui!ding Cade(IOC 2012),Inc Nalionaf Design Specification(NDS 2012),and NDS Design Supplement.. 2 Please verify that the default deflection limits are appropriate for your application. 3 Glulam design values are for materials conforming to ANSI 117.2010 and manufactured in accordance with ANSI A190 1-2007 4 GLULAM:had=actual breadth x actual depth. 5.Glulam Seams shall be laterally supporters according to the provisions of NCS Clause 3.3.3. 6.GLULAM,bearing length based on smaller of Fcp(tension),Fcp(ccmp'n). COMPANY PROJECT • - WO z 2 OtiVVO r j\✓ F.uy, 1 .201511:1;5 1FB4 w+b Design Check Calculation Sheet WaoOIVcrks Sizer 10-42 Loads: Tape Enr! Start End nod Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): _ 24,1 11' aad 1."4:0 Live 144?3. 1-1400 Tutu' 31/57 3195" Sena-ring; _.......... Capacity Bear:, 33235 Support 31557 3.327 Anal/3ea 3}Hasa Seam 0.00 Support 9.94 Load a - S2 1.02 Length 7. 2 42 Min ce3'd Ch .0 CO, eitl Cl, support. ,43 7.On 1.00 "Mu1ubum btattivl tam%gavemw by Yrro rvgo-eeol ww':n of tar 34144400 meddler. Glulam-Urtbat-,West Species,24F-1.8E W5,6-314"x31-112" 21 laminations,6-314"maximum width, Supports:All-Timber-soft Beam,D.Fir-!No 2 Total length:25'-32':volume= 37,3 cu fta Lateral suppod:top=full,bottom=full: Analysis.vs.Allowable Stress and Deflection using NOS 2012: C feeeinn lemaliyais1r. !TeFeittipear, 3'=f '.. a?.e, , s3 L:.ve Levi's 10U £2 0,331 'total 05£1's 5.14 Lf350 1.91 , '1-3i3 Additional Data: FA17100, FihtpaiiC9 CM Es 55 4r C:`. rt RootsChsCvz F 2n5 1e - - - 1-20 lii 1.0.2 LOS Pb',+ 2403 1.00 1.35 _- 1.30 1,00 1.00 1,00 Fop. 15,0 - - .. 5.0 million 1.15 1.5S - .' 00 - w,'niry' 5.04 million 1.50 1 - - 1 3:} .. .. 2 CRITICAL LOAD COMBINATIONS: Shea: : LC e2 92+1, `. t.02, V an.ton 20'19 lit B0aa1:grtt: &- B2 " IS1966 -rt7e000cn; 110-2 x 32 . L live Liarraf live. _o nos:urate-.? C:-ea:.thguake All LC's aKe lisSna in nha Anaiya,a Load combinations: ASC', 5-..M . isS .95.5 CALCULATIONS: 002100Siar', 01440,1 1,3ve''donee/a.: Varlet-515n frsm all en,.•reaa loses V9ise, wisd, anoe. Tonal. DeSitotien 1.03_ 34 W-_a_ 3 Design Notes: 1 Woodworks analysis and design are in accordance wan the ICC International Budding Code(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement 2 Please verify that the default defterdion limns are appropriate for your application. 3 Mutant design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4 GLULAM:bud=actual breadth x actual depth.: 5 Glulam Seams shall be laterally supported according to the provisions of NOS Clause 3.3.3. 6.:GLUtAM:bearing length based on smalier of Fcp(tensian),Fep/co'np'n). —, —... , }- J '` +'- ` COMPANY .PROJECT A A . I. o d \ it V ! ✓® Aug 31,201611:00 IFB6ww...> Design Check Calculation Sheet WoorOWorts Sizer 10.42 Loads: : ..AA0 u-a 12-. 2 :. aa13 Live F011 U101, 1120.6 plf loll o o; t . 'a0 :;',1 10,7, 9.S s...i Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 7,1_ _ .-. -,..t E Onfactaced: 39)9 Dead 3994 3951 live 3967 _. 1-entered: _ _.. i....7Sb6 Total 7900 Capacity 0966 Beam 796: 0431 Support enHl. 5031/Des g,00 Dexn: 1-0G 0,94 or% 0.94.0712 Dad .larch 32 Ming .50 le 3.50 S 910 v9'4 3-°0«.00 Pb `1.00 �l Cb sup 1.11 min1.1. port 1.11 Glulam-Unbal.,West Species,24F-1.8E WS,3-112-x11-7/8" 0 laminations.3-1/2'maximum width, Supports:AN-limber-soft Beam,D,Fir-L No 2 Total length:TAD':volume= 2,0 cu It; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: LaJbostr Shear fv 114 .' Dea:lingiai 1492 .. - - - - _ 5, S.73 ad l2efi'n Live DeEl'n 0,06 s <11999 f 3 = E: Tots1 Le:a'-r 0,13 _/12. d.d4 v ,_.<..., fn 0.4.5 Additional Data: --062'003`-?: FI .pax. - 03, ..ffc O- Ps' 205 1.00 1.00 00 - Pb's 0430 1,111 1.00 1,032"- 1,03 -_/, 1.,19 1..-;9 - Fcp - 1.8 mrl%icv - -. - _ ,�+ "" - 2 a^miny' 0.95 rdlluo:r 1,0S ,..., - - - - - - CRITICAL LOAD CO/.4B1P6A0'i!2$. abea.: 50 42 _ -- _10. R .�,o. 7.bs aancieK9(55• 10 92 :?172 ,7e£lection: 12 42 .. ilia..i Ri.i. LC's ace 01F Load combinations= 3 z 157 ll11.1 CALCULATIONS: _ell rt 10 9.7=' Liv flect:I on 5, D _aa' Dads l=n5:5._, TotAl De010,000 - ':..> .fd,aa I.nda l=M15-nnim1,1'.a Lnad M7fl.nni Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Coda(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement, 2 Please verify that the default detlecion limns are appropriate for your application. 3.Glulam design values are for materials conforming to ANSI 197-2010 and manufactured in accordance with ANSI 5100:.1-2007 4 GLULAM:toed=actual breadth x actual depth_ 5 Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3.3<3, S.GLULAM:bearing length based on smaller of Foppension),Fcp(camp'n). • COMPANY PROJECT III Ai, ir woodWorks Aug 31,:0'611:01# 11801rti40 Design Check Calculation Sheet WoutWorks Sizer 10.42 Loads: 7.540 5,::1 23. 3 a:. '..r ig i°ta '%1: , 19 Mnfi,4 asI1 013, :ighr. 944:9 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) ._..�._,..W....._ .,.,m 8''.4 7 ».,..<. .....v.., 7777'.. Un tont 4 rrd: 7 7 77 e2.3 33e.4.3 4 797 4043 Live 4213 4219 1569 SV£,a -a,.rc ccAa 7777 7777. 13.1m. 131117 4353 it:rm� r 3.153 Suppott 5533 2:85 1x1/4ha ^,G 1.00 341;441 0.97 0,97 Loa:e 49r1> 91. 43 .:591g41,, IL 34 2,34 mg'c1 4.'34 2,14 ht1,113 1.60 4 17411 3.10 1.90 Ch seppor': 1.09 1,07 Fnu v.p 42.5 4255 Glulam-Unbal.,West Species.24F-1.8E WS,S-1/2"x11.7/8" 8 laminations,5.112'maximum width, Supports;Alt-Timber-soft Beam,O.Fir L Not Total length;8'4.7;volume= 31)cult,; Lateral support:lop=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: Ct ler=..em. 40441;443.6 V4,10013 3 in.. 1441.94 1E 6,643;4415194419h. 54444 ' ).92 14441 si th - 1:441 • 2451: psi ,.,.,..r, - 7,44 1.:3 Dcll'n 0..07 - 21,7 992 Live 064 11, 4L1539 _ 'U- Total hall'. 5.19 L 2... 77...F , 1 0,44 Additional Data: PAC9003: P/4'psliCO 114. 1577 - -33 265 1.00 -00 1,C1 - 1,81 3.10 •2 60' 2400 1.00 1.00 1.06 '3.4n, t.13,5 54 .. 1171, - rcp' 650 - 1.10 1.45 a _. -. ... ,. 5 w1.1134n 1.09 1.1.11 .. _ ''piny' 00.35 aiil.oc 1.00 1.05 _. .. _ .. ,. CRITICAL LOAD COMBINATIONS: Shear L4' 02 - C,l v.' 5131, 199 111,449,4031: LC 64 - 01 L, 1.. .. 7:777..,r,,, 0491.e24.191r Lt: 43 . 141 72;1,5; t:..:..:1.; 111 1...3 =3>- 12'-4)eo i 12 1.419. - seox it t -14'1. .. 1„ 41 14 7._ ... All i:`, Cr, Aiscea La alni- 1.94,1 reetb:r 4,11,.rnr>: AIC i 7333 40_72 CALCULATIONS' 1:e`le1.ti40r., 61 = 1351605 "Live" 46e€1444tor, - 311 :n1 ..0,,, 1.41. ..1r, ,.,1, .90 11141 Deflection. . 1,4010442 1.49 __1112, _ _,3. _,._h. Design Notes: 1.WoodWori s analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement.. 2 Please verify that the default deflection limits are appfcp'aiate for your application. 3.Glutam design values are for materials conforming to ANSI 117'2010 4101 manufaaurt.l in accordance with ANSI A190 1-2007 4 GLULAM:bird=actual breadth x actual depth< 5,.Gilliam Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3. 6..GLULAM:bearing length based on smaller of Fcp(tension),Fcp(compn) COMPANY PROJECT i7 WO o d >J C k ® AMo.31.20161;:0'6 1FB7.v O Design Check Calculation Sheet WoodYVorks Sizer 10.42 Loads: lead '2'199 4424,.46,4;99 1241 '4,44.09 412 Y94initede 411.2.4 32 r ,ee 291. 99L 1129.0 499,2 9.14-4,4,42494 1109d. 1911 1.412, 22.0 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 13.23 :ink tegei: 12.0 2' Deod 7539 '7534 Live 7100 739x: 764.01. 5.4920 1492.9 ,apaci'( Ueam 17939 14929 Sap er,: 13231 15131 11115,., Beam 4.94 1.99 :tp e4t 13.91 9,97 L`ag'h 4,10 4.19 995.'2 c, 4. €1 1.01409 0 m&rx ..09 C0 4994,44 5,97 4,749 99p 925 02'1 Glulam-Unbai.,West Species,24F-1.8E WS,5-112"x18" 12 laminations,5-10 maximum wtdOt, Supports:All-Timber-soh Beam,D.Fir-L No.2 Total Eanglh:13'-2A';volume= 9.1 cu.ft Lateral support:tap=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012; C z 9e:axn. A.x2va.a ..:.t _ 3.r .. _ 199414414/C04419, 294,4 .W s:.i _ 3 .•city' ^n:3x94“49 41>4, :;lv. .. , x„ .:9 rd 79,11': '9 4i✓e 024154 J999 .:.44 1,f2.41_ 3.43 ;,;tat 5e(5'n 9,36. .7 9; 2,4.4 .. 4.1219 49 C450 Additional Data: 4340TOA;:: F.,4. CM ,... :k., :.vCfi, .. 5,,' .24 Fe' 2€'', .111 - .. 00 V 3 re4 3495 - 2 p' .. i a 1. 19:7.4t,rn a a xrj' 0.41;Millice: 1.499 L92 - - . CRITICAL LOAD COMBINATIONS: Zara- LC 42 - - _. 14494, :=4714 14 Cenv:in7 LC ,t'.< 432 .... .._z._ect:l::n LC - 14,1, :14991 LC t2 9,1, 144791' - °Y551,. 9,14 IC19 ate .l'. :011.1' the 70.x1.: . Load r .i. 5rations, x515 7-4e i 13\' 2?'..i. CALCULATIONS: Deflect/99; EX ,4 4411946 1_-192 49fleet1oe Te1k994949 124m 211 999-2924 '1494, 99444.3 Total 4eflettiee 9 1.3999411,042 - 14934 9e1144tton,-. Design Notes: 1.WoodWortrs analysis and design are in accordance with the FCC international Building Code BBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement 2,Please verify that the default deflection limits are appropriate for your application. 3 Glydam design values are for materials°entorming to ANSI 117-2010 and menet-adored in accordance with ANSI A190,1-2007 4.GLULAM:bad=actual breadth x actual depth. 5.Glulam Beams shall be faterslty supported according to the previsions of NOS Clause 3,3..3. 6.GLULAM:bearing length based on smaller of Fcp(fension),Fcp(comp'n). �� COMPANY PROJECT _V_ T WOo d :77; marks® Aug 3?.2016 t 1:03 iFBd.wwb Design Check Calculation Sheet WcodWorks sizer 10 42 Loads: Loni Lczol 04.9.ao 41:11 241 7.1 Load2 Live 14..93 nsw Pall 921 ,ell z}.rht09a2,4 Fu1.4 t.,d, I9.0 olf Maximum Reactions(ills),Bearing Capacities(lbs)and Bearing Lengths(in): 12-11 s' ca='0_ceitedi heed 5913 4018 5913 v sit 4678 STK.. 325 325 X <_„rxPC£t> 4444. Toon'_ .10101 Seam cgs 105©: c 12481 10561 vppeit 10368 Anal/Des _...68 1.66 .1£i 3+,:ppe t 0.9'. Locsd'0114.0 42 It, ni10 2.55 2,94 4 req'4 2.90 2,912 Cb .1.00 1.:10 CO-' 1-00 1.99 supportw..07 1.04 Vep465 674 010 Glutam-Unbal.,West Species,24F-1.8E WS,5-1f2"x15" 10 laminations,5-1/2'maximum width, Supports:All-Timber-soft Beam,D.Fir-L No 2 Total length:12'-11.9';volume= 7,4 cc ft.; Lateral support;lop=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection„sing NDS 2012; Cuilerich A.o 'ffi:481 Value .k8 .R 7@ i .';TSL. ?r3aaa pW F as E."3 146 -. Y__ .. ' o+na04)44 0 1920 c_ 1421 psi .. bead Sufi' .19 - 2/101 bead he l'c 0,11_ L/005 0,4. 0 LrJu3 .36 2942441 .illi. 9.44 44 1,/344 2,54. 24 Additional Data: 119,01204, 2/04psi;CO CH CS CL CV Cis -- C0,0 109 20' 265 1.06 1.09 2, 4.10 1.20 1.00 2 20'1 2400 1.00 ..30 1.90 1.000 1.9201.412 1.09 i,9C ..... 2 lop' 050 - 1.00 1.09 .. .. 04 1.6 mullion 1.90 1.09 - ,. 2 Euiny' 0.35 million 20 1.00 CIZITiCAL LOAD COMBINATIONS 30ea6 1.c ),2 , 5+;, 2431" 14 . 4.116 -._., rdir,.91 LC 42 2+1, 14 33926 ...x.. ,,. 1leflectt^r.: LC 42 ii 24-1 tlive) LC 42 1+1 al.) O'iord L-1ive 3=ora«`4164.,ilaimpeoi LI.6942 44:4 lace ....:....<..':_.l: :£ .:..r_..:-.,':;ie A.11 _:;':r are .1.:.66ea in. ::>if:.56'.,:.61:1.4 6..::4:o91' Load combination.: ASCE 2-10 / 79'7 211.2 CALCULATIONS: iafiE�ticnrOI 2764016 l _ "Live";tet:le::t_ou 4114.€ o1,'ro :.. x1: .rte a1 loadi ;; 411'0...; 7.t,41 Oe f.:r>r.;:.io:: 1.5C....:.x.s Load Teflactia, • 11-ac L4ni 94421:444140. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Cone(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement. 2.Please verity that the detach deflection limits are appropriate for your application.. 3.Glutam design values are for materials conforming to ANSI 117.2010 and manufactured 6 accordance with ANSI A190:1-2007 4 GLULAM:bud=actual breadth x actual depth.. •5.Glutam Beams shall be laterally supported according to the provisions 011400 Clause 3.3 3. 8.:GLULAM:bearing length based on smaller of Fcp(tension),Fcp(compn). COMPANYPROJECTb . . WO cod Wo r ks • irg.31,2016 1109 IFB OH Wnen Le:3 WO,:.2,3:3:e IA Design Check Calculation Sheet WoodWorks Sizer 10 42 Loads: thin, U2nt2inntfonfOE ,a1, a (t.i tPCO 3i L33 Vts :nn:n2 9enr, Pot: 221 2 1 3,33 nee bend CE:11 I339. 3.3 nlf Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): 1Z-2.6" 4 f9,2LI 2929 121:13L 12.3.222nn: A.00 0,04 ft2 22.9..5u 1.30 ':q'u 1.32 2.20 L 1 1.03 2,00 01>:au 1,00 1.00 Th 3uppece 1.11 .11 Giulam-Unbal.,West Species,24F-1.8E WS,3-112"x10-1/2" 7 laminations,3-1/2"maximum width, Supports All-1nlrsotl Bearn,0 Fir-L No2 Total length:12,2 volume= 3,1 ; 1010101 support top=lull,bottom=at supports. Analysis vs.Allowable Stress and Deflection using Nos 2012: tte ,F1 V.1,4to illil OrOvE/2°CC 3neec lin - 3-33 Be.di.914 ib 1251 Tn2734 us0.30 hned neti'd 0,11 0<20 Sive 03,2111 0.29 . 1,/221 0.40. 2/300 in 3.311 rote:. 301'9 0.44 . 5i330 0.21 1,/240 An Additional Data: FACM23, 2/24,,licD C 31 Cl. Cu Cru C;, LC4 /33 1,13 1,00 1.00 " 1,32 1,00 2400 1.13 2.00 1.03 1.0113 1,0011 1.00 i.0,3 2.90 1,00 - 31` 1.e nillihn 1,310 0 - 1. .3.371ay' 0.'65 million 1,00 1.00 - CRITICAL LOAD COMBVAT:ONS -burl LC. 12 - V- 2931, V 10.:34:1- 2399 Lb, Betwhe,g .), TA: 112 012, M 9079 lbs-ft Cetinntion: 21, 22 902 1.2vel L.0 n2 1935 10211j re,iead 3-3now n,wInd2.1.Ln4-000. ?,/: LC`, are listed in the Analynin heteent Load nanbinatiennt ASCE 1-10 i 23112, 2012 CALCULATiONS: nenection: CI 603806 2b-1n2 defiecnien neEleatihn from nit. nen-dual inahn Ion. us'... ... Total neflention 1.20“nend 1,000 nehlentioW 3 Live Lund nefleh,,,e, Design Notes: 1 WoodWorks analysis and design are M accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NOS Design SupptemenL 2 Please verify thal the default detection limits are appropriate for your application. 3.Gtulam design values are for matenals conforming to ANSI 117-2010 and manufactured in accordance with ANSI A1S0.1-2017 4.GLULAM:bad v actual breadths actual depth 5 aularn Beams shall be laterally supported accenting to the provisions of NDS Clause 333 O GLULAM:bowing length based on smaller of Fcts(lension),Peptic-ow/is), • • COMPANY 1 PROJECT 807,1 r,, WO od\No r t<s 24,291 1.1:47 I 1F810 Design Check Calculation Sheet WoodWorks Sc IS Loads: Type ettI7.7,33E 7,E- IttetiEn thaellE571e f.,Ett teen 7tett EEe itett 454 Ihehth Lie, 71.3.1. 471, 7240.6 P,t Fell. 431. 33.7 4!t Maximum Reactions(lbs),Bearing Capacities(Ills)and Bearing Lengths(in): ,ht 14•1.6 eefettethh, 0 ,.l 1101 4iI7 1117 213 T EEew 337 1E? i-ect,17,3; ehh4 3470 4eem e7724 5314 5:0,43r, A44155,e 3e34 1.33 5400-ert 3.9.7 4.37 Ieed ttte: 42 42 I3723.1th ' !,53 1.6.3 re3d 1.5h 1.6'3 1.03 1.33 Ch 1..133 1.571 t; supt-377t GE 1.37 I77-3 7•7- 025 Glulam-Unbal.,West Species,24F-1.BE WS,5-1/2"x13-4/2" 9 laminations,5-1121 maximum width, Supports:Alf Timber-soft Beam,ahir-L No 2 Total length:14'-3.3";volume= 74(X/ft.: • Lateral support:tops,full,bottom=at suppons. Analysis vs.Allowable Stress and Deflection cot ng NDS 2012: aiSuSe V.x.1 tie 2eoUtt Salon WrX/A, ttx+X?eiN 1.-X./X /in Xxx VS 3ehel3E.-; e 7016e Ox' 1.171 5.26 e II/654 ve 30.10 3.11 4 E31,/949 0.57 0 L/350 :, 1357-7Pe 3.44 7 til46 7.71.= 0124Q Add i ti°nal Data: FACE:0E3! t'33.1i CD ON Cl CL 04 he Cr c:7 E E Notes vte On' 2E5 1.33 1.50 1,30 -- - - - ---- ------ 1.75 + 2.1-.70 1 CL 1.300 1,340 1.33 1.33 1.30 1.33 -7137,' E717) - 1,113 1.30 - 1.4 militott 1.40 1,03 - .07.200. I/.a 5 mi Ilion 1.00 1.00 CRITICAL LOAD COMBNATiC..'NS: = 5775, V dueigh 7 3333 Ihe 3ete tne t 3i,12, le 7, 20113 Ihsele. 7e7Iett:133! e7 I-I, I.,: 02 - 73,73004/51.33end Zeitiphtt Lure Live 73m7c030entrated E7e01517eeke .511 13017 coo lastel in the hnel?sie thetput 1,33,1 33e731.hatitmer Asca IBC 2012 CALCULATIONS: Detlett130, El 7 2030,435 th-14.7 "1,40" eh71e07.1.730 0etlec1i.3n Ertm ell nen-04,4 leeee I1104. 77700, 0137E.3 D,f 1,ot:1o,0 1,301W-or l 1.04e EeflectIo ) 0.13et 10e01 Ee71e,tio,. Design Notes: 1 WoodWods analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012).and NOS Design Supplement. 2 Please verify that the default deflection limits are appropriate for your application. 3 Giulain design values are for matenals conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190 1-2007 4 GLI/LAM:bxd=30001 breadth*actual depth. 5 Glidam Beams shell be laterally supported according to the provisions of NOS Clause 3 3 3 SLUIAM:bearing length based on smaller of Pec(tension),Pcp(comp'n) • COMPANY CtiOJECI Wood\A/orks® n0114.,,, Design Check Calculation Sheet ih:axSvntl Sita ti a? Loads: Maximum Raaactions-(tbs};Beering Gepeeitiesilbs nd-Belegng-Lengths w® 1 a 1 G1uWrn-Untaal.,West Species,24 -1.SE WS,3-tl2-xl 6 tr rentane aur.-aunt..,,r, 0. Somata.Aa.Terixr-00 Sean,0 Fp.l lb.2 ?aa lemM..Y-2S:Metn= C9ae 3. tHea.P00ox:ac f;♦,beCP-ae xN ants, Analysis vs.Allowable Stress and Deflection,,k orAs21.ti S3. Additional Data: 1001 .40 :..1.1.1 ...,, -. -..._.... Design Notes: Woodlrnema ananam AN OmIW+au.N ardr+anr mth arc ICC 60000000(3*A,i COOT IIOC 2014.:M nem*Otarrn£94419xers.ADS 23121.arm NDS Ovum;5.40ca0006 <.Pe4011.4'rxi4 that 3x tatna.a 0namlan 6.66 as 144aMm11101M Mx0 amOmma0. 3044.0'lawn valuta are kr-"Ae+ea ma,km-x;y In ANS!111.Xt0 and 00r dyad mum*.darn 606016190.1..2007 4.GIJLAM'tut=acf u mold x actnad&On 5 Gaaan Beans Masi neadman,al-0yo 4 Amordrp 6 tm Warnman 00 HOS Clews 333 6 GUJ$M+.Massm9 a y nmen06 600 er H€rAMMM M,Fa1tcarrar0) • CLIENT. o ."' ,":-•,lor 97221 • •t-'11; PRCJECT ‘5, -"' , ;‘16ER - -3 3":-- FROELICH i-\;f CC( Woy 2•Ct) ENGINEERS • &(),-)•-•: `:'"J BY Fe IF PA AJ -o C)L, Z 0 ( k 1 2:73 t 7 It iZz. • -t (3 (z•T ve,to P:— F LL„—gc F.A r • 12.0 PiF LL 31-1- 11-1. 00 ) 5 ) S.Ls co4 (as) g 3 50 PcP FZ,i) o (Fzo f5w' 4,4°41,6* LL IF I-4 t:,,,z; ICI-4 ) s 0 P4,F ,s5c • COMPANY PROJECT x 1. 4). WO 0 di Wrs° : a � .arta_.24,231E 7::57 :FH':.x•M,r Design Check Calculation Sheet Woc,)W.'0002er 10.42 Loads: ;., .....,.. ., , eel- Location fit; + 7 :.. _.,._ +'<oi Frio toani :tea fail. GILL 33u.b p-` oa31 Llae Foli :UDC 660.0 pIf Self we_ch:. ....ad Full oat., 6.0 0l' - Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): 3'-2.31 7,ad tall 1314 hive 1002 u s 2 2395 23731 Capacity 3. 2396 235 epponr 2653 2553 Aa a:./Cies Seam. 1.01 1.00 app_ztGi.90 0.90 Lead coati 12 Length 3,111 .L0 Min zeq'd1.1C '10 Cb 0.31.1 .OII .c min 1.00 .00 Ch ahDporr. 11 1.11 Fa* 51,E, 025 6211 Lumber-soft,C).Pir-L,No.2,4x8(3-112"x7-114") Supports:A'l-Timber-soft Beam.0 Fir-L No 2 Total length:3'-22";volume=0.6 cu.ft; Lateral support top"at supports,bottom=at supports: Analysis vs.Allowable Stress and Deflection using NDS 20121 " .005:0, Jotu1y0a Value 0004831. Value Unit :AinalyainilMfaiqn 3.21.10. 40 b,;' " 159 -psi ts,if1,5 .41 BendicgitI fb= 704 Fb 11655 pa' fb/Fb' Dead eft 0.01=<L/999 01/2. D.11,, 0,01 - <1,907 t3.:£ - L,160 in 0.10 .,,..... a.f''n '1.02= <1/999 0.13 = L9240 in Additional Data: ;Af.60Sa • i7CD .'2330 Ct CL Cie Cr Ccn ..Ci Fv' 1331 1.00 .00 1.00 -. - 1.00 ..00 940 1.00 1.00 1.30 0.906 1.300 1.00 I.00 1.00 1.00 - f'op' 4,20 - 1.00 1.00 • 1,04 .- _. S..6 million 1.00 1.00 - 1.00 ETTlin 0.50 oo11ion 1.00 1.00 _ _ - 1.0C - t CRITICAL LOAD COMBINATIONS: shear LC 02 - nil, V = 2320, V design=. 190 Itni Pea:d.in3f+;; 1�C #2 = 0+b, M " 1790 lbs-ft Geflerri»n: LC 92 ... 0+1, ;live} LC 02 = D+L ;0>ta13 O'"dead Loiive su =snow W- ind Z=im Lc=zona'._Ane ':.::"co.rcenttrated ii' aztbq ake LC's are l.,shed i the Analysis output Load i r.xt i.on:t: .0SC2 7-10 i 0042 2112 CALCULATIONS: Deflection, III= 110e06 It-i.n2 "Live" 3e_1er_-ticn = Deflection from all non-dead hands t'..ive, wind, snow-1 Total Deflection"' 1..50(Desd Load Deflection) + Live toed Deflection. )+3n L. 3`-:i..I x,• La g'...4.1.1" 00= 6.13 Design Notes: 1 Woud000rks analysis and design are in accordance with the ICC International auiiding Code(IBC 2012),the National Design Specification(NDS 2022).and NDS Design Supplement, 2.:Please verify chat the default deflection limits are appropriate for your application, 3.Sawn lumber bending members shalt be laterally supported according to the provisions of NDS Clause 4.4..1. • • _..._.r.....,_ .'" COMPANY F1{v''Ci Design Check Calculation Sheet Loads: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 1 Glutam-Unbai.,West Species,24F-1,5E WS,5-1f2"x1-112^ 5eeeeiZsm 5.41.eae.e,,:Mak. Svggp'.AA#•.•e**e,-ee aaam.3 644 N,2 tLilf' 11#.A"e'Nn'n.n t 3 arvi a:.pm!:icr ai "ats..wawa fa uvvit x. Analysis vs.Allowable Stress and Deflection a3e1: Addii;ert tl D.AW: .. • Design Notes: stAmyor.�cx mS', ecce. aixg9p 9:r ong CA.(5 ;`.',,',aitrat cic ,n�zK`-"cacm 033 2,321,a..','c i . T+44t ++aa. t;!tv'v.+G?e,wQ4s-.`eilSR k+id4#6 Wpp.PlsHH 39f 33KAN3a 3c eee ++SxS PP IN' i:J.QiC.pa niVS.!4,:±!,sq lese*eer,00.!,iMOO.g.,„•043', 4 i 3,. SAW•2A5AYy.A.N:Y s`s/O nes S Gkkin Aram sh45s'x.»x.i 9aSm:5,5e3ev to etitscwes 0e NM CSesse 333 8 GOA/M taax7'x -zas;+Crr srsdc+.'i--.?ixeseSSS3,f'C;yumpn) • COMPANY PROJECT WO + rkS %+ux-22,2018 147:7 1FF.3 wwit .^` .1171ri x;r£7uz Design Check Calculation Sheet VloodWoas Sizer 10.42 • Loads: Load i-.[ti.' 3r 0o24. 1.(01:7 Folk VOL 17712.0 p'..` aatl5 i,A1 •x2.2 _ ,nc 144,41 A4k1 6,. s1:. Maximum Reactions(lbs),Bearing Capacities(ibs)and Bearing Lengths(in) 3'-34- _..... _.. ttad 1'154 004 0101 20com 575 s 70 34:0( 7713 044,404. Capacity 04 31.:.3 3_,3a f.l a�3 4194 '' .00 ry0e '(ioam ' } 4.40 0.2'00 Load oo.40 ga 22 tealt,.i i 41 1,70 Min r'-oe:l 1.71 1.71 Ci 1.00 1.40 144 .,_.. 1.40 1.00 Co .11 1,11 rrp 2.� 1r•. 025 Lumber-soft,D.Fir-L,No.2,4x8)3-112"x7-114") Supports;Ail-Timber-soft Seam,D.Fir-L Not Total length:3'-3.4•;volume.0 8 Cu ft.; Lateral support:top=at supports,bottom=al supports; Analysis vs.Allowable Stress and Deflection using Nos 2012: 5rirorion Anolon<v Volvo ±43: a«&t Aea1'o1al:cri1ry tzgi.; f1 2 250 4- 17.45 orl fb/E0 0,32 c„ 2021 0_0-2 •95,D '1.041 0e112'n 1,32 4,..3283 .:4 .., 0.22 Additional Data: =li1)023> 1'.) o:!7_ CN 02CL Cl' Ci, Cr Cfri, f Cr, 1C0 1401,94 1.40 .09 • - - - 1.00 1.00 1.00 2 515'4 990 1.10 0, r. .90 0,994 1.300 1.00 2.00 1,44 1.09 -. 2 Dcp' 62 1.'.0 I.r0 - _ ._ _. 1.00 1.00 _ 111oa ..Cc 1.00 -- - - - 3.09 1_00 - 2 0.55 million 1.010 1.3)0 - - - - 1.00 1.00 - 2 CNIT€CAL LOAD COMl31r:A PIONS. r,3t 1:.^ _ 04:4, .. 3079, V o 290._ 2039 _us 3=44100'(�_): '.c 92 €)+i., :1= 2€010 lbs-Er Lo 7 = 041. i110e1 (2 0=90.12 ' i"impact: Loorool trot 1c..corn.0(tr:sted 'r. _n...9[gaake kl '..�- €.zt:n,1 folai7Ai5 norpot LoaLoad131201010: A0^ 7_20 i 1131 2012 CALCULATIONS: t)401ection, 51 - 140e00 3.14..02. "12v4" :202.10'...33 : 1021''Zi:rfrom ,,,1 non-dead 10.., (live. rd, 000114,?'ole; Offiec.l.o- 1 > €)0-211 Land Eefle <_an, ,. -. e Lor: Deflection. tater±.. .st> -1ity i..): tv. 15.1.60" Le : 6'-5.62.14 a3" Design Notes: 1,WoodWorks analysis and design are in accondanoa with the ICC International Building Code(IOC 2012),the National Design Specification(NDS 2012),and NOS Design Supplement.. 2 Please verify that the delauh deflection limits are appropriate for your application. 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4,1 • , CLIENT ;c;:.-1-27223 4111111r-:4 0- sD:/ PROJECT: /15 i NW , viast-Ing'on Dr.#205 ft. NUMBER: :34 ,33 1822 FROELICH DATE 1 23i:P A rc,of V,ay Suo•c,200 ENGiNEERsA. ,-Jdo 80321 720-5602169 BY • 4.1.,,'%;9 PSF Ps P. er 3,rc ' r Lim 100 S ° ft: 7/ L (2) (2.0 0 /3'6eC (2. (100 2o0 Pc, 54r.;v3 eAr 2 e: A .9 • .5PAALA-- 16 -0 - z›.1-5 spAAJ r 0 PSF s- 2.0 100 Psc: EA AA, AT' Z.,ADI : . pA r (0 ° bL (3/)(ac) s 60 l'c-F s ) co) 30 0 P ct74 Air to A C.) e, - C ) 2ow LL (...-aA 0a 2.5 11-7*5 Fro ( ) str ILA—AT Licz LLs. 1600'7-IL COMPANY PROJECT • Wo r s ,3.2076 15-06 I St0(Stringer 3rd i'.ocr wyrb $-,6000 Design Check Calculation Sheet wcodwo!ks size,io 42 Loads: Starf Fna 0518-.51,55 Saad 7.371 101 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): -la-02 • 11hfahtorAh7 bead 223 223 Ltve 0,10 bue 75.8.thrast Total 1031 1031 0555.7717 :61 Cahamity beam 1171 5svphrt heal/Sea 6sam 0,00 0.60 0.60 0.53 02 #2 Length 0,F,b• 0.50. Min red'd b.50. 0.162 CL 6.00 -C,0 Cl' it 1.00 1,00 Ch ssppo777 1.08 1.03 5,55 ASh .6.26625 `Mrtirnom teariN teoqiftWON 102 tor end supports Lumber n-ply,D.Fir-L,No.2,2x6,3-ply(4-112x5-1/2") Supports:AO Timber-sot Beam,0 Fir-L No 2 Total length:10,0 2";volume=1.7 cult:Piled 0112: Lateral support top=full,bottom=at supports;Repetitive facia:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NOS 2002: 8:111156eh A.1414A V..1:40 UnIt AMAIYA1./3,n.i4% 540,10 EV = 130 pal 1.75/ist. 6endih7r7 lb 1091 1135 - 1040 oi. fb/Fb' . 0.6: head Cr-l177 0.08 -s1/996 Liss 11011'h 0,21 = 1./420 0,82 = 1.1360 to 1,32 Tete), Den's 0.35 = 11361 40,40 A :J84177 18 Additional Data: FAC1611857 C/671psi7C17 '24 Ct CI. Cr Cfs Cr Cfrt Ms Cr 7.M5 Ms' 1.00 1..,10 1.11 1.00 - - - - 1-00 1,0M 1,00 900 1,00 1..00 1.30 1.000 1.300 1.60 1.15 1.10 1.06 2 Fhp' 025 - l.7777.7 1.80 - 1.7l vi lien 1.00 1.00 - CRIT1CALLOAC7COME3111.5,TIONS7 lihsaa 10 55 -6.1., V. 614, V design= 734 Iron 2eedi601571 66 52 =Ci, M= 21806 Ihs-fr Deflaction, LC 52 .D.t illy.) 66 02 8:1. 1600517 C-dead L=live 5-5now 1e-eied I.Ipabc 1578,todf 1105 1..m=mhefhntx.ted E=earthqsake 111 6624 are listrd iN the Ahalysfa sstput Load .....'2..:31:014.: 0000 7-18 / 1160 2012 CALCULATIONS DeflarstimatCC - 33.07705 117-1712/pl2 deflection = Defihstion brow all nes-dei-0 loads 11.7.0e, 0164, snoe.; Tdtdi Deflectl,i; 0.52i6e30 Lead DeflectignI . Live tbad 6e11e06i54. 776567.715: 611097761e bearish at art ahgle. 77-t206e cal0slated fer aach vol-port. as 558 NOM 2.10.1 Design Notes: 1 \Naos:Maks analysis and design are in accordance with the ICC International Building Code((BC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement Z Please verity that the default deflection limits are appropriate for your application, 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 44.1 4.BUILT-UP BEAMS:tie assumed that each ply is a single continuous member(that is,no butt joints are presen))fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded Meru beams are side-loaded,special fastening details may be required_ S.SLOPED BEAMS:level bearing Is required for all sloped beams COMPANY PROJECT odWorksger�` %,%1'II_ ( Feb.15,2018 16:32 Stair Stnn 3rd Floor_wwb Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type ris_ributien Pat- Location [f_) `iagnit: 'ern Start nc - F45 Loacl re.=.o Full UDL n.0:.0 nit ad2 I. '- till Ort. 200.0 plr Self-weigh .eat Full 'Ft. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): • • rntac_ored: Dead 212 212 Live ,83 783 Factored: Total 995 999 i-theta 520 520 Capacity Seam 1169 1169 Support 1523 1523 Des ratio 0.85 0.85 S'eppoF' 0.65 0.60 Load co nip #2 42 length. 0.50' 0.50' Min req'd 0.50' 0.500 Cb 1.00 .00 CO min 1.00 1.00 Cb support 1.08 .25 Poo sao 625 625 *Minimum bearing length setting used:1/2"for end supports Lumber n-ply,Hem-Fir,No.2,2x6,3-ply(4-1/2"x5-1/2") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:9'-8.64";Clear span:953.77';volume=1.7 cu.ft.;Pitch:8/12 Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); • Analysis vs.Allowable Stress and Deflectionesing Nos 2015: Criterion Analysis Value Design Value Unit Anal ys i.s/relic- Shear fv= 45 = 150 psi- fv/='r' - 0 30 Bend'ng(+) fb - 1020 Fb' = 1271 psi fb/=b' = 0.00 Lve refl'n 0.30 - L/380 0.31 = L/360 in 911 Total Defl'n 0.42 = 1./270 0.47 - 1./240 in 0.89 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt CiI.C9 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 Fb'+ 850 1.00 1.00 1.00 1.000 1.300 1.00 1.1.5 1.00 1.00 - Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 - ._ CRITICAL LOAD COMBINATIONS: Shear . 1.0 #2 - r+i., V max= 824, V design = 739 lbs -ending)+): LC #2 = D+L, M- 1929 lbs-ft Deflection: LC N2 = Dob (live) LC A2 - C+L (total) F-dead L--live S-snow W=wind I=impact Cr-roof live Co--concentrated F=ear_ -o All i.C's are listed in the Analysis output Load combinations: ASCE 7-10 / IAC 2015 CALCULATIONS: reflection: EI = 27.0e06 lb-in2/ply deflection = reflection from all nn-dead loads (live, wind. n sow..l Total reflection - 1.50(Dead Load Deflection) 4 Live Load reflection. A ing: Allowable bearing a_ an angle F'theta calculated for each sppor- ad -u per NCS 3-10.3 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC Intemational Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 5.SLOPED BEAMS:level bearing is required for all sloped beams. • COMPANY PROJECT • 4 QV 7 Y V r 5 Feb.15,2018 16.30 Stair Stringer-2nd Floor.nv:b WOOS: Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Ci.s_rib-.u:Io•n Loca-i on lffl Magni,JC, I.oad1 read Tull al-, Iron S:a r_ enc 40 p'I Load2 Live Full "JCL No 200.0 plf Self-weigh' read "all LCT. No =.1 pl( Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 39'-8.57" • r• 8'-0.64" 16'-1.29" Uofactored: Dead 181 512 181 Live 670 1890 670 Factored: Total 852 2402 852 Bearing: F'theta 520 520 520 Capacity Beam 1169 2720 1169 Support 1523 2402 1523 Des ratio Beam 0.73 0.88 0.73 Support 0.56 1.00 0.56 Load comb #2 A2 42 Length 0.50* 0.79 0.50* Min req'd 0.50* 0.79** 0.50* Cb 1.00 1.48 1.00 Cb min 1.00 1.48 1.00 Cb support 1.08 1.08 1.08 Fcp sug 625 625 625 'Minimum bearing length setting used:1/2"for end supports "Minimum bearing length governed by the required width of the supporting member. Lumber n-ply,Hem-Fir,No.2,2x6,3-ply(41/2•'x5-1/2••) Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:19'-8.57";Clear span:9•-7.38",9'-7.38";volume=3.4 cult.;Pitch:8/12 Lateral support:top=full,bottom=at all supports;Repetitive factor applied where permitted(refer to online help); WARNING:Member length exceeds typical stock length of 18.0[ft) Analysis vs.Allowable Stress and Deflection using NOS 2015: Criterion Analysis Value Design Value Unit Analysis/Tesicn Shear fv= 59 Tv. = 150 psi fv/F:' - 0.40 Bending(+) fb - 613 Flu. = 1271 psi fb/Fla' - 0.48 Bending(-) fb= 1090 Fie' - 1271 psi fb/Fb' - 0.86 Live Defl'n 0.14 - L/828 0.32 = 1./360 in 0.43 Total Def1111 0.20 = L/588 0.48 - L/240 in 0.11 Additional Data: FACTORS: F/Elpsi)CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LCA Pu' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 Fb'+ 850 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - Fb'- 850 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = D+L, V max - 1065, V design - 978 lbs Bending(+): LC #2 - D+L, M- 1159 lbs-ft Bending(-): LC #2 - D+L, M= 2061 lbs-ft Deflection: LC #2 = D+L (live) LC A2 - D+L Itotall 0=dead L-live S=snow W=wind 1-impact Lr=roof live Lc=concentrated E=earthquake All i.C's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 27.0e06 lb-int/ply "Live" deflection =Deflection from all non-dead load=_ (live, nw. snow.) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection . Bearing: Allowable bearing at an angle F'theta calculated for each support as per NDS 3.10.3 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NOS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Continuous or Cantilevered Beams:NDS Clause 4.2.5.5 requires that normal grading provisions be extended to the middle 2/3 of 2 span beams and to the full length of cantilevers and other spans. 4.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 5.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 6.SLOPED BEAMS:level bearing is required for all sloped beams. • COMPANY PROJECT WO odWorks Feb.15,2018 16:30 Landing Joists.wwb Design Check Calculation Sheet Wood Works Sizer 11.1 Loads: Load Type Distribution Fat- Location [ft] Magnitude Unit tern Start End Start End Loadl Dead Full Area 20.00(16.0") psf Load2 Live Full Area 100.00(16.0") psf Self-weight Dead Full UDL 2.2 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 6'-1.64" 0' 6'-0.82" Unfactored: Dead 89 89 Live 409 Factored: 409 Total 498 Bearing: 498 Capacity Joist 498 Support 960 498 Des ratio 960 Joist 1.00 Support 0.52 1.00 Load comb #2 0.52 Length 0.82 #2 Min req'd 0.82 0.82 0.82 Cb 1.00 1.00 Cb min 1.00 Cb support 1.25 1.00 Fcp sup 625 1.25 625 Lumber-soft,Hem-Fir,No.2,2x8(1-1/2"x7-1/4") Supports:Alt-Timber-soft Beam,D.Fir-L No.2 Floor joist spaced at 16.0"c/c;Total length:6'-1.64";Clear span:6';volume=0.5 cu.ft. Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 54 Fv' = 150 psi fv/Fv' - 0.36 Bending(+) fb = 682 Fb' = 1173 psi fb/Fb' = 0.58 Live Defl'n 0.07 = <L/999 0.20 = L/360 in 0.32 Total Defl'n 0.09 = L/836 0.30 = L/240 in 0.29 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = D+L, V max = 492, V design = 389 lbs Bending(+): LC #2 = D+L, M = 747 lbs-ft Deflection: LC #2 = D+L (live) LC #2 = D+L (total) D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrat=d E-earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: II = 61.9e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (live, wind, snow..) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • 1 • COMPANY PROJECT I.li,,,Atito, WO od 1® Jan.31,2018 14:38 Stringer Cross Bower wwb V 11 { / Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type ri_-,:5:.ion = Location 11t1 Magni_ude Csit • ..ern S_ar_ FndN_ar- 31ng Load] Dead - 0.64 512 lbs l.oad2 I.i-, - 0-64 1090 lbs Load3 read = _ 2.11 512 lbs Load4 Soin= 2.14 1890 lbs Loads Dead = = 3-64 512 lbs Load6 Live - in_ 3.64 1890 lbs Self-weight Dead =<11 `_'D1. 7.7 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): y 4'-3.31" 4'-1465' vnfactored: 784 Dead 784 Live ., 2835 283 Factored: 3619 Total 3619 Bearing: Capacity 3619 Beam 3619 4007 Support 4007 Des ratio 1.00 Beam 1.00 0.90 Lo Supad portcmo 82 0.92 *2 Length re o .65 1.65 1.65 Cin req'd 1.00 1.00 Cb 1.00 CO s 1.00 1.00 1.11 CO support 1.11 625 Fcp sup 625 Lumber-soft,D.Fir-L,No.2,4x10(3-1/2"x9-1/4") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:4'-3.31";Clear span:4';volume=1.0 cu.ft. Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 20151 Criterion Analysis Value resign Value Unit Analysis/Design Shear iv' - 128 = - 160 psi tv'/Fv' = 0.71 Bending(+) fb - 930 -b' - 1080 psi fb/F11. = 0.86 Live Defl'n 0.02 - <1./999 0.14 - 1./360 0.77 Total Defl'n 0.03 - <L/999 0.21 - 1/240 in 0.16 *The effect of point load=- - -sande d of the support has been included as per NDS 33.4.3.1 Additional Data: FACTORS: F/E(psilCD Cm C- Cl, CF Cfu Cr Cfrt Ci Cn LC4 F•✓' 180 1..00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emirs' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC 42 - r+1., V m - 3619, V design* - 2769 lbs Bending(+): LC #2 = D+L, M= 3860 lbs-ft Deflection: LC 42 = rot Ilivel LC W2 = rel. Ito-a11 D-dead L=live S=snow W=wind 1=impact hr-roof live Lc-concentrated E=earthquake A11 LC's are listed in the Analysis output Load combinations: ASCE7-10 / TAC 2015 CALCULATIONS: Deflection: EI - 369e06 lb-int "Live" deflection -Cefiec_ion from all non-dead loads (live, wind, snow...) Total Deflection - 1.50lDead Load reflectn on ) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NOS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. CLIENT * r-:rndtcrs St. '1,7223 „. .- .50'"5-i.,2,1-1('''.5 PROJECT. 'Ig i It 74,3,,,J,„,,,\-; v,;st-,,Irjtorl Dr /1-205 NUMBER ( 4) 1 )0 0 FA I 383-1825 FROELICH DATE: 12303 Airpo' ENGINEERSk EiroomIcio Colorado 80021 720 560-2269 BY: /::>c,---Ai Da- "t: Ci.r, ikiaA 6, C--- D,c.---.'St Gcej : ... el Ai 001:, „c-te...Akt1/46.1 : s raarri,3e- t;. tit- (-Oa.41 '5- 110 l91 . OR 4.30C,01' i ... poi ra P004.55e01.1 e v- Ve-lit-;ei e... 0 ----4;>-- .3 ot, '"T De-----5( 6-Liki : A,A1 s t2_ —0 r ve0"- 1 t I —1 S 1k i . 11- c( PC/iiii "*x I / cc) 01 ,iff ,ra Ck.til 2- 1-12" 1 3/4"x11 7/8 LVL @ 16" oc joists / „.,. e de,.. i„ kA, : ,,.' A-Ai-1- Li -0 1 FE-F 13 4 ,%.,--0 e..... Lt...c. 3 * To -"" q Ai"A) e . coort eiJ G._ : 2.5 x, 2..5 AIN - ... ' Roseburg L • 2:4),l t lot IfI arnEnginc 2017.1 04 uui.Js Rax,...1562 Vlember Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None Standard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 65 PSF Deck Connection:Glued&Nailed Filename:Beam1 'n' n rt. 'I1' / / / / 4 4 0 11 4 0 7 0 0 0 0 / / 22 8 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift ir 0' 0.000" Wall Not Checked 3.500" 1.500" 104# -126# ? 4' 4.000" Wall Not Checked 3.500" 1.500" 1404# - 3 15' 8.000" Wall Not Checked 3.500" 1.500" 1474# - I 22' 8.000" Wall Not Checked 3.500" 1.500" 337# - ilaximum Load Case Reactions Ised ter altag rt Irak(e ire load)to veyirg members Live Dead -118#(-88p1f) -8#(-6p10 552#(414p11) 853#(639p1f) 565#(424p1f) 909#(682p1f) 163#(122p1f) 174#(130p1f) )esign spans 4'1.375" 11'4.000" 6'9.375" Product: 1.5 RigidLam LVL 1-3/4 x 11-7/8 16.0"O.C. PASSES DESIGN CHECKS Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. 4liowabte Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 1019.'# 8031.'# 12% 10' Even Spans D+L 'legative Moment 1329.'# 8031.'# 16% 15.67 Adjacent 2 D+L 'legative Unbrcd 1292.'# 5156.'# 25% 15.67 Adjacent 1 D+L ;hear 665.# 3048.# 21% 15.1' Adjacent 2 D+L tax.Reaction 1474.# 3899.# 37% 15.67 Adjacent 2 D+L 1 Deflection 0.0488" 0.5667" 0999+ 10' Even Spans D+L I Deflection 0.0211" 0.2833" U999+ 10' Even Spans L ;ontrol:Max.Reaction DOLs:Live=100%Snovt 115%Roof=125%Wind=160 Design assumes a repetitive member use increase in bending stress:4 SIMPSON Al Rcdit rg"g aetrai3maks d their respective°'°'es Kami L.Henderson Cwt(C)arl6tyS,r a srag-ryeCcmmyIreALLRIGHTSRESERVED. EWP Manager - Pacific Lumber&Truss ssig is dined as Wim the member,floe icist,teem a girder,shoal m IRs c a+irg meds aaacede&sip aileia fa haat,Leming Cashiers,ad Spasfisted m this shed.The dsigc must be maenad by a cow Beaverton.Oregon • • !COMPANY PROJECT Wirt dW _ • R .h/ o • ID, 19 2.:16 J7:G1 ..'men!Bear-:wwb Design Check Calculation Sheet WOOd W Ofks 01_er 10 42 Loads: y.< Lead./ neac L1re r,11 3n0 1.; 1t Maximum Reactions(Itis),Bearing Capacities(lbs)and Bearing Lengths(in): t 1.3• Dad /324 /421 Li r 148Bv 1420 0vca1 2904 'ape.,`y Beam 2904 2'242 pport: 3215 _... 8eam 1,40 :.:)0 wt,lo 0.90 9.3() Lofd cnB1 R2 .11 :ey':t 4.:39 ph r .0!; .0:) :'b Bea 1„1<0 %:21; 0uppa.<3 ;.i f 1 i 8,14 625 924 Lumber-soft,D.Fir-L,No.2,4x10(3-112"x9.1141 Supports:All-:imber:soh Seam.0.P0.1 No.2 Total length:4'443';volume=0.9 cu.ft.; Lateral support top=at supports,bottom=at supports: Analysis vs.Allowable Stress and Deflection using NPS 2012: Criterion h alysi ,afm V,11, I Unit p..,1 t b ben:1:"))n) 11, .: 1044. t' I')' p 1 I.'Fi.' 0_99 0002 1200)'1' 0.01 <1.1999 2.0' 0<,fit"11 x1.02 ... :1,19`49 0,1.1 U-3,10 a.r: .,_. '{'•F } 0.14'), 9,:75 - ,1-i4,19 4.13 Additional Data: a.<:02t2< 8/4.(p <;r1 Ct CL rfe< _- 21 . F„" 440 .20 1.00 00 - 10 _,90 F4'- '504 1.99 00 1.90 0.,:,92 '1.21 .' 0 !.02 1.00 - 2 F'cp' 020 .0049 ._ .. .. 0. ..,'(; - 891.=-jnn ..1} <:.) .. • ... 1.'i0 ,<<1 - 2 F.e:in' 0,48 rn.il.lion 1.00 1.40 ... .. .. .. #.00 1.00 ... 2 CRITICAL LOAD COMBINATIONS: 00L,r LC 112 r 1101. V= 10),), 0 c i.°)t: - 237:, 1....: ;cliding(.$): LC 02 = 7.1, 14 m 4392. 109-12 9=.f'en_.r•.0< IC 42 = 1114 ' LC .: 0•I: 1 ;ot11..1 p=:ie..1 1")lye ert000)4-,< ni I-i:nn:ila-rent (..e Lercca,intiotri 429nanneate 201 LC's are 11.12'0 the:V:s.yois ftyvt in os 1.0a - enr: :.2322 7810 . :11.1 20=12 CALCULATIONS: n141.0rion: .0 9806 ll;--int 'Live.deflection - Deflection fr.,B1 Bon-.e .1; )40-1 'total Deflection - 1.5614oad Load Beffection f Lave 1.f;1 -. 7 .'.o>, 1.eteca :stability ill, 1 .: 4'..1._1. Le 0' - 0.-,0 Design Notes: 1,Wood4'vorks analysis and design are in accordance with the ICC International Building Code tIBC 2012),the National Design Specification(,YDS 2012),and NOS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application 3 Sawn lumbar bending members shalt be laterally supported according td the provisions or NC5 Clause 4.4..1. CLIENT: • : 6969 SW Hampton St Portland,0.:e.:tion 97223 503-624-7005 PROJECT: 745 NW Mt.Wotzt-degttt.n Dr.4205 NUMBER: Bend,Oregon 97703 lop 541-383-1528 FROELICH DATE: 12303 Airpo0 Way.Suie,2 00 ENSINEERSE Broornteld,Colorado 8.0021 720-56D-2269 BY: i-e3.0 77/0 GT Gr 6969 SW HaMp.-, Portage',Orator,8722; 503-624-7005 PROJECT: ° 'dh Vr tr t is' i :q.on v=. �3• NUMBER: 541-383-18213 F R O E L I C N C.)._-f.,/e, _icDATE: ENGINEERS ; 12303 Air OL rt Wary.Suite 200 Broomfield,Colorado 8001 wvvw.frua1idlt 720-560.22o9 B'11` /-0 LC NE/Ot1-4r CoLvA4.Ai CAJ %'JA -L CoADr efs 0. 00256 kzxkK zT k1vz z V� z \'‘ kms+ o•<%S Pr. ruC3or LOAD ON Ci-{ Co Curuit.s- C3•6 ( 3.$ ) z PLF ( ) A3s e Ea E^JD o F coLu1AAl yt • _.._.___.-___J____� COMPANY PROJECT I 0 _.Works® July 23, 2014 05:07 Column Design Check Calculation Sheet Sizer 2004a LOADS (lbs, psf, or plf) TypeLoad gist, i on Maq'tiltLid._ Location (Et] t- ..st,:rt _on Start End tern. 2 Loadl Wind Full UDL 46.0 No MAXIMUM REACTIONS (lbs): E I 0, 27 Dead Live 648 618 ,_ Total 648 649 Glulam-Balanced,West Species, 24F-1.8E WS, 5-112x7-1/2" Self Weight of 9.5 plf automatically included in loads; Pinned base; Loadface=width(b);Ke x Lb: 1.00 x 0.00=0.00(ft]; Ke x Ld: 1.00 x 27.00=27.00[ft]; Lateral support:top=Lb,bottom=Lb; Load combinations: ICC-IBC; �Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2001 : I{ Cr t:eri..nn Analysis ,falkie Des .nny� t t /sis Design ,.'.<#r "-! 24 L-'3 ' 94 fv/Fv' = 0.06 [3 I#'::`. f.1 ... 1018 ib 9,4 d/tb 0.27 Aria' tc = 6 at. /r _ 0.02 Axial Bearing tc 6 Ed' - 1410 fcfro' - 0.00 ` nsi:n. -, e..de l an b .,oe to, -3 ,s 0,27 Live Oefl 'n 1.65 - 0/196 _, _ >t::#1. I;. 'n 1.65 '= L/196 1.90 = L11',0 0.92 ADDITIONAL DATA: FACTORS: 1 CD CM Ct c` :P CV _.:u Cr L: rt Notes 104, Ft)'-i- 2400 1.60 1.00 1.00 1.000 1.000 1.03. 1.0° 1.00 1.00 2 Fv' 240 1.60 1.00 1.00 - -- - 1.00 1.00 2 Fc' 1630 0.90 1.00 1.00 0.270 - 1.00 - 1 Fc'contb 1600 1.60 _ 0.155 - -- - 2 E' 1.3 million 1.00 1.00 - - - 1.00 - 2 Fc' 1600 0.90 1.00 1.00 - - - 1.'30 - Be .dare : Ci:4 2 - .6D+W M ._ 4374 lbs-ft Shear . LC4 _ .. .60+W V = 446, V des .. 448 lids Deflection: LC% 2 .6D+rti I 345e06 it Total Deflection ._ .1..00(0ead Load Defl. -i- Live Load „_.lection. Axial : LCif 1 - 0 only, D' = 256 l.de Combined : CCI 2 = 604x. I1 - 6c c. (0-de=ed L-live u snow W-'.rind 1=impact ..-ccnstructian CIA-concentrated) (All LC' s are listed J.n the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSVAITC A190.1-1992 3. GLULAM:bxd=actual breadth x actual depth. • COMPANY PROJECT • WoodWorks® Feb. 15, 2018 10:00 9' (1) 2x6 HF2 (3300).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 3300 lbs Self-weight Dead Axial 15 lbs Lateral Reactions (lbs): 9 w -I p o CD 0' 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber n-ply, Hem-Fir, No.2, 2x6, 1-ply (1-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length =column width; continuous lower support Total length: 9'; Clear span: 8'-10.5";volume=0.5 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 402 Fc' = 771 psi fc/Fc' = 0.52 Axial Bearing fc = 402 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearing fcp = 402 Fcp = 405 psi fcp/Fcp = 0. 99 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 3315 lbs Support : LC #1 = D only; R = 3315 lbs, Cap = 3341, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015),and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. Workst COMPANY PROJECT 101041 11 WO o d Sia}':.,RF FRA:S=20, Feb. 15, 2018 10:00 9' (2) 2x6 HF2 (6500).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude _ Unit Start End Start End Load1 Dead Axial (Ecc. = 0.00") 6500 lbs Self-weight Dead Axial 31 lbs Lateral Reactions (lbs): i 9' c v D co co 0' 0 Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber n-ply, Hem-Fir, No.2, 2x6, 2-ply (3"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width;continuous lower support Total length: 9'; Clear span: 8'-9.0";volume= 1.0 cu.ft. Pinned base; Load face=width(b); Built-up fastener: nails; Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 396 Fc' = 771 psi fc/Fc' = 0.51 Axial Bearing fc = 396 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearing fcp = 396 Fcp = 405 psi fcp/Fcp = 0.98 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 6531 lbs Kf = 1.00 Support : LC #1 = D only; R = 6531 lbs, Cap = 6682, Lb = 3.00", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. • COMPANY PROJECT aWoodWorks® Feb. 15, 2018 10:01 9'4x6 HF2(7500).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: .Load Type Distribution Location [ft] Magnitude Unit Start End Start End Load1 Dead Axial (Ecc. = 0.00") 7500 lbs Self-weight Dead Axial 36 lbs Lateral Reactions (lbs): 9' co N CD 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber Post, Hem-Fir, No.2, 4x6 (3-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length =column width; continuous lower support Total length:9'; Clear span: 8'-8.5";volume = 1.2 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0 [ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 391 Fc' = 771 psi fc/Fc' = 0.51 Axial Bearing fc = 391 Fc* = 1287 psi fc/Fc* = 0.30 Support Bearing fcp = 391 Fcp = 405 psi fcp/Fcp = 0.97 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0. 90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc* 1300 0.90 1 .00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1 .00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 7536 lbs Support : LC #1 = D only; R = 7536 lbs, Cap = 7796, Lb = 3.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. , _ COMPANY PROJECT r it WoodWorks r WoodWorks`� Feb. 15, 2018 10:02 9'4x8 HF2 (9000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 9000 lbs Self-weight Dead Axial 47 lbs Lateral Reactions (lbs): t 9 t w -4 0 d w m LI 0' 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber Post, Hem-Fir, No.2,4x8 (3-1/2"x7-114") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length:9'; Clear span: 8'-8.5";volume= 1.6 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0=9.0[ft]; Ke x Ld: 1.0 x 0.0=0.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: . Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 357 Fc' = 373 psi fc/Fc' = 0.96 Axial Bearing fc = 357 Fc* = 1228 psi fc/Fc* = 0.29 Support Bearing fcp = 357 Fcp = 405 psi fcp/Fcp = 0.88 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1 .00 1.00 0.304 1.050 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.050 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 9047 lbs Support : LC #1 = D only; R = 9047 lbs, Cap = 10277, Lb = 3.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. • COMPANY PROJECT � Y Works 'O's+=C)!➢DLSiG.5 Feb. 15, 2018 10:02 9'6x6 HF2 (13000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 12000 lbs Self-weight Dead Axial 56 lbs Lateral Reactions (lbs): / 9' D -1 o m 0' U 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Timber-soft, Hem-Fir, No.2, 6x6 (5-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length:9'; Clear span: 8'-6.5"; volume= 1.9 cu.ft.; Post and timber Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0 [ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 399 Fc' = 430 psi fc/Fc' = 0.93 Axial Bearing fc = 399 Fc* = 517 psi fc/Fc* = 0.77* Support Bearing fcp = 399 Fcp = 405 psi fcp/Fcp = 0. 98 *Column requires a bearing plate at top as per NDS 3.10.1.3 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 0.90 1.00 1.00 0.831 1.000 - - 1.00 1.00 1 Fc* 575 0.90 1.00 1.00 - 1.000 - - 1 .00 1.00 1 Fcp sup 405 - 1 .00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 12056 lbs Support : LC #1 = D only; R = 12056 lbs, Cap = 12251, Lb - 5.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc-concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. I COMPANY PROJECT 'iWoodWorks® -44-'''' SOFTWAPOR ,,,OPiN Feb. 19, 2018 15:29 9'6x8 HF2 (16000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 16000 lbs Self-weight Dead Axial 74 lbs Lateral Reactions (lbs): / 9' W H °' D -0a m LI 0' 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Timber-soft, Hem-Fir, No.2, 6x8 (5-1/2"x7-114") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length:9'; Clear span: 8'-6.5";volume=2.5 cu.ft.; Post and timber Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 403 Fc' = 473 psi fc/Fc' = 0.85 Axial Bearing fc = 403 Fc* = 517 psi fc/Fc* = 0.78* Support Bearing fcp = 403 Fcp = 405 psi fcp/Fcp = 1.00 *Column requires a bearing plate at top as per NDS 3.10.1.3 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 0.90 1.00 1.00 0.914 1.000 - - 1 .00 1.00 1 Fc* 575 0.90 1.00 1.00 - 1.000 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 16074 lbs Support : LC #1 = D only; R = 16074 lbs, Cap = 16149, Lb = 5.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT I ' A WO 4 ' ' '* 0 d WoodWorks® Feb. 10, 2011 17:00 5 1-8x6 glu-lam.wwc Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End Loadl Dead Axial (Ecc. = 0.00") 25000 lbs Self-weight Dead Axial 80 lbs Lateral Reactions (lbs): 9' -__ co -I ¢7 I% v CD 9' Glulam-Balanced, West Species, 24F-1.8E WS, 5-118"x7-112" 5 laminations, 5-1/8" maximum width, Support: Non wood Total length:9';volume= 2.4 cu.ft.; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0=9.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2012 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 652 Fc' = 1140 psi fc/Fc' = 0.57 Axial Bearing fc = 652 Fc* = 1440 psi fc:/Fc* = 0.45 Additional Data: FACTORS: F/E(psi)C[) CM Ct. CL/'OP CV Cfu Cr Cf rt Notes LC# Fc' 1600 0.90 1.00 1.00 0.792 -- - - 1.00 - 1 Fc* 1600 0.90 1.00 1.00 - - - - 1.00 - 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 25050 lbs D=dead L=live S=snow W-wind I=.impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICC-IBC Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012),the National Design Specification(NDS 2012), and NDS Design Supplement. 2, Please verify that the default deflection limits are appropriate for your application. 3, Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4. GLULAM: bxd=actual breadth x actual depth. )11M02016 Post Capacities I SimpsoStrorto-Ta . Post Allowable Compression Loads for Douglas-Fir-Larch . Compression Capacity Parallel to Grain,Pc(100) Compression Capacity Parallel to Grain,Pc(160) - , Framing i 1 Grain, ‘ Nominal Top Plate Height(ft.) _ SIMPSON p Plate Hei.q.bt(it.) ,!, 1 6-inch See footnotes Post Allowable Compression Loads for Southern Pine i Lumber i Pero to _ CompresslonCapacity Parallel to Grain,Pc(100) _ Compression Capacity Parallel to Grain„,Pc(160)__.,1 1 Framing ;:----T--M,., ,:—" Grain, Nominatiop Plate Neight(It) iemlnal Top Plate Height ifil) 3x 6 1 /2 10 7770 18655 I 11980 - 1fL853"- -,t''' 8975.---"t g•rt.-. 16510 . 137,‘:-, rTtfi 9655 8220 "-- i See footnotes Post AllW Compression Loads for SprucePino-p/r 1 Lumber i perp to Compression Capacity Parallel to Grain,Pe(100) Compression Capacity Parallel to Grain,Pc-(160) '; i Framing 1 1 Grain, Nominal Top Plate Height(it) Nominal Top Plate Height(ft.) 1 See footnotes 11/18/2016 Post Capacities I Simpson Strong-Tie Post Allowable Compression Loads for Hem-Fir i Lumber 1 Perp to Compression Capacity Parallel to Grain,Pc(100) Compression Capacity Parallel to Grain Pc(160) Framing Size ' Grain. Nominal Top Plate Height(ft.) p Plate Height(IL) Grade c 1 6 12 s SIMPSON; P 9 10 11 • 2x4 #2 2125 2630 = 211517 0 1435 1210 274,...,1,7" r3E1 43 ��' 1770 1465 1230 3x4 545 4385 3525 2880 2395 • 2020 4570 ,,:,,,,,,,,,,,,,,,,„,...„4,,,r,,,,,„ "(21?IIJs Ilwun �itrenc�ir0t �Qrnl� 4 } i 42 1,? 5 52614 4230 31 460 2875 242 �m54£t5 _4355 3540 2925 < 2460 +r3i 4 2 4960 `6140 4935 4035 3355 2830 640 ,.,. � '5085 I 4125 3415 2870 " '''''''''4''''`; «' 2 6360 890 " 6340 5185 4310 3635 8230 8535 ( 5305 4390 3690 2 4 1� 6505 8455 f 6915 5750 4850 10970 8115 7075 5655 i 4920 1 2x6 42 3340 7950 y 6880 59G5 5065 ° a365 n _._ 1---t'7735,,..,-, µ 38---t------1458 .....,. i, 9 642x 6inoh 3x6 I 42 5570 13250�s 11470, 9848 8440 .( 7270 15644 11890 '1(}710 8995` 7635 ', Wall 2 2x6 >2 0025 213589°05572';. ` 20 11810 " 101303 8725 ..261 0 :,.15470 23205.._.."`19 ,° 161 9465 3 2x6 i ,20 4 4 187285 4 2x6 2 1 13365 1 _- 27525 _._ :20 . ... ,. r �.�,:a.3029.30 0 0 5700;, 1 1832o See footnotes Post Tension Load Tables Post Tension Loads for Douglas-Fir-Larch il Lumber Allowable Tension PG (160) Framing° .__. ... .... �sm. Bolt Diameter in. Size Grade t ..._} 0 YZa '/a 1 2x4 #2 7245 6080 5820 5305 I 5045 3x4 #2 12075 10135 9705 ' 8840 8410 22x4 ' #2 : 14490 12160 11645 i 10610 10090 1 4-Inch 4x4 #2 16905 14190_ 13585 12375 11775 Wall Ei '3-2-X4' 2x4 ; #2 21735 18240 17465 15915 15135 14x6 ° #2 23025 19325 18500 i 16855i 16035 ; +. F -_.,,,,,a,.,..„...�. ......,...... � .. � f 4x8 #2 2801y(µ 23510 _"ily22510 20510 19510 4x10 #2 32765 1 27500. 26330 23990 22815 2x6 #2 9865 8860 8635 8185 1 7960 r----3--x-6--r---#-2- 16445 14765 14390 13640 13270 2-2x6 #2 19735 17715 ) 17265 ( 16370 115920 6-Inch 4x6 � .._ _.. w #223025 20670 20145 19100 ! 18575 Wall _�.a i 3-2x6 1_#2 29600 26575 25900 24555 l 23885 6x6 L #1 32670 29330 28585 27100 1 26360 1 6x8 #1 44550 39995 38980 36955 L . 35945 See footnotes 11/1812016 Post Capacities(Simpson Strong-Tie . Post Tension Loads for Southern Pine w_ Allowable Tension Lumber SIMPSON Pt, (160) Framin �ti-t�_R .� ��.. Boli Diameter� .� Size Grade _ 1 jhttps://www.stronotio.corn6. i '/z a '/8 1 a C124 f, 2 ) i € I . t 4 i,. N. f[ zr 4 - ,Jm i y '}T 9 P ( y�„ 3x4 I #2 0 ; 0 59 ; 4 6530 2-2x4 #2 3.40 ' 9520 ! 9' 15 8305 1 7900 4-Inch 4x4 #2 —13230 1 . 10 6'35 921 t,„YYaI{Ar i .._ } 1 3-2x4 1 #2 17010 14275 1 13,; 12455 11845 4x6 #2 18480 15510 1 1485 13530 '1 12870 4x8 #2 2 1 u�2� �`� 1 "�i 9 1250 15550 4x10 #2 2-1605 226 & s E ' 18015 I 17135 2x6 #2 792 1 71 .0 6930 I 6570 639 3x6 #2 132°6 1185{ 11 ;/ ± 1 '.. 10650 2-2x6 #2 15849` 1 220 13800 1 13140 12780 6-Inch _ .. .�. _„ 1_,.., Wall 4x6 #2 18430 1 16590 16170 1 15330 14910 910 3-2x6 #2 L 3 760 1 21 a.1 2� 70 1 9 19/10 1917 0 1 6x6 #1 43560 I 39105 38115 1 36135 35145 ._.. � 6x8 #1 59400.x.... 53325 L, 51975 149275 47925 See footnotes Post Tension Loads for Spruce-Pine-Fir w _ __ m . _ ._........._... M.M. 1 Allowable Tension Lumber Pts (160) Framing Bolt Diameter(in_) Size Grade 0 /2- . . 5/e, i I MEI 2x4 #1/#2 5670 1 4760 4555 = 4150 3950 3x4 #1/#2 9450 1 7930 I 7595 i 6920 6580 4-Inch ' 2-2x4 #1/12 11340 , 9520 1 9115 ! 8305 7900 Wall 4x4 #1/12 13230 11105 1 10630 # .9685 9215 3-2x4 11/12 17010 14275 13670 ,p 12455 , 11845 1 4-2x4 #1/#2 22680 19035 1 18225 16605 15795 2x6 #1/#2 7720 6930 6755 6405 6230 ` 3x6 #1/12 - 12870 11555 11260 j 10675 10385 6-Inch Wall 2-2x6 #1/#2 x 15445 13865 13515 12810 12460 . 3-2x6 #1/12 23165 20795 2020 19215 18690 4-2x6 #1112 28315 125420 2-17/5 1 23490 22845 See footnotes • Client: West hills Development Proµct: Fmei Terrace East y, Prgi.#: I6-TI 00 Ft YSE FROELICH ENGINEERSt Cont. Spread Footing Design At Building Ext. Wall (II to joist) Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 832 Roof SL(psf) 25 Ftg Dead Load(plf) 435 Floor DL(psf) 27 Live Load(plf) 320 Floor LL(psf) 40 Snow Load(plf) 300 Wall DL(psf) 10 IBC Eq.16-9(plf) 1587 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1567 IBC Eq.16-11 (plf) 1732 Tributary Areas Total bearing(psf) 866 Roof Trib(ft) 12 Allowable brg(psf) 2500 Floor trib(ft) 8 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1.5 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 832 Footing width(in.) 24 Live Load(plf) 320 Footing depth(in.) 12 Snow Load(plf) 300 Cont. Spread Footing Design At Building Ext. Wall (I_to joist) Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1138 Roof SL(psf) 25 Ftg Dead Load(plf) 435 Floor DL(psf) 27 Live Load(plf) 960 Floor LL(psf) 40 Snow Load(plf) 125 Wall DL(psf) 10 IBC Eq.16-9(plf) 2533 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1698 IBC Eq.16-11 (plf) 2387 Tributary Areas Total bearing(psf) 1267 Roof Trib(ft) 5 Allowable brg(psf) 2500 Floor trib(ft) 24 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1.5 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1138 Footing width(in.) 24 Live Load(plf) 960 2098 < 2 5 0 0i f = 2 X 6@ 16 Footing depth(in.) 12 Snow Load(plf) 125 p Cont. Spread Footing Design At Int. Brg Walt - Basement Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1795 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 1800 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 3885 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 2335 IBCEq.16-11 (plf) 3623 3595*10/8 (increase for Tributary Areas Total bearing(psf) 1943 Roof Trib(ft) 10 Allowable brg(psf) 2500 db 1 span joists) = 4494 Floor trib(ft) 45 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1795 Footing width(in.) 24 Live Load(plf) 1800 Footing depth(in.) 12 Snow Load(plf) 250 4494 < 5000 p 1 f = (2) 2 X 6@ 16 Cont. Spread Footing Design At Int. Brg Wall - 1st Floor Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1390 Roof SL(psi) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 1200 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(p8) 2880 2590*10/8 (increase for Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1930 dbl span njoists) . = 3238 IBC Eq.16-11 (plf) 2768 p Tributary Areas Total bearing(psf) 1440 Roof Trib(ft) 10 Allowable brg(psf) 2500 Floor trib(ft) 30 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1390 Footing width(in.) 24 Live Load(plf) 1200 3238 < 5000 p 1 f = (2) 2 X 6@ 16 Footing depth(in.) 12 Snow Load(plf) 250 Cont. Spread Footing Design At Int. Brg Wall - 2nd Floor Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 885 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 600 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 1775 1523*10/8 (increase for Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1425 IBC Eq.16-11 (plf) 1813 dbl span joists) = 1903 Tributary Areas Total bearing(psf) 906 Roof Trib(ft) 10 Allowable brg(psf) 2500 Floor Crib(ft) 15 Footing OK Wall height(ft) 30 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 0 Dead Load(plf) 885 1903 < 2500 p 1 f = 2X6@16 Footing width(in.) 24 Live Load(plf) 600 2500 p i t = (2) 2X4@16 Footing depth(in.) 12 Snow Load(plf) 250 Cont. Spread Footing Design At Party Wall Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1030 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 880 Floor LL(psf) 40 Snow Load(plf) 50 Wall DL(psf) 10 IBC Eq.16-9(p11) 2200 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1370 1910*10/8 (increase f o r IBC Eq.16-11 (plf) 2018 dbl span joists) = 2388 Tributary Areas Total bearing(psf) 1100 Roof Trib(ft) 2 Allowable brg(psf) 2500 Floor trib(ft) 22 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 0 Dead Load(plf) 1030 2388 < 2500 i f = dbl 2X4@ 16 Footing width(in.) 24 Live Load(plf) 880 p Footing depth(in.) 12 Snow Load(plf) 50 Cont. Spread Footing Design At Corridor Wall Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1345 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 55 Live Load(plf) 900 Floor LL(psf) 100 Snow Load(plf) 625 Wall DL(psf) 10 IBC Eq.16-9(plf) 2535 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 2260 IBC Eq.16-11 (plf) 2779 Tributary Areas Total bearing(psf) 1389 Roof Trib(ft) 25 Allowable brg(psf) 2500 Floor trib(ft) 9 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1345 Footing width(in.) 24 Live Load(plf) 900 2489 < 2500 p 1 f = 2X6@1 6 Footing depth(in.) 12 Snow Load(plf) 625 , ., COMPANY I PROJECT %Vood\A/orks WAKE t'i)WOOD txFS11;t• Feb.15.2018 t4:04 Ext HF 9ft 2x6 at 16(2500p1f IL 35psl W).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial OIL (Ecc. = 0.00") 2500 plf Lateral 'Wind Full Area 35.00(16.0") psf Self-weight Dead Axial UDL 12 off Lateral Reactions(lbs): 9'co I d -o 0' A 9' Unfactored: Dead Wind 210 210 Factored: L->R 126 126 Load comb #2 #2 Ext Wall Stud Lumber Stud,Hem-Fir,No.2,2x6(1-1/2"x5-112") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 16.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.5 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NOS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 23 Fv' = 240 psi fv/Fv' = 0.10 Bending(*) fb = 450 Fb' = 2033 psi fb/Fb' = 0.22 Axial fc = 406 Fc' = 771 psi fc/Fc' = 0.53 Axial Bearing fc = 406 Fc* = 1287 psi fc/Fc* = 0.32 Support Bearini fcp = 406 Fcp = 405 psi fcp/Fcp = 1.00 Combined (axial compression - side load bendimg) Eq.3.9-3 = 0.58 Live Defl'n 0.15 = L/706 0.90 = L/120 in 0.17 Total Defl'n 0.15 = L/706 0.90 = L/120 in 0.17 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.389 - - - - - 3 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Ervin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 - .6D+.6W, V max = 126, V design = 126 lbs Bending(+): LC #2 = .61+.6W, M = 284 lbs-ft Deflection: LC #2 - .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 3349 lbs Combined : LC #3 = D+.6W; (1 - fc/FcE) = 0.59 Support : LC #1 = D only; R = 3349 lbs, Cap = 3341, Lb = 1.50", Cb = 1.00 D=dead L=live S-snow W-wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 27.0e06 lb-in2 "Live" deflection - Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT ez 4 WoodWorks`• Feb.15,2018 14:05 Int HF 91)2x4 at 12(1700pIl TL 5psf W)wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 1700 plf Lateral Wind Full Area 5.00(12.0") psf Self-weight Dead Axial UDL 10 p1f Lateral Reactions(lbs): 9' WD o_4 o' Unfactored: Dead Wind 23 23 Factored: L->R 14 14 Load comb #2 #2 Int Wall Stud Lumber Stud,Hem-Fir,No.2,2x4(1-1/2"x3-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 12.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.3 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NOS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 4 Fv' = 240 psi fv/Fv' = 0.02 Bending(+) fb = 119 Fb' - 2346 psi fb/Fb' = 0.05 Axial fc = 326 Fr' = 376 psi fc/Fc' = 0.87 Axial Bearing fc = 326 Fr* = 1345 psi fc/Fc* = 0.24 Support Bearing fcp = 326 Fcp = 405 psi fcp/Fcp = 0.80 Combined (axial compression - side load bending) Eq.3.9-3 - 0.95 Live Defl'n 0.06 = <L/999 0.90 = L/120 in 0.07 Total Defl'n 0.06 = <L/999 0.90 = L/120 in 0.07 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.500 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.280 1.150 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.163 - - - - - 3 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.150 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max = 14, V design = 14 Lbs Bending(+): LC #2 = .6D+.6W, M = 30 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 1710 lbs Combined : LC #3 = D+.6W; (1 - fc/FOE) = 0.20 Support : LC #1 = D only; R = 1710 lbs, Cap = 2126, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 6.97e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. "\ \ COMPANY PROJECT cWoodWorks• .44;t1145RI',,,OW a+,001>Di Feb.15,2018 15:49 Int HF 9ft 2x4 at 16(1250p1f TL 5psf W).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 1250 plf Lateral Wind Full Area 5.00(16.0") psf Self-weight Dead Axial UDL 7 plf Lateral Reactions(lbs): 9' co 0' U 9' Unfactored: Dead Wind 30 30 Factored: L->R 18 18 Load comb 82 42 Int Wall Stud Lumber Stud,Hem-Fir,No.2,2x4(1-1/2"x3-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 16.0"dc;Total length:9';Clear span:8'-10.5";volume=0.3 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[B];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 5 Fv' = 240 psi fv/Fv' = 0.02 Bending(+) fb - 159 Fb' = 2346 psi fb/Fb' = 0.07 Axial fc = 319 Fc' = 376 psi fc/Fc' = 0..85 Axial Bearing fc - 319 Fc* = 1345 psi fc/Fc* = 0.24 Support Bearim fcp - 319 Fcp = 405 psi fcp/Fcp = 0.79 Combined (a,ial compression side load bending) Eq.3.9-3 = 0.99 Live Defl'n 0.08 - <L/999 .0.90 = L/120 in 0.09 Total Dell's 0.08 = <L/999 0.90 = L/120 in 0.09 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LCA Fv' 150 . 1-60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.500 1.00 1.15 1.00 1.00 2 Ft' 1300 0.90 1.00 1.00 0.280 1.150 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.163 - - - - - 3 E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Ft" 1300 0.90 1.00 1.00 - 1.150 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear LC #2 - .60+.65, V max = 18, V design = 18 lbs Bending(+): LC #2 - .6D+.6W, M = 41 lbs-ft Deflection: LC #2 - .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 1676 lbs Combined : LC #3 - D+.65; (1 - fc/FcE) = 0.21 Support : LC 81 = D only; R = 1676 lbs, Cap = 2126, Lb = 1.50", Cb = 1.00 0=dead L=live S=snow :r-wind I-impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 6.97e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (Live, wind, snow..) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT Works® Feb.15,2018 14:15 Int HF 9ft 2x6 at 12(3300plf TL 5psf W).wwc Design Check Calculation Sheet Wood Works Sizer 11.1 Loads: Load Type Distribution Location ` ?Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Eco. = 0-00") 3300 plf Lateral Wind Full Area 5.00(12.0") psf Self-weight Dead Axial UDL 15 plf Lateral Reactions(lbs): 9 03 rig D a o' A 9' Un factored: Dead Wind 23 Factored: 23 L->R 14 14 Load comb #2 #2 Ext Wall Stud Lumber Stud,Hem-Fir,No.2,2x6(1-112"x5-112") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 12.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.5 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 2 Fv' = 240 psi fv/Fv' = 0.01 Bending(+) fb = 48 Fb' = 2033 psi fb/Fb' = 0.02 Axial fc = 402 Fc' = 771 psi fc/Fc' = 0.52 Axial Bearing fc = 402 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearing fcp = 402 Fcp = 405 psi fcp/Fcp = 0.99 Combined (axial compression - side load bendirg) Eq.3.9-3 = 0.24 Live Defl'n 0.02 = <L/999 0.90 = L/120 in 0.02 Total Defl'n 0.02 = <L/999 0.90 = L/120 in 0.02 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.389 - - - - - 3 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear LC #2 = .6D+.6W, V max = 14, V design = 14 lbs Bending(+): LC #2 = .6D+.6W, M = 30 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 3315 lbs Combined : LC #3 = D+.6W; (1 - fc/FcE) = 0.60 Support LC #1 = D only; R = 3315 lbs, Cap = 3341, Lb - 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 27.0e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.Wood Works analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. FROELICH CONSULTING ENGINEERS INC., Client: Project: Project#: By: Footings Maximum Allowable Required Required Dimensions Used Dimensions Footing Bearing Footing Size ganow Load(Prat) Area W(ft) L(ft) _ W(ft) D(in) Weight Pressure L(ft) 18" x cont x10" 3500 2500 1.40 1.18 1.18- 1.5 1 10 l88 2458 24"x cont x 10" 14000 2500 5.60 2.37 2.37, 2 3 10 750 2458 36"x cont x 10" 27000 2500 10.80 3.29 3.29 3 4 10 1500 2375 2'-6"x 2'-6"x 10" 15500 2500 6.20 2.49 2.49 2.5 2.667 10' 833 2450 3'-0"x 3'-0"x 12" 21000 2500 8.40 2.90 2.90 3 3 12 1350 2483 3'-6"x 3'-6"x 12" 27000 2500 10.80 3.29 3.29 3.5 3.333 12 1750 2465 4'-0"x 4'-0" x 12" 37000 2500 14.80' 3.85 3.85 4 4' 12 2400 2463 4'-6"x 4'-6"x 12" 52000 2500 20.80 4.56 4.56 4.5 5 12 3375 2461 n Required Area: _(Prat/gauow) s Bearing Pressure =(Prot+Was)/(W*L) =(Prat+Wa6)/(W*L*3.1415/4) Client: Project: Proj.#: Date: By: FROELICH ENG 1 N EER 5 a ASCE 7-05 Earthquake Load Cs Factor Importance Factor(Seismic) I = 1.0 Basic Seismic Force Resisting System Light Framed Wood Shear Wall R= 6.5 Design Spectral Response Acceleration Seismic Design Coefficient Development Latitude Longitude SDS SD1 Category Cs 45.559 -122.853 0.726 0.403 D 0.1117 - Information in table was obtained from USGS website -Conservatively design all structures in all developments for the Cs design value specified below Controlling Cs Value = 0.1117 I Use Cs = 0.12 for Design in all Developments Equations: Cs= Sos*I/R Response Coefficient 4Client: Project: River Terrace Project#: 16-T100 Date: 11/18/2016 ,7 By: YSP FROELICH EN SINE E R Si WIND FORCE CALCULATION MWFRS Side-Side Event ASCE 7-10 SECTION 27-2 METHOD 2-ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 120 mph Wind Directionality Factor Kd= 0.85 Table 26.6-1 Wind Importance Factor IW= 1.00 Wind Exposure Category= B Building Parameters Horizontal Dimension of Bldg B= 54 ft Measured Normal to wind direction Horizontal Dimension of Bldg L= 146 ft Measured Parallel to wind direction Mean Roof Height h= 40 ft Highest Roof Level h„= 40 ft Approximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 Output-Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 26.8-1 Length of 1/2 hill height Lh= 1 ft Figure 26.8-1 Dist. From Crest to Bldg.x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 Horizontal Attenuation Factor m= 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor K1/(H/Lh)= 1 Figure 26.8-1 Output-Topographic Multipliers Kt = 0.00 K2= 1.00 1(3= 1.00 Topographic Factor K2= 1.00 Gust Effects Input Integral Length Scale Factors = 320 ft Table 26.9-1 Integral Length Scale nominal height of boundary zg= 1200 Table 26.9-1 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 Power Law Exponent E = 0.33 Table 26.9-1' Minimum Height zmin = 30 ft Table 26.9-1 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.88 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G = 0.85 Pressure Coefficients Input Length to Width Ratio LB= 2.70 Height to Length Ratio h/L= 0.27 Roof Pitch= 9 : 12 = 36.87 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients Cp (see below) Figure 27.4-1 Direction Cp Height(ft) Kh qZ(psf) Velocity Windward 0.8 15 0.57 18.0 Pressure Leeward -0.27 20 0.62 19.6 Output ch Roof Windward 0.40 25 0.67 20.8 Roof Leeward -0.6 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 h= 40 0.76 23.8 qh hparapet= 0 0.57 18.0 qh Design Wind Pressures p (psi) - GC,„= (-) 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCp; _ -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - i Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 16.6 -1.2 17.8 ft 20 17.6 -1.2 18.8 25 18.5 -1.2 19.7 30 19.3 -1.2 20.5 40 20.6 -1.2 21.8 50 21.6 -1.2 22.8 60 22.6 -1.2 23.8 70 23.4 -1.2 24.6 80 24.1 -1.2 25.3 90 24.8 -1.2 26.0 100 25.4 -1.2 26.6 120 26.6 -1.2 27.8 40 20.6 -1.2 7.5 -4.7 21.8 12.20 Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures p (psi) -GC,,i-(+) 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCp; = 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 8.0 -9.8 17.8 ft 20 9.1 -9.8 18.8 25 9.9 -9.8 19.7 30 10.7 -9.8 20.5 40 12.0 -9.8 21.8 50 13.0 -9.8 22.8 60 14.0 -9.8 23.8 70 14.8 -9.8 24.6 80 15.5 -9.8 25.3 90 16.2 -9.8 26.0 100 16.8 -9.8 26.6 120 18.0 -9.8 27.8 40 12.0 -9.8 2.3 -9.9 21.8 12.20 Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASD) p (psf) - CC's„=(-) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp;= -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - I Windward 1 Leeward 1 Roof WW I Roof LW I WW+1.,W{ RWW+RLW 1 Height 15 9.9 -0.7 10.7 ft 20 10.6 -0.7 11.3 25 11.1 -0.7 11.8 30 11.6 -0.7 12.3 40 12.3 -0.7 13.1 50 13.0 -0.7 13.7 60 13.5 -0.7 14.3 70 14.0 -0.7 14.7 80 14.5 -0.7 15.2 90 14.9 -0.7 15.6 100 15.3 -0.7 16.0 120 15.9 -0.7 16.7 40 12.3 -0.7 4.5 -2.8 13.1 7.32 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASI)) p (psi)- GCpi=(+) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp;= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.8 -5.9 10.7 ft 20 5.4 -5.9 11.3 25 6.0 -5.9 11.8 30 6.4 -5.9 12.3 40 7.2 -5.9 13.1 50 7.8 -5.9 13.7 60 8.4 -5.9 14.3 70 8.9 -5.9 14.7 80 9.3 -5.9 15.2 90 9.7 -5.9 15.6 100 10.1 -5.9 16.0 120 10.8 -5.9 16.7 40 7.2 -5.9 1.4 -5.9 13.1 7.32 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls -By Inspection Parapet Loading per ASCE7-10 27.4.5 Client: Project: River Terrace Project#: 16-T100 Date: 11/16/2016 By: YSP FROELICH ENGIN EERSI WIND FORCE CALCULATION -MWF ZS Front-Back Event ASCE 7-10 SECTION 27-2 METHOD 2-ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 122 mph Wind Directionality Factor Ka= 0.85 Table 26.6-1 Wind Importance Factor 1N,= 1.00 Wind Exposure Category= B Building Parameters Horizontal Dimension of Bldg B = 146 ft Measured Normal to wind direction Horizontal Dimension of Bldg L= 54 ft Measured Parallel to wind direction Mean Roof Height h= 40 ft Highest Roof Level hr,= 40 ft Approximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 Output-Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 26.8-1 Length of 1/2 hill height Lb= 1 ft Figure 26.8-1 Dist.From Crest to Bldg.x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 Horizontal Attenuation Factor m= 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor Kl/(H/Lh)= 1 Figure 26.8-1 Output-Topographic Multipliers K1 = 0.00 K2= 1.00 K3 = 1.00 Topographic Factor Kzt= 1.00 Gust Effects Input Integral Length Scale Factor 6 = 320 ft Table 26.9-1 Integral Length Scale nominal height of boundary zg= 1200 Table 26.9-1 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-I Power Law Exponent e = 0.33 Table 26.9-1 Minimum Height zm;n= 30 ft Table 26.9-1 Integral Length Scale of Turbulence LZ= 310 ft Output- Background Response Factor Q= 0.83 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.82 Pressure Coefficients Input Length to Width Ratio L/B = 0.37 Height to Length Ratio h/L= 0.74 Roof Pitch= 10 : 12 = 39.81 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients Cp (see below) Figure 27.4-1 Direction Cp Height(ft) Kb qZ(psf) Velocity Windward 0.8 15 0.57 18.6 Pressure Leeward -0.50 20 0.62 20.2 Output qz Roof Windward -0.20 25 0.67 21.5 Roof Leeward -0.6 30 0.70 22.7 40 0.76 24.6 50 0.81 26.3 60 0.85 27.7 70 0.89 28.9 80 0.93 30.0 90 0.96 31.1 100 0.99 32.0 120 1.04 33.7 h= 40 0.76 24.6 qh hp pet= 0 0.57 18.6 qh Design Wind Pressures p (psf) - GC;,,= (-), 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCp; = -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW1..W RWVv`+RLW Height 15 16.7 -5.7 22.4 ft 20 17.8 -5.7 23.5 25 18.6 -5.7 . 24.3 30 19.4 -5.7 25.1 40 20.7 -5.7 26.4 50 21.7 -5.7 27.5 60 22.7 -5.7 28.4 70 23.5 -5.7 29.2 80 24.2 -5.7 29.9 90 24.9 -5.7 30.6 100 25.5 -5.7 31.2 120 26.7 -5.7 32.4 40 20.7 -5.7 0.2 -5.0 26.4 8.00 Parapet 0 27.9 -18.6 46.5 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures p (psf)-GCp,-=(+` 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCp;= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 7.8 -14.6 22.4 ft 20 8.9 -14.6 23.5 25 9.8 -14.6 24.3 30 10.5 -14.6 25.1 40 11.8 -14.6 26.4 50 12.9 -14.6 27.5 60 13.8 -14.6 28.4 70 14.6 -14.6 29.2 80 15.4 -14.6 29.9 90 16.0 -14.6 30.6 100 16.7 -14.6 31.2 120 17.8 -14.6 32.4 40 11.8 -14.6 -5.4 -10.6 26.4 8.00 Parapet 0 27.9 -18.6 46.5 Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures (ASP) p (psf)-GC;„=(-) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp;= -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- I Windward I Leeward ( Roof WW I Roof LW I WW+LWt RWW+RLW I Height 15 10.0 -3.4 13.4 ft 20 10.7 -3.4 14.1 25 11.2 -3.4 14.6 30 11.6 -3.4 15.1 40 12.4 -3.4 15.8 50 13.0 -3.4 16.5 60 13.6 -3.4 17.0 70 14.1 -3.4 17.5 80 14.5 -3.4 18.0 90 14.9 -3.4 18.4 100 15.3 -3.4 18.7 120 16.0 -3.4 19.4 40 12.4 -3.4 0.1 -3.0 15.8 4.80 Parapet 0 16.8 -11.2 27.9 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASI)) p (psf)-GC0=(+) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp,= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction-- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.7 -8.7 13.4 ft 20 5.3 -8.7 14.1 25 5.9 -8.7 14.6 30 6.3 -8.7 15.1 40 7.1 -8.7 15.8 50 7.7 -8.7 16.5 60 8.3 -8.7 17.0 70 8.8 -8.7 17.5 80 9.2 -8.7 18.0 90 9.6 -8.7 18.4 100 10.0 -8.7 18.7 120 10.7 -8.7 19.4 40 7.1 -8.7 -3.3 -6.4 15.8 4.80 Parapet 0 16.8 -11.2 27.9 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 1 4 Client: Arbor Project: River Terrace-22 Plex Project#: 16-T100 Date: Nov-16 By: YSP FROELICH ENri NSERSI Lateral Design - Wood Walls Shear Walls SEISMIC: Site Classification: D Occupancy Category: II Occupancy Importance Factor 1 I= 1.0 System Over-strength Factor: Light Frame Walls with Shear Panels W= 3.0 Response Modifiaction Coefficient: Light Frame Walls with Shear Panels R= 6.5 MCE Short Period Pectal Response accel.: Ss= 1.088 MCE 1-second period spectral response accel.: St = 0.590 5%damped short period spectral response accel.: Sos= 0.726 5%damped 1-second period spectral response accel.: Sos= 0.500 Seismic Design Category(ASCE Table 11.6-1 & 11.6-2): D Seimic Response Coefficient(ASCE 7-05) EQ 12.8-2 Cs=Sos/(R/I) Cs= 0.112 Controls Eq 12.8-3(max)-in addition to sections 12.8.2, 12.8.2.1, Table 12.8-1 Cs=Sot/(T(R/I)) Ta=CthnX Ta= 0.365 Ct= 0.02 C = 1.4 from table 12.8-1 h8= 48 T= 0.511 per12.8.2 x= 0.75 Cs= 0.211 Eq 12.8-5(min) Cs=0.01 Cs= 0.010 Eq 12.8-5(min) Cs=0.044Sos1 Cs= 0.032 Cs= 0.112 Allowable Stress Design: 0.7E Cs= 0.078 Seismic Dead Loads Note: Dead Load includes 10psf for interior walls/partitions Level diaph2area Dead Load Int. Wall Trib Wall int. Wall Ext.Wall Ext. Wall Mech (ft ) (psf) L(ft) height(ft) Wt(psf) Wt(psf) L(ft) Units(lbs) ____ Roof 8791 18 600 5 10 6 400 4`"Floor 7975 27 600 10 10 12 400 3rd Floor 7975 27 600 10 10 12 400 2°O Floor 5220 27 300 10 10 12 360 Total= Seismic Base Shear(Working stress Design) V=Cs(DL) V= 82956 lbs Vertical Distribuition Level Weight Height Wt* Ht "4"/Total V IVI=(Wt(Ht)/Total)•V Roof 200238 40 8009520 0.304 82956 25247 =V,t 4°i Floor 323325 30 9699750 0.369 82956 30575 =Van 3"'Floor 323325 20 6466500 0.246 82956 20383 =V3rd 2'`'Floor 214140 10 2141400 0.081 82956 6750 =V2na Total= 26317170 1,000 V,f= 25247 lbs V4th= 30575 lbs (Allowable Stress Design Loads) V3rd= 20383 lbs Vend= 6750 lbs 82956 Diaphragm Loads Level wax(lbs) V;(lbs) V;(lbs) Zwi(lbs) Fox=((/Vi)/(Zw))*wax Roof 200238 25247 25247 200238 25247 =Fri 4m Floor 323325 30575 55823 523563 34473 =F4th 3rd Floor 323325 20383 229345 846888 87559 =F3rd 2""Floor 214140 6750 229345 1061028 46287 =F2nd Min Diaphragm Loads SDS= 0.726 Fpmin=0.2*Sps*Wpx*I*0.7 Level Fpmin Roof 20352 Vrt= 25247 lbs 4`n Floor 32863 N./4th= 34473 lbs 3 d Floor 32863 V3rd= 87559 lbs 2"Floor 21765 Vend= 46287 lbs (Allowable Stress Design Loads) Total DL (lbs) 200238 323325 323325 214140 1061028 Client: Arbor Project: River Terrace-22 Plex • Project#: 16-T100 Date: 42693 By: YSP FROELICH ENGINEERSI SEISMIC LOAD - Story Distribution: Areas: - Roof: 25247 lbs Roof: 7975 sq ft 4th: 30575 lbs 4th: 7975 sq ft 3rd: 20383 lbs 3rd: 7975 sq ft 2nd: 6750 lbs 2nd: 5220 sq ft WIND LOAD Story Distribution: Level Windward Leeward Total Front-Back Event Roof: 109 36 145 4th: 114 38 152 Redundancy Factor, p . ........ ..... ... .......... . .. . ... 3rd: 107 36 142 2nd: 100 33 133 Side-Side Event Event Per ASCE7-10, p = 1.0 because of large amount of shearwalls and Roof: 110 37 146 because no wall takes more than 33% of the story shear. 4th: 96 32 128'. 3rd: 88 29 117 2nd: 81 27 108 Front/Back Event SEISMIC WIND Trib Area Load Trib Width Windward Leeward Combined? Load Design Load Load Typ LEVEL GRID (sq ft) (lbs) (ft) (Ibs) (Itis) (YIN) (Ibs) (Ibs) Roof YA 1113 3524 - 21 2284 761 Y 3045 3524 S YB-D 2475 7835 45 4894 1631 Y 6525 7835 S YE-F 1486 4704 27 2936 979 Y 3915 4704 S YF-E 1486 4704 27 2936 979 Y 3915 4704 S YH 2090 6617 38 4133 1378 Y 5510 6617 S YJ 990 3134 18 1958 653 Y 2610 3134 S 1 4th YA 1113 4267 21 2394 798 Y 3192 4267 S YB-D 2475 9489 45 5130 1710 Y 6840 9489 S YE-F 1486 5697 27 3078 1026 Y 4104 5697 S YF-E 1486 5697 27 3078 1026 Y 4104 5697 S YH 2090 8013 38 4332 1444 Y 5776 8013 S YJ 990 3796 18 2052 684 Y 2736 3796 S 3rd YA 1113 2845 21 2237 746 Y 2982 2982 S YB-D 2475 6326 45 4793 1598 Y 6390 6390 S YE-F 1486 3798 27 2876 959 Y 3834 3834 S YF-E 1486 3798 27 2876 959 Y 3834 3834 S YH 2090 5342 38 4047 1349 Y 5396 5396 S YJ 990 2530 18 1917 639 Y 2556 2556 S 2nd VA 1113 1439 21 2095 698 Y 2793 1439 S YB-D 2475 3200 45 4489 1496 Y 5985 3200 S YE-F 1486 1922 27 2693 898 Y 3591 1922 S YF-E 1486 1922 27 2693 898 Y 3591 1922 S YH 2090 2703 38 3791 1264 Y 5054 2703 S YJ 990 1280 18 1796 599 Y 2394 1280 S I i 1 1 1 I 1. Side/Side Event SEISMIC WIND Trib Area Load Trib Width Windward Leeward Combined Load Design Load Load Typ LEVEL GRID % (Ibs) Vo (55) (Ibs) (Ibs) (YIN) (Ibs) (Ibs) _ Roof 31 18 4545 18 1084 361 Y 1445 4545 S 32 32 8079 32 1927 642 Y 2570V 8079 S 3332 8079 32 1927 642 Y 2570 8079 S 34 18 4545 18 1084 361 ' Y 1445 4545 S 4th 31 18 5504 18 950 317 Y 1267 5504 S 32 32 9784 32 1690 563 Y 2253 9784 S 33 32 9784 32 1690 563 Y 2253 9784 S 34 18 5504 18 950 317 Y 1267 5504 S 3rd 31 18 3669 18 869 290 Y 1158 3669 S 1 32 32 6523 32 1544 515 Y 2059 6523 S 33 32 6523 32 1544 515 Y 2059 6523 S 34 18 3669 18 869 290 Y 1158 3669 S 2nd 31 18 1215 18 802 267 Y 1069 1215 S 32 32 2160 32 1426 475 Y 1901 2160 S 33 32 2160 32 1426 475 Y 1901 2160 S 34 18 1215 18 802 267 Y 1069 1215 S Client: Arbor ' Project: River Terrace-22 Flex lr';i:z 4 3'``27 Lr t =Length ntrrdn^idua wall Project#: 16-T100 I t Total length of wall along gridline Date' 19 Nov I a=Length of moment arm in wall(if afferent than wall leneth) • y ' By: YSP rf=a'altHeight tlrstoroof 14=Height ofwall'tlz3-flr4 KGs={Vrfttrf_1a1-1s3,-t-h2�-3)414(h4-.13-t 2)-t-1; lv-h2-1)-S Qr2) - FROL I C H t_=Height of wall 111'241.3I.t f J 12=Height of wall fhl-fir2 ENGINEERS x 1.=Horizontal force at gridtMe from roof L 3=Horizontal force atgridlinefrom 4th fir Mfrs=[F'r,J'Cl r) t'4( )-V3(hi}-E titi)1;,:- Shear Walls & Holdowns '' a=Horirantal farce at gridline from 3id flr 4th `2=Horizontal force,at midline from "a fir , Roof to 4 Floor r=Unit shear in wall Wind:fir=0.6[(RrribxRoopL)-(Wrribxrf7aiDL)-(Firth 4 r'iooi iL)1± :s=Overturning moment when upper wall is Roof DL: 18sf p _tacked above luv<<ff wall Seismic:Mr=(0.6-.748th)[(Rir:b x Rr;o,2}i)-(Wirth Walla',i-(Fri ib '':S Floor DL: 27 psf 111=Overturning moment when upper wall is Wall DL: 10 psf lot stacked ordoeanot exist i•tdb,Wtrib,Ftrib=Roof wall,and floor 1fu-:lir Ms-3fi Stud Spacing: 16 inches oc ributar.area,used for calculating dead load Itt=" L.r Is= L 1r=Resisting moment due to dead load :u=Teratenifwalls notstacked Ifs S'_ S=Tension if walls stackedtriad:c- LY+ 12 l(Rrrih>;Rao DL)-(Wt b:4Tf°a,Dr). t t',r F:r,orDL 11 .=Stud spacing his S2 a=Compression at ends,if walls stacked Seisnuc:Cs -- (l--C.l4Se)[(/IwibxRaafDL)t(rfrl,<€t .DL 1,(1, :.';,1 L. 12 wall L Lt La hrf Vrf v Mu Rtrib Wtrib Ftrib Mr Cs Tu Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (Ib) (plf) (Ib'ft) (ft) (ft) (ft) (Ib`ft) (lbs) (Ib) Nailing Event Front/Back Event YA 23.5 23.5 23.5 9 3524 150 31712 8 9 0 32201 1521 -21 --- 6/12 S YB-D 24 50 24 9 7835 157 33849 8 9 0 33585 1582 11 --- 6/12 S YE-F 10 35 10 9 4704 134 12097 8 9 0 5831 1382 627 --- 6/12 S 25 35 25 9 4704 134 30243 8 9 0 36443 1382 -248 --- 6/12 S YH 13 38 13 9 6617 174 20372 8 9 0 9854 1739 809 --- 6/12 S YJ 24 24 24 9 3134 131 28207 8 9 0 33585 1347 -224 --- 6/12 S Side/Side Event 31 3 35 3 9 4545 195 3506 12 9 0 686 1393 940 MST37 6/12 S 3.5 35 3.5 9 4545 167 4090 12 9 0 934 1393 902 MST37 6/12 S 4 35 4 9 4545 146 4674 12 9 0 1220 1393 864 MST37 6/12 S 32 14 100 14 9 8079 81 10180 12 9 0 14945 952 -340 --- 6/12 S 33 14 100 14 9 8079 81 10180 12 9 0 14945 952 -340 --- 6/12 S 34 3 35 3 9 4545 195 3506 12 9 0 686 1393 940 MST37 6/12 S 3.5 35 3.5 9 4545 167 4090 12 9 0 934 1393 902 MST37 6/12 S 4 35 - 4 9 4545 146 4674 12 9 0 1220 1393 864 MST37 -6/12 S Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 240 350 450 700 900 psf Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 335 490 630 980 1260 psf Client: Arbor . (y-ra.rr;,Lr Project: River T6rraco 522 isau+ all t=Total length of.1 11 3 plaint. Project#: 16-T10t'..-t.ength of moment Ian Inwad Of de rent than a lenge') Date: # f.'Wad IltIght ori to roof f B YSP a# }rr•r..�s oft Wad£ri-ftrg .4fs-jt f-;$-D-62<3)--t 4-h3-3C.-2}-TV.3-.€2 I .r, tt,'nn z r y' 23.<Heighto Er_-lira 1 l\O E L I C H •Tr m HOC:M.W fame tt gad me final roof ,. L'3=Hoax-ante fetrr g d:ne from 4^fir '. as fraiVni»d Mkt)♦i'3(kt,tt r XIOn)1x- V3-Horizontat force v gndiine&cttt 3'a dr ..t E N G r NE..E R S S t2-fatatinvatat farm a.Fad:me trona ,z T .Unit near In wet iftnd.Mr=GB(ERfrrb x w.fDL) rMM(WxWoliDL) (ffri5 xFi rDL(I.+ Shear Walls & Holdowns n-Overaftnatr.marnmt Nail=upm wnt tx ¢` tacSted taro's ower wad �S'etsn.,3t'..(0.4 .is Sa)[(atrl,x Rsw21L 3+(Wtea,xWati!DL)=(F rib x FoorDL l 4th Floor to 3rd Floor H f .m Ort t g mo,e,t when upper wad to 2 stEdkdr dna xx no' .� xx:ib,Wutb,Fad=nRoof;wall,and floorMu-Asht V:-.4dr Roof DL: 18 psf erehurtry a eta,used for goal shag dead load 'k. La • SLt..Reziattn g MOitItat aux to dead Mut Floor DL: 27 psf :u-Te,pr, f. fa sat axaakxst Mt._C`s - Z..e(R�tg€h s Ron, L)-(Rb:� :F.'cflD?, (F.-S x FicerDL)1. Wall DL: 10psf _s-Tens alset&ad >wsmd sprang. IL' S >=Ca e on at wa..s a ached A,tso ;C;-- ;iii S.,f,Rmi6 x Roc,,O _ tr n PialiDLi»(Fab x A7o.:01,it Stud Spacing: 16 inches oc L. - • Wall L Lt La hrf h4 Vrf V4 v Ms Mu Rtrib Wtrlb Ftt;b Mr Os Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (lbs) (lbs) (pif) (Ib"ft) (Ib"ft) (ft) (ft) (ft) (Ib"ft) (lbs) (lbs) _ (lbs) Nailing Event Front/Back Event YA 23.5 23.5 23.5 9 9 3524 4267 332 105351 70116 8 18 12 89171 4959 -811 689 --- 4/12 S YB-D 24 50 24 9 9 7835 9489 346 112451 74841 8 18 12 93006 5161 -757 810 --- 4/12 S YE-F 10 35 10 9 9 4704 5697 297 40188 26747 8 18 12 16147 4495 1060 2404 MST60 _ 4/12 S 25 35 25 9 9 4704 5697 297 100470 66867 8 18 12 100918 4495 -1362 -18 --- 4/12 S YH 13 38 13 9 9 6617 8013 385 67679 45043 8 18 12 27288 5682 1366 3107 MST60 3/12 S YJ 24 24 24 9 9 3134 3796 289 93709 62367 8 18 12 93006 4380 -1277 29 --- 4/12 S - Side/Side Event 31 3 35 3 9 9 4545 5504 431 11647 7751 12 18 4 1130 4252 2207 3505 MST60 3/12 S 3.5 35 3.5 9 9 4545 5504 369 13588 9043 12 18 4 1538 4252 2144 3443 MST60 3/12 S - 4 35 4 9 9 4545 5504 323 15529 10335 12 18 4 2009 4252 2081 3380 MST60 4/12 S 32 14 100 14 9 9 8079 9784 179 33818 22508 12 18 4 24615 2786 -151 657 --- 6/12 S 33 14 100 14 9 9 8079 9784 179 33818 22508 12 18 4 24615 2786 -151 657 --- 6/12 S 34 3 35 3 9 9 4545 5504 431 11647 7751 12 18 4 1130 4252 2207 3505 MST60 3/12 S 3.5 35 3.5 9 9 4545 5504 369 13588 9043 12 18 4 1538 4252 2144 3443 MST60 3/12 S - 4 35 4 9 9 4545 5504 323 15529 10335 12 18 4 2009 4252 2081 3380 MST60 4/12 S Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 240 350 450 700 900 psf Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 335 490 630 980 1260 psf • Client: Arbor • Project: River Terrace-22Plextt :PP4+r3= ),Ls =t„gt as d IaaL Project#: 16-T100 .t-Taal legth.i'•,11 along gdr:e Date: ##### La Length of moment atm al wall(if di ineeent than mall learn) „ By: YSP Id=Wall i H iaht tz at to roof L 4 [r fwall fl fl 4 .t<=E'xfirf-t13.-t1:+5)-h4413. -ata-7t ,-' 3, tl C+'-(�)1. irR0EL1CH . HIwall 1 t : =Heightcf wall flel-flr: ENGINEERS; v`rf=t v icontat loran at ria n not of :4 1 izca 131 ce ataidlrel n4'tlr f3 ( iisi?t 4+, '..1 — )°; Shear Walls & Holdowns v3 H13 via,::3ln,:fom3 111- -. ,n p i t ell f "Or 3rd Floor To 2nd Floor ;:=u1 in llflvid:.Mfr=06i(�rnit.Rae/DL).(3?'Ia,fl'ailDL) iF'ib F,�vrDL� : NSs O tuu a when .p ..11 is , Roof DL: 18 psf tacked ib -eIcv r it 511117111'.1/Y=(O.o-.1454)kR?nbvRnofD2}+(✓t,IL::fliUDL)-(Frtb>.froorO,)'L- Mv=0,4,Ne ing moaten:what upper..ail in Floor DL: 27 psf net stacked or does notxvist Wall DL: 10 psf Rat F.nth=Roof,wal),and focr _ Mu-ars ,r_,tom i ' e n unod fee esteutang dead toad ''' La rs= Stud Spacing: 16 inches ocMt i rug niu a:u; e,ta t dead lue c . Tu-Tauntonif stalls not snicked 1fd S.'2,, rfrvd:C=' Btrlb r Roes ), &t,•t�b r.llct2 DL I (Ftrib x F.00rjL)1 rs=Tension iiwatts stacked i_ J�� Z=Sn d<peeing _ Cs ss Corspressiot at suds,if walk stacked Sequel'•Cs s - L -(t aCa.o 1 L_ 4(srrin se Rorbfflr,)+t1Prwrp,xri.fir.;..(Fp ill a F:'nnrn7.i1 Wall L Lt La hr1 h4 h3 Vr1 V4 V3 v Ms Mu Rtrib Wire Fab Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (ft) (lbs) (lbs) (lbs) (plf) (Ib"ft) (Ib*ft) (ft) (ft) (ft) (Ib'ft) (lbs) (lbs) (lbs) Nailing Event Front/Back Event YA 23.5 23.5 23.5 9 9 9 3524 4267 2982 458 210096 96954 8 29 24 148894 9735 -2210 2604 Shth(2)Sides HTT5 4/12 S YB-D 24 50 24 9 9 9 7835 9489 6390 474 223212 102446 8 27 24 152426 10080 -2083 2949 Shth(2)Sides HTT5 4/12 S YE-F 10 35 10 9 9 9 4704 5697 3834 407 79765 36606 8 27 24 26463 8757 1014 5330 12)MST60 3/12 S 25 35 25 9 9 9 4704 5697 3834 407 199414 91514 8 27 24 165393 8757 -2955 1361 HTT5 3/12 S YH 13 38 13 9 9 9 6617 8013 5396 527 134340 61657 8 27 24 44722 11114 1303 6894 Shth(2)Sides (2)MST60 4/12 S YJ 24 24 24 9 9 9 3134 3796 2556 395 186010 85371 8 27 24 152426 8530 -2794 1399 MST37 3/12 S Side/Side Event 31 3 35 3 9 9 9 4545 5504 3669 588 23090 10582 12 27 8 1574 8212 3002 7172 Shth(2)Sides (2LMST60 4/12 S 3.5 35 3.5 9 9 9 4545 5504 3669 504 26938 12345 12 27 8 2143 8212 2915 7084 Shth(2)Sides (2)MST60 4/12 S 4 35 4 9 9 9 4545 5504 3669 441 30786 14109 12 27 8 2799 8212 2828 6997 (2)MST60 3/12 S 32 14 100 14 9 9 9 8079 9784 6523 244 67046 30726 12 27 8 34285 5305 -254 2340 MST37 4/12 S 33 14 100 14 9 9 9 8079 9784 6523 244 67046 30726 12 27 8 34285 5305 -254 2340 MST37 4/12 S 34 3 35 3 9 9 9 4545 5504 3669 588 23090 10582 12 27 8 1574 8212 3002 7172 Shth(2)Sides HHDQ11 4/12 S 3.5 35 3.5 9 9 9 4545 5504 3669 504 26938 12345 12 27 8 2143 8212 2915 7084 Shth(2)Sides HHDQ11 4/12 S 4 35 4 9 9 9 4545 5504 3669 441 30786 14109 12 27 8 2799 8212 2828 6997 HHDQ11 3/12 S IMIIIIMIIMMI=1=MIMIIMIMIMIIMIli 4 Client: Arbor Project: River Project#: -i. e .- Date: 19 Nov :,,,i;ri,iroi-6, -./z..3,4"4.,t4,0.-,,!-.:::-I.W-- By VSP Ifk.:..i!^f,k.-1"4(.>„+3,,(e.T::',i)1',..4 FROELICH ,.:.!:.;•ttati:Wr“itlell4r401.Z.'.g, ENGINEERS% I/2.4",1i,,.Roq.DZ}.(th.g)r TaD:;.(Frn$v F! .DL Shear Walls & Holdowns F ma,sno,rele..00r"as r,,,?..;:t kw!ka 2nd Floor To Foundation ...Tftlsitd&sat:.o‘at iW Roof DL: 18 psf .4,....x., :U.....C,,'T..' ..1-3.i,t4 kn.'):hopE,.4C3,TrazZA:i.jr4 Floor DL: 27 psf Wall DL: 6 psf Stud Spacing: 16 inches oc Wall L Lt La tiff h4 h3 h2 V, V4 V3 V2 V Ms Mu Rtrib Wtflb Ftrib Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (Cl (ft) (ft) (ft) (lbs) (lbs) (lbs) (lbs) (plf) (Ib*ft) (Ibit) (ft) (ft) (ft) Obit) fibs) (lbs) (lbs) Nailing Event Front/Back Event VA 12 12 11.5 9 9 9 9 0 0 0 1439 120 12953 12953 8 36 36 47795 2105 -3030 -3030 --- 6/12 S YB-D 24 24 23.5 9 9 9 9 5171 6263 4217 3200 785 492234 169667 8 36 36 191179 21924 -915 12811 Shth(2)Sides HD19 3/12 S YE-F 0 23 0S 23 23 22.5 9 9 9 9 1689 2045 1376 1922 306 168614 63286 8 36 36 175579 8472 -4991 -310 HDQ8 4/12 S YH 23 23 22.5 9 9 9 9 2438 2952 1988 2703 438 242775 90723 8 36 36 175579 11768 -3771 2986 XR HTT5 3/12 S YJ 24 24 23.5 9 9 9 9 3134 3796 2556 1280 449 292388 96893 8 36 36 191179 13420 -4012 4307 HDQ8 3/12 S Side/Side Event 32 8 100 7.5 9 9 9 9 8079 9784 6523 2160 265 59376 19113 12 36 12 12056 8472 941 6309 HDQ8 4/12 S 33 8 100 7.5 9 9 9 9 8079 9784 6523 2160 265 59376 19113 12 36 12 12056 8472 941 6309 HDQ8 4/12 S 34 2 35 1.5 9 9 9 6 4545 5504 3669 1200 639 21291 5114 12 33 12 736 14736 2919 13704 Shth(2)Sides HD19 4/12 S 3.5 35 3 9 9 9 7 4545 5504 3669 1200 426 38752 10442 12 34 12 2271 13464 2724 12160 HD19 3/12 S 10 35 9.5 9 9 9 9 4545 5504 3669 1200 426 119243 38358 12 36 12 18838 13107 2055 10569 HD19 3/12 S Client: Project: Proj.#: Date: 4111 By: FROELICH E N 6 I N E E R S f AC1 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 5/8"ASTM A36 Threaded Rod for Simpson HTT16 t HTT22/HTT4/HTTS 1 Number of Anchors st = 0 in. (see Fig 0.625 Inch Diameter s2 = 0 RD.5,2.1) 8 Inch Embed 2500 psi Concrete Footing NpeStgn= 5.250 (kips)Allowable Design Tension D.3 -General Requirements (AC) 318-02 Section 0.3.3.3) Are seismic loads induced into the anchor? Y SF = 0.75 D.4-General Requirements for Anchor Strength (ACI 318-02 Section 0.4.4) Strength reduction factor CD for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor CD= 0.75 Brittle failure. 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing 07-- 0.70 If rebar is present around anchor. 0/5 Otherwise, 0.70 Summa ONn Wind %Nn Seismic Summary From Below ONn Sw= 1.0 SF= 0.75 RNs= 9.83 9.83 7.37 kips cl)Ncb= 19.01 19.01 14.26 kips Npn = 121.71 121.71 91.28 kips ONsb = - 198.14 198.14 148.60 kips NSbQ= 198.14 198.14 148.60 kips Minimum CDN, = 9.83 9.83 7.37 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 QNAltowabte= 7.02 5.27 kips Ndesign < ONaltowable 5.250 < 5.27 Therefore, Anchor Design OK • Client: Project: :r itoir Proj.it: 11. Date: By: FROELICH ENGINEERS I ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations 0.5,1 -Steel Strength for Anchor in Tension do (Anchor Diameter) = 0,625 inches n = 1 #of anchors nt= 11 Number of Threads per inch A„ = 0.23 in.2- (effective cross-sectional area of anchor) feta = 58.00 ksi- (tensile strength of anchor material(not the yield strength) not exceed 1.9fy or 125 ksi) N„= 13.11 ksi -(Eqn_ D-3) Anchor = 0.75 Nsem' nAse futa ON,.= 9.83 kips D.5.2 -Concrete Breakout Strength of.Anchor in Tension Si = 0 inches (see Fig. RD.5.2.1) S2 = 0 inches(see Fig. RD.5.2.1) A„(for single anchor) = 576 in.2(see Figure RD.5.2.1) A„c (for group anchor) = 782 in.2 (see Figure RD.5.2.1) AN„(for single anchor) = 576 in.2(see Figure RD.5.2.1) ANco(for group anchor) = 576 int (see Figure RD.5.2.1) Pec,N= 1 Eqn. D-9 (Anchors not Eccentrically Loaded, 4-1, = 1.0) Ped N = 1.000 Eqn. D-10&D-11 tpc.N= 1 (1.25 for cast anchors. 1.4 for post-installed) Section D.5.2.6 k, = 24 (24 for cast anchors, 17 for post-installed) Section 0.5.2.2 Cc= 2500 psi 1.5*hef= 12 her= 3 inches 0.7+0.3(Crnin11.5het) = 1.000 co*,= 12 in-distance to closest edge of concrete ter = /cc Vf'c h .t Nb = 27.15 kips-(Eqn. 0-7) Ncb= 27.15 kips -(Eqn. D-4) A;rt Nein= 0.00 kips -(Eqn. D-5) v c•bg = t Yee ,_b, ed,N cp,N Nb Reinforcing cD= 0.70 ,veo mNcbs= 19.01 kips • Client: Project: Proj.#: a. Date: By: FROELICH ENGINEERS; ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) o5.3.Single Anchor Pullout- headed or embedded nut Use Plate Washer? Y Plate Washer Width = 3 inches Nut diameter= 0.965 inches Nut or Plate Washer Bearing Area= 9.000 in2 Abrg = 8.693 in2-bearing area of embedded anchors head or nut tPc a = 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value (ACI 318-05 Section D.5.3.6) n= 1 #of anchors Np= 173.87 (kips) Eqn. D-15 hr/) —` -38f C Npn= 173.87 (kips) Eqn. D-14 AT =.�1T pn p c,P Reinforcing ct)= 0,70 (1)Np„= 121.71 kips D5.4-Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where ca, <0.4h , Anchor is not close to Edge of Concrete. Analysis below NOT Required. cat= 5 distance to perp edge of concrete from anchor 021 = 12 in -distance to closest edge of concrete Nab= 283.05 (kips) Eqn. D-15 Factored Nab= 100.25 Reinforcing c = 0.70 / if t198.14 kips Nsb = 160 Cal / Abrg c s= 0 in -spacing of outer anchors in group Y N,bg= 283.05 (kips)Eqn. 0-16 1 Reinforcing d? = 0.70 N + WNsb9= 198.14 kips s� = 6c11 Client: tt `+EikProject: FROE ICH Proj.#: (ONSULTING Byte: ENGINEERS,INC ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 7/8"ASTM A36 Threaded Rod for Simpson HDQ8 1 Number of Anchors s, = 0 in. (see Fig 0.875 Inch Diameter s2 = 0 RD.5 2 1) 8 Inch Embed 2500 psi Concrete Footing Noesign = 9.230 (kips) Allowable Design Tension D.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic toads induced into the anchor? Y Sr,= 0.75 D.4 -General Requirements for Anchor Strength (ACI 318-02 Section 0.4.4) Strength reduction factor tD for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor cC= 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing c= 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summary 1111,~11111M APPINOWPW.1•10101111101.111•1111W .. 0Nn Wind ONn Seismic Summary From Below ONn SW= 1.0 SF= 0.75 ON,= 20.09 20.09 15.06 kips cONcb= 25.87 25.87 19.40 kips 0Npr,= 117.59 117.59 88.19 kips rDNgb= 227.21 227.21 170.41 kips tDNsb9= 227.21 227.21 170.41 kips Minimum ON,= 20.09 20.09 15.06 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 CPNAllow,bl,= 14.35 10.76 kips 14-design < ONAllowabie 9.230 < 10.76 Therefore, Anchor Design OK a Client: MEI�r Project: Project By ENGEEER1I ACI 398-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations D.5.1 -Steel Strength for Anchor in Tension do(Anchor Diameter) = 0.875 inches n = 1 #of anchors ne= 9 Number of Threads per inch ASe= 0.46 in.2-(effective cross-sectional area of anchor) fu = 58.00 ksi-(tensile strength of anchor material (not the yield strength) not exceed 1.9fy or 125 ksi) Nsa= 26.78 ksi- (Eqn. D-3) Anchor c = 0.75 ___. f mNs,= 20.09 kips Sa se Acta D.5.2 - Concrete Breakout Strength of Anchor in Tension s, = 0 inches (see Fig. RD.5.2.1) s2= 0 inches (see Fig. RD.5.2.1) A„ (for single anchor) = 784 in.2(see Figure RD.5.2.1) A„ (for group anchor) = NA in,2(see Figure RD.5.2.1) Ar,,„(for single anchor) = 576 in.2 (see Figure RD.5.2.1) ANco (for group anchor)= 576 in,2 (see Figure RD.5.2.1) 4jec_N = I Eqn. D-9 (Anchors not Eccentrically Loaded, w, = 1.0) Wed.N = 1.000 Eqn_ D-10& D-11 4jc..,, = 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 k,= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 Pc= 2500P si 1.5'he,= 12 het= 8 inches 0.7+0.3(c, ir11.5hef) = 1.050 c„,;„ = 14 in -distance to closest edge of concrete tI _ _/ {c h t s Nb= 27 15 kips- (Eqn. D-7) = `� 2f Nct,= 36.96 kips-(Eqn. 0-4) ar — A, c Nj c,g = 0.00 kips- (Eqn. D-5) cbg ec,NV ed,h V cp,N b Reinforcing 0 = 0.70 ` Pico oNcbg= 25.87 kips lit rfr. Client: Project: FROELIC H Proj.(ONS11111NG Byte: ENGI4EERS,lNC ACl 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) 85.3 -Single Anchor Pullout headed or embedded nut Use Plate Washer? Y Plate Washer Width= 3 inches Nut diameter= 1.438 inches Nut or Plate Washer Bearing Area = 9.000 in2 Abrg= 8.399 in2-bearing area of embedded anchors head or nut 4Jc P= 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value (ACI 318-05 Section D.5.3.6) n = 1 #of anchors {� Np = 167.98 (kips) Eqn_ D-15 ` F -�Abrr;O/c Npn = 167.98 (kips) Eqn. 8-14 N W-- � Reinforcing 0= 0.70 0Np,= 117.59 kips D5.4 -Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where ca. <0.4han Anchor is not close to Edge of Concrete. Analysis below NOT Required. cat= 14 distance to perp edge of concrete from anchor cal = 14 in -distance to closest edge of concrete Nsb= 324.59 (kips) Eqn. 0-15 Factored Nst, = 162.29 Reinforcing 0= 0.70 _ J { c 4�Nsb= 227.21 kips N sb — 160 Cat V A brg ( J C s= 0 in-spacing of outer anchors in group Nabg= 324.59 (kips) Eqn. D-16 Reinforcing 0 = 0.70 N_ l + 1�T sbg= 227.21 kips �bg = sb 6cat J +;�� Clnc Pro et: FR }EEICH Proj.#: OONSOITING Byte: ENGIIEERS,INC - AC1 318-05 Appendix D - Tension Failures (Page 1 of 3) 1"ASTM A36 Threaded Rod for Simpson HhDQ11 1 HHDQ14I HD14A IHDU11 Anchor description: IHDU14 1 Number of Anchors s1 = 0 in. (see Fig 1.000 Inch Diameter s2= 0 RD.5.2.1) 12 Inch Embed 2500 psi Concrete Footing Nposign= 13.710 (kips) Allowable Design Tension D.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 0.4 - General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor 43 for anchors using load combinations from AG! 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor Q = 0.75 -Brittle failure. 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing = 0.70 If rebar is present around anchor: 035 Otherwise, 0.70 Summary oNn wind oNn Seismic Summary From Below ON0 Sw= 1.0 SF= 0.75 (I)Ns= 26.35 26.35 19.76 kips cl)Nct, 29.64 29.64 2223 kips Npn= 115.01 115.01 86.26 kips Nsb= 288.91 288.91 216.68 kips ONsbg= 288.91 288.91 216.68 kips Minimum ON,,= 26.35 26.35 19.76 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 ONAtiawat:le= 18.82 14.12 kips } Ndesign < 4)NAllowsisier 13.710 < 14.12 Therefore, Anchor Design OK a fl Client: IProject N}ELM'H Proj.#: i (O SOE11NG Byte: ENGIIEERS,INC . . ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations D.5.1 -Steel Strength for Anchor in Tension Id, (Anchor Diameter) = 1.000 inches n = 1 #of anchors nt= 8 Number of Threads per inch A5e= 0.61 in.2-(effective cross-sectional area of anchor) feta= 58.00 ksi- (tensile strength of anchor material (not the yield strength) not exceed 1t9; or 125 ksi) N„= 35.13 ksi-(Eqn. 0-3) ; Anchor = 0.75 .AT =s nAse feta ONs,= 26.35 kips D.5.2 -Concrete Breakout Strength of Anchor in Tension s, = 0 inches(see Fig. RD.5.2.1) S2= 0 inches (see Fig. RD.5.2.1) An.(for single anchor) = 1100 in.2 (see Figure RD.5.2.1) A„(for group anchor) = NA in.2 (see Figure RD.5.2.1) ANS(for single anchor) = 1296 in.2 (see Figure RD.5.2.1) At4,0(for group anchor) = 1296 in.2 (see Figure RD.5.2.1) 14 c,N = 1 Eqn. D-9 (Anchors not Eccentrically Loaded. 4,1 = 1.0) wed,N= 1.000 Eqn. D-10 &D-11 Wc N= 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 kG= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 fc= 2500 psi 1.5*he= 18 he= 12 inches 0.7±0.3(Cma1.5hef = 1.000 � Cmm= 18 in -distance to closest edge of concrete -, = k, f c h t $ Nb= 49.88 kips-(Eqn. D-7) Nct= 42.34 kips- (Eqn. D-4) A i!e r(! N�9= 0.00 kips - (Eqn. D-5) Nchg = Y ec,rV ed,w�'F�! cp,N1�h Reinforcing ci=i = 0.70 ikko CONcb9 = 29.64 kips p rTf: Cn Prolieject:t: FROFEICH Proj. : CONSUEING Date: ENGIIEERS,INC ACl 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) 05.3 -Single Anchor Pullout- headed or embedded nut Use Plate Washer? Y Plate Washer Width= 3 inches Nut diameter= 1.625 inches Nut or Plate Washer Bearing Area = 9.000 in2 Abrg = 8,22 in2-bearing area of embedded anchors head or nut y,.P = 1 For an anchor located in an area of concrete where no cracking at service loads is anticipated, otherwise use 1.0 value(ACl 318-05 Section 0.5.3.6) n = 1 #of anchors ,,c� p Np= 164.30 (kips) Eqn. D-15 ii\p =Abrgof C NFc, = 164.30 (kips) Eqn. D-14 Npn =r t�/ , Reinforcing = 0.70 SNP„ = 115.01 kips D5.4-Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where ca, < 0.4hen Anchor is not close to Edge of Concrete. Analysis below NOT Required. cat= 5 distance to perp edge of concrete from anchor Cat = 18 in -distance to closest edge of concrete Nati= 412.73 (kips) Eqn. D-15 Factored Nsb = 412.73 Reinforcing V = 0.70 f t �Nsb= 288.91 kips N sb = 160 CalV A br, C s = 0 in -spacing of outer anchors in group Nog= 412.73 (kips) Eqn. D-16 T Reinforcing = 0.70N = I + SN QNsbg = 288.91 kips "b fi Ca 1 f sb Title Block Une 1 Title. Job# You can changes this area Dsgnr: Project Deco.. using the'Setings'menu item and then using the'Printing& Project Notes Title Block'selection. gin :asuismix, t::r.% Tine Bta:1t Line 8 F,& POI Bobs 1 t T 173 tAiWr Fess G ieside;qts 1514;ninevtnfrAi-Sa ar,:,t;er 06 Cantilevered R$ inin Wall ERCALC,INC,t olta,.1a 11tan Ver,6.1t,taA Lit.#.'# 4f:00Z30d - ,. a._ - . .., ' °,: Licensee:FROEUCH CONSULTING ENGINEERS Description: 4'-0'Wet Criteria Soil Data Calculations per AS1318-08, CBC 20 08 ASC2009, - Retained Height = 4.00 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0,00 1 Heel Active Pressure = 35.0 psfrft Height of Soil over Toe = 6.00 in Toe Active Pressure = 30 0 psifft Water height over heal - 0.0 ft Passive Pressure = 330 0 psfift Vertical component of active_ Soil Density,Heel - 110 00pcf Lateral soil pressure options: Soil Density.Toe = 0 00 act NOT USED for Soil Pressure. Friction Coeff:tarn Ftg&Soit = 0 500 NOT USED for Sliding Resistance. Soil neiglat,to ignore NOT USED for Overturning Resistance: for passive pressure = 0 CO in SurchargeLoads Lateral Load Applied to Stem Adjacent Footing Load Footing 00 ft SLateral Load .= 20.0 plf Adjacent Footing Load 0.0 lbs Used o Ove;Beet - *in psf�ed;�o i?esistSl,dirtg Overturning „Height to Top -- Width - 0.00 it Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0 00 ft Eccentricity = 0.00 in Used for Slidihg&Overturnin w Wall to Ftg CL Dist 0.00 ft Axial Load Applied to Stem Footing Type Line Load Base AboveiBeltm Soil lbs Axial Dead Load = 500.0 at Back of Wail - 0.0 ft Axial Live Loao = 0.0 lbs Wind on Exposed Stem - 0.3 psf Poisson's Ratio -- 0.300 Axial Load Eccentricity = 0.0 in Stem Design Summar._ Stem Construction Top ,_. ....,,.,._.__.. _ Stem 7K Wall Stability Ratios Design Height Above Ftg ft= 0 00 Overturning -.4 2.43 OK Wall Material Above*I-It' = Concrete Sliding = 2.25 OK Thickness in= 600 (Vertical Component NOT Used) Rebar Size = # 4 Total Bearing Load = 1,948 lbs Rebar Spacing in= 12.00 ,..resultant eco. = 6-22 in Rebar Placed at = Edge Design Data - Soil Pressure @ Toe = 1,515 psf OK fb;FB a-falFC = 3210 Soil Pressure @ Heel - 0 paf OK Total Force @ Section lbs= 623.8 Allowable = 2,500 psi Moment,..Actual ft-I= 960.0 Sol'Pr sure Less Than Allowable ACI Factored @ Toe = 1,818 psf Moment....Allowable ft•i= 3,559.5 AGI Factored @ Heel = 0 psf Shear..-Actual psi= 13.2 Footing Shear @Toe = 0 6 psi. OK Snear..._.Allowable psi= 67 1 psf= 75.0 .gnt Footing Shear @ Heel = 10.4 psi OK Well Rebar+NeeDgnipth 'a' n= 7.20 Allowable = 75 0 psi Lap splice if above in= 12.00 Sliding Calcs (Vertical Component NOT Used) Lap splice if below in= 8.40 Lateral Sliding Force _ 597.0 lbs Hook embed into footing in= 8,40 less 100%Passive Force = - 371.3 IbsConcrete Data less 100%Friction Force = - 970.8 lbs to psi= 2,000.0 Added Force Req'd = 0,0 lbs OK Fy psi= 60,000.0 . _for 1.5:1 Stability = 0,0 lbs OK Load Factors - - - - - -, Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Title Block Line I Title,: Job 4 You can changes this area using the*Settings"menu item Yraiect Vis: and then using the'Printing& Project Notes Title Block'selection. Tie ick tine 6 ?rule, 1:PAAt i'.:3 I, i.;WS .v_ - x ._ _ Fie:v120t tis,1 t T 1T3(Alba.?as ,A 7vA sYt�cOefiayCa r .sercaic ads Cantilevered Retaining Miall Et1ERC:LC,WC.1%3-:0t: ;x,n14..6.iLtaos.v 0,19 1ic.#:<t1Ai•QSO#ZSQ4 m .- :r - Licensee:FROELICH G_ ONSU7ING ElGINEERS Description: . 4'-0 Wall Footing Dimensions&Strengths Footing Design Results Toe Width = 0.75 ft Toe beet_ Heel Width - __.la Factored Pressure 1,918 0 pst Total Footing Width = 2.75 Mu'.Upward - 462 0 ft-Ib Footing Thickness 12.00 in Mu':Downward = 69 887 ft-ib Mu: Design = 392 897 ft-lb Key Width = 0.00 in Actual 1-Way Shear = 0 63 10 37 psi Key Depth = 0 00 in Allow 1-Way Shear = 75.00 75 00 psi Key Distance train Toe - 0.00 ft Toe Reinforcing = 4 7 a 16 00 in Pc = 2,50si Fy = 60,000 psi Heel Reinforcing = 4 6 16 00 in Fcoung Concrete Density = 150.00 pcf Key Reinforcing = None Spec`o Min As% = 0 0018 Other Acceptable Sizes 8i.Spacings Cover @ Top 2.00 @ 8trn.= 3.00 in Toe Not req'd,Mu<S'Fr Heel. Not req'd,Mu<S`Fr Key No key defined Summary of Overturning&Resisting Forces&Moments — - ...OVERTURNING --RESISTING..:,. Force Distance Moment Force Distance Moment teem lbs ftu ib _ ,," ft s ft-Ike Heel Active Pressure = 437.5 1 67 729 2 Sot Over Heel - 660 0 200 1,3200 0 Surcharge over Heel = 79,5 2.50 198.9 Sto,el Soil Over Heel - Toe Active Pressure = Surcharge Over Heel - 75.0 2,00 150 0 Surcharge Over Toe = Adjacent Footing Load Adjacent Footing Load = Axial Dead Load on Stem = 500.0 1 00 580.0 Added Lateral Load = 80 0 3.80 240 0 'Axial Live Load on Stem = Load©Stern Above Soil = Soi1 Over Toe - 0.8 Surcharge Over Toe - Stem'Wetght(s) - 30:10:0 100 380,0 Earth©Stem Transitions Total = 597.0 O.T.M. = 1.168 0 Footing Weight _ 412.5 1.30 507 2 Resisting/Overturning Ratio = 2.43 Key Weight = Ve icatLoadsusedforSoilPressure= 1,947.5 lbs tier Component Total= 1:947.5 lbs R.M. 2.837.2 `A.�al iive toad�a0 T.included in total displayed,or used fd-overturning resistance bet is included for soil pressure calculation Title Block Line 1 Title: Job • You can changes this area Dsgnr: using the'Settings'menu itemPro ect Desc.: and then using tie'Printing& Project Notes Title Block'selection. Title Neck Line 6....w. ..... �; ,r�WI. s Fes-r-, 0t liowii t4 in OstotxFms Cre ewe rets tiliKncineth f Ck7�S s4',ti- cakce 5 Cantilevered l el uting '11Yali w ate,MC.lee 2011.Role telate,ve:a1t.toea Lie.#:KW-05002304. ', - Licensee:FROELIC$• CONSULTING ENGINEERS Description 6-0'Wall Criteria - Soil Data Calculations per ACt 318.08, ACt 530.08,IBC 2009, CSC 2010,ASCE 7-05 Retained Height = 6.00 ft Allow Soil Bearing - 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall - 0.00:1 Heel Active Pressure = 35.0 psi/ft Height of Soil over Toe = 6.00 in Toe Active Pressure = 30 0 psf/ft Water height over heel = 0 0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density.Heel = 110.00 pcf Lateral soil pressure options: Soil Density Toe - 0 00 pcf NOT USED for Soil Pressure. Friction Cce`btwn Ftg&Soil = 0 500 NOT USED for Sliding Resistance. Soil height to'gr ori NOT USED for Overturning Resistance. for passive presstes = 0.00 in Surcharge Loads LateralLoad Applied to Stern Adjacent Footing Load Stircha Over Heel 50.0 psf Lateral Load = 30 0 pif Adjacent Footing Load 0.0 lbs Used To =ResistSliding&Overturning ...Height to Top - 6.00 ft Fooling Width - 0.00 ft Surcharge Over Toe = 0.0 psf ..Height to Bottom = 0.00 ft Eccentricity e 0.00 it. Used for Sliding&Overturning _ - _ Wall to Fig CL Dist _ 0 00 ft Axial Load Applied to Stem Footing Type Line Lcee _- _._.___ - . . - Base Abovel8elow Soil Axial Dead Load - 500 3 lbson at Back of Wail 0.f3 ft Wind Exposed Stern = O.0 psf Axis{Live Load = 0-0 lbs �� Poisson's Ratio - 0 30C• Axial Load Eccentricity = 0.0 in Design Summa Stem Construction _Top Stem ._ w....... Slum 3K Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning = 2.37 OK Wall Material Above'Hr = Concrete Sliding = 1 78 OK Thickness in= 8.00 (Vertical Component NOT Used) Rebar Size = # 5 Total Searing Load = 3,357 lbs Rebar Spacing in= 12.00 ...resultant eco. = 8.81 in Rebar Placed at = Edge Design Data Soil Pressure @ Toe = 1,767 psf OK rbiFB+fa1Fe = 0.371 Soii Pressure @ Heel = 0 psf OK Total Force @ Section lbs= 1.334 7 Allowable = 2,500 pee Moment..Actual ft-I= 3..013 2 Snit Pressure Less Than Allowable. Moment....Allowable ft-I= 7,993.7 ACi Factored @ Toe = 2,121 psf Shear....Actual psf= 19 4 ACI Factored @ Heel = 0 psf Footing Shear@ Toe = 5.1 psi OK Shear...Allowable psi= 671 Footing Shear @ Heel _ 21.5 psi OK Wail Weight psf= 100.0 Allowable = 75 0 psi Rebar Depth 'd' in= 6.19 Sliding Gatos {Vertical Component NOT Used) Lap splice if above in= 12.00 Lateral SlidingForce 1.148.9 lbs Lap splice i€intoes in= 6.00 less 100%Pssive Force = - 371.3 lbs HHookeembed into footing in= 6.00 less 100%Friction Force - 1,678.0 lbs Concrete Data --- .__.__.� , rc psi= 2,000.0 Added Force Reg'd 0.0 lbs OK Fy psi= 60,000.0 ...for 1.5:1 Stability = 0.0 lbs OK Load Factors _.. Dead Load 1,200 Live Load 1,600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 • Title Block Line 1 Title: Job# You can changes this area Dsgnn using the'Settings'menu item Project Desc.: and then using the'Printing& Project Notes Title Blade selection. Title Block Lire 5. pima t3*Iii 2011 Li+i=?'.t 5 ? 3 S ijoF its',114 4-T t 73 ter sass Crtkc dr p 'piNt' r�retru.gbC �c�sr�3ccar ac6 s Cantilevered Retaining Wall . CUERCALc,NC.19133411,s 6.11.lets Ventll.l0.09 tic.# KW4/6002304 ;,' R r` ` `` Licensee:FROELICH CONSULTING ENGINEERS Description' c Wail Footing Dimensions&Strengths Footing Design Results : • N Toe Width - 1.00 ft Toe Heel Heel Width = __ 3.L'0 Factored Pressure = 2,121 0 „sf Total Fooling Width = 4 00 Mu' Upward = 967 0 ft-lb Footing Thickness = 12 CO in Mu'.Downward = 123 2,864 ft-'b Ke'!Vlidlh = 0 OC in Mu: Design = 844 2,864 ft-Ib Actual 1-Way Shear = 5.07 21.53 psi Key Depth = 0 00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance f urn Toe = 000 ft Toe Reinforcing = if 7 @ 18.00 in rc = 2,500_0 Ft 50.000 00 psi Heel Reinforcing = 1:6 @ 18.00 in tooting Concrete Density = 160 CO pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Otner Acceptable Sizes&Spacings Cover @ Top 2.00 @ 3`m.= 3.00 in T Not req`d,Mu<S`Fr Heel: 11 75 in,#5@,18.25 in, 3@ 25.75 ir.,17(;1 35 25 in,481a 46.25 in:#90 4 Key' No key defined Summary of Overturning &Resistirlg Forces &Moments _...OVERTURNING..... ....RESISTING..... Force Distance Moment Force Distance Moment !fern bs ft ft[b __ l_- ft ft-ib Heel Active Pressure = 857.5 2.33 2,000 a Soil Over Heel = I 2.83 4,363 3 Surcharge over Heel = 111.4 3.50 389.8 Sloped Soil Over Heel - Toe Active Pressure = Surcharge Over Heel = 116.7 2.83 330 6 Surcharge Over Toe Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stern - 500.0 1.33 6667 Added Lateral Load = 180.0 4.00 720.0 `Axial Live Load on Stem Load @ Stem Above Soil = Soil Over Toe = 050 Surcharge Over Toe = Stern Weight(s) - 600.0 1.33 800.0 _, Earth @ Stern Transitions = Total = 1,146 9 O.T.M. = 3,110.6 Footing'Weight 600 0 2.00 1200.0 Resisting/Overturning Ratio - 2.37 Key Weight Vertical Loads used for Soil Pressure= 3,356.7 lbs Vert.Component Total= 3,356 7 lbs R.M.= 7,360.6 •Axial live load NOT included in total displayed,or used for overturning resistance,but is included for soli cressure: ;icilatinn. Title Block Line,I r<;e • You can changes this area usgnr Bch Project Cesc., using the'Settings'menu item and then using the*Printing& PfG•teCi`" �`i•„reu ' Title Block'selection, pna.et t3 MAR Mit 1:.07# Title Block L ine#� __._,. a yt�ttqur�n�gtcaccsa ,ie Cantilevered Retaining Wall ENERCALC,lnc.!38 2Ott,nail,2:5.ir,10,09,Var.6.1T.10,0 Lie.#` K114t�QS0�iO4_ . 4s . Licensee:VROELIC CONSULTING ENGINEERS Description 8'-0"Wall Criteria Soil Data Calculations per ACt 318.08, AC1530-08,IBC 2009, - CRC 7010,ASCE T-05 Retained Height = 8.00 ft Mow Soil Bearing = 2,500,0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00 :1 Heel Active Pressure = 35.0 psfift Height of Soil over Toe - 6,00 in Toe Active Pressure = 30.0 psfrft Water height over heel = 0.0 ft Passive Pressure = 330.0 psfift Vertical component of active Soli Density,Hee' = 110.00 pcf Lateral soil pressure options' Soil Density,Toe = 0 00 pct NOT USED for Soil Pressure Friction Coeff otwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance Soil height to ignore NOT USED for Overturning Resistance, for passive pressure = 0.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load SLateral Load - 40,0 per Adjacent Fooling Load = 0,0 lbs #�a To Over Heel = X3.0 f Used Resist Sliding&Overturning ...Height to Top = 8.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 01 psf ..Height to Bottom = 0 00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist 0,00 ft ....- •_ Axial Load Applied to Stem Footing Type LineLoad Above/Below Soil t Back of Wail = 0.0 ft Axial DeadWind on Exposed Stem - Axial LiveLoad = X0.0 lba Load = 0.0 lbs _ 0;psf Poisson's Ratio - 4.300 Axial Loaf.Eccentricity 0.0 in Stem Construction Top stem M - M...� Des_.5urnm,_,_ ...... sten e< Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning = 2.55 OK Wall Material Above'Hr = Concrete Sliding = 1.59 OK Thickness in= 8.00 (Vertical Component NOT u=sed) Rebar Size - At 5 Total Bearing Load = 5,225 lbs Rebar Spacing in= 6.00 ...resultant ccc. = 9.94 in Rebar Placed at = Edge Design Data - Soil Pressure @ Toe - 1,809 psf OK fb1F13+faiFa = w a&7 Soil Pressure a He& - 91 psf OK Total Force @ Section lbs= 2,309.6 Allowable 2,500 psf Moment....Actual ft-l= 6,872.2 Soil pressure Less Than AllowableMoment Allowable fta= 14,711,7 ACI Factored'a'"1 Toe = 2.171 psi ACI Factored g Heel = 109 psf Shear Actuai psi= 33 7 Footing Shear @ Toe = 13.5 psi OK Shear.....Ailowable PS(= 37.1 Footing Shear @ Heel = 38.5 psi OK mall Weigh psi= 100.0 Allowable = 75.0 psi Rebar Depth 'd' in= 6.19 Lap splice if above In= 12.22 Sliding Cates (Vertical Component NOT Used) Lap splice if below in= 6,00 Lateral Sliding Force = 1.860.7 lbs Hook embed into fcotmg in= 6,00 less 100%Passive Force = - 371.3 lbs Concrete Data _.. _ _ less 100%Friction Force = - 2,612.8!be, Pc psi. 2.000.0 Added Force Req'd - 0.0 lbs OK Fy psi= 60,000.0 ....for 1.5:1 Stability - 0.0 lbs OK Load Factors .. Dead Load 1.200 Live Load 1,600 Earth,H 1.800 Wind.W 1.600 Seismic,E 1.000 • Title Block Line 1 Title: rob# You can c,t anges this area Dsg;,r: using the'Set'ings'menu item P t7,O u 3c.. and then using the' rutin. x Project Notes - Title Block"selection. tle UrePine+t i sx(za 2si 1 WPM a F Ptebii;otriti•fF73+�.rta?w3ov40..18p� h}�irevi iry-,L:�ec o:5 Cantilevered Retaining Wail ENERCAto,the #sinzotr,haik.1110.03,v#r 11,lo,tt3 Lic.it r�KW-0E002304 .t "' •fi> _'`�. x - " .' ` ' ` ',. • Cel:FROELICHON �CSULTiNG ENGINEERS Description 8'-0'Wait Footing Dimensions&Strengths Footing Design Results Toe Width = 1 50 ft Foe_ keel Heel Width = —._.....4 00... Factored Pressure = 2,171 109 psi Total Footing Width 5.50 Mu'-Upward = 2,231 0 ft-ib Footing Thickness .- 92.00 in Mu' Downward - 277 0 ft-lb Mu: Design = 1,9..4 6,572 ft-lb Key Width - 0.00 in Actual 1-Way Shear = 13.62 38 48 psi Key Depth = 0.00 ill Allow 1-Way Shear = 75.00 75 00 psi Key Distance from Toe - 0.00 ft Toe Reinforcing = #7 0 1600 in fc - 2,500 psi Fy = 60.000 psi Heel Reinforcing #6 ti.C0 in Footing Concrete Density - 150.00 pcf Key Reinforcing = None Spree Min.As'a = 6.0018 Other Acceptable Sizes&Spacings Cover @ Tap 2.00 @ Elim= 3.00 in tae Not"e4 d,Mil S"Fr Heel. 444@ 11 CO in,#56 17.25 ir #6@ 24 25 in,#70 33:00:n.118a 43 50 in,r9@ 4 Key: No key defined Summary of Overturning 8.Resisting Forces& Moments OVERT[URNING.... RESISTING Force` Distance Moment Force Distance Moment item lbs ft ft-lb lbs ft ft-Itt... Heel Active Pressure - 1 417.5 3 CO 4,252.5 Soil Over Heel = 2 9:33.3 3.83 11,244.4 Surcharge over Heel = 143.2 4.50 644.3 Sloped Soil Over Heei = Ice Active Pressure - Surcharge Over Heel = 166 7 3.83 638.9 Surcharge Over Toe - Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stern = 500.0 1.83 916 7 Added Lateral Load = 320.0 5 00 1,600 0 'Axial Live Load on Stern - Load @ Stern Above Soil = Soil Over Toe = 0.75 Surcharge Over roe - Stem Weight(s) - 800.0 1.83 1,466.7 Earth @ Stem Transitions = Total = 1.880.7 O.T.M. = 5,496.8 Footing Weight = 825.0 2.75 2,268.8 ResistingtOverturning Ratio = 2.55 Key Weight Vertical Load used for Soil Pressure= 5,225.0 lbs Vert Component Total= 5,225.0lbs RA= 16,535.4 Ax;al Use load N07 included in total displayed,or used for overturning resistance.out is included for soil pressure calculation, CLIENT: `4,54 SW Hcmpt< S! P: "gar',Oregon 97223 5O3-624-7f* PROJECT: e NUMBER: 7.55 hw Mt v'foshinggton Dr.*2005 Bend_Oregon 97701 DATE: FROELIGN1182a ENGINEERS , BY: Z...a 4e -3-- P O GK � t �._w. _ le �/_ QG ZCG+rt y ._ e ' <_,,7 aet',/e _ Arts ' i cit „x 1,9'ex Fr i Gtral- = 45,sr S g, F? , -.= ��f,c '•zs ± -- ,oma aPpJy Sx rt.44/9,e. a-s tt2,3 X .VdJt a ko+?z D L: s- 0; 14._= ./rapptI FOt5T x0,3 - ice s f I-,or;t 10 . of . 531, Aar;t I€"a° . . 70,$1 • CUEN7: C?.' .rr 47`,23 503-524-7305 PROJECT: NUMBER: 74.0 NW Mr WOs'In¢too Dr.#205 Band Oic,cn 97701 DATE: FROELICH 541-583-1828 EN GINEER81 BY: f7 safrrl 140 14L St..‘ its so; a c t ,J€ = 35-e pat33O7tr L_ ,f -f-,` = 30c3psC Q- ID'4c rlZt -_ if9.S &P = t, 33 x 25 = 53 +er4 1f 41410 EQ + - 5grsf D L= 5P/ ItorT »f 0,3 4)7/7s4 April tom- Froelich Engineers Project Title. Engineer: Project ID: Project Descr. FROELICH l,,::,.1.,,,-,..;=-. , ,, u _ File C',LtersE1^^ug'Prcigc#s‘t4-T03-16E3'2.tlSCCA fsh4lSCRc f EC6 Cantilevered Retaining Wall ENCRCAt.C,INC,1963.2014,CuO1;6,14.8.t0,Ver.6.14.8 6 Lie:#:K*08002304 - - 1' , .." ' -tome.:ERQE' CN CONS LYING NGINEERS' Description: Garage Ret Wail-No Seismic . Criteria Soil Data Calculations per ACt 319.11, ACt 530-11,IBC 2012, CBC 2013,ASCE 7-10 _ Retained Height = 11.50 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall - 0.00:1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 12.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0,0 ft Passive Pressure = 330.0 psi/ft Vertical component of active Soil Density,Heel - 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 110.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. Soil height to ignore NOT USED for Overturning Resistance. for passive pressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = 0.0 psf Lateral Load = 70.0 pif Adjacent Footing Load - 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 10.00 ft Footing Width - 0.00 ft Surcharge Over Toe = 0.0 psi ...Height to Bottom - 0.00 ft Eccentricity - 0..00 in Used for Sliding&Overturning Wall to Ftg CL Dist - 0.00 ft Axial Lo Footing Type Line Load ad Applied to Stem Base Above/Below Soil Axial Dead Load = 500.0 lbs at Back of Wall - 0.0 ft Axial Live Load = 1,100.0 lbs Wind on Exposed Stem - 0.0 psi Poisson's Ratio - 0.300 Axial Load Eccentricity = 0.0 in Design Summary Stem Construction Top Stern 2nd Stern Siem OK Wall Stability Ratios Design Height Above Ftg ft= 2.00 0.00 Overturning - 2.73 OK Wall Material Above"Ht' = Concrete Concrete Sliding = 1.59 OK Thickness in_ 8.00 8.00 Slab Resists All Sliding! Rebar Size - # 5 # 6 Total Bearing Load = 10,739 lbs Rebar Spacing in= 6.00 6.00 ...resultant ecc. = 12.27 in Rebar Placed at _ Edge Edge Design Data Soil Pressure @ Toe = 2,372 psf OK fb/FB+fa/Fa _ 0.658 0.939 Soil Pressure @ Heel = 313 psf OK Total Force @ Section lbs= 3,087.0 4,379.0 Allowable = 2,500 psf M1,tomentActual ft-I= 10,242.2 17,686.8 Soil Pressure Less Than Allowable Moment Allowable ft-I= 15,562.2 18,843,3 ACI Factored @ Toe - 2,944 psf Shear Actual psi= 46.1 71,1 ACI Factored @ Heel 388 psf Footing Shear @ Toe - 22.3 psi OK Shear Allowable psi= 82.2 82.2 Footing Shear @ Heel = 52.5 psi OK Wall Weight psi= 100.0 100.0 Allowable - 82.2 psi Rebar Depth 'd' in= 6.19 5.63 SlidingCalcs Slab Resists`Ail SlidingI Lap splice if above in= 14.06 24.05 Lap splice if below in= 14.06 10.64 Lateral Sliding Force = 3,500.5 lbs Hook embed into footing in= 14.06 10.64 less 100%Passive Force = • 733.3 lbs Concrete Data less 100%Friction Force = - 4,818.8 lbs fc psi= 3,000.0 3,000.0 Added Force Req'd = 0.0 lbs OK Fy psi= 60,000.0 60,000.0 ....for 1.5:1 Stability - 0.0 lbs OK Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Froelicn Engineers Project Title: Engineer: Project ID: Project Descr: FROELICH Fda= Cantilevered c se . CGr14' {SC2e i.Retainin Wall ENERCALC,INC 1983-20W, .6.14.8.16,ler:6.14.8.1 G UtNa ee _R0 IC 1Xr T1'111t11tellifCi+Igifz Description: Garage Ret Wall-No Seismic Footing Dimensions&Strengths ; Footing Design Results Toe Width = 2.50 ft toe Heel Heel Width = 5.50 Factored Pressure = 2,944 388 psf Total Footing Width - 8.00 Mu':Upward = 8,367 0 ft-lb Footing Thickness = 16.00 in Mu':Downward = 1,163 0 ft-lb Key Width - 0.00 in Mu: Design 7,204 17,687 ft-lb Key Depth = 0.00 m Actual 1-Way Shear = 22.31 52.45 psi Key Distance from Toe = 0.00 inft Allow 1-Way Shear = 82.16 82.16 psi Toe Reinforcing #6 @ 6.00 in Pc = 3,000 psi Fy = 60.000 psi Heel Reinforcing _ #6 @ 12.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% - 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: #4@ 9.00 in,#5@ 14.00 in,#6@ 19.75 in,#7@ 26.75 in,#8@ 35.25 in,#9@ 44 Heel: #4@ 6.25 in,#5@ 9.50 in,#6@ 13.50 in,#7@ 18.25 in,#8@ 24.00 in,#9@ 30. Key: No key defined Summary of Overturning &Resisting Forces &Moments OVERTURNING .,...RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-lb lbs ft ft-lb Heel Active Pressure = 2,882.2 4.2 8 12,329.2 Soil Over Heel = 6,114 2 5.58 34,137.4 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure = -81.7 0.78 -63.5 Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem = 500.0 2.83 1,416.7 Added Lateral Load = 700.0 6.33 4,433.3 *Axial Live Load on Stem = 1,100.0 2.83 3,116.7 Load @ Stem Above Soil = Soil Over Toe = 275.0 1.25 343.8 Surcharge Over Toe = Stern Weight(s) = 1,150.0 2.83 3,258.3 Earth @ Stern Transitions = Total = 3,500.5 O.T.M. = 16,699.0 Footing Weight = 1,600.0 4.00 6,400.0 Resisting/Overturning Ratio = 2.73 Key Weight = Vertical Loads used for Soil Pressure= 10,739.2 lbs Vert.Component = Total= 9,6392 lbs RM.= 45,556.2 'Mal live load NOT included in total displayed.or used for overturning resistance,but is included for soil pressure calculation, 8.in Conc wl#5 @ 6.in o/c F 4 R .�t 1 314" 0 : i 9'-6" 11'-6" 1 V-6" • M ` 8.in Conc wl#6 @ 6.in o/c ,-l4. 21/2" 2" D" AT 1 gliding Restraint µ ¢ — 1}4" #6@6.in A @Toe Designer select #6@l2 horiz.reinf. 5'-6"10-4 -6" @ Heel 8'-0" Froelich Engineers Project Title: N Engineer: Project ID: Project Descr: FROELICH < , :;.�., EN OIN EEA 6, _ _. _._ .. ..... „,,._ Fie j c:1Uu skpoug',Prg6Ls..,14-T03-i BEPMISCCA t?4fSAc 3 k6 Cantilevered Retaining Wali ENERCAt.e,INC.1933-20(4,Suid:Q.t4.8.IB.�tec6.14.8.16 Lic #:KW46002304. a ,, . ,,; • __; Menge:FROELICH CONSULTING Description: Garage Ret Wail-WI Se.sr:,ic Criteria Soil Data Calculations per ACI 318-11, ACI 530-11,IBC 2012, CRC 2013,ASCE 7-10 Retained Height = 11.50 ft Allow Soil Bearing = 3,330.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 12.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 110.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. Soil height to ignore NOT USED for Overturning Resistance. for passive pressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = OA psf 1 Lateral Load = 85.0 plf Adjacent FootingLoad = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 10.00 ft Footing Width _ 0.00 ft Surcharge Over Toe = 0.0 psf ,,,Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stern Footing Type Line Load Base Above/Below Soil _ 0 0 ft Axial Dead Load = 500.0 lbs at Back of Wall Axial Live Load = 0.0 lbs Wind on Exposed Stem = 0.0 psf Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Design Summary Stem Construction Top Stern 2nd Stem OK Stem OK Wall Stability Ratios Design Height Above Ftg ft= 2.00 0.00 Overturning = 2.58 OK Wall Material Above"Ht" = Concrete Concrete Sliding = 1.52 OK Thickness in= 8.00 8.00 Slab Resists All Sliding! Rebar Size = # 5 # 6 Total Bearing Load = 9,639 lbs Rebar Spacing in= 6.00 6.00 ..,resultant ecc. = 13.26 in Rebar Placed at = Edge Edge Design Data Soil Pressure @ Toe = 2,203 psf OK fbIFB+fa/Fa _ 0.704 0.978 Soil Pressure @ Heel = 207 psf OK Total Force @ Section lbs= 3,207.0 4,529.0 Allowable = 3,330 psf MomentActual ft-I= 10,722.2 18,436.8 Soil Pressure Less Than Allowable Moment Allowable ft-I= 15,222.0 18,848.3 ACI Factored @ Toe = 2,644 psf Shear Actual psi= 48.7 74.7 ACI Factored @ Heel = 248 psf Footing Shear @ Toe = 19.5 psi OK Shear Allowable psi= 75.0 82.2 Footing Shear @ Heel = 52.5 psi OK Wall Weight psf= 100.0 100.0 Allowable = 82.2 psi Rebar Depth 'd' in= 6.19 5.63 Sliding Calcs Slab Resists Ali Sliding! Lap splice if above in= 16.48 25.07 Lateral SlidingForce = 3,650.5 lbs Ha ok embedb if intontes in= 16.48 4.03 Hook footing in= 16.48 4.03 less 100%Passive Force = - 733.3 lbs . Concrete Data less 100%Friction Force = - 4,819.8 lbs fc psi 2,500.0 3,000.0 Added Force Req'd = 0.0 lbs OK Fy psi= 60,000.0 60,000.0 ....for 1.5:1 Stability = 0.0 lbs OK Load Factors Dead Load 1,200 Live Load 1.600 Earth,H 1.600 Wind,W 1,600 Seismic,E 1.000 .4 Froe ich Engineers Project Title: { Engineer: Project 10: Project Oescr: FROELICH ENGIN EE ii F31 Cantilevered Retaining Wall Fife= ser�u a r{ ti4-'03-1,8E-3�X+1sC A t4�al�cr ;EC ii ENERG_ALC,INC.1S33,2014,etild.8.t 4.6.16,Ver.6.14.B,1 C Lic. #:KKW46002304 Ret WO-'v`l15e Seismic . _ • Licensee: REMICK CONSULTINGENSIINEER Garage Footing Dimensions&Strengths Footing Design Results Toe Width .-,_. - 2.50 ft Toe Heel Heel Width = 5.50 Factored Pressure = 2,644 248 psf Total Footing Width = 8,00 Mu':Upward = 7,482 0 ft-lb Footing Thickness = 16.00 in Mu':Downward = 1,163 0 ft-lb Key Width 0.00 in Mu: Design = 6,320 18,437 ft-lb Key Width 0 00 in Actual 1-Way Shear = 19.54 52.45 psi Key Distance from Toe - 0.00 Allow 1-Way Shear = 82.16 82.16 psi Toe Reinforcing = #6 @ 6.00 in Fc = 3,000 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 12.00 in Footing Concrete Density - 150_00pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: #4@ 9.00 in,#5@ 14.00 in,#6@ 19.75 in,#7@ 26.75 in,#8@ 35,25 in,#9@ 44 Heel: #4@ 6.00 in,#5@ 9.25 in,#6@ 13.00 in,#7@ 17.50 in,#8@ 23.00 in,#9@ 29. Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING.,... .....RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-lb lbs ft ft-lb Heel Active Pressure = 2,882,2 4.28 12,329.2 Soil Over Heel - 6,114,2 5.58 34,137.4 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure = -81.7 0.78 -63.5 Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stern = 500.0 2.83 1,416.7 Added Lateral Load = 850.0 6.33 5,383.3 *Axial Live Load on Stern = Load @ Stem Above Soil = Soil Over Toe = 275.0 1,25 343.8 Surcharge Over Toe = Stem Weight(s) = 1,150.0 2.83 3,258.3 Earth @ Stem Transitions = Total = 3,650.5 O.T.M. = 17,649.0 Footing Weight 1,600.0 4.00 6,400.0 Resisting/Overturning Ratio = 2.58 Key Weight = Vertical Loads used for Soil Pressure= 9,639.2 lbs Vert.Component = Total= 9,639.2 lbs R,M.= 45,556.2 *Axial live load NOT included in total displayed,or used for overturning resistance,but is included for soil pressure calculation, to 8.in Conc w/#5 @ 6.in o/c _ ;, w r fl-.F f ';` : � Vi a,« .�>, .-, F R'. i._mr..`��+t 1 314" el i ii s ' s'' .' 9'-6" i '- 11'-6" 11'-6' 's ail 8.in Conc w!#6 @ 6.in o/c ''„...'7„,i':,1,4'. 7-0' �- ,--.77-7.-,r.----;.-7=7 , € 2 112" Hiding Restraint a 4 '" A 1.-4" #6@6.in Toe Designer select 2'-6" 5'-6" #6@1241?hurix.reinf.: