Specifications ol - ookse q
1\1 Q 1 ¶iVZ Clw.e(N
Calculations for :
A-Z WIRE & CABLE
TIGARD , OR
06/18/2018
Loading: 4200 # load levels
2 pallet levels @ 48 , 96
Seismic per IBC 2012 100% Utilization
Sds = 0 . 721 Sdl = 0 .445
I = 1 . 00
96 " Load Beams
Uprights : 42 " wide
C 3 . 000x 3 . 000x 0 . 075 Columns
C 1 . 500x 1 . 500x 0 . 075 Braces
5 . 00x 8 . 00x 0 . 375 Base Plates
with 2- 0 . 500in x 3 . 25in Embed Anchor/Column
3 . 50x 2 . 750x 0 . 075 Load beams w/ 3-Pin Connector
by : Ben Riehl
Registered Engineer OR# 11949
PROtt-
w. i N
44' 4P
11949 �`9
t4t! 2 ti �‘"
AXP I�AtE 2/
1
6/18/2018 Design Maps Summary Report
.1-1Ph'°;USGSAsia Design Maps Summary Report
User-Specified Input
Building Code Reference Document 2012/2015 International Building Code
(which utilizes USGS hazard data available in 2008)
Site Coordinates 45.44°N, 122.7798°W
Site Soil Classification Site Class D - "Stiff Soil"
Risk Category I/II/III
It er PortlandGre,
Beaverton
1
Tiga •
Lake Oswego
Tualatin
•
•
Ore clot, Cit
USGS-Provided Output
Ss = 0.974 g SMS = 1.081 g Sos = 0.721 g
S1 = 0.424 g SM1 = 0.668 g Sol = 0.445 g
For information on how the SS and Si values above have been calculated from probabilistic (risk-targeted) and
deterministic ground motions in the direction of maximum horizontal response, please return to the application and
select the"2009 NEHRP"building code reference document.
NICER Response.Spetirum Desken Response Spectrum
tlr.;F
o
044
I I I I t ti
Periled,T ism) Period,T tser}
Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the
accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.
1
https://prod02-earthquake.cr.usgs.gov/designmaps/us/summary.php?template=minimal&latitude=45.44&longitude=-122.7798&siteclass=3&riskcategor... 1/1
IBC 2012 LOADING
SEISMIC: Ss= 97.4 % g
S1= 42.4 % g
Soil Class D
Modified Design spectral response parameters
Sms= 108.1 % g Sds= 72.1 % g
Sm1= 66.8 % g Sd1= 44.5 % g
Seismic Use Group 2
Seismic Design Category D
or D
Ie= 1
R = 4 R = 6
Cs = 0.1802 W Cs = 0.1201 W
Using Working Stress Design
V= Cs*W/1.4
V= 0.1287 W V= 0.0858 W
'.4
Cold Formed Channel
Depth 3.000 in Fy = 55 ksi
Flange 3 .000 in
Lip 0.750 in
Thickness 0.0750 in COLUMN SECTION
R 0.1000 in
Blank = 9.96 in wt = 2 .5 plf
A = 0.747 in2
Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in
Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in
a 2 .6500 Web w/t 35.3333
a bar 2.9250 Flg w/t 35.3333
b 2.6500 x bar 1.2423
b bar 2 . 9250 m 1.6690
c 0.5750 x0 -2 .9114
c bar 0.7125 J 0.0014
u 0.2160 x web 1.2798
gamma 1.0000 x lip 1.7202
R' 0.1375 h/t 38.0000
Section Removing:
0.640 inch slot 0.75 inches each side of center on web
0.375 inch hole 0.87 inches from web in each flange
A- = 0.152 in2 A' = 0.595 in2
x bar = 1.478 in
I'x = 1.014 in4 S'x= 0.676 in3 R'x= 1.305 in
I'y = 0 .743 in4 S'y= 0.476 in3 R'y= 1.117 in
Cold Formed Channel
Depth 1.500 in Fy = 55 ksi
Flange 1.500 in
Lip 0.000 in
Thickness 0.0750 in BRACE SECTION
R 0.1000 in
Blank = 4 .23 in wt = 1.1 plf
A = 0.317 in2
Ix = 0.125 in4 Sx = 0.166 in3 Rx = 0.627 in
Iy = 0.075 in4 Sy = 0.079 in3 Ry = 0.487 in
a 1.1500 Web w/t 15.3333
a bar 1.4250 Flg w/t 17.6667
b 1.3250 x bar 0.5060
b bar 1.4625 m 0.6531
c 0.0000 x0 -1.1592
c bar 0.0000 J 0.0006
u 0.2160 x web 0.5435
gamma 0.0000 x lip 0.9565
R' 0.1375 h/t 18.0000
5
Cold Formed Section
HEIGHT OF BEAM 3.500 INCHES
MAT'L THICKNESS 0.075 INCHES
INSIDE RADIUS 0.100 INCHES LOAD BEAM
WIDTH 2.750 INCHES
STEEL YIELD 55.0 KSI
STEP 1.625 INCHES HIGH 1.000 INCHES WIDE
ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC
L Y LY LY2 Ii X LX
LONG SIDE 3 .1500 1.7500 5.5125 9.6469 2.6047 0.0375 0.1181
TOP 1.4000 3.4625 4.8475 16.7845 0.0000 0.8750 1.2250
STEP SIDE 1.3500 2.6500 3 .5775 9.4804 0.2050 1.7125 2.3119
STEP BOTT 0.7250 1.8375 1.3322 2.4479 0.0000 2.2125 1.6041
SHORT SID 1.5250 0.9375 1.4297 1.3403 0.2955 2.7125 4 .1366
BOTTOM 2 .4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000
CORNERS 0.2160 3.4125 0.7371 2.5152 0.0004 0.0875 0.0189
2 0.2160 3.4125 0.7371 2.5152 0.0004 1.6625 0.3591
3 0.2160 1.8875 0.4077 0.7694 0.0004 1.8000 0.3888
4 0.2160 1.7875 0.3861 0.6901 0.0004 2.6625 0.5751
5 0.2160 0.0875 0.0189 0.0017 0.0004 2.6625 0.5751
6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189
TOTALS 11.8459 21.3500 19.0950 46.1967 3 .1076 17.8875 14.6314
AREA = 0.888 IN2
CENTER GRAVITY = 1.612 INCHES TO BASE 1.235 INCHES TO LONG SIDE
Ix = 1.389 IN4 Iy = 0.904 IN4
Sx = 0.736 IN3 Sy = 0.596 IN3
Rx = 1.250 IN Ry = 1.008 IN
(0
BEAM END CONNECTOR
COLUMN MATERIAL THICKNESS = 0.075 IN
LOAD BEAM DEPTH = 3.5 IN
TOP OF BEAM TO TOP OF CONN= 0.000 IN
WELD @ BTM OF BEAM = 0.000 IN
LOAD = 4200 LBS PER PAIR
CONNECTOR VERTICAL LOAD = 1050 LBS EACH
RIVETS
3 RIVETS @ 2 " oc 0.4375 " DIA A502-2
1st @ 1 "BELOW TOP OF CONNECTOR
AREA = 0.150 IN2 EACH Fv = 22.0 KSI
Vcap = 3 .307 KIPS EACH RIVET
BEARING Fb = 65.0 KSI
BRG CAP= 2.133 KIPS EACH RIVET
TOTAL RIVET VERTICAL CAPACITY = 6.398 KIPS 16%
CONNECTOR
6 " LONG CONNECTOR ANGLE FY = 50 KSI
1.625 " x 3 " x 0.1875 " THICK
S = 0.131 IN3 Mcap = 3.924 K-IN
3 .924 K-IN
RIVET MOMENT RESULTANT @ 1.6 IN FROM BTM OF CONN
M = PL L = 0.9 IN
Pmax = Mcap/L = 4.360 KIPS
RIVET LOAD DIST MOMENT
P1 2.844 3 .400 9.669 RIVET OK
P2 1.171 1.400 1.639
P3 0.000 0.000 0.000
P4 0.000 0.000 0.000
TOTAL 4 .015 11.308 CONNECTOR OK
WELDS
0.125 " x 3.500 " FILLET WELD UP OUTSIDE
0.125 " x 1.875 " FILLET WELD UP INSIDE
0.125 " x 1.625 " FILLET WELD UP STEP SIDE
0 " x 1.000 " FILLET WELD STEP BOTTOM
0 " x 2.750 " FILLET WELD ACROSS BOTTOM
0 " x 1.750 " FILLET WELD ACROSS TOP
USE EFFECTIVE 0.075 " THICK WELD
L = 7.00 IN A = 0.525 IN2
S = 0.306 IN3 Fv = 26.0 KSI
Mcap = 7.96 K-IN 7.96 K-IN
I
In Upright Plane
Seismic Load Distribution
per 2012 IBC Sds = 0.721
1.00 Allowable Stress Increase
I = 1.00 R = 4.0
V = (Sds/R) *I*P1*.67
Weight
60 # per level frame weight
Columns @ 42 "
Levels Load WiHi Fi FiHi Column:
(inches) (#) (k-in) (#) (k-in) C 3 .000x 3 . 000x 0.075
96 4260 409 686 66
48 4260 204 343 16
0 0 0 0 0 KLx = 48 in
0 0 0 0 0 KLy = 38 in
0 0 0 0 0 A = 0.595 in
0 0 0 0 0 Pcap = 15993 lbs
8520 613 1028 82 Column
28% Stress
Max column load = 6219 #
Min column load = 465 #
Overturning
( .6- .11Sds)DL+(0.6-.14Sds) .75PLapp-1.02EL -914 # MIN
(1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 4532 # MAX
REQUIRED HOLD DOWN = -914 #
Anchors: 1
T = 914 #
2 0.5 in dia HILTI TZ
3.25 inches embed in 2500psi concrete
Tcap = 2801 # 33% Stressed
V = 540 # per leg Vcap = 5103 # = 11% Stressed
COMBINED = 43% Stressed
OK
Braces:
Brace height = 38 "
Brace width = 42 "
Length = 57 "
P = 1040 #
Use : C 1.500x 1.500x 0.075
A = 0.317 in
L/r = 116
Pcap = 3557 # 29%
6
In Upright Plane
Seismic Load Distribution TOP LOAD ONLY
per 2012 IBC Sds = 0 .721
1.00 Allowable Stress Increase
I = 1.00 R = 4 .0
V = (Sds/R) *I*P1
Weight
60 # per level frame weight
Columns @ 42 "
Levels Load WiHi Fi FiHi Column:
(inches) (#) (k-in) (#) (k-in) C 3.000x 3.000x 0.075
96 4260 409 773 74
48 60 3 5 0
0 0 0 0 0 KLx = 48 in
0 0 0 0 0 KLy = 38 in
0 0 0 0 0 A = 0.595 in
0 0 0 0 0 Pcap = 15993 lbs
4320 412 778 74 Column
25% Stress
Max column load = 3933 #
Min column load = 169 #
Overturning
( .6- .11Sds)DL+(0.6- .14Sds) .75PLapp-1.02EL -836 # MIN
(1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 3938 # MAX
REQUIRED HOLD DOWN = -836 #
Anchors: 1
T = 836 #
2 0.5 in dia HILTI TZ
3.25 inches embed in 2500psi concrete
Tcap = 2801 # 30% Stressed
V = 389 # per leg Vcap = 5103 # = 8% Stressed
COMBINED = 37% Stressed
OK
Braces:
Brace height = 38 "
Brace width = 42 "
Length = 57 "
P = 787 #
Use : C 1.500x 1.500x 0.075
A = 0.317 in
L/r = 116
Pcap = 3557 # 22%
PAGE 1
MSU STRESS-11 VERSION 9/89 --- DATE: 06/18/;8 --- TIME OF DAY: 17:15:32
INPUT DATA LISTING TO FOLLOW:
Structure Storage Rack in Load Beam Plane 2 Levels
Type Plane Frame
Number of Joints 10
Number of Supports 6
Number of Members 10
Number of Loadings 1
Joint Coordinates
1 0.0 48.0 S 2 5 8 10
2 0.0 96.0 S
3 49.5 0.0 S
4 49.5 48.0
5 49.5 96.0
6 148.5 0. 0 S 1 4 7 9
7 148.5 48 .0
8 148.5 96. 0
9 198.0 48 . 0 S
10 198.0 96.0 S
Joint Releases 3 6
3 Moment Z
6 Moment Z
1 Force X Moment Z
2 Force X Moment Z
9 Force X Moment Z
10 Force X Moment Z
Member Incidences
1 1 4
2 2 5
3 3 4
4 4 5
5 6 7
6 7 8
7 4 7
8 7 9
9 5 8
10 8 10
Member Properties
1 Thru 2 Prismatic Ax 0.888 Ay 0.622 Iz 1.389
3 Thru 6 Prismatic Ax 0.595 Ay 0.298 Iz 1.014
7 Thru 10 Prismatic Ax 0.888 Ay 0.622 Iz 1.389
Constants E 29000. All G 12000. All
Tabulate All
Loading Dead + Live + Seismic
Joint Loads
4 Force Y -2.13
5 Force Y -2.13
7 Force Y -2.13
8 Force Y -2.13
4 Force X 0.051
.
PAGE 2
MSU STRESS-11 VERSION 9/89 --- DATE: 06/18/;8 --- TIME OF DAY: 17:15:32
5 Force X 0.1
7 Force X 0.051
8 Force X 0.1
Solve
PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED
Seismic Analysis per 2012 IBC
wi di widi2 fi fidi
# in #
4260 0.2795 333 102 28.5 51 102
4260 0.3719 589 200 74 .4 100 199
0 0.0000 0 0 0.0 0 0
0 0.0000 0 0 0.0 0 0
0 0.0000 0 0 0.0 0 0
0 0.0000 0 0 0.0 0 0
8520 922 302 102.9 301
g = 32.2 ft/sec2 T = 0.9568 sec
I = 1.00 Cs = 0.0776 or 0.1201
Sdl = 0.445 Cs min = 0.072066
R = 6 Cs = 0.0776
V = (Cs*I*.67) *W*.67
V = 0.0520 W* .67
= 301 # 100%
PAGE 3
MSU STRESS-11 VERSION 9/89 --- DATE: 06/18/;8 --- TIME OF DAY: 17:15:32
Structure Storage Rack in Load Beam Plane 2 Levels
Loading Dead + Live + Seismic
MEMBER FORCES
MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT
1 1 0.000 -0.081 0.00
1 4 0.000 0.081 -4.02
2 2 0.000 -0.021 0.00
2 5 0.000 0.021 -1.05
3 3 4.241 0.149 0. 00
3 4 -4.241 -0.149 7.15
4 4 2.120 0.086 1.37
4 5 -2 .120 -0.086 2 .73
5 6 4 .241 0.153 0.00
5 7 -4.241 -0.153 7.35
6 7 2 .120 0.114 1.96
6 8 -2.120 -0.114 3 .53
7 4 -0.012 -0.090 -4.50
7 7 0.012 0.090 -4.41
8 7 0.000 -0.099 C-475)-- --A1/407,atot/e,
8 9 0.000 0.099 0.00
9 5 0.014 -0.032 -1.68
9 8 -0.014 0.032 -1.45
10 8 0.000 -0.042 -2 .08
10 10 0.000 0.042 0. 00
APPLIED JOINT LOADS, FREE JOINTS
JOINT FORCE X FORCE Y MOMENT Z
4 0.051 -2.130 0.00
5 0.100 -2.130 0.00
7 0.051 -2.130 0.00
8 0.100 -2 .130 0.00
REACTIONS,APPLIED LOADS SUPPORT JOINTS
PAGE 4
MSU STRESS-11 VERSION 9/89 --- DATE: 06/18/;8 --- TIME OF DAY: 17:15:32
JOINT FORCE X FORCE Y MOMENT Z
1 0.000 -0.081 0.00
2 0.000 -0.021 0.00
3 -0.149 4.241 0.00
6 -0.153 4.241 0.00
9 0.000 0.099 0.00
10 0.000 0.042 0.00
FREE JOINT DISPLACEMENTS
JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION
4 0.2795 -0.0118 -0.0019
5 0.3719 -0.0177 -0.0008
7 0.2796 -0.0118 -0.0018
8 0.3718 -0.0177 -0.0005
SUPPORT JOINT DISPLACEMENTS
JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION
1 0.2795 0.0000 0.0006
2 0.3719 0.0000 -0.0001
3 0.0000 0.0000 -0.0077
6 0.0000 0.0000 -0.0078
9 0.2796 0.0000 0.0012
10 0.3718 0.0000 0.0008
it3
Beam-Column Check
C 3.000x 3.000x 0.075 Fy = 55 ksi
A = 0.595 in2
Sx = 0.676 in3
Rx = 1.305 in Ry = 1.117 in
kx = 1.00 ky = 1.00
Stress Factor 1.000
Point P M Lx Ly Pcap Mcap Ratio
7 4.3 7 .4 48 . 0 38.0 15.99 22.30 60%
8 2.2 3 .5 48. 0 38.0 15.99 22.30 29%
0 0.0 0. 0 48 . 0 38.0 15.99 22.30 0%
0 0.0 0 .0 48. 0 38.0 15.99 22 .30 0%
0 0.0 0. 0 48 .0 38.0 15.99 22 .30 0%
0 0.0 0 .0 48. 0 38.0 15.99 22.30 0%
Load Beam Check
3.50x 2.750x 0.075 Fy = 55 ksi
A = 0.888 in2 E = 29,500 E3 ksi
Sx = 0.736 in3 Ix = 1.389 in4
Length = 96 inches
Pallet Load 4200 lbs
Assume 0.5 pallet load on each beam
M= PL/10= 20.16 k-in
fb = 27.40 ksi Fb = 33 ksi 83%
Mcap = 24.28 k-in
32.38 k-in with 1/3 increase
Defl = 0.47 in = L/ 203
w/ 25% added to one pallet load
M = .19 PL = 19.15 k-in 79%
Base Plate Design
Column Load 4.7 kips
Allowable Soil 1500 psf basic
Assume Footing 21.2 in square on side
Soil Pressure 1500 psf
Bending:
Assume the concrete slab works as a beam that is fixed against rotation
at the end of the base plate and is free to deflect at the extreme
edge of the assumed footing, but not free to rotate.
Mmax = w1^2/3
Use 5 "square base plate
w = 10.4 psi 1 = 5.08 in
Load factor = 1.67 M = 150 #-in
6 in thick slab f'c = 2500 psi
s = 6.00 in3 fb = 25 psi
Fb = 5 (phi) (f'c^.5) = 163 psi OK ! !
Shear :
Beam fv = 15 psi Fv = 85 psi OK ! !
Punching fv = 22 psi Fv = 170 psi OK ! !
Base Plate Bending Use 0 .375 " thick
1 = 1.5 in w = 187 psi
fb = 8955 psi Fb = 37500 psi OK ! !