Loading...
Specifications (58) , \-1 - v STRUCTURAL, CALCULATIONS FOR RIVER (TERRACE EAST RECEIVED JUN 1 2 Z018 CONDOMINIUMS CITY OF TIGAR BUILDING DMS 21 PLEx (POLYGON NORTHWEST) S1gt)CTU �`_o PI OP OFFICE COPY "` 44GINE4, 6> 15472 4c `r!^ V., • - MN NI? . r `fir VP '01Z MO .EXPIRES, � t/I MARCH 9,2018 Jos NUMBER: 17-T174 :4114 II FROELICH ENGINEERS ?, * * * LIMITATIONS * * * ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT, WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND/OR LIABILITY IS ASSUMED BY,OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS. A Main Office A Central Oregon 6969 SW Hampton St. 745 NW Mt.Washington Dr.#205 Portland,Oregon 97223 Bend,Oregon 97701 503-624-7005 www.froelich-engineers.com 541-383-1828 Page 1 of 129 4 FROELICH ENGINEERS ; Scope of Work Client: West Hills Development Project: River Terrace East Project Number: 16-T100 Date: December 15, 2016 By: YSP Scope of Work: Froelich Consulting Engineers, Inc. (FCE) has provided full structural lateral and gravity design of the project per the 2012 International Building Code (IBC). Froelich Consulting Engineers, Inc. has provided details only to the areas pertaining to our design. Froelich Consulting Engineers, Inc. did not design or review the details for the entire project. Project Description: This new three-story multi-family apartment building wood sheathed wood framed wall structure is constructed with gang-nailed wood roof trusses, wood framed floors, with slab on grade main floor. Conventional foundations (concrete continuous footings and stem walls and spread footings) are used for building support. A Main Office FROELICH ENGINEERS A Central Oregon 6969 SW Hampton St. 745 NW Mt.Washington Dr.#205 Portland, Oregon 97223 Bend,Oregon 97701 503-624-7005 www froelich-engineers.corn 541-383-1828 Page 2 of 129, Client: West Hills Development Project: Rivet.Te".ce East �r Proj.#: 16-1 IOU t: Date: .�:?5'2"tiro � By: YSP FROELICH ENOINECRSI Dead Load Calculations Roof Dead Load Top Chord of Truss Component Weights 'Actual(001- Comments Framing 4 Roof Trusses Roof sheathing 2 5/8"shth Rooting(Asphalt Shingles) 3 Misc. . Total" 10.0 psf Bottom Chord of Truss Component Weights I Actual(psi)] Comments Mechanical t.5 Ceiling 2.8 (1)5/8"gyp Batt Insulation 1.5 Sprinklers 1 Misc.. 1.2 Total 8.0 psf 4psf added for Seismic Base Shear Total Roof Dead Load= 18.0 psf Caic. Floor Dead Load Component Weighty l Actual(psf)1 Comments Framing 3 Joist Framing Sheathing 3 7/8"shth Floor Covering 11 1 25"Floor"Popping(Gyperete 105 lbs/l13) Mechanical 1 Ceiling 5,6 (2)5/8"gyp Flooring Sprinklers Misc. 1.4 Total- 27.0 'psf 8psf added for Seismic Base Shear Calc. Corridor Floor Dead Load Component Wehts [Actual(psf71 Comments �� Framing 2 I Joist Framing ,Sheathing 3 7/8"shth Floor Covering 13 1.5"Floor Topping(Concrete 150 lbs/f13) Mechanical 1 Ceiling 5.6 (2)5/8"gyp Flooring 0 Sprinklers, 1 Misc. I.4 Total- 27.0 psf Exterior Wall Dead Load Component Weights JActual fosfil Comments Framing 1.5 Sheathing 1.5 1/2"slab Interior Gvp Finish 2.8 5/8"avo Insulation 1.5 Siding 2.3 Fiber Cement Siding Misc. 0.4 Total'" 10 Of Interior Wall/Partition Wall Dead Load Component Weights #Actual{psf(] Comments Framing 1.7 2x6 ay 16"o.c. Interior Gyp Finish 5.6 5/8"gyp each side Insulation 0.5 Fiberglass Batt Insulation as occurs Misc, 0.2 Total= 8 psf Page 3 of 129 Client: West Hills Development Project: River Terrace East Proj.#: 16-T100 Date: 4i8/2014 By: YSP FROELICH ENGIN EERSt Flat Roof Snow Load Calculation: Based on the following Codes: 2010 OSSC ASCE 7-05 Snow Load Analysts for Oregon 3rd ed.December 2007 Maximum Elevation: 450 ft Ground Snow Load(P9)= 15 psf Determined from Snow Load Analaysis for Oregon(3rd ed.December 2007) Terrian Category= B(Partial Exposed) per ASCE 7-05 Table 7-2 Snow Exposure Factor(CO= 1.0 per ASCE 7-05 Table 7-2 Thermal Factor(Ci)= 1.0 per ASCE 7-05 Table 7-3 Importance Factor(I)= 1.0 per ASCE 7-05 Table 7-4 Flat Roof Snow Load(pt)= 10.5 psf Pf=0.7*Ce*Ct*I*P9 Where pg s 20 psf(pr Min)= 15 Where.pg>20 psf(p}Min)= 10.5 Use(pr)= 15 psf Use(pf)= 25 psf per 2010 OSSC 1608.1 Page 4 of 124 Client: West Hills Development Project: River Terrace East Project#: 16-T100 Date: 12/15/2016 By: YSP FROELICH ENGINEERS t Snow Drift Loads at Lower Roofs and Canopies Drift: Low Roof over Sprinkler Riser Room Drift Height Density Leeward Length of Upper Roof, l,,: 46.0 ft y: 15.95 Windward Length of Lower Roof, I„: 11.0 ft Ground Snow Load, pg: 15.0 psf Density,y: 15.95 pcf Leeward Drift Height, ha: 1.95 ft Controls Windward Drift Height, hd: 0.48 ft Width of Drift Maximum Drift intensi Height of Projection, hr: 14.0 ft Drift Intensity, pd: 31 psf Roof Snow Load, p1: 15.0 psf Depth of Roof Snow, hb: 0.94 ft Proj. above Roof Snow, hc: 13.06 ft hJhb 13.89 >0.2, Drift Calc. Req. 4*hd: 7.8 ft 4*hd2/hc 1.2 ft Width of Drift,w: 7.8 ft Max width of Drift, 8*hc: 104 ft 31 psf 15 psf tr 8 ft Sliding Snow Loading ASCE 7-05 Section 7.9 Eave to Ridge of upper Roof,W: 22.0 ft Sliding Snow Load, S: 8.8 psf Distributed over 15' But, if pf+S<_25 psf, use 25 psf minimum S Equiv. = 25.0 psf 1 Page 5 of 129 ,. i. 4---- , 11. :. g . . . ' # ii , .....,,..„. 1 11 1 1 1`.:, - i t ":.e,;',..,•„"!.."".,-!".? 'iL t ' t'"›-0- ,- '.• - , , -y-100,,,,!:,--.•-•!=..,* 1 . • : --'":-.,,,:•••,,-,--•-. . , 1 , , -,-----. 1 1 I : . 1 ...,..)„,x_ 1 '11 _ ,or-....-. . . ...i.! ' f I— ;,_______.• 1 . • 1 i ! , f 1!f!-!1. • ..„44,11. id I 1 f • !------74-f-H-.::,,-,-----,,,-!- : . . •,,1 •,,I,Ntiif. ,: —1 Ilikapiiiiimis . .,„. ,,,,:„:„<::••,,,,- I , i . I ,...„...,.....„._____..... II e 1 • . :::::::,..;,,,- .0.,, - 'A° ...'4,„-s,..›..,m, , . 1 „ .<0.0.Wi . , .. L ' • bi...„.,...:,. ,,,,...!..,......... "'-k$1.&,galtz r 4,,7'•!""` ' -%;,,..g•to, , 1- '-,,!..z.,:!,,,u, /1 I, • .C..'4 , 1 • ---.-.1rAMPP ''. • 6014.,A;*w.,,,,,4?,,,:,,,,.is*,,,N,' "?I .,' 1 4 1• . :„......_ 1 or........-;:. .„,,,,,,u,...4 -... ..,,,,,e,,,,,xv.". 1 14 I u.. ar . . ,".4.:=4, f4 1. ,_ 1 " 0 i ........ id , I g ,I ... -== .-_—_, cm.... 14 e ---'I! il . ,,. .... '?--/ i i e ,' ,';, , 0•41 -I-- -i -- - „...., I :- -1.-......____twee‘6...?•.411,-- 1 I. • tail H ' : 1,01 A-....,•04 • I . ' -.00:,%* :-..,,.4.46; t•-•-="ii,:r' • i ,------' .. , :.-'"..4ji-.,,,ws, -- --------•' 1 1 ., .. ,, 4.••••*1 1............., _::, ...._ :. .vo;,. '•,,,,4 . IIPMEINNINI. .1 -- 1 --- i t _ w.... . .i- ib.............4444 ,.,...—_. , PP.. •i 114. MIll i '4.10Pre 1 1 1 i t i ,'- t i t t 1 I 1 I Page 6 of 129. drQ3X'rag-,Dron, Portland,Oregon 97223 503-62/-7005 PROJECT: • ' 745 Mili,VA.15iiiingto--i Dr#205 NUMBER: Bend,Orecog 97703 541-383-1328 FROELICHDATE ENGNER 12303 Airport Way,Sue 200 IES * Broomfield,Colorado 80021 720-560-2269 BY: ecNoc #cie4AA-1/ucrit. Roo/ 064D t<t)A C) (8- Ps go 0 F S.Aio u se 73aussa.2.4-( 0c. Rooic ( rag. REA c.Ti Af ()Alb./) • Pc-1.-- L A• )(2-5 175 PLF RA -Aft 2050 , PLF L L s 12-0a, 1500* K G43/ (... • 1 • DLT(2. ) t ) fe-P r.A.) toN 50 04.s2.2,:x) " LS *fr, 61-s'S-3.0 t-p I) 7 Ls.•(.11 2,75 LC- riZ6 x4, titt, II) ,r 11500 20.5° CliENTPage 7 of 129 '. 6969 S'.1..,Hxrpton St Port anc,Oic.gon 97223 503.624-7005 PROJECT I C-.;: fl 745 NW l'...1' Vlast-,nrc..,n Dr.-.205 NUMBER: Bend,Oregon 97703 • 541-383-1828 FROELICH :),- e, ---- DATE: 1 ENNER2303 Nrport Way,Surte 200 GIESi Broomfield,Colorado 80021 :.0.`,II,';',,EV"il 720-560-2269 BY: ,! - 1 ' 0 5 - _- .......„ Ex..; Cz,)(tz ) -. • 6 1 I (.....J-2.. ft, 2.<-4 -0 4 DL-, Zeogi 6L A-32.001 Pe-C °Ls' 13001:it ., . Roo F HDR 's : R 14 1 • . ,, 4.. . .spAN s 3 -0 r 2-00PCP SL r(Ill)t..2-5) -4- pcGc.t.a.06ie. Tz- z0ta sos.) e.. - i DL s ( )( S)...c. 20c> FZ....F 51_0 (u') (a5) .4-7-75 Pc-F ...__.__V�__— COMPANY PROJECT Aug 31.2C>.92? RH ice,... Page 8of12i . . „ _ , ,, ,,,. Wo o d Wo r k s(k),.r v,Nc -.,...,,i,,,,,;,:E, 4444. 4444 Design Check Calculation Sheet V'+oodWo:Ys Scor 10 42 Loads: a ,;r,:<. 7,46 46, Leaaa anow 5244L 0.64 L 9e44-wo164, 5ead Fall 694 y < Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): ,i' z...,....... 3`•19" I 1 1 a __. _.-. .. ..-4114_. 3'-i- On`actored: 4444 4444_ _.. 111.9 Dead 1426 Snow 9094444. 4444.. Fact<:=ee: 4444.. Total 2544 Elea-innr _. _.. Capacity Dope .et: 1611 2444 g:po1111 041 A.ailbe 1 Deam 1:66 2.60 3oppott 6.1-0 6.66 Load cues 66 42 Lon:301. 1,14' Min rood 11,4a 4.4.6 trb tris ¢.;m cb min 1 D0 4,00 CO 11 .::.oepo._ ,€e 4.1' O,,>, 325 Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7-1t4") Supports:All-Timber-Soft Beam,D.Fir-L No 2 Tolal length:3'-1.9";volume=OE cu far, Lateral support:lop=at supports,bottom=al supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: Criterion. 15 6610a 14>444 44.9a1Y01 fli0a:igs6 'L: 34,13' .. 0,61. Beratino411 416 6 44,1 Kb. -3 1:39. pot Total ..fl'n 2.62 .5241 1,1249 _.. 1.15 Additional Data; 7441)1S: '/E44::' __ 1946 14 Cn JC4 To' 1611,15 1.19 1,00 .. .. _ 6:3 442 2 <116 _,. 1,61 1,119,996 1.111 1.00 1.00 ... Fcp, 6.25 - 3.19 4,pa ... a _ . .:3 2 0,40 t - - 444 4 .. i CESIT€CAL LOAD CO'R81NA T: Page 9 of 129 COMPANY PROJECT Jj WOO \No rI '-01,0616' 600.54002 MR 11004,01116164 _ 4444 Design Check Calculation Sheet woa.1yl':i;pia sim,rc.0.2 Loads: 15011 621 6,0 016 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): f ......,.,_: .6'4 3.- -.»b,........,. --®.m} fi4444-,.,,,,...�..,................ e.,m._.�...,....a _.__.n,�,.....,.a,,,..,..- .- - 4 444 44 44. 444 4. . 6 • • saia.T un`a<.r,r,:in: ,,t 623 •:tc.r 130 040 1470 1470 080r,:5•): 4 44 4 4444.. Cap,/ 11.64n 1470 4410 11080648 1621 "061 nn..,i Iloe Dean: I.00 I.00 1.8.00566-1, r. .,0387 8666, 02 02 :.,:;th 8.67 0.6'7 Min re.7'6I 14467 0.61 CO 1.00 1.00 81, 0-06 1.:0 2..':0 40,0.0 :.11 1.1.1 4':p 6.58 575 021 Lumber-soft,D.Fir-L,No.2,4x8(3-172"x7-114") Supports:All-Timber-soft Beam,D Fir-L No 2 Total length:6'-1.3';volume=1.1 014 ft; Lateral support:lop=at supports,bottom=et supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: .. 4c',....ar. A.o,+:.oats°/.a.Ue Ue840n *3aZure srni.t aZn.11.4640/ 0.0100 110::: 60x. ;vf v'' s1 _ ( -4 e9- 131 c : - Fo « �a5 3 n o - <.161995 0,8 I,/069 0.128 0t: r 11.10 ,, LIM 8.30 6 ..:..4 Ow2.06 Additional Data: RAntak3: t':210,1,40 :0 ,. 1115 106,4 60 1.10 1.08 1.01' 1 300 1.15 1.803 . 0,115 1.308 1.08 .. P!:p' 6 - 1,0.0 3.,00 _. :;.0 1.88 4 1' ..6,311 11, 1.0: 1.00 _. - 2 0.16 MI 1 1_0 r. 1,00 .01 .. ,., ... CRITICAL LOAD COMBINATIONS: ininar: ii I-0 q2 iii 1457, 0 dm6188 4. 1152 106 4 1. 2285 it,60-ft 2014,464,, 17 42 . 60 111061 8.8.64.6 t4.1180 6 .,nob W-..ry rl:6pa66 :,."..o.: ._.,e -ccncel.raced 1.1.6.arth.10,068 All - ..,r,' _ 4/10 Analysis a'at:p:' :low c/*rbiaatO.:r0,0.02 7-18 1 ABC 2002 000.211107€C NS: 88616-0.6.6n., 0: :, 1''8806 111-i0e „11668".06,61,6,010,6 6. net 14.014186 _G.:al i 06,66000 icad3 [1100, 411.' 58.68.., To 001 0611,0.180- 1.601086d 1,0,!'.%- r.;. .r:. Lateral 61,61411-41,461,61411-41,4 . 1-, , 0.6s Cc - .,.'3J x,00 '- 11 , Design Notes: 1.Wendt/4°1,s analysis and design are In accordance with the ICC international Building Code(MC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. 2 Please amity that lie delauh deflection limits are appropriate for your application. 3 Sawn lumber berating members shall be laterally supported according la the provisions of NDS Clause 4:4.1 Page 10 of 129r •=.:3,)),24 '...12)5 PROJECT: . NU M BE R FROELICH f r). 231)-,.A rport ERsA C".::,"31"V.,d.C., e)..-ac)..7.=E=t.C.21 7205,,,J-2269 BY: , , k;1 ALC)0c.si if-10/ 7:100‹. C)01— 0 C Pc 14 it) I • .,..„. ...‘"" i _,.. . , IAJ 1 Alb x 1(0 ' C2r=4; _,..,,, C-4,...)i/1-.)n = i ,,...a. , -''''' -.5 1'pi c-- , 1 . , p „ C. c-lir- , 1 1 i I i i Lt„. 0) Tcc?' , ! ! 1 1 i i i 1 , 1 I , 1 I Page 11 of 129 Client: Project: allic Project#: Date: ,r=� By: FROELICH ENGINEERS 1 WIND FORCE CALCULATION - C&C Walls ASCE 7-10 SECTION 30.6,30.7 (Third Printing) Design Wind Loads on Components and Cladding - Walls Basic Wind Speeds Input 3 Second Gust Vas= 120 mph Exposure Category= B Wind Directionality Factor Kd = 0.85 Table 26.6-1 (page 194) Mean Height of Roof, h = 40 ft "'opoeraphic Effects Input Hill Height H = 0 ft Table 26.8-1 (page 196) Length of 1/2 hill height Lh = 1000 ft Table 26.8-1 (page 196) Dist. From Crest to Bldg. x= 100 ft Table 26.8-1 (page 196) Height Above Local Grade z= 15 ft Table 26.8-1 (page 196) Horizontal Attenuation Factor m = 1.5 Table 26.8-1 (page 196) Height Attenuation Factor g= 3 Table 26.8-1 (page 196) Shape Factor Kl/(HJLh) = 1.3 Table 26.8-1 (page 196) Output- Topographic Multipliers K1 = 0.00 K2 = 0.93 1(3 = 0.96 Topographic Factor Kl,= 1.00 Terrain Exposure Constants nominal height of boundary zg= 1200 Table 26.9-1 (page 199) 3-s gust exponent a= 7.00 Table 26.9-1 (page 199) Page 12 of 129 Pressure Coefficients Input Velocity Pressure Exposure Coefficients Ky (see below) Table 30,3-1 (page 259) Height (ft) Kh qn (psf) Velocity 15 0.70 22.0 Pressure 20 0.70 22.0 output qz 25 0.70 22.0 30 0.70 22.0 40 0.76 23.8 50 0,81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29,1 90 0,96 30.0 100 0.99 31.0 120 1.04 32.6 h = 40 0.76 2:3,8 qh External Pressure Coefficients (CCI„)- Use.Figure 30.4-I for h <60 ft,30.6-1 for h>60 ft GCp, =+/- 0.18 Table 26.11-1 (page 201) Pressure Coefficients on Exterior Surfaces of Walls Zone GC Zone 4 (+) 0.90 Figure 30.4-1 for h<=60(page 277) Zone 5 (+) 0.90 Figure 30.6-1 for h>60(page 290) Zone 4 (-) -0.90 Zone 5 (-) -1.80 Calculate Wind Pressure, p, per Equation 30..4-1 or 30.6-1,using q Exterior Face of Surface Zone p (psf) Zone 4 (+) 25.74 - ith Positive Internal Pressure Zone 5 (+) 25.74 with Positive internal Pressure Zone 4 (-) -25.74 with Negative Internal Pressure Zone .5 (-) -47.19 with Negative Internal Pressure Page 13 of 129 COMPANY PROJECT 4g Works® Os: 13,2016 09-39 ae3r"1 Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: p Jj .,,... ._ �� .,...... 7 12,0 1k1a Lea,11 w Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) `t«trrsit^as betettog length setuol uwt 1/2-76a loppe.11 Lumber-soft,D.Fir-L,No.2,4x8(3.1/2"x7-114") Supports'All•Timber-soft Beam,D i=1r-L No 2 Total lengtT:9`-1.0':vaturrs=1.8 L h Lateral support_top=at supports,bottom=at,upports:Dbt+aue angle.9e,C reg Analysis vs.Allowable Stress and Deflection using NOS 2012 0 ,'-ales tE.#f f:, 0113 1..at1t.1t,:0... Additional Data: 1. . . W�€ t...:.)P .'. Design Notes. 1 'Wood/storks analysis era design ere it accordance with the ICC Infemofionai 9u :ing Code ileo 20'2),the Nasional Design Scecificai/oc(NOS 2012),and NOS Design Supplement 2 Please verify(heli defeufl de/led/on limits are aporoprfale for your epptrca>on. 3 Sawn lumber bending members shall be taseraily supported according to the prav:sicns of NDS Cause 4.4.1 68\ (7)) ''') sCIA., I 1315 I 1 i 1 1 9 i ** le r-riall1111.111147-. 111 1 -1L.... ...... ' ' , t ir i- 1 . - 1 1 1 4 1 il I V.. ---,...‘:, 1,, ji ,-.., .1 I it. 1 11 z , ! j ...., ,,,..---- t I '85:13 1 ; c .1 ., r I sa i ' l' I '1 I -- 1` 1 r , 1 . 111110iiiiil 1 1111111111111111114MINiL. iM 1 1, -2--'1 ' — , , 1 11111111111.1111111111 v—,-- -,,, r 1 i '..- ..-- --; _ 1 1 il I , ' = tr— _ [—...,, , 1.1 L......„ I i if ....:, ___ ri - ( [ i 1 IIIIIIIIIIIIIIIIIIIII 1 1 rr. , , ...........,1011,10.0 1_ , i.„•---,t. 5 ji, .; . -ffiai-7,---....:,;fo ------ 1.-- ,..______....,.. _ 1----1111111111- . .,, .„0,,......„,,,,,, 1,- , co o _..., o --, RD,-. iv cP 2 I Pe.,,e x — ,S /14aroie FACAPA04 G • CLIENT. Page 15 of 129 . 41/ PROJECT: fo:Att4 , , \Ai 'AO NUMBER: OrCci0;': -333-1',z2e- FROELICH ' DATE: 123r:33 Airport Woy.SLj-e 200 ENGINEERSA BcCrOri eld.00:C!-cdo 80021 • 720-56C-2269 BY: itA,3 AJ • P• 42-C, F"•• Li / q 44 0 ts, cz)eel 00 Li 4-„.1--• 604 C) . Otz,p R_ • ,5,1')A s SPA Ai PAA A Ai 5 6? La'j ) G 2_0 L r Fr B Page 16 of 129 1-22 :: Roseburg2:4621 of T&n 20173.0.5 113r unEnginc 2017.1.0.4 aei.Js 6.nad a 1562 Vlember Data )ascription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None itandard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total Dead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 fv � / 15 2 0 15 2 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift 0' 0.000" Wall Not Checked N/A 1.750" 821# - ? 15' 2.000" Wall Not Checked N/A 1.750" 821# - ulaximum Load Case Reactions Is ifa 6gpcit look(aim lads)tocanaV mantas Live Dead 490#(306p1f) 331#(207p11) 490#(306p1f) 331#(207p1f) Design spans 15'3.750" Product: 11 7/8" RFPI-400 19.2"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. knowable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 3142.'# 4315.'# 72% 7.58' Total Load D+L ihear 821.# 1480.# 55% 0' Total Load D+L L Deflection 0.3714" 0.7656" 1)494 7.58' Total Load D+L L Deflection 0.2218" 0.3828" L/828 7.58' Total Load L ;ontrol:Pos.Moment DOLS:Live=100°/Snow=115%Roof=125%Wind=160% SIMPSON A°l=am rano denofrnal6 d their redalis'e Kami L.Henderson cid EWP Manager (C)2116 b7ScIpso,sro,g-1ieCc mryIr,�ALLRIG�HITSR� �RV . Pacific Lumber&Truss ssiix,J 6 ddiwed as the member,fk jog,len a Yda;slnwr m tlis danig meds�'fk 4e desgi,dada to Lmr,L abirg CutitiuG ad$gas Gsted m tIis'bed.The cb igr mwt 6e rericved bi a¢died Beaverton.O recon • C Page 17 of 129 1-22 2:46p1 I of Bap,2017.3.0 5 113(1011E112.'11,22017.1 0 4 dvi4ds U tibt,K 1562 Vlember Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None Standard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 ... s ... .. .` T 2240 / 2240 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift I 0' 0.000" Wall Not Checked N/A 1.750" 1004# - 22' 4.000" Wall Not Checked N/A 1.750" 1004# - Naximum Load Case Reactions Ise;fa maws g pit kola(v ie lam)to ca,g menus Live Dead 599#(450p1f) 405#(3030) 599#(450p1f) 405#(303p10 )esign spans 22 5.750" Product: DBL 11 7/8"RFPI-400 16.0"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. JIowable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 5643.'# 8630.'# 65% 11.17' Total Load D+L ;hear 1004.# 2960.# 33% 0' Total Load D+L EL Deflection 0.7327" 1.1240" 11368 11.17' Total Load D+L _L Deflection 0.4375" 0.5620" U616 11.17' Total Load L ;onto!:LL Deflection DOLS:Live=100°/Snow=115%Roof=125!Wind=160°/ S'IMPSON `°I'""a"' t' asd""' Ne O" Kami L.Henderson EWP Manager Padfic Lumber&Truss ssFg is thirxd as W�the menbv,flan jast,hen v grda 9nv,i m this da,Jrg meas a dsim adeia fv Lt�cS,LarYig tardive,ad ABs Feted m this shy The isigi mtst he moaned M a gdAiai Beaverton.Oreaon � DRoseburg Page 18 of 129 1-22-- 2-22 1 of Ikon2017.3.0.5 r&mniEngine 2017.1.0.4 taia]s i) zhoc 1562 Vlember Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None itandard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 —77 ptrtwit . .,. -/ .;; ��N. €mss„ ry ..:Pfi , ,*..' , T / 19 4 0 O 1940 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift I 0' 0.000" Wall Not Checked N/A 1.750" 1044# - >_ 19' 4.000" Wall Not Checked N/A 1.750" 1044# - Vlaximum Load Case Reactions Ised fa 4:11Y.9!Art lads(er he has)to carYi9 montes Live Dead 623#(390p1f) 421#(263p1f) 623#(390p1f) 421#(263p1f) )esign spans 19'5.750" Product: DBL 11 7/8" RFPI-400 19.2"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. !knowable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 5084.'# 8630.'# 58% 9.67' Total Load D+L ihear 1044.# 2960.# 35% 0' Total Load D+L L Deflection 0.4976" 0.9740" U469 9.67' Total Load D+L .L Deflection 0.2971" 0.4870" U786 9.67' Total Load L ;ontrol:LL Defledion DOLs:Live-100%Snov115%Roof=125%Wind=160% SIMPSONKami L.Henderson EWP Manager Pacific Lumber&Truss s'ting's d�fi a;vJ�a�the menta,floe pst,tin a grc$ owi m Itis baring mms die clgigr o8aia f r LAS,lc g Coritios,ad s tst i, tHs shed.The rig,must he re by a y fiei Beaverton.Oreaon A Page 19 of 129 1-22 2:45p: 1 of I&:ou 2017.3.0.5 t}Qo Fnginc'_017.I L.i aai,Js ID C1xrc 1562 Member Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None standard Load: Moisture Condition:Dry Building Code:IBC/IRC _lye Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 17 9 0 17 9 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift 0' 0.000" Wall Not Checked N/A 1.750" 799# — 17' 9.000" Wall Not Checked N/A 1.750" 799# — Naximum Load Case Reactions Iselfcr g Edit back(a ie lock)to carYig mantes Live Dead 477#(3580) 322#(242p1f) . 477#(358p1f) 322#(242p10 )esign spans 17'10.750" Product: 11 7/8"RFPI-400 16.0"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. 4liowable Stress Design Actual Allowable Capacity Location Loading )ositive Moment 3576.'# 4315.'# 82% 8.87' Total Load D+L ;hear 799.# 1480.# 54% 0' Total Load D+L L Deflection 0.5684" 0.8948" L/377 8.87' Total Load D+L L Deflection 0.3393" 0.4474" U632 8.87' Total Load L ;ontrol:Pos Moment DOLs:Live=100%Sno115%Roof=125%Wind=160% SIMPSON "pe aetraJ3naYsdthd rct eaves Kami L.Henderson Sticiaktitcc (C(c)20)6tySmEso,Sro5Tecm,EayIncaiRIGHTSRESERVE. EWP Manager Pacific Lumber&Truss ssirgishieda Weithe menta,Ilanjst,tFan v grd3 sl-am mtHs ei74'9mks Mlkt ede4gialet'la tmk,tnadrg Gmdlias,ad SEas Fsisd mills she.Ile dsigimist here'l d/a'1-6fiEd Beaverton.Oreaon s:7) 7 77 , _rtti" R i 3rd Floor, Span 5'-0"(Corridor Joists) Page 2 ,t ' 1 piece(s) 2 x 6 Hem-Fir No. 2@ 16" OC Overall Length: 5'7" • a 5' X: 0 All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual CD Location Allowed Result LDF Load:Combination(Pattern) System:Floor Member Reaction(lbs) 455 @ 2 1/2" 1367(2.25") Passed(33%) -- 1.0 D+ 1.0 L(All Spans) Member Type:Joist Shear(lbs) 346 @ 9" 825 Passed(42%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 565 @ 2'9 1/2" 801 Passed(71%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 Live Load Defl.(in) 0.079 @ 2'9 1/2" 0.129 Passed(L/784) -- 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load Defl.(in) 0.100 @ 2'9 1/2" 0.258 Passed(L/617) -- 1.0 D+1.0 L(All Spans) TJ-Pro'"Rating N/A N/A -- -- -- •Deflection criteria:LL(L/480)and TL(1/240). •Top Edge Bracing(Lu):Top compression edge must be braced at 5'5"o/c unless detailed otherwise. • Bottom Edge Bracing(Lu):Bottom compression edge must be braced at 5'5"o/c unless detailed otherwise. •A 15%increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NDS. •No composite action between deck and joist was considered in analysis. Bearing Length Loads to Supports(lbs) SUpportS Total = AvailableRequired - Dead, FiooLive r Total Accessories , 1-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board 2-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live Loads Location(Side)', Spacing (0.90) (1.00) Comments 1-Uniform(PSF) 0 to 5'7" 16" 27.0 100.0 Residential-Living Areas Weyerhaeuser Notes Sl.1STAINABLE FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be In accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator ' Forte Soft ware Operator Job ebates316/2018 4:07 43 PM I -.:...... ..-_-_.._... . . ....._._m____._.._.,:..._.._.._..______..:_ Forte v5.2,("_/eslr)n Vin,ir,r; V6 r,.0.t 1 „h L.il. 3 ,,foists 4i y: • Page 21 of 129 • e ,, i, `"' cMEMBER REPORT 3rd Floor, Span 6'-0"(Deck Joists) PASSED 1 piece(s) 2 x 6 Hem-Fir No. 2@ 16" OC (,)vera! _Oogih: 9' 1 • 1 1111.. m_. 11 11..-,_,11_____11_._ . 1-3 All locations are measured from the outside face of left support(or left cantilever end).AII dimensions are horizontal. a__, ..._ .... _.__ Desi•n Results 1 Actuai o location Allowed Result LOF Load:Combination(Pattern) System:Floor Member Reaction(lbs) 285 @ 2 1/2" 1367(2.25) Passed(21%) -- 1.0 D+1.0 L(All Spans) Member Type:Joist Shear(Ibs) 227 @ 9" 825 Passed(28%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 425 @ 3'3 1/2" 801 Passed(53%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 °Uve Load Defl.(in) I 0.064 @ 3'3 1/2" 0.154 Passed(L/999+) -- _1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load Defl.(in) i 0.108 @ 3'3 1/2" 0.308 Passed(L/688) -- _10 D+1.0 L(All Spans) TJ-Pro"Rating I. N/A N/A -- .,......, __�.. ,.,.. .. ..._..._._._.. v.._ _.j._.,.. _- ......,,__ ...„ _„„„„.7_,„....7.,..., ....... .., _......_77...... • Deflection criteria:LL(1/480)and TL(L/240), • Bracing(Lu):All compression edges(top and bottom)must be braced at 6'4 1/2"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A 15%increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NDS. • No composite action between deck and joist was considered in analysis. Bearing Length Loads to Supports(Ibs) SupportsI Floor Total Available Required W Dead Total Accessories live 1-Stud wall 5PF 3.50" 2.25" 1.SO" 119 176 295 1 1/4"Rim Board 2-Stud wall SPF I 3.50" 2.25' 1. 1.50" 119 176 1 295 1 1/4 Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live 1 Loads Location(Side) Sparing (0.90) (1.00) Comments 1-Uniform(PSF) 0 to 6'7" 16" 27.0 40.0 Residential-Using _r Areas .. _1,,111 ........ 1115...,_...a Weyerhaeuser Notes g 4''',,,,,,?: r .,..:�,.r,r r at',..;;err. Weyerhaeuser warrants that the sizing of its product will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories{Rim Board,Stocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to (circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable ;forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports,aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator --�_ _____._...,__._..._....._„._ Forte Software Operator 1 Job Nates 8/24/2016 9:00:37 AM 'ashes S r,f=sur 1 , Forte 1,Design Engine.V6.5.1.1 Froelich Eng,Erreer5 i (503)924-5311 1 J01SfS.4tf? d Page 22 of 129 CLIENT. / 'r c, rip t� Stt ,-k..-t,o-s_l ^-,-:-..,c-07223. ,5:),3-,':2,:-7C05 PROJECT: AZ ,c cato. Cr 1205 Nil �� NUMBER: 33-c,jra c .47703 5k' 53 e28 FROELICH -- - -- DATE 12303 P.irpert Way,stile 200 ENGINEERS -43rcomfeid,Colorado 80021 72G-560-.2269 BY. `e° f'e_0o,e_ AN..`j SP - ® DLr15' Z ) ato PLF L x (.(ii I 5'))CC'-to ) s6 oca J' F 3FQ2/: DLs $ )ia-T ) s LJ9v P LLs 0$')(L-1o ) r 7-2.° ,P4-F 3FE33/ : SPAN r 1 2-0PLic / 4 C_Lx i )(go) s 32.3 pt,F' 3F841 sPAAi s 5._ 0 DL.r (3)(.7-: } x °?t PLF LL,S (3) (, ) s 300 PLF • F t3.5„.: SPAAJ s i3_o DL r (3')C2"4-)- - t l'" 1--F. Li ) Q 0) t2-o t` .� . • Page 23 of 129 • COMPANY PROJECT -OPT!' Welk % rood\tvo w,9 • A:og 31,20183.3:42 3631.w,vc Design Check Calculation Sheet WowitAimes Over 10 42 Loads: 1.>ad 11: 10i601 02.0.0c 0112ti 0010, p00 0cad 13011 1611 el0 • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(In): ,::aa gored; s• 1 alas 193 Live 2305 00', 'rac.10r-ed: • Tout 4735 3004.0100, 4760 Capacity upport 60.13 4755 Anal/Des 5003 Beam 2.00 S ppor'' 0.53 1,00 Lia" co00, 62 0.32 Length 2.49 2 rey'd 2.09 2.09 Min b1.00 2.00. Cls e,3,, 1.0,3 1,00 ,00 1_.30 lb sr`rppvrt 1.11 0,6] sup D.2, .Ii 625 Giulam-UnbaL,West Species,24F-1.8E WS,3-1/2'x11.718" 8 laminations,3-1/2"maximum width, Supports:All.Timber-soh Seam.0,Fir-L Not Total length:9•.4,2';volume= 2.7 Lateral Support:top=full,bottom=al supports; Analysis vs.Allowable Stress and Deflection,,sing NDS 2012: ctner00x A. 1'su, Ix Lue DO.,311 YA`t, 03010 AS•.4 .3a*1, 7P0 12F,6,06001n4 i+i : 1b - .(' 03 .: pe 3c t - .1 ,. 1120E6' ... 66 300.04 0,00 illi Total Livc Det1 n -.11 - n 1 ,•_ 0.3f, <,1493 : ..,-._ _., 0,03 Additional Data: PACrD@::; P/R0ps110'01 CO. Ct CL CV _..,. .._ Cf,t. 7r;;r,es 30'130r s:a ;"•✓' 260 1.00 1.0 L00 00 _.08 2 Pc_o 1,00 0' 1.9 1 c- _. 2 Er-thy. 0.30 million L.02 1,03' CRITICAL 1O0D COMBINATIONS: `' LC 02 g: . a.. . uvea! '...; ... '.; y;y., 10s-ft 13cflectinn, LC 92 - 00 42 - ;;aD. e` dr 1 1.-.,s S.annw.r�. >... t.;- . i ..t<.n.` _ ,.h3.axe A17 LC1a are Listed 0.103 Abalyalt, o„r t 1.3.2 r:ombi.n.00.,,e:s: '.,” " .. 2012 CALCL3(A'TfL1f1S: ;.afie rio,: EL - 3' . Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Suilo Ing Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement, 2.Please very brat the default deflection Omits are appropriate for your application. 3.Glutam design values are for materials conforming to ANSI 1172010 and manufactured in accordance with ANSI A1901-2007 4,GLULAM:bad=actual breadth x actual depth. 5.Slalom Seams shall De laletlly suppor(ed according to the provisions of NOS Clause 3.3 3. B..GLULAM:hewing length based on smaller of Fcp(lensionl,Fcp,ccmp'n) Paae 24 of 129 ____ _ ...,.._._..COMPANY PROJECT d W -- . --:,,,H4 . 00 orkse44g.31,2015 44:42 3FB2.mr0 Design Check Calculation Sheet W000Works Slier 10.42 Loads: 1:,, i ' , i_ i 1Yzti 1e go11-wo,iritti Tie Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): _ ,. _....-._.__ --- �..__. ...-,_._ lye 4 e1.1 • a)nfactoced: `i£;d Dead 156g 22c1 Live, 22.01 _.... .Total 3921 052.4 C.:p c-.i.ty 3029 8eac) 3024 4024 3upcar.1 407x4 a0a 1!40s i.00 0,00 ssa. 146 aappare 0.44 42. '1 Load coots vS z.14 Length .84 1 Min _au'd lAt :1.,04 C3: 1.04 1,00 110 m. 1. 0 Cb support 1, 11 41. .1 et,sa 442'5 Glulam-Unbal.,West Species,24F-1.8E WS,3.1/2"x11-7/8" 8 laminelions,3.1)2'maximum width, Supports:All-Timber-soft Beam,O.F:'r-L No 2 Total length:0.3.4";volume= 1.S cut; Laleral support:top=full,bottom=al supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: SCritsxxo:r Anal aJ0,ke / 1.71 ',- 0. ad3r1 r^. 3 3 50</lug):) :u n 818 Th. «' - 0,25 Dead J E 02 5 r,Li 994 Dna 0,0"a 9 , 0,20 - 1.:350 f 3 .ota3 'e f.:i: 5 07.'999 / 31. ; F.,'2207 ..t Additional Data: FACT-17113: itElpc ii CD CM Ct CL CJ '1:--a ;:.r C L s: Norco C:Z'C yr 105 205 1.40 1.42 1.00 _. .. 1,00 1_.01 1.40 2 02 2) 544)0 1,00 4..40 1,04 1,040 ...5"4 1,0 - 2 Fop' 050 - t.2 ..1,00 )r nillloa 1_22 1,00 ... _ -_ _ ._ 2 Ertny' 5,85 minion 1.00 ,00 .. 40 ... _ 2 CRITICAL LOAD COMBINATIONS: 11 3744. V design- 2952 1.>.. fiendl%g; i, 7.042 � 047, .- ,040 3,o 41110ctiur:; C 82 - A' 12-2', ibgd0ad 1,Iii,17 fitttznas..11.-aind -i01,ap r_t Lc=zc.,' 11 _ 1,,,,,,,,tt rat c'<. P.555a r r h,7::;ak: A11 I.0'.01 lukesd in r_he Ana1ys3.a 80Cpv Lor oombir,aeicns. ,45 2) . / 131:20:2 CALCULATIONS: 0a11000914: E1 ttt 879e09,, Lb-ln2 '71„120,"deft,:ot ion < fiefloction 08001 all non"l•z0 10-'3 (1._e, ar an>a-i 2<0: Def.:e,o'.S>n- 3.401Dead Loci D0`_lact' _I . 110i, > .a,-. Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. 2 Please verify that the default deflection limits are appropriate for your application. 3.Giaiam design values am for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A191)1-2007 4 GLULAM:bid"actual breadth x actual depth, S..Gtulam Beams shall be tatera114.supported according Is the provisions of NOS Clause 3 3.3. A,GiAi AM''beating length bast*on smaller of Pop(lension),Fcp(cemp'n). Page 25 of 129 COMPANY PROJECT 1&: WO WoocI\ orks erte � 31 T_1.:OSA .FB3.x t..rr week 0010, F .,58.1;£3 Design Check Calculation Sheet WoodWarks Sider 10 42 Loads: ,._.<I •.-,.y.... _.'1 151' .._, 1> - - .e. ...,. Liocc5, d060 450,1, 4011 001, 320.. x11 -.-_ Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): ]E 5555. 555.5 _. 5555. I -555_5 ........ �„ _....._..,..,,,.,, 6' 12,1,5' 1<: I4.05 1189 46.01 n•x 0.p001 ,};rota s... 9bj na 1Y 13_..x^. 1.00 8.94 d.,000 4 sit n;t;`"..- 1.4 12 min loq'd 4x..4!1 • 1,44 in, 1.00 ,01 k ala 1.00 11.,20 110 .,:F 445_ 55.55 4,11 555_5.. ri5 Glulam-Unbal.,West Species,24F-1.8E WS,3-1/2"x11.718" d tarninaliens.3-112"maximum width, Supports:All-Timber-soft Beam.U"Fir-L No 2 TOW lenglh:1Z-3,0",volume= 3-.5 cull Latera'supped:lop=full,tandem=al supports: Analysis vs.Allowable Stress and Deflection using NUS 2012: ,F a. 00 f 4= po fx/1) 1.30 [ ., 0.10 a ,' 7.44 41: t 1.0240 0,01 Additional Data: P/.3-robs 02.1114, 445 ., -v' :.42 t 1'11 1.00 i.�.,r e':;'+ 2400 1.001,008 -. 1,00 1.00 1.70 I'cp, 650 - iliion 1.0c _ _. 1.0it :._, ..' ping 1.00 .1,00 .• .. ..')o .. CRITICAL LOAD COMB€NAT)ONS- S- siLc e2 r- ... ,o;' 0261 11,1 80..,14,14E. • al .. PFL, M 18041 113 42. 1,00.15 84oncw .4,0 -.._ 3104 c en i.rat . 454.112.1:300k. 1 - _ .- '. a.. .: _u 1515 551_5.::; :0051 00,141::,05tans: Li'•:' .;-i^ 11'• 1 26:7 a' C.A1.t.0€a,-TIONS: 106110.,10:: 31 - e0-5c116 :2....'1 5 1 100- 5155:.: n.. 401.01 -_I.en 1,50±18r.a-,15,.3:,1 .,e.._e.:'.: Load Del.en_.Sen. _5551 1 _.1- n�_ Design Notes: 1 WondWarks analysts and design are in accordance cab the ICC International Building Code(IBC 2012),10e National Design Specification(NDS 2912),and MSS Design Supplement 2 Please verify iha)he default deflection limbs are approp^ate for your applicalion, 3 Giuliani design values are for materials cdntonning to ANSI 117-2010 and manufactured in accordance crib ANS'0100 51-2007 4 G1-UL_AM:bad=actual breadth x adaat 4010. r Giulam Beams shall be laterally supported according to)be provisions of NDS Clause 3.:3,3.: d.GLULAM:bearing(engin based on smaller of Fcp(tension).Fcplcornp";), Page 26 of l2, COMPANY PROJECT 14 . rks dWo Aug.31.21,E 00:9. 3FB4 wxb Design Check Calculation Sheet 2S'nld V.'orks sizer 10.42 Loads: ioac 1.51110 .Load.? 5,1ee 416aM 4051-11 1101, ,1 001 p10 Sr-111 5oad Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): 1 5.9,5' Unf<attoced; Dead illi s0 155 106 Feccored: Total S-.13 3aacing; _. Capacity titan 11011 Support 1211 _2Il B‘64$41 0.47 0.'4 Support 0.44. 44 Led.e. cc:nh R:: Len4ti: 1,50+ 0.5Q- Mi. <:q°d .a Q.504 CS "7500 1.55 CP 0,115 1.00 1..1111 Cb.arporc 2.11 1.1 Fez emu 81144 615 '};triteturn hearItlg I ee%seems used'.*/2 Ise 41513 tepperfs. Glulam-Unbal.,West Species,24F-1.8E WS,3-112"x11-7/8" 8 laminations,3.11?maximum width, Suppons:All-ilmber-sof!Ream,D.Ffr-L No 2 Total iengln:5'-1 0`;volume= 1 5 cu.ft; Lateral support:top=nnl.bottom=al supports; Analysis vs.Allowable Stress and Deflection;,sing NOS 2012: ttm/4,fl... A.aly_a1s Vatxte 8040510 UM//le. 'v'ott Aria '4 3 2 263 p.a- : f; t 11.24 L;<511 1« P CO ' 2405: , ... 5114/,' -. ..04 Pe dd. Uv^'-.1' t::2 2"':: r.0 - <L•99g 0.1 ,. 1.416,3 0.01 Additional Data: FACTORS: F4E1pss1CD CM Ct CL CV -.,1:. Sr CE.rt Note, CntCgr LCN 255 1,00 1,00 1, 1,31. 1.116 2 1T014 2400 1.66 1.6501,05 1-00 1.06 ..04 - 2 5`00 1,00 1.8 1.00 1 _. .. „H7 - 2 Emd.y1 5,511 CRITICAL LOAD COMBINATIONS: LC 2 - v_ b0 _- mc. s2 impcc.t. rc-c�.- Co ,,:. ,.earl, ,,_sea C A11 1. 'a ace listed i - _1Ue15 t,soot Load _,cb..at>.,,.n, A.CC -. £AL.C'J;,ATEONS. Det? - / lb-L02 T Design Notes: i,WoodWaris analysis and design ate in accordance with the CC Inlema Tonal Ru<:ibing Code OBS 2012),CoaNational Design Specification(NDS 2012),and NDS Design Supplement.. 2 Please vadfy that the default deflection limits are appropriate for your application. 3 Glulam design values are for materials conforming to ANSI 117-2010 and manufactured In accordance with ANSI A190.1-2007 4.GLULAM:bad=actual breadth x actual depth. 5 Glulam Reams shall be laterally supported according id the provisions of NOS Clause 3.3.3. 6,Gl.ULAM:bearing length based on smaller et Fcp(lensior.),Fcp(comp'n): Page 27 of 129 COMPANY PROJECT JPW9N WoodWorks Sep 9,20161t00 3FET5w,0 Design Check Calculation Sheet WoodWorks Sint 10.42 Loads: Toad Type iocatits: 2t1 1011 ' ,,do Unit Stst End Etart End 7oadl Dsati 'Full 9/T Si.0 plf Losd7 LivQ taTil itOT 121.0 pit Eelf-wriOt Dead loll 91)), 9.4 020 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in); 13%1 6" _ 13%olr Unfactored: Dead 593 593 Live 799 799 Factored: Total 1391 1991 aearing: Capacity eeam 1981 1301 Support 1911 1911 AnaliDes Seam 1.00 1.00 Support 0.12 0.72 Load cosib 92 02 Length 0.79 0.79 Min req'd 0.79 0.71 Cb 1,00 1.00 Cb min 1-00 1.00 Cb auoport 1.11 1. 11 Fcp sup 67L 625 Lumber-soft,D.Fir-L,No.2,4x12(3-1/2"x11-1/4") Supports:Alt-Timber-soft Beam,0 Fir-L Nd2 Total length:13`-1 6",volume=3,6 cu ft Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012; Criterion Analesie value Dealer /O10= Unit 001119sie/Deiirin Shear - - :44 ps) fa/Fr' = 0:31 Be0dibgi=1 10 = 730 FL' - 702 tb/Eb' - 0.92 Dead Defl'o 0.09 . <L/999 'Tee Defi'n 0.12 <1/999 1.44 = 1iE61 in 1,24 Total Defi'n 0.27 = L4590 0.6!i - 1424e in 0,4' Additional Data: FACTORS: F/F(psi)CD CM Ct Cl 1:11 Cr Ctrt Ci Cr; LC; Fy" 180 1_00 1.10 1.00 - - 1.00 0.90 1.00 801; 1.00 1,00 1,00 i.000 4.00 1.00 1.00 9.90 - 2 Fop' 625 - 1.00 1,00 - 1.0'4 1.00 - E' 1.6 million 1..00 1.00 1.e1) e.95 2 Fmin' 0.58 million 1,90 1,00 - - 1,00 0.95 - 2 CRITICAL LOAD COMBINATIONS Shear LE 110 - EmL, V . 1324, V neeinn - 1170 lbe eendihg(±): LC 42 . H = 440e 9,o-0 Deflection: LC 92 - D41, fuse 1,(1 92 = DL itetel) e=dead 101.)10 0,'5110W W-wind T.impact Lf.roef liwn Lc-cercentrater: e=eartnquake 511 5,0'3 are 1isted in the Anelysie entpuL Load combinations: 511/'1 7-/11; i IBC 0012 CALCULATIONS: Deflection: ET := 154,406 II' ;n2 "Live" defire.tion = EeflecLion from I. nen.deac Inane ,Tee, enow-) Total Defier:LA.4e = 1.50;1'ead Load derlerion , Live Loed Deflection, Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4A 1 . „ C'LIENT: • Page 28 of 12g ttyct39 st no 0,c„,gon 97223 5 PROJECT: tor,01.in20.5 NUMBER: „4„:.Kg Oreg,:)n 97703 &;•11-3,:f.5-182.8 FROELICHDATE: 12303 Airpo,7 Way,Suite''..Y30 ENGINEERSZ Coiorado 800'21 72C5502259 BY: • .„,„„ *-4 • D ( I ) (e- ) -f•SPAALs. S —0 L , LL c„.E.7,;) (40) S 000 P4-4: • • Page 29 of 129 : COMPANY PROJECT 40,t r` Ii k s 40g 31.1010(}9.:3 3F4-11 vast, �•'- 171/7101721/OA W 55:.55, Design Check Calculation Sheet wsodwwks Seer 110.42 Loads: iW^^ 1ST Iso $ti et 1,01110re0,01> eft; Noah,ludo ..131, .01 Steveo S:ut t 7'2 601 a:SkScow 411, 7071. 405,6 oe7 exesdee Live .t ur,L. 600.0 pit .a.. 4611 ,,.Y), .. _ 6.0 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 3'4r 15) 11 3.36 641 aaxnr e1: 936 Total 1077 1577 seer eon: Seem 1171 ompert 1740 1577 /C4e 17 36 .00 55.5,1 1.10 ;..Cit 50 cob u2 ?,::.2 42 Min�tare:7.1 .7.72 0 .":2 .00 0.0;' Cb m.. .60 1..00 s sop ott 1.11 1..00 000 sno - 625 1..11 625 Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7-114") Supports:Alt-Timber-soft Beam,D.Fir-.No 2 Total length:3,4.4':volume=6 5 Cu.ft Lateral support top=at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012 C ran k.;>lysla Value SerSaws Value thr>5 Aselyanfiieaigr, 04 1147 = 140 pa.. vfyy ... 0.30 SeAdiA"1i,) 06 463 05' . 1165 psa 05,/742.' _. 0.40 eleeti 0.4701'71 1.0:0 ' 990 I _t'. J 01 m .7./999 0.101= 0/360 0.07 ' in 1 b7 0.01 _u.<:2:1499 0.15 - 7./260 to ;.(,F; Additional Data: FACTORS: 6/E(pei!C0 Cel Ct Cl. (7l' Cfs Cr .^Scot 771 Ce 000 Tv' 140 1.00 1.00 1.00. - - -. 1.00 7,00 1,00 et>'.. 500 1.00 1,00 1.00 0.996 1-300 1,10 0.01 1.00 1.00 - 2 Fop' 5/0 .. .5)0 1.00 - 1.6 million 1.00 1..00 1.00 1,110 2 2s171' 01.114 million 1.00 1.00 - - 1.00 1,04 2 CRITICAL 1050 COMBINATIONS: Sewer 1,0, V 1547, V'50010n 901 IS, 506111060+1: 1.0 52 - L'+-:,, 5,3 , 1163 .167+-:'t rVe:'.leetioeu i;; 32 4 0''), (7.': LC 12 ::: Dai, .t:ot.r.; ^"x d 1411ot Soortow ,a 510.2 114impect 1.644661 live Lo4sononotrat,dfeesetbauake «:i S ,.01 d riga lya s t. 2 a u Load dmbif e _xa, . 5(000 F- / 532 20:.01.2 CALO 5TIQN3 a,110-;ao,' from all :1 i 4 d loads elivee wind, snc5_E . Ko 1addar.1d.an /.50iD,,d Z :d C i i "ne + ',ter` Load J fls". ,c0.:. Lato s,,,,.,a bit_., {"1. L„ t --1,")..".. 11,. o 0`47.621" 09 4 0.09 Design Notes: 1.woodworks analysis and design are in accordance with the ICC International Building Code{18C 2612),the National Design Specification(NOS 2012),and NOS Design Supplement. 2 Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber Wending members shall be laterally supported according to the provisions of NDS Clause 4:4.1. Page 30 of 129' . . , .. . '.'..•;::..:.•.• •.':"...:','.',...':' ....7.: '.''.- ''''' •'• ''' ..,; i-*. I.',:;-,-,,.,--:.- '.:,•:,.,:-. r , _ .., , q)--— ti I i li si ......,...-..-11- , 1..• .-.,,,,..., .1.: , 6 11 4 v i IRla L 4'V. ' 41.04-••••4•447 2„i • ' • 11 , L AT-) I I i II 1 ! . gvist.....).., ........— . ., ,MN 66461 161161111Wv''',t.! I,I. .i ......„1,Yt 1 1 , ki..K:, ,.,...i •,, , ... .......,.._........... 1 i ..,, .:, I,- '1, .... . 1 i •1 , , .1 44% I I 1 .j . I L , -•, 3 i N .• I II 1 It-,,,z.5?,riqs --I ,,,==,,, : ,..• . . . I 0‹ , :. • 14 1 .... u ..• ,..,..,41,1;-,.- .•. ...• i I , ,,p 1 .• •, ... ...., , ...„.. N . • .• / . , Ti i • ••• :1 I • - 1, -- - ,, iii , ,..,•„'i ,,,,. .! ,,,,,, ,,,, . ... I co-,,,,, ,,,,..„! , ....,• ,. . • ..,,, ,,,,,,,,,.....______.....„.......„ ,,,1. . ! Lem .• . ,, ,.. 21 ,: .. ....... .. •. ,... I 1 i 1'. 1 1! .., .... .., ,f, I .1 t r f •{ ;,I ',. •1 .. i1 . .... t.u„:„. 5.,,..,,..,,„:„.1.,-....,....„,..,...,,...-..,....,..v..„..........1 .•': ' i 1 1 . . 1 , ..... CHT 1 Page 31 of 129 gc:- SO3-524-7005 PROi.i „„• ,„.. " - - e - • -,r45 Washfng ton 1.).#205 NUMBER g7703 S41-383,1823 FROELICH otc, DATE: 12303 Airport Wc..y,Suite 200 ENGINEERS .; EirsornfiS!d,CoiOradO 80021 , • 720-560-2269 BY. ,„47, See 3oto FeA AAA Ai G t:;,es G.Ai • • — /\ I I 2F8.1 1 F-2, 4 1 e,10 , t en A r • Fl ,-;';--iii'aXffiel'•••••••••••------ ,- ' 1 1 ....,,,,,„...._ ,..1/4;......t_ i . . . 1 . , ' 'IliTik---allilH" 11-1: , ,,i • . 1 4;01 Pci i I . ; I1 4, $ 34 4; 1 , 1 1 I: 7,7,-;,:z -- .„, 1 . , 1 , - , 4 l• I • ,..4, . , ... H __.........._r_ -. a J i i ,-..• i , .. , , , --- . 7----------- :. ,, ,. , 7------ , ,. , ,••1 • , :1 i , ; ii. 113 r . , . , I. .,„„,...—,--'''' ,1 -.1 11 ,' 0 9 1 14 • 4 1 1 2 2 i 4 . i 4 11 1 6 3 3 0 4 6 , V i 1 1 1 1 , CV 1 e I ; i 4 1 4 1 1 4 1 1 6131 4 4 I i 2 • IW P 4 t,, 4._ .......I. ..., , 1...._, 1 I 4 3 r s 2', 4 ......".........."..". i 34 i,- :..o o co r,..) o ND 21 a eic- 8A, eiz,,t eA..ir • = CD E"vT: Page 33 of 129 5900 3 ,-1,-;,--p 3r1 St. ` For and Ori'Jv`1:-7223 503-624-7:05 PROJECT. 4 -' ' 7 ti1 ' icr Cr.`205 NUMBER Bend,Oregon 97703 F(}/'}O E L C t 541-383-1828 R IC H Ji Denver Office DATE: ENG NEE S ; 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 720-560-2269 BY: re € F A= 0EAD 1.1)4 i- .s' Z7 P FGcxoe. 11vE L4:3A D . Io F F 1441-1- DeAO COAD r lZ FSF Deck D,Af Ab 12 p, F j ST Ft-t)0ft3.z.t -IS: c L% Z7PsF i Ak- „, _R.� F LC_ , o PsF ' ” . 1 Page 34 of 12 Pon„no Ore4.\'197223 • 503 624-7C05 PROJECT , 745 NW Mf,Wo4flçJ1CnDr / es NUMBER Oregon 97/03 541 383-1828 FROELICHDATE 2303 Alrpof t Way,SJite 200 ENGINEERSi Bfoorro,O Colorado 80021 720.5o0-2269 55. A-11,c70/4 664 Ake-, z w -‘,SPA,A1 ° DL:(4-0(ii) n PLF oct-i)(2...tzsy, 2..eur) PLF IF a Zie ' 1'>AAJ LF St_s- (c-ki) (-2-5) oo Pt r PA/J22Lo f CIL 12-o 113C3 )(2-7;) 12..0 I t390 PLF 25 r 1167 Use 757 - 'r 15'1' '151. I/11 (40 111757 ,1 klt.40 PLF V 2-- c S. 2 • Page 35 of 129 CLIENT: _., PROJECT: Of-„, hc,,3 s£: 3 NUMBER: FROELICHDATE. 123,J3 u :fe 2C0 ENGIN EERSa F2 20 b;50 22OQ BY: 5-5o PL_C_ moo:v." Ce..-+,r1/4.'ke r- c-Y-0 f B c SPAN,: 1 (1%) 12.0 Cf.-11)(2:0 pri . 1 2.5) r of_ n 1 � 9 0 PAF $ Luwi ( )(Ltk;)) 72, 1 ! 5 7 a _ t3 Page 36 of 12g. ;7,olivno C 7223 583 62.-78:08: PROJEC fNumBER 7763 -33 FROELICH ] )'' DATE' 12303 Nrrt Wcri 2CC ENGINEERS BrOGTIhOld OC/I0rOCE)8CO21 720•560•226,Q BY. I F EV t SPAAJ s- 7- 0 L4 Dim t pt,c- F ato AAJrtil0 *- 14‘) DL„ LAcz 9L,F LI- tz-oPL 5 L. 5 (, ro 5V‘4$2,1- co"AA °‘12 sc_i c.„,, (1 t-1 6001:10) F , PA A)r 3 I-0AC)- AT I -6 izom, IF20) ico.* Toot S 765 OV Page 37 of 129 COMPANYNY PROJEINA A ks® WO 0 d Wo r Aug 3 201 pro! IFel w b R,2,4 o1100 D0012122 Design Check Calculation Sheet oniworfes Siler 10.42 Loads: i;440 L Loadz 1.0oe Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 00....00 0' Dead '242 Sour. 242 Sn Factored: 1:03 :al. >14I tl t. Capacity low 1044 . .;p4o . .s.. 11.11 Anai:Des _?.I1 learn (1.'; iI.'fa `.;port 0.70 Lo5ad comb 02 Q.',0 rig Lengih 17.503 Sin re;:'d 0.00• 0.10' Ch (.60 1,00 CC'min 1..00 Cb s .,.ort 1,11 FOP aeg 't- `irtimum hearted)length setting used:1514'far end Supports .02,211 Lumber-sok,D.Fir-L,No.2,4x10(311/2"x9.114") Supports:An-Timber-soft Beam,D.Firi No 2 Total length:6'-1,0";volume=1.A cu ft: Labial support:top=lull,bottom"at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: 4, tonne k? _ Desi r' 'z s J.24 Dead Deft';, c12.999 :ave :011'1, O.Oh Totee(. Deft'm 0.212 m 14.29.0Fd /..-140 .n., O.Ib�5 Additional Data: FACTORS: Fie/G:.,.;CO C_ C. to Cr 004t Si - '.CA ('v' 130 no _.2.,.. .... ... 2 E' t, 1... 1.110 ': 2 emirs' 0,50 r .., -CRITICAL LOAD CCfdi3JNATE2NE1 Shear IC - 022 Is: €lendx:q I>:4 LC. k. m 01 91 m Pet 1 ev Lion: LC410,0 A12120 1.0 42 :1. 0-dead S 929.'20.1 Lrhm.of 1 is, 11,..oce..._s,._ ._atacua rc. :'.1 LC'x are 1i.,_ ootbot - CALCULATIONS: "Live" doflcet_o.s Deflec_ .1:a TotAlCot.te.st::on 4 , C .,1 L.._:. 1°oh imo vo 1Lcad Det L5:4 Design Notes: 1 Woo/Works analysis and design are in accordance with Mu ICC international Building Code(IBC 2012),the National Design Specification{NDS 2012),and NOS Design Supplement. 2 Please verify that the default deflection limits are appropriate for your applicalion, 3 Sawn lumber beetling members strati be laterally supported according to the provisions of NDS Clause 4..4..1< Page 38 of 129 COMPANY-�- PROJECT �}ood\A/or s tu- 31,2610 11:02 tf[;2.rrwn 9.11.1V- ;173?3,YASi 9430:'r T i st Design Check Calculation Sheet WoodsAfoEks Sizer 10.42 Loads: ..< ,:-= Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 8'-8 5' _�� ...- ..__... __...... _._. .�.. • X34939 3104 d 2111 2519 r._v... 2694 S00, hi" 170 Fact ts,12. •90,a. 511l.. 4554 1,0270 11,i330,4 _ , 4309 561 10001 I 1.1" .:00004 .9.) 0.97 1.02:: '.:m4. 112 3.>3#{:p f 1.27 Kin 1034'" 1,27 113 1.111 (.+11 c ,."., 1.01' p I.i)7 Glularrl'Unbal.,West Species,24F-1.8E WS,5.112`x9" 8 hsminnfe00,0,,or roar 1111JM Buf>porls:611-'trig/0406 Bourn,D..Ftr.t-194.2. 1)11991006111'9'415",,..A.nke30'or.II Lateral support top=a1 supports,honor-=ai supports; Analysis vs.Allowable Stress and Deflection„sing NDS 2012: 110732. 120 9 2011 it/ J w 3,0, nE.r 2e, 0,30f 1,.: . 13'9 T ,,1 2,331"9 . . 3 3,, Additional Data: FACTORS: F:Elpsi)CQ 1171 .1L ..- 11.11tt 915"5 : ,27k 197' 2 0., 1.00 l 00 1.00 = - 1: :..4G. 1,09 7 2490 I.1;E) 1.)E: 1.03 0.952 .,'10 1.10 1,10 1.01 _. 7 1940. 050 - 1.00 1.01 - I.0 mi.11:,o:: 1,01' 1.99 • 9 -009' 0.11 int i .60 1.06 CRITICAL LOAD COMBINATIONS: 112I 92 7 1.197711 7,07 ;7=3009 t790,100 .19317709,5 7,7,99f 119/ 110..72000,, r t0-31 917992t1,49/1, ATI 117:7 t 9 17305,1 3.0 49:0,:y4is 00949t• 1.0433 sLCULAT'IEO'1100 v. 1:; E:.;.+ - -..Y: .... - 10, 05 _ ..c. Design Notes: ?.W004Works anolysra and design are in aecmda ce with the ICC International Building Cade(16C 2012),the National Design Specification(NDS 2012).and NDS Des<gn Sopplemenl. 2 Ptease verify that the defaull deflection€(013115 are appropriate for your applicalien, 3 0)1000009011)1)010001010101 materials conforming to ANSI 117-2010 and manufa Oared in acx00I011 e with ANSI A190.1-2007 4 GLULAM;beg=actual breadth x auual depth. 5..Ghriarn Beams shalt be lelerally supponc'd oocorfing do tate provisions of NDS Clause 3,3.3, B.GLUL A,M'bearing ie,glb based on smaller of Pcp(lerrsion),Fcp(ccxrlp'fl). Page 39 of 129 COMPANY0)91' PROJECT - _ v'.;g..31.234 irf33,w`e:J Wo o d WO r Design Check Calculation Sheet WoolWorhs Sizer 1042 Loads: Load r Typo' - f i<ani - _ �. _ 320,0 ella<x Load2 Live 4:313 003, 31442.3i • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 2s-1.5' 1lnfactored: Dead 16094 Live 13199 9509: 15199 recto%twit _.. _.. Po 111 29293 Sea;ir:91 29293 Capacity Beam 3046.0 Support 29293 30463 Anal/Dee 29293 0.9,, Support 1.00 6.99 Load c 12 1,92 m.- 0 Length 6.94 02 M teted 6.9466 ." 20' 1.00 d.1.-J Cl,.`rd 1.00 1.00 . 1.00 euppert 00 I.o F612 aeo 625 3,x5 MiPumufn Wallas 15015103 geve0115d*y the requitedWIMP e1 file Sup;per13fry 3000)1014. Glulam-Unbal.,West Species,24F-1.8E WS,8.314"x28-112" 19 laminations,5-314'maximum width, Supports:A2-Timbe-soft Beam,D,Fir-L No 2 Total lenglfr 2.3'-1.9';volume a 30:9 cult; Lateral support:lop.Full,bottom.full; Analysis vs.Allowable Stress and Deflection uai,19 NDS 2012: nei.teriain P a,yu: fa z;.e )f ,r rte tart; ;',11,114n i€e sdg,, st:eas tv- 1,0 £.• - a,zatis.:.nit/ f0: =211' f„ __._ e6": 1.00 Dead Ca:ii', e.30 - 11731 Live- be:l'r: 0.29 Lf952 0.73 3„3.66 :. 0.30 Tnt- Iafl'1' 11,80,- 1.//36 1.1 - Lt240 00 0,71 Additional Data: FACTORS: 0/63pailCU (;M :5 , .. Cl, „r _ 0 t;Lisor,•, • vCvr G4 Fv' 1.00 3.00 1.00 - - .-- - 1.00 1.00 1..00 2 11.'4- 2400 1.00 1.00 1.00 1.066 0,364 1,06 1.06 1..60 ),,i - 2 Fop' 65:"., - 1. C - - - - I."-) - 1.6 million 1.00 1.0:) - - ._ - :I.010 . - 2 °;;mi,?' 0,95 million )..00 1.117 ._ ... 1,')n ... - 2 CRITICAL LOAD COMBINATIONS: Shea I,C 97 - 01l, V `S2, s 2102/ II',. Dendiog(o/: 1:1 52 J+;., 14 m 16/21.9 16:.'-(�'c vaflecttort: 1.0 /12 D;L (1'i•-rz) LC 92 - 1)01, 30013313 .=load L-1ivn 3-5n9w 0,1001 1'., act 2,:-r .. ,.v_ Le-cnntveibmted Ameartbgdake All ""s ace listed in 1/::.4:1 b/al•, pet: i:o:xd ., 0.vbieetl.one 50 7-10 :`. r 102").' CALCULATIONS: Deflection: 62 d 23436e05 7/.-.it:' deflection Dellerfro 11. ..:-10.11/ 1>x<, 31v anew - Total 0e61e.:'tio. 4 1.17(i)_ad Lead 0efie._i._R) L1.0 Lead Pelle,tiem. Design Notes: 4,.WoodWorss analysis and design are in 9Ceerdan2e with:ha iCC In amati sal Building Cede(IBC 2012),the National Design Specification(NOS 2012),and 1405 Design Suppiemeni. 2.Please verify Thal Me default deflection limns are applCpr'ate for your appii:alion. 3.:Glulam design values are for materials coniemin9 10 ANSI 11'-2019 and ma/Mac-lured n acconlance with ANSI A190.1.2007 4.GLUL;M:bud=actual bread€h x ac#sial depth. 5.Glulam Beams stab be lalera€ly supported a:0:023 9 td 1765 prevision;of NDS Clause 3.3.3. 8. GLULAM:bearing length based on smaller of Fc,^.(tersion),Fcucomp'n;, Page 40 of 129 - COMPANY PROJECT Wood\tVorksertiPat . t:r. (1,:s ,li Jan,24,2017 22:35 1 F:S4 Lon't -444,A40 01),,h AA) 4q..,..,00/31 1.5 Design Check Calculation Sheet Wood4,414i%s Stair 10 42 Loads: - _ load Typc F.,:,e,5.71 ,, :7i.: :' , .L.,C,,:i.,1 (ft 1 M.3403::3.)0 tin i Ii 440 0:3tt 20d Statt End to.,D2 Paad loll mit. 420.d PT: Looda Live 3,7,11 04L 120.0 pit tmeni 11'4, roll .P4. 50,0 DII • . Maximum Reactions(ibs),Bearing Capacities(lbs)and Bearing Lengths(In): _ v 4, 12441.7- Mirout444444 Dead 2570 2570 11ve 1.041 1043 464046emal 6 Total 3621 2621 B044.44640 dal:moo:4 00600 376n 3766 Support 3621 3621 Analt0e., Beam 0,26 0.96 Support 1.00 1.03 Load comb n242 Langlb 5466 1.66 Min req'd 1.66... 4.6644 Cl. 1,00 1.00 Cl.nan 1.00 1.00 Cl'support 1.00 1.00 BDo sup 625 625 -'18inimernOganngintafgh goVamed by Me required yoarth OM*auppOnIng member, Giulam-Unbal.,West Species,24F-1.8E WS,3-1/2"x11-7/9" 88001/0118,34/2'maximum width, &mods:An 4 Timber-oft Beam,D.FiriiL No2 Total length:/2.33';volume= 3 5 Cu ft. La/oral support:lop=full,bottom=full; Analysis vs.Allowable Stress and Deflection using NOS 20121 4,:Trt.:Ion AuriLhe 01 ,,, ,v44.4 VA iue 11e7iV '10,400 005 Anal yo L44f0M4 ir , 2,an Dn1 iv/By' -v 6.40 Budd iput r 4) 06 4r: 1545 00' - 2400 psi f1,/Ft,' a 0,66 dead 080.1 i a 0.23 - 6?624 Live Dell'n 0,3)2 .41/955 0,45 . 1/360 in 0.23 lintel tin tfl f 0 33,44 ' L1420 5.61 - r,1240 III Additional Data: FACTORS, 14/6,14s1ICa CM 60 Cl C9 014 Cr Cfrt Note.CrE4C0r LCI 65, 265 1,00 1,00 3.00 - - 1.00 1.00 1,00 2 1-1.', 2400 1.00 1.60 3.00 1,000 1.000 1.00 1,00 1.00 1.00 - 2 Our' 650 - 1.00 1,00 , 14' 1,8 04.11305 1.00 1.06 - , , ' LOG a 2 Slurry' 0.05 mlilido 1.00 1,00 - - - - 2 CR/TICAL LOAD CONIEUNATiONS: Sheat : 12 02 --- 10-30, V. 7001, p d„,,i,,,,, - 2005 Ibr, Bend,,,/ ): CC 42 - 044,, 44- 1066 Deflectio.: lt: 42 . 0.1 Dive) 1.0 42 - 011,.., “watall 0.-dead 1Y-live 0--snow 14-aLr311 1.1m54rt lieroef UNC EA.,,,A1000trated t;,,,,,thquahe Al) 1.1.3 450 11.0004 id 4,0,4 13,41/030 0<1/3<4. Load centinatiprint ASCE 7-10 f ,DD 2012 CALCULATIONS: 04,21e0t000: EI . 87..56 lb 0n2 "Live d,'01,-,3.0,): . flefilection t,em all ne.-dead load. ;Uwe, viol, snow..1 Tutal Cmfleation. 1,5G333ea4 load Suflertion) , Livn load tlefimutio6. Design Notes: 1.WoodWorits analysis and tiesv are in accordance yinh Me ICC Inlemational Buikling Code(IBC 20121,15e National Design Specification(NOS 2812),and NDS Design SuppierrienT 2 Please verify Mat the defauft deflection limits are appropriate fur your application, 1 Gluier°design vaiues are for rnatenals conforming in ANSI 1(7.2010804 manufactured in accordance with ANSI A lag 1.2007 4.OLULAM:Soda actual bnuaigh x 811101 40010 5.Giulam Beams shall be lalerally supported according to Iho previsions of NOS Clause 1.13. 8.DLULAM:bearing length based on smaller of Fcp(lension),Fcp(cornpn). Page 41 of 129 .............................__ CQNGANT..,..._r..PROJECT _......_......_......_ 43, WO o ® Design Check Calculation Sheet Wo):S.44A"SUR IT 42 Loads: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): — 55 3z: • Lumber-soft,Hem-Fir,No.2,4x12(3.1/2"xt 1-1/4") Support:Al-Tintoomil Seem.D f i-t No 2 ThA laTop.332',o4eo.SO 9 cull; Waal erepo*top At bottom.al swoons; Analysis vs.Allowable Stress and Deflection uti'q N0.4 nil. Additional Data: R46CAl C.&vJO'OOT Design Notes: 1.WcodwaiaP.OSvsia0C*slur,aro A vORa.-44,M+.^.4 GCt�Y.:.:ffim'xa :.*i's f:,.a:ii?::2C<5.14 NO WCo ,x, uoctusuo 1.923231'2;,/04029 LMS Suppirrnmo 2.Mose xrO/:tvs E»debut d0M0;in Ytat%s auorot a'«lycr opp7c100. 3 Onbrbmb'y mamhere er pi to Lxan:ys pc,PoO 00axe tog;-7 Po poNA..uu 1003:Ouse 44, Page 42 of 129 COMPANY PROJECT-.._.._.�___. �^ A if tel d `,. •! �� trti W ikS Aug.31,2015 11:63 9504 rrtvb Design Check Calculation Sheet L SftC>•'3L`>'flrlss soon:10 42 Loads: .. ; .. .;t. ., )_ MamsiliMs- ' start 10d 1=919 re.. 11 957.0 �•>,: .:1 I. azar, It 350.n tali - „a t:i. 15.0 p II Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): r m 0•4r • ....._.._._-..__ _..__� ..._..�_lipad 4047 Imo, 77r=eact>re<i. 1047 Live 12,9 4279 Snow 1468 _460 Factored: Total 831'7. 4357 Capacity e3`;? Beam 5351 Support. 8583 8583 Anal/Dos Beam 1.00 1.. 0 Support. 0.97 n'".7 Load comb 43 %s Lemli: 2.31 2.34 Man mega 2.34 2.31 r.,k, 1.80 1.00 Cb min 1.00 1.00 Cb support 1.07 '07 Glulam-Unbal.,West Species,24F-1.8E WS,5-112"x11-7/8" 6 laminations,5.1/2"maximum width, Supports:All-limber-soft Beam,D.Fir-L No.2 Total length:6'-4.7';volume= 3 A ea,ft; Lateral support:tope full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using Nos 2012: C- .erionr1.u<• i '' 1 nSS t,nsly of len.. grioar )ti y do9 psi f to 1 i 1 it 1547 ,. da::. psi f./Yh' - 0.84 dead Dr1>''2 0.67 r,Li'3t}'s Live nert.ri 0.08 . 451339 - 4/300 5n .21 Tonal. t',i3 r .'o .18 1:' 4 4? 4/300 f 5/2.40 ->. 0.41 Additional Data: FACTORS: %Etpoi7.i) CM <... CV Cf. ::r Cfrt Notes Cn'Cvr Lf'.;! Fa' 215 I.00 1.00 1.70 1.00 1.00 1.-00 I''a 2400 1..00 LOO - 3..';;" 1.000 1.00 1,00 1.0') 1.00 - Fop' SS0 - );) 1.00 E' 1.0 mi'lion 1.00 1.00 km.iny' 0.85 million i..00 ::.0: - 1,00 3 CRITICAL LOAD COMBINATIONS SF.t>ar 1 15,, 52 _.)'(U, v 601, ,,, ',1 ,>,;= 3979 lbs 2:: , ra totrat It, :e. 1101 ctIour I.0 a .. 11.'71113', dive) LC dt t 0,,:d ad I..A.ta 9-anow d- 7 I ( ,.>.>1 1' t. _---"oncv.n-r-L a 1-t...t..tgeek= All 1,1117 ate 11ated ir: 11,= 1,,,iv,:ta output 51.02 comtinatton,, 1.3101 7 17 1.71 ::01 CALCULATIONS: .. cel.: - ..1 - 1971,06 1L-172 ”Itoc. de1lectIonr: ,e-daad load, (tive, aeow.I foga. L<f eoti<>1 - ..a-t7ae 3=1177,,anr = lt,e Load Deflection, Design Notes: 1.WosJoolics analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement 2 Please eerily Mal the default deflection limits are appropr:ale for yaw application. 3:Giulam des'p)n values are for materials conforming Ie ANSI 117.2010 and manufactured in accordance with ANSI 5150,1.2007 4 GLULAM:bed=actual breadth x nOuai depth 5.Gluten!Beams That be laterally supported according to ins provisions of NOS Clause 3.3.:3, 6;GLULAM:beating length based an smaller of Fcp(leosiun).Fcp(eemp'n),. Page 43 of 129 , COMPANY PROJECT .414x tWo r ksn 4�. Aug Ji,7.,5811: 5 1487 unit) Design Check Calculation Sheet WaodWork,Sizer 10 42 Loads: iced A 2:3.04 toil C't•, 4,11 I0e :lal zt:t Peed '<1 & p1.1. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) .. . _ ...�........ . .,........m�.,_,. .13'2.4'.,. mom» W............. ma.,�._.,.,._ ::1 74o:4d; Deati _'30 ' <ssa Live 7390 1390 Fa4tteted: Total 14924 -... 11226 Capacity Beam 14916,. � p92t'. 15931. 33 x1.4:64 ..,33:1 :•Beam: 1.00 1.0 zu1'Pox:r. 0.37 0.91 Load comb 02 02 Length 1.19 4.10 reg'd 4_10 4.16 ;3n b4.00 1,00 Cb rn . 1.61 CO support 1,07 .07 2; r..,. :rxxp fit. - Glulam-Unbar.,West Species,24F-4.8E WS,5-102"x16" 12 laminalions,5-1/2"1710011110111 width, Supports:All-Timber-soft Beam,U.Fir-L No 2 Total length:13'-2,4';volume= 9.1 cu lt.; Lateral support:top=lug,bottom=of supports; Analysis vs.Allowable Stress and Deflection„sing NOS 2012: 13X3;:113,0, Araeloaaa P toe Pool?: Value 'lin 4 An,I, f s 1,0 ending 411 ;.i:id b clef`.:`. _ 1357 Ltet Def:'r 0 = < •:1.9'3 0.43- 74.101 .a: 66.33 (rota; 0,'f1'n 0.3e .213 1,04 Ll240 0,9333 Additional Data: FACTOr25: Flri;ps,IC11 _., LTi: ::Cid Note 'n'P✓e Log 265 1.00 0,0133,00 Fe'+ 2400 1.00 1.01.00 1.000 1,011,7 3.00 - _ Cop' 650 ... 1 3.32 1.6 million 1 1..03 tr-lny' 0.05 0411100 ! 3.02 - .. _ - 2 CRITICAL LOAD COMBINATIONS: t;' 02 a D:1., 41,36, design. ,. ;.0743 t ;, !?ndiov it: LC a2 -. Gro, M = 46£92 lbs 0: Deflection: 1.33 0' 0'). 10.:.2,91 1.0 42 r LiL /%11ni1 D=dcad Lolo-ve S.snew ir'-wi.nd 1-impact tr.r4,01 . ..... ...,,,t.. I....:.ae.teq;i:xke All :,C's, 0r steel 1n the Fn,,)f ut:p:r0 1.4,+c3 ,3041..cr:s: .A.06 7-10 , .e.- 4012 CALCULATIONS: Deflection: ES ::. 407.1016 12: 2 "Lave.dc-1r:tin-, " eeldectian gr.:mg:OA ss„-...-.a-; 11ad- _ 'e, 01,4. ,:,w.L W4,Lol 0:'1mc21:n 1,50(Dead .,,.ad eeflectk,n1 1 Live Load OcE1ection. Design Notes: I Woodworks analysis and design are in accordance wilh the ICC Iniemal oral Budding Code(IBC 2012).the Naionat Design Specification(NDS 2012),and NDS Design Supplement 2 Please verify Mal the default deflection!links are appropriale for your application. 3.Giulam design values are for materials conforming Is ANSI 117.2010 and manufactured in accordance wilts ANSI A190.1.2007 4 GLI:LAM:bxd=satua16,0001h x aduai depth. 5.Glulam Beams shall be laleretty supported according to the provisions of NOS Clause 3 3.3. 6..GLLJLAM:bearing length used on smaller of Fcp(lenslon),Fcp(cemp'n).. Page 44 of 120 • _ COMPANY PROJECT d..t,= e i al " 0 dW r a Imo o ks Aug.31,2018 11:88 I 1 f'88.wxu Design Check Calculation Sheet W00,i arks Sizer 10 42 Loads: a': Lea.. t. .. .t.-. 4;.', 1 L814• 22 ffve •:, 1 888 880.0 S. 1.ad - Of • 1e _ght ,w a t _.. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): pm, 333 3 _ __..__.......,..... -'12'-11,9' -'—`' �,. �a _-..� _ r_ _�m .. 'z-: Ur:factored: 925 ; Lind 127.3 6'S Sive 32 Snow 32^ Factored, : 1. Hi Total - 3 333... 3333 12551 Hearing: , Capacity t.iI5H 1. Seams 0501 10565 Support tocinn AnaliSes 1,88 Seam 1;08 :1,37 Support 0.92 42 Load coma: F22.02 Length .4i -46 561.0 r ^'d 2.44 1,88 Cl, 1.88 1.,00 Ii,t r, 1..C7 Cl,sapper,: !.crit" E0: £.:a sup 625 Glulam-llnbal.,West Species,24F-1.8E WS,5-112"x15" 10 laminations,5.112'maximum widln. Supports:All-Timber-soft Beam,D Fir-L Not Total length:12'-11.9';volume a 74 cult.; Lateral support:low full,bottoms al supports; Analysis vs.Allowable Stress and Deflection,;sing NOS 2012; . Cat ant/ma Xnal feta v l.za40 . , i S l 4 v .,*,;,,,,,•i 'P_ear - 2..-. ,t - 0,56 Hr.>n.5'::<lttt Zr, ,. .. ib' _ . ieb' 'e 0,95 Dead 's :. : 3 a :m, Dell's 0.15 w. Li591 0.36 TeLel Ds-.1' ..« 5,4 -,,„',L3. 0,70. Additional Data. F'A ORS, ips2 CC 2-. ..r C a e: `200 7204zie r, 16' 1.00 .'90 1,909 ") ..r0 2 6'p*y �1r o oh , 1 y CRITICAL LOAD COM'NATi N . Shear D.1, itma;., : 0115 le D404,,i08Yfl, LC a2 _ ti - .-- De:.lection - a2 - 0,b, l D.dea8 10alive ,55.50 ':.: '.:.1.,.: take A1` 'S _ VS.03 :5 .. A11 3333. :l .� ]:�'..:� fxra 3 ,>k..:.!,a: s 13 i aff,2011 CALCLILATiON2- L e_i-r.t:a::n: CZ _ :':99,45 11,6102 Design Notes: I WoodWorks analysis and design are in accordance with the ICC L3ie:nationa)Pudding Code(ISC 2012),the National Design Specification(NDS 2012),and NOS Design Supplement. 2 Please verily Mal the defauil deflection limits are appro✓taw'+r your applcat:on. 3..Glulaer design values are for materials conforming id ANS!117-2010 and manufactured in accordance with ANSI A180.1-2007 4..GLUhM:bad a actual breadth x ordeal depth, 5:.Gluiam Beams shall be laterally supported according to the prnv Sens of NOS Clause 3.'3 3. B.GLUiAM:bearing length based on sma et of Pcp(terksfenf,P25150:52210 33 33 3 3 3 3 Page 45 of 129 ,....,. .._..._._-..��.___„„...„ COMPANY PROJECT if rks \k/Ni ic6 Aug: 31,20`511:00 1F00.*vat, Design Check Calculation Sheet WdOdhVorks Size(10 42 Loads: Leal t es 1 1 Sraw 0411 901. ,l yes weight Dad 4,311 VOLul£ Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(In) 0* �� a dsfartpirdi Dead e2x inaw 2:.30 130 z13a Total 2959 2950 _ 4.y `Sak am :1959 z15 support 31563156 A;rai?Des Fuse 1.00 1.00. Support 41.99 0.94 Load owes 42 • 32 Lere0th 1.30 1.30 H.i.e 1.30 1.30 co 1.54) 1.00 Ch 1.00 1.01 Ch suf 'poxt 1.11 1.01 1'rp sup 125 �.. ,., 6'1,.5 Glulam-Unbal.,West Species,24F-1.$E WS,3-1f2"x10-112" 7 laminations.3-1/2'maximum Width. Supports:Ali-Timber-soft Beam,D Fir-L No 2 Total length:12'-2,0';volume e 3.1 cu.ft Lateral support top=lull,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: LT s 4,250 Arts; 4.133 0010e D1,0 t 1P1,10 AsaI 0330151,3333331> ;ae54 _ -.. .. „ 1=V' ),:.. Seedia4(+) 7 1631 33 u/ 3 ' 3's) c•=x f);/e',,' - 0.50 Dead 00 'e 0.3). <1,1999 Live Duri'd 0. 0. Total. Deli's... n I !4 ... t _36 .. s „ ,. Ls 0.73 Additional Data: FACTORS: 0IE(p.>::.)13) CP Cr CL S£,.[ Cc C1:.>.t Notes Cn'Cvr(00 )>v' 465 1.15 1,00 1.6D v .. 1.00 1.00 7,3)0 2 2400 1.15 1.00 1.01 1.000 1.196 1.90 1.00 1.01 1.330 2 P..p' 610 - 1.00 1.00 - 7' 1."0lilioo 1,25 1,09 , - 1.06 - 2. Eaci.ny' 0.05 million 1,00 I.S6 - - 1..010 CR,TICAC LOAD COMBINATIONS: Shear LC 02 ". 21'3 244.1 ata Au .: t., 0 - 3a.;. ._,3,33 Deflection: 1>' 92 - 0I51 LC 42 - ^.=:d azn 33. v< vn.+i w- .t..t::+r; z:<:,Lf tcent3,.cccl Feseathgrace All .i-.-)'.'Ry 0 Lvad 0433'.....: ASCE: 7 .t; r ((,5,. 1331.2 CAUC,0,ATIONS• a+f7.ec):inn: 01 ' 694,-o,: 11.1n2 "Lip,. .afle 1c-t: . '. l:f_ r: l can Cese .:.awe:, )3 ,,c., wind, snow ) Forel. he4l3,.t .>.. 1.30 ..,,,3,.>,) DrElocIduoi ,.;.0e. Load 0eilectio.. Design Notes: 1.WOtx:Works analysis and design are in accordance with the ICC International Bohd3:ng Cafe(IBC 2012),Me National Design Specification.(NOS 2012),aril NDS Design Sopalement.. 2 Please verify that the default deflection heels are appropriate for your application. 3 Glulam design values are for maleria s 100)001,10 to ANSI 117-2010 and manufactured in accordance with ANSI A100.1-2007 4,GLULAM:bid_actual breadth x actual depth. 5.Glulam Beams shall be laterally supported according le the provisions of NDS Cause 3.3:3:. 3.GLUI_AM:beefing length based an sma)1or of Fcpyension),Fcp;caetp'n). Page 46 of 125 COMPANY PROJECT CS) -4 $ *- WO a WO,- 1 rks Jan 24.20172241 1FDI4/ttove Design Check Calculation Sheet WoodWortts Sizer 10A2 Loads: „,,„, „ ,a,- 177) Mogaitode 'Colt ,,,tt 3n7 7t4,1, Coed 0,073 010- 420.7 pia 7147 35,11 0,51. 120.0 017 1,032 Fell U61. 60.0 o0f L03.33.). 300350051e )100.00 33600 160 3.333hhta2e Fofat .1 ha 1e21.-4e337. Utati 3011 233. 19.0 6,10 Maximum Reactions(lbs),Bearing Capacities(Ibs)and Bearing Lengths(in): 12'.3,1 - 12,1,5" Up7actored, Pead 2699 2679 Live 733 132 Show 303 305 Earthquake 6327 .4027 Factored: Uplift 3125 1331.1 3476 3457 Beating: Capacaty Beam 3474 3457 3opport 1566 3551 13301/7,33 Beam 1,00 1,00 Support 0,97 0,99 Load comb 03 1/3 2.07 Kin req 2.00 0.97 1.00 1,00 Ch mitt 1.00 111 oopwart 1.07 1.07 31130 evp 625 626 Glulam-Unbal..West Species,24F-1.8E WS,5-1/2nct5 10 laminations.5-1/2"maximum width, Supports:Alt•Timber-soft Beam,Dfir-L No2 Total length:12'4,1';volume a 7 Et m h.; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: hnalysieftesian 011081. 5033dic0 .1 77.a i.:15 str,' - 3O17 pha fhrTb' = 0.32 Dead Def1'5 0,07 3 <101999 (13.33 lelll'2 23.33 61/057 6,00 1/360 an 0,00 Total Def133, 0339 ,3/1 ,) 412112 o 0.24 Additional Data: FACTORS: 673Lp31)20 '73 Ct 070 Cr 67frt Notes Co.t.1atr LOU 265 1.60 1.55 1.30 - 1,50 1.06 1.00 3 ('be 2400 1.60 1.00 1.00 1.000 1.000 1.00 1,00 1,117 1,00 - Pop' 650 100 1.00 1.6 e311156 1.00 ).50 - &nifty' 0,05 mini., 1. 3 CR/TICAL LOAD CONdthStATIOAtO: Shear 33,4/ 0/ 0,73, 0 6 3411, 0 deathe a 6065 lba Benditlt+), 170 13 . 04.72, M . 20031 51.0-70 helLectioa, LC 05 . t1L0o) LC 07: a 01.751..,03721 t,o551) 1,1 t. -337,7 ' 701"1 Vetarthquake 31.11 1,7.20 are )Latod ,he 61.1,,,010 ettret Load 5,631,1ootionet 5,77.07 3-1C 3 162 2312 CALCOLATtONS: Deflootion: 31 3 270456 I71.51 "113,9 derleot ton 3 Le act i 00 73,6 601 ,,,,-Leah 1,53:0 11 toe, with!, 0000.1 Total Deflect:1,n t Load Defier:Atte. Design Notes: 1.WoodWorks analysis and design are in accordance wttn Me iCC Intemalional Slid/nu Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. 2.Please verify!hal the default delledion Imeas are appropdate for your application: 3 Glulam design values are for materials conlormmg to ANSI 117-2010 and marturaMured in accordance with ANSI A190,1-2007 GLULAM:hxd ecluat breadth x actual depto 5,Glulam Beams shall be Laterally supported according la tie provisions of NOS Clause 33.3 8 GIAILAM:bearing length based on smatter al repttenslon).Fop(compin), Page 47 of 129 .................v..._.,. —..,`_,,.... COMPANY PROJECT 3543 54 Woodw rks Design Check Calculation Sheet Loads: Maximum Rd ctionejlag};BeerinujCnnecitf t1te}ent£-Searingker+gthsjin): r.25 Y. • Gluiam-Unba1.,West Species,24F-1.8E WS,3-012"a11-7I8" 110.0,3,k1.I enbenso4 Neve o PY.L.MA 2 T;di m'ber.3-25 •rJuana 00cu14 !.Here*U9Yd�O) ya nee✓.33 s+.,i:•`orla: Analysis vs.Allowable Stress and Deflection vos 2012; ;6?4.'.YS<7P'a 0 visa: .. Design Notes: I WF .IY C)t anY 7...x art fe YTJ,Y ta7Ci went,*CC tdenItrMC 3ta;Ary Cone,38,3 23,Z,Rx tutee E44.,rsPec. :.:..&2C"11,and Ns:.rnegn Soppier eee 2 PNaae rerh due the debut der .me c e'b a,uopfebpn444 Cr eou sa 3(Abet tlesxyrr e2t ane for,txv"a3es Ca'Crr ee ff,.Neeue 1;7.32ICeN2 rorm432,JeR 4cxr9rv.'e4,0 A5(3143 5.3 C.2052 4 G:ULAM:bxd-mead ixecelthzICIYEt2'!XC ,i(CbAt£k aJ'tl be YerIP:u.76CFe1eCcr± ;CC.V".svwne CC NvCarew N.53 Cv333 CLUte! . t CL :being M554.3Weed be eeTab e#3444im.bnl,>CP:2433:343.) CLIENT; Pada 48 of 124 L. z u .,. s, EE<vfECis FROELICHATE: ENGINEERS :3 2•o3Atr��,aC (-1 b;.14 rLia.( aE r _. , 72.a-6a 2 6,=) k 6Y: "% a qqo /11);,`Q p ¢q$g¢�^�g i 3,vx3r�"� d �9ff"Fax S,f t FL F L .. ' ( IF H 2y: . r&A to .. x i rCZ: .. ' . 5 3 e to v� % %�t % St, d (Ls) 3 o PcP F_-i, LL s 4-4000 e y k 12. SLS € Page 49 of 129 COMPANY PROJECT 0 o rks od\N Aug 24.2010 1447 1M-11 wsvb Design Check Calculation Sheet WoodWatus Sizer 1042 Loads: Load t,1,96 9.2.1 49333v: 1441 04661 -0=4, = 1 1,0402 1,11 1, 914 p•I • • Maximum Reactions(lbs),Bearing Capacities(ibs)and Bearing Lengths(in) 3'22 ' , 0644=tur=d1 Dead 1314 1114 1146 1042 1002 ran4494do 'rota: 2396 2196 C=p4Fity 04963 2196 Support 2661 29151 46.19,D4= 044m 1.00 1,00 napp=rt 0.94 • 0.90 1294d com0 42 qz ,0,1416 1,10 0.14 req"4 I-1C) 1.14 Cb i 00 1.00 CL 150 twpp,irt . 1 o'cp Lumber-soft,D.Fir-L,No.2,4x8(3-1/2"x74/4") &wools.All-Timber-soft Deem D Fir-L No2 Total iongthi 3,2.2';volume=06 cue,: Lateral support:tor al supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012 Crttorum k4144plIk 1.90109 0044443 VAt.. Urei 0430.01 f. boonding411 4 4 701 941 - 11613 ft/Fn' Dnad De41.'n 0.01 .4322946 1,144 0e1116 4.01 = 411/9=9 0.10 nr360 In 0.00 12091 041910 41,4 = 41,11121 1,249 ,4 1:14 Additional Data: 9040T0011: 6/6.14n1/20CM 114 CL CF Cto ,t9 2. C4 014 100 1.U4 1,46 1.40 - - 4,nn I,n4 1.091 900 1-04 1.2n 1.2* 0.926 1,1=1 1,U4 .314 7,40 1.40 2 lop' 1.125 - 1.00 .. 5 - 0,134 1.'U 0' 1-k mf11146 1.114 1.44 , S S - 1.0n 2 14/614' 0.59 3,111.4 1. 110 1.UU - CARMOAL LOAD COMONATiONA: 1.diear. .111.1 42 = 11.3.3.C. V 9 2421, 24414 u 1142 do00Ing1Sd, -1.2 42 . 291. 1599 14=-14 DefluctIonl 121 k2 ' 229n 1114941 1.2 42 =119,12 o,=ts13 Drduad 14nive Sksn46,Wk44=23 I9,12,p==t Lt-Iskd3 I 3.4=2,444ntodkud 129.929.2=Dpon1,4 611 92.23 oz..= 1,6046 In ,9,3 4u4p61. 02441 40o9,1,461.4nat 0440 1-10 162 2n11 CALCUL.A11OND: DIttloct, ,,n; SI I 1401.1=4,I1us It:699 411 .0.f.,00,:ff fd, to3439. 3 40110041.2n 9, 3.141311441113e 11=1:343:4319.9.1 9 1.1.44 L. 4221=43,39, Lateral atabL11,y 4, 00 I 3' Cs - 04 P' 150 0.•:; Design Notes: 1 WoodWorks analysis area desga are in accon.lance with the ICC International Ouiding Code(IOC 2012),the National Cosign Specification 04052012),and NOS Design Supplement. 2.Please verity 41101 the default delledion limits are appropriate for your application. 3 Sown lumber bending members shag be laterally 5100041e4 according to the provisions of NOS Clause 4.4.1.. • Page 50 of 129 • .... COMPANY PROJECT _.,.,.. sd wo d w , 24.;;;1-. `f wmrt Design Check Calculation Sheet w44,r4:4n4'Er,>.to a: Loads: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) t. ,5y',• t>. Glulam-Unbal.,west Species.24l'•1.SE WS,5.112"x74i2• s: x rs.5.-C nsr+aenx xh, 5:r'pens:M-Timber-bolt Beam.a Frt.No 2 Total length:344.what»10 cAP.: UM/3i',Wet tsip 5Lssppats.useus-C mmoxts. Analyssys.Allowable Stress and Deflection v,s,kt><m,2 u r;yu Additional Data: '-_. CALCULATIONS: Design Notes: / demo"Ary k.s mo:3m.y emh et*:CCa.ty....z::.#tSlnel OMY AC..?).;lu N.31mcer Ccemten-`i arv:1555 5t2:.t:'wi 55$C 55o SY31M3mm, C Paa0055$.AlPPAY Yes 3 Gunnprs,OA axt h:�w!z.::tw,>... t»x}..,.s.r.,,y xu>r.:-«szswsa:t.osscsor.:.us3M.SS,MO t 5;45 00555*005 x.005055Kiyne AO.. l', 5.Ohegne ramasenle 00Mho Whet UAW.1$,Wa0]=.5500 mrr.'arrw cf:L Csooss.3.3. a GLi0555*NP005 4.01+0.3 on 05052.55 ct Ft94s 5C1 l.}Y.Ghfcw; Page 51 of 129 COMPANY PROJECT llnrks E:Iiii Aug 24,2015'4.57 .FH3 vmb Design Check Calculation Sheet W0 2Y1arks Sigel 1042 Loads: 31 .13,1 g flkt3 10433 011 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 31, Dead :ve 1754 Snrw. 2304 C'a LCa£est4675 373k 1.le, 0,00001 4133 3736 Amita ., 4131 Berm supper, 0.1i2 Load co '.t.93 Hrirrsre;• 1,71 1,02 1.71 1.00 Ck 1631 1.20 Cis support (.14 •'an AJP - .1.21 623 Lumber-sok,D.Pir-L,No.2,4x8(3.112"x7-114") Supports:All.Timber-son Seem,D.fir-1 Not Total length:363,4";volume=00 cu.tt.; lateral support:lop-al supports,bottom'=al supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: C.44 '....... Arta4yrn y ,00414n V41u1 Unit $5.0a1t..1.11.11.120 1110440 nx 6e;d:not-, �_ r[;.':: .. s ._.. psi Lf.'E'b' P:,9< 3262,3, Eiefd'n - 0,13 k L2346 40 0.14 .0t, oefi'. 121 S'n 0,22 Additional Data' 10112" .o. 'o -, .._u CrCfrt CT. 1,7k 160 2.06 .0£ 1,222 .. --_ 1. 3 0,60 1,00 2 1.300 7..O0 1.03 1.03 1.60 - f. _ - 1.5 1.06 2,77 .- - - - 1.00 1.00 - 0,t6 CRITICAL LC'AD COMIO'40 5 i1231S :Shear ^aoy^= 2034 Ws £532 _. _-s-rt D01: tC LC 42 6+1 Ukd3 d ,- f like 5^-c^ =,._.n__.. Ekearkbquake All lE CALCULATIONS.: D2£L.. "Live 'e'. < -. - ,x w _; Total C r,. 9!.. � ] C . <tt- Design Notes: i.WoodWorhs analysis and design are in accordance writ Ile ICC Miematnarta!Reding Code(IOC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. 2 Please verify that are detauli detection limits are appropriate for your application. 3..Sawn lumber tending members shall be ialoral y sup 00ed according is the provisions of NOS Clause 4..4.:1.. Page 52 of 121 c.,,---- . / . "6960 SW Hampton Si. Portland,0-egan 97223 pro,ir, :,, R,1-,[1,5R, 7,5./, .., ,Ch- 503-624-7005 7 4,_:::t--...irT."(ttr tit r , , ,,, 0,t, ,h NV Mt /a Dr.#,,,t, Bend,Oregon 07703 541-3S3-1828 FROELICH iLlAiipert Vslay,SDAR uite 200 :: ENGINEERSt u ofi . ..rorri e!d.Colorado 80021 BY. \ii.::. 720-560-2269 12 PC61 D o4 AiN/ Bolt- D a ZAJElker: i, / l)t• •,,is PrDI: ) ,,..44) f -55,r t5a ,,. s _... Rooc: (.5 9 ) (\94 . ) f 5)(t° ) - 4'LLS , P r 1 pe g g 0 : -(55 ) (1 So ) i Z. F7S ) -t"' q )(55 150) ( 10)'.(Id ..... 6 1/2. Ai 0 e 0 S ‘‹ ..... 2. : A AA. a A'. ,-, s. ..z r t 1 .sr: (36 ) (\50) (27 ftr.) .1. (3) (3 6 + 150)" t %, 0 )(10 F6g).s 2-0\ • S IPA' iorAL : , o\i'''' • ASC) . k. ;,. s.\ 0\6 klc 0 .12x 0 .7 s 75.3 H6, ,...4r co-6-/41-a- H x c-i 94 F , ieoc F .zdi.5 K ,70 32. .1. 3 ‘if 0 ,....?..-z_RC) K 30 *305 9 150 34 &:).4 k Cf K , , ..,.• 20 a :-...7 (. \ 0 i 1 T 1 o 201.5 Zo 15 K-Cf <1 6 .9 lc kP I- IS5.3 k 14 L s25 qt/5 - - / ' wiA3® 1-0A0s. Trorvt. — -- k vic. k101)(95 ) -r(5)05.6)c 12Li 14/1 sRp- (5)(25.'ig ) -r( )(15.1 (40 e q 11/1 si•-. ( lof 1 0. 6 ) ix (0° /1 WW1) ?-12) 2 ' (&)(14.4 )f ( 5)0q•1 ) ' Ici ) • ) ( . yr/ s- Isti r . , c_IENT: Arbov- Page 53 of 129 6969 SW Hcn-pion SL ' Portland Oreg;Y:77223 503-624-7005 PR('JECT: r ‘v644c, i EiekAr n 6.,:mr. 745 NW Mt WdF.1-,',..por,D. 205 NUMBER, 14,....-Tri 00 Bend,Ore-Doa 97703 541-383-1329 FROELICH , ' - - ''- DATE: 12303 Airport Wdy.Saito 200 ENGINEERSA Broomfield,Colorado 80021 BY. \i/ ' !I ,,'E' ''i,1'a',0'n 720-560-2269 21 Ptax 30/6 DPVG : Bolt- D •a iiita-i )l-er-. i t f , , / p.sr 1 _ Roor.: (5 9 ) (14 9 )( 143 Fh6P) 1--(q) (55-1-11-15) (5)(to' 335.5 k i i AND ec. k .... 2. : '5 AM C''' A "3 3 =335.5 I e t l'Is i 1 = ( r t. ) (114 .) (27 1.7.) (3) (3 6 41-15 )(to )00 f'sc)it i 545:5k- 3t43• ic.• k. /0 TA L : 10 Oz.; C 72‘ Asc. k V s-10 b6 x 0.II 1 RE! - -i- co-6 1 41-6- H x t".) 7 F I<R0 BO 2 q.9 oo F 44 0 195 -79 go . , itef . i ,k. k P .D o 3,35.5 10065- - + 0.35 335.51/4 / i k_C is X- 20/ t77 Jo o.2.5 z0-g- 1 1 T 1 0 1955k ! 955 Kgf V 5.4 lc 70rilz..5.2 I Po l't-P+". 5'2.7 ve„. W 1 As C) Roo F ,t 10113( ..*7-) 1(5)(I&2 ,)t I 4 1 4 '1R 3 : (5)(13.z ) )(I2.4i ) .s- 1213, A 2 Al° : (55(11 ., )1. (550A ) 3 ii 1-4' li 1St.: i 10f) ( 1 O.24 ) WiAl D LOA t) ; ( A:et, Ack) / / 0/ , ILO C1-7)-t-L5 05.6) 4- I L'15 1 "41).: (5 ) U.5.6 t (5 ) I/14531 $ 51 2. I Alt) i t 2 = L5 ) CLIENT. Page 54 of 129 .,,9,5,-)SW A Port;and.ORgg,r:,-;.7223 ...„ ,—,—- - .7- ':".IV :.-,A.;,:;--oz=-,- „:9'..., PROJECT: , 0 . t 5, a ,a VatiF,nra20,1 L 4,..,„:::: NUMBER: Bend,CregulVi703 FROELICH 11,: ;i-.,-; Su;•' DATE: 12303 AIroor IvVoy, 200 ENGINEERS1 BrOarTteid ,00n;-lo 8a)2 720-560-22:tR BY: LAreRAL LOAD D 15T. (CA..1.1.) : i,,,i1A.70... (ft.P.-1 1'1 1 r k ! i A t K C: W DUD a (2. 6% )(12.-2..) S.2. k WINDs ( G77. ) (tZ*2') ;6•Z- k , Q g (26/ ) (i2- 2) x3:2- k EQ x ,l. I I a K Y k 1 12..2.,k) I 0 .9 1/61Mar ( I'S I: ) (.1'9 ) r ‘.1-1 . k ) (. 12.. 2..K) s 'D-9 klc k eg r ( I cis y f'2 . i; ) (7.9 ) J- 2-5 k Eq r( S2.7 ) (,17- 3.9 k i I` I licoia LIAJ6: Aki F43 WrAID s too `I Sit S (A.) 14 0 s I 1 Y. A : , A4 I A3 0 r(1,5 5/ 't ( i o o .) 52.43 K C.. , e Q 0 ( ssi ) 1,/ ,) z * 155 6 s 1 sjz ) .1.i), T . 2. t i •ii t i : 1 (* 1< l< 1) 1, 12, f)( 1,3q. ) 1 14 1 Alp ...v (30/ *1 (,,,,, :c,c.. ) s'• '$'--, ol K EQ ..- (. 30-7, ) l'r Li. ri ") s . I k , .4„.. ,.. ,..F5) 6- ) 6? C (12 ! 2_ : i ! CJI4E) r (15) ( 1:3q ) C 2. •ov-* 13 : CUENT, Page 55 of 129 PROJECT: DT 42° 5 NUMBER: FROELICH DATE: ENUINLERn,; ' - Jo1 /269 BY: e..-•%tz C>Ls 2-o PS F Ps i0o - 3),r Fftoor iF.A s ire - Pe.-A zce) P — iFeel:4- LDP : C)Lx *c8:11-2. zoo SPA Ai 4- _ a PsF r)L /00P5F. BEAAk AT- LAAJDIAla .SIPA r ° b ((33:f)(r) ier.)) 3.-coftFkr,F Nt- 1:11 IL. (.2-) Str%1A342; Co A ID a -2.54- 5 *7,5 Frc, LionLLs /6004 • Page 56 of 126 COMPANY PROJECT K Feb.15,2018 16:32 Stair Sir`nger 3rd Floor.wwb works`'o 2,Y1ti.440<1E20 li'rfCdz"t fifS16,N, Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type list_ribation Rat- location [ft] Magnitude - ni= tern Start Enc Stt End l.oadl rear Full nth 40.0 plt l.oac2 l,i:e F--all 'JrL 200.0 plf Sett-weipht Dead Fall .1]. 5.1 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 9-8.64" • T-9.5" Onf actored: Dead 212 212 Live 783 783 Factored: Total 995 995 Bearing: F'theta 520 520 Capacity Beam 1169 1169 Support 1523 1523 Des ratio Beam0.85 0.85 0.65 Support 0.65 Load c mo #2 R2 Length 0 0.50* 0.50* Min reg'd 0.50* 0.50* Cb 1.00 1.00 Cb mir 1.00 1.00 Cb support 1.08 1.08 Feu sop 625 625 'Minimum bearing length setting used:1/2"for end supports Lumber n-ply,Hem-Fir,No.2,2x6,3-ply(4-112"x5-1121 Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:9-8.64";Clear span:9'-3.77";volume 0 1.7 cu.ft.;Pitch:8/12 Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflectionusing NOS 2015: Criterion Analysis Valve Design Value Unit Analysis/Design Iv= 45 150 psi fv/Fv' = 0.30 Bending(+) fb - 1020 Tb' = 1271 psi fb/Fb' = 0.80 Live Dell's 0.30 = 1./380 0.31 = 0/360 in 0.95 Total Defl'n 0.42 - L/270 0.47 = L/240 in 0.89 Additional Data: FACTORS: F/E(psi)CD CM Ct Cl. CF Cfv Cr Cfrt Ci Cn LCR Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 1-000 '1.300 1.00 1.15 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 7.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 - D+L, V max = 824, V design = 739 lbs Bending(+1: LC #2 = D+L, M 1929 lbs-ft Deflection: LC #7 = Dal. (live) LC #2 = 11+1. (total) D-dead L=live 0-snow 0-wind l=impact Or-roof live Lc-concentrated 0=earthquake All. 1.0's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: El - 27.0e06 lb-int/ply "Live" deflection = Deflection from all. non-dead loads (live, wind, s ow...l Total Deflection 1.50(Lead Load Deflection) n on) + Live Load Deflection. Bearing: Allowable bearing at an angle F'theta calculated for each support as per NDS 3.10.3 Design Notes: i.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 5.SLOPED BEAMS:level bearing is required for all sloped beams. Page 57 of 129 • COMPANY PROJECT \ Wood\i\i' i i k S` Feb.15,2018 16:30 Stair Stringer-2nd Floocwwb OsTOTI4.053 055 i3'!X?it -f Siv.Y Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type riseribution ? Location [ft] Magnitude .i_ Startr c End Star Fn, Ioagl read Fu11 DEl. No 10.0plf Loac2 Live Fall TEL No 200.0 plf Self-weight Dead Full I'p1, No 5.1 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 19'-8.57" • 8'-0.64" 16'-1.29" lntactored: read 181 512 181 1.i.ve 670 1890 670 Factored: Total 852 2402 852 ating: heta 520 520 520 Capacity Seam 1169 2720 1169 Support 1523 2402 1523 Des ratio Seam 0.73 0.88 0.73 Support 0.56 1.00 0.56 Load comb 82 #2 #2 l.e-gt'o 0.50* 0.-9 0.50* Min req'd 0.50* 0.79** 0.50* Cb 1.00 1.48 1.00 Cb min 1.00 1.48 1.00 Cb support 1.08 1.08 1.08 Fon suo 625 625 625 *Minimum bearing length setting used:1/2"for end supports ••Minimum bearing length governed by the required width of the supporting member. Lumber n-ply,Hem-Fir,No.2,2x6,3-ply(4-1/2"x5-1/2") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:19'-8.57":Clear span:9'-7.38",9'-7.38";volume=3.4 cult.;Pitch:8/12 Lateral support:top=full,bottom=at all supports;Repetitive factor:applied where permitted(refer to online help); WARNING:Member length exceeds typical stock length of 18.0(ft] Analysis vs.Allowable Stress and Deflectionusing NDS 2016: Criterion Analysis Value Design Value Unit Analysis/Desicn Shear fv = 59 - = 150 psi tv/Fv' - 0.40 nendlig(+) fb= 613 Flo. =1271 psi fb/£b' = 0.48 - ing l-) fb - 1090 Fb' - 1271 psi fb/Fb' 0.86 Sending Defl'h 0.14 = L/828 0.32 - L/360 in 0.43 Total Defl'n 0.20 = L/588 0.48 - L/240 in 0.41 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF .Cfu Cr Cfrt Ci Cn LC# 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 Fb'+ 850 1.00 1.00 1.00 .1.000 1.300 1.00 1.15 1.00 1.00 - 2 850 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1..00 1.00 - 2 Fop. 405 - 1.00 1.00 - - - - 1.00 1.00 - Fd 1.2 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear LC 42 = D+L, V max = 1065, V design = 978 lbs nendi LC 42 = D+L, M= 1159 lbs-ft Sending(-): LC #2 =D+L, M= 2061 lbs-ft Deflection: LC 42 = DOL (live) LC #2 - D+L (total) D-read L=I lye S-snow B-wind I=impact Lr=roof live Lc=Concentrated S=earthcua ke All LC's are listed in the Analysis output I.oad combinations: ASCE 7-10 / ISC 2015 CALCULATIONS: reflection: EL = 27.0e06 lb-int/ply "Live" deflection = Deflection from all nn-dead loads (live, wind, snow...) Total reflection - 1.50(Dead Load Deflection) + Live Load Deflection. s ing: Allowable bearing at an angle F'theta calculated for each support as per NDS 3.10.3 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please vedfy that the default deflection limits are appropriate for your application. 3.Continuous or Cantilevered Beams:NOS Clause 4.2.5.5 tequires that normal grading provisions be extended to the middle 2/3 of 2 span beams and la the full length of cantilevers and other spans. 4.Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. 5.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 6.SLOPED BEAMS:level bearing is required for all sloped beams. Page 58 of 129 COMPANY PROJECT 9WoodWorks® Feb.15,2018 16:30 Landing Joists.wwb Design Check Calculation Sheet Woodworks Sizer 11.1 Loads: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End Loadl Dead Full Area 20.00(16.0") psf Load2 Live Full Area 100.00(16.0") psf Self-weight Dead Full UDL 2.2 elf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 6'-1_64" ce Un factored: Dead 89 89 Live 409 409 Factored: Total 498 498 Bearing: Capacity Joist 498 498 Support 960 . 960 Des ratio Joist 1.00 1.00 Support 0.52 0.52 Load comb #2 #2 Length 0.82 0.82 Min req'd 0.82 0.82 Cb 1.00 1.00 Cb min 1.00 1.00 Cb support 1.25 1.25 Fcp sup 625 625 Lumber-soft,Hem-Fir,No.2,2x8(1-1/2"x7-114") Supports:All-Timber-soft Beam,D.Fir-L No.2 Floor joist spaced at 16.0"c/c;Total length:6'-1.64";Clear span:6';volume=0.5 cu.ft. Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 54 Fv' = 150 psi fv/Fv' = 0.36 Bending(+) fb = 682 Fb' = 1173 psi fb/Fb' = 0.58 Live Defl'n 0.07 = <L/999 0.20 = L/360 in 0.32 Total Defl'n 0.09 = L/836 0.30 = L/240 in 0.29 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emirs' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = D+L, V max = 492, V design = 389 lbs Bending(+): LC #2 = D+L, M = 747 lbs-ft Deflection: LC #2 = D+L (live) LC #2 = D+L (total) 0=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: . Deflection: EI = 61.9e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (live, wind, snow._) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.Wood Works analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • Page 59 of 129 { COMPANY PROJECT WO 0 41:1Wo V F[KS`, Jan.31,2018 14:38 Stringer Cross Beam.wwb Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribdtion P Location [1-) Mag-)=ode Ur, tern Start t „n_ _ar__ Un0 Load read t 0.64 577 lbs Load2 Live Point 0.64 1090 lbs Load3 Dead on 2.14 512 lbs Load4 Live Point ' 2.14 1890 lbs Loads read Point 3.64 512 lbs Load6 Live . Point 3.64 1090 lbs Self-weight Dead Full SDI, 7.7 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 4'-3.31' 4•5. Unfactored: Dead 784 784 Live 2835 Factored: 2835 Total 3619 Bearing: 3619 Capacity Beam 3619 3619 Support 4007 Des ratio 4007 Beam 1.00 1 00 Support 0.90 Load comb #2 0.90 5 Length 1.65 6 Min reg'd 1.65 1.65 Cb 1.00 1.65 Cb min 1.00 1.00 CO support 1.11 1.00 1.11 Fcp sup 625 625 Lumber-soft,D.Fir-L,No.2,4x111(3-1/2"x9-1/4") Supports:AN-Timber-soft Beam,D.Fir-L No.2 Total length:4'-3.31';Clear span:4';volume=1.0 cu.ft. Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv* - 128 Fv. - 180 asi fv*/Fv' - 0.71 Bending(0) fb = 930 Fb' - 1080 psi fb/Fb' - 0.86 Live Defl'n 0.02 - <L/999 0.14 = L/360 in 0.17 Total Defl'n 0.03 = <L/999 0.21 = L/240 in 0.16 *The effect of point loads within a distance d of one support has been included as per NDS 3.4.3.1 Additional Data: FACTORS: F/E(psi)CD CM Ct Cl. CF Cfa Cr Cfrt Ci Cn LC# Fe' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fop' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emirs' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = Dig, V max = 3619, V design* - 2769 lbs Bending(+): LC #2 = D+L, M= 3868 lbs-ft Deflection: LC #2 = Dot (live) LC #2 = D+I. (total) D=dead L=live S=snow W=wind I=impact Lr=root live Lc-concentrated E=earthcuake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 369e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow.) now..) Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. Page 60 of 129 COMPANY PROJECT WoodWorks® t 'IV {F:tS'A,>£7Ln fYrZG*t,Lx:s;r,Y Feb. 15, 2018 10:00 9' (1)2x6 HF2 (3300).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Load/ Dead Axial (Ecc. = 0.00") 3300 lbs Self-weight Dead Axial • 15 lbs Lateral Reactions (lbs): / 9' I w o w D -a CD m 0 0' 9, Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber n-ply, Hem-Fir, No.2, 2x6, 1-ply (1-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length: 9'; Clear span: 8'-10.5";volume= 0.5 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc 402 Fc' = 771 psi fc/Fc' = 0.52 Axial Bearing fc = 402 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearing fcp = 402 Fcp = 405 psi fcp/Fcp = 0.99 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc* 1300 0. 90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 3315 lbs Support : LC #1 = D only; R = 3315 lbs, Cap = 3341, Lb = 1.50", Cb = 1 .00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015),the National Design Specification(NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. Page 61 of 129 COMPANY PROJECT Wood Works® SCA:FWA#?E F=O§SY00€3 L+i-.51t„'V Feb. 15, 2018 10:00 9' (2) 2x6 HF2 (6500).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 6500 lbs Self-weight Dead Axial 31 lbs Lateral Reactions (lbs): 9'co CD 0' 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber n-ply, Hem-Fir, No.2, 2x6, 2-ply (3"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width;continuous lower support Total length:9'; Clear span: 8'-9.0";volume= 1.0 cu.ft. Pinned base; Load face=width(b); Built-up fastener: nails; Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0= 9.0[ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 396 Fc' = 771 psi fc/Fc' = 0.51 Axial Bearing fc = 396 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearing fcp = 396 Fcp = 405 psi fcp/Fcp = 0.98 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1 .00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1 .00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1 .00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 6531 lbs Kf = 1.00 Support : LC #1 = D only; R = 6531 lbs, Cap = 6682, Lb = 3.00", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. Page 62 of 129 COMPANY PROJECT WoodWorks Feb. 15, 2018 10:01 9'4x6 HF2 (7500).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 7500 lbs Self-weight Dead Axial 36 lbs Lateral Reactions (lbs): 9 c -i m D �o m 0' 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber Post, Hem-Fir, No.2,4x6(3-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width;continuous lower support Total length:9'; Clear span: 8'-8.5"; volume= 1.2 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 391 Fc' = 771 psi fc/Fc' = 0.51 Axial Bearing fc = 391 Fc* = 1287 psi fc/Fc* = 0.30 Support Bearing fcp = 391 Fcp = 405 psi fcp/Fcp = 0.97 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1 .100 - - 1.00 1.00 1 Fc* 1300 0. 90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 7536 lbs Support : LC #1 = D only; R = 7536 lbs, Cap = 7796, Lb = 3.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015),and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. • Page 63 of 129 • COMPANY PROJECT Wood Wo rks`�� r Vit 90,1 Feb. 15, 2018 10:02 9'4x8 HF2 (9000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 9000 lbs Self-weight Dead Axial 47 lbs Lateral Reactions (lbs): 9 t W H W D m -0 0' A 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber Post, Hem-Fir, No.2, 4x8 (3-1/2"x7-1/4") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length:9'; Clear span: 8'-8.5";volume= 1.6 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0=9.0[ft]; Ke x Ld: 1.0 x 0.0=0.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 357 Fc' = 373 psi fc/Fc' = 0.96 Axial Bearing fc = 357 Fc* = 1228 psi fc/Fc* = 0.29 Support Bearing fcp = 357 Fcp = 405 psi fcp/Fcp = 0.88 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.304 1.050 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.050 - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 9047 lbs Support : LC #1 = D only; R = 9047 lbs, Cap = 10277, Lb = 3.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015),and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. Page 64 of 12 COMPANY PROJECT 2722; WoodWorks® Feb. 15, 2018 10:02 9'6x6 HF2 (13000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 12000 lbs Self-weight Dead Axial 56 lbs Lateral Reactions (lbs): 9 co N p o 0 0' Unfactored: Dead Factored: L->R Load comb #1 #1 Timber-soft, Hem-Fir, No.2, 6x6(5-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length: 9'; Clear span: 8'-6.5";volume= 1.9 cu.ft.; Post and timber Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 399 Fc' = 430 psi fc/Fc' = 0.93 Axial Bearing fc = 399 Fc* = 517 psi fc/Fc* = 0.77* Support Bearin fcp = 399 Fcp = 405 psi fcp/Fcp = 0.98 *Column requires a bearing plate at top as per NDS 3.10.1.3 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 0.90 1.00 1.00 0.831 1.000 - - 1.00 1.00 1 Fc* 575 0.90 1.00 1.00 - 1.000 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 12056 lbs Support : LC #1 = D only; R = 12056 lbs, Cap = 12251, Lb = 5.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. Page 65 of 129 COMPANY PROJECT 004( Wood Works`K Feb.19, 2018 15:29 9' 6x8 HF2 (16000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 16000 lbs Self-weight Dead Axial 74 lbs Lateral Reactions (lbs): 9' w -1 m D o Cl) 0' A 9, Unfactored: Dead Factored: L->R Load comb #1 41 Timber-soft, Hem-Fir, No.2, 6x8 (5-1/2"x7-1/4") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length:9'; Clear span: 8'-6.5";volume=2.5 cu.ft.; Post and timber Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 403 Fc' = 473 psi fc/Fc' = 0.85 Axial Bearing fc = 403 Fc* = 517 psi fc/Fc* = 0.78* Support Bearing fcp = 403 Fcp = 405 psi fcp/Fcp = 1.00 *Column requires a bearing plate at top as per NDS 3.10.1.3 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 0.90 1 .00 1.00 0.914 1.000 - - 1.00 1.00 1 Fc* 575 0.90 1 .00 1.00 - 1.000 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 16074 lbs Support : LC #1 = D only; R = 16074 lbs, Cap = 16149, Lb = 5.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. Page 66 of 12 COMPANY PROJECT Ity WoodWorks , _. Feb. 10,2011 17:00 5 1-8x6 glu-lam.wwc Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: - 1 Load Type ,.:s':.. ...bu.:: t Lo a :€on itt Magnitude Unit . n start :r2 Start tart End foaR _ __ Y _ ... _ (-r . . 0.00"1 'I � 5 lbs Self-w.'- ht acad Axial .... .. _. _SO lbs Lateral Reactions (lbs): g, y '' l -o CD i 0' 9' Glulam-Balanced,West Species, 24F-1.8E WS, 5-118"x7-112" 5 laminations, 5-1/8" maximum width, Support: Non-wood Total length:9'; volume= 2.4 cu.ft.; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0 =9.0[ft); Ke x Ld: 1.0 x 9.0=9.0[ft}; Analysis vs. Allowable Stress and Deflection using NDS 2012 : Criterion n :s.:->:,.l sig :to Desien Va..f. le Unit .. ._ r �"ie Axial `c _. 652 Fc' 1140 psi fe/Fc' --- 0.57 y� -, r q Axial r., o = r .; e 1440 psI. «,.,.. L�.-/.. .. � .4.5 Additional Data: FACTORS: Crtps 1Co CM Ct CL/CI CV C:Oo Cr Cfrt Notes LC;i4 Pry' 1000 0.90 1.00 1..00 0.732 - - _ 1.0(} - FG* 1 600 0.90 1 ,00 -.00 _ .. - 1.00 - 1 CRITICAL LOAD COMBINATIONS: . . Axial�.. ..,. z41. - Ll only, i, :- 25080 lbs D=df'.ad a -.E:1.i it snow W-wind 1-impact Lr=roof live Lc-concentrated E=earthquake All ..,C's are listed in the Analysis output Load. combinations: ICC-.LBC Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification(NDS 2012), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4. GLULAM: bxd=actual breadth x actual depth. ^ 11118/2016 'post Capacities| SmpsnnStrorg-Te Page 67 of 129 • Post AHowabie Compression Loads for Douglas-Fir-Larch ' Lumber ' Pero tp Compression Capacity Parallel to Grain,Pc(100) Compression Capacity Parallel lo Grain,Pc(160) • Framing ; ' 1 I Gram, Nominal Top Plate Height(It.) SIMPSON. 0 Plate Hei9ht(I" ; See footnotes Post Allowable Compression Loads for Southern Pine , j Lumber pOto to Compression Capacity Parallel to Grain,Pc(100) Conipresslon Capacity Parallel lo Grain,P0(160) , Framing Grain, Nominal Top Plate Height(ft.) Nominal Top Plate Height(It.) . 1 i ")-2x6 12 9325 If;""1"I'," --'1 - ' ' ';'•--.. ''"17:- - - ' l'-';'11 ';',1'0 vt")))));; 11c)));-, T 01,, ! See footnotes Post Allowable Compression Loads for Spruce-Pine-Fir I Lumber 1 perplo Compression Capacity Parallel lo Grain Pc(TOO) Compression Capacity Parallel to Grain,Pc(180) ; 1 Framing 1 Grain, Nominal Top Plate Heighl(it.) Nominal Top Plate height(It.:1 . 1 304 ' 41;02 i 3720 4625 3745 ; 31)80 1 2570 2170 4885 3895 -1 3175 1 2630 ; 2210 " 1 2x6 1 illi2 I 3505 7745 1 6885 6035 I. 5255 4575 9600 6055 6770 5725 ' 4885 , /Nal; 1 2-2x6 ,i 11/4-2 1 1015 -15485 13770 —12070 1 10515 9150 19200 16110 13540 11450 9770 See footnotes • ' ^ . . . ' . -^. ~ Page 68 of 129 11i'it�%2016 Post pwac as S,rnos Stro.r:g-T o Post Allowable Compression Loads for Hem-Ar Lumbar Perp to Compression Capacity Parallel to Grain,Pc(100) p Compression Capacity o Grain, i Framing 1 1 Grain, Nominal Top Piate Height(1t) ear SIMPSON p PlateHeight(IL) >z� 0} Sloe I Grade �__ _ _.., ..m. .._ 12 8 € ' P�5 2630,...... 216 5 73 41 12 g of 170` t ,';'k 14 65�oi 11 ' 1 c30 ; 1 _ #2 - ,, � 1730 1 1435 � 1210 2745 � °0 � 2x4 3x4 �2 .5 5 4385 I 3525 ) 2580 1 2395 ....2020.. . 4570 t ll V. ..-... i r f 1 5260 4230 3463 i 2815 2420 5455 1 4.55 3 40 2925 I 2460 4 *, 1 3 ! . S ... f r Wim' i 4x1 1 i 4960 6140 t 4935 t 4035 1 33a5 I 2330 6404 5035 „rcI 4125 , 3415 2870 r t_,_t t 2x4 1 5330 7890 6340 . 1 5185 I 4310 1 3635 8230 0. 5 5305 4390 € 3690 1 , 8715 I. 7075 5'855 4920 v cx� o00a 10525 8405 5915 � 5750 , . _. 2x6 ) #2 3340 7950 1 6880 5505 ,56165 ,4365 9385 7735 6425 2 5395 1 4580 M1 f 3r6 2..... 6570 13250,„ ( M11470 98A0 &140 . 7270 15840 12850– 1(171D -nos 7635 6-Inch m� _ . 2-2x6 1 42 t 6685 15900 13765 11810 10130 8725 18705 15470 12850 1 10790 1 9165' Wall 3-2-x6 - 02 4 10025 "2:1.65 2¢J�15 17715 5195 1 1:309`.) 25150 1374 23205 192€5 � 161"15 5 1 1 4-2x6 1 #2 1 13365 al°05-1 2 2; 21693 1. .7 e,1 1, ...1.7455 37535 i 364:5 I 2c co j 21535—T 16325 See footnotes Post Tension Loac Tales Post Tension Loads for Douglas-Fir-Larch Allowable Tension Lumber -------- ----------- Pi, _ ..k. .vwPI, (160) Framing Bolt Diameter(in.) Size Grade w , 7 0 /2 5/a /a 1 2x4 #2 7245 6080 5820 5305 I 5045 3x4 #2 12075 10135 9705 8840 8410 2-2x4 #2 14490 i 12160 11645 10610 10090 4-Inch 4x4 #2 16905 s 14190 13585 12375 11775 Wall 3-2x4 #2 21735 18240 17465 15915 15135 4x6..__ ._._#2 23025 19325 18500 16855 16035 4x8 #2 28015 23510 22510 20510 19510 4x10 #2f,_ 32765 27500 26330 23990 I 22815 2x6 #2 9865 8860 8635 8185 7960 8x6 #2 16445 14765 14390 13640 13270 2-2x6 #2 19735 17715 17265 L 16370 15920 Wall4x6 #2 23025 1 20670 20145 19100 18575 3-2x6 #2 29600 I 26575 25900 24555 L 23885 6x6 #132670 T 29330 28585 1 27100 26360 6x8 #1 44550 I 1 39995 38980 j36955 3*945 See footnotes 11/18/2016 Post Ca0sc iies;Sirrpsan Strong-Tie Page 69 of 129 Post Tension Loads for Southern Pine Allowable Tension G 1 Lumber _ . ..._ _ 'Framing P1, (160) SIMPSC> s s ..,A..«.. S 4 x 8�� 1 Boit Diameter(in ) , 1 Size ; Grade ,mY __Y- # �ifss.!/����v�ra.s€rc�r�Cltie.ucn2r`) '/�2 % 7�8 1 4 2 5 0 4760 I I 50 3950 3x4 #2 945C '7..'„:30 I 7505 6020 6580 2-2x4 #2 11340 9520 ' 15 8355I 7909 4-1nch 1 4x4 1 #2 13230 11105 I 0 0J 9 .. , I.v 9215 _d Wall 1 3-2x4 I #2 17010__. 17 010 14275 1 ':.;67,-; i 24 3 [ 11845 4x6 #2 1848n 155110 I 141P5U 13530 I 128,70 4x8 I #2 22330 181 4 0 ` 1 19 45 16 350 15550 4x10 #224605 20 1, 1 197:0 I3015 171 35 2x6 #2 792n 7 i '=i 1 6)—5 6 _6570_ 6390 34 #2 ` #Zt�i; 11850 [ 11550 10950 11165 2-2x6 #2 15840 14220 13860 13140 12780 6-Inch ._.._,,._ __ . . . _ Wali 4x6 #2 18480 1659€0 16170 15330 14913 3-2x6 #2 23760 21330 20799 19 1 9t 10 191/0 6x6 #1 43560 39105 38115 36135 35145 6x8 1 #1 59400 53325 51975 49275 1 47925 See footnotes Post Tension Loads for Spruce-Pine-Fir Allowable Tension Lumber ,� ...n .. _ v..�. _.. PI, {1611) Framing} _Bolt Diameter (in.) Size Grade 0 '/2 fila I fe .._____ .___ 1 2x4 ' #1l#2 5670 4760 4555 4150 1 3950 3x4 i #1/#2 9450 7930 7595 F 6920 6580 4-Inch 1 2-2x4 ' #11#2 11340 9520 9115 8305 7900 Wall 4x4 _#11#2 13230 11105 10630 9685._._ mmW9 i 9215 1 3-2x4 ; #11#2 17010 14275 13670 12455 11845 f 4-2x4 , #11#2 22680 1 19035 18225 1 16605 L15795 2x6 #1/#2 7720 1 6930 6755 6405 f 6230 3x6 1 #1/#2 12870 11555 1 11260 10675 10385 6-inch .......�- inc 2-2x6 #1/#2 15445 13865 13515 128101 12460 Wall 3-2x6 1 #11#2 23165 20795 20270 19215 F18690 4-2x6 I #1!#2 28315 25420 24775 23490 2284; See footnotes Lu_...ia..........a___...L___ ._.....(..-s..J..............t.....3......«..e ,..,...na....,n..... .....+....n4...n;inn h.....ni .nnxne.ln.v.} ....nnniVinn Page 70 of 129. Client: West Hills Development Project: River Terrace East Proj.#: 16-T100 x,. Dote: 3/6/2018 By: YSP FROELICH ENGINEERS; Cont. Spread Footing Design At Building Ext. Wall (II to joist) Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 832 Roof SL(psf) 25 Ftg Dead Load(plf) 435 Floor DL(psf) 27 Live Load(plf) 320 Floor LL(psf) 40 Snow Load(plf) 300 Wall DL(psf) 10 IBC Eq.16-9(plf) 1587 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1567 IBC Eq.16-11 (plf) 1732 Tributary Areas Total bearing(psf) 866 Roof Trib(ft) 12 Allowable brg(psf) 2500 Floor trib(ft) 8 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1.5 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 832 Footing width(in.) 24 Live Load(plf) 320 Footing depth(in.) 12 Snow Load(plf) 300 Cont. Spread Footing Design At Building Ext. Wall (I_to joist) Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1138 Roof SL(psf) 25 Ftg Dead Load(plf) 435 Floor DL(psf) 27 Live Load(plf) 960 Floor LL(psf) 40 Snow Load(plf) 125 Wall DL(psf) 10 IBC Eq.16-9(plf) 2533 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1698 IBC Eq.16-11 (plf) 2387 Tributary Areas Total bearing(psf) 1267 Roof Trib(ft) 5 Allowable brg(psf) 2500 Floor trib(ft) 24 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1.5 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1138 Footing width(in.) 24 Live Load(plf) 960 2098 < 2500 p l f = 2 X 6@ l 6 Footing depth(in.) 12 Snow Load(plf) 125 Cont. Spread Footing Design At Int. Brg Wall - Basement Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1795 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 1800 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 3885 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 2335 IBC Eq.16-11(plf) 3623 3 5 9 5*10/8 (increase f o r Tributary Areas Total bearing(psf) 1943 Roof Trib(ft) 10 Allowable brg(psf) 2500 db l span joists) - - 4494 Floor trib(ft) 45 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1795 Footing width(in.) 24 Live Load(plf) 1800 Footing depth(in.) 12 Snow Load(plf) 250 4 4 9 4 < 5000 p l f = (2) 2 X 6@ l 6 Page 71 of 129 Cont. Spread Footing Design At Int. Brg Wall - 1st Floor Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1390 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 1200 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 2880 2590*10/8 (increase f o r Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1930 IBC Eq.16-11 (plf) 2768 dbl span joists) = 3238 Tributary Areas Total bearing(psf) 1440 Roof Trib(ft) 10 Allowable brg(psf) 2500 Floor trib(ft) 30 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1390 Footing width(in.) 24 Live Load(plf) 1200 3238 < 5000 p 1 f = (2) 2X6@16 Footing depth(in.) 12 Snow Load(plf) 250 Cont. Spread Footing Design At Int. Brg Wall - 2nd Floor Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 885 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(pif) 600 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 1775 15 2 3*10/8 (increase f o r Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1425 dbl span njoists) = 1903 IBC Eq.16-11(plf) 1813 p Tributary Areas Total bearing(psf) 906 Roof Trib(ft) 10 Allowable brg(psf) 2500 Floor trib(ft) 15 Footing OK Wall height(ft) 30 Stemwall ht.(ft) 0 Stud Wall Loadings Results 1903 < 2500 i f = 2X6@16 Stemwall width(in.) 0 Dead Load(plf) 885 p Footing width(in.) 24 Live Load(plf) 600 2500 p l f = (2) 2X4@16 Footing depth(in.) 12 Snow Load(plf) 250 Page 72 of 129 Cont. Spread Footing Design At Party Wall Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1030 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 880 Floor LL(psf) 40 Snow Load(plf) 50 Wall DL(psf) 10 IBC Eq.16-9(plf) 2200 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1370 1910*10/8 (increase f o r IBCEq.16-11 (plf) 2018 dbl span joists) = 2388 Tributary Areas Total bearing(psf) 1100 Roof Trib(ft) 2 Allowable brg(psf) 2500 Floor trib(ft) 22 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 0 Dead Load(plf) 1030 2388 < 2500 i f = db 1 2x4@16 Footing width(in.) 24 Live Load(plf) 880 p Footing depth(in.) 12 Snow Load(plf) 50 Cont. Spread Footing Design At Corridor Wall Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1345 Roof SL(psf) 25 Ftg Dead Load(plf) • 290 Floor DL(psf) 55 Live Load(plf) 900 Floor LL(psf) 100 Snow Load(plf) 625 Wall DL(psf) 10 IBC Eq.16-9(plf) 2535 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 2260 IBC Eq.16-11 (plf) 2779 Tributary Areas Total bearing(psf) 1389 Roof Trib(ft) 25 Allowable brg(psf) 2500 Floor trib(ft) 9 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1345 Footing width(in.) 24 Live Load(plf) 900 2489 < 2500 p 1 f = 2x6@16 Footing depth(in.) 12 Snow Load(plf) 625 Page 73 of 129 COMPANY PROJECT \ Wood Wo ()L�c-K,N Feb.15,2018 14:04 Ext HF 9ft 2x6 at 16(2500plf TL 35psf W).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (ECC. = 0.00") 2500 plf Lateral Wind Full Area 35.00(16.0") psf Self-weight Dead Axial UDL 12 plf Lateral Reactions(lbs): 9' WD o d o 0' A 9' Un fact o red: Dead Wind 210 210 Factored: L->R 126 126 Load comb #2 #2 Ext Wall Stud Lumber Stud,Hem-Fir,No.2,2x6(1-1/2"x5-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 16.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.5 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0(ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 23 Fv' = 240 psi fv/Fv' = 0.10 Bending(+) fb = 450 Fb' = 2033 psi fb/Fb' = 0.22 Axial fc = 406 Ft' = 771 psi fc/Fc' = 0.53 Axial Bearing fc - 406 Fc* = 1287 psi fc/Fc* = 0.32 Support Bearing fcp = 406 Fcp = 405 psi fcp/Fcp = 1.00 Combined (a-ial compression . side load bendimg) Eq.3.9-3 = 0.58 Live Defl'n 0.15 = L/706 0.90 = L/120 in 0.17 Total Defl'n 0.15 = L/706 0.90 = L/120 in 0.17 Additional Data: • FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 2 • • Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 • Fc'comb 1300 1.60 - - 0.389 - - - - - 3 E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max = 126, V design = 126 lbs Bending(+): LC #2 - .6D+.6W, M = 284 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 - D only, P = 3349 lbs Combined : LC #3 = D+.6W; (1 - fc/FcE) = 0.59 Support LC #1 = D only; R = 3349 lbs, Cap = 3341, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: El = 27.0e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. Page 74 of 129 COMPANY PROJECT • '12,- 0 WoodWorks® 5izl IwAa FOR ttr'000!fS7:.. Feb.15,2018 14:05 Int HF Eft 2x4 at 12(1700pIf TL 5psf W).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location (ft) Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. - 0.00") 1700 p1f Lateral Wind Full Area 5.00(12.0") psf Self-weight Dead Axial UDL 10 plf • Lateral Reactions(lbs): 9 co p 0' 0 9' Unfactored: Dead Wind 23 23 Factored: L->R 14 14 Load comb #2 #2 Int Wall Stud Lumber Stud,Hem-Fir,No.2,2x4(1-112"x3-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 12.0"c/c;Total length:9;Clear span:8'-10.5";volume=0.3 cuff. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 4 Fv' = 240 psi fv/Fv' = 0.02 Bending(+) fb = 119 Fb' = 2346 psi fb/Fb' = 0.05 Axial fc = 326 Fc' = 376 psi fc/Fc' = 0.87 Axial Bearing fc = 326 Fe* = 1345 psi fc/Fc. = 0.24 Support Bearing! fcp = 326 Fcp = 405 psi fcp/Fcp = 0.80 Combined (a/ial compression - side load bendi4g) Eq.3.9-3 = 0.95 Live Defl'n 0.06 = <L/999 0.90 = L/120 in 0.07 Total Defl'n 0.06 - <L/999 0.90 = L/120 in 0.07 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.500 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.280 1.150 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.163 - - - - - 3 E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Ervin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.150 - - 1.00 1.00 1 Fcp sup 405 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .610.6W, V max = 14, V design = 14 lbs Bending(+): LC #2 = .650.6W, M = 30 lbs-ft Deflection: LC #2 - .61+.6W (live) LC #2 = .6D+,6'd (total) Axial : LC #1 = D only, P = 1710 lbs Combined LC #3 = D+.6W; (1 - fc/FCE) = 0.20 Support LC #1 = D only; R = 1710 lbs, Cap = 2126, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W-wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 6.97e06 lb-int • "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. Page 75 of 129 COMPANY PROJECT Wood WorksJ 3a Feb.15,2018 15:49 Int HF 9ft 2x4 at 16(1250pIf TL 5psf W).wwc ?£n.v.44r r0;4 WOOD OES.,GN Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 1250 plf Lateral ''Find Full Area 5.00(16.0") psf Self-weight Dead Axial UDL 7 plf Lateral Reactions(lbs): 9 Do 0 - A 9. Unfactored: Dead Wind 30 30 Factored: L->R 18 18 Load comb #2 #2 Int Wall Stud Lumber Stud,Hem-Fir,No.2,2x4(1-1/2"x3-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 16.0"dc;Total length:9';Clear span:8'-10.5";volume=0.3 cuff. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0 Ift];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 5 Fv' = 240 psi fv/Fv' = 0.02 Bending(*) fb = 159 Fb' = 2346 psi fb/Fb' = 0.07 Axial fc = 319 Fc' = 376 psi fc/Fc' = 0.85 Axial Bearing fc = 319 Fc* = 1345 psi fc/Fc* = 0.24 Support Hearin, fop = 319 Fcp = 405 psi fcp/Fcp = 0.79 Combined (axial compression side load bending) Eq.3.9-3 = 0.99 Live Defl'n 0.08 = <L/999 0.90 = 1/120 in 0.09 Total Defl'n 0.08 = <L/999 0.90 = L/120 in 0.09 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'e 850 1.60 1.00 1.00 1.000 1.500 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.280 1.150 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.163 - - - - - 3 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Ervin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 1.150 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max = 18, V design = 18 lbs Bending(+): LC #2 = .60+.6W, M = 41 lbs-ft Deflection: LC #2 - .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 1676 lbs Combined : LC #3 = D+.6W; (1 - fc/FCE) = 0.21 Support : LC #1 =-D only; R = 1676 lbs, Cap = 2126, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc-concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 6.97e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load.Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. Page 76 of 129 4,�� COMPANY PROJECT • 14 4 1 J ii}Ft14:5:4t• S:L:N Feb.15,2018 14:15 .Int HF 9ft 2x6 at 12(3300plf TL 5psf W).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft) Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 3300 pif Lateral Wind Full Area 5.00(12.0") psf Self-weight Dead Axial UDL 15 plf Lateral Reactions(lbs): 9' co D ,31 0' 9' Un factored: Dead Wind 23 23 Factored: - - - - L->R 14 14 Load comb #2 #2 Ext Wall Stud Lumber Stud,Hem-Fir,No.2,2x6(1-112"x5-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 12.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.5 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft);Repetitive factor.applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 2 Fv' = 240 psi fv/Fv' = 0.01 Bending)+) fb = 48 Fb' = 2033 psi fb/Fb' = 0.02 Axial fc = 402 Fc' = 771 psi fc/Fc' = 0.52 Axial Bearing fc = 402 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearine fcp = 402 Fcp = 405 psi fcp/Fcp = 0.99 Combined (a:.ia1 compression - side load bendimg) Eq.3.9-3 = 0.24 Live Def1'n 0.02 = <L/999 0.90 = L/120 in 0.02 Total Defl'n 0.02 = <L/999 0.90 = L/120 in 0.02 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.389 - - - - 3 E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Ervin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fop sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 - .6D+.6W, V max = 14, V design = 14 lbs Bending(+): LC #2 = .60+.6W, M = 30 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .60+.6W (total) Axial : LC #1 = D only, P = 3315 lbs Combined : LC #3 - D+.68; (1 - fc/FCE) = 0.60 Support LC #1 = D only; R = 3315 lbs, Cap = 3341, Lb = 1.50", Cb = 1.00 D-dead L=live S-snow W=wind I=impact Lr-roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 27.0e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow..) Total Deflection - 1.50)Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. FROELICH CONSULTING ENGINEERS INC., Client: Project: Project#: By: Footings Maximum Allowable Required Required Dimensions Used Dimensions Footing Bearing Footing Size Ballow Load(Pk„) Area W(ft) L(ft) W(ft) A 1.(ft) y D(in) Wei glit Pressure 18”x cont x10" 3500 2500 1.40 1.18 1.18 1.51 1 1 10 188 2458 24" x cont x 10" 14000 2500 5.60 2.37 2.37 2 3 10 750 2458 36"x cont x 10" 27000 2500 10.80 3.29 3.29 3 4 10 1500 2375 2'-6"x 2'-6" x 10" 15500 2500 6.20 2.49 2.49 2.5 2.667 10 833 2450 3'-0"x 3'-0"x 12" 21000 2500 8.40, 2,90 2.90 3 3 12 1350 2483 3'-6";x 3'-6" x 12" 27000 2500 10.80 3.29 3.29 3.5' 3.333 12 1750 2465 4'-0"x 4'-0"x 12" 37000 2500 14.80 3.85 3.85 4, 4 12 2400 2463 4'-6"x 4'-6"x 12" 52000 2500 20.80 4.56 4.56 4.5 5J 12 3375 2461 Required Area: =(Prori9„11„,w)0 s Bearing Pressure (Pz0+Wftg).!(W*L) (Ptot+W Rg)/(W*1..*3.1415;4) ti DC CD 0 N CD Client: Project: Proj.#: Date: By: FROELICH ENI6INJEERS ASCE 7-05 Earthquake Load Cs Factor Importance Factor(Seismic) 1 = 1.0 Basic Seismic Force Resisting System Light Framed Wood Shear Wall R= 6.5 Design Spectral Response Acceleration Seismic Design Coefficient Development Latitude Longitude S SD1 SD1 Categ,ON Cs 1 45.559 j -122.6531 0.726 0.403 t D 0.1117 - Information in table was obtained from USGS website -Conservatively design all structures in all developments for the Cs design value specified below Controlling Cs Value 01117 Use Cs = 0;12 for Design in all Developments Equations: Cs= Saslik Response Coefficient -0 CD CO CD. + Page 79 of 129 Client: Project: River Terrace(21 Plex) Project#: 16-T100 Date: 11/18/2016 By: YSP FROELICH ENGINEERS A WIND FORCE CALCULATION-MWFRS Side-Side Event ASCE 7-10 SECTION 27-2 METHOD 2 -ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 120 mph Wind Directionality Factor Kd= 0.85 Table 26.6-1 Wind Importance Factor IW= 1.00 Wind Exposure Category= B Building Parameters Horizontal Dimension of Bldg B = 56 ft Measured Normal to wind direction Horizontal Dimension of Bldg L= 151 ft Measured Parallel to wind direction Mean Roof Height h= 47 ft Highest Roof Level h„= 47 ft Approximate Fundamental Period Ta= 0.36 sec Eq. 12.8-7 Output- Fundamental Frequency f= 2.8 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 26.8-1 Length of 1/2 hill height L1,= 1 ft Figure 26.8-1 Dist. From Crest to Bldg. x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1. Horizontal Attenuation Factor m= 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor K1/(H/Lh)= 1 Figure 26.8-1 Output-Topographic Multipliers K1 = 0.00 K2= 1.00 K3= 1.00 Topographic Factor K2= 1.00 Page 80 of 129 Gust Effects Input Integral Length Scale Factor$ = 320 ft Table 26.9-1 Integral Length Scale nominal height of boundary zg= 1200 Table 26.9-1 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 Power Law Exponent E = • 0.33 Table 26.9-1 Minimum Height zmin= 30 ft Table 26.9-1 Integral Length Scale of Turbulence L,= 310 ft Output-Background Response Factor Q= 0.87 Intensity of Turbulence I,= 0.30 Gust Effect Factor G = 0.85 Pressure Coefficients Input Length to Width Ratio LIB= 2.70 Height to Length Ratio h/L= 0.31 Roof Pitch = 6 : 12 = 26.57 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients C, (see below) Figure 27.4-1 Direction Cp Height(ft) Ki, q,(psf) Velocity Windward 0.8 15 0.57 18.0 Pressure Leeward -0.27 20 0.62 19.6 Output qZ Roof Windward 0.40 25 0.67 20.8 Roof Leeward -0.6 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 h= 47 0.80 25.0 qh hparapet= 0 0.57 18.0 qh • Page 81 of 129 Design Wind Pressures p (psf)- G 1„=(-) 16 psf(8psf for roof) mm per 27.1.5 Internal Pressure Coefficient GCP, = -0A8 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 16.7 -1.2 18.0 ft 20 17.8 -1.2 19.0 25 18.7 -1.2 19.9 30 19.4 -1.2 20.6 40 20.7 -1.2 21.9 50 21.8 -1.2 23.0 60 22.7 -1.2 23.9 70 23.5 -1.2 24.7 80 24.2 -1.2 25.5 90 24.9 -1.2 26.1 100 25.5 -1.2 26.8 120 26.7 -1.2 27.9 47 21.5 -1.2 5.8 -3.7 22.7 9.48 Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures 0 (psf)-GCfa=(+) 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCP; = 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 7.7 -10.2 18.0 ft 20 8.8 -10.2 19.0 25 9.7 -10.2 19.9 30 10.4 -10.2 20.6 40 11.7 -10.2 21.9 50 12.8 -10.2 23.0 60 13.7 -10.2 23.9 70 14.5 -10.2 24.7 80 15.3 -10.2 25.5 90 15.9 -10.2 26.1 100 16.6 -10.2 26.8 120 17.7 -10.2 27.9 47 12.5 -10.2 1.8 -7.7 22.7 9.48 Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures (ASD) n (psf)- GCS;,=(-) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GC/; = -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- 1 Windward 1 Leeward 1 Roof WW 1 Roof LW I WW+LWI RWW+RLW 1 Page 82 of 129 Height 15 10.0 -0.7 10.8 ft 20 10.7 -0.7 11.4 25 11.2 -0.7 11.9 30 11.6 -0.7 12.4 40 12.4 -0.7 13.2 50 I3.1 -0.7 13.8 60 13.6 -0.7 14.3 70 14.1 -0.7 14.8 80 14.5 -0.7 15.3 90 14.9 -0.7 15.7 100 15.3 -0.7 16.1 120 16.0 -0.7 16.7 47 12.9 -0.7 3.5 -2.2 13.6 5.69 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASD) p (PSA-GCpi-(+' 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp;= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.6 -6.1 10.8 ft 20 5.3 -6.1 11.4 25 5.8 -6.1 11.9 30 6.3 -6.1 12.4 40 7.0 -6.1 13.2 50 7.7 -6.1 13.8 60 8.2 -6.1 14.3 70 8.7 -6.1 14.8 80 9.2 -6.1 15.3 90 9.6 -6.1 15.7 100 9.9 -6.1 16.1 120 10.6 -6.1 16.7 47 7.5 -6.1 1.1 -4.6 13.6 5.69 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Page 83 of 129 Client: Project: River Terrace(21 Plex) Project#: 16-T100 Date: 11/16/2016 By: YSP FROELICH ENGINEERS I WIND FORCE CALCULATION-MWFRS Front-Back Event ASCE 7-10 SECTION 27-2 METHOD 2 -ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 120 mph Wind Directionality Factor Kd= 0.85 Table 26.6-1 Wind Importance Factor I,,,= 1.00 Wind Exposure Category= B Building Parameters Horizontal Dimension of Bldg B= 146 ft Measured Normal to wind direction Horizontal Dimension of Bldg L= 54 ft Measured Parallel to wind direction Mean Roof Height h= 47 ft Highest Roof Level h„= 54 ft Approximate Fundamental Period Ta= 0.40 sec Eq. 12.8-7 Output- Fundamental Frequency f= 2.5 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 26.8-1 Length of 1/2 hill height Lh= 1 ft Figure 26.8-1 Dist. From Crest to Bldg. x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1. Horizontal Attenuation Factor m = 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor Kl/(H/Lh)= 1 Figure 26.8-1 Output -Topographic Multipliers Ki = 0.00 K2= 1.00 K3= 1.00 Topographic Factor Kzt= 1.00 1 Page 84 of 129 Gust Effects Input Integral Length Scale Factor = 320 ft Table 26.9-1 Integral Length Scale nominal height of boundary zg= 1200 Table 26.9-1 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 Power Law Exponent E = 0.33 Table 26.9-1 Minimum Height zm;f= 30 ft Table 26.9-1 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.83 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.82 Pressure Coefficients Input Length to Width Ratio LB= 0.37 Height to Length Ratio h/L= 0.87 Roof Pitch= 6 : 12 = 26.57 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients Cp (see below) Figure 27.4-1 Direction Cp Height(ft) Kh qz(psi) Velocity Windward 0.8 15 0.57 18.0 Pressure Leeward -0.50 20 0.62 19.6 Output qz Roof Windward -0.40 25 0.67 20.8 Roof Leeward -0.6 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 h= 47 0.80 25.0 qh hparapet 0 0.57 18.0 qh Page 85 of 129 Design W'a'ited Pressures p (psi)- (1Cpt=1-) 16 psf(8psf for roof) min per 27.1.5 Internal Pressure Coefficient GCp; = -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 16.3 -5.8 22.1 ft 20 17.3 -5.8 23.1 25 18.2 -5.8 24.0 30 18.9 -5.8 24.7 40 20.2 -5.8 25.9 50 21.2 -5.8 27.0 60 22.1 -5.8 27.9 70 22.9 -5.8 28.6 80 23.6 -5.8 29.4 90 24.3 -5.8 30.0 100 24.9 -5.8 30.6 120 25.9 -5.8 31.7 47 20.9 -5.8 -1.7 -3.5 26.7 8.00 Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures p (nsf)-GCpr=(+} 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCp;= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 7.4 -14.8 22.1 ft 20 8.4 -14.8 23.1 25 9.2 -14.8 24.0 30 9.9 -14.8 24.7 40 11.2 -14.8 25.9 50 12.2 -14.8 27.0 60 13.1 -14.8 27.9 70 13.9 -14.8 28.6 80 14.6 -14.8 29.4 90 15.3 -14.8 30.0 100 15.9 -14.8 30.6 120 17.0 -14.8 31.7 47 11.9 -14.8 -5.7 -7.5 26.7 8.00 Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures (ASD) p (psf)-GCp;=(-) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp;= -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - I Windward I Leeward I Roof WW ( Roof LW I W W+LWI RWW+RLW I Page 86 of 129 • Height 15 9.8 -3.5 13.3 ft 20 10.4 -3.5 13.9 25 10.9 -3.5 14.4 30 11.4 -3.5 14.8 40 12.1 -3.5 15.6 50 12.7 -3.5 16.2 60 13.3 -3.5 16.7 70 13.7 -3.5 17.2 80 14.2 -3.5 17.6 90 14.6 -3.5 18.0 100 14.9 -3.5 18.4 120 15.6 -3.5 19.0 47 12.5 -3.5 -1.0 -2.1 16.0 4.80 Parapet 0 16.2 -1.0.8 27.0 Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind.Pressures(ASD) p (psf)- GCS;=(+) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp,= 0.18 Figure 26.11-1 Wali Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.4 -8.9 13.3 ft 20 5.0 -8.9 13.9 25 5.5 -8.9 14.4 30 6.0 -8.9 14.8 40 6.7 -8.9 15.6 50 7.3 -8.9 16.2 60 7.9 -8.9 16.7 70 8.3 -8.9 17.2 80 8.8 -8.9 17.6 90 9.2 -8.9 18.0 100 9.5 -8.9 18.4 120 10.2 -8.9 19.0 47 7.2 -8.9 -3.4 -4.5 16.0 4.80 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Page 87 of 129 Client: Arbor Project: River Terrace-21 Plex Project#: 16-T100 Date: Jan-16 =a , By: YSP FROELICH ENNER Lateral Design - Wood Walls Shear Walls SEISMIC: Site Classification: D Occupancy Category: II Occupancy Importance Factor 1 I= I 1.0 System Over-strength Factor: Light Frame Walls with Shear Panels ] W= I 3.0 Response Modifiaction Coefficient: Light Frame Walls with Shear Panels R= I 6.5 MCE Short Period Pectal Response accel.: Ss= 1.088 MCE 1-second period spectral response accel.: = 0.590 5%damped short period spectral response accel.: Sos= 0.726 5%damped 1-second period spectral response accel.: Sol = 0.500 Seismic Design Category(ASCE Table 11.6-1 &11.6-2): D Seimic Response Coefficient(ASCE 7-05) EQ 12.8-2 Cs=Sos/(R/I) Cs= 0.112 Controls Eq 12.8-3(max)-in addition to sections 12.8.2, 12.8.2.1, Table 12.8-1 Cs=Sod/(T(R/I)) Ta=Cihn" Te= 0.365 Ci= 0.02 C„= 1.4 from table 12.8-1 h�= 48 T= 0.511 )er12.8.2 x= 0.75 Cs= 0.211 Eq 12.8-5(min) Cs=0.01 Cs= 0.010 Eq 12.8-5(min) Cs=0.044Sosl Cs= 0.032 Cs= 0.112 Allowable Stress Design: 0.7E Cs= 0.078 Page 88 of 129 Seismic Dead Loads Note: Dead Load includes 10psf for interior walls/partitions diaph area Dead Load Int. Wall Trib Wall int. Wall Wall Wt Ext. Wall DECK SQ FT Total DL Level (ft2) (psf) L(ft) height(ft) Wt(psf) (psf) L(ft) 10 PSF I (lbs) Roof 7600 ( 18 400 5 10 10 470 j 2160 182460 4"'Floor 7600 27 400 10 10 10 470 2160 294360 3rd Floor 7600 27 400 10 10 10 470 2160 294360 2"d Floor 4800 27 200 10 10 10 250 1080 175680 Total= 946866 Seismic Base Shear(Working stress Design) V=Cs(DL) V= 74030 lbs Vertical Distribuition Level Weight Height Wt* Ht v"t="tj'Totat V lVi=(Wt(Ht)lTotal)*V Roof 182460 40 7298400 0.307 74030 22727 =Vri 4'"Floor 294360 30 8830800 0.371 74030 27499 =V4th 3rd Floor 294360 20 5887200 0.248 74030 18333 =V3rd 2"Floor 175680 10 1756800 0.074 74030 5471 =V2nd Total= 23773200 1.000 Vd= 22727 lbs V4th= 27499 lbs (Allowable Stress Design Loads) V3rd= 18333 lbs Vend= 5471 lbs 74030 Diaphragm Loads Level wpX(lbs) Vi(lbs) Vi(lbs) DA!'(lbs) FpX=((LV,)/(Zw;))*wpX Roof 182460 22727 22727 182460 22727 =Fd 4e'Floor 294360 27499 50226 476820 31007 =F4th 3`d Floor 294360 18333 229345 771180 87541 =F3rd 2'"Floor 175680 5471 rt 229345 946860 42553 =F2nd Min Diaphragm Loads Sps= 0.726 Fpmio 0.2*Sps*wpX*I*0.7 Level Fpmin Roof 18545 Vrt= 22727 lbs 4'n Floor 29919 V4th= 31007 lbs 3`d Floor 29919 V3rd= 87541 lbs 2 Floor 17856 Vend= 42553 lbs (Allowable Stress Design Loads) • Page 89 of 129 COMPANY PROJECT n y • O O Jan,24,2011 1724 Side Stile Event-Ream 000c0pi o o Design Check Calculation Sheet Woodworks Sizer 10 42 Loads: ;,red - 02`pe Cis r. -. x o-.-;xt,<,.. ,I..i M J..x'_.d,. I:nir- .304 C3ln 1 F'.:a; .. . .. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): _._.e.. 01 24'4.5` 30'-1- 04'4,s- 1,;0,1 1019 In 17 17 lo icy 13enm 607. 11100 1252 731 '731 s:7. '10. : 3.01 0.01. 0,01 0,01 a 14,310 0,01 0-02 0.02 O.U; al. Nt. III _ 0000 0,.`:U' 4,so• 0,50` Min s,:q'd ':9" '9,59+ 0,5 C:h 1.00 1.75 1.75 1.,00 min 951 1.00 ::h soppnrt 1,.5.0 1.1.0 1..10 .;a ftr, 19 625 655 605 0771 "Ma ro0um bean ledathtatting Wet 112'No 004 st p,p0rls and 1rz'$04 totem/acpparts .... Glulam-Unbal,West Species.24F-1.8E WS,2-1/6"x6" 4 laminations,2-118"maximum width, Supports:All-Timber-soft Beam,D.Fir-L No 2 Total length:54'-2.0';volume= 4.8 cad„ Lateral support:top=al supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012 Wt.txlan Anatyste Ymb r, t.abrin VA100 Unit. A*,:+: $13,0ata n -. :;tree, to - 5 140' 73:r,di Iv)tI ,ca t3:,' , 0.03 sn , eend€n0(41 i':; " 50 7110 " it.i.:, :,::;. ft,/Ft.' - 0,44 Dead Oofl'a 0,06= .91./909 ve¢ 1.96!i teyt: 110,341 ..,.:1 [.. 1 .... . 4L19.25, t ... to 0.00 Additional Data: p.i11:06/0(i:41.1l0 '74 01 00 C' C'.:3 10 C:£ct 001‹:s Cn'c.vr LCg .: tv' 205 0.49 1..09 1,013 1,40 1111 1,00 1 00 + 7100 3.30 1,00 7.00 0.419 1,000 1.00 .1.100 1.00 1.00 1 11.'.. 1450 0,40 1,00 1.00 ;t..E'' 1.00 I.,0. 11,00 1,00 f::d:' 650 1' 1.0 million 1.00 1.00 _. ... ?miry' 0.00 m111100 1.,033 1.00 1,00 - _ 1 CRITICAL LOAD COMBINATIONS: 500ar LC 11 = h only, 0 .. 14, de3ign _.4 100 Bmndimiti11 LI 41 - 0 only, M= - Bending? , CC qt. . I) .y. M 5.0 103 f_ Del ie*cinn: LI: p1 = a 01317 0001.31; 0,1ead L-11+e 5=snow if-wend n0,0,4 00. _..,n..entx.,i:o,lthquake All LC's ar.z,listed in the Analysis a+itx^nl Load e J'nttio:on: A11510':-'.r i 1B.2:1112 CALCULATIONS: Deflection; 61 - 00,>s006 10 tn2 "Lion" dctiectinn_ leflectio, f,^% .I. non-:1m:! load, 51.10*, wind, 51300,1 Tota.I. Det.leo,in,,4 1..50;0904 Load 0eftecni0r.1 l .i•n: 1,'0ad DetIn01110, Lateral noabl7.ity (ri' Lu - 4'-0-'.i0" 44' - 00 56 "ter., stncilit I-1, La 21'-.0,:,0" _ 14' ..,.,1 013 26,50 Design Notes: 1,Woodworks analysis and design are in accordance with the ICC international Building Code PC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement.. 2..Please verify that the default deflection Limits are appropriate for your application. 3,Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4 Grades with equal bending capacity in the top and boham edges of Me beam cross-section are recommended for continuous beams 5.GLULAM:bxd=actual breadth x actual depth. 8.Glulam Beams shall be laterally supported according to Ina provisions of NDS Clause 3.3.3. 7,GLULAM:bearing iengih based on smaller of Fop)tarsion),Fcp(comp'n), Page 90 of 129 Client: Arbor Project: River Terrace -21 Flex Project#: 16-T100 9j.,.< ,� Date: 42379 ---e ? By: YSP FROELICH ENGINEERS 1 SEISMIC LOAD Story Distribution: Areas: Roof: 22727 lbs Roof: 7798 sq ft 4th: 27499 lbs 4th: 7798 sq ft 3rd: 18333 lbs 3rd: 7798 sq ft 2nd: 5471 lbs 2nd: 7798 sq ft WIND LOAD Story Distribution: Level Windward 'Leeward' Total Front-Back Event Roof: 109 36 145 4th: 114 38 152 Redundancy Factor, p 3rd: 107 36 142 2nd: 100 33 133 Side-Side Event Event Per ASCE7-10, p= 1.0 because of large amount of shearwalls and Roof: 110 37 146 because no wall takes more than 33% of the story shear. 4th:. 96 32 128 3rd: 88 29 117 2nd: 81 27 108 Front/Back Event SEISMIC WIND Trib Area Load Trib Widths Windward Leeward Combined? Load Design Load Load Typ LEVEL GRID (sq ft) (ibs) (ft) (lbs) (lbs) (YIN) (lbs) (ibs) Roof YA 900 2623 18 1958 653 Y 2610 2623 S YB-D 2100 6120 39.5 4296 1432 Y 5728 6120 S YE 999 2912 37 4024 1341 N 4024 4024 W YF 999 2912 37 4024 1341 N 4024 4024 W YH 1900 5538 35 3806 1269 Y 5075 5538 S YJ 900 2623 18 1958 653 Y 2610 2623 S 4th - YA 900 3174 18 2052 684 Y 2736 ' 3174 S YB-D 2100 7406 39.5 4503 1501 Y 6004 7406 S YE 999 3523 37 4218 1406 N 4218 4218 W YF 999 3523 37 4218 1406 N 4218 4218 W YH 1900 6700 35 3990 1330 Y 5320 6700 S YJ 900 3174 18 2052 684 Y 2736 3174 S 3rd YA 900 2116 1 18 1917 639 Y 2556 2556 S YB-D 2100 4g37 39.5 4207 1402 Y 5609 5609 S YE 999 2349 37 3941 1314 N 3941 3941 S YF 999 2349 37 3941 1314 N 3941 3941 S YH 1900 4467 35 3728 1243 Y 4970 4970 S YJ 900 2116 18 1917 639 Y 2556 2556 S 2nd YA - 900 631 18 1796 599 Y 2394 631 S YB-D 2100 1473 39.5 3940 1313 Y 5254 1473 S YE 999 . 701 37 3691 1230 N 3691 701 S YF 999 701 37 3691 1230 N 3691 701 S YH 1900 1333 35 3491 1164 Y 4655 1333 S YJ 900 631 18 1796 599 Y 2394 631 S • Page 91 of 129 . [ r Side/Side Event SEISMIC WIND Trib Area Load Trib Width I Windward Leeward Combined? Load Design Load Load Typ LEVEL I GRID % (Ibs) % (55) I (Ibs) (Ibs) (Y/N) (Ibs) (Ibs) Roof 31 16 3636 16 964 321 Y 1285- 3636 S 32 34 7727 34 2048 683 Y 2730 7727 S 33 34 7727 34 2048 683 Y 2730 7727 S 34 16 3636 16 964 321 Y 1285 3636 S 4th 31 16 4400 16 845 282 Y 1126 4400 S 32 34 9350 34 1795 598 Y 2394 9350 S 33 34 9350 34 1795 598 Y 2394 9350 S 34 16 4400 16 845 282 Y 1126 4400 S 3rd 31 16 2933 16 772 257 Y 1030 2933 S 32 34 6233 34 1641 547 Y 2188 6233 S 33 34 6233 34 1641 547 Y 2188 6233 S 34 16 2933 16 772 257 Y 1030 2933 S 2nd 31 16 875 16 713 238 Y 950 950 W 32 34 1860 341515 505 Y 2020 2020 W 33 34 1860 34 W 1515 505 Y 2020 2020 W 34 16 875 16 713 238 Y 950 950 W 4fiClient: Arbor Project: River Terrace-21 Plex '''tl+/'Y;4-Y34-V2,),ct Length of individual wall Project#: 16-T100 Lt=Totat letgtb of wall along}ridliue Date: 10-Jan La-Length of moment arta in wall(if different than wall length) BY: YSP tr -Walt Height flrx to roof ! 14 Height o-wail flr3-flr4 31s=[Yr�(Itrf:}r# }v }i 3}t Y4ih h?t 62 t 21+V }S a 62 t 11 V2(h2)14 L F R O E L(C H t3=Height v^ufl Ilt2-110 Li [a2-Height of wall Itir1-lir2 C ra m t ry c e s2.m i Vrf-Horizontal farce at ridline front roof Mu= t'i thi'�l'4`h i ) )) L V4=Horizontal force at gridline from 4'tlr ( .;r. )- t�i)�'7(Jra �J2,1ri x— Shear Walls & Holdowns V3-Horzoutalforce atgtidhnefr~rnn:+'6fir it V2=Horizontal force at eridluse from e'l flrI= Roof to 4th Floor i Unit shear in wall W6 d:,11r=0.6[(Rt^ib a Rooj L)-(Mill;x rfai DL) (Farb x FtootDi.)] - Roof DL: 18 psf it Ore:innm3moment wisenupper wall is r. st ekedabovelowerwail Seis-inic:3.fr-(0.6-.1 4 S4)[(Rtri6 x RoojDL)4-Oftrib'WaliDL)+(It•;bs:F/oo D )1 Floor DL: 27 psf :mu=Overturning moment when upper'vall is - Wall DL: 10 psf for 7t ed or does rot exist ft ri tri",.1tri i Roof, gall and floor -din-die Ts ifs-kir Stud Spacing: 16 inches oc .ti utarn arca used for calculating dead load Lo L Mr=Resisting moment due to dead load Tu=Tension tactile rot stacked tis Sr' 75=Feast on if watts stacked frnei i C= L + 12 [fRtrih a RoofDL)+(IT tris,aIf'alDL)+(F;rrh.•Root Di.11 • 3-Stud spaceng 11; S -' CaCompression at coda,if walls stacked Seismic:Cs --4.- --1+0.14Sa)[(Rtrtb-RoofDL)4(1 P'hVWai/DL)+(Fnih,'FksorDL)) Lc 12 Wall L Lt La h,1 Va v Mu Rtrib Wmb Ftrib Mr Cs Tu Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (Ib) (pif) (Ib'ft) (ft) (ft) (ft) (Ib`ft) (lbs) (lb) Nailing Event Front/Back Event SW HD YA 13 13 13 9 2623 202 23607 8 9 0 9854 1988 1058 MST37 6/12 S STD(6/12) MST37 YB-D 24 50 24 9 6120 122 26440 8 9 0 33585 1274 -298 --- 6/12 S STD(6/12) -- YE 22 22 22 9 4024 183 36214 8 9 0 33977 1802 102 --- 6/12 W STD(6/12) -- YF 22 22 22 9 4024 183 36214 8 9 0 33977 1802 102 --- 6/12 W STD(6/12) -- YH 14 40 14 9 5538 138 17443 8 9 0 11428 1418 430 --- 6/12 S STD(6/12) -- YJ 14 14 14 9 2623 187 23607 8 9 0 11428 1858 870 --- 6/12 S STD(6/12) -- Side/Side Event 31 3 39 3 9 3636 140 2517 12 9 0 686 1064 610 --- 6/12 S STD(6/12) -- 3.5 39 3.5 9 3636 120 2937 12 9 0 934 1064 572 --- 6/12 S STD(6/12) -- 4 39 4 9 3636 105 3357 12 9 0 1220 1064 534 --- 6/12 S STD(6/12) -- 32 14 100 14 9 7727 77 9736 12 9 0 14945 920 -372 --- 6/12 S STD(6/12) -- 33 14 100 14 9 7727 77 9736 12 9 0 14945 920 -372 --- 6/12 S STD(6/12) -- 34 3 48 3 9 3636 114 2045 12 _ 9 0 686 907 453 --- 6/12 S STD(6/12) -- 3.5 48 3.5 9 3636 97 2386 12 9 0 934 907 415 _ --- 6/12 S STD(6/12) -- 4 48 4 9 3636 85 2727 12 9 0 1220 907 377 --- 6/12 S STD(6/12) -- Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 240 350 450 700 900 psf no In Cu Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 co 335 490 630 980 1260 psf o N CO. Client: Arbor Project: River Tracer2rkiww.41 ... '.t s Doi-414.nd,c•!....all alorq.340.1ihr , , , • , Project#: 16-T100,.:Lehr h al-moment am us ssaD 0 Date: #### e.i Ker.tim wall ttr h• .. • ''' u 1...4.1111m4t fits to rod , By: YSP ,,.liri*vr-.411 fl11.:11.4 "ifssihip $4..6–iC:.-,1– {:±4...h.3 4 hZ.42t..iXit.34 2:2,1)4.74..Vt2)i4±, 22 Er a riessht 414,11 tit 243,3 MI'.r,neighs sismil fltl•fo: FROELICH s'r.1 11.oia,owl fel'.al pidline 6 em ma s'4.4,Hviv..tal f..vce al g.flok,icons 4.fir Mt.[I)ft S,)4 P4(1:41.4 i'S.CtICI.r/USA x.;.-7:,. '3,..iicrushut forte.It1 gt,d1trit thmt 3".flt. ENGINEERBD V:.h.3.11,31 feu,at vullme ftom.2.'1 x J. .0 Uns shea:m.‘all 2)Wid'Aft s.rs 6f,RDIS,4/2605)..2)4.(Frrith Ir4:111.)-(at ft) Fw•DL i A :4< }..... Shear Walls & Holdowns h Or creamer g 1(.11,1Il.has ulypx,v....4114s Z ,L' qack•hi:those?saw es,11 Sam..31'0 06–1.254(Roth),RoofDL).(Orb xiVa.U)L).i.(Fwb A<F7.r.01.)1-- 'du=Oseltuthit4 satsuma..hts,wpm wil v. 0 4th Floor to 3rd Floor .14.16(44 tx.Joel not rxtst Roof DL. 18 psf eitrstats arra isaot fo,a2.12ung dt-.1 load 20 '' E Mr 11 tsi sax MOM!.due 141,1.41,34d Floor DL: 27 psf itt 4 i tasslat'Nails hot stvsked A Its;r:.0 '''., s ,-V.I.za:<R.a.Int 1.(Thr: K WFRD.L.:••r ort,t,..,,n ,4 A Ts.For.son A CA1:11,va.c.ked Wall DL: 10 psf ...Stud spaxiut -lis :s.C,IttrreAisn•At em.15,:f 0.all)muked .S.,,,, C.,.—0--!444 14 5.:11,(22n4 512.4722.).S.11S36 s'irielni.;,...Trmh 4 r4.”'DLJ) Stud Spacing: 16 inches oc LA 1: Wall L Lt La h, h4 Vd V4 v Ms Mu Rtrib Wtrib FinIb Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (lbs) (lbs) (plf) (tb.ft) (ib.ft) (ft) (ft) (ft) (Ibtft) (lbs) (ibs) (itis) Nailing Event Front/Back Event SW HD YA 5 18 5 9 9 2623 3174 322 21778 14492 8 18 12 4037 4832 2091 3548 MST60 4/12 _S A(4/12) MSTC66B Y8-D 24 50 24 9 9 6120 7406 271 87810 58432 8 18 12 93006 4135 -1441 -216 --- 4/12 _S A(4/12) -- YE 22 22 22 9 9 4024 4218 375 114413 74176 8 18 12_ 94090 5633 -905 924 MST37 4/12 W A(4/12) MST37 YF 22 22 22 9 9 4024 4218 375 114413 74176 8 18 12 94090 5633 -905 924 MST37 4/12 W A(4/12) MST37 ... YH 14 40 14 9 9 5538 6700 306 57930 38549 8 18 12 31648 4614 493 1877 MST37 4/12 S A(4/12) MST37 YJ _ 14 14 14 9 9 2623 3174 414 78402 52172 8 18 12 31648 6076 1466 3340 MST60 3/12 S B(3/12) MSTC66B Side/Side Event - 31 3 35 3 9 , 9 3636 4400 344 9316 6199 12 18 4 1130 3476 1690, 2300 MST37 4/12 S A(4/12) MST37 3.5 35 3.5 9 9 3636 4400 295 10869 7233 12 18 4 1538 3476 1627 2199 MST37 4/12 S A(4/12) MST37 4 35 4 9 9 3636 4400 258 12422 „. 8266 12 18 4 2009 3476 1564 2098 MST37 4/12 S A(4/12) MST37 32 14 100 14 9 9 7727 9350 171 32335 21517 12 18 4 24615 2680 -221 551 --- 6/12 S STD(6/12) -- 33 14 100 14 9 9 7727 9350 171 32335 21517 12 18 4 24615 2680 -221 551 -- 6/12 S STD(6/12) -- 34 3 35 3 9 _ 9 3636 . 4400 344 9316 6199 12 18 4 , 1130 3476 1690 2143 MST37 4/12 S A(4/12) MST37 3.5 35 3.5 9 9 3636 4400 295 10869 7233 12 18 _ 4 1538 3476 1627 2042 MST37 4/12 S A(4/12) MST37 4 35 4 9 9 3636 4400 258 12422 8266 12 . 18 4 2009 3476 1564 1941 MST37 4/12 S A(4/12) MST37 Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 240 350 450 700 900 psf Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 335 490 630 980 1260 psf -D 53 CO Co CD CO 0 ND is) Client: Arbor Project: River Terrace-21 Plex L .t.ength oz indhidual wall '(VII a I'4-P3...y 2J Lr Project#: 16-7100 [.t Tota',Icngtl,of wall aloin gridlivs Date: 10-Jan I..a=I gtt of t t c anlanu ill wall(if . ' ' itHfcr than't8 le tgttij „ By: YSP nri=ttall i1x 4ii fix to roof. 6 ifs-,'r,?ir fr1l-)z3+4.243)ml h4-4:3412.2),Kkhi 1z2;C,172(1 x ... =i Height :ndtfti3tfr4 ! t )I r FROEr ICH n3 =Height o wall alr2L- 3 (_ r<n Ilcighto'wall ftr1-1:r2 ENGINEERS: 1-if florizantialf'xlt atq"lite fAv'ni of j, 4—iI anialfea gt L:n far 4"1:r3-p.=(1-f(hi)+P4(r<)a 1 ovi) r_(.ijJ,., Shear Walls & Holdowns =H rz on force axrdi„e trout 3vfir LI 1 2 Horizontal force gridline from "Sts 3rd Floor To 2nd Floor -1, vrn i,, att lVfsd.lir=0.5i(Rtrf6FRogfDL)-(AtribxfVa1fDL)-(I:ibof7eorDL)— Sts=C]em utg to r t.. upper well is Roof DL: 18 psf vatkcd v boc lott cr tt,11 Seismic:Mr=(0.6—.14SA*Rrxib x Rou11)1.)w(Wrrii :IfaVD1:i e•(1)riS o Floar)t,)12-».. \I..O.erturning moment vEto upper nail it Floor DL: 27 psf un snicked c,r doxas eu;vain: Wall DL: 10 psf Rtrib,W'trib,Vtrib-^Root:..vat:,and floor ............... Aft... fi uutar Ares,trsed fee calculating dead load TR Afr L, LStud Spacing: 16 inches OC 11r=:eaistinmoment chm to. dead toad r.=I<sun i f walla no'mocked Airs SI 2 Ta=Tnnsx+n if walla aiack:d wind C.`—,—C(Rndii x Itnrni..).,qtr tt;TerltD )-(FPI?,,FtnorZX.)1 L 12 S«St a apatztag Ma Si) ,.x=C.ompmssioxx at mei,if walla stacked :Swamis:C:='-+k2 qq 0.145 1(Rt'Fo x Rvo• L)-(mirth,flcltD.5)--(Tl'eM,Fio,,DL)j Wall L Lt La hd h4 h3 V,i V4 V3 v Ms Mu Riflh Wtrib Fhb Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (ft) (lbs) (lbs) (lbs) (plf) (Ib"ft) (lIfft) (ft) (ft) (ft) (Ib*ft) (lbs) (lbs) (lbs) Nailing Event Front/Back Event YA 5 18 5 9 ' 9 , 9 2623 3174 2556 464 44271 20882 8 29 24 6740 9649 2828 7506 Shth(2)Sides HD12 4/12 S YB-D 24 50 24 9 9 9 6120 7406 5609 383 176966 82663 8 27 24 152426 8154 -2907 1022 MST37/HTT5 3/12 S YE 22 22 22 9 9 9 4024 4218 3941 554 232295 109640 8 27 24 128081 11267 -838 4737 HDQ8 3/12 W YF 22 22 22 9 9 _ 9 4024 4218 3941 554 232295 109640 8 27 24 128081. 11267 -838 4737 MST60 3/12 W YH 14 40 14 9 9 9 5538 6700 4970 430 116418 54205 8 27 24 51867 9096 167 4611 MST60/HDQ8 3/12 S YJ 3.5 21 3.5 9 9 9 2623 3174 2556 511 26562 12529 8 27 24 3242 8369 2654 6663 Shth(2)Sides HD12 4/12 S Side/Side Event 31 3 35 3 9 9 9 3636 4400 2933 470 18467 8462 12 27 8 1574 6671 2296 4596 Shth(2)Sides MST60 4/12 S 3.5 35 3.5 9 9 9 3636 4400 2933 403 21545 9873 12 27 8 2143 6671 2208 4408 MST60 3/12 S 4 35 4 9 9 9 3636 4400 2933 353 24623 11283 12 27 8 2799 6671 2121 4219 MST60 3/12 S 32 14 100 14 9 9 9 7727 9350 6233 233 64097 29371 12 27 8 34285 5094 -351 2129 MST37 6/12 S 33 14 100 14 9 9 9 7727 9350 6233 233 64097 29371 12 27 8 34285 5094 -351 2129 MST37 6/12 S 34 3 35 3 9 9 9 3636 4400 2933 470 18467 8462 12 27 8 1574 6671 2296 5631 Shth(2)Sides HDQ8 4/12 S 3.5 35 3.5 9 9 9 3636 4400 2933 403 21545 9873 12 27 8 2143 6671 2208 5544 HDQ8 3/12 S 4 35 4 9 9 9 3636 4400 2933 353 24623 11283 12 27 8 2799 6671 2121 5456 HDQ8 3/12 S Seismic 6/12 4/12 3/12 2)4/1:2)3/12 240 350 450 700 900 psf Wind 6/12 4/12 3/12 2)4/1:2)3/12 335 490 630 980 1260 psf PD co m to A O (0 (o. • Client: Arbor . v=ifsf Y3-V2l Project: River Terrace-21 Plex -Length of individual wall .s , 'Lt Project#: 16-TWO I=Total length of wall ak.og gridithe .44 a=Length of tumults arm in wall(if Date: 10-Jan , .„- ffesesit than wall length') , .- By: YSP .iif=Wall Height flrn to roof L 4=Height of wall fts341:4 .1f5.[Vd(isr,f-114-4134i2,-3)x-rlih-1413-412,2),V3(16-112+1)-1.:(1t2)1,— Li 3=Height of wall flr2.41s. FROELICH .2=Height of wall fir 141'2 ENGINEERS “rf=Horizontal force at gridline front roof L I=Horizontal force at<Juane flora 2°II 3f 13= ,'3(h0-1'.2'.'“ Shear Walls & Holdowns '3 Horizontal Iowa at pidlins loot .2=Horizontal for,at g al dline from 2l'6 or L" 2nd Floor To Foundation =enil shear th=all Is=Overrunning motheth when upper waH 11 nd:AP=ft 6E(Rtrib,RoofaL),..(1 di x Ha DL)-.(Firrii.,,Floar/DL)i , 1" .. ta,thed thus e lower wall Seistitk:Alr=(0.6-.14.Sa:)KRtrib,..Roo/DL)*Itf-n il,x Ila Do.;-(/1 Roof DL: 18 psf tu-Ovedurniity momen:xvilcn upprr wall is Floor DL: 27 psf ' s stacked or dors not exist Wall DL: 10 psf nib,W nib,Flrila=Roof.wall,and door AA-Mr 1,..,=Ms-Mr slim:an'area,used for calculating dead load La L Stud Spacing: 16 inches oc Is=Resisting uthunens due to dead load .0=Tension if walls not stacked Ms S,Z. Wind;C= ---„I(Rtrth,RatifDL)+(yrtrib xlruitOL)x.(Elia"3'Roma,' )1 , .33.3 Tension if walls stacked L 12 =Stud spacing Ms S i 2 a=Contpreauion at ends.if walls stacked Seismic.:Cs=—.3—(1 0 0.145412Mb a Ro33jDL 3=1,1170tis,WatIDL)x,..-trit,..,FloorDL)1 L 12 Wall L Lt La hrt h4 h3 h2 Vrf V4 V3 V2 v Ms Mu Rtrib Wrib Ftrib Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (ft) (ft) (lbs) (lbs) (lbs) (lbs) (plf) (1b*ft) (1b*ft) (ft) (ft) (ft) (1b*ft) (lbs) (lbs) (lbs) Nailing Event Front/Back Event VA 13 13 12.5 9 9 9 9 0 0 0 631 49 5683 5683 8 36 36 62156 1539 -4518 -4518 --- 6/12 S _ YB-D 24 50 23.5 9 9 9 9 6120 7406 5609 1473 412 275178 89028 8 36 36 211847 12794 -5226 2695 t-ITT5 3/12 S _ . YE YF 22 22 21.5 9 9 9 9 4024 4218 3941 701 586 360425 115948 8 36 36 214315 17748 -4575 6796 Shth(2)Sides - HD12 4/12 W YH 22 22 21.5 9 9 9 9 1938 2345 1740 1333 334 188642 66201 8 36 36 178010 9858 -5200 494 HTT5 4/12 S YJ 14 21 13.5 9 9 9 9 1312 1587 1278 631 229 84756 28847 8 36 36 72087 7362 -3203 938 HDQ8 6/12 S - , Side/Side Event 31 2 32.2 1.5 9 9 9 7 3636 4400 2933 950 648 19246 5183 12 34 12 877 13477 2870 7466 Shth(2)Sides HD12 4/12 S 3.5 32.2 3 9 9 9 7 3636 4400 2933 950 370 33680 9069 12 34 12 2686 11873 2128 6535 HDQ8 3/12 S _ 10 32.2 9.5 _ 9 9 9 9 3636 4400 2933 950 370 103633 33316 12 36 12 22426 11570 1146 5366 HDQ8 3/12 S _ 32 8 100 7.5 9 9 9 9 7727 9350 6233_ 2020 253 56729 18237 12 36 12 14353 8225 518 5650 HDQ8 4/12 S 33 8 100 7.5 9 9 9 9 7727 9350 6233 2020 253 56729 18237 12 36 12 14353 8225 518 5650 HDQ8 4/12 S it a) co CD CD 01 0 N (-0 Page 96 of 129 Client: Project: Proj.#: Date: 111 By: FROELICH £1`1Lt1 N eEPL51 ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 5/8" ASTM A36 Threaded Rod for Simpson HTT16 / HTT22/ HTT4/HITS 1 Number of Anchors s1 = 0 in. (see Fig 0.625 Inch Diameter sZ = 0 RD 5 2.1) 8 Inch Embed 2500 psi Concrete Footing Noasign = 5.250 (kips)Allowable Design Tension D.3 -General Requirements (ACI 318.02 Section D.3.3.3) Are seismic loads induced into the anchor? Y S = 0 75 D.4 -General Requirements for Anchor Strength (AC1 318-02 Section 0.4.4) Strength reduction factor dV for anchors using load combinations from ACl 318-05 section 9 2 Will anchor be governed by brittle steel failure? N Anchor c= 0.75 Brittle failure 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing rC = 0.70 If rebar is present around anchor: 0 75 Otherwise, 0.70 Summa CDNn Wind +13Nn Seismic Summa From Below MN, Sw= 1.0 Sr = 0.75 cDNS- 9 83 . 9.83 7.37 kips 4)11/44c0= 19.01 19.01 14.26 kips TiNpn= 121.71 121.71 91.28 kips tANo= 198.14 198.14 148.60 kips ri)Nsbg= 198.14 198.14 148.60 kips Minimum TN, = 9.83 9.83 7.37 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 C'NA,bwable 7.02 5.27 kips tiregn ONAtIcrwoble 5.250 < 5.27 Therefore, Anchor Design OK Page 97 of 129 Client: Project: �,, Proj. "� � ��. Date: ,> By: FROELICH £Mplag ER.st ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations D.5.1 -Steel Strent th for Anchorin Tension da (Anchor Diameter) = 0.625 inches n = 1 #of anchors nt = 11 Number of Threads per inch A„ = 0..23 in.2- (effective cross-sectional area of anchor) luta = 58.00 ksi - (tensile strength of anchor material (not the yield strength) not exceed 1.9f,or 125 ksi) N„= 13.11 ksi - (Eqn. 0-3) { Anchor (1) = 0 75 Y sa "" fAse futa oN„= 9.83 kips • D..5.2 -Concrete Breakout Stren!th of Anchor in Tension st = 0 inches (see Fig. RD.5.2 1) S2 = 0 inches (see Fig RD.5.2.1) A„ (for single anchor) = 576 in.2 (see Figure RD.5.2.1) A,„(for group anchor) = 782 in 2 (see Figure RD.5.2.1) A1,400 (for single anchor) = 576 in 2 (see Figure RD_5.2.1) AN,„ (for group anchor) = 576 in 2 (see Figure RD.5.2.1) tPec rti = I Eqn. 0-9 (Anchors not Eccentrically Loaded, 4', =.1.0) Wad (4 1.000 Eqn, D-10& D-11 4)C ,;= 1 (1.25 for cast anchors. 1.4 for post-installed) Section D.5.2.6 k, = 24 (24 for cast anchors, 17 for post-installed) Section 0.5.2.2 f c = 2500 psi 1.5”hef= 12 he= 8 inches 0.7+0.3(c,,, ;1.5ht() r 1.000 crrilo = 12 in -distance to closest edge of concrete } M 4 t f .,c ry ' i No = 27.15 kips -(Eqn. 0-7) — Ncb= 27.15 kips -(Eqn. D-4) _ 2 k r , N�N,,,= 0.00 kips - (Eqn. D-5) cis; tf' cAV/ sd,:Yfr''{c,, y ' b Reinforcing Qi = 0.70A ' '� `- W ION,ba= 19.01 kips Page 98 of 129 Client: Project: Praj.K: Date: 111 By: FROE_LICH E N D i N E E R s i ACI 318-05 Appendix C - Tension Failures Cont. (Page 3 of 3) 05.3 -Sin le Anchor Pull•. - headed or embedded nut Use Plate Washer? Y Plate Washer Width= 3 inches Nut diameter= 0.985 inches Nut or Plate Washer Bearing Area= 9.000 in2 Abrg = 6.693 int- bearing area of embedded anchors head or nut We P = 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1,0 value (ACI 318-05 Section D.5.3.6) n= 1 #of anchors Np= 173.87 (kips) Eqn. D-15 IVP C. Np„= 173.87 (kips) Eqn. O.14 N = j'TtzrC p Reinforcing cb= 0.70 cl)Np„= 121,71 kips 05.4 -Anchor side-faced blowout -HeadedAnchor (Required only if anchor is near an edge where cat <0.4h,r. Anchor is not close to Edge of Ccncrete. Analysis below NOT Required. cat= 5 distance to perp edge of concrete from anchor Cal = 12 in -distance to closest edge of concrete Nsb= 283.05 (kips) Eqn. 0-15 Factored Nsb= 100.25 Reinforcing (0= 0 7a .f. f , gaNab= 198.14 kips 3b = � C a i f tri, S= 0 in -spacing of outer anchors in group N,b9 = 283.05 (kips)Eqn. D-18 \ Reinforcing = 0.70r _ I + N +SsNtbg= 198.14 kips JDg 6cai l .b Page 99 of 129 Client; kyrl a Project: F ElIC Proj, } L Byte: ACI 318-05 Appendix O - Tension Failures (Page 1 of 3) Anchor description: 7/8"ASTM A36 Threaded Rod for Simpson HDQ8 1 Number of Anchors s, = 0 in. (see Fig 0.875 inch Diameter = 0 RD.5 2 1) 8 Inch Embed 2500 psi Concrete Footing Noaaia, = 9.230 (kips) Allowable Design Tension D.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic toads ind:yced into the anchor? V Sr = 0.75 D. -General Requirements for Anchor Strength (ACI 318.02 Section D.4.4) Strength reduction factor for anchors using load combinations from AC1 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor = 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation fess than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing 4) = 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summa oNn Wind CDNn Seismic Summary From Below ON, 5w= 1.0 Se= 0.75 4)N;= 20.09 20.09 15.06 kips tPNcb= 25.87 25 87 19.40 kips cPNp,= 117,59 117.59 88.19 kips tbNae= 227.21 227.21 170.41 kips crINsb9, _ 227.21 227.21 170.41 kips Minimum ON,, = 20.09 20.09 15.06 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 (DNAllowabia= 14.35 10.76 kips Ndesign _ { ONAllowabl, 9.230 10.)6 Therefore, Anchor Design OK Page 100 of 129 II f y Project. FI.ICi Proj.#: FRO N14 , Byte: ENGEFERS1INC ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Desi=n Calculations D.5>1 - S eel Stren•th for Anchor in Tension do(Anchor Diameter) = 0.875 inches n = 1 #of anchors nt= 9 Number of Threads per inch A„= 0.46 in.2-(effective cross-sectional area of anchor) f,.,= 58.00 ksi-(tensile strength of anchor material (not the yield strength) not exceed 1.9C or 125 ksi) Nu= 26.78 ksi-(Eqn. D-3) Anchor ]= 0.75 l T sQ ` ' se luta cDNg,= 20.09 kips .. 10.5.2 -Concrete Breakout Strength of Anchor in Tension sy = 0 inches (see Fig. RD.5.2.1) 52= 0 inches (see Fig. RD.5.2.1) A„(for single anchor) = 784 in.2 (see Figure RD.5 2.1) A„(for group anchor)= NA in.2(see Figure R0.5.2.1) At,„(for single anchor) = 576 in.2 (see Figure RD.5.2.1) AN„ (for group anchor}= 576 in.2 (see Figure RD.5.2.1) 43.c N = 1 Eqn. D-9 (Anchors not Eccentrically Loaded, L', = 1.0) wed N = 1.000 Eqn. D-10 & 0-11 4,c N = I (1.25 for cast anchors, 1.4 for post-Installed) Section D.5.2.6 kc= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 Pc= 2500 psi 1.5*he= 12 he = 8 inches 0.7+0.3(cn„„/1.5he,) = 1.050 cmin = 14 in -distance to closest edge of concrete Ai .,. W _ J,r, h 1 t =' Nb= 27 15 kips - (Eqn. 0-7) Nab= 36.96 kips-(Eqn. 0-4) = c. xr f ..t Mcbfl= 6.00 kips-(Eqn. D-5) t N cog V ec,NW ed,Nwcp,LI Nb Reinforcing m = 0.701V « 4tNoog= 25,87 kips Page 101 of 129 r Cllenct. 4 c+ r , _,, Project: FkO 1 HProj. : �co sllN4 Date: SV: ENffS,INC ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) 05.3 -Sitio le Anchor Pullout - headed or embedded nut Use Plate Washer? Y Plate Washer Width= 3 inches Nut diameter= 1.438 inches Nut or Plate Washer Bearing Area = 9.000 in2 Abrg = 8.399 inz - bearing area of embedded anchors head or nut (Pep = ! For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value (ACI 318-05 Section 0.5.3.6) n = 1 #of anchors py, RSry z Np = 167.96 (kips) Eqn_ 0-15 n Nps;= 167.98 (kips) Eqn. 0-14 iv' `y f :, Reinforcing cp = 0.70 (1)Np„= 117.59 kips 05.4 -Anchor side-faced blowout Headed Anchor (Required only if anchor is near an edge where ca, < Anchor is not close to Edge of Concrete. Analysis below NOT Required. cat = 14 distance to perp edge of concrete from anchor cap = 14 in -distance to closest edge of concrete N$a•= 324.59 (kips) Eqn. D-15 Factored N9a = 162.29 Reinforcing Q3 = 0.70jf 'c RyN,� 227.21 kips LaN " 160. Cal V 24brg s= 4 in -spacing of outer anchors in group 1,ktg = 324.59 (kips) Eqn. D-16 Reinforcing 41 = 0.70 N . . = 1 + S •N,bg = 227.21 kips 6 " �� of Page 102 of 129 • Client: +�1, ' Project: 1k0FEIC 1(1 Proj.14: Da( I 5111 G ` Byte: EMGIIEERS,INC ACi 315-05 Appendix D - Tension Failures (Page 1 of 3) 1"ASTM A36 Threaded Rod for Simpson HhDQ11 1 HH0Q14 1 HD14A IHDU11 Anchor description: 1HOU14 1 Number of Anchors S1 = 0 in. (see Fig 1.000 Inch Diameter s, = 0 RD.5.2.1) 12 Inch Embed 2500 psi Concrete Footing Noestan= 13.710 (kips) Allowable Design Tension 0.3 - General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF = 0.75 D.4 - General Requirements for Anchor Strength (ACI 31S-02 Section 0.4.4) Strength reduction factor for anchors using load combinations from ACI 318-05 section 9 2 Wilt anchor be governed by brittle steel failure? N Anchor tp= 0.75 Brittle failure: 0.65 (brittle oteroati by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing = 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summa IDNn Wind 4)Nn SeEsmtc Summary From Below criNn Sill=1.0 SF= 0.75 ON,= 26.35 26.35 19.76 kips ONcb29.64 29.64 22.23 kips Nin= _ 115,01 115.01 86.26 kips (1)11,t,= 286.91 288.91 216.68 kips ZI ,bg - 288.91 288.91 216.65 kips Minimum (ON,,= 26.35 26.35 19.76 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 ONatiowat:+.= 18.82 14.12 kips Nttt„ n < ONAllowebta 13.710 < 14.12 Therefore, Anchor Design OK Page 103 of 129 CHertt: Project: FROEt1C� Praj. : fDate: Lv SUI NG ENGNEERSINC AC1 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Desi. n Calculations 0.5.1 -Steel Stren oth for Anchor In Tension do (Anchor Diameter) = 1 000 inches n= 1 #of anchors nt= 8 Number of Threads per inch Asa= 0.61 in.2- (effective cross-sectional area of anchor) futa = 56.00 ksi- (tensile strength of anchor material (not the yield strength) not exceed 1.9fy or 125 ksi) N„ = 35.13 ksi - (Egn. D-3) Anchor 03 = 0.75 1 Y —= nA SDN„= 26.35 kips sa sc.- zr to 0.6.2 - Concrete Breakout Strength of Anchor irk Tension SI = 0 inches (see Fig. RD.5.2.1) S2= 0 inches (see Fig. RD.5.2.1) A„a(for single anchor) = 1100 in.2 (see Figure RD.5.2.1) A„(for group anchor) = NA in.2 (see Figure RD.5.2.1) ANco(for single anchor) = 1296 in.2 (see Figure RD.5.2.1) AN„ (for group anchor) = 1296 in.2 (see Figure RD.5.2.1) Wee,n = 1 Eqn. D-9 (Anchors not Eccentrically Loaded. +, = 1.0) tPed.N= 1.000 Eqn. D-10 & D-11 41c N= 1 (1,25 for cast anchors,1.4 for post-installed) Section 0.5.2.6 kG = 24 (24 for cast anchors, 17 for post-installed) Section 0.5.2.2 PC= 2500 psi 1.5"he= 18 he= 12 inches 0.7+0.3(c,nin/1.5h.f) = 1.000 c,,t,n= 18 in - distance to closest edge of concrete { ” Np= 49.88 kips - (Eqn. D-7) ,. .e. Ncb 42.34 kips -(Eqn. D-4) A,}fie N,,y= 0.00 kips - (Eqn. D-5) 11V = Oiled„ � cp,vjlVb Reinforcing = 0.70 r'rct CPNebg = 29.64 kips Page 104 of 129 i .. Client: 1.1 FProject: FINDOEllrivill 4 proi,c Date: coNsuLTING By: ENGINEERSI INC ACI 318-05 Appendix D - Tension Failures Cont (Page 3 of 3) 05.3 - Sin le Anchor Pullout- headed or embedded nut Use Plate Washer? Y Plate Washer Width = 3 inches Nut diameter= 1.625 inches Nut or Plate Washer Bearing Area= 9.000 in2 Abrg = 8 22 in2-bearing area of embedded anchors head or nut jc P ..' 1 For an anchor located in an area of concrete where no cracking at service loads is antcipated„ othenvise use 1.0 value(ACI 313-05 Section D.5.3.5) n = 1 #of anchors Np = 154.30 (kips) Eqn_ 0-15 .p --4_ 8,--r c 1 Npn = 164.30 (kips) Eqn. D-14 s:--- ----ir — ;v,,:c7rv--:..,;] Reinforcing cip = 3.70 -- — J ONpn = 115.01 kips 05.4 - Anchor side-faced blowout-Headed Anchor (Required only if anchor ts near an edge where cp-1 Anchor is not close to Edge of Concrete. Analysis below NOT Required. 0a2= 5 distance to perp edge of concrete from anchor cal = 13 in -distance to closest edge of concrete Ngti 7.: 412.73 (kips) Eqn 0-15 Factored Nst, = 412.73 Reinforcing ca = 0.70 288.91 kipsAV = 160 c .\74---- .3b a I1f j.,- 1 C t..., a = 0 in -spacing of outer anchors in group Nsbo= 412,73 (kips) Eqn. D-16 \ Reinforcing (1,= 0.70 N sbg = 1 + -8 N = sb cPN sbg 288,91 kips 6ca 1 i Page 105 of 129 Title Block Line 1 Project Title: • You can change this area Engineer: Project ID: using the"Settings"menu item Project Descr: and then using the"Printing& Title Block"selection. Title Block Line 6 Pared 1:cJw-2>;3u.;{ins: File P.12�016117JStS £tEHTEC6 OkelMI FiR65UL U036011.-11 63 Cantilevered Retaining Wall Et4ERCAL.C,INC 1983-2016Buld6.1667Ver.6.16.6.7 ttei:' 402104 t`> .. ,;,,,t.��..� .;"....�� Tt,M:,t;,4 ::.., Z.0 .4,11104 ::., 13 ._ Qty Description: 4'-0"Wall Criteria Soil Data Calculations per ACI 318-08, ACI 530.08,IBC 2009, Retained Height = 4.00 ft Allow Soil Bearing = 2,500.0 psf CBC 2010,ASCE 7-10 Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 0.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 0.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. Soil height to ignore for passive pressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem ,Adjacent Footing Load Surcharge Over Heel = 0.0 psf Lateral Load = 20.0 plf Adjacent Footing Load 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 4.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&OverturningWall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load Axial Dead Load = 500,0 lbs Back Wall lalll Soil at Baack of _ 0.0 ft Axial Live Load = 0.0 lbs Wind on Exposed Stem = 0.0 psf at Axial Load Eccentricity = 0,0 in Poisson's Ratio - 0.300 Design Summary Stem Construction Top Stem Stem OK Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning _ 2.01 OK Wall Material Above"Hf" = Concrete Sliding _ 1.52 OK Thickness in= 6.00 Rebar Size = # 4 Total Bearing Load = 1,578 lbs Rebar Spacing in= 12.00 ...resultant ecc. = 6.04 in Rebar Placed at = Edge Design Data Soil Pressure @ Toe = 1,692 psf OK fb/FB+fa/Fa = 0.213 Soil Pressure @ Heel = 0 psf OK Total Force @ Section lbs= 528.0 Allowable = 2,500 psf Moment....Actual ft-I= 757.3 Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,030 psf Moment.....Allowable ft-I= 3,559.5 ACI Factored @ Heel = 0 psf Shear Actual psi= 10.4 Footing Shear @ Toe = 0.7 psi OK Shear Allowable psi= 67.1 Footing Shear @ Heel = 6.2 psi OK Wall Weight psf= 75.0 Allowable = 75.0 psi Rebar Depth 'd' in= 4.25 Sliding Calcs (Vertical Component NOT Used) Lap splice if above n= 20.93 • Lateral Sliding Force = 517.5 lbs Lap splice if below in= 8.40 less 100%Passive Force = - 0.0 lbs Hook embed into footing in= 8.40 less 100%Friction Force = - 788.8 lbs Concrete Data . fcAdded Force Req'd = 0.0 lbs OK psi 2,000.0 F ....for 1,5:1 Stability = 0.0 lbs OK y psi Load Factors Dead Load 1.200 Live Load 1"600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Page 106 of 129 Title Block Line 1 Project Title: You can change this area Engineer. Project ID: " using the"Settings"menu item Project Descr: and then using the"Printing& Title Block"selection. Title Block Line 6 cols,; s a.I 2)15 341PM Cantilevered RetainingWall File=P.y20t6,1TUSIS HTECa QiG7A4YC FvR66 tsR66BIL-U C9 ENERCALC,INC.1983-2016,6uild:6.16.6.7,Vera 1S 6.7 1»1±W (WWtl6Otit2w3O? . '. _.. .> ,-l. ,• ;‘_C kip . , .. „ t .. ..FRO MR=SUL11 E GINEAR Description: 4'-0"Wall Footing Dimensions&Strengths Footing Design Results Toe Width = 0.75.ft Toe Heel Heel Width = 1.50 Factored Pressure = 2,030 0 psf Total Footing Width = 2.25 Mu':Upward = 494 0 ft-lb Footing Thickness = 12.00 in Mu':Downward = 51 354 ft-lb Mu: Design = 444 354 ft-lb Key Width = 0.00 in Actual 1-Way Shear = 0.75 6.21 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #7 @ 16.00 in fc = 2,500 psi Fy ,: 60,000 psi Heel Reinforcing = #6 @ 16.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: Not req'd,Mu<S'Fr Heel: Not req'd,Mu<S*Fr Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING..... .....RESISTING..... Force Distance Moment Force Distance Moment !tern... lbs ft... ft-lb lbs ft ft-lb Heel Active Pressure = 437.5 1.67 729.2 Soil Over Heel = 440.0 1.75 770.0 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure = Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem = 500.0 1.00 500.0 Added Lateral Load = 80.0 3.00 240.0 "Axial Live Load on Stem = Load @ Stem Above Soil = Soil Over Toe = Surcharge Over Toe = Stem Weight(s) = 300.0 1.00 300.0 Earth @ Stem Transitions = Total = 517.5 O.T.M. = 969.2 Footing Weight = 337.5 1.13 379.7 ResistinglOverturning Ratio = 2.01 Key Weight = Vertical Loads used for Soil Pressure= 1,577.5 lbs Vert.Component Total= 1,577.5 lbs R.M.= 1,949.7 *Axial live load NOT included in total displayed or used for overturning resistance,but is included for soil pressure calculation. Page 107 of 129 Title Block Line 1 Project Title: You can change this area Engineer: Project ID: using the"Settings"menu item Project Descr: and then using the"Printing& Title Block"selection. Title Block Line 6 t °'gid OCT 2016,3 43P."d Cantilevered Retaining Wall re=P;VAI I6t17uSiS-c EIiTEG6otC7Myc Fn'06BL I -U20+BiLu ' EcS a ENERCALC,INC 1963-2016,Bu Id:6.16.6.7,Ver:6.16.6.7 .id 4 '06 02304 4s _ rte...... _ ', 1'•-,. :._: ��r '" 1t ,6S _ `. ...01$1.: O `L:C. SU, GI[dl R i< Description: 6'-0"Wall Criteria Soil Data Calculations per ACI 318.08, ACI 530-08,IBC 2009, Retained Height = 6.00 ft Allow Soil Bearing = 2,500.0 psf CBC 2010,ASCE 7.10 Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 0.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 0.00 pct NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. Soil height to ignore NOT USED for Overturning Resistance. for passive pressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Lateral Load = 30.0 If Surcharge Over Heel = 0,0 psf p Adjacent Footing.Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 6.00 ft Footing Width 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft ' Axial Load Applied to Stem Footing Type Line Load Base Above/Below Soil , 0.0 ft Axial Dead Load = 500.0 lbs at Back of Wall Axial Live Load = 0,0 lbs Wind on Exposed Stem .. 0.0 psf Poisson's Ratio = 0.300 Axial Load Eccentricity = 0,0 in . Desi n Summa Stem Construction Top stem �.. , Stem OK Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning = 2.29 OK Wall Material Above"Ht" = Concrete Sliding = 1.54 OK Thickness in= 8.00 Rebar Size = # 4 Total Bearing Load = 3,203 lbs Rebar Spacing in= 12.00 ..resultant ecc. = 9.37 in Rebar Placed at = Edge Design Data Soil Pressure @ Toe = 1,951 psf OK fb/FB+fa/Fa _ 0.477 Soil Pressure @ Heel = 0 psf OK Total Force @ Section lbs= 1,188.0 Allowable = 2,500 psf MomentActual ft-I= 2,556.0 Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,342 psf Moment Allowable ft-I= 5,359.5 ACI Factored @ Heel = 0 psf Shear Actual psi= 15.8 Footing Shear @ Toe = 0.9 psi OK Shear Allowable psi= 67.1 Footing Shear @ Heel = 19.9 psi OK Wall Weight psf= 100.0 Allowable = 75.0 psi Rebar Depth 'd' in= 6.25 Sliding Calcs (Vertical Component NOT Used) Lap splice if above in= 20.93 Lateral Sliding Force = 1,037.5 lbs Lap splice if below in= 6.00 less 100%Passive Force = - 0.0 lbs Hook embed into footing in= 6.00 less 100%Friction Force = 1,600.0 lbs Concrete Data Added Force Req'd = 0.0 lbs OK fc psi= 2,000.0 ....for 1.5:1 Stability = 0.0 lbs OK Fy psi Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Page 108 of 129 Title Block Line 1 Project Title: You can change this area Entcineer: Project ID: • using the"Settings'menu item Project Descr: and then using the'Printing& Title Block"selection. Title Block Line 6 Frnikd; 015 343PM Cantilevered RetainingWall Erie P.20,5.1„1;I r,rEr,;-01..e7k,4v F+R6s6i1-trR66BIL-UEC6 ENERCAt.C,INC.19832716,BuiId:6.16.6.7,Ver.616.6.7 Lio' KW-060.02304 I x.,, , ,', _;( * .?,rte l . 'O1 ULTJN ENGJNE RS Description: 6'-0'Wall Footing Dimensions&Strengths Footing Design Results Toe Width = 0.75 ft Toe Heel Heel Width = _.3..0L Factored Pressure = 2,342 0 psf Total Footing Width = 3.75 Mu':Upward = 608 0 ft-lb Footing Thickness = 12.00 in Mu':Downward = 51 0 ft-lb Mu: Design = 558 2,556 ft-lb Key Width = 0.00 in Actual 1-Way Shear = 0.88 19.89 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #7 @ 16.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 16.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: Not req'd,Mu<S`Fr Heel: Not req'd,Mu<S*Fr Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING RESISTING..... Force Distance Moment Force Distance Moment Item lbs.._., ft ft-lb lbs ft._.._ ft-lb.. Heel Active Pressure = 857.5 2.33 2,000.8 Soil Over Heel = 1,540.0 2.58 3,978.3 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure = Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem = 500.0 1.08 541.7 Added Lateral Load = 180.0 4.00 720.0 *Axial Live Load on Stem =- Load Load @ Stem Above Soil = Soil Over Toe = Surcharge Over Toe = Stem Weight(s) = 600.0 1.08 650.0 Earth @ Stem Transitions = Total = 1,037.5 O.T.M. = 2,720.8 Footing Weight = 562.5 1.88 1,054.7 ResistinglOverturning Ratio = 2.29 Key Weight = Vertical Loads used for Soil Pressure= 3,202.5 lbs Vert.Component = Total= 3,202.5 lbs R.M.= 6,224.7 "Axial live load NOT included in total displayed or used for overturning resistance,but is included for soil pressure calculation. Page 109 of 129 Title Block Line 1 Project Title: You can change this area Engineer: Project ID: using the"Settings'menu item Project Descr: and then using the"Printing& Title Block"selection. Title Block Line 6 .--1;;J , r 5,-,m • Cantilevered Retaining Wall File=F\,201617USIS E+.EFiTECrrOSC7A4YC ER&6eIL �RC�i931. U0:: N ENERCA!_G.INC.1983-2016,yyyB 11✓�6.1�x5�+,i�6 Ver 5 1 amu. ,..,. mx. cS .we* ix..='. : �Y �:� �. O :` . N�3� . .._ . . Description: 8'-0"Wall �� .. Criteria Soil Data Calculations per ACI 318-08, ACI530-08,IBC 2009, Retained Height = 8.00 ft Allow Soil Bearing = 2,500.0 psf CBC 2010,ASCE 7-10 Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 0.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psflft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 0.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. Soil height to ignore NOT USED for Overturning Resistance. for passive pressure = 0.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = 0.0 psf Lateral Load = 40.0 plf gg ,..Height to Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning Top p = 8.00 ft Footing Width - 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load Base Above/Below Soil Axial Dead Load = 500.0 lbs = 0.0 ft Axial Live Load = 0.0 lbs Wind on Exposed Stem = 0.0 psf at Back of Wall Axial Load Eccentricity = 0.0 in Poisson's Ratio 0.300 Design Summary Stem Construction Top Stem Wall StabilityRatios Design Height Stem OK0 Overturni Above Ftg ft= 0,00 ng 2.29 OK Wall Material Above"Ht" = Concrete Sliding 1.53 OK Thickness in= 8.00 Rebar Size = # 5 Total Bearing Load = 4,983 lbs Rebar Spacing in= 7.00 ...resultant ecc. = 11.86 in Rebar Placed at = Edge Design Data Soil Pressure @ Toe = 2,198 psf OK fb/FB+fa/Fa 0.469 Soil Pressure @ Heel = 0 psf OK Total Force @ Section lbs= 2,112.0 Allowable = 2,500 psf Moment....Actual ft-I= 6,058.7 Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,637 psf Moment.....Allowable ft-I= 12,922.4 ACI Factored @ Heel = 0 psf Shear Actual psi= 28.4 Footing Shear @ Toe = 6,8 psi OK Shear Allowable psi= 67.1 Footing Shear @ Heel = 36.1 psi OK Wall Weight psf= 100.0 Allowable = 75.0 psi Rebar Depth 'd' in= 6.19 Sliding Calcs (Vertical Component NOT Used) Lap splice if above in= 26.16 Lateral Sliding Force = 1,737.5 lbs Lap splice if below in= 6.00 less 100%Passive Force = - 165.0 lbs Hook embed into footing in= 6.00 less 100%Friction Force = - 2,490.0 lbs Concrete Data Added Force Req'd = 0.0 lbs OK fc psi= 2,000.0 ....for 1.5:1 Stability = 0.0 lbs OK Fy psi= Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Page 110 of 129 Title Block Line 1 Project Title: You can change this area En99ineer: Project ID. • using the"Settings'menu item Protect Descr: and then using the"Printing& Title Block"selection. Till'''Bock Line 6 ntel 1 NT 2015,345P Fie f 129151/USI; Gtr I( C `,- C7A4Yr FT66U[l UtnealL-UEC6 Cantilevered Retaining Watt EuERcALc.INc 1483-2016sud51ss?Ve1s1667 Lic.41 rliW46002304 ‘I'i:: °::.` 't.`, x. `°` -:':'rf. .:':0 1,ee°,7*MIL-AN ore NS _TING ER Rat Description. 8'-0"Wall Footing Dimensions&Strengths Footing Design Results Toe Width = 1.00 ft Toe Heel Heel Width = 4.00 Factored Pressure = 2537 0 psf Total Footing Width = 5.00 Md':Upward = 1,222 0 ft-lb Footing Thickness = 12.00 in Mu':Downward = 90 0 ft-lb Mu: Design = 1,132 6,059 ft-Ib Key Width = 0.00 in Actual 1-Way Shear = 6.78 36.14 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #7 @ 16.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 16.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: Not req'd,Mu<5 Fr Heel: #4@ 11.75 in,#5@ 18.25 in,#6@ 25.75 in,#7@ 35.25 in,#8@ 46.25 in,#9@ 4 Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING .....RESISTING Force Distance Moment Force Distance Moment Item lbs .�ft ft-lb__._..._ lbs ft ft lb _._.._..__. Heel Active Pressure = 1,417.5 3.00 4,252.5 Soil Over Heel = 2,933.3 3.33 9,777.8 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure = Surcharge Over Heel Surcharge Over Toe = Adjacent Footing Load Adjacent Footing Load = Axial Dead Load on Stem = 500.0 1.33 666.7 Added Lateral Load = 320.0 5.00 1,600.0 *Axial Live Load on Stem = Load @ Stem Above Soil = Soil Over Toe = Surcharge Over Toe Stem Weight(s) = 800.0 1.33 1,066.7 Earth @ Stem Transitions Total = 1,737.5 O.T.M. = 5,852.5 Footing Weight 750.0 2,50 1,875.0 ResistinglOverturning Ratio = 2.29 Key Weight = Vertical Loads used for Soil Pressure= 4,983.3 lbs Vert.Component = Total= 4,983.3 lbs R.M.= 13,386.1 *Axial ustpressureculused n for overturning but is included or o displayed, o • Page 111 of 129 Title Block Line 1 Project Title: You can change this area Engineer: Project ID: using the'Settings"menu item Protect Descr: and then using the'Printing& Title Block'selection. Title Block Line 6 Pi Kath 1 Oct?1516,5'33PM Cantilevered Watt File=P.k2U16:1 usts EtEHTEce o��c7A4�rc f 6911-tiR66Ea -LEC ENERCALC. 6,7,V 6. ¢jr�ed0 • eft Description: 10'-0'Wall Criteria Soil Data Calculations per ACI 318-08, ACI 530-08,IBC 2009, CBC 2010,ASCE 7.10 Retained Height = 10.00 ft Allow Soil Bearing = 2,500,0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35,0 psf/ft Height of Soil over Toe = 0.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 0.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. Soil height to ignore NOT USED for Overturning Resistance. for passive pressure = 15.00 in SurchargeggLoads Lateral Load Applied to Stem Adjacent Footing Load Used rc Resist Slidinge &Overturning 0_.. Lateral Loado Top = 15.0 0 ft 0� Surcharge Over Heel = 0.0 psf50f Adjacent Footing Load = 0.0 lbs .Hei ht Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load Base Above/Below Soil Axial Dead Load = 500,0 lbs at Back of Wall 0.0 ft Axial Live Load = 0.0 lbs Wind on Exposed Stem = 0.0 psf Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Design Summarystem . .-.I Stem Construction _......Top StemOK Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning = 3.13 OK Wall Material Above"Ht" = Concrete Sliding = 1.53 OK Thickness in= 8.00 Rebar Size = # 5 Total Bearing Load = 8,223 lbs Rebar Spacing in= 6.00 ...resultant ecc. = 9.42 in Rebar Placed at = Edge Design Data ...._ _. . Soil Pressure @ Toe = 1,785 psf OK fb/FB+falFa = 0.777 Soil Pressure @ Heel = 408 psf OK Total Force @ Section lbs= 3,300.0 Allowable = 2,500 psf MomentActual ft-1= 11,833.3 Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,142 psf Moment Allowable ft-I= 15,222.0 ACI Factored @ Heel = 489 psf Shear.....Actual psi= 44.4 Footing Shear @ Toe -- 13.6 psi OK Shear Allowable psi= 75.0 Footing Shear @ Heel = 49.8 psi OK Wall Weight psf= 100.0 Allowable = 75.0 psi Rebar Depth 'd' in= 6.19 Sliding Calcs (Vertical Component NOT Used) Lap splice if above in= 23.40 Lateral Sliding Force = 2,691.4 lbs Lap splice if below in= 7.90 less 100%Passive Force = - 0,0 lbs Hook embed into footing in= 7.90 Concrete Data less 100%Friction Force = - 4,110.8 lbs Added Force Req'd = 0,0 lbs OK fc psi= 2,500.0 ....for 1.5: 1 Stability = 0,0 lbs OK Fy psi= Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Page 112 of 129 Title Block Line 1 Project Title: • You can change this area Engineer: Proiect ID: using the"settings'menu item Project Descr: and then using the"Printing& Title Block'selection. Title Block Line 6 ,:ed:1 OCT 20165.33PM Cantilevered Retainin Wall F e P:\20,6i7'1JSIS-BEHTEC6-thc7MYC F\R6$6!L-uw66BIL jEC6 g ENERCAtC.INC.1983.2016,BuS,d:6.16.6.7,Ver:6.16 s 7 ' LU .T .. .: z : I tE t . a. .... � „ � .... .�. _ �Q[ IttrR'�D. NGNIF.�RS Description: 10'-0'wail Footing Dimensions&Strengths Footing Design Results Toe Width = 2.00 ft - Toe Heel Heel Width = 5,50 Factored Pressure = 2,142 489 psf Total Footing Width = 7.50 Mu':Upward = 3,990 0 ft-lb Footing Thickness = 15,00 in Mu':Downward = 450 0 ft-Ib Mu: Design = 3,540 11,833 ft-Ib Key Width = 0.00 in Actual 1-Way Shear = 13.60 49.78 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #7 @ 16.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 16.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: Not req'd,Mu<S"Fr Heel: #4@ 8.50 in,#5@ 13.25 in,#6@ 18.50 in,#7@ 25.25 in,#8@ 3325 in,#9@ 42 Key: No key defined Summaryof Overturning&Resisting Forces&Moments ents OVERTURNING..... RESISTING..... Force Distance Moment Force Distance Moment Rem _..._ lbs ft ft-lb lbs ftlb Heel Active Pressure = 2,214.8 3.75 8,305.7 Soil Over Heel = 5,316.7 5.08 27,026.4 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure = -23.4 0.42 -9.8 Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load Adjacent Footing Load = Axial Dead Load on Stem = 500.0 2.33 1,166.7 Added Lateral Load = 500.0 6.25 3,125.0 "Axial Live Load on Stem = Load @ Stem Above Soil = Soil Over Toe -- Surcharge Over Toe = Stem Weight(s) = 1,000.0 2.33 2,333.3 ._.. , .,. Earth @ Stem Transitions Total = 2,691.4 O.T.M. = 11,420.9 Footing Weight = 1,406.3 3.75 5,273.4 ResistinglOverturning Ratio = 3.13 Key Weight Vertical Loads used for Soil Pressure= 8,222.9 lbs Vert.Component = Total= 8,222.9 lbs R.M.= 35,799.8 'Axidl live load NOT included in total displayed,or used for overturning resistance,but is included for soil pressure calculation. • Page 113 of 129 � - RFlo=PO1411E1P1M J+EF,TEC6 C7A41C RA6b8IlU558l_-U.EC6Cantilevered RetainingWall • ENERCrm1.C,INC. 1993.2013,Bu,d:6.i 3.8.31,Ver.6,13 8.31 1.10.r6002304 ,� . ` ` ` tt: t is N:" ti k kiOlt ' .0:,.• '..m,.. „ 77:71,'',. CENGLNER Description: 12'-0"Wall Criteria Soil Data Calculations per Retained Height = 12.00 ft Allow Soil Bearing = 2,500.0 psf . Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00: 1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 6.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 0.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. Soil height to ignore for passive pressure = 0.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Lateral Load = 60.0 if Surcharge Over Heel = 50.0 psf p Adjacent Footing Load - 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top -- 12.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Fig CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load Axial Dead Load = 500.0 lbs Base Back ofWl ll Soil = 0.0 ft Axial Live Load = 0,0 lbs Wind on Exposed Stem 0.0 psf at of Wall Axial Load Eccentricity = 0,0 in Poisson's Ratio - 0.300 Design Summa Stem Construction Top stem Stem OK Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning = 2.20 OK Wall Material Above"Ht" = Concrete Sliding = 1.27 Ratio<1.5! Thickness in= 10.00 Slab Resists All Sliding! Rebar Size = It 6 Total Bearing Load = 9,161 lbs Rebar Spacing in= 6.00 ...resultant ecc. = 14.90 in Rebar Placed at = Edge Design Data Soil Pressure @ Toe = 2,318 psf OK fb/FB+fa/Fa 0.&S4 Soil Pressure @ Heel = 46 psf OK Total Force @ Section lbs= 5,051.5 Allowable = 2,500 psf MomentActual ft-I= 22,279.7 Soil Pressure Less Than Allowable ACI Factored @ Toe 2,782 psf Moment Allowable ft-I= 26,082.9 ACI Factored @ Heel = 55 psf Shear Actual psi= 55.2 Footing Shear @ Toe = 28.0 psi OK Shear Allowable psi= 75,0 Footing Shear @ Heel = 52.5 psi OK Wall Weight psf= 125.0 Allowable = 75.0 psi Rebar Depth 'd' in= 7.63 Sliding Calcs Slab Resists All Sliding! Lap splice if above in= 28.08 Lateral Sliding Force = 4,003.1 lbs Lap splice if below in= 10.48 less 100%Passive Force = - 505.3 lbs Hook embed into footing in= 10.48 less 100%Friction Force = 4,580.0 lbs Concrete Data Added Force Re q'd = 0.0 lbs OK F psi= 0,000.0 Fy psi= 60,000.0 ....for 1.5:1 Stability = 918.7 lbs NG Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Page 114 of 129 Cantilevered RetainingWall File=i':12014;1E1PLI J HTECE G;C7A4YC FIR 68IL-Uts?66BIL-U.EC6 ENERCALC,INC.1983.2013,Buifd:6.13,B.31,Vet:6.13.8.31 Description 12'-0'Wall Footing Dimensions&Strengths Footing Design Results Toe Width = 2.75 ft Toe Heel Heel Width = 5.00 Factored Pressure = 2,782 55 psf Total Footing Width = 7.75 Mu':Upward = 9,300 0 ft-lb Footing Thickness = 15.00 in Mu':Downward = 1,100 16,398 ft-lb Key Width = 0.00 in Mu: Design = 8,200 16,398 ft-lb Key Depth = 0.00 in Actual 1-Way Shear = 27.96 52.47 psi Key Distance from Toe = 0.00 ft Allow 1-Way Shear75.00 75.00 psi Toe Reinforcing = #7 @ 16.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 16.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: #4@ 9.75 in,#5@ 15.00 in,#6@ 21.50 in,#7@ 29.00 in,#8@ 38.25 in,#9©48 Heel: #4@ 6.25 in,#5@ 9.50 in,#6@ 13.25 in,#7@ 18.25 in,#8©24.00 in,#9@ 30. Key: No key defined Summary of Overturning&Resisting Forces&Moments .....OVERTURNING..... RESISTING..... Force Distance Moment Force Distance Moment Item lbs ft ft-Ib lbs ft ft-lb Heel Active Pressure = 3,072.3 4.42 13,569.5 Soil Over Heel = 5,500.0 5,67 31,166.7 Surcharge over Heel = 210.8 6,63 1,396.5 Sloped Soil Over Heel = Toe Active Pressure = Surcharge Over Heel = 208.3 5.67 1,180.6 Surcharge Over Toe = Adjacent Footing Load -- Adjacent Footing Load = Axial Dead Load on Stem = 500.0 3.17 1,583.3 Added Lateral Load = 720.0 7.25 5,220.0 'Axial Live Load on Stem Load @ Stem Above Soil = Soil Over Toe = 1.38 Surcharge Over Toe = Stem Weight(s) = 1,500.0 3.17 4,750.0 Earth @ Stem Transitions = Total = 4,003.1 O.T.M. = 20,186.0 Footing Weight = 1,453.1 3.88 5,630.9 ResistinglOverturning Ratio = 2.20 Key Weight Vertical Loads used for Soil Pressure= 9,161.5 lbs Vert.Component = Total= 9,161.5 lbs R.M.= 44,311.4 Axial live load NOT included in total displayed or used for overturning resistance,but is included for soil pressure cakulatlon. Page 115 of 129 Cantilevered Retaining wall File=P,120 -,i'iEti"rEc .a c7A4 F$>9tBlL'-U R9ol3i.-U.EC6 • ENERCALC,INC.1983-2013,Bu,d 8.13.8.31,Ver.6.13.8.31 M sq, . > S, kr_ _ RO + $..r..-1,14114431 .M MOO t Description: 4'-0"Wall(Slab to Resist Sliding) Criteria Soil Data Calculations per Retained Height = 4.00 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psflft Height of Soil over Toe = 6.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density,Heel = 110,00 pcf Lateral soil pressure options: Soil Density,Toe = 0.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. Soil height ignore forr ppassive pressure = 0.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load 20.0 if Surcharge Over Heel = 0.0 psf Lateral Load = P Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 4.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load Base Above/Below Soil 0 0 ft Axial Dead Load = 500.0 lbs at Back of Wall Axial Live Load = 0.0 lbs Wind on Exposed Stem = 0.0 psf Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Design Summary Stem Construction _Top Stem Stem OK Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning = 1.77 OK Wall Material Above"Ht" = Concrete Sliding = 2.12 OK Thickness in= 8.00 Slab Resists All Sliding! Rebar Size = # 4 Total Bearing Load = 1,457 lbs Rebar Spacing in= 12.00 ...resultant ecc. = 5.87 in Rebar Placed at = Edge Design Data Soil Pressure @ Toe = 1,901 psf OK fb/FB+falFa = 0.141 Soil Pressure 0 Heel = 0 psf OK Total Force @ Section lbs m 522.0 Allowable = 2,500 psf MomentActual ft-I= 756.3 Soil Pressure Less Than Allowable ACI Factored 0 Toe = 2,281 psf Moment Allowable ft-I= 5,359,5 ACI Factored 0 Heel = 0 psf Shear Actual psi= 7.0 Footing Shear 0 Toe = 0.8 psi OK Shear Allowable psi= 67.1 Footing Shear @ Heel = 3.6 psi OK Wall Weight psf= 100,0 Allowable = 75.0 psi Rebar Depth 'd' in= 6.25 Sliding Calcs Slab Resists All Sliding! Lap splice if above in= 12.00 Lateral Sliding Force = 517.5 lbs Hook embedp splice if belowin= 8.40 less 100%Passive Force = 371.3 lbs into footing in 8.40 less 100%Friction Force = 728.0 lbs Concrete Data Added Force Req'd = 0.0 lbs OK fc psi= 0,000.0 ....for 1.5:1 Stability = 0.0 lbs OK Fy psi= 60,000.0 Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Page 116 of 120 Cantilevered RetainingWall File P.1201411I:1P1'"JIEHTEC �r.1iC"7A4YC ft6::1??L ��R668i1.-1J E' ENERCALC,INC,1983.2013 Build.6.13,831,Ver.613.8.31 LtC. MO6002304 , • a.. -.,,a . .i.'• � sra ....,:--%•4:1'.4...?.,'L- E o f i Description: 4'-0'Wall(Slab to Resist Sliding) Footing Dimensions&Strengths Footing Design Results Toe Width = 0.75 ft Toe Heel Heel Width = 1x25_.- Factored Pressure = 2,281 0 psf Total Footing Width = 2.00 Mu':Upward = 537 0 ft-lb Footing Thickness = 12.00 in Mu':Downward = 69 120 ft-lb Mu: Design = 468 120 ft-lb Key Width = 0.00 in Actual 1-Way Shear = 0.81 3.62 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #7 @ 16.00 in fc = 2,500_psi Fy = 60,000 psi Heel Reinforcing = #6 @ 16.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: Not req'd,Mu<S*Fr Heel: Not req'd,Mu<S"Fr Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-lb lbs ft ft-lb Heel Active Pressure = 437.5 1.67 729.2 Soil Over Heel = 256.7 1.71 438.5 Surcharge over Heel = Sloped Soil Over Heel Toe Active Pressure = Surcharge Over Heel Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem = 500.0 1.08 541.7 Added Lateral Load = 80.0 3.00 240.0 *Axial Live Load on Stem = Load @ Stem Above Soil = Soil Over Toe = 0.38 Surcharge Over Toe = Stem Weight(s) = 400.0 1.08 433.3 Earth @ Stem Transitions =- Total Total = 517.5 O.T.M. = 969.2 Footing Weight = 300.0 1.00 300.0 ResistinglOverturning Ratio = 1.77 Key Weight Vertical Loads used for Soil Pressure= 1,456.7 lbs Vert.Component _=, Total= 1,456.7 lbs R.M.= 1,713.5 *Axial live load NOT included in total displayed,or used for overturning resistance,but is included for soil pressure calculation. " Page 117 of 129 Pie F12014'1E1PL'{PLM -0;27 4YC r,RxElLI.WR6681 11 ECB Cantilevered Retaining WallENERCALC,INC,!NC1983-2013,Build.6.13.3 13.8 31 Ver6.13.8 13 8 31 "`1f a E.. INE Description: 6'-0"Wall(Slab to Resist Sliding) Criteria Soil Data Calculations per Retained Height = 6.00 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 6.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 0.00 pct NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. ore NOT USED for Overturning Resistance. Soil for pheasstive t ipress pressure = 0.00 in Surcharge Loads . Lateral Load Applied to Stem Adjacent Footing Load Lateral Load .. 30.0 if Surcharge Over Heel = 0.0 psf p Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 6.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf .,.Height to Bottom _ 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Load Applied Axial to Stem Footing Type Line Load Axial Dead Load = 500.0 lbs BaseatBack o Wall Soil = 0.0 ft Axial Live Load = 0.0 lbs Wind on Exposed Stern = 0.0 psf at of Wall - Axial Load Eccentricity = 0.0 in Poisson's Ratio - 0.300 Design Summary Stem Construction Top Stem Stem OK Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning = 1.77 OK Wall Material Above"Ht" = Concrete Sliding _ 1.63 OK Thickness in= 8.00 Slab Resists All Sliding! Rebar Size = # 4 Total Bearing Load = 2,633 lbs Rebar Spacing in= 12.00 ...resultant ecc. = 9.90 in Rebar Placed at = Edge Design Data Soil Pressure @ Toe = 2,193 psf OK fb/F8+fa/Fa 0.477 Soil Pressure @ Heel = 0 psf OK Total Force @ Section lbs= 1,182.0 Allowable = 2,500 psf Moment,.,Actual ft-I=== 2,555.0 Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,631 psf Moment Allowable ft-I= 5,359.5 ACI Factored @ Heel = 0 psf Shear Actual psi= 15.8 Footing Shear @ Toe = 6.3 psi OK ShearAllowable psi= 67.1 Footing Shear @ Heel = 13.5 psi OK Wall Weight psf= 100.0 Allowable = 75.0 psi Rebar Depth 'd' in= 6.25 Sliding Calcs Slab Resists All Sliding! Lap splice if above in= 12.00 Lateral Sliding Force = 1,037.5 lbs Lap splice if below in- 6.00 less 100%Passive Force = 371.3 lbs Hook embed into footing in= 6.00 Concrete Data less 100%Friction Force = - 1,318.0 lbs Added Force Re q'd = 0.0 lbs OK F psi= 2,000.0 F y psi= 60 000.0 ....for 1.5:1 Stability = 0.0 lbs OK Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Page 118 of 120 3 ' T � .� File P1 a14,1E1Pt - E#iTEC6-Utc �rY Ftk66BBlL-aR� 8L-UEC&Cantilevered RetainingWal! ENFRCALC.INC 1983-2013. u . 3. . 1.1c It Rp 02304 \ a \ ',, ,,SZ''e's � i \ -' w , C't-•. ,.2t e FROELIC,HCONSAMMENG04 Description: 6"-0'Wall(Slab to Resist Sliding) Footing Dimensions&Strengths Footing Design Results ',. Toe Width -- 1.00 ft Toe Heel Heel Width = 2.25__. Factored Pressure = 2,631 0 psf Total Footing Width = 3.25 Mu':Upward = 1,133 0 ft-lb Footing Thickness = 12.00 in Mu':Downward = 123 1,218 ft-lb Mu: Design = 1,010 1,218 ft-lb Key Width = 0.00 in Actual 1-Way Shear = 6.30 13.50 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #7 @ 16.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 16.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: Not req'd,Mu<S*Fr Heel: Not req'd,Mu<S*Fr Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-lb lbs ft ft-lb Heel Active Pressure = 857.5 2.33 2,000.8 Soil Over Heel = 1,045.0 2.46 2,569.0 Surcharge over Heel = Sloped Soil Over Heel Toe Active Pressure = Surcharge Over Heel Surcharge Over Toe = Adjacent Footing Load Adjacent Footing Load = Axial Dead Load on Stem = 500.0 1.33 666.7 Added Lateral Load = 180.0 4.00 720.0 *Axial Live Load on Stem Load @ Stem Above Soil = Soil Over Toe -- 0.50 Surcharge Over Toe Stem Weight(s) = 600.0 1.33 800.0 Earth @ Stem Transitions Total = 1,037.5 O.T.M. = 2,720.8 Footing Weight = 487.5 1,63 792.2 ResistinglOverturning Ratio = 1.77 Key Weight -- Vertical Loads used for Soil Pressure= 2,632.5 lbs Vert.Component Total= 2,632.5 lbs R.M.= 4,827.8 *Axial live load NOT included in total displayed or used for overturning resistance, e but is included tor soil pressurecarculation, • Page 119 of 129 FilePG14s1FtPLM ..triTEC Q C7A4YC rr66BIL U1F66BIL-U.EC6Cantilevered RetainingWall lERCAtC, INC15832013 Build 6,13 8.31.Ver:6.13.8.31 L c IR.,•7:1(111460023,04 Rm . .. . . - 77:: , n', 10 EROElaCW CONS TING:._Nei:.M Description: 8'-0"Wan(Slab to Resist Sliding) Criteria Soil Data Calculations per Retained Height = 8.00 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 6.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psffft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 0.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. Soil height to ignore for passive pressure = 0.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = 0.0 psf Lateral Load = 40.0 plf Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 8.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ,,,Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load l d Loadlied to Stem Footing Type Line Load 500.0 lbs Base Above/Below Soil _ 0.0 ft Axial Live Load = 0.0 lbs Wind on Exposed Stem = 0.0 psf at Back of Wall Axial Load Eccentricity = 0.0 in Poisson's Ratio = 0.300 Design Summary Stern Construction Top Stem Stem OK Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning -- 1.79 OK Wall Material Above"Ht" = Concrete Sliding = 1.41 Ratio<1.5! Thickness in= 8.00 Slab Resists Al!Siding! Rebar Size = # 5 Total Bearing Load = 4,141 lbs Rebar Spacing in= 12.00 ...resultant ecc. , = 12.94 in Rebar Placed at = Edge Design Data Soil Pressure @ Toe = 2,355 psf OK fb/FB+fa/Fa _ 0.758 Soil Pressure @ Heel = 0 psf OK Total Force @ Section lbs= 2,106.0 Allowable = 2,500 psf MomentActual ft-I= 6,057.7 Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,826 psf Moment Allowable ft-I= 7,993.7 ACI Factored @ Heel = 0 psf Shear Actual psi= 28.4 Footing Shear @ Toe = 11.3 psi OK Shear Allowable psi= 67.1 Footing Shear @ Heel = 21.4 psi OK Wall Weight psf= 100.0 Allowable = 75.0 psi Rebar Depth 'd' in= 6.19 Sliding Calcs Slab Resists All Sliding! Lap splice if above in= 19.83 Lateral Sliding Force 1,790.5 lbs Lap splice if below in= 7.80 less 100%Passive Force = - 458.3 lbs Hook embed into footing in= 7.80 less 100%Friction Force = - 2,070.0 lbs Concrete Data fc Added Force Req'd = 0.0 lbs OK psi= 2,000.0 F ....for 1.5:1 Stability = 157.0 lbs NG y psi 60,000.0 Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Page 120 of 129 Cantilevered Retaining Wall rase �k f.tEENE n C,MC,19612013, ild5r1It=uvissBr831, 6138 1 L 1 .'flit -060 304 � Imo Y .� £ , ` _... ` . Re CONSt TIN SiNEE. rae Description: 8'-0"Wall(Slab to Resist Sliding) Footing Dimensions&Strengths Footing Design Results Toe Width = 1.50 ft Toe Heel Heel Width = 3.00 Factored Pressure = 2,826 0 psf Total Footing Width = 4.50 Mu':Upward = 2,728 0 ft-lb Footing Thickness = 14.00 in Mu':Downward = 311 3,446 ft-lb Mu: Design = 2,417 3,446 ft-lb Key Width = 0.00 in Actual 1-Way Shear = 11.30 21.41 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #7 @ 16.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 16.00 in Footing Concrete Density = 150.00pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: Not req'd,Mu<S*Fr Heel: Not req'd,Mu<S*Fr Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING RESISTING..... Force Distance Moment Force Distance Moment Item lbs ft ft-lb lbs ft ._- ft-lb Heel Active Pressure = 1,470.5 3.06 4,493.2 Soil Over Heel = 2,053.3 3.33 6,844.4 Surcharge over Heel = Sloped Soil Over Heel Toe Active Pressure = Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load Adjacent Footing Load = Axial Dead Load on Stem = 500.0 1.83 916.7 Added Lateral Load = 320.0 5.17 1,653.3 *Axial Live Load on Stem Load @ Stem Above Soil = Soil Over Toe = 0.75 Surcharge Over Toe = Stem Weight(s) = 800.0 1.83 1,466.7 1 Earth @ Stem Transitions = Total = 1,790.5 O.T.M. = 6,146.5 Footing Weight = 787.5 2.25 1,771.9 Resisting/Overturning Ratio = 1.79 Key Weight Vertical Loads used for Soil Pressure= 4,140.8 lbs Vert.Component Total= 4,140.8 lbs R.M.= 10,999.7 Axial live load NOT included in total displayed or used for overturning resistance,but is included for soil pressure calculation. Page 121 of 129 Cantilevered RetainingWall File=P.1201411E1PLrv1 P111 -Q'�C7AVC F\R66131L L'R6681L-U.EC6 y 0 y. , ENERCALC,INC.1983-2013,Build.5.13 8.31,Ver.6.13.8.3311 . 7R - a'' S:, •' :;1 ;T-MI.; .. n .. ,7: cense 3 RR.EUCMCONS. 1 ,`ENOINEE.S;=. Description: 10'-0"Walt(Slab to Resist Sliding) Criteria Soil Data Calculations per Retained Height = 10.00 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00: 1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 6.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330,0 psf/ft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 0.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. Soil height to ignore for passive pressure = 0.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Lateral Load = 50.0 If Surcharge Over Heel = 0.0 psf p Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 10.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load Axial Dead Load = 500.0 lbs Base Above/Below Soil _ 0.0 ft Axial Live Load = 0.0 lbs Wind on Exposed Stem = 0.0 psf at Back of Wall Axial Load Eccentricity = 0.0 in Poisson's Ratio = 0.300 Design Summary Stem Construction Top Stem Stem OK Wall Stability Ratios Design Height Above Ftg ft= 0,00 Overturning ' 2.00 OK Wall Material Above.Hr = Concrete Sliding = 1.37 Ratio<1.5! Thickness in= 8.00 Slab Resists All Sliding! Rebar Size = # 5 Total Bearing Load = 6,292 lbs Rebar Spacing in= 6.00 ...resultant ecc, = 14.33 in Rebar Placed at = Edge n Data Soil Pressure @ Toe = 2,323 sf OK DfTbo9g Forcefa/Fa Section lbs= ...... 3,294.0 . @777 Soil Pressure Heel 0 psf OK @ Allowable = 2,500 psf MomentActual ft-I= 11,832.3 Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,788 psf Moment Allowable ft-I= 15,222.0 ACI Factored @ Heel = 0 psf Shear Actual psi= 44.4 Shear Allowable psi= 75.0 FootingShear Toe = 16.7psiOK p @ Wall Weight psf= 100.0 Footing Shear @Heel = 34.3 psi OK Allowable = 75.0 psi Rebar Depth 'd' in= 6.19 Sliding Calcs Slab Resists All Sliding l Lap splice if above in= 18.19 Lateral Sliding Force = 2,668.9 lbs Lap splice if below in= 7.90 less 100%Passive Force = - 505.3 lbs Haok embed into footing in= 7.90 less 100%Friction Force = - 3,146.8 lbs Concrete Data -- Added Force Req'd = F 0.0 lbs OK psi= 2,500.0 ....for 1.5:1 Stability = 352.2 lbs NG y psi= 60,000.0 Load Factors . . Dead Load 1,200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Page 122 of 129 Cantilevered Retainin Wall File=P•\2014i1E1PLM JEHiEC6 QC7A4Yi RR66BIL J,R668IL-UEC6 g E NE RCALC INC 1983-2013,Buld.6.13.8.31,Ver:8.13 8 31 Description: 10'-0'Wall(Slab to Resist Sliding) Footing Dimensions&Strengths Footing Design Results Toe Width = 2.00 ft Toe Heel Heel Width = 4.00 Factored Pressure = 2,788 0 psf Total Footing Width = 6.00 Mu':Upward = 4,889 0 ft-lb Footing Thickness = 15.00 in Mu': Downward = 582 8,583 ft-lb Mu: Design = 4,307 8,583 ft-lb Key Width = 0.00 in Actual 1-Way Shear = 16,66 34.33 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #716.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #6 a@ 16.00 in Footing Concrete Density = 150,00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 0 Btm.= 3.00 in Toe: #40 9.75 in,#50 15.00 in,#60 21.50 in,#70 29.00 in,#80 38.25 in,#90 48 Heel: #4c 9.00 in,#50 14.00 in,#60 19.75 in,#70 26.75 in,#80 35.25 in,#90 44 Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-lb lbs ft ft-lb Heel Active Pressure = 2,214.8 3.75 8,305.7 Soil Over Heel = 3,666.7 4,33 15,888.9 Surcharge over Heel = Sloped Soil Over Heel - Toe Active Pressure = -45.9 0.58 -26.8 Surcharge Over Heel Surcharge Over Toe = Adjacent Footing Load Adjacent Footing Load = Axial Dead Load on Stem = 500.0 2.33 1,166.7 Added Lateral Load = 500.0 6.25 3,125,0 *Axial Live Load on Stem Load 0 Stem Above Soil = Soil Over Toe - 1.00 Surcharge Over Toe Stem Weight(s) = 1,000.0 2.33 2,333.3 Earth 0 Stem Transitions = Total = 2,668.9 O.T.M. _ 11,403.9 Footing Weight = 1,125.0 3,00 3,375.0 Resisting!Overturning Ratio = 2.00 Key Weight Vertical Loads used for Soil Pressure= 6,291.7 lbs Vert.Component = Total= 6,291.7 lbs R.M.= 22,763.9 *Axial live load NOT included in total displayed or used for overturning resistance,but is included for soil pressure calculation. Page 123 of 129 Cantilevered RetainingWall He=p:+Z01d11E1PLh1-AEHTEC6-CiC7AVC-FF6 K-DR66BIL--UEC6 ENERCALC INN 1983 2013,B ld 6.13 8 31,Ver.613 C 31 Ltc#iF W4)60023i ' .. � ' i j I ? yeti ��i Q � h .`�. � .. �. 4 f•'',‘ ., # W ....vm.� FROELICHVONL,OING:ENGINE Rt- Description: 8'-0-Wall(at Garage) Criteria Soil Data Calculations per Retained Height = 8.00 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 6.00 in Toe Active Pressure = 30.0 psflft Water height over heel = 0.0 ft Passive Pressure = 330,0 psf/ft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 0.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. NOT USED for Overturning Resistance, Soil height to ignore for passive pressure = 0.00 in Surcharge Loads Lateral Load Applied to Stern Adjacent Footing Load Surcharge Over Heel = 50.0 psf Lateral Load = 40.0 plf Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 8.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ,,.Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load Axial Dead Load = 500.0 lbs Base lSoil _ 0.0 ft Axial Live Load = 0,0 lbs Wind on Exposed Stem 0.0 psf at Baackck oof Wall l Wailll - Axial Load Eccentricity = 0.0 in Poisson's Ratio - 0.300 Design SummaryTop Stem Stem Construction Stem OK Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning = 1.84 OK Wall Material Above"Ht" Concrete Sliding = 1,43 Ratio<1.5! Thickness in= 8.00 Slab Resists All Sliding! Rebar Size = # 5 Total Bearing Load = 4,593 lbs Rebar Spacing in= 12.00 ...resultant ecc. = 13.27 in Rebar Placed at = Edge Design Data Soil Pressure @ Toe = 2,413 psf OK fb/FB+fa/Fa - 0.860 Soil Pressure @ Heel = 0 psf OK Total Force @ Section lbs= 2,309.6 Allowable = 2,500 psf Moment Actual ft-I= 6,872.2 Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,895 psf Moment Allowable ft-I= 7,993.7 ACI Factored @ Heel = 0 psf Shear Actual psi= 31.1 Footing Shear 0 Toe = 9.3 psi OK Shear Allowable psi= 67.1 Footing Shear @ Heel = 23.4 psi OK Wall Weight psf= 100.0 Allowable = 75.0 psi Rebar Depth 'd' in= 6.19 Sliding Calcs Slab Resists All Sliding! Lap splice if above in= 22.49 Lateral Sliding Force = 1,964.5 lbs Lap splice if below in= 8.92 less 100%Passive Force = - 505.3 lbs Hook embed into footing in= 8.92 less 100%Friction Force = - 2,298.8 lbs Concrete Data Added Force Req'd = 0.0 lbs OK fc psi= 0,000.0 ....for 1.5:1 Stability = 144.9 lbs NG Fy psi- 60,000.0 Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Page 124 of 129 w Cantilevered Retalnln watt rile P 2014\1E1f L'i d -1T C6 QC7A4YG F\R66B.l U`R66BIL-U.EC6 g ENERCALCINC 1983-2013,Build6.13.831 Ver:6.13.8.31 Description: 8'-0'Wail(at Garage) Footing Dimensions&Strengths , Footing Design Results Toe Width = 1.50 ft Toe Heel Heel Width = _ 3.25 - Factored Pressure = 2,895 0 psf Total Footing Width = 4.75 Mu':Upward = 2,829 0 ft-lb Footing Thickness = 15.00 in Mu':Downward = 327 4,541 ft-lb Mu: Design = 2,502 4,541 ft-lb Key Width = 0.00 in Actual 1-Way Shear = 9.33 23.44 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #7 @ 16.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 16.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: Not req'd,Mu<S*Fr Heel: Not req'd,Mu<S*Fr Key: No key defined . Summary of Overturning&Resisting Forces&Moments .....OVERTURNING RESISTING..... Force Distance Moment Force Distance Moment Item lbs ,,..,w... ft ft-lb lbs ft wft ib Heel Active Pressure = 1,497.3 3.08 4,616.8 Soil Over Heel -- 2,273.3 3.46 7,861.9 Surcharge over Heel = 147.2 4.63 680.6 Sloped Soil Over Heel Toe Active Pressure = Surcharge Over Heel = 129.2 3.46 446.7 Surcharge Over Toe = Adjacent Footing Load Adjacent Footing Load = Axial Dead Load on Stem = 500.0 1.83 916.7 Added Lateral Load = 320.0 5.25 1,680.0 *Axial Live Load on Stem Load @ Stem Above Soil = Soil Over Toe = 0.75 Surcharge Over Toe Stem Weight(s) = 800.0 1.83 1,466.7 - .. Earth @ Stem Transitions _ Total = 1,964.5 O.T.M. = 6,977.4 Footing Weight = 890.6 2.38 2,115.2 Resisting/Overturning Ratio = 1.84 Key Weight Vertical Loads used for Soil Pressure= 4,593.1 lbs Vert.Component = Total= 4,593.1 lbs R.M.= 12,807.2 *Axial live load NOT included in total displayed or used for overturning resistance,but is included for soil pressure calculation. Page 125 of 129 • Cantilevered Retainin Wall rice=P.1201411E1FLM-JtEHTEC6-Q1C7A4YC-P,R66Bl -U\R66BIL--U.EC6 g ENE RCAI.C.IN' 1983.2013 Build6.13831 Ver613.8.31 ' Description: 10'•0"Wan(at Garage) Criteria Soil Data Calculations per Retained Height = 10.00 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00: 1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 6.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 0.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. Soil height to ignore for passive pressure = 0.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = 50.0 psf Lateral Load = 50.0 plf Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 10.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturnig Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to StemFooting Type Line Load ___......_.._._ �< Base Above/Below Soil Axial Dead Load = 500.0 lbs at Back of Wall = 0.0 ft Axial Live Load = 0.0 lbs Wind on Exposed Stem = 0.0 psf Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Design SummaryStem Construction Top Stem Stern OK Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning = 2.06 OK Wall Material Above"Ht" = Concrete Sliding = 1.37 Ratio<1.51 Thickness in= 8.00 Slab Resists All Sliding! Rebar Size = # 5 Total Bearing Load = 6,793 lbs Rebar Spacing in= 6.00 ...resultant ecc. = 14.32 in Rebar Placed at = Edge Design Data �____.. _. .... Soil Pressure @ Toe = 2,344 psf OK fblFB+fa/Fa _ 0.861 Soil Pressure @ Heel = 0 psf OK Total Force @ Section lbs= 3,548.5 Allowable = 2,500 psf MomentActual ft-I= 13,105.1 Soil Pressure Less Than Allowable AC!Factored @ Toe 2,813 psf Moment Allowable ft-I= 15,222.0 ACI Factored @ Heel = 0 psf Shear Actual psi= 47.8 Footing Shear @ Toe = 17.0 psi OK Shear Allowable psi= 75.0 Footing Shear @ Heel = 38.8 psi OK Wall Weight psf= 100.0 Allowable = 75.0 psi Rebar Depth 'd' in= 6.19 Sliding Calcs Slab Resists All Sliding! Lap splice if above in= 20.15 Lateral Sliding Force = 2,847.9 lbs Lap splice if below in= 8.85 Hook embed into footing in 8.85 less 100%Passive Force = - 505.3 lbs Concrete Data less 100%Friction Force = 3,399.4 lbs fc psi= 2,500.0 Added Force Req'd = 0.0 lbs OK ....for 1.5: 1 Stability = 370.2 lbs NG Fy psi= 60,000.0 111 Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Page 126 of 12d v • Cantilevered Retaining Wall File=P:120141,1EIPLM \EHTEC6-C'C7A4YC F1R66E11t°R6661L-UEC6 g EVER„ALC,INC.1983-2013,Build:6.13.8.31,Ver.6.13.8 31 e Description: 10'-0"Wall(at Garage) Footing Dimensions&Strengths . Footing Design Results Toe Width = 2.00 ft Toe Heel Heel Width = 4.25_ Factored Pressure = 2,813 0 psf Total Footing Width = 6.25 Mu':Upward = 4,978 0 ft-lb Footing Thickness = 15.00 in Mu':Downward = 582 10,433 ft-lb Mu: Design = 4,396 10,433 ft-lb Key Width = 0.00 in Actual 1-Way Shear = 16.96 38.82 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #7 @ 16.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 16.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2,00 @ Btm.= 3.00 in Toe: #4@ 9.75 in,#5@ 15.00 in,#6@ 21.50 in,#7@ 29.00 in,#8@ 38.25 in,#9 48 Heel: #4@ 9.00 in,#5@ 14.00 in,#6@ 19.75 in,#7@ 26.75 in,#8@ 35.25 in,#9@ 44 Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING RESISTING..... Force Distance Moment Force Distance Moment Item lbs ..... ft ft-lb lbs ft ft-lb Heel Active Pressure = 2,214.8 3,75 8,305.7 Soil Over Heel = 3,941.7 4.46 17,573.3 Surcharge over Heel = 179.0 5,62 1,006.7 Sloped Soil Over Heel = Toe Active Pressure = -45.9 0.58 -26.8 Surcharge Over Heel = 179.2 4.46 798.8 Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem = 500,0 2.33 1,166.7 Added Lateral Load = 500.0 6,25 3,125.0 "Axial Live Load on Stem = Load @ Stem Above Soil = Soil Over Toe = 1.00 Surcharge Over Toe = Stem Weight(s) = 1,000.0 2.33 2,333.3 Earth @ Stem Transitions = Total = 2,847.9 O.T.M. = 12,410.6 Footing Weight = 1,171.9 3.13 3,662.1 ResistinglOverturning Ratio = 2.06 Key Weight = Vertical Loads used for Soil Pressure= 6,792.7 lbs Vert.Component w,, Total= 6,792.7 lbs R.M.= 25,534.2 *Axial live load NOT included in total displayed or used for overturning resistance,but is included for soil pressure calculation, Page 127 of 129 v Cantilevered RetainingWall File=P1.2014i1E1PLM HTEC6--Cr,44YC RBMEA01 1'R66BIL UR668lL-U.ECS ' ENERCALC,INC.1983-2015,Build:6.15,10.6,Ver:6.15.10.5 v, N WS " ` ,`.Avg int.• .;" R t CH4ONSOL ING!EN 1>1 Description: 11'-6""Wall(at Concrete Patio) Criteria 'Soil Data Calculations per ACt 318-08, ACI 530-08,IBC 2009, CBC 2010,ASCE 7-10 Retained Height = 11.50 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00: 1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 0.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 0.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. Soil height to ignore for passive pressure = 0.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = 50.0 psf Lateral Load = 0.0 plf Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe - 0.0 psf ...Height to Bottom _ 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load Axial Dead Load = 0.0 lbs BaseatBack of Wall Soil _ 0.0 ft Axial Live Load = 0,0 lbs Wind on Exposed Stem = 0.0 psf at of Wall = Axial Load Eccentricity = 0.0 in Poisson's Ratio 0.300 Design Summary Stem Construction Top Stem 2nd Stern OK Stern OK Wall Stability Ratios Design Height Above Ftg ft= 3.00 0.00 Overturning = 2.69 OK Wall Material Above"Ht" - Concrete Concrete Sliding = 1.55 OK Thickness in= 10.00 10.00 Rebar Size _ # 5 # 5 Total Bearing Load = 8,887 lbs Rebar Spacing in= 12.00 6.00 ...resultant ecc. = 11.47 in Rebar Placed at - Edge Edge Design Data Soil Pressure @ Toe = 2,309 psf OK fb/FB+fa/Fa - 0.610 0.763 Soil Pressure @ Heel = 230 psf OK Total Force @ Section lbs= 2,239.4 3,995.7 Allowable = 2,500 psf MomentActual ft-I= 6,651.4 15,878.0 Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,771 psf Moment Allowable ft-I= 10,911.3 20,802.0 ACI Factored @ Heel = 276 psf Shear.....Actual psi= 22.8 40.7 Footing Shear @ Toe = 9.6 psi OK Shear Allowable psi= 75.0 75.0 Footing Shear @ Heel 22,3 psi OK Wall Weight psf= 125.0 125,0 Allowable _ 75.0 psi Rebar Depth 'd' in= 8.19 8.19 Sliding Calcs (Vertical Component NOT Used) Lap splice if above in= 14.26 17.86 Lateral Sliding Force 3,024.2 lbs Lap splice if below in= 14.26 4.69 less 100%Passive Force = - 257.8 lbs Hook embed into footing in= 14.26 4.69 less 100%Friction Force = - 4,440.0 lbs Concrete Data Added Force Req'd = 0,0 lbs OK ft psi= 2,500.0 2,500.0 ....for 1.5:1 Stability -- 0.0 lbs OK Fy psi= 20,000.0 20,000.0 Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Page 128 of 125 ti w Cantilevered Retaining Wall File=P.\201",iE1PLM-JtERTEC6 0\CIA4YC-F13MEA01 .R66BlL Ut.R66BIL-UEC8 ENERCALC,INC 1983-2015 Build 6151(!6 Ver6.1510 6 F. Lib.#4yi 1 1O2: 4 ° >- �,Y '1/41 !1/4.1/41. !.,.: s ; v ilY. 4 : _ f.R.t.ELID1CONSIX !)fes NE Description: 11-6-Wall(at Concrete Patio) Footing Dimensions&Strengths Footing Design Results Toe Width = 1.50 ft Toe Heel Heel Width = __.._......_5,50..... Factored Pressure = 2,771 276 psf Total Footing Width = 7.00 Mu':Upward = 2,917 9,041 ft-lb Footing Thickness = 15.00 in Mu':Downward = 253 19,850 ft-lb Mu: Design = 2,664 10,809 ft-lb Key Width = 0.00 in Actual 1-Way Shear = 9.61 22.26 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #7 @ 16.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 16.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: Not req'd,Mu<S"Fr Heel: #4@ 9.00 in,#5@ 14.00 in,#6@ 19.75 in,#7@ 26.75 in,#8@ 35.25 in,#9@ 44 Key: No key defined Summaryof Overturning rning&Resisting Forces&Moments ) OVERTURNING RESISTING Force Distance Moment Force Distance Moment ftem lbs ft ft-lb lbs ft ft-lb Heel Active Pressure = 2,844.8 4,25 12,090.6 Soil Over Heel = 5,903.3 4.67 27,548.9 Surcharge over Heel = 202.8 6.38 1,293.1 Sloped Soil Over Heel =- Toe Toe Active Pressure = -23.4 0.42 -9.8 Surcharge Over Heel = 233.3 4.67 1,088.9 Surcharge Over Toe = Adjacent Footing Load Adjacent Footing Load = Axial Dead Load on Stem = Added Lateral Load = *Axial Live Load on Stem _. Load @ Stem Above Soil = Soil Over Toe Surcharge Over Toe = Stem Weight(s) = 1,437.5 1.92 2,755.2 Total 3,024.2 O.T.M. = 13,37 Earth @ Stem Transitions 3.9 Footing Weight = 1,312.5 3.50 4,593.8 Resisting/Overturning Ratio = 2.69 Key Weight Vertical Loads used for Soil Pressure= 8,886.7 lbs Vert.Component = Total= 8,886.7 lbs R.M.= 35,986.7 "Axial live load NOT included in total displayed or used for overturning resistance,but is included for soil pressure calulation. a ` Page 129 of 129 r Cantilevered Retainingall File P\201411ElPL4'!-JtEHTEC1S-Q,C7A=$YCr�,GMEEA01 rRE6BI'�-01166UlL-UECk WEUERCA(.C,INC 1683 2015 Suild.6.15.1O 6.Ver:6.1510 6 '' ... .7 , W � . ... n P4 ...., A ;. 171 ._ 3c ir►see••I'FFI ,.t JLTl _ ..Gam... I. Description: 11'-6""Wall(at Concrete Patio-Seismic) Criteria Soil Data Calculations per ACI 318-08, ACI 530.08,IBC 2009, CBC 2010,ASCE 7-10 Retained Height = 11.50 ft Allow Soil Bearing = 3,200.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 0.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psflft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 0.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. Soil height to ignore for passive pressure = 0.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = 50.0 psf Lateral Load = 57.5 plf Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top -- 11.50 ft Footing Width - 0.00 ft Surcharge Over Toe = 0.0 psf ,.,Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load p>? Axial Dead Load = El lbs Base Above/Below Soil _ 0.0 ft Axial Live Load = 0.0 lbs Wind on Exposed Stern 0.0 psf at Back of Wall Axial Load Eccentricity = 0.0 in Poisson's Ratio - 0.300 Design Summary Stem Construction Top Stern 2nd _._.. Stem OK Stem OK Wall Stability Ratios Design Height Above Ftg ft= 3.00 0.00 Overturning = 2.00 OK Wall Material Above'Ht' = Concrete Concrete Sliding = 1.28 Ratio<1.5! Thickness in= 10.00 10.00 Rebar Size = # 6 # 6 Total Bearing Load = 8,887 lbs Rebar Spacing in= 12.00 6.00 ...resultant ecc. = 17.72 in Rebar Placed at = Edge Edge Design Data Soil Pressure @ Toe = 2,928 psf OK fb/FB+fa/Fa 0.620 0,755 Soil Pressure @ Heel = 0 psf OK Total Force @ Section lbs= 2,728.1 4,657.0 Allowable = 3,200 psf Moment....Actual ft-I= 8,728.6 19,680.2 Soil Pressure Less Than Allowable ACI Factored @ Toe = 3,513 psf Moment.....Allowable ft-I= 14,069.5 26,082.9 ACI Factored @ Heel = 0 psf ShearActual psi= 33.0 55.2 Footing Shear @ Toe = 12.3 psi OK Shear Allowable psi= 75.0 75.0 Footing Shear @ Heel = 29.8 psi OK Wall Weight psf= 125.0 125.0 Allowable = 75.0 psi Rebar Depth 'd' in= 7.63 7.63 Sliding Calcs (Vertical Component NOT Used) Lap splice if above in= 17.42 21.19 Lateral Sliding Force = 3,685.5 lbs Lap splice if below in= 17.42 9.11 less 100%Passive Force = - 257.8 lbs Hook embed into footing in= 17.42 9.11 less 100%Friction Force = - 4,440.0 lbs Concrete Data Added Force Req'd - 0.0 lbs OK fc psi= 2,500.0 2,500.0 ....for 1.5:1 Stability = 827.1 lbs NG Fy psi 20,000.0 20,000.0 Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000