Loading...
Specifications (63) UV)-L1/4 SN6 CT ENGINEERING Structural Engineers 180 Nickerson Street Suite 302 Seattle, WA 98109 INC. 206.285.4512 (V) 206.285.0618 (F) RE(.A' LVED #15238 JUN 22 2017 Structural Calculations CII , ti��- CARD BUILDING DIVISION River Terrace �o PRo. 4 Plan 3 ,`c,.�GINe � Elevation B : , tg ^� ��REG�iN \ Tigard, OR ,�.�, 22 ,1, \`,, Design Criteria: 2012 IBC (ORSC, OSSC) 09/14/2015 ASCE 7-10 Wind Speed: 120(ULT); 93(ASD); Kzt=1 .0 Seismic: Ss=0.972, S1 =0.423, SDC=D Roof Snow Load = 25 psf Site Class = D, Bearing = 2000 psf Client: Polygon Northwest Company 109 East 13th Street, Suite 200 Vancouver, WA 98660-3229 Ph: 360.695.7700 Fax: 360.693.4442 Architect: Milbrandt Architects 25 Central Way, Suite 210 Kirkland, WA 98033 P h: 425.454.7130 Fax: 425.646.0945 CT ENGINEERING INC 180 Nickerson St. Suite 302 Seattle,WA 98109 (206)285-4512(V) (206)285-0618(F) Polygon Northwest Company Multiple locations in Tigard,OR DESIGN SUMMARY: (Note-Dual reference for Plan 3 also includes Plan 3713) The proposed project is to be single-family homes. We understand that these homes are to be constructed in multiple locations throughout Tigard, Oregon. Design parameters are as noted below: The structures are two-story wood-framed. Roof framing is primarily with pre-manufactured pitched chord wood trusses. Upper floor framing is primarily with pre-manufactured parallel chord wood trusses. Floor framing over crawlspace is primarily pre-manufactured wood joists. The foundations are to be conventional spread footings. Wind design is based on the ASCE 7-10 MWFRS (Envelope Procedure)for 120 mph ultimate wind speed, exposure category B, and with a Kzt value of 1.00. Lateral design is based on the ASCE 7-10"equivalent lateral force"procedure with Ss equal to or less than 1.10 and S1 equal to or less than 0.50 and with soil classification"D". Plywood or OSB shearwalls are the primary lateral force resisting system (R=6.5). . Foundations have been sized for Class 4 soils as defined in IBC 1806.2. Codes considered; 2012 IBC, and currently adopted ORSC and OSSC. RB.b.3 RB.b.i Tim. RB.b.3 RB.b.2 GABLE END TRUSS GABLE END TRUSS \...( MIN.HDR I ( �..I /. MM.HD MIN.HDR MIN.HDR a TYR.AT PUJACEry4T ¢ -0 �� WIND6W9(I)}]t!!♦NR DTUD m c ! BTWN.56L TRI ERS m I 2 1 - tiL CII of I RI =l a - _ T xI n �iL a ...FST x30'1 „plc ET ., G TI ;I MANUFACTURFDTRUSSFS AT 24'O.C.TYP.U.N.O. x I 4 moT - - "l a m I ` R11 \\\*-I JD r ii - MIN.HDR MIN.HDR MIN.HDR MIN.HDR ) ( ) / (.) GABLE END TRUSS GABLE END TRUSS I 7 RB.b.5 RB.b.7 ) I )MIN.HDR GABLE END TRUSS RB.b.6 2OB - Roof Framing Plan ii4•=r_-O S9 0 AS 0 �o TF9.b.,1 HD 4 TFB.b.2 TFB.1J.22 _ .)2x6 HDR (:.8 DR (,)2x6 FDR II (2) •+HD (2Ia6H.'r 2)2x6 DR WINDOWS:()249�1 NO IS 1 D y x STUD 9TWN.SGO. i j}_ TRIMMERS,U.N.4.i t E e ti ,111!) Q)TRIM F7IC:ND _ '-STHD14 S m i m FI L_— J H S'_a l STHD14 a /-\ r", ___ ___—_ Ol61 c O I I _____. 1I .0 A ✓ ti i ii I �I I , ________T____. , __ _______•-4I `STHD14 EL 6 I L---- r_ . S9.0 Ir.__ 1___T YEN b 10 3.5x I LVL ' 3.5x1 LVLWg 7 .�,. ..' OIC*� � � r\\®\max\\O`\max "f _+ F� �A,, !� 2\ TFB b.9 3 iil' i 1 TFB b.n' ' -`"Lr_ i - i FURN. i �` ___ -------- ______ i 2 �`•QpEN FO , �- ' 7E iBELO NI WH L r-'-47..- '1 S9.0 I I G II I ■I.IEN.ME. ilio .ST37' R1 47/0 ST3} 1 i� III v,' ( \, _ _ _rSTHD14 ✓ ti ;i - I o - it x N 2 Am`, 0 I..� 5.2514 PS HON /, ��� 9'S 4�VI B �we,..ww��. '1� New. TFB.b.11 . H/T,.. TF9.b.12 + ' �i �S I 0, ss.o wal a X"' Sa ' I n .. e9 Ax, 21 [y I L .. Y ti lF5.b.1' FII F b.i4 � 3 ___ a III $ ro �� TF9.b.13 0 '..-21_ MIN HD MIN.HDR �—F G=5 12' COQ. •3 � u I' . _—_— -i SOHD14 r— —3.5x14 LVL FB TFA.b.7 TFB.N.7 tJ STHDl4 _- l.- TFS.b.l& —(2-)zm u7Ni.si nuc,1 Asp -—- 18 4108 S61 MAUFACTURED ROOF 56.1 w TRUSSES @ 24'O.C. LEDGER fMAUFACTURED ROOF ,q TRUSSES @ 24"O.C. _ m - F I 4x4 w/AC4 PAIR 4x4 w/AC4 PAIR V4 I POST CAP POST CAP- iir GABLE END TRUSS NOT USED: TFS.b.21 ®B.-.Top Floor Framing Plan MAIN FLOOR SHEARWALLS 1/41,_0 ♦ 3T-0" 4 18' 0' 79'-0 , 0 312"CONC.SLAB m SLOPED DOWN /\ —1- 1/4:12 P3 O J13 IT.O-S. 'SLOPE 1/4:121 T.O.S. .... -0 3 • • [ � 'WAYTPUN.O r'_ AC4CAP&PBS46 " .'- BASE � 1 o 9 12'.'TJI 110 16' FI 1 G.G.TYP U O. N -1'-12- - ;71-1 .S.THD14 1 0 r I J RING WALL '..0"x3f1"X70"FTG I TVP. 1(3)54 EA WAV i 4BEARING WALL ABOVE 2x4 PONY WALL-� P6 ' - 10 Yfiliiiiiiiiiiiiiiiiiiiiiiiiiiii e . �STHDta STHD14 HDU2 i� P6 P4 ® T.O.S. ___ % W4A PONY _r-:. 1 I 8 I '.3i •0'%10' 56.0 ,.I. I 44 1"WAY I BEA e m ABOVE ♦ 31/2"CONC.SLAB X* SLAB SLOPES 3 1/2' °♦ — - -__ \ FROM BACK TO APRON I ; - • 63 02 P VERIFY GARAGE SLAB HEIGHT 0 Di 2z4 PONY WITH GRADING PLAN WALL I, J14L _ del JJ JUM irI x :PON WALL :'' TOS • /1, • 1 c I.' STHD14STHD14 y�- L. - "' l CD 18 Car e 0 56.1 312"CONC.SLAB SLOPED DOWN P3 - 1/`4 I:'12 \ W n L --3 h — i 1,- - 1 3/4".j yid 1/4' -1n v2• : - Foundation Plan.-,o„T1e 6'-4• * cnll.,e159k,13bh fi♦ DI: O1/4” 1'-0" 6 68.2 SHEET TITLE: DEAD LOAD SUMMARY CT PROJECT#: CT# ROOF Roofing- 3.5 psf Roofing-future 0.0 psf 5/8"plywood (O.S.B.) 2.2 psf Trusses at 24"o.c. 4.0 psf Insulation 1.0 psf (1) 5/8"gypsum ceiling 2.8 psf Misc./Mech. 1.5 psf ROOF DEAD LOAD 15.0 PSF FLOOR floor finish 4.0 psf NO gypsum concrete 0.0 psf 3/4"plywood (O.S.B.) 2.7 psf Joists @ 12" 2.5 psf Insulation 1.0 psf (1) 1/2"gypsum ceiling 2.2 psf Misc. 2.6 psf FLOOR DEAD LOAD 15.0 PSF CT Engineering Polygon Homes TYPICAL CRAWL SPACE BEAM CARRYING THE MIDDLE FLOOR JOISTS ONLY W SIMPLE SPAN-UNIFORM LOAD /1 /1 Span= 7 ft R1 R2 Span Uniform Load (full span),W= 715 lb/ft Reactions Vmax= 2503 lb Ri = 2503 lb Mmax= 4379 lb-ft R2= 2503 lb Nominal Beam Size: b = 6 in. d= 8 in. Number of Sections= 1 bact = 5.50 in. dad= 7.50 in. Lumber SpecieslType:-------- DF1 REPETITIVE MEMBER?--------- N Post?: YES Design Stresses and Factors: CL= 1.00 Moisture> 19%? N Fv= 170 psi LDF= 1.00 CM(v)= 1.00 Fb= 1,200 psi Cr= 1.00 CM(b)= 1.00 FcII= 1,000 psi Cv = 1.00 CM(gl)= 1.00 FcL= 625 psi CF(B) = 1.00 CM(q)= 1.00 E = 1.6E+06 psi &TOTAL=U 360 CM(E)= 1.00 0 INCH Emin= .00E+00 psi Incise Ci= 1.00 HOLE Stresses and Deflections Section Properties SEC. Actual Allowable Required Provided REDUC. Fv(psi) 74.8 170 A(in2) 18.14 41.3 Fb(psi) 1019 1200 Sx(in3) 43.79 51.56 0.0 in3 Delta(in.) 0.12 0.23 I (in4) 103.46 193.4 0.0 in4 REQ'D END BEARING= 0.73 inches NOTCH DEPTH = 0 inches fv,NOTCH(Tension Face)= <Fv'= 170 psi USE: (1)6 x 8 DF1 N.E.T. Job#14051 3/28/2014 180-Nickerson St. CT ENGINEERING Suit°3112 INC. Seattle,WA �� ,_ ,� In �,( - /� 98109 Project: W�� �ri...� 't\,'S . 1.:�1..,� (_7yc'pj Date: 3 a (206)285-4512 J as4r 14 Ds) (206 Client: Page Number: (20G)285-0618 17K1n141..*la9 � .; • a P I • 4 • i � �? I i 2 �C.L �2..a . 1 I11 T • , ;� , 1 �q • I ` `J i I :5�'(�D � � � I : 1 � I I i I Yv - l ;: I � -fir ® p ! •, , ,, , , , ,, • . ..„ : : , Z. : : r R 1 1 ' ,J L'� �" I •_ i I 1 ! 1 1. 1 • 'II • • 1 I 1 1 . . 1Hi , • 7 • i i I I I i I : I ! ! I 1 . 11 . ' . , ' : . ; ! I. .1 1 i I I II 1, 11 I i. I I 1 1 I 1 I •; 1 I .1 , I I i 1 I 1 I. : Ii I i I 1 , I , . : II I : I • I j .. 1 ( i , i . 1. i • I I I I I , I ' - - i I - . 1 i I I • _ ' : ; i i I • ' 1 . ti • . 1 . 1 • . I 1 , I • : ' i - I i - I .• . Structural Engineers 180 Nickerson St. CT ENGINEERING suite 302 !!!,,, NC./� Seattle,WA Project:�Y�/ Q ��� . �..'6Ok) Date: 0-Z/ (206)9285-9512 Client: *)(, '4 0�\ RAX; Page Number: (206)285-0618 L GC ‘i- T art. Le) , WALE,. 61.ul:=3" DE-61w 16,;`,/c (Z) (3> `'{ (5) . 7717 3.7"\ 5.5'.\ 74\ 922' tAo›.Ft-z, 9.DB' 53,71 F75 I1 t 3 V" •44,�'^ 6,0.\ 7,‘,K. GAG 9'.96' 9,5 , 9.75' 710r 2,5" 3.7" 5.es .ti WC. L-f . '-cutL. uj= ' " 8e0 � cAp ct - F } 2ic4: WF-svaj I Co/c. TO?: e it.‘v:-&-R‘ors Structural Engineers 180 Nickerson St. CT ENGINEERING ) Suite 302 /� Ty—�I N C./� r( /�► Seattle,WA Project: u1/43f7�.y6© J Date: e V� j (206) \ 285-1512 1 Client: > ) 14-V n (2(lGS ' Page Number: (2 6)285-0618 u1L1-- -5 2i•-• G (1) (3> _) (5) aDs 771 7:75 , 30t tF Alb. ER. 9.08 871 -131 GwGE 9 v 9,5C. 9.75' ss131 , K ,'LK �.� 10.E I4 c�usN °a aA CoV L T L 0 1\s� 7-LC> 0- A. 12_0 �. C Fv->-CH --Ls Ga5LE. oR N-Ni?:.iN_C. (E-g2 Esk.307-2.FAT 43 ç-37rs4 i .06F ley{�' ...=> COLOSANIS . . . (Cri'qe- rg. S A ics. .46.25 ' - t ccw= z -pP T , IcD �2 /off < 3 I G I6 v c Ty—E)(TQC Structural Engineers CT ENGINEERING 2012 IBC SEISMIC OVERVIEW SHEET TITLE: 2012 IBC SEISMIC OVERVIEW CT PROJECT#: CT#14051: Plan 3713 Twin Creeks, Elevation B Step# 2012 IBC ASCE 7-10 1. OCCUPANCY CATEGORY TYPE=II Table 1604.5 Table 1.5-1 2. IMPORTANCE FACTOR IE= 1.00 Section 1613.1 ->ASCE Table 1.5-2 3. Site Class-Per Geo. Engr. S.C.= D Section 1613.3.5 Section 11.4.2/Ch.20 Table 1613.3.3(2) Table 20.3-1 4. 0.2 Sec. Spectral Response Ss= 0.97 Figure 1613.3.1(1) Figure 22-1 5. 1.0 Sec.Spectral Response S1= 0.43 Figure 1613.3.1(2) Figure 22-2 Latitude= 45.46 N Longitude= -122.89 W N/A (Or by ZIP code) (Or by ZIP code) http://earthq uake.usos.gov/research/hazmaps/ htto://oeohazards.usos.00videsionmaps/us/application.pho 6. Site Coefficient(short period) Fa= 1.11 Figure 1613.3.3(1) Table 11.4-1 7. Site Coefficient(1.0 second) Fv= 1.58 Figure 1613.3.3(2) Table 11.4-2 SMs=Fa*Ss SMS= 1.08 EQ 16-37 EQ 11.4-1 SM1=F,"Si SMI= 0.68 EQ 16-38 EQ 11.4-2 SDs=2/3*SMS SDs= 0.72 EQ 16-39 EQ 11.4-3 SDS=2/3*SM1 SDI= 0.45 EQ 16-40 EQ 11.4-4 8. Seismic Design Category 0.2s SDCs= D Table 1613.3.5(1) Table 11.6-1 9. Seismic Design Category 1.0s SDC1 = D Table 1613.3.5(2) Table 11.6-2 10. Seismic Design Category SDC= D Max. Max. 11. Wood structural panels - - N/A Table 12.2-1 12. Response Modification Coef. R= 6.5 N/A Table 12.2-1 13. Overstrength Factor po= 3.0 N/A Table 12.2-1 14. Deflection Amplification Factor CD= 4.0 N/A Table 12.2-1 15. Horizontal Structural Irregularitie - No N/A Table 12.3-1 16. Vertical Structural Irregularities - No N/A Table 12.3-2 17. Permitted Procedure Equiv. Lateral Force - Table 12.6-1 N.E.T. 3/28/2014 CT ENGINEERING 2012 IBC EQUIV.LAT.FORCE SHEET TITLE: 7.2)2009 IBC EQUIVALENT LATERAL FORCE PROCEDURE PER ASCE 7-05 CT PROJECT#: CT#14051:Plan 3713 Twin Creeks,Elevation B Ste= 0.72 h„=19.00 (ft) Sol= 0.45 z=0.75 .'.ASCE 7-05(Table 12.8-2) R= 6.5 Cn=0020 '.ASCE 7-05(Table 12.8-2) IE= 1.0 T=0.182 ASCE 7-05(EQ 12.8-7) S,= 0.43 k=1 .'.ASCE 7-05(Section 12.8.3) TL=6 ASCE 7-05(Section 11.4.5:Figure 22-15) Cs=Sas/(R/AE) 0.111 W ASCE 7-05(EQ 12.8-2) Cs=Sm/(r(R4E)) (for v T,.) 0.383 W ASCE 7-05(EQ 12.8-3)(MAX.) Cs=(Sm'TY(INFUlE)) (for 71>T/) 0.000 W ASCE 7-05(EQ 12.8-4)(MAX.) Cs=0.01 0.010 W ASCE 7-05(EQ 12.8-5)(MIN.) Cs=(0.5 Si)/(R/IE) 0.033 W ASCE 7-05(EQ 12.8-6)(MIN.if 5,>0.69) CONTROLLING DESIGN BASE SHEAR= 0.111 W LOOKUP REF# CI C2 C3 C4 C5 C6 C7 C8 C9 C/0 C11 C12 CI3 C14. C15 C16 C17 VERTICAL DISTRIBUTION OF SEISMIC FORCES PER ASCE 7-05 SECTION 12.8.3 (EQ 12.8-11) (EQ 12.8-12) Area#1 Area#2 Area#3 C,.,_ DIAPHR. Story Elevation Height AREA DL AREA DL AREA DL w, w,'h,' w,'h," DESIGN SUM LEVEL Height (ft) 8,(ft) (soft) (ksf (soft) (kst) (soft) (ksf) (kips) (kips) Ew,*8.0 Vi DESIGN V V..,... NS E-W fiRoof - 19.00 19.00 1870 0022 41.1 781.7 0.61 4.40 4.40 3:81 5.03>. Top Floor 9.00 1000 10.00 1517 0.0281 333 0.022 49.8 498.0 0.39 2.80 2.80 6.50 7.71 10.00 0.00 0.00 0.0 0.0 0.00 0.00 0.00 1st(base) - 90.9 1279.7 1.00 7.20 10.31 I, 12.75 E=V= 10.08 E11.4= 7.20 DIAPHRAGM FORCES PER ASCE 7-05 SECTION 12.10.1.1 (EQ 12.10-1) Design F,,,_ DIAPHR. F, E F, w, E w, F,_ =F,=wa 0.4'Sax lE'w0 0.2' LEVEL (kips) (kips) (kips) (kips) (kips) 1:w, Fo„Max. Fp,Min. Roof 4.40 4.40 41.1 41.1 5.93 4.40 11.86 5.93 Top Floor 2.80 2.80 49.8 49.8 7.18 2.80 14.35 7.18 0 0.00 0.00 0.0 41.1 0.00 0.00 0.00 0.00 1st(base) 0.00 0.00 0.0 41.1 0.00 0.00 0.00 0.00 N.E.T. 3/28/2014 ASCE 7-10 WIND Part2.B SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 2 CT PROJECT#: CT#14051:Plan 3713 Twin Creeks,Elevation B NS E-W F-B S-S 2012 IBC ASCE 7-10 Ridge Elevation(ft)= 30.00 30M0 ft. Roof Plate Ht.= 19.00 19.00 Roof Mean Ht.= 24.50 24.50 ft. -- -- Building Width= 37.0 .l 45.0:ft. V ult. Wind Speed 3s..Gust= 120 120 mph Figure 1609 Fig. 26.5-1Athru C V asd. Wind Speed - P 3 Sec.GOar mph (EQ 16-33) Exposure= B B Iw= 1.0 1.0 N/A N/A Roof Type= Gable Gable N-S E-W Ps30A= 28.6' 28.6 psf Pitch= 25.0 '25.0`' Figure 28.6-1 Ps30 B= 4.6'' 4.6:psf Figure 28.6-1 Ps30C= 20.7 20.7 psf Figure 28.6-1 Ps30 D= 4.7 4.7psf Figure 28.6-1 N= 1.00 1.00's Figure 28.6-1 Kr,= 1.00 1.00> Section 26.8 windward/lee= 'IMO 1.00(Single Family Home) N*Ke*I : 1,.: Ps=N*Kzt*I*P830= (Eq.28.6-1) PSA= 28.60 28.60 psf (LRFD) (Eq.28.6-1) Pse = 4.60 4.60 psf (LRFD) (Eq.28.6-1) Psc= 20.70 20.70 psf (LRFD) (Eq.28.6-1) Ps o= 4.70 4.70 psf (LRFD) (Eq.28.6-1) Ps A and C average= 24.7 24.7 psf (LRFD) Ps B and D average= 4.7 4.7 psf (LRFD) a= 3.7 3.7 Figure 28.6-1 2a= 7.4 7.4 width-2*2a= 22.2 30.2 MAIN WIND-ASCE 7-10 CHAPTER 28 PART 2 Areas(N-S) Areas(E-W) (N-S) (E-W) Wind(N-S)(LRFD) Wind(E-W) (LRFD) width factor roof-> 0.50' 0.50 0.50: 0,90 16 psf min. 16 psf min. width factor 2nd-> 1.00' 1.00 wind(LRFD)wind(LRFD) DIAPHR. Story Elevation Height AA AB Ac AD AA AB Ac AD per28.4.4 per28.4.4 WIND SUM WIND SUM LEVEL Height (ft) hi(ft) h(ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) Vi(N-S) V(N-S) Vi(E-VV) V(E-W) 30.00 11.0 0 81.4 0 122.1 0 81.4 0 299 Roof - 19.00 19.00 4.5 66.6 0 99.9 0 66.6 0 135.9 0 5.9 9.3 4.92 4.92 6.50 6.50 Top Floor 9.00 10.00 10.00 9.5 140.6 0 210.9 0 140.6 0 286.9 0 5.6 6.8 8.39 13.31 9.96 16.46 0 10.00 0.00 0.00 1st(base) - 0.00 AF= 721.5 AF= 1010 11.5 16.2 V(ns)= 13.31 V(e-w)= 16.46 kips(LRFD) kips(LRFD) kips kips Page 3 ASCE 7-10 Part 1 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 1 CT PROJECT#: CT#14051:Plan 3713 Twin Creeks,Elevation B SEE SEAW RAPID SOLUTION SPREADSHEET AND INSERT VALUES BELOW MAIN WIND-7-10 CHAPTER 28 PART 1 Wind(N-S) Wind(E-W) Min/Part 2(Max.) Min/Method 1(Max.) Wind(N-S)(LRFD) Wind(E-W)(LRFD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (It) hi(ft) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Roof - 19.00 19.00 0.00 0.00 0.00 0.00 4.92 4.92 6.50 6.50 Top Floor 9.00 10.00 10.00 000: 0.00 0.00' 0.00 8.39 13.31 9.96 16.46 0 10.00 0.00 0.00 V(n-s)= 0.00 V(e-w)= 0.00 V(ns)= 13.31 V(e-w)= 16.46 kips kips kips(LRFD) kips(LRFD) DESIGN WIND-Min./Part 2/Part 1 ASD Wind(N-S)(LRFD) Wind(E-W)(LRFD) Wind(N-S)(ASD) Wind(E-W)(ASD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) Vi(NS) V(N-S) Vi(E-W) V(E-W) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Roof 9.00 10.00 10.00 4.92 4.92 6.50 6.50 3.81 3.81 5.03 5.03 Top Floor 10.00 0.00 0.00 8.39 13.31 9.96 16.46 6.50 10.31 7.71 12.75 0 - 0.00 0.00 V(n-s)= 13.31 V(e-w)= 16.46 V(n-s)= 10.31 V(e-w)= 12.75 - kjps(LRFDI _ kips(LRFD)_ _ kips(ASD) kips,(ASD) Part 1 Base Shear Part 2 Base Shear = 0.0 0.0 ratio ratio Page 4 CT ENGINEERING TBL SHEET TITLE: 7.4)2009 IBC SHEARWALL VALUES PER 2306.4.1 CT PROJECT#: CT#14051:Plan 3713 Twin Creeks,Elevation B SHEATHING THICKNESS [sheathing= 7/16" NAIL SIZE nail size= 0.131"dia.X 2.5"long STUD SPECIES SPECIES= H-F or SPF SPECIFIC GRAVITY S.G.= 0.43 ANCOR BOLT DIAMETER Anc.Bolt dia.= 0.625 ASD F.O.S.= 2.0 SHEARWALL TYPE Table 4.3A Seismic Table 4.3A Wind 7/16"w/8d common V seismic V s allowable V wind V w allowable (15/32"values per (SDPWS-2008) modify per S.G. (SDPWS-2008) modify per S.G. footnote 2) (divide by 2.0 FOS) (divide by 2.0 FOS) (for ASD) (for ASD) —I 0 0 1 0 0 1 P6TN 150 2 150 150 2 150 P6 520 151 242 730 151 339 P4 760 243 353 1065 340 495 P3 980 354 456 1370 496 637 P2 1280 457 595 1790 638 832 2P4 1520 596 707 2130 833 990 2P3 1960 708 911 2740 991 1274 2P2 2560 912 1190 3580 1275 1665 N.G. 10000 1191 4650 10000 1666 4650 N.E.T. 3/28/2014 �{ i' 4 44 A PAxTo TT-1O0F APRIL 2014 A Portal Frame with Hold Downs for Engineered Applications The APA portal-frame design,as shown in Figure 1,was envisioned primarily for use as bracing in conventional light- frame construction.However,it can also be used in engineered applications,as described in this technical topic.The portal frame is not actually a narrow shear wall because it transfers shear by means of a semi-rigid,moment-resisting frame.The extended header is integral in the function of the portal frame,thus,the effective frame width is more than just the wall segment,but includes the header length that extends beyond the wall segment.For this shear transfer mechanism,the wall aspect ratio requirements of the code do not apply to the wall segment of the APA portal frame. Cyclic testing has been conducted on the APA portal-frame design(APA 2012).Recommended design values for engi- neered use of the portal frames are provided in Table 1.Design values are derived from the cyclic test data using a rational procedure that considers both strength and stiffness. The Table 1 values in this report were developed using the CURSE cyclic test protocol(ASTM E2126),using a flexible load head.Earlier testing was conducted using rigid load heads and the sequential phased displacement(SPD)method, as outlined in SEAOSC(1997)Standard Method of Cyclic(Reversed)Test for Shear Resistance of Framed Walls for Buildings. The design values in Table 1 ensure that the code(IBC)drift limit and an adequate safety factor are maintained.For seismic design,APA recommends using the design coefficients and factors for light-frame(wood)walls sheathed with wood structural panels rated for shear resistance(Item 15 of Table 12.2-1 of ASCE 7-10). See APA Report T2004-59 for more details.For designs where deflection may be less of a design consideration,for example,wind loading while the portal frames are used in tandem with each other,and not used as conventional shear walls,a load factor of 2.5, based on the cyclic test results is used. Since cyclic testing was conducted with the portal frame attached to a rigid test frame using embedded strap-type hold downs,design values provided in Table 1 of this document should be limited to portal frames constructed on similar rigid-base foundations,such as a concrete foundation,stem wall or slab,and using a similar embedded strap- type hold down. 1 0 2014 AM—Thc Engineered Wood Association References APA, 2004, Confirmation of Seismic Design Coefficients for the.APA.Portal Frame, APA Report T2004-59, APA—The Engineered Wood Association,Tacoma,WA. APA,2012,Effect of Hold-Down Capacity on IRC Bracing Method PFH and IBC Alternate Method,APA Report T2012L-24, APA—The Engineered Wood Association,Tacoma,WA. ASCE,2010,Minimum Design Load for Buildings and Other Structures.ASCE 7.American Society of Civil Engineers. Reston,VA. ASTM E2126-11,Standard Test Methods for Cyclic(Reversed)Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings,ASTM International.West Conshohocken,PA. SEAOSC, 1997,Standard Method of Cyclic (Reversed) Test for Shear Resistance of Framed Walls for Buildings,Structural Engineers Association of Southern California.Whittier,CA. We have field representatives in many major U.S.cities and in Canada who can help answer questions involving www.apawood.org APA trademarked products.For additional assistance in specifying engineered wood products,contact us: APA HEADQUARTERS:7011 So.19th St.•Tacoma,Washington 98466•(253)565-6600•Fax:(253)565-7265 APA PRODUCT SUPPORT HELP DESK:(253)620-7400•E-mail:help@apawood.org Form No.Tt i OOF Revised April 2014 DISCLAIMER:The information contained herein is based on APA-The Engineered Wood Association's continuing programs of laboratory testing,product research,and comprehensive field experience.Neither APA nor its members snake any warranty,expressed or implied,or assume any legal liability or responsibility for the use, application �� of,and/or reference to opinions,findings,conclusions,or recommendations included in this publication.Consult your local jurisdiction or design professional to assure compliance with code, construction,and performance requirements.Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used,it cannot accept responsibility of product performance or designs as actually constructed. 3 t2 2014 APA—The Engineered Wood Association 180 Nickerson St. CT ENGINEERING Suite 302 -n70-floc, Q �j '�.J� k440-- /nom n i Seattle,WA Project: r @ ,f3' A-r,66 T 4 Date: 40.1 1 �- 98109 (206)285-4512 Client: 25q3rQ '2, ( S5C.- 29)1954..5, JJJ Page Number. FAX:(206)285-0618 1 1 Ve,= 3 . '1,)7-._.- 6-0 O 61-.1 AsVn o s b . 0 n___.Aisvel_ql..) Ai t� 0 (1_g 1, tt-4� --T R5t' 4 .`t t( ►2 Ic ft X Ib ) 2 . Liei-Dt 6 kR5.5-43),C--K- TVC2— ‘07.11) / ?)077Pit4 #51FO- r-DP PcG)7nW erviuDili, N J of _ (V)11.9,... ) _...._� p.,s 6 j-y, 4,,-_- 6)(o,-6/60),_ - 0,312_ 06 WZ3)e-le-) Vo,ti ((o i — '* P ,, , C,)(,7)11,,, 663 ._ s•--7_,3q2) 33 ,°I4-4-• YAs 4- - q;, (e5 K.,-, 1- toti U( _ . 0 X C . w/( .-4- ot= ©, e36 6Nutve '7 12.01Z L-D/ 4- t► BAIL eg V I ' 3X> kL L d\q)- L `� 5 Px -R r mG, .n Structural Engineers 1 WOOD FRAME CONSTRUCTION MANUAL 63 ' Table 2.2A Uplift Connection Loads from Wind •• . (For Roof-to-Wall,Wall-to-Wall,and Wali-to-Foundation) 700-yr.WInd Speed 3-second gust(mph) 110 115 120 130 140 150 160 170 180 195 Roof/Ceiling Assembly Roof Span(ft) *Unit Connection Loads(pif)1'713'446'7 Design Dead Load 12. 118 128 140 164 190 219 249 281 315 369 2 24 195 213 232 .272 315 362 412 465 521 612 0 O psfi 36 272 298 324 380 441 506 576 650 729 856 2 Ili 48 350 383 417 489 567 651 741 836 938 1100 M . 60 428 468 509 598 693 796 906 1022 1146 1345 m Ci . 12 70 80 92 116 142 171 201 233 267 321 24 111 129 148 188 231. 278 328 381 437 528 im 10 psf 36 152 178 204 260 321 386 456 530 609 736 N 48 194 227 261 333 411 495 585 680 782 944 Z 60 236 276 317 406 501 604 714 830 954 1153 12. 46 56 68 , 92 118 147 177 209 243 297 24 69 87 106 146 189 236 286 339 395 486 15 psf 36 92. 118 144 200 261 326 396 470 549 676 48 116 149 183 255 333 417 507 602 704 866 . 60 140 180 221 310 405 508 618 734 858 1057' 12 22 / 32 44 68 94 123 153 185 219 273 24 27 45 64 104 147 194 244 297 353 444 j� 20 psf 36 32 58 84 140 201 266 336 410 489 616 -:1n eta.', !. 48 38 71 105 177 255 339 429 524 626 788 • 60 44 84 125 214 309 412 522 638 762 961 12 - 8 20 44 70 99 129 161 195 249 • 24 - 3 22 62 '- 105 152 202 255 311 402 25 psf 36 - - 24 80 141 206 276 350 429 556 48 - - 27 99 177 261 351 446 548 710 • 60 - - 29 118 213 316 426 542 666 865 • 1 Tabulated unit uplift connection loads shall be permitted to be multiplied by 0.75 for framing not located within 6 feet of corners for buildings less than 30 feet in width(W),or W/5 for buildings greater than 30 feet in width. 2 Tabulated uplift loads assume a building located in Exposure B with a mean roof height of 33 feet. For buildings . located in other exposures,the tabulated values for 0 psf roof dead load shall be multiplied by the appropriate adjustment factor in Section 2.1.3.1 then reduced by the appropriate design dead load. a Tabulated uplift loads are specified in pounds per linear foot of wall. To determine connection requirements, E multiply the tabulated unit uplift load by the multiplier from the table below corresponding to the spacing of the . connectors: • •• Connection Spacing(in.) I 12 16 I 19.2 I 24 i48• Multiplier 1.00 1.33 1.60 2.00 4.00 . ° Tabulated uplift loads equal total uplift minus 0.6 of the roof/ceiling assembly design dead load. s Tabulated uplift loads are specified for roof-to-wall connections. When calculating uplift loads for wall-to-wall'or i. wall-to-foundation connections,tabulated uplift values shall be permitted to be reduced by 73 plf(0.60 x 121 plf) for each full wall above. '':- 6 When calculatinguplift loads for ends of headers/girders,multiply the tabulated unit uplift load by1 2 of the ;if4 P /g PY P / ?4,)!�x:, header/girder span(ft.). Cripple studs need only be attached per typical uplift requirements. 'i``i ' ' For jack rafter uplift connections,use a roof span equal to twice the Jack rafter length.The jack rafter length :11.,':--::: includes the overhang length and the Jack span. .s ty- s Tabulated uplift loads for 0 psf design dead load are included for Interpolation or use with actual roof dead loads. I@ -1s`;. AMERICAN WOOD COUNCIL 180 Nickerson St. CT ENGINEERING Suite 302 INC. Seattle,WA � 98109 Project: �. Date: (206)285-4512 PAX: Client: Page Number: (206)285-0618 \?(In\ii) OCD *— P)'R4'. 714 .14P 4:4 Ot5C2)0i6 PI\ \Ab,),D evost, ivvoAth LTABLE- t, A- 1 I /o MP- lucri . g 1-1,1„:;*(- 5 P & DZ t) C, Tss 4?)! /113r,. 1. . + 1Ern 'Pe I/ 600-k: 7( 0,C)(0 )6: ut'L7` A , y -r09< cmr n p i sGY ( 4)(2) (1,a) 0,6) a 4., ; A5iJv - 6)1 R.(e_ TNIA, (1-6y (-0A)(0.,-5 (0,61 Kiv\i4)6-- IY19. ,3&) 2 th4. ,PLY, • s N �- - TP,q, Arl%Initnpes" ) e ?Las ivFes- ��� 22= TRUSS TO WALL CONNECTION ',PI \iAl lii`s; OPUESF TRUSS CONNECTOR TO TRUSS TO TOP PLATES 01'1 II I I 1 1 H1 (6) 0.131" X 1.5" (4) 0.131'X 2.5" 400 415 1 H2.5A (5) 0.131" X 2.5" (5) 0.131" X 2.5" 5;',!i --- 110 1 SDWC15600 "' - ,114' Iib 2 H10-2 (9) 0.148" X 1.5" (9) 0.148"X 1.5" II/(i /00 2 (2)H2.5A (5) 0.131" X 2.5" EA. (5) 0.131"X 2.5" EA. 111/11 2 (2)SDWC15600 / - - ri/t1 zsn 3 (3)SDWC15600 - - 14'6 31` ROOF FRAMING PER PLAN 8d AT 6" O.C. t 2X VENTED BLK'G. z '.. 0.131" X 3" TOENAIL .'" AT 6" O.C. Wig) r ' H2.5A & SDWC15600 STYI F \ OMRMON/PLAN GIRDER TRUSS -IF- PE TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE 3/4"=r-0" (BEAM/HEADER AT SIMILAR) 14 TYP. RAISED HEEL TRUSS TO WALL CONNECTION [ TRUSS TO WALL CONNECTION ',PF VALUES #of TRUSS PLIESCONNECTOR 10 TRUSS TO TOP PLATES 1UPI.IFl Fl 1 H1 (6) 0.131" X 1.5" (4) 0.131" X 2.5" 4001_ 415 1 H2.5A (5) 0.131"X 2.5" (5) 0.131" X 2.5" �.ii [...._Ili)_.. 1 SDWC15600 - - n°!, 110 2 H10-2 (9) 0.148" X 1.5" (9)0.148" X 1.5" 1610 70(I - 2 (2)H2.5A (5) 0.131"X 2.5" EA. (5) 0.131"X 2.5" EA. 1070 77-0 2 (2)SDWC15600 - - 1711 2.10 3 (3)SDWC15600 ADD A35 0 48"O.C. ROOF FRAMING PER PLAN FOR.H2.5A AND SDWC STYLEBd AT 6" O.C. CONNECTIONS 2X VENTED BLK'G. ill �` i'i "i H2.5A & SDWC15600 STYI F COMMON/GIRDER TRUSS - PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE 3/4 "= 1'-0" (BEAM/HEADER AT SIMILAR) 19 TYPICAL TRUSS TO WALL CONNECTION [ 180 Nickerson St. CT ENGINEERING Suite 302 INC. Seattle,WA F �\. F f s7'a ~ Project+���(�O �I,�/I� w` Date: JP (206)(2oG)285-9512 FAX: Client: Page Number: (206)285-0618 • R'-,ID 6 .715 6.8'x', Imo, :, 0: ") 22'65 2J. Ti4LL, • ;/`r • i ,--0.:\*.ssy:. i I i I � i ! -r • i I I I 3c f D. � ; •I 1• 1 ' IM C 3/ ! I I _ 1 i" ' I• 1 i" ; I I 1-- I i I I 1 i. i. i I i , I ;- I . l : I , I .1 : 1 . 1 I._ I.._ - i _.i._ - I 1 t 11, 1 1 I I I I ; I I : I 1 L._.- 1.._.! ..._.. L_. -. .. I I I : _, 1 i I i ; I ! i 1 • 1 I •i 1 I I I • • • I • I i • • �1 i ' ( .. .. • I I 1 • I I ; I • 1•.. I 1 1 i i • 1 1 • , 11 1 I • I ' : ' i. i 1. 1 I • I I 1 II i j 1 . II I ! 1 I I • :II # , Structural Engineers 180 Nickerson St. C T ENGINEERING Suite 302 �- I N c. yy-.-rte ' _ �" ) Seattle,WA Project: lf ��,� t V���LwJJ: . 0 7 (, (� 7I Date: 3 21`�E' I (206)9285-9512 FAX: Client: Page Number: (206)285-0618 • C1: ..kvu LI :. T7-1 -0., :-F-lentf (10(7. H . •1 ' o4n LVL , _ ' 1 Yk' .r oK 11 it I IIS 1 i .I_ .X2..5 .5tE C tNi.c r . ._I I _ 1 I I � :11 . II . 1 . 11 N �. j • I i . I i • I I i _ f I 1 I • i - l j Lsh - . i II 1 I - r, t.-.1v7,- , I 1 . 1- ' ' ' ' t1 • 1i o 5� . i , 1 I I ' D i . •i ^ 2' I -Q I _ 1 1 i i I . I1 I ' 17I 1 1 1 i I 11 I I ; i ! I I I I 1 I � I i • : 1 17 1 l � i� V t,11.i I � 1 ; I i C� � I 1 , • : I I j L_. I !. 1 ! I --7 D ; j iI i I , 1 . I : .I : I � 1 i 1 1 � •I I , C 2 1 I I I I I I I I Structural Engineers 180 Nickerson St. CT ENGINEERING • Suite 302 Seattle,WA N C. r G ( '74'...., /� 98109 Project: P _ It&. .11,.. -A- • 66 ±. I� F 4'"'m s ate: �?/ (206)285-4512 !!! FAX: Client: Page Number; (206)285-0618 , . r 0 r �►©►�J • ,> Tp "'C- . 1 , ILS '�C; ' 'l b, . "tom • • I Z: 125WT.. • 1 i . 1 , t : . .• ; • . . . ) t } , . • 2 • i g-- , , • I i �. j f i i -�• I j ; ) ; I • ; . I ; i � �� IC�,3 Pyr • I . , R - CNr.t Kra� � , • I t a'�� I.1...... ! ' 1111101110"-. i I 1 � I I r : CAS i i 1 I I Lo{ � , i lD o `� USN • • ' 4 is ! , ! ' m 1 - gs)> • '- 'I •; I * 72 +7tO 752( S' 8OD+s7Z4Z� V72.. (cb. i e,5,��905:{ 5 I,�28 5 � ( Structural Engineers CT ENGINEERING Suite 3 Nick St. ,.�/�) /� M ' .�+��j/� / }/+�� S98109 eattle,WA Project: (�t_ /S.7d� * t1�I N i' V"tN -S7 ' Date: / /4 (20)285-9512 /// FAX: Client: Page Number: (206)285-0618 • • : 4l t' ©i Nal- ':Low . PN QoT. .1-G.7 ' . , ,may 1 1 Pt.NJ' I ; �I 1 is • ' r- - 1.,. (11745 ...) [ : : 1 : Gositsc- , Cao • I ' I = 11 1 I 1 ) • I j, I i : ii II i I 1 _ j _ . 1 1 :t/ iii,„ ik. �1- l � 22 caw� I ' i 1 lT 1! I I 1 1 I i , it it ��� I I I I • I 1 I , ,- 1 1 I ,� I i _ I I I I 1)M!. .- I I�, i 22_ I , I •K_ .: I ,. _ 1 •I 1._ 11 t _._. .. ; I I 1 i I 471-91.h . I I I 1_ I 11 L If ' II ' II 2� . 5 I -, �- 2 14--46 , I II -1I. II I II II1 , , I A ! I •1 ! ; ; ', I 1 : I I III Iii I I ; I , ; , i5.5, , i 31l i 11 1 • i 1 I I. I 1 _l 11- • I I I _- _.i - - • I_I. I i 1 I I j "� I. i I .I , .I _.._.. I I '..._I• t j ,r....',) I i _ ' I 2:I t J � I I _ . 1 i )� I ! I i 1 I1. , _I 1 11 1 ' 1 I i • 1 • i_. 1. i • :... I I I , - 1 1i I I I I 1 , 1 I { I i .. i1 ! . I I 1 i 1 1 1 I I : 1 1 I I II I i 111 f II is I 1 1 I ' 1 1 i I I 1 I I I I i 1 f i! I 'l • I r Structural Engineers