Loading...
Specifications ol - ookse q 1\1 Q 1 ¶iVZ Clw.e(N Calculations for : A-Z WIRE & CABLE TIGARD , OR 06/18/2018 Loading: 4200 # load levels 2 pallet levels @ 48 , 96 Seismic per IBC 2012 100% Utilization Sds = 0 . 721 Sdl = 0 .445 I = 1 . 00 96 " Load Beams Uprights : 42 " wide C 3 . 000x 3 . 000x 0 . 075 Columns C 1 . 500x 1 . 500x 0 . 075 Braces 5 . 00x 8 . 00x 0 . 375 Base Plates with 2- 0 . 500in x 3 . 25in Embed Anchor/Column 3 . 50x 2 . 750x 0 . 075 Load beams w/ 3-Pin Connector by : Ben Riehl Registered Engineer OR# 11949 PROtt- w. i N 44' 4P 11949 �`9 t4t! 2 ti �‘" AXP I�AtE 2/ 1 6/18/2018 Design Maps Summary Report .1-1Ph'°;USGSAsia Design Maps Summary Report User-Specified Input Building Code Reference Document 2012/2015 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 45.44°N, 122.7798°W Site Soil Classification Site Class D - "Stiff Soil" Risk Category I/II/III It er PortlandGre, Beaverton 1 Tiga • Lake Oswego Tualatin • • Ore clot, Cit USGS-Provided Output Ss = 0.974 g SMS = 1.081 g Sos = 0.721 g S1 = 0.424 g SM1 = 0.668 g Sol = 0.445 g For information on how the SS and Si values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEHRP"building code reference document. NICER Response.Spetirum Desken Response Spectrum tlr.;F o 044 I I I I t ti Periled,T ism) Period,T tser} Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge. 1 https://prod02-earthquake.cr.usgs.gov/designmaps/us/summary.php?template=minimal&latitude=45.44&longitude=-122.7798&siteclass=3&riskcategor... 1/1 IBC 2012 LOADING SEISMIC: Ss= 97.4 % g S1= 42.4 % g Soil Class D Modified Design spectral response parameters Sms= 108.1 % g Sds= 72.1 % g Sm1= 66.8 % g Sd1= 44.5 % g Seismic Use Group 2 Seismic Design Category D or D Ie= 1 R = 4 R = 6 Cs = 0.1802 W Cs = 0.1201 W Using Working Stress Design V= Cs*W/1.4 V= 0.1287 W V= 0.0858 W '.4 Cold Formed Channel Depth 3.000 in Fy = 55 ksi Flange 3 .000 in Lip 0.750 in Thickness 0.0750 in COLUMN SECTION R 0.1000 in Blank = 9.96 in wt = 2 .5 plf A = 0.747 in2 Ix = 1.191 in4 Sx = 0.794 in3 Rx = 1.263 in Iy = 0.935 in4 Sy = 0.544 in3 Ry = 1.119 in a 2 .6500 Web w/t 35.3333 a bar 2.9250 Flg w/t 35.3333 b 2.6500 x bar 1.2423 b bar 2 . 9250 m 1.6690 c 0.5750 x0 -2 .9114 c bar 0.7125 J 0.0014 u 0.2160 x web 1.2798 gamma 1.0000 x lip 1.7202 R' 0.1375 h/t 38.0000 Section Removing: 0.640 inch slot 0.75 inches each side of center on web 0.375 inch hole 0.87 inches from web in each flange A- = 0.152 in2 A' = 0.595 in2 x bar = 1.478 in I'x = 1.014 in4 S'x= 0.676 in3 R'x= 1.305 in I'y = 0 .743 in4 S'y= 0.476 in3 R'y= 1.117 in Cold Formed Channel Depth 1.500 in Fy = 55 ksi Flange 1.500 in Lip 0.000 in Thickness 0.0750 in BRACE SECTION R 0.1000 in Blank = 4 .23 in wt = 1.1 plf A = 0.317 in2 Ix = 0.125 in4 Sx = 0.166 in3 Rx = 0.627 in Iy = 0.075 in4 Sy = 0.079 in3 Ry = 0.487 in a 1.1500 Web w/t 15.3333 a bar 1.4250 Flg w/t 17.6667 b 1.3250 x bar 0.5060 b bar 1.4625 m 0.6531 c 0.0000 x0 -1.1592 c bar 0.0000 J 0.0006 u 0.2160 x web 0.5435 gamma 0.0000 x lip 0.9565 R' 0.1375 h/t 18.0000 5 Cold Formed Section HEIGHT OF BEAM 3.500 INCHES MAT'L THICKNESS 0.075 INCHES INSIDE RADIUS 0.100 INCHES LOAD BEAM WIDTH 2.750 INCHES STEEL YIELD 55.0 KSI STEP 1.625 INCHES HIGH 1.000 INCHES WIDE ABOUT THE HORIZONTAL AXIS ABOUT THE VERTIC L Y LY LY2 Ii X LX LONG SIDE 3 .1500 1.7500 5.5125 9.6469 2.6047 0.0375 0.1181 TOP 1.4000 3.4625 4.8475 16.7845 0.0000 0.8750 1.2250 STEP SIDE 1.3500 2.6500 3 .5775 9.4804 0.2050 1.7125 2.3119 STEP BOTT 0.7250 1.8375 1.3322 2.4479 0.0000 2.2125 1.6041 SHORT SID 1.5250 0.9375 1.4297 1.3403 0.2955 2.7125 4 .1366 BOTTOM 2 .4000 0.0375 0.0900 0.0034 0.0000 1.3750 3.3000 CORNERS 0.2160 3.4125 0.7371 2.5152 0.0004 0.0875 0.0189 2 0.2160 3.4125 0.7371 2.5152 0.0004 1.6625 0.3591 3 0.2160 1.8875 0.4077 0.7694 0.0004 1.8000 0.3888 4 0.2160 1.7875 0.3861 0.6901 0.0004 2.6625 0.5751 5 0.2160 0.0875 0.0189 0.0017 0.0004 2.6625 0.5751 6 0.2160 0.0875 0.0189 0.0017 0.0004 0.0875 0.0189 TOTALS 11.8459 21.3500 19.0950 46.1967 3 .1076 17.8875 14.6314 AREA = 0.888 IN2 CENTER GRAVITY = 1.612 INCHES TO BASE 1.235 INCHES TO LONG SIDE Ix = 1.389 IN4 Iy = 0.904 IN4 Sx = 0.736 IN3 Sy = 0.596 IN3 Rx = 1.250 IN Ry = 1.008 IN (0 BEAM END CONNECTOR COLUMN MATERIAL THICKNESS = 0.075 IN LOAD BEAM DEPTH = 3.5 IN TOP OF BEAM TO TOP OF CONN= 0.000 IN WELD @ BTM OF BEAM = 0.000 IN LOAD = 4200 LBS PER PAIR CONNECTOR VERTICAL LOAD = 1050 LBS EACH RIVETS 3 RIVETS @ 2 " oc 0.4375 " DIA A502-2 1st @ 1 "BELOW TOP OF CONNECTOR AREA = 0.150 IN2 EACH Fv = 22.0 KSI Vcap = 3 .307 KIPS EACH RIVET BEARING Fb = 65.0 KSI BRG CAP= 2.133 KIPS EACH RIVET TOTAL RIVET VERTICAL CAPACITY = 6.398 KIPS 16% CONNECTOR 6 " LONG CONNECTOR ANGLE FY = 50 KSI 1.625 " x 3 " x 0.1875 " THICK S = 0.131 IN3 Mcap = 3.924 K-IN 3 .924 K-IN RIVET MOMENT RESULTANT @ 1.6 IN FROM BTM OF CONN M = PL L = 0.9 IN Pmax = Mcap/L = 4.360 KIPS RIVET LOAD DIST MOMENT P1 2.844 3 .400 9.669 RIVET OK P2 1.171 1.400 1.639 P3 0.000 0.000 0.000 P4 0.000 0.000 0.000 TOTAL 4 .015 11.308 CONNECTOR OK WELDS 0.125 " x 3.500 " FILLET WELD UP OUTSIDE 0.125 " x 1.875 " FILLET WELD UP INSIDE 0.125 " x 1.625 " FILLET WELD UP STEP SIDE 0 " x 1.000 " FILLET WELD STEP BOTTOM 0 " x 2.750 " FILLET WELD ACROSS BOTTOM 0 " x 1.750 " FILLET WELD ACROSS TOP USE EFFECTIVE 0.075 " THICK WELD L = 7.00 IN A = 0.525 IN2 S = 0.306 IN3 Fv = 26.0 KSI Mcap = 7.96 K-IN 7.96 K-IN I In Upright Plane Seismic Load Distribution per 2012 IBC Sds = 0.721 1.00 Allowable Stress Increase I = 1.00 R = 4.0 V = (Sds/R) *I*P1*.67 Weight 60 # per level frame weight Columns @ 42 " Levels Load WiHi Fi FiHi Column: (inches) (#) (k-in) (#) (k-in) C 3 .000x 3 . 000x 0.075 96 4260 409 686 66 48 4260 204 343 16 0 0 0 0 0 KLx = 48 in 0 0 0 0 0 KLy = 38 in 0 0 0 0 0 A = 0.595 in 0 0 0 0 0 Pcap = 15993 lbs 8520 613 1028 82 Column 28% Stress Max column load = 6219 # Min column load = 465 # Overturning ( .6- .11Sds)DL+(0.6-.14Sds) .75PLapp-1.02EL -914 # MIN (1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 4532 # MAX REQUIRED HOLD DOWN = -914 # Anchors: 1 T = 914 # 2 0.5 in dia HILTI TZ 3.25 inches embed in 2500psi concrete Tcap = 2801 # 33% Stressed V = 540 # per leg Vcap = 5103 # = 11% Stressed COMBINED = 43% Stressed OK Braces: Brace height = 38 " Brace width = 42 " Length = 57 " P = 1040 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 116 Pcap = 3557 # 29% 6 In Upright Plane Seismic Load Distribution TOP LOAD ONLY per 2012 IBC Sds = 0 .721 1.00 Allowable Stress Increase I = 1.00 R = 4 .0 V = (Sds/R) *I*P1 Weight 60 # per level frame weight Columns @ 42 " Levels Load WiHi Fi FiHi Column: (inches) (#) (k-in) (#) (k-in) C 3.000x 3.000x 0.075 96 4260 409 773 74 48 60 3 5 0 0 0 0 0 0 KLx = 48 in 0 0 0 0 0 KLy = 38 in 0 0 0 0 0 A = 0.595 in 0 0 0 0 0 Pcap = 15993 lbs 4320 412 778 74 Column 25% Stress Max column load = 3933 # Min column load = 169 # Overturning ( .6- .11Sds)DL+(0.6- .14Sds) .75PLapp-1.02EL -836 # MIN (1+0.11Sds)DL+ (1+0.14Sds) .75PL+ .51EL = 3938 # MAX REQUIRED HOLD DOWN = -836 # Anchors: 1 T = 836 # 2 0.5 in dia HILTI TZ 3.25 inches embed in 2500psi concrete Tcap = 2801 # 30% Stressed V = 389 # per leg Vcap = 5103 # = 8% Stressed COMBINED = 37% Stressed OK Braces: Brace height = 38 " Brace width = 42 " Length = 57 " P = 787 # Use : C 1.500x 1.500x 0.075 A = 0.317 in L/r = 116 Pcap = 3557 # 22% PAGE 1 MSU STRESS-11 VERSION 9/89 --- DATE: 06/18/;8 --- TIME OF DAY: 17:15:32 INPUT DATA LISTING TO FOLLOW: Structure Storage Rack in Load Beam Plane 2 Levels Type Plane Frame Number of Joints 10 Number of Supports 6 Number of Members 10 Number of Loadings 1 Joint Coordinates 1 0.0 48.0 S 2 5 8 10 2 0.0 96.0 S 3 49.5 0.0 S 4 49.5 48.0 5 49.5 96.0 6 148.5 0. 0 S 1 4 7 9 7 148.5 48 .0 8 148.5 96. 0 9 198.0 48 . 0 S 10 198.0 96.0 S Joint Releases 3 6 3 Moment Z 6 Moment Z 1 Force X Moment Z 2 Force X Moment Z 9 Force X Moment Z 10 Force X Moment Z Member Incidences 1 1 4 2 2 5 3 3 4 4 4 5 5 6 7 6 7 8 7 4 7 8 7 9 9 5 8 10 8 10 Member Properties 1 Thru 2 Prismatic Ax 0.888 Ay 0.622 Iz 1.389 3 Thru 6 Prismatic Ax 0.595 Ay 0.298 Iz 1.014 7 Thru 10 Prismatic Ax 0.888 Ay 0.622 Iz 1.389 Constants E 29000. All G 12000. All Tabulate All Loading Dead + Live + Seismic Joint Loads 4 Force Y -2.13 5 Force Y -2.13 7 Force Y -2.13 8 Force Y -2.13 4 Force X 0.051 . PAGE 2 MSU STRESS-11 VERSION 9/89 --- DATE: 06/18/;8 --- TIME OF DAY: 17:15:32 5 Force X 0.1 7 Force X 0.051 8 Force X 0.1 Solve PROBLEM CORRECTLY SPECIFIED, EXECUTION TO PROCEED Seismic Analysis per 2012 IBC wi di widi2 fi fidi # in # 4260 0.2795 333 102 28.5 51 102 4260 0.3719 589 200 74 .4 100 199 0 0.0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 0 0.0000 0 0 0.0 0 0 8520 922 302 102.9 301 g = 32.2 ft/sec2 T = 0.9568 sec I = 1.00 Cs = 0.0776 or 0.1201 Sdl = 0.445 Cs min = 0.072066 R = 6 Cs = 0.0776 V = (Cs*I*.67) *W*.67 V = 0.0520 W* .67 = 301 # 100% PAGE 3 MSU STRESS-11 VERSION 9/89 --- DATE: 06/18/;8 --- TIME OF DAY: 17:15:32 Structure Storage Rack in Load Beam Plane 2 Levels Loading Dead + Live + Seismic MEMBER FORCES MEMBER JOINT AXIAL FORCE SHEAR FORCE MOMENT 1 1 0.000 -0.081 0.00 1 4 0.000 0.081 -4.02 2 2 0.000 -0.021 0.00 2 5 0.000 0.021 -1.05 3 3 4.241 0.149 0. 00 3 4 -4.241 -0.149 7.15 4 4 2.120 0.086 1.37 4 5 -2 .120 -0.086 2 .73 5 6 4 .241 0.153 0.00 5 7 -4.241 -0.153 7.35 6 7 2 .120 0.114 1.96 6 8 -2.120 -0.114 3 .53 7 4 -0.012 -0.090 -4.50 7 7 0.012 0.090 -4.41 8 7 0.000 -0.099 C-475)-- --A1/407,atot/e, 8 9 0.000 0.099 0.00 9 5 0.014 -0.032 -1.68 9 8 -0.014 0.032 -1.45 10 8 0.000 -0.042 -2 .08 10 10 0.000 0.042 0. 00 APPLIED JOINT LOADS, FREE JOINTS JOINT FORCE X FORCE Y MOMENT Z 4 0.051 -2.130 0.00 5 0.100 -2.130 0.00 7 0.051 -2.130 0.00 8 0.100 -2 .130 0.00 REACTIONS,APPLIED LOADS SUPPORT JOINTS PAGE 4 MSU STRESS-11 VERSION 9/89 --- DATE: 06/18/;8 --- TIME OF DAY: 17:15:32 JOINT FORCE X FORCE Y MOMENT Z 1 0.000 -0.081 0.00 2 0.000 -0.021 0.00 3 -0.149 4.241 0.00 6 -0.153 4.241 0.00 9 0.000 0.099 0.00 10 0.000 0.042 0.00 FREE JOINT DISPLACEMENTS JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION 4 0.2795 -0.0118 -0.0019 5 0.3719 -0.0177 -0.0008 7 0.2796 -0.0118 -0.0018 8 0.3718 -0.0177 -0.0005 SUPPORT JOINT DISPLACEMENTS JOINT X-DISPLACEMENT Y-DISPLACEMENT ROTATION 1 0.2795 0.0000 0.0006 2 0.3719 0.0000 -0.0001 3 0.0000 0.0000 -0.0077 6 0.0000 0.0000 -0.0078 9 0.2796 0.0000 0.0012 10 0.3718 0.0000 0.0008 it3 Beam-Column Check C 3.000x 3.000x 0.075 Fy = 55 ksi A = 0.595 in2 Sx = 0.676 in3 Rx = 1.305 in Ry = 1.117 in kx = 1.00 ky = 1.00 Stress Factor 1.000 Point P M Lx Ly Pcap Mcap Ratio 7 4.3 7 .4 48 . 0 38.0 15.99 22.30 60% 8 2.2 3 .5 48. 0 38.0 15.99 22.30 29% 0 0.0 0. 0 48 . 0 38.0 15.99 22.30 0% 0 0.0 0 .0 48. 0 38.0 15.99 22 .30 0% 0 0.0 0. 0 48 .0 38.0 15.99 22 .30 0% 0 0.0 0 .0 48. 0 38.0 15.99 22.30 0% Load Beam Check 3.50x 2.750x 0.075 Fy = 55 ksi A = 0.888 in2 E = 29,500 E3 ksi Sx = 0.736 in3 Ix = 1.389 in4 Length = 96 inches Pallet Load 4200 lbs Assume 0.5 pallet load on each beam M= PL/10= 20.16 k-in fb = 27.40 ksi Fb = 33 ksi 83% Mcap = 24.28 k-in 32.38 k-in with 1/3 increase Defl = 0.47 in = L/ 203 w/ 25% added to one pallet load M = .19 PL = 19.15 k-in 79% Base Plate Design Column Load 4.7 kips Allowable Soil 1500 psf basic Assume Footing 21.2 in square on side Soil Pressure 1500 psf Bending: Assume the concrete slab works as a beam that is fixed against rotation at the end of the base plate and is free to deflect at the extreme edge of the assumed footing, but not free to rotate. Mmax = w1^2/3 Use 5 "square base plate w = 10.4 psi 1 = 5.08 in Load factor = 1.67 M = 150 #-in 6 in thick slab f'c = 2500 psi s = 6.00 in3 fb = 25 psi Fb = 5 (phi) (f'c^.5) = 163 psi OK ! ! Shear : Beam fv = 15 psi Fv = 85 psi OK ! ! Punching fv = 22 psi Fv = 170 psi OK ! ! Base Plate Bending Use 0 .375 " thick 1 = 1.5 in w = 187 psi fb = 8955 psi Fb = 37500 psi OK ! !