Loading...
Plans (10) OFFICE COPY STRUCTURAL, CALCULATIONS FOR RECEIVED RIVER TERRACE EAST MAY 0 2 2013 CONDOMINIUMS CITY OFTIGARD PtILOiNG 12 PLEX- DOWNHILL I VISION (POLYGON NORTHWEST) op PROP& 4 �r.�G1 NZ'E, S� 4t.4, 15472 tic lr V.,. • - GUI." MO i2 EXPIRES. isiavick REVISION' MARCH 8,2018 JOB NUMBER: 17-T174 6_ C—is 744 BY FROELICH ENGINEERS ?: * * * LIMITATIONS * * * ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT, WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND/OR LIABILITY IS ASSUMED BY,OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS. A Main Office A Central Oregon 6969 SW Hampton St. 745 NW Mt.Washington Dr.#205 Portland,Oregon 97223 Bend,Oregon 97701 503-624-7005 www.froelich-engineers.com 541-383-1828 Page 1 of 129 FROELICH ENGINEERS ; ScopeofWork Client: West Hills Development Project: River Terrace East Project Number: 16-T100 Date: February 15, 2017 By: YSP Scope of Work: Froelich Consulting Engineers, Inc. (FCE) has provided full structural lateral and gravity design of the project per the 2012 International Building Code (IBC). Froelich Consulting Engineers, Inc. has provided details only to the areas pertaining to our design. Froelich Consulting Engineers, Inc. did not design or review the details for the entire project. Project Description: This new three-story multi-family apartment building wood sheathed wood framed wall structure is constructed with gang-nailed wood roof trusses, wood framed floors, with slab on grade main floor. Conventional foundations (concrete continuous footings and stem walls and spread footings) are used for building support. A Main Office FROELICH ENGINEERS A Central Oregon 6969 SW Hampton St. 745 NW Mt.Washington Dr.#205 Portland,Oregon 97223 Bend,Oregon 97701 503-624-7005 www.froelich-engineers.com 541-383-1828 Page 2 of 129 Client: West Hills Development Project: River Terrace East Pro #: i6-T100 Date: 2r'15i'2017 • ' By: TSP FROELICH ENGINEERS I Project Design Criteria Project Description Now three-story multi-family apartment buildings, Gang-nailed wood roof trusses. Wood Framed Floor. Light-framed wood sheathed wood walls. Slab on Grade Conventional Foundations Project Location Portland,OR 45.548"N 122,84"W Average Elevation==350 ft(approximate) General Building Department: Building Official: Phone Number: Building Code(s). 2012 International Building Cede(IBC) 2014 Oregon Structural Specialty Code(OSSC) ASCE7-l0 Roof Live Load: Ground Snow load- IS psf(Snow load Analysis for Oregon 2007) Minimum Roof Snow Load 25 psf (Snow Load Analysis for Oregon 2007) Snow Importance Factor(lb)= 1 00 Deflection Criteria- 11240 Floor Live Loads: Residential Live Load- 40 psf (1I3CTable 1607.1) Corridor Live Load- 100 psf (IBC Table 1607.1) Wind Load: Basic(3-Second Gust)Wind Speed 120 mph(OSSC Figure 1609) Exposure_ 13 Wind Importance Factor(1w)= 1.00 Seismic Load: Occupancy Category' II (IBC Table 1604.5) Seismic Importance Factor(L) 1.00 Site Class- D $ Mapped Spectral Acceleration Values(Ss) 0.985 g Mapped Spectral Acceleration Values(S1) 0.36 g Design Spectral Response Parameter (5155) 0.726 g Design Spectral Response Parameter(So,).- 0.403 g Seismic Design Category- D Response Modification Coefficient(R) = 6.5 Light-framed walls sheathed with wood panels Shear Walls(Bearing Wall System) Soils Data: Allowable Bearing Pressure - 2500 psf Exterior Footing Depth= 113 inches* Page 3 of 129 Client: West Hills Development --�. Project: River Terrace East • AliOr Proj.#: 164100 a ,.E.. Date: 2/15/2017 .• -- Fry YSP FROELICH €N 01 NEE:N Sl Dead Load Calculations Roof Dead Load Top Chord of Truss Component Weights I Actual(psf11 Comments Framing 4 Roof Trusses Roof sheathing 5/8"shth Roofing(Asphalt Shingles) 3 Misc, I Total-- 10.0 psf Bottom Chord of Truss Component Weights I Actual(psf)! Comments Mechanical 1.5 Ceiling 2,8 (I)518"gyp Batt Insulation 1.5 Sprinklers I Misc. 1.2 Total 8,0 psf 4psf added for Seismic Base Shear Total Roof Dead Load= 18.0 psi Calc. Floor Dead Load Component Weights I Actual(psi) Comments Framing 3 Joist Framing Sheathing 3 7/8"shth Floor Covering I 1 1.25"Floor Topping(Gyperete 105 lbs/11.3) Mechanical 1 citing 5.6 (2)5/8"gyp Flooring t ,sprinklers 1 Misc, 1.4 `Iota! 27.0 pat' 8psf added for Seismic Base Shear Calc. Corridor Floor Dead Load Component Weights ]Actual(psf)( Comments Framing 2 Joist Framing Sheathing 3 7/8"shth floor Covering 13 1 5"Floor Topping(Concrete 150 Ibs/ft3) Mechanical 1 Ceiling 5.6 (2)5/8"gyp Flooring 0 Sprinklers 1 Misc 1.4 Total w:: 27.0 psf Exterior Wall Dead Load Component Weights ]Actual(psf)j Comments Framing 1.5 Sheathing 1.5 1/2"shth Interior Gyp Finish 2,8 5/8"gvp Insulation 1,5 Siding 2,3 Fiber Cement Siding Misc. 0,4 "Polar 10 psi Interior Wall/Partition Wall Dead Load Component Weights 'Actual(psf)I Comments Framing 1.7 2x6 Ca?16"o Interior Gyp Finish 5.6 5/8"gyp each side htsulation 0.5 Fiberglass Batt Insulation as occurs Misc. (1.2 Total 8 psi • Page 4 of 129 Client: West Hila Development • Project: BY T race East Proj.#: 16-11W • Date: 2/15120:1 By: YSP FROELICH ENUINEERSI Flat Roof Snow Load Calculation: Based on the following Codes: 2012 OSSC ASCE 7-10 Snow Load Analysis for Oregon 3rd ed.December 2007 Maximum Elevation: 450 ft Ground Snow Load(P9)= 15 psf Determined from Snow Load Analaysis for Oregon(3rd ed.December 2007) Terrian Category= B(Partial Exposed) per ASCE 7-05 Table 7-2 Snow Exposure Factor(Ce)= 1.0 per ASCE 7-05 Table 7-2 Thermal Factor(Ci)= 1.0 per ASCE 7-05 Table 7-3 Importance Factor(I)= 1.0 per ASCE 7-05 Table 7-4 Flat Roof Snow Load(pt)= 10.5 psf P,=0.7`Ce Ct"I"Pg Where p9 s 20 psf(pf Min)= 15 Where pg>20 psf(pf Min)= 10.5 Use(pt)= 15 psf Use(pf)= 25 psf per 2012 OSSC 1608.1 c' 4,91-yrn rt/.2,::::/ .Azi ...''' 77/ 1 M9 a - Ylci Z/ C) (37): Ilk \-„, ,----, -, (.., 1 I t .._ t , to , , < "55 1 ("Z . ,_ -,,,, f -., ' ‘r• ...:ir -- --- • ./ ' IMIMMEMONIN ., = - • - - - - fi r .': • 1; -: =....,....4.,,,..,.„ , '.. i ."-i: ‘'''':',11::a.,.:;-------...„, 1 ti.' •,,,,,,-.%,..--:',.:•,.K...*:••,‘,:-,,,, tti t tt:wt.: ,t4.,..:„.f4-4,p...it.i,_,,,,:,,,, .4 it*it,•:, •t•Kt 4.,,,,,..,•,,,„:,...,, A. ,, , $ ....e. . I. , t . ..-.,. •kl.',.'„i , ., , ; 1 i :4**M*.,. 4 .,F., .• ":"..t'.$05,-, .54* ....,..).),'.'5.-•.5 / . • . ) , ..,. •. ' . 7:5.:", \ .5)-' '':.f.4.-4 1 i ' ...•.'•.:' •-.q..1 .55g$5',..5....▪...;',.,,,,c,•8.4— r q '''CV‘,.:..).**. :. ' ' '''; .ko°4*5'..4.....A.‘„`.., 4":'".... .V•il t -1 1,. .4*4....„. ......... ''::..,•+'?'-''''..L.,,,,,:l.,''::''' . .. ,), "0.4+.'4!:%...:15::".11.4.HR:1*:::::•;‹ --- ..\'4;5: . •"....V.),.. L..) °'''''''.X*.N7.:4%.k: ---- ----.I. !':.k'•''',:" .:.,'Air .C...e.4? ,_...._ ...I.,. . r, •.,.• t'-:kkz,,,,:k......,:: /-A.', •-Ar, •. ,„::4 ...; ___<-2-7--1 rit:1, - ;:.---: ::: II -' • 5 t 1,,, tg) . ........ - - 20' ' * ,_(•:• •• ''''.-- • * N,e., tt.it. . , - 1 ›... ..„.. It ' _-_, • • ,,. ---1 ----- ,: A --- ---, 1_,,,,, i-,,,--------z...---,i , .... " r------ ,.--- , k.t • _ _ cZ-"---- - —air ‘,<;-41-- * • i \<%.426-<'‘ '" - " 42,- -fr<Of,' i 1 a <tt. I , .< - •,•:‘ "' , t <-:"".t.,; ---- t .1 el - MINIEIN l'/1:4'' ., .. .E. .. i 1 .. Aillii °15. ."111001111011511144/1611104....=.5.5.a ''''''''''' ' -............5— [ r--- ---1 , ....... ,„.........4 I. f , t . . ..„.... ..2!../ ,....,-------------/ i • .. .1 „. ----- itv ,.......,._ I. 1 A • A ,,,,,...,.., lir., I i ?, ! 1, .,..,.,,.... ..„, I ': i 4fier‘ ,t, .2.7.1., :::==m,../"..---" .'11 1 ii, " ' i 1. --r4,'';',....1 - • ;-. 5 V. *-* ' 4).,V,.. ...)".„',. ...4,..... ....„„....,7.1,....: _ .:- e., ...t. , ;•,, ' -. ..• .*it . 4 ,. i Ka _..,„ ._„_ „„„„..„, „.,..,,,,,.,. . -- ---0,. - ‘,........q• . :..: / / ..: 1 " 41:,•,-9")).;:$,;:lx,.:.x, -•••••1,1 . i r -----,r--- (---,r '. 1, ,4,.,..y :, .........,„ 11 L': - ,, ; • tr,,,v, / 1 • i.,I .,.7! ,..zs.,%,<,1'4'44°•'04,;:''', --.".•, ' •.... ,,i'' i :...1;..--"I':::.....:-rrr ••..-014:1,;;::*71..f:1,, , ' -., . / / 11. ,r r .' '4•M•••.‘4,,v,:liiN•ry,:".:-.f..jpi.: . ., ; 't ; .::, ,;: 7 "kk 4.•.r.'.r- ':',: , / • Pa':`" -. ,,,,\,-.1,4 . . . . I , , 1 i ,....--..-.,‘ ,,.:,.., ,. ..,, ...., ., .,,,,,...., / ,...., , ,, • ,--,:, .-..... _ i - : ire 1 ..,,,z.,s „ —.. -.01 /- , <:.... ,,.,•! i rm.7.1,,..17.4,-,,,,,,..,-,.....,,,,,.t..-.....7.,v,v7..4.,,,.,, #, , 1.Z: • , < "..11:...— -- - ' ' liall "" - 'w.-Tool ireseammuirmirOn .,,,v., , --,.....•' ......- , ,A-..,, 'Cr ar4likirAnallalli 1-7„ ej *- .4- "1r IIIIII iza ! lay c ,„1'.. ... 0 /-c \.,,,,,..., (V>e- g =OX CLIENT: a969 t .Jn Sf Page 6 of 129,` Poona-d, Oregon 97223 503-624-7005 PROJECT: 4 745 N �t Mt.Washngton Dr x-205 � iH,,eNUMBER: Bend,Oregon 97703 y £` 541-383-1328 FROELICHDATE: ENi ri E E R s 12303 Airport Na).Suite 200 Broornleld.Colorado 80021 www.froe1ich-cngineer..cam 720-560-2269 BY: RoCIF DEAD tttOs1 Ps Pa 2o©I Swoow e.,,o4 C y Z5 s use /32 4--- A44Akfic "%e si „i.c `cc. Root cx.,eL'' ie i U5j : ( d,. EAc-T!0AI CD/Uly) g *c P �' PANs2O _0 " T` L.. s k7 }(iS) SJZ4 ? DL. l5'aC.) SLs17-5c RG2., SpA Ai 1' fa Di_ % )z4 RA' 1 L .c /30 Pe 13 1 5 s.0 ') (290 4. 50 Pc-e" cit -z -„------ -- cn -i3Oo 51-sat-i5c P " 1 tD ! o Si 1_.25 0969 CLIENT: SicV. rIk OPage 7 of 129 iegon 97223 503-621-7000 PROJECT: 7‘. 745 NA:v Mt.Washington Dr,#205 NUMBER: - • Bend,Orogoil 97703 541-383-1828 FROELICH DATE: EN GNEERSA 12303 Airport Way,Suite 200 I Broomfield.Colorado 80021 720-560-2269 BY. Pe,13F-0 261 6 Pcf bl,*$ 1,01 3 (A.bi .2as SL (25) '5-5° 2.4 Zecao Si-, 4'850* f t C)Lx (1°) 1.13) --<- Pc-C °Ls- 13ora# 1- 00'4 R00 F Hb,2 's R.i-1 - pAto s 3-° tAl Ptir I Pc f:".. Gc.A.e..06fte. Tr-v5.50 a -° AJ (5 —0 : p f1 :(( ‘)5((1465))7.0-2-2-7° • .••• Page 8 of 129 ,COMPANY PROJECT AP!'"ir -11 I WO Works® od Aug.23.2090 10:41 RNt wwb sot t,ottorNft C3FSK,A, Design Check Calculation Sheet Wood Works Sizer 10 42 Loads: • Load £ypc 2, 03.33.- t ..,. Bat- 19'1 x- a:i :vie aoi.t ear, Siser e;: d SatiL 3.'0 sa,d 5 .2 f f ^00 ,` 1; pit Load2 Snow Pactial 21. 3.21 271,0 215,9 £rii hosd'3 Grad 600 lhe r;ra:14 - Snow 2...9 750 lbs $o11e iphi Dead Ve1 ULT. 0.0 p11 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) • Pl. .._...,.... ,_..,......,�w .._._... _ ...._..._.___ _ • s�r a• i!nf,r<:tor,rd Dead 514 700 snow ,o 914 w u Factored: royal 1102 1623 Capacity Beam 11$2 162:3 s•cpp<:r->.. 1303 149% Onet i b;x.5 Beam 1.90 1.00 24-3033. 0.99 . 0.90 60a6 rnrt( #2 42 0 Gogh 0.54. 0.74 •,r ,. L'd 0.54 0.71 Cl, 1.00 1.00 ::h no 1.00 1.00 '28 scilr.><:1.. 1_11 1.11 rc;: :sup 6125 625 Lumber-soft,D.Fir•L,No.2,4x8(3-1J2'x7-1/4") Supports:Aft-Timber-soft Beam,O.Fa.L No,2 Total length:3'-1,3";volume=05 colt,; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: Gtt4:e0100 Analysts to1•ue. Limax>_..Valht 001A Ana ystei eetle. bending(t) i3, - 568 = 1019 pea 10/:"a'x 0,42 Dead 0e31'11 0.01 ,:6?993 Live Jaf1'0 0,01. _. 'l./909 0.10= L/300 in 0.01 Total hof9'n 0.61 6 3L/1919 Q.15 . 9/240 ih 0.10 Additional Data: FAC1100)0 0'/C1pa1.ICD CM St :`t, :"f:' ,.... Cc r:f el: Ci Cr, 1C3I rvi 100 1,40 1.00 1.00 .-. - - 1.00 1.00 1.00 2 1'+ 31)11 1.15 1.0G 1.00 0.999 ...$)' i.022 1.00 1.00 90 - 2 629 - 1.00 1,90 E' 4.6 mx:Lic: 1,00 1.00 - - 1.00 1.00 - 2 ?m£n` 0,713 m1Alish 1.00 1,9" - - - 1.00 9..00 2 CRITICAL LOAD COMBINATIONS: Shear i-2 w2 bag, ,' '.. 1690, v de:3 i:31 i304 lice (1.4,041 .): LC 021003 43 452 11'--1i't nll+ct:i:ur, LC 42 ". !315 (live) LC 12 ..: 1610 )goal% =dead ,;-live s-,cu 10'- ,n.3.:.1(0433 1,, .i.- I,=.C,r,eentratnd a -.r. ::quake. 31.t_ LP's ate listed in the Analyei.r. o:tic'u I,>ad comb/sat/00n, 1190/: 10 ; 102 20:2: CALCULATIONS: Def lerl:ion: 01 170::+.;6 1b--102 „ire"deflection = Uel:i+act:ton 1..c<.m,al.1 cur.-,:iesd load, Tlive, wind, noon II Tut De[.1000100, = 1.59l0ea.3 Load VeEi,,u_L,,I lie,, Load Del16,6 0n, Lateral stability (1)1 Lu m 3i--0.63" In = 0'-3.00" RD= 6.60 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(18C 2012),the National Design Specification(NDS 2012),and NOS Design Supplement. 2 Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to:he provisions of NOS Clause 4,4.,1, Page 9 of 129 COMPANY PROJECT r Aug..23,2015 15 42 01-12.n•,va 44 1WZ ffi 7 51GN Design Check Calculation Sheet Wasx1SinaltS$i,rm 1Q:42 Loads: - .,..a,,, 2j R4004f00= UO3, Bnd S 1st 1n.t t.na•i;i 2sow Boll 271,0 1t Self eniest Seed 4,11 .3L 6.0 s_ • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) Dead X29 02s Snow 040 040 50 79 1 1170 147, bearing: - _...... . . Capacity Beam 1470 14'0 Sa.2pact 162) 1.621 lure..;Des Barr: 1110 1,00 ,.uppcY't. 0.90 0.90 Load cord, 42 42 Length o 0.67 0.07 neq'd 0,B7 0.07 20 1.00 Cb r. .52 • 1,00 En upport 1.11 1.11 1.11 Ftp aur 625 625 Lumber-soft,D.Fir-L,No.2,4x8(3-1/2"x7-114") Supports:Nf-Timber-soft Beam,D.Fir--L Not Total length:6'-1..3';volume=1.:1 cu.lt.; Lateral support:top=at supports,bottom=at supports: Analysis vs.Allowable Stress and Deflection using NDS 2012 1 Cr4 rr tut, A a yxse Wive De )t V ^a a n Unit s nRiyer4llierslt n SLear y i .. i:J Lt, LJ/Rn, m 0.23.. Sending(-' £h= 063 ft,' - 1333 psi 11100• .a 11,.56 Dead hell',, 9.0:4 Live Den's 0.1:17 11390 0.20 ,7-S is 0.2.3 `2.aka 1 C1',,. 2.10= 120:17, 0.20 - L.'270 in 6..33 Additional Data: FACTORS, F76(psi)C0 It. Ct 21 CS Cf. Cr flirt C) 100 1.15 1.00 1.00 - -- 1.04 1.00 _.15 900 1.15 1.0: 1.,0 0.991 1:.300 1.30 1.00 1.00 1.00 - „. Fop' 62 - 1.00 1.758 - - 1.00 .,00 -- 1.6 million 1,00 1.0C .. .. 1.00 1.00 - 2 min` 0.68 millAms 1.00 ..00 CRITICAL LOAD COMBINATIONS: Shear : LC 1.12 = Q,7, V 1157, o design= 1.7.52 Ina 61,721551'', LC 42 D43, F- 220S lbs-'.t Deflection, LC 020e43 ., 1110 LC 02 ". D+2 ;;=dead L.live .scow:r"erinr': i�Fd:_ 1,t-=roof live L ...ottCCn v:aie< 4.earthquake All LC's are listed in the Analysis or:rest loo's c c.:rr.o _: ASCE 1...10 1 IBC 2.77 CALCULATIONS: Def l e'r,r ico:: ET . 110e0e 1 "Liv. dB:Stec:firm VeLles41,s from...1 nos-dead load;. 111.e;, wAnd, Deflection ...,.w_., Tot,,l. flecti n . 1.5Q(ie.6 L,.:., t:,. O'IL _ton ..v [:e d Deflection. ion . 5,1,.0 xi. stak,.l,1,ty io-i: Lo- 1 -Q,G9 1:e=11' ..«0 A5 9,11 Design Notes: 1.WoodWorks analysis aril design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012)..and NCS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application, 3 Sawn lumber bending members shall be laterally supported accenting to the provisions of NOS Clause 4.4.1. CLIENT: c>f c 'r9 72 Page 10 of 129' 3x a0 ii: a y a 97223 's' 503-624-7005PROJECT: ` 745 NW Mt,Washington Dr.#205 NUMBER: Bend.Oregon 97703 " 541-383-1828 FROELICH DATE; E N 6 f N E E R s x 12303 Airport Way,Suite 200 Broomfield.Colorado 80021 nz axe ?JAI-z ,zz,.-4-6-x On= 720-540-2269 BY: I O HDA I my . c PL i i i 5 �I. 1 p- M ..._ . „ ,.w ' 164 .1 Lids ....( 0 /' 2.40 u. t - ..1 Page 11 of 129 Client: Project: h� Project#; Date: By: FROELICH ENG 1 N E E R S A WIND FORCE CALCULATION-C&C Walls ASCE 7-10 SECTION 30.6,30.7 (Third Printing) Design Wind Loads on Components and Cladding- Walls Basic Wind Speeds Input 3 Second Gust Vas= 120 mph Exposure Category= B Wind Directionality Factor Ka= 0.85 Table 26.6-1 (page 194) Mean Height of Roof,h= 40 ft Topographic Effects Input Hill Height H= 0 ft Table 26.8-1 (page 196) Length of 1/2 hill height Lh= 1000 ft Table 26.8-1 (page 196) Dist. From Crest to Bldg.x= 100 ft Table 26.8-1 (page 196) Height Above Local Grade z= 15 ft Table 26.8-1 (page 196) Horizontal Attenuation Factor m= 1.5 Table 26.8-1 (page 196) Height Attenuation Factor g= 3 Table 26.8-1 (page 196) Shape Factor K1/(H/Lh)= 1.3 Table 26.8-1 (page 196) Output-Topographic Multipliers K1 = 0.00 K2= 0.93 K3 = 0.96 Topographic Factor Kzt= 1.00 Terrain Exposure Constants nominal height of boundary zg= 1200 Table 26.9-1 (page 199) 3-s gust exponent a= 7.00 Table 26.9-1 (page 199) 1 Page 12 of 129 Pressure Coefficients Input Velocity Pressure Exposure Coefficients Kb (see below) Table 30.3-1 (page 259) Height(ft) Kh qh (psf) Velocity 15 0.70 22.0 Pressure 20 0.70 22.0 Output qz 25 0.70 22.0 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 h= 40 0.76 23.8 qh External Pressure Coefficients (CC;,)-Use Figure 30.4-1 for li<60 ft,30.6-1 for h>60 ft GC;),=+1- 0.18 Table 26.11-1 (page 201) Pressure Coefficients on Exterior Surfaces of Walls Zone GC1, Zone 4 (+) 0.90 Figure 30.4-1 for h<=60(page 277) Zone 5 (+) 0.90 Figure 30.6-1 for h>60(page 290) Zone 4(-) -0.90 Zone 5 (-) -1.80 Calculate Wind Pressure, p,per Equation 30.4-1 or 30.6-1,using cls, Exterior Face of Surface Zone p(psf) Zone 4 (+) 25.74 with Positive Internal Pressure Zone 5 (+) 25.74 with Positive Internal Pressure Zone 4(-) -25.74 with Negative Internal Pressure Zone 5 (-) -47.19 with Negative Internal Pressure Page 13 of 129 ICOMPANY PROJECT Woo d Wo r a " s 904 (t .sl* , Dec 13,2015 09:39 Beam1 Design Check Calculation Sheet WcoCWorks S zer 10.42 Loads: :,,z:; TYPe L adl Wind Dcl -D4,c r Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 5.45" Wjivi 527 Factorod: 327i Total 196 Capac€.t:y Deem 2219£. Support- GLt C: 236 Ana'.i Ur:'s r^.2 2 ix flair; ' p 0upeori D.09 Load comb #2 .. 82 Longin 0.50. 62 Mill req'i (1.50• 0.,V. Chi 1.00 - 1.00 Cl' mi: 1.001.00 0up;011 .1..05 1.00 Fcp 4e 11 fil°i 625 'i4tinerdrr-t bearing length setting used:112"far erns supports Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7-114") Supports:All-Timber-soft Beam,D Fir-L No 2 Total length:9'-1 0';volume=1 6 cu ft,; Lateral support:top=at supports,bottom=at supports;Oblique angle:90 0 deg; Analysis vs.Allowable Stress and Deflection using NDB 2012 Criteritiri Analy0i6 liaise 4 peti9n Value Unit Ars ya _ ee y-y 1y K. Dead Defl'n 114.i.1di.i?1 Live tied': 0.4f .. 590.- li240 0.'1D. Total Defl'r 0.1 L/502 4.4 L/240 in ,a Additional Data: e1,: (50 iE psi}C0 to, C5' cfo Di Cfrr 2i Cr: tDr; 190 1.60 .;y' 900 1,50 1.00 1.00 1.0 1.300 1,00 1.30 1,00 1.00 - 1. ruil0Cc } •. .. Endo' 0.58 million 1. 0 --..D0 - - - ._- - - CRITICAL.LOAD COMBINATIONS: het" : TC 112 105, '7 .o. iendi g'0: Lt: fi - - 441 _- Deflection' LC #2. _ ...W LC #2 - tofeli 0-dead S,STIOW W.wind i.impect Lrercof live t-.-. ..ice r_rete< _=ea _ q .ne Ali T are 11501.11 4m the Analynla ontont Lad 'O I11t)a .i1!i: A,:.:. OhO 2nI2 CALCULATIONS: Deflection: ET = iICL- 5- n2 Ely = 4l..1e06 _..._. "Liv. deflection _: Deflectdon from :: Total Deflection 1.50'Dead Load Defiectiorm e Live Load Deflection.� Lateral stabil-JAY (-ri Le ... DJ-0,50" Le l0 ..53 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement, 2 Please verify that the default deflection limits are appropriate for your application 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4 4 1. CLIENT: Page 14 of 129 �z Sin O r�n X 1 0 223 503 c 24.0.5 PROJECT: • xr � 715: 1 `a nington Dr.4205 NUMBER: M1 G Bene O cr- 47703 541-383-1825 FROELICH DATE: 1230 Airp'.'t Way,Suite 200 ENGINEERS ; Broomfield,Colorado 80021 720-560-2269 BY: PooF 86Abc, • Re A- 1 Page 15 of 129 • COMPANY PROJECT IA/ vv.(' Works Fah 11,2017 11:30 RS1 wed) — Design Check Calculation Sheet wocidWoiRs Serer'842 Loads: Ty.e 1.11. ,'.v:' ,". r6v4a, 5r4,6, 6611 310l ecee Maximum Reactions(Ws),Bearing Capacities(ibs)and Bearing Lengths(in): 30f0etet401; Dent.; 10e 446 3e66 602 .,,,etoimdt Te441 .30 410 De4r164: Capaelry Renee 15311 1.04 4uppert 1,11 1,31 0.36 0,114 :50pp.,00 11, ,76 Lend cymb 01 62 1ertmt33 0.5311 4.54. Mir! rem'd 0.53- 4.50. 3.03 0,00 Cowl,, t.nn „00 66 44ppori. 3.;1 Fop cap 1421, 62.5 •MiNtourn bearito fergffisethry used:1.42"for eou wppois Lumber-soft,D.Fir-L,No.2,4x10(3-112"x9-114") supports All Talber.soft Beam,0.Fir-t.No.2 Total length:6,1,0%volume=14 au ft; Lateral eePPed,tee.at supporta,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012 z ysz,e Vat feeef.gh vethie I 3Inik 4134,31 - 231 IlmikM1 6 0.15 11,end14405 !!!: 6 4413 11!' - 1224 4 3.24 Beeet n 0„01 - Life5 Live riet i'6 3,301 43,440 33 2C 1,./163 1. 4,37 Mtn' 00416e 0,44 . 3;10 - 1,11,13 14 0.1m Additional Data: FACTOP113 FIE!p411116 CM 64 .1, .1' 11,13 6t 0130; CI Me iC11 We' 144 110 1.4. 1,30 - 30 I06! 3.00 .! 403 1.16 1,00 1,C6 0.314 1,703 1,36 1,60 i'cp` 625 - E.64 136 - 1.01 1.30 - 3.6 an11ia4 1,00 1,33 - - 100 1-40 - 2 14;3;3' 0,54 millten 1.06 1,in! 1,46 1.00 - 2 Crif ricAt.LOAD COMBINATIONS, Shear 212 42 . 044; V - g 1.6 00,001141 10 LC - 61Z, m- 1404 ini-,15 6,116,1:ion; LC 114 - tl!vel LC Li 6 C16 1t0t033 14.11ye 444y04 termini! 1..616466 1,4,6.6,6f 116, 46e4reh0e636 Ail LC'e at, lielmti in the 33..1,27410 1,103nt Leer; n100,ieetien3! neer.: 4-14 151 2 CALCULATIONS. Deflection: 01 e 309,061 le.6-1!,. deflc,t1,, ail nen-4e,, 1,4406,-, !live, elne, now. Te,tal . 1.1.-OrDent Ce1144516.1 1 1644 1,40 ner146,13.! teeeeel etne1.113y (+1: L6 4 41-0-43" 1e 4 126-1.9e4 44 . 16,51 Design Notes: I.WoodWorks analysis and design are in accordance will the ICC irternatioral Building Coes ilBC 2012),the National Design Specification(NM 2012),and NDS Design Supplement 2,Please verify that the default deflection ilmits are appropriate for your appiiestion. 3.Sawn lumber bending members shalt be laterally supported a:too:ling to the previsions of NOS Clause 44.1 txc ,—.07 /Th XE, ,...., i /----, 7ak,:a2) t.a.4:' lir-aa 44 .....-..../ -0' (' ' • r....1,,,,... La, , , . .. , , . .......---......—......1 i<> • i / 1 / / —--- / f; , li .4 0) ,.., • :: TO :2.1 / tt if, - i , 17 t di 3FR 1 IT ) ;4,, ' i , 'V' ...i. 1 1 / ,. I - it -o 0 z•- • 34;" i It I -,,,i, -yr, 1.17.7.7:= -:-., .........._, I ,,76 .:, / RI IA* 41 1 f 4 ' '1) 11 I 1 I 1 1 --- _1_11... 1 1 1 : , " 1,, ii , , , i ,, ,....„, _ , 4a, ..--Tvo #41r8'3 --'m'm----a— m—1 L Ell t ; namemi mirdadom aim= ---ritailimm ine I •..-.;..,, 1 ,,...—: 1 / 1 .,.'"'-- / . I 0:, 7 ,,,,,Z ,,i,,,,1 .S.V:1 f'''''r" 4.i,,, ..s. ......,.,.. „,.,. -, s,:..s.. / ,,1 , ,t; i 1 (7) 7 Z ci 3T-ez,, tc-/ , r, . 1 ,,J1 0 / wrawmaltaii / U=3:1 , ,.....i... ..... ..A-- :11 /7 . s : . a . / til : _ Jc, :2.---"K 1 / / , s.,. N........ , r ? aq,,' •.. a 1 / /*N. // / I : ...a 1•111 IIIIII -Zf , / .,,alf i . ' ' 11111121MINMEINEMMI aCie 1' ra f I i f ‘ anumillialliMIL - • _ , ... _ , , ii.....1 f......... Ell , , ..... co --, 66' at L _ _ 4 (0') , Ali 0 -.'S e /•:•eeX,r< "1•7%* • 44.4014.) GN i I . 0 @ 42., Pilf,,C.A.,....1)0CAJA3 HiU, CT ENT: 6',69 S,:‘, Portlorc.Oregon 77223 Page 17 of 129 • � 503-*524-7005 PROJECT: 745 NW Mt Washington Dr.4205 NUMBER: Band Oregon 97 703 h1 541-383-1823 FROELICH DATE: ENGINEERS > 12303 Airport Way,Suite 200 Brocmfle"d,Colorado 80021 720-560-2269 BY: P'46 P . ' ,o is 5PAASi /5-0' SPAN' { A 1-22 Page 18 of 129 2.4�j I of Brun 2017.39.5 Bean-Engine 2017.I.((.4 acri.ds At:dkta:156'_ Vlember Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None Standard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 ,1• 17 9 0 17 9 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift I 0' 0.000" Wall Not Checked N/A 1.750" 799# - ? 17' 9.000" Wall Not Checked N/A 1.750" 799# - 1aximum Load Case Reactions Ised fa 4009 pdwl lads(a fie )to caroms Live Dead 477#(358p1f) 322#(242p1f) ! 477#(358p1t) 322#(242p10 )esign spans 1710.750" Product: 11 7/8"RFPI-400 16.0"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord Design assumes no lateral bracing along the bottom chord Lateral support is required at each bearing. Allowable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 3576.'4* 4315.'# 82% 8.87' Total Load D+L Shear 799.# 1480.# 54% 0' Total Load D+L L Deflection 0.5684" 0.8948" 0377 8.87' Total Load D+L _L Deflection 0.3393" 0.4474" L/632 8.87' Total Load L :ontrol:Pos.Moment DOLS Live=100°/SnI 115%Roof=125%Wind=160% SIMPSON PJ PoJ.d cine ae traH Saks d the r spat a ow as Kami L.Henderson EWP Manager atylnie ct(C) 0t6tySmsoiranreCanp Ina All RIGHTSR�RVED. � s Pacific Lumber&Truss ss.g is ddiei a;w-ei the manta,1ba just bran o grdi stows m this dawg meds a dsigi Wait fa Lark,L.irg Cadlios,ail Spas fstal m Ifis shed.The daggt mtat be reaienei IN a cl-Wiei Beaverton.Oreaon 1-22- ROseburg Page 19 of 129 2.46pt 1 of Recon 201710 rEk unEngthe'_((I7.I(14 m1 s[5 utxrc 1562 Vlember Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None Standard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 s '9L, r , ?w: v Y.v �/ Z �ry�si^ �i-i 15 2 0 / 15 2 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift 0' 0.000" Wall Not Checked N/A 1.750" 821# - ? 15' 2.000" Wall Not Checked N/A 1.750" 821# - tAaximum Load Case Reactions lsedfa aTirna pot lads(v ie ce±)to cankg mantas Live Dead 490#(306p1f) 331#(207p11) 490#(306p)f) 331#(207p11) )esign spans 15'3.750" Product: 11 7/8" RFPI-400 19.2"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. 41lowable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 3142.'# 4315.'# 72% 7.58' Total Load D+L 3hear 821.# 1480.# 55% 0' Total Load D+L EL Deflection 0.3714" 0.7656" [1494 7.58' Total Load D+L L Deflection 0.2218" 0.3828" [1828 7.58' Total Load L ;ontrol:Pos.Moment DOLs:Live=100%Snov=115%Roof-125%Wind=160% �MPSON 1.4rodd fames aetrath"aksdu'errm teeo"r"'s Kami L.Henderson EWP Manager CcprtgI(C)am Sorsa,Strox,}Te Cement Inc.ALL RIGHTS RESERVED. Pacific Lumber&Truss sere is dared as,hot the mart ba,flea last,bawl a gra;stw,n a tt s ch,A g mads Fite clsgm aiYeia fcr[rack,Lad g Co attar,a[7 Seats istaf of tris sheat The c igi mtet be rem b1 a e}.gfiej Beaverton.Oreaon t 3rd Floor, Span 5'-0"(Corridor Joists) PASSED 1 piece(s) 2 x 6 Hem-Fir No. 2 @ 16" OC Page 20 ori 29 Overall Length:5'7" + + 5 CI All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual @ Location Allowed Result LDF Load:Combination(Pattern) System:Floor Member Reaction(lbs) 455 @ 2 1/2" 1367(2.25") Passed(33%) -- 1.0 D+1.0 L(All Spans) Member Type:Joist Shear(lbs) 346 @ 9" 825 Passed(42%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 565 @ 2'9 1/2" 801 Passed(71%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 Live Load Defl.(in) 0.079 @ 2'9 1/2" 0.129 Passed(L/784) -- 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load Defl.(in) 0.100 @ 2'9 1/2" 0.258 Passed(L/617) -- 1.0 D+1.0 L(All Spans) T3-Prom'Rating N/A N/A -- -- -- •Deflection criteria:LL(L/480)and TL(L/240). •Top Edge Bracing(Lu):Top compression edge must be braced at 5'5"o/c unless detailed otherwise. •Bottom Edge Bracing(Lu):Bottom compression edge must be braced at 5'5"o/c unless detailed otherwise. •A 15%increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NDS. •No composite action between deck and joist was considered in analysis. Bearing Length Loads to Supports(lbs) Floor supi7Q17tS Total- Available Required ;Dead Total Accessories Live_.. ,.W. ,. 1-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board 2-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live Loads `, Location(Side) Spacing (0.90) (1.00), Comments- -.fl.- 1-Uniform(PSF) 0 to 5'7" 16" 27.0 100.0 Residential-Living Areas WeylerhaeuserlNoteS StJSTAINABLF FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator Forte Software Operatar Sul Notes 3/6/2018 2;18 4:07:43 PM Fri., v�.l,Design Engine'VS601 Er-��,it2e,�r5 • Joists.Ott. • Page 1 of 1 Page 21 of 129 • X,17 MEMBER REPORT 3rd Floor, Span 6'-0"(Deck Joists) PASSED irmn 1.7. 1 piece(s) 2 x 6 Hem-Fir No. 2@ 16" OC Overall Length. 6'7" Q ] All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Desi n Results Acleal IP Location Allowed Result LDF Load:Combination(Pattern) i System:Floor Member Reaction(lbs) 285 @ 2 1/2" 1367(2.25") Passed(21%) 1.0 D+1.0 L(All Spans) Member Type:loist Shear(lbs) 227 @ 9" 825 Passed(28%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 425 @ 3'3 1/2" 801 Passed(53%) 1.00 1.0 D+1.0 L(All Spans) 3 Building Code:IBC 2012 Live Load Defi.(in) 0.064 @ 3'3 1/2" 0.154 Passed(L1999+) -- 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load Deft.(in) 0.108 @ 3'3 1/2" 0.308 Passed(L/688) _ 1.0 D+1.0 L(All Spans). TJ Pror^Rath ...... N/A .__ N/A .�_ ..._._._..�. • Deflection criteria:it(1/480)and TL(1/240). •Bracing(Lu):All compression edges(top and bottom)must be braced at 6'4 1/2"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A 15%increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NDS. •No composite action between deck and joist was considered in analysis. Bearing Length Loads to Supports(lbs) SuppottsFloor Total Available Required Dead Total AccessoriesUve 1-Stud wall-SPF 3.50" 2.25" 1.50' 119 176 295 1 1/4"Rim Board 2-Stud wall SPF I 3.50" 1 2.25" 1.50" ! 119 176 295 1 1/4 Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Uve Loads Location(Side) Spadng (0.90) (1.00) Comments 1-Uniform(PSF) 0 to 6'7" 16" 27.0 40.0 Resident al-Uv ng Areas ;Weyerhaeuser Notes (2S)SUSTAINABLE-FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. 'Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to ;circumvent the need for a design professional es determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to :assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable ?forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx. :The product application,input design loads,dimensions and support Information have been provided by Forte Software Operator Forte Software Operator Job Notes 8/24/2016 9:00:37 AM , Forte v5.1, Design Engine:V6.5.1.1 ,)slim Frce Engineers Joists.4te 1 1503)024.6311 ysnrraf(dtfrsrrlich-engisrrers ore Pace 1 of 1 CLIENT •12. Portio-a --)7223 Page 22 of 129 503-824-7035 PROJECT: ,of 745 NWMr ,,pshvigror Dr 0205 NUMBER: Bena.Cregpf-97703 541-383-1328 FROELICHDATE, NEE 12303 Airport Way,Sut.e 200 ENGIRS4 Brocffifie d Co°map 30021 wwl 720-560-2269 BY, 3R4) iCZ-00g. SeAm.s: sPA Ns to -0 DL.s. (12/)(2.7 ) it 325 196 t Ls ( 12!) ((-40 ) S'o PLS 31=82/: SPA'-) r -0 DLstlii )(a; ) s SICo Pt-F 56e 3F(33/ SPAAI r 5-0 Ex. (3.5) (27) r 9 5PLP 4-1--%(3.51)(1°0 ) s 3 ° 1-11 SFS 4/: PAAitCaT .cgt FLF LL : (3) (c-(o) s Ic PLF SPAN 5 1.3 DL.$ <61 Pt? LL0120 Pt-ic • Page 23 of 129 r-----. 1._1.__.. - 1COMPANY PROJECT li,:il ''' ':i!i dW0 A *" i4.Ft to dxi. ..mss xs-<= t,..,r ... _ Design Check Calculation Sheet WocH4'S'erks Sim'10 42 Loads: 1.:,1.1.1. ,. .: .. vin,: 11222 ,, '2212 Inn, 5. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): ___ . . _ ___ __ .._. _ _ „,r II 1#Y e 0,.22 1721 40".. 11474 f•:-<:'.;r.v,{. 1.1.1.1.. u.ar rna 1.1.1.1.. 4194 145;3 1.31102, ,' €.0(,' nupporI 0,41 .,".14 . ,03,i :,.r.3, 0.2 1.44gtS, F.a'-: '{i. r+q'3 - ,t',: ::t. „u-x.- 3-.11 1.10y F. .. .._., cz:; Glulam-Unbat.,West Species,24F-1.8E WS,3.112"x11.718" 8 iaminalio.ns,3.1/2-maximum width, Supports:Ail-Timber-soft Beam.D.Fir-L No 2 Toler length:101.3:7";volume= 3.0 cu ft: Lateral support:top=toll,bottom-at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: ,A,;., J,z An,c:yas sf 4t ^ f - ?. 0,2 ZVITV 7..34 .400 psi x IS.,' m 4. 4 Ii,,.a -:5 .m 1 f#.3,1 1112.60 In 4,14 5.1 Additional Data: 5nc1'O1r , 1.211 000 Cf cc 5.2.0 r,.t r :a 1 _ .in -415 40. '♦ 2,20 , L0 1.000 1.3100 ..0 1,1 1,00 - C9' - 1. I .. ,. .- Eseiny are 3.94 I,00 - 5.00 - 2 CRITICAL LOAD COMBINATIONS: ... 4i3 12a. 1111, n11 ,I,1! 't~ P ,;tn.;y, . .;.. ,.,, _.nt'L4.5::s � .. _,1 tc� : ,r .102 CAI,(U W;.":10148 12.,21.0,2,, 2.: c :Sive .0f2'..2,21,,, .:.; __.,= a' ,...n-,i2a0. I'..:_, x:c r, s=t0>..2 Tota; ,1:0,,,d 1.2.2,1 11.1:123.1,10, Design Notes: I WoodWorfcs analysis and design are in accordance with the ICC international Bustling Code)IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement, 2..Please verify Shat the detauit deflection limas are appropriate 504 year application, 3-Glulam design values are for material;conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4 GLUCAN:had c actual breadth x actual depth. 5 Clulem Beams shalt be laterally supported according to the provisions or NOS Clause 3.3.3. B..OLULAM:bearing length based on smaller or Fcp(lens'en),Fcc(comp'n). Page 24 of 129 �um COMPANY PROJECT F • ''' '''. ''.. 0 0 Wo r d �ks . Design Check Calculation Sheet r,K,E e,%Tye+OCT Loads: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): �.,: —w___ a .� t i i i if4 r GluIantAktbal.,West Spasms.20-1.6E WS,1-111^01-71E" EARMA€VA3- e14ti , .,El Sid t 7 TUTe,1.rRvM&RRR' :.'nun. Ltiwaii *esRV* atifv, a wppMe.: Analysis vs.Allowable Stress and Deflection e;,,„py ,1e z Additional Data: xfr: ,.a.23u:v ,. . f1 - CAMCOLA'rONS'V r..._._ Design Notes: I WoodWora'x'.ser.nW:sawn we Yt a-.4<ds,Ro4,;tae!CC;Mer'w P0JTa,,Pg C,.(IOC 4,12J,Pen NaRartaf Emse6.3 PpetetuaEr,r{e DS 2012)aM NOS EmAgr a peekr.x4 2 ANAT.tit.1500 40 44(4-4 504,1e4 4444 OR 405550'10!0Ya'r '4:n 3 i:kAlxn M1 0 rake.:/my taw m».2^..34 TA€,0 N to AN8 497-20111 Aran ?ltketd N E colleen a PT AN51 A1901.200? 5 G.fnn'_TATA.211*1e 3.14100..,aecfa^;aq!a Pup m rn.e ge 1A N43S,.a:u.3.33. Page 25 of 129 COMPANY PROJECT ali WoodWor Works® AOMai ..,,, r <:.a _.3.,rs,d,.. Aug 24,201E 09:13 3033 x^rob Design Check Calculation Sheet WoodWorks Sizer 1042 Loads; Load Type H.'',1 a id .5Lat And Loadi Dead :'t Start .� n Load? Liv: r_ , _ plf . Self-weight Dead F011 r = aka , lC. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) : 5`,-1' 1n fa,tc_ed; _ _....... _ Dead, 253 253 Live 890 Factored: • _... . ....... 890 Total . .: ;' Bearing: ':.].x is Capacity Beam. 1143 upport 1220 'il@ 66 Ana.'./Les; �._2 Beam 1.00 Support .0.90 0,90. Load comb 42 0.30 Length 0.52 42 Min req`d 0.52 0.52 0.52 Ce 1,00 1.00 CS min 1.(10 Ch support 1.11 1i..00 1Foe sup 425F Lumber-soft,D.Fir-L,No.1,4x6(3-1/2"x5-1/2") Supports:Ali-Timber-soft Beam,0..Fir-L No.2 Total length:5'-1.0";volume=0.7 cu ft; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 20121 Criterion 44:;:3:t_ ei - hear to - '- ,_, a -sfJ re/Tv. -; 0_90 Bending F-) fb e. 372 = 1300 pal fb/tb' .._ 0.75 Dead Defl'n 3.02 e. -:'/994 Live Defl'n o.a4 -;075 0,17 .. :360 in Total Defl'n :3.09 e L/6116 ,2- = L/2400.15 Additional Data: FACTORS: FI _ - €'psiiCD ... ...0 Cr C#rti Cr, L: Fe' 180 1.00 1, - - - 1.00 tb'. 10001,00 1,0; 3 � 1.00 1. :Q a. 00 _-32 2 Fc.p' 625 - 1 .00 - 1,00 1.00 - F.' 1.7 million 1.00 - .- _ - - CRITICAL LOAD COMBINATIONS. Shear LC 42 ... T V r 1131, V garign. 918 ltis 0ertdsn3(.), LC 42 .' LN ,. Peflec_tia;e: -LC 42 _ 04-1, Illve LC 42 = Did. trtoi aede.9'.f L=l:"-:,. Sranov '4-wind laimrart Lrefonf irive lceenncentrated Faearthquake All LC's are listed r Load combinations; 1 >._ _ .1 .., r0'2 CALCULATIONS: Deflection: 'L.i'. ::: 32.5e04 :.h-'i;;':'. 'Litt - .�.deflection�� _ - - :otal. Deflect 1.50iDea: Load 44aneet4dal r Live Load ,...f.... _t_,. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NOS Design Supplement, 2 Please verify that the default deflection limits are appropriate for your application 3.Sawn lumber bending members shalt be laterally supported according to the provisions of NDS Clause 4:4,1 I • Page 26 of 129 COMPANY PROJECT ,JteOrN. 71 i WoodWorks® oe sew;T,Des,;.x, Sep.9,2016 1051 3FB4 wwb Design Check Calculation Sheet WoodWorks Sizer 10.42 .Loads: 2oad Leru 2i+at+ .+te Start fort elf Lo0d2 Iivi, 120.n mif . ',0e1f-e2,0hf 00:ad 9.1 - elf . . Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): { 11.4.2" t i 1---- V S 11, r Onfctor2o: mead 520 Live 921 Factored: , Total h2/21 1221 Pearin9: . eapacthy 1221 1221 121(17 ci. 19 2090 Arial/109h Oonm 1.00 1.20 Suppoct D.47 6.47 Load comb 42 02 Length 1.02 1-08 Mtn ree'd 1.08 1.08 Cb 1-00 1.00 Oh min 1.00 1.00 CL kidipport. 1.11 1.11 ,21> 00p 626 . 025 Lumber-soft,Hem-Fir,No.2,4x12(3-1/2"x11-1/4") Supports:All-Timber-soft Beam,D,Fir-L No 2 Total length:11.-8,2";volume=3,2 cult: Lateral support top=full,bottom=al supports. Analysis vs.Allowable Stress and Deflection using NDS 2012: Cr(ifiz ion Analvsia Valne 1.1e2190 Value Unit Analrii8/Desicin Smear rd i 39 f:ei 120 pmi tv/Fv' - 0.32 Bending(11 Sb - 571 Fb1 e Ile net. eb/811). = 0:78 Dead DerIT:i 2.07 - <L/910 Live Deflvn 0.29 . ch,/990 0.39 i. .1.-o+60 in 0.25 Told l Defl'n 0.20 - 2/691 e.59 Li240 in 0.30 Additional Data: FACTORS: F/Eipsi)CD CM ct CL CR Cfn Cr flirt Ci Co LC4 Fv' 150 1.21? 1.92 1,92 - - - - 1.00 0,80 1.00 C. hb'T 010 1,20 1.00 1.22 /.200 1,100 1.00 1.00 1.00 0.09 - Fop' 40% - 1.02 1.03 - - - 1.00 1-02 - - F.' 1.3 million 1.00 1.03 - - - - 1.00 0.95 - 2 Mein' 0.12 million 1.00 1.02 ' - - - - 1,00 2.95 - , , . CRITICAL LOAD COMBINATIONS: Shear : IC #2 4i Mit, V e 1212, 0 desigp iii 10119 lbs Bending +1: LC .i2 ' 5+2, M n 2511 Ohs-ft Oefleetion: LC #2 if-- f.ML Wee) LC 42 - D“. do II D-dead L-Ilve 0-snow Ihiiwied I-impact 'r roof live hceconcentrated E-earthquake Ali 1.5i5 are listed in the Aaalymis output hoad combinatccc: ASCii: 2-12 / IBC 2012 CALCULATIONS: 5eClection: BI --9- 540e06 :1' +n2 "Live" deflection = De210Llou from all non-dead leads Wye, wind, 8110w-3 Total Deflection ,: 1,50Dead load Deflection) 1 Live Load hieflection. Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4 4,1, Page 27 of 129 COMPANY PROJECT 55,7 A ,4 WoodWorks® Feb 9,2017 09:39 3F95 worb Design Check Calculation Sheet WoodWorks Sizer 10 42 Loads: Load TYPa Distiabulion tot" LocatLae :-111 Megniiude Celt '14i5e 81,41L. Lee IOU 31 nuad YLI: 01:1 plf Loon? Live Full UDL 120.0 pif Self-weigh1 Dead - F011 8111. 9.1 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 1T-2 4" 13'.12" Uniactared: Pearl 5113 588 Live 192 192 5-00135r3,0: Total 1300 13n0 Poorinal Capacity Beam 3330 1380 0upport. -.7t049 29,111 80aw 1.00 1,00 Support 0.47 • 0.47 Load comb #2 Length 1.22 1,22 Min req'd 1.22 1.22 Cb 1.00 1.00 in 1.00 1.00 CP sepporx 1.11 1.11 Fop sup 62L 1.25 Lumber-soft,Hem-Fir,No.2,4x12(3-1/2"x11-114") Supports:All-Timber-soft Beam,D Fir-L No 2 Total length:13-2 4"volume=38 Cu.ft; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012 Criter1on Analysis Value D051.an value 11,:i1 Analysie/Dosian Shbar ry. 120 ps 5v,c53,1 . 0,37 Oondinglla it - 125 Eb1 = 74e poi flairb' Y 0.90 OfrAd 6ef1.1r, 0.12 <1,/,499 TLve Detl'n 0415 - #L.1999 0.44 hn60 le 0.36 Total Dofi'D 0,33 L/479 0.h6 L/210 :n 0.50 Additional Data: FACTORS: F/E:psi)CD en Ct CL 03.: n.t (7.0 Cr, 1010 Fy' 150 1.00 1_00 1.00 - - 1.g0 o.ec 1.00 2 FW5 850 1.00 1.00 1.00 1.000 1.100 1-00 1,051 1.00 0.110 - 2 Fop' 405 - 1.00 1.00 - .011 1.00 . " 01.3 million 1.00 1.00 - - 1,10 0.95 - 2 Emin' 0.47 million 1.00 1.00 - - 1.00 5,730; - 2 CRITICAL LOAD COMBINATIONS: 0hear LC 52 = DiL, V 1370, V - 112; 1b nenaIng11-1: LC #2 = 0:0, 14 . 4457 ibc-ft Deflection: LZ 02 141-0, (live) LC 02 = 1141 (total: D-dead 3. !ISO S.53,.5,< 11-wind I-impact 1r-roof live Lo-concentratca 1mearthquake All LC's are listed in the Analysis output Load combinations: ACCE 7-10 / IOC 2012 CALCULATIONS. Deflochthn; ET 540e06 lb-in2 Live" deflection = Deflection from all non-dead 10ads 0.11e, wind, snow..; Total Defieution . 1.50(Dead Load Deflection) 4. Live Load Deflection. Design Notes: 1,WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement, 2.Please verify that the default deflection limits are appropriate for your application. 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4 1. SW CLIENT: .t` o%69 >i Ha 'i; I Si. Potfland,Oregon 97223 Page 28 of 129 3 503-624-7005 PROJECT: 745 NW kilt Washington Dr.#205 NUMBER: Bend,Oregon 97703 541-383-1828 FROELICH u:,f, DATE. ! N ✓e R s a 12303 Airport Way,Suite 200 ENGINEERS ; Broomfield,Colorado 80021 720-560-2269 BY: • CZt X L 1 5 ) 114 4"1 c► F LL (15 ) ( 0) 600 PGS 3 1 Page 29 of 129 ___ __.._ COMPANY PROJECT _ , d '- - , 1 , woo 4 t4 rAug 24, - .5 00:23. 3001,,,,,b Design Check Calculation Sheet VioadVJo:ks S'zer 10 42 Loads: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): *.r 3;19 �_.� ,.......___..—,- _....,-.- .d i i i t al ?5 „ =:a,>f,.:3 r. ,.,:. 00,103-.' i ,7 k: ti 1 S,i4.0 t t 3,0203 ,_r„. tl Mt. coq't 0.' J,.7! .00 JS t i ;t> .� 3 i ti; ' Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7.114") Supports:All•Timber--soft Seam,D.Fir-L No 2 Total length:3'-1,4';volume=0,5 cu A...; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: � £ L KIK. fs ty5_z Till us 'Y.i V.0S> U.10 kt.,1 t /0.19.1. -,a 4 3 .333 rs .7 ,J ^t> a ., 003,1 t:27',: 6.3',3: . ...,, - -.2.219 ., 2.,. . Ln 00 Additional Data: FACTaRs, 0153513;00 "0 „. .._.: Val 1 i Pi. 1.9 ...935 ., .._,. , ,22,1 1. , 2. a .. _ - R,., i - _ CRETttAL-10>0,32'2?l$1.11N>1/N::;: S t Al:. 9 1 :R1 _ ... C: toad ,.rJL_..�..i0.33 3 A-. 03: 20 2 05100,1.0',00,1 ":.i.:, c10.3 c',.c?:3... ,.,--,N.,1 A Total. ..ftec".ir, s .100, ._. Design Notes: 1.,Woodworks analysis and design are in a000siance with the ICC International Suitding Code(SC 2012),the National Design Sper„ification(NCS 2012),and NGS Design Supplement,. 2 Please verify that the default deflection limits are appropriate for your application.: 3 Sawn lumber bending members shalt be laterally supported according to the provisions of NOS Clause 4,4.1. (.. . e , t:3- .... 0 -"T Qat_ ..m.3..................,..„......, i.. ...._ - L ,,............„. 7/ 4)4 N-g "S - ..(b ..41,0, \...../ ...,,,,,..„,......,...........„..,M,, ',. el' q . , 11 i I s , / I4 i ,.„...„ 1 l's„,.±.3,/ i ®.• 44 t i *.. , / I , I C ,...,.. ...0.....LL.... 41 A, , ..,.., I r ii , i ,.. ti / 7 4 f, ... x , ,,, 7 4 0,,e4e5ro,,,e<MX,A.....4,,,,, . ri..)...,,, , , .- I : ...d LO ' 3 I A , ;1 I i r'IM. '1 1 / •-- 1 II .•• ,.: 11 ii l ---0 ...........,.... -,..f.i.) ,17[] il (7) ti / , ,, , , .... -,------,. / .....4„, h / 1 , " r. ..., , . . i * ---- . . ---' ,-Si'•;, , ,1 ' • 1 i 1 ,23 . ..., --.4 i kt.,,,,,..-- it' ,.! 1 vi,. -----1 , ,J--vi. -• -TN:, .:: , I V-- i 11. '401, / . A I i V li 1 'VP t . St• S. /A:1 ''''' / ` allilhethillillit 'Alf - i /1 l' I , rm..'" ../ ... . ' ,trill!4.44.• .... . ,. / II t " / / i a / .I Li Fr 1 A .R..._ it ' I al I,- C-. r• / / '":Z ............h.,..,-, 1 ....„4..... , / . istr-. , .1 . / (.1 / 1 8. / 0 / 1 / e -...:_.... .....rnt,,,......-- .:1/ ./.4 D.,,l,t--- i . ..1,.. 1 N MO• / / • 7-3 1 i 1 / '1 ..••:!..k 7,C,?:. i i i i ,---,--.. 7.41.) Nor 1 r i i ‘ I , . -'•• r • / .' 0, —0 * CO „... .........,..,____.,.... n.) (.0 & P i 1 . : 1 . • : XA C.,...) ...., 4 .,..'”1•: :,::.:.::,-te ie-4 A-4,40i. CLIENT: 696? :,itori Si Oregon 97223 Page 31 of 129 503 624 7C05 PROJECT: 0.0- 745 NW MOWasbe'gton Dr.#205 NUMBER: Bend,Oregon 97703 541-383-1828 FROELICH ' DATE: ENGNER12303 Airport Way,Suite 200 IES ; Broomfield,Colorado 80021 720-560-2269 BY: Aj FR...AAA AO r- ee DESiGLAJ CLIENT: 6969 SW(iarnPage 32 of 129 Pe`fond,Oregon 97223 6 -*� 503-624-7005 PROJECT: 745 NW Mt ,IJa n'ng orl Or.#205 NUMBER:Bend,Oregon97703 541-383-1828 FROELICH DATE, ENGINEERS ; 12303 Airport Way,Shite 200 Broomfield.Colorado 80021 720-560-2269 BY. t r� 'e1/4- • IG fir gow. ' # r- — Sri r 1 Oo ,t_c (2') (100 3 s god PcF ." PAAJ �b, _0 " DL,r Lie) Zoo ' } L ,,b, 1.6 , 0'•iwt.s r2-o I CO A AA. A,7' t AAJ DIA)G. ` PA Air I0 o L-L r C 3 r,} j 0 ) s 300 Pc' ; St V--;� o 11^+x. s > . f Ca) £ 1) ..s- 4100 LL COMPANY PROJECT Page 33 of 1n • ..i'''. : if,,, .4..: 1 g,,,, * A1.*\-7: '''N''''',1. 11 �® M Y ® k \ 0 Feb_15.2018 1632 Stair Stringer-3rd Floocwwh Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Dist rib'c+ion E 1.ocacicn [ft] tifa gni-ude Unit _ern Star_ End Sart EndLoadl Dead Full ❑CL 40.0 Of T.oad2 Live Fall Uri. 200.0 plf Self-weigh, Dead Fall Uri 5.1 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 7-9.5" Unfactored: Dead 212 212 Live i8: Factored: 783 Total 995 Bearing: 995 **theta 520 Capacity 520 Beam 1169 Support 1523 1169 Des ratio 1523 Beam 0.85 Support 0.65 0.85 Load comb d2 0.65 Length 0.50* #2 Min req'd 0.50* 0.50* Cb 1.00 0.500 Cb m 1.90 100 min Cb support 1.08 1.00 Fcp slip 625 1.08 "Minimum bearing length setting used:1!2"for end supports 625 Lumber n-ply,Hem-Fir,No.2,2x6,3-ply(4-112"x5-112") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:9'-8.64';Clear span:9'-3.77";volume=1.7 mit.;Pitch:8/12 Lateral support:top=full,bottom=at supports;Repetitive factor applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value _sr Analysis/Design Shear f'✓ = 45 - 150 psi f-✓/nv. = 0.30 Bending(r) fb= 1020 Fb' _ 1271 psi fb/Fb' - 0.80 Live Defl'n 0.30 = L/380 0.31 = 1./360 in 0.95 Total Defl'n 0.42 = L/270 0.47 - L/240 in 0.89 Additional Data: FACTORS: F/E(psi)CD CM CL CL CF Cfu Cr Cfrt Ci Cn LC$ Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC A2 = DOL, V max = 821, V design = 729 Obs Bending 101: LC #2 -D+L, M= 1929 lbs-ft reflection: LC S2 = rot (live) LC %2 = D+L (total) P=dead L=live S=snow W=wind I=impact Lr=roof live i.c=concentra:ed E=_arthouake A11 LC's are listed in the Analysis output -. Load combinations: ASCE. 7-10 / ISC 2015 CALCULATIONS: reflection: CI = 27.0e06 lb-int/ply "Live" deflection - reflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load reflection) + Live Load reflection. Bearing: Allowable bearing a_ an angle F'theta calcala_ed for each support as per NOS 3.10.3 Design Notes: I.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 5.SLOPED BEAMS:level bearing is required for all sloped beams. COMPANY PROJECTPage 34 01129 • r i azo ® Woo�dwor s Feb.15,2018 16:30 Stair Stringer 2nd Floor.wwb Itt4 . ` 7 F118'911//13010((11)_<7f.l/i;;4i Design Check Calculation Sheet Wood Works Sizer 11.1 Loads: Load Type Distribution ? Location [ft] Magni- Ce Unit Start Fed Sart End 1.4,361 Dead Fall. UDi, tern No40.0 pit Load? i.ive Full TEL No 200.0 plf Self-weigh_ Dead Full 'JDI, No 5.1 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 19'$.57" . 8'-0.64" 16'-1.29" Unfactored: Dead 181 512 181 Live 670 1890 670 Factored: Total 852 2402 852 Bearing: 520 F'theta 520 520 Capacity 1169 Beam 1169 2720 Support 1523 2402 1523 Des ratio Beam 0.73 0.88 0.73 Support0.56 1.00 0 *2 Load comb A2 #2 Length 0.50* 0.79 0.50* Min req'd 0.50* 0'79 Cb 1.00 1.48 1.00 Cb min 1.00 1.48 1.00 Cr support 1.25 1.08 1.08625 625 Fcp sup 625 *Minimum bearing length selling used:1/2'for end supports **Minimum bearing length governed by the required width of the supporting member. Lumber n-ply,Hem-Fir,No.2,2x6,3-ply(4-1/2"x5-1/2") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:19'-8.57";Clear span:9'-7.38",9'-7.38";volume=3.4 cult.;Pitch:8/12 Lateral support:top=full,bottom=at all supports;Repetitive factor applied where permitted(refer to online help); WARNING:Member length exceeds typical stock length of 18.0[ft) Analysis vs.Allowable Stress and Deflectionustng NDS 2045: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv - 39 - 150 psi fv/Fv' - 0.40 Bending(u) fb- 613 Flo' = 1271 psi fb/Fb' = 0.48 Bending(-) fb = 1090 FE' - 1271 psi fb/Fb' - 0.86 Live Defl'n 0.14 - L/828 0.32 = L/360 in 0.43 Total Defl'n 0.20 - L/588 0.48 = L/240 in 0.41 Additional Data: FACTORS: F/Elpsi)CD CM CC Cl, CF Cfu Cr Cfrt Ci Cn LCA F•✓' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1..00 2 06'+ 850 1.00 1-00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 F16'- 850 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC *2 - DIT., V max - 1065, V design - 978 lbs Bending(i): LC 02 - C+[„ M- 1159 lbs-ft Bending(-): LC *2 - PuT., M= 2061 lbs-ft Deflection: LC *2 = D+I. (live) LC 42 - Dcl (total) D=dead L=live .0=snow W=wind 1-impact Lr=roof live Lc-concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: • Deflection: EI - 27.Oe06 lb-int/ply "Live" deflection -Deflection from all nn-dead loads (live, wind, snow...) Total Deflection - 1-50(Dead Load Deflection) 0 Live Load Deflection. Bearing: Allowable bearing at an angle F'theta calculated for each support as per NDS 3.10.3 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Continuous or Cantilevered Beams:NDS Clause 4.2.5.5 requires that normal grading provisions be extended to the middle 2/3 of 2 span beams and to the full length of cantilevers and other spans. 4.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 5.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 6.SLOPED BEAMS:level bearing is required for all sloped beams. COMPANY PROJECT Page 0 WoodWorksok S lr6S'.fi O tOR WOOD ttt'stt.A• Feb.15,2018 16:30 Landing Joists.wwb Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End Loadl Dead Full Area 20.00(16.0") psf Load2 Live Full Area 100.00(16.0") psf Self-weight Dead Full UDL 2.2 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 6'-1.64" 6, F-182" Unfactored: Dead 89 89 Live 409 Factored, 409 Total 498 Bearing: 498 Capacity Joist 498 498 Support 960 Des ratio 960 Joist 1.00 1.00 Support 0.52 0.52 Load comb #2 #2 Length 0.82 0.82 Min req'd 0.82 0.82 Cb 1.00 1.00 Cb min 1.00 Cb support 1.25 1.00 Fcp sup 625 1.25 625 Lumber-soft,Hem-Fir,No.2,2x8(1-1/2"x7-1/4") Supports:All-Timber-soft Beam,D.Fir-L No.2 Floor joist spaced at 16.0"c/c;Total length:6'-1.64";Clear span:6';volume=0.5 cu.ft. Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using Nos 2016: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 54 Fv' = 150 psi fv/Fv' = 0.36 Bending(+) fb = 682 Fb' = 1173 psi fb/F6' = 0.58 Live Defl'n 0.07 = <L/999 0.20 = L/360 in 0.32 Total Defl'n 0.09 = L/836 0.30 = L/240 in 0.29 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150. 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = D+L, V max = 492, V design = 389 lbs Bending(+): LC #2 = D+L, M = 747 lbs-ft Deflection: LC #2 = D+L (live) LC #2 = D+L (total) D=dead L=live S-snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 61.9e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow..) Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. l • COMPANY PROJECT Page db of 129 \ WO0 d Wo r k s+� lJan.31,2018 14:38 Stringer Cross Beam.wwb ''*0 8()F'TWA8 il35 WOOD()LS k'N Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution = Location Ift] Magnituder nit tern Start End Start End Load1 Dead Point 0.64 512 lbs Load2 Doint, 0.64 1890 lbs Load3 Dead Doint 2.14 512 lbs Load,' Live Aoint 2.14 1890 lbs Loads Dead Point 3.64 512 lbs Load6 livePoin- t 3.64 1890 lbs Self-weight Lead Full ::DL 7.7 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): Y 4'-3.31" 0' 4 i Unfactored: Dead 784 784 Live 2835 2835 Factored: 3619 Total 3619 Bearing: Capacity Beam 3619 3619 Support 4007 4007 Des ratio Beam 1.00 1.00 Support 0.90 0.90 Load comb 02 #2 Length 1.65 1.65 Min req'd 1.65 1.65 Cb 1.00 1.00 Cb min 1.00 1.00 Cb support 1.11 1.11 Fee sup 625 625 Lumber-soft,D.Fir-L,No.2,4x10(3-1/2"x9-114") Supports:All-Timber-soft Beam,D.Fir-L No.2 • Total length:4'-3.31";Clear span:4';volume=1.0 cu.ft. Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Valve Unit Analysis/Design Shear is - 128 = 180 psi fv'/Fv' = 0.71 Bending(+) fb= 930 Fb' = 1080 psi fb/Fb' = 0.86 Live Defl'n 0.02 - <L/999 0.14 = L/360 in 0.17 Total Defl'n 0.03 = <L/999 0.21 = L/240 in 0.16 'The effect of point loads_ within a distance d of the support has been included as per trS 3'4.3.1 Additional Data: FACTORS: F/FlpsilCD CM Ct CL CF Cfu Cr Cfrt Ci Cn LCE Fu' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fop' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 coin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC 92 _ CrL, V max = 3619, V design' = 2769 lbs Sending101: LC 92 = Dol., M - 3868 lbs-ft Deflection: LC #2 = Dcl, (live) LC 82 =DIL. (rotall ' D=dead L-live S-snow W=wind I-impact Lr=roof live Lc=concentrated 0-earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / TIC 2015 CALCULATIONS: Deflection: CI = 969e06 lb-in2 "Live" deflection - Deflection from all nn-dead loads (live, wind, snow...) Total Deflection = 1.S0lDead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. W _ Page 37 of 129 • jj) COMPANY :PROJECT tfir �! Q `YJ ork s is •Si`: 3nwn.4 iarvalr xewu Design Check Calculation Sheet wro3.4,43,.eetee NJ 43 Loads: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): a x-1,0 4,1 '.f:: Glutam-Unbal.,West Species,24F-1.8E WS,34/2"%114 111" 8 megneg rw,3.E?MAMMA Width. Seppoeis 3l•7Ynber soa Beam,0 fad No 2 TO*I.V.h:los 2:ausar•30cu R: Mimi A8 At:laps M.bcga to N, Analysis vs.Allowable Stress and Deflection„ p,2; iv Additional Data: ., .. C4003410313 03345154 3135$: Design Notes: 1 Woo Woeke ammo s+':Aewg•iva,i meth..ege im 140haapirdiaa egergg Crde on 3112.081,5.-4,41:.. .,g,'ate;: NOG 33123 eel hf:S''_my Svgiemee 4 PM4 Nem vmi$;hal the 4Nad&Setr3344 aaa 84403540a Ux'a.svdka404 3 C+Meredesg}A xnittean'of 5CYNN:lvngj!041531 P7-440 d'k1 n%444*Cttag i44441r5?.win ANS141301-34: 4.0: 4¢4 441 .h'th o actual WRAP:8 ac::W Bele A 0Adn:aaema seal be Neargat'x::ao,Is IrmaI-1g to iii i4334.em+4 7433134gm 333 8.:030034 Ne4i4'4'Ni el eg uJ¢^,4.84x 4/E444a1ti411:F yhrnp rs;. lifrfc i 0, 4, 'OP Pt 1 ,1 i 43 I ,411 g AMIIIII1 Vi-i7).., CD iri in , -7:',.., E I i ' '. .....21. -..... 11 r- L ,i- , WI, ,- --.,,,,-, I , -,..„. - ' -•i• N / .....1,.... / ,....--- \.;i' '',0 r k, LaLi _42,„, i !, 'F.- I\--:": a' / ` 4 i .3i.L T-. ''. / ....."----' i i / = ,, M 1 ,,,,-%,,,,,,, , ^— R / 1 ' i t +, / A., / s.2.7 ; 1 ..44; 1 1 1! ' 0,' , 1 t ? E ,, , i , 9 ' E . „ / / ! ,...„ i A i / = .7 ..t..,.....c. , i: = ., „, J m -1. CV IrE i — / i • e3):1131 , ,, ' e'i .--- / / / I /-121 4.4 . i • a I, I <SIt 54 4 i / \"'S /• -*/ i i 0 ...—......a. ti” ----t r 'ik,----r -tii" 44lie,p,,. **A'a '''' , 6‘ AI' m*,,,m,.,,,,„_. ie 1 --m.- - . ...m....-m-.....-. ,.......--,,rnm . WwW,<C.4 .,,,,,,,...& r....,, *.......,.........m........... • i "".23' — . ........,.. .„.„..„--------- I i• I 6 , . . _ \„,,,,2, @"3 i -- vo - , 0 ..,......._________ , 1 1, t tt.z. P-- "'1 I / I • ' i I 1 ‘ t , t 1 I i I. I • 3- 1 i 1 1 / 1 1 .,r, 1 1 I 1 .1 / 1 • r-:-J (0, 0, , i 1`r 1 I, " I i ' 1 't 11 "'4 ; i """"t... 4 " i / t I I- ito,tt Pt I Ad,ti I t t'l 1 1 t SI I t attS.' 4 4 '"'"so.. i t I 1 t'l 1 - i 1 1 , 1 , © ., , C c / , , , t t Imp / 1 siT : / _ , 1 i I '1 i I } / IOU 1* ; : v„3.,..t 1 if t. ,,,,,,,, t i t 1 4 I t t I it M- I Vr 1 t i ., , .....,... 1 , : , / , L , i / i .,,,I.. t , '''t..---.'------—j: I--- - /' 1 i , . , , 1 1 H ..„ ----1 ,, ) -r . . , . , . , i i L .........__ _ -t.-- ...., i I 1, „. „,„ 0 • --1 . / m€ 1 L—I,... I, 1 i -,.... ,............. Q,3 .- ra Lip 1 • ' 4 co op r,,:ii --' " , ..„ E..... r____,.., ..... ,..., , A.., ' *----ffl-----.-1-—1\*.-N (-2- t . 1/t. . 4, I +.,:T....) ‘4""—i'——•— •-,--., 8 G 0 r-,-,-1 r•-i-.1 tr so: 1 0 k Allk t 2 ' t n, (43 @ , sr FL k IZ Ple44.K— E)10s44ptaw. - 40 'wick - t .......,,,,,..R......,,,,,,,,,W,.........,, a.,,,,....4.* VI g.'....% • \-1 @ CLENT : 6r � Page 39 of 129 Por r 07223 '3 503 024 70D5 PROJECT: ev 745 NV) : . .ngton Dr/t205 berc cgor 97/03 03 NUMBER: 541-383-'828 FROELICH DATE: ENGINEERS i 2303 A Way.ay'.Sint+r,200 Broom fled,Co eracfo 80021 720560.2269 BY: Y x. .Npaw.rvdar a®.ra eAb GSA r� s Z7 PF 1,v t. 4 rD €40 PF 1491-1.- Deo'0 to.40 s- 1 . PsF meta l Do _ Live„ ott o s tom !ST �,1� ' : /.fir., trnio P C A ,v } CLIENT: �_ 9t��>� anIr. 1St, Page 40 of 129 F� nk. ,< � �27223 3-62 PROJECT: 745;': t a i-..Dr.k205 NUMBER: !,;' bard C .g�;91703 541-383-1828 FROELICH 2303 n oar!'s uv Sui?e 200 ENGINEERS ; Bruomfited,Coforodo 80023 BY: 720-560=226? I F 16 1„, : , 7-kNS ?LP- i W = L 341..1-(5) 7,) ) $ r tea aq :.�� r F C F20 . O; c..1‹-'5 A5ov -tr(Fe.... GTSf .0, . OLs z)(59.2) Jr i2o,,, ' - ' (.7r1)(Z5)(12r) --Z-;too , ` F'Afv x it X11 L)L, (3) (14.) . -y51 p 0 to 1 L $(3') ,uo ) x 12 PF DL.X (2)1i' )fi 1z0t(.2)CZ-4) -r12-eir (2.5Ca4) r 't 12,0 t (2')(2--4 ) it 5 60 PLF 1y tc r24 c) 1,.1_ Jr (3)CZ_) (41 0) s 2(-t 0 Pr, 'C.\,,,, L A e. eo t F. \ } LL., sLi I.b° Si— r 2000 IF 31: 41::, x 2.o -0 ,, 120Di_s. 120. 1'5) 2-4.) . . IZ0-t (1' )(27 ) 112,0 -r{ )(Z ) x 1 330 PLF . 1-1--c* i IS -t 15 1 6, )( 44 a ) ,,15. 1 .0 i o 70 ?t-F CLIENT: 6,759::\1"!,: fl S1 77223 Page 41 of 129 503 6217005 PROJECT: 4:4113, 1, 745 NW 1y11.1Adshing`en Dr.o205 NUMBER: Be-d,Oregon 97703 511-383-1828 FROELICH DATE: ENGN E E R S 12303 Airoorl Wdy,Suite 200 IA Broomfield.Colorado 80021 720-560-2269 BY: IF"141 • ' PAAL,t I 0 **. PO Afr to AD AT 2 -o rie-o AA F(31 44 1=BS) LDL Zi 700*I. te-ficioo* s -4„ I cot ZeL ?IF°0 *-t. lift/0** i 900* IF 85/t FAA)s DL. 12.0 t 035(2.7).1. tzo i-( 13)(2,4)tI210 \\2o PLF LL r )3't 13dit 2.#) (go) s k\2.0 PIF IFB6/: SPAN 1-7_o 1/4.) 950 PLF / r 0'45 (2.) s m.so Pcr F%-4- t›FA,A)r ILI o (A) C)Lx 12.0 +(IS)(27)1. IZo (15)(24),4 12.0 (V; 12.2.6PLF eLF LL, 151-1- 7-1) ( L ) ø s PiFSV/: FL.A.Als 12-6 cAi 1 : (;,./)(2:41 s 440 Ft F )(I-to (1) .1.3,6 1 CLIENT; �. 6969 SW Page 42 of 129 Portland Oregon 97223 503-624-1005 PROJECT: 745 NW hf.' ashi^tgton Dr.#205 NUMBER: Bend,Oregon 97703 541-383-1 828 FROELICHDATE: ENGINEERS F. 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 BY: 720-560-2269 t CA SPAAJ r OF -0 moi' r t ( )()43.) + i 1 (6)( -1)11Z°7(b)(b)(7-7.) ; 0 -r (C)(2-7) 960 PL F' s (3) ( ' L )(ctO ) x 420 PIF s1....f (&') iZ ) 50I'CF 1 ... ' 'at Av T toAc)c) A.T- , - ( Fe-o A.A. t F a$, ) a 66 5 2.60 0LG s Z Zac� tr t®/ 5PAAJ s 144 t v 4 7Lx (2r)(1g ) "t 12-0-1 ( t') (24)tt� -RC1'){2_x.1 o%Airt-ADAO 0,3, tir - 7,-o , 1 ) ,yZ ) s PL 6g s(.5540 x13)% Ibis°4 ca-3e it t-14 o LL (:6)( ria) (co) s 12..0 PLF 5 t_s (z- ) L-.5 >.- 0 Pi F L.. s E21- PiF cc, s 4 pcfr. a it FIii,' t ,,. , SPA Alr 3-0r .� �tAiT �r) AT 1 -4 & Ci10) 12)1_-% 310 h L. ' oo SI-r _ CL:EN , 6969 501 J. Portland,Oregon 97223 Page 43 of 12.9 • R 1 PROJECT: m � .iO3-b24- D9.; ?ROJE 745 NW Mt.Washington Dr.P205 NUMBER: Bend,Oregon 97 703 541-383-1828 FROE ICI DATE: E o i N E E s a 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 720-560-2269 --<coAev 10 6 6L-s ) ,- s 1 5 s s(3)(35 U0o) (. ;)(j ) (c-to " x toZp J° ' c-A 60A0 Cil'-dett7 beiCeie 7f ON/63 3L t s l&oa } Page 44 of 129 -�_ COMPANY PROJECTWirt d ," ..........._ .�... ..........�.........,.�.. fr w Design Check Calculation Sheet cotAo t5�•.af 120 Loads: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): a A:• Mxknuol NOIR."Pn Ii itntRs*ERN7at tramp MPIPpRi PkRITortmNi4ifTon PRO t.MC.e,*7.Op,pmprp;demon,P.M,hem.time lO PR MEW Eme A(tgpgq revAls tot Aim,from UAiCmi bid popPYRNier: Rtulam-Bal.,West Species,24F-1.8E WS,t-1t2"x7-112" 5 an.na!iem,51nm}}02,100+.;arn. S'Uiwpo'e.Al-TMbraolt Slam,S FY-I.No2 Tglai'eng9r.SS Sr,miser* 1.7out: talent suppwl:by tut bodes=al flower* Ans(ye(ssys.Allowable Stress and Deflection kmm,NOS 20121 i Additional Data: ftirhAL 10AP COM314A:!ONs. All Ln, a 11.pEe7 _ f..4i,,,IN.tra:a...:. ..L •:. <:-:-., (LC J..m: :tri: CAiCtxAT!CVa Design Notes: !WPP5W75.YPPPYaixxed 6,0071 PR`m:.r*ey S1 'PPP i! C1.40mtoN. . 2che 20127.!ne N0^ra 2w4r 3pec0Um4M 0t05:CP 21,and NOS Ox.,ns0p...awm. 2 P0002%40140214400000010(00211021 opmmEmva'rv-:ixascs.11-: 3 S...M1i deedgImama an'c/rlmFmglPs CU!:':"rin%i lo:.'ise!.:.02[ :Mr^a3,:ssc1000el.%::.+'6arrie,rk3 2Hsi A 1U7102051 4 Orwlae*41,14,bending oa400ay 553 r.4 .:tme3P, 0400::.is .es.r..: y..tt:0?.000 nhen:k*1'0f.9Mn+.W!s lxarM. S.CLULAM:CN=ac1Ja breadth t a<:fi,N P4711 3: e C.vkxnE:fMPi elne de IMena?,4.mo:tad 0CCOVY!L,'»+a prpm0,.5 Ni:s.:,:00.+0;033 7 GLIIEAM:geomoglensgin bxed ca:mud.';f 110020x:1&-i.Iod'oonm a.Ttw r-xara0 cknectioa vMU Ivan heal M1eenintel vak:y mxm':.m',smI.:x er defer'.,Crm".w deneos:xn co r+:[govern demon Page 45 of 129 I0 00MPANY PROJECT tt WO Wo r k s od _ i A f2b tS,2017 10:44 1002am'b Design Check Calculation Sheet 0doCrr'r0ms site:10.42 Loads ,v ;O1: ,mra.. rax 'l.:: ood2 Spow ;454144 47.. No 5,31 ,1,541 ,2041 11N , 1,04 r as 0,44r: No tt L3.0e Frk.::t 1,2445 Dead Point. 4 - - -:9'- 1<ad Pol4434 401, No 11.00 22,50 `,1.1 4,24,1:1 Live Porf.e, 057, h. 22,04 54 .12 .au P, r .s 5o11-422,405t read 0.4 00€< ssu 3,,1 , Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): ...,__. I Ii' z0-2.; c.:::d 3515 :.eco 1 6213 Livb 2591 5053 1 227 3250 194• :op.,) 656 20310 904 ::city Nea::, 6256 5752. 4905 5uppo r. 6035 1 1,. 0124 Be t.fly o,sti. 1.00 Sut F: 5-94 . 4.97 .>a,zocomb s C _ongth .1.89. _ 47 R` - r<n3'4 1.69. 1.4. CP 1.50 1,07- - 2.9e 1.4 !'h ,. 1,001.63 .5 7 Cb Puppcx'.t 1,07 1,57 03 rob 009 ;125 073 _25 "MM*041.r 4€mz.ru1y length inverted by the Mg NI NV4th barg me f the aeppeee rbr, e,2': Giulam-Bat.,West Species,24F-1.8E WS,5-112"x15" 10 laminations.5-112"maximum width, Supports:All-Timber-sell Beam,0 Fir-1,145.2 Tota:length:22-1.6-:volume= 12.7 cull Lateral support:top_full•bottom=at supports, Analysis vs.Allowable Stress and Deflection Using Nos 2012: Y 0,1„f: c< nn ,.z 11,111 5.:2..i ) EYi- 220 h47 224, ..,ptt '.iib 0916 - 2400 poi. x nry" Sc,,-) 05134: 0:54 <4r'93:4 9e:11•0 '7,59 ::1395 5,37 . tt31" tri :o141 LdIi', 12.,14 a 14'911 0,95 a 40201 a.c Additional Data: FACTORS: F26,4,4i:CD C=, Ct CL ..> ...._ ' ,ti l =^�-+ 24001..001.000 , _. 2405 1.0, 1,00 1.00 9.345 1,551 1.55 1.55 .00 V.51: - _ ,. 0 _ cid r.::_L: o1tr: ',CQ z.00 .. .... ,:q :4.05 mdltl_n : .. 44)t1CAL.LOAD COMBINA'nONI: ;2171 �::_, Shear L?.: 02 f; ,, V :: ..,, Si':e:>=igr: _ ,.__:. _oma ;.,4 LC 02 - 5,L. 14 - 14459 11,4-ft ipsod r ; LC Y N .. 223 ,.._ Lt. 4.2 - 0.1:. 414:4:411 -::,- . .4_5.10 __sr...,r--a_.-! : 54.2oof _ . kid . bre 1:."t.'3 _r: n L«r4i ccy. r .. 1:;4:1 t>i .x 1:1::t..., 04 00 ,,. . _.". 2112 ('01.0 LA1)0440' cflectp.f,-,: E21. - 2234:p,.7 1. 41-1333 ..eflectioe .VbfOs - i 2,440-21,Lof toads, Cate., »0 .0 0, C 01 C.::r.ctle . .4.5014::_:;Lopd ,.___.,.:.,on! ..: 3 nnO ....;.:e-': ,,-.. 1.:50:0 3. _at>il: 1, 1,6 . <. . .1. - ... Design Notes: _ 1111 1111. 1 WoeoWurRs analysis and design are in accordance with the!CC International Building Code(IBC 2012),the tial+coal Design Specification(NDS 2012),and NDS Design Supplement, 2.Please verify that the default deflection limits are appropriate for your application. 3 Giulam design values are for materials conforming is ANSI 117-2010 and manufactured in accordance with ANS!A 190 1-2007 4 Grades was equal bending capacity in the top and bohprn edges of the beam cress-section are recommended for continuous beams. 5.GLULAM:bird=actual breadth x actual depth, 8.Gallant Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3. 7 GLUCAN:bearing length based on smaller Sr Fcp(tensicn},Fcyp(ccmg n}. Page 46 of 129 ......�......._COMPANY PROJECT IIP'. 'if w d 1 . .... .. _ „ :,.,. „, . . : ,. . _ Aug.24,201e 14:36 1F83;wrb 1111.. Design Check Calculation Sheet ViuceNortis S';:er 2042 Loads; Lead Type a.. .,0t:_-:8 1,4- Lo:ot* ftt..! Nalnitud,, tern 7ic-I Stact eon r;�-r ' 489:4.1 .4ttt3:.1 TO7.1 I'll, 1330.0. 011 Lo.902 Lime .i. 01,1. 1080.0 ::. 1111:. :1811.06210A1 3_43 f,11 Or�1: 39.6 ♦f . Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in) ,}.....,,... .. ::,.w„,. -21'-0.2' ,w ....,m _ } _1111 t I 20' .1" 11382 n`cad 14382 11389 1.1716 factac nor: 24.3.. Totai 28731 zCap p.:L.vfi 150 Boom 28:160 00731 25411 120i-''„:., :3.4t' 0.00 Lot; ia0 '!2 Lo 'Yon, a,' , G. en9ch 6.10. M1,70 114, rot'<3 .!.C:"' i.r.0 ;.1, .00 .00 eb 1.00 1.68 41,.at,. ci. .00 621, .Sistsam settiing tt1$tgtlt eevemud W Ma:feguited Malt of that suppaiting member, Gtulam-UnbaL,West Species,24F-1.8E WS,6.314"x25-112" 17 laminations,6-314'maximum width, Supports:All-Timber-soft Beam,0 Fir-L.No 2 Total!email;21,0 2";volume v 25.1 cult.; Lateral supped:lop=full,bottom=full; Analysis vs.Allowable Stress and Deflection vsltg NOS 2012: t „ A[tlyvl ':e Val 1.1k055n 7100481.0, :. 18 ,Ma 1621466:i A 6808 to- 1(.41 10, 065 psi Nit ... f,.41 Sendtxul(•a €h 2113 Fu' 8 2170 )1x:, ft.lb' ,, 0.81 114,4 loll'n 0..32 -- 1.4757 Live Jo£.'n 0,25= 14001 '41':9 1J159 in 0.31 Teta 1 Fie fI'n 0,74 = f. 731 :1.03 = 4.02911 in 0.72 Additional Data; t'AC'I'O%8S: 6.0111p5i1C0 CM ,:L Cl, CV 41101 Cr 441,14 nates<'n":v:. r.e' 601 760 1..00 1.00 4,30 - - - - 4.00 1.00 1.49 40`1- 24043 1.00 1.00 3,00 1..000 0.008 1.00 1.00 1.1>,, 1.08 - fou' 550 - 1.00 3,00 - -' -. 1,00 1.e million 1.00 1.01 - _ _ _ 1,00 .-- .3 1ny' 0.05 million 1.00 3.00 _ _ - 1;03 - 2 CRITICAL LOAD COMBINATIONS; 3118.9c' 411 40,, V -. 25119, 12:181140= 10211 188 aond42,1 :: LC 62 -- '3:1, M- 1.20105 1'r,,c8;t, Sc')Xenon, LC 62 - 1,41, 11600) Le a D41. 1t. xl i;=dead 19=live w 1l 1n.. 1L,,p<o- 74=440£11.90 Lc"coo001lx:le 8. ..a;ctpoak.:: AL. Le', are 1.icted in the Annly018 4040a1. 1::ad-::o,Sl:10at-ior.n: A0136 1-510 f IBC 111112 CALCULATIONS: 0,,i.Leena:,, 1.0758006 1€>-:r:7 ri ' deflection = Del i:,,,cSax: t,cc,:all non-dead toads f:.ive, ,480. .ands... Total 16110, n = 1.50 _:.ad Loaf 11efIection1 11 l;Lve. Load lnslection. Design Notes: 1.WoodWorks analysis and design are In accordance with the ICC International Building Code(IBC 2012).the National Design Specification(NDS 2012).and NDS Design Supplement, 2.Please verify that the default deflection limits ate appropriate for your application. 3 Gtulam design values are for materials conforming to ANSI 117-2010 and manufactured in amordance with ANSI MW 1-2007 4 GLULAM:bxd v actual breadth x actual depth:. 5 Gtulam Beams shall be laterally supported according to the provisions of NOS Clause 33.3. 6 GLULAM:bearing length based on smaller of Fcp(tenslan).Fcp(eomp'n), Page 47 of 129 • COMPANY PROJECT - wo 0 d Wo r ks Design Check Calculation Sheet e�c<vr;,<ea Soo ST 4z LLoads: 1 , • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): w�. _........... et45` .muur4r,. xiw' 'tdrr.+a'R^3*" a5lsn:+.gtaml was a INa,::allolati okaa0 .., 4lulamllnbal.,West Species,24F4.SE WS,S-1/2"x21" 14 kwwktwwvm,S12'.rtuovo 455.41/1h, Saporls:Aa.£wRR..RR San,0 Fr L Not Total loop SA 1':v artom TO ou a.; Lale-O salmi:tap'at supports,bottom.5X. Analysis vs.Allowable Stress and Deflection a,$Nos 2412: Additional Data: CRN1CAL Design Notes: I WC M4I44 arms amt coon No at ooww ce WM,iha ICC'Nerralonal owd S Coda:MC 2012.Sw"Feibi v oma:SpeoroW ml(NOS 20,21.45 NCS Down Savist 05 3 Nome'may I0411w de?auf S4.1irt amts m444 55{:.5"5 Ymop;5 1500 3.(3aoiorn dwa n•ayKe meAya054)5444coNaro4 to ANSI 1,,2010And ror:.Naoredmrm-boa,,win AN3101,021-35)? 4.OLI1tAM-hxd o slum brsSwh K 504 al*h. 5.0444n Room shag tsy woo*stary+ttsd w..ANN L+1 the,NoNoNo 44 005045.3 3 3 $GLU0AM baaliyl 445 ...d.116.51,4".of F0o('emarnf,Fep(wrytni. Page 48 of 129 COMPANY PROJECT �0 r S Aug 24,261515:43 tF85 nwb 4 f744,4`1 9X19 WO c C,DE 440N Design Check Calculation Sheet Woodworks Sizer 10 42 Loads: Load ,- • _� : , t- faoarms, Magnitude toit. 4Pfn 95.266:.- „:o,'., i43a,6 ;0.31 L_ad2 tau, Sul. OPf 1720.0 *l e Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): IP Unfxctored: 3993 Dead 349 Live 3E673967 _.... _. Notal , ie 7965 Total. ,... 9eatanq. Capacity Bean: 7966 Support 8401 Anal/Gas s, 1,aC Beau: 1-.; Support 5.91 31,94 Load x2 92 1,,g1'3 1.5;; '3,40 Min req'd 3.=0 3.50 Cb }.;' 1,00 Cb man, 1. 1.90 COs ..ort .11 1.11 4.:g ",F 625 Glulam-Unbal.,West Species,24F-1.8E WS,3-112"x11-71B" 8 laminations,3-1121 maximum width, Supports:All-Timber-soft Beam,D Fir-L No 2 Total length:7'-1..0";volume= 20 col.; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 20121 1.e14.eissar. F 993-1 V4101 140 4441 tint4. nssulwa s3iAa:s Shear psi bendicg4rl 463 45:e Dead Sefl'o S.00 Lave D-[1'^ - /36an .27 ,,,Total 2104.1.'. 2. .;.:a = h1a40 0.45 Additional Data: FACTORS: 4lf.41:'3G C, 01 _. ffu Cr Cfrt Notes C5`Cer 1.011 2,0 - 1:70 1.n44 1.50 a 4b'e 2400 _..' 1..' 3.07 ., i,CM 4.20 1.D0 1.00 1,00 .. 2 lop' 650 - [.so 1. -_ .. .1,113 - .. 0, 1.3 =tallot 1,00, 1.7O _ Eminf C 4 ._ - 1.30 - - 2 CRITICAL LOAD CCP 13 f3.411'644S. Shea - 32 - . .. esaga 3085 lbs Peed Er q, .....5 EeE:e.e,,,,...:+n: 14a E2 .. ilavo L: C=d^ d 0-live S=rtow». .. _-,vpa _ ft-roof _if<. Lt-Concentrated E-_ar.t4,g:.a e All.laMa am, A4Etoo Lead ._n,:..inat..oav; ASCE E ; 7BC 2:12 CALC'L A.T!C'#S: Fiala' - - .-i n2 "1,101." dufl^_.ut 0c. _ ot fro,allton-dead.. loads 14 1ve, Tota t loot "` ,::0 „'1ED..... 6611 ct Lon. ..;:., .. 1111 ,x,.1111�.. 1 1 D_,. Design Notes: M1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012).and NOS Design Supplement. 2.Please verify that the default def 0044on limits are appropriate for your application.. 3.Golan)design values are for materials conforming to ANSI 117.2010 and manufactured in accordance with ANSI A1901.2007 4.GLULAM:bxd=aixuai breadth x actual depth. 5.Gtularn Beams shah be laterally supported according to the provisions of NOS Clause 3.3.3, B.GLULAM:bearing length based on smaller or Fciagension).Fcp(comp'n). Page 49 of 129 ..._.__...__...._......_...._._..__ .�...— COMPANY PROJECT .._,. ._..._..__.._._,. _...._.,. .,,_„_..,,._.._..._. k ' �� Aug.24,2313 14:41 tFM vr,W SOF'?lo- hx t sk ts't.. 1 a , Design Check Calculation Sheet ''YoodWorxs Size,10 42 Loads: dc-a., `r:, .'.i.atrl'.:tf.on tat- LoneL .. :ft: hasaitado :11_t alard hod 11 0ad foiol 13304<' t4,i 1311, __ _ ab pit La.+.3Jlino Fuli 441 1020.4 al=': Lesol, Sans 15,1: 401:.. 350.0 pli hull 441 Maximum Reactions(lbs),Bearing Capacities(Ibs)and Bearing Lengths(in): Dead 9621 3021. live 1910 .iN S G Snow 1321 2k Total .499 7199 ::/di-- r im ,? 7113 .,ppoei: 7994 'fan/ 1.00 1.40 ;0pport. 0.9^ 0.94 Load tri.. R3 ;:1 Lemli .3,30 9.30 Nin ,'d 1.34 3:30 M 1.00 1.;00 019 Pim 1.00 4.00 0444 .52; fi'25 • • Glulam-Unbal.,West Species,24F-1.8E WS,3.1!2"x11-718" 8 laminations,3.117 maximum width. Supports:Alt-Timber-soft Beam,0 Frr-L Not Total length:7-8:.3';volume= 2.2 cu ft; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: Crifseihn A_salyOie Y esupr,. Vb e .31,11 fusal'1119/41043w.rt 11%WR F: ' t _. '3b go. t = 0, 6 as;<i :;:,;ci 16 a 1910 tb` _ 3900 pal. f0;IL:' o 1.00 Dead D. 1':; 4,09 -ri-:<14999 t,41>r: 0,59 ot.fe90 0.24 = I./7011 tin 1,94 lot ) 11:,/1.'o 7114 v 1,14 3. 3a !...240 iv, 0,4S Additional Data: i"A1;1•ot?;i. 6/3 0 4 CM Ct C.4 CV 2f-a 41 Clis Net •C'3 Cfl Pv' 26',,:, 1.00 1.00 140 -- ,40 1,40 _,...r [b'+ 2400 .1_00 1.041 1.00 1.000 1,040 1.00 1,170 1,01 1.00 - <. Fnp' 590 - 1,00 1.00 11. 1.0 ill-on 1.00 1.00 - i,:,iny' 0,02 1.00 1,00GRIT tC,Ak,LOAD COMBINATIONS: She:,::: LC 02 =011, V- 7204, V des:i.4s = 4170 1145 .;:r.0 :.71':: LC 02 = 4+1, M= 73095 its-;:t 6e:.1<-c'1;icn: IC 91 - 13.751)::5' :Live? I..r 47 C,+.71fL-0i Sodded Lailve ., -,flea 0-w:.,u. t ..rt,a .:t.r"nof ,.las L:,-.c o...n.:.,ao..a Seenn r..,:.aes 'l listed in rho Analysis oit:0m.. Idea x011± 7- / 2EC 2412 CALCULATIONS: 1,1f -: 1111; _. 0'7 Ye„ ?e :t 4'303 �,. "iii'. :.,;t,...-..ion aa Nine/dins .0001,all non' .a.1 i.<:ad., :live, wind, s.,.,....:.. Total Ce_..^.otic,:- 1,50:Dea2 Load 1x'10::::.line` +Live Load A<:::i,•.ot,s,,. Design Notes: 1.WoodWO.ics analysts and design are in accordance with the ICC International Building Code(IBC 20121,the National Design Specification(NOS 2012),and NDS Design Supplement,. 2 Please verify that the default deflection!Emits are appropriate for your application, 3 Giutam design values are for materials confirming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1.204)7 4 GLIJLAM:hod=actual breadth x actual depth, 5:Glulam Beams shall be laterally supported according 10 the provisions of NDS Clause 13.3. 8 GLULAM:bearing length based on smaller of Fcp(tenston),Fcp(comp n)... Page 50 of 129 COMPANY PROJECT WoodA'orks Feb 10..01713:14 1FB7wwb • Design Check Calculation Sheet 2,1. 21249 Sorer 10 42 Loads: .0«u TYE. i .. Leorrion 19.5 amIg a,C Pna 1.na f, L`&a..' 7777.. ".n .. _. ,. 1oad0 .£';.t-8.8111,4, 4.,44 ._i 991, 777.. _ 35,a Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 77 7 7 77 77 14',4 4' 7777.. .. ...7.. ..........._.... ._.. 7777. ... 7777.aa.:.#. • i,fr:factoredr Dead 3247 4241 Line 1577 .�., ,aTota:l 13924 19820 Searing: 7777 7777.. 7 777 77 7 7 CBitty AM 6824 15444 Bopport 17280 1.:280 A ad1Ccs 9e:a. 1.02 1.04 3oppert 6.917 4,97 Load c ,9, l2 b2 Length 4.71 _ 4.71 ?f,.:, reg'u 4.71 0.71 Cb 1,00 1.00 Ch:p,0 1.SC CO sef,gact 1.0, 1.01 F9gap ::a: E,<K 7777 : G..... GlulatmUnbai.,West Species,24F-1.8E WS 5-112"x21" 14 laminatlons,4-1/2".maidmum WON, So( n9'Alt.Tinteer4Btt Bram,0.Ptr•L fto.2 Telat 111113th 14`4:4',Solamc= 11.9 rut; Lateral Nipport'.top=lull bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: ^.ri.:)rf.cn 1.111'. valta Vnir Anafyeidi0eei0a tv m 155 2:S .V�YY" bendia41fb :750 Ft' 2398 pe: _1114' 11 _.._ ead oaf1.'', 4,16 1;989 Live 11e01` ;.3 - et/299 Tf,t0. L1475 5,12 m Additional Data: FACTORS: E19011109: CY. Cr. CL Cl' Cl,. Cr.- Cfr1 Motes 't"Cur fed 265 - - - - 1,00 1.00 1.00 Fb` 2400 1,05 1.80 1.00 1.07.5 0.91" 17,19 '.06 1,00 1.80 • - p' <155 - 1,02 1,4: .. ... .. 1.0 2' 1.0 raiallen 1,04 17.:10 10 - cRln9' 0,85 7.,11:1^ 1.55 I.O.. 1.00' 'r: At.LOAD COMBINATIONS: dhe LC 40 = _ _ = 11952 lbs 9endiagi+)c p2 - lbe-fc aefle.._io.. LC LC 112 = Ott it,0911 0,1ead 1-01ve 5 w W=w - live :..i'.=Con:.Er.tz,to tRy.s kc 1911 LC', are Listed in is eatpat 10,811',,ati0' ,1 A110,9 , t.,.. CAL 0€1l.A7 0949 : ..9 0 4 7,01 .. Def lec'::ie:;: G'. :� .v..,:...: ... ::':2 7117., .4 19e3lecrann from cn-dt-d load, ;love, ul d. snow,1_ Total Cc-f1ectoo,, 1.s.,.-_ mac',_..,...._f:3 v .._.< 1.1138 be-1149:Loft. Design Notes: 1,WaedWO,1,s analysis and design are in accordance with the ICC international Building Code;IBC 20124.the National Design Specification(NOS 2012),and NOS Design Supplement, 2 Please verify that the default deflection limits are approprme for your appilcaton,. 3.:Gnuiam design values are for materials conforming to ANSI 117.2010 and manufactured in accordance with ANSI A190.1-2007 4.GLLtLAM:bud=actual breadth x actual depth, 5..Glutam Beams shalt be laterally supported 0ccording to the provisions of NOS Clause 3.:3,3. 8.,GLULAM:bearing length based an smaller of Fcppension),Pcp(comp'n)- Page 51 of 129 COMPANY PROJECT • dW o ors Aug 24,2016 14:44 iFEi l wok h Design Check Calculation Sheet Wood Works Sizer 10.42 Loads: f7,4 11,ff 390 l.o.:.` 11444 - 911 1111, .......�....-. Load,. 4,10t 191 104. t�lf Laz.-..:1 Snow F917. 991 =silt i_ahe Dead f7.,1 any f.l-f Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) 12'..3 5 1z5 r :In Gt:.:l,re<f: 1111. Pe.mi 3021 974 t.ivr: rt t2 7211. 07 307 Fa:',.,,sed, - 1111 To-di 0231 1.237 ,r,...nrrnoc 1111. Cap0311:y 1111.. Beam ;liltpact 6490 4237 4496 Beam 1.90 support 0,") 0.97 f::�.3�i 9,,,, 4'2 {0.92 12 Lorigt.R l.'!4 1..?2 9i0 re<'), 1.44 1.7$ C:b 1.03 1.22 Cir run 1.20 Ph ,�c,i;pr>cT 1.67 1.90 1.97 325 Glulam-Unbal.,West Species,24F-1.8E WS,5-112"x11-7181 a laminations,5-172'maximum width, Supports:All-Timber-sell Beam,D.Ftr-L No 2 Total length:12-3..5';volume: 5.6 cu lt, Lateral support top"full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: CII144.1*1; 7vwr.11)14(0 2,,it,! ltemigx V.,! e ,<.a 4 49/13034110 9e4r f7, Bendimpi,) Ba, " Y as (.load 1oft''1 233 [.i.: Bef1.0 0.13 991 9,41 Additional Data: FACTOR:.: P/E(p'O(CO CP'. (,1, fir.; - - ro' 29r. .90 1.00 1,00 - 46's 242{) 1.20 1010 1,60 1.x09 1.099 1,99 L30 1,11.992 2 ersp' '160 - 1,00 1.00 _. _ _ _ 1.91 _ 1.3 3 ll,on 1,00 1,00 .. - _ 2 H..iny' 0.95 million 1,a6 1.03 ._ - _ ., • 2 CRITICAL LOAD COMBINATIONS: 1B00r LE. 42 - 30,, ' 6104, V'(,'','.l', _3.." 21:. .03)111 1." . '.1L, M e7?') lbv-ft pe,...vctionf LC 42 =1rL 111.v91 LC %2 0.'L il.ct.a'.i ftmleaa 1-11w,, _.s{o,.O:. n.n.i _ 14,4, t Lf.toof ,i-,e 1, ., n. _.. a7_ '(0,1.1 BE; 4419e =ate:} ,, e Aiynis 0o;pu^ :5 Loa cocj:i:' i. 010,1ls: .s3);' .-10 (3c; :.0,'2. CALCULATIONS )"1leot on: 22 - 13914)', b-1102 _ 0011.0c r .. ' 3etlecti0a from all 0.'3-deed .- i..s, v ',), ."i,., 'i:liar 9t4lectio0 ...:101O0" ,1 L"sxu Betleoft.o3M t flee 1,9A 9,1eff,lon.' Design Notes: 1.WoodWorks analysis and design are in accordance wan the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. 2 Please verity that the default deflection limits are appropriate tar your appin:anon. 3.Claim design values are for materials conforming to ANSI 117-2010 and manutatIo)od in accordance with ANSI A190,1.2007 4..GLULAM:lard=actual breadth x actual depth. 5 Glelam Beams Shall be laterally supported according Io the provisions al NDS Clause 3.33. 6 GLULAM:bearing length based on smaller of Fcp(lenslon),Fap(comp'n). Page 52 of 129 _..... ........... COMPANY PROJECT ___...."...._. ...T�__......._._,. , 4444-4 • w0 0 rks® d\No fMt TT.ECU -;>,. 14-E944.4t Design Check Calculation Sheet a4,,eYdakc sae 42 Loads: • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): saw ... _ ( Glulam-Unbal.,West Species,24F-1.SE WS,5-1/2"x15" Wppota,s,R.Tiflaraataamc Of to.Os/ 1010,00 ed a'; 3Vkask., nava wowit.two-tat wax. Analysis vs.Allowable Stress and Deflection,;,,y NOS 22,2 Additional Data: :at'i'F t-ac.4.CPP 544,T,TRS 1-4.R:44,44s:ASCE IT 14, CALCULATIONS'. .=::e,.-ort. _. 27.000 Design Notes: }W00010i00,.avRsa and,MMn dre=.n aC20o020..103 drxii+. _,PAN!204e 22'10 2,01,40,00.211002,0"Spoc:1:41an0NOS 24121 end CDC 12.100 upp1x0ser't 2 Nos*mIty thal 0.0010A 0e140.1,00 vs arr ACdnK'+.dr n 3 044*,deew,woes we n'aft0As:2_0(..0100.2;.0 AN ]Y?af^. `ac.nee :sc .Sa.r:e,rah At1S1 A1001200? d GLULA.M.Old.s a4,tbi 0005010 xael;,a;.kytr 5(loan aearrs 0100 be Ws^at'f 002.9.00d A:;cnny:'Six P4PARTPT cf NDS Cwssz 3 3 3 U.CLIACM:WARN k0901!#molt on ALAn50 a(=cpietsw 1100(,--ynf Paae 53 of 129 w --- '" __ COMPANY PROJECT 1..133....... Feb 10.rks' 017 1314 iFS 10>vdb ,,.: Design Check Calculation Sheet Woc..1Works Sizer 10 42 Loads: l',•:1 >a:X:l Dead ,34>, 4.441.t ,1T _ •t. ., ,_ d 1.24. 100.n 130 Pattie; 0. ".3 i£ .made Ge.d Pa. a3 OOL 1' 14.21 490.9 490.9 014 Lead!) Live_ Par .'£: t1.24 14.14 100,0 ("?V >a.G Fnu•3 Patz al .,:)L 11.k4 E4.24 LD.1 60.0 Lend/ Earthquake 433140'. Hacthgo Pc i:t. .A .164,06 let 09419 ta(77(9ua e> Point. 14.24 -4C1C0 1.10 :1310 Earthquake leal.:,t I .:r,: '3),): tho 0143 :gp Dead Foil 133,4 ..3, n_.. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): } ,. _ 34`37" ........ ,..._.._...._,_.,__..., y ._.......... - .1.1.11 ........_..._._...._...__.___ i 14`-.9- but aetaxadt. bead 14119 3.5L; ]n9 392 9.08 L10 5ae.'-h^xoats• 7174 71?4 00x)497104 p .. Uplift 4903 Total o1,!' 1924 iltallin s.. Caysns;1 Ty 2044 +;+r',G r;. 1942 2048 Anal/Pei Heim 1.90 0. 1 113:,,;::,4 e: 0.51 0.01 u.^. Lain combe9 e3 L :,z<..t: 2.t5') .65 111'3.)': x,.,l,d 2487 9.85 Cb t400 3.00 04.0 .00 I.dti E.,+p4,ur:1; :..11 2.11 fun.4u 6;..4 4 92:' Glulam-Unbal.,West Species,24F-1.8E WS,3.1/2"x11-7/8" 0 laminations,3.1/2"maximum width, Supports-All.T tuber soft Seam.D.FwL No 2 Total ien9lh:14-3.7";volume= 4.1 Cu fa: Lateral support;lop=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: Ctitelieth 000315013 Vai9r. '0,0,10 VaLon 1.. 1. 433.51 .1:310-..1433 Unbar iv''3 21.71 E <:., .z i`•,W`.:' -. .y-€R H,:nr,t.:.Dltl fn e 3249 @'b' _ 3840 rsi Ch,?h' - 11,90 0 4d Ccf1'4 0,09 :4./999 Live Oe.1' ':. 0415 e <Ll899 0.44 - :160 0.31 TeCoa. nerliln. 14,233 e Lthlrfir 0.11 - „:G 9,40 Additional Data: 491111)Ra, 341<1psi1Ct) CM CO Ci: _. c,, .. Cfr, Match ! , (0171 Fv' 245 1,G8 1:.00 1.00 - ' 1I; 1.:143 _,.00 Pix'e 2460 1.60 1,60 Lao 1,044 1,000 3,<':. 1.90 t.99 1.4)' - 9 • 4' 1.0 301101an 1.00 1.00 - _ .. _ _ Emthy' 0.05 million 1.90 :11.09 - .. - _ i CRITICAL LOAD CO?AB?toATIONS: sheer 4 1C1 89 ... 14:,77, V :. 41.34, V,7.1,41. - :-r. ,amu E1er.d199i 3): LC 40 Me.7f., 14 . ;:2212 I'us..':,. Deflection: LC 86 = 03.7F` divot 314 ::: 0..7E (70041t 0^':7ead 1.-live 0"S:,W 14 x1,11 leImpact. Lreraca live b<;-: -e.,..xated _a.3,4ra>ke A_1 LC'a aro 14003,1 in the Acaltiate thlith, 4,034 cumbina0< 044E 1-10 43 11" 34 , ...Fitsx �..,, a.-_tai: CALCULATIONS: 0,01::.40,11.>n: ET 079o06L,-:n," vkive. d ilmctian- Deflection 6,046 a...1 n,a:a-etcad _:..,...F 3,1_, ,,:i + ,r.>;. 1 =.3401 Deflection 1,33 t--_Y,:;.t,1 itcflecticnt t „...w Load Dcflectidh. Design Notes: I Wea4Wnrks anaiysie and design are in aocondanoe w th the ICC International 0 C0ing Code oec 2012),the National Design Specification(NOS 2012),and NOS Design Supplement.: 2 Please verify chat the default deflec?ion!knits ere appropriate for you, pili::alio:: 3.Gloom design values are tar materials Conforming to ANSI 117-2310 and manufactured in accon0ance will)ANSI A190,1-2007 4-.GLULAM:bed=actual breadth x actual depth< 8.Glulam Beams shall be laterally supported according to the provisions 0!,NOS Clause 3.3.3. 8.:GLULAM:bearing length based Os smaller of Ppp(3ertsaon,Fcp(co.'nv n)-. page 54 of 129 —�- COMPANY ,.._ PROJECT 4.4.4 odvvo r Wo ,0 '3 Emy Design Check Calculation Sheet 'A•.w-?.Ve:.sx SUN'1 Al Loads: .wr Maximum Roactionsj1b$,,i3eariny.Capacftles4itu}andHearing.Lengths(7n, ®_ s-ae• «an xtsa Av Glulam-Unbal.,West Species,24F-1,8E WS,3412"x11-718" e Wiv 4m+>;3-72'tw*AAA, M, S.,Fpx'6:AS..TA!Ae Ml 13***D NAL.No 2 Tax AmAth:34 i-.*AA;ez« !Oaf h: Later*Ammor1.RP"AA.*Mon*al s+rq+0+* Anatyelsys.Allowable Stress and Deflection 2p42 Additional Data: 34.31:0 ,4444 44, .. Al CAA CU LA 11115$ :�... .i....... :.. ....... Design Notes: t Waod✓urow..trs.'S ML2 dew,am n 0M0 CC 20124.1,0 Nallynel eat A S.'**ca kal ems 8Gt2J.and NDS Dew,Ammie t 2 P a Ae 10 CAI.the MARE derAmtmY*nix me Am3-' 340443100 3 C:xWY des*A*AAR x0lw**cm*4.-0L0YYMg.:ANL.1 2C 2 a..J:YAM an::r<o A A:far.1**<*<*th AN51 AIM).12017 4 GIJA.AM-PLLO=1M..A tx<1RR 0100+:0'6E01 5 CA W u E5ta3M oh*tV teeL'y woo*,001307,"1;..m****AA.41 x13 '.,tie 3 3 3. 5 GI1JIAM.beeMv WOE 13e13**.m 30.04,01,Cp0 axon 34444,9 ri Page 55 of 129 COMPANY I PROJECT t ',7 WoodVVorks1F)¢A, Nov t&.20161955 1FF312 whit 0111A111.ve,000A Design Check Calculation Sheet Wooiltlrlttu N2er 10 42 Loads: .. . 47 44.44j ft,t7: E44 • 00 Ceds/ 00D4 1100 1<00: S.,4 1503 10001 et..it F011 750.0 ell t e00t eoll CLL 20,0 4? .4 44. 17,1 pi 4 Maximum Reactions(lbs),Bearing Capacities(abs)and Bearing Lengths(in): 1O'-119' I • Dead 1`,13 el see son., 1LiC ..;5 Tot:.x 1. 10131 Caracity 135. ;0:011i. SAPPAL.L;aS(De), 10616 .r..,.., .3559 1.00 a.Le dt7. �a..¢,. 112 '0 Ce 1.00 1.•:i 1.1,0 (,A mitt 00 ..119 N+,oa:1Ip ,..r 6! Glulam-Unbal.,West Species,24F-1.8E WS,5-112"x13-112" ()laminations,8-1(2"maximum width, Supports:All-Timber-soft Beam,0 not.No 2 Total length:10'-11.8':volume= 5.7 cult; Lateral support:lop=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection Wring NDS 2012: xlvii.texxx.0 A `t yal_o V .. i)xuago Va4.�a dri,tF )AnAlyY xl:x<0s9n F 1 PArr:i • ,0(.) Aesd ti.i i.4r.:; pal 0,40 ilead Loll' L1930 Live .t:.`'3 0,11.'0 1/400 0.'16 0.44 TeLa1 Petr;' 11.0.. 0 1.1355 5.00 ,c 0.£0 Additional Data: 01,3('0,0(: r:ipsilr:il CM Ct ('L CV - KA' 2(:.;; :4 00 - 1.s .{: x :.0+: .00 1.00 1.400 1.404 5.007 1.00 Fop' /60 - _ 00 1,00 .- ... .. - .. ,. 4..: ('r 1.00 - .. PP,loy 00 F0.11100 1,00 1,00 - _ ,, d 3 CRITICAL LOAD COILIEINADONa. Au-:,:: Lc NL = V+.i„ 'f= 10174, '+ aai.gn= 7941 lbs LC II, , 14-' 24o66 lksa '(''1eetio0: Le 1(3 10L750.:010 (Live) LC 0) - OxLMX1.455 0.01,111 0.0e.<1 f..=liv -=1 ,rani toimpact Lr°s'co£ ivc Lc� r coueotc _ aed h r. t. :quake Al IC's ate Upped in rile Onalyai0 output. Lea bens: /15303 .-10 / 0150 205.2 CALCU1.AT'D : (-00'ie ::,nr;, t'1. :. .>.Oiea06 11,102 "�::Gd.fie t.lce ie flectien loomall nen-dead loads ;1:ve, mind, 00..401 Total Deflective, it 1.505lead tread 0,11.oeL3o i + Live Load L•o!'.leci::ore. Design Notes: 1:WoodWerks analysis and design are in accordance with the ICC International Building Code(IBC 2012).the National Design Specification(NDS 2012),and NDS Design Supplement.. 2 Please verify that the default deflection limits are appropriate for your application. 3.Glulam design values are for materials conforming to ANSI 117.2010 and manufactured in accordance with ANSI A190.1-2007 4,GLULAM:bad=actual breadth x actual depth. 5.Glulam Beams shall be laterally supported according to the provisions at NDS Clause 3.3.3. 8.GLULASA:bearing length based on smaller of Fcp(tensiaa),Fcp(comp'n), CLIENT: 696Y s E Porto o.O eg. 97223 Page 56 of 129 503-621-70;25 PROJECT: <3 �« 745 NW M Dr#205 NUMBER: Bend.Oregon 97703 541-383-1828 FROELICH ENGINEERS 12303 A!port 1,"vay.Surto 200 Broomfield BY:Co;arada80021 6 6 :7 F 4. fiDie. IF I-A : .PA Ai $ .. OLs 12.o )(2f )$ 120 ( )(2,7)t 1?-0 11_ x(145( 17) iZ.o .rt4 (z )t iZo-t (4')(Z , Flo ,r ( 6?)(.2-7) s 1a50 Pt-F LI- ( 3 -t 3.. 3)<too )41. et -T %-t % 1. 5 )(4o)r lz2 Ls (t ) (ZS.) 350 P1-1= Z'_o `" Fr" ) 1FLAS-.stM) LLs (-1aoo ?AA.I ° ,tea .S6=5 l�N . DLs 0So Pc.F 12.7-0 Page 57 of 129 COMPANY PROJECT - :-, odW . o iiil _.. i_J Aug.24,2010314:7 1FN7 ww3 ,,121344,3 33 :.. .. ..a Design Check Calculation Sheet Woo(fWorits Sizer 10.42 Loads: 'Sita ,un t Location 1111 a .E:. t :�:t .:-.;: F0 1 0 1 660.0 pl 3 (3 ,, ., _ Yad 9.14 040, _ 6.0 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 3'.22• --- 3'(t- Dead 131 Live 1992 :4 Bacto a: ('!2 Tota 2150 24120 Capacity Seas; 2396 Support 2653 2311 Sint( ;)as 21`:1 Bram 1.00 Support 0.00 .is) load ax;c O.50 i.ecul h 1.10. n2 :dim r 1'i I.10 ...ti 1.00Cb (:?::rc:i.n 1.001.(::; ..ot:p:,t 1 1.11 . 1.00 x'4:Y.aue6n.:_ 1.17 Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7-114") Supports:All-Timber-soft Beam,O,Fir--L No.2 'Val length:3`-2 2';volume=0.6 cu ft; Lateral support:lops at supports.bottoms at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: 073 t.fer.fen Anal'31, Valet; tetValve Unit .mala, .. „ ,_.-;,ion ^ Y:ent t'o": J' y- _ pal IviE, 17.44 Eending(+i fu tt. 704 Be` - 1165 psx. ,.1:305' - 0.69 Dead 01.'n 0..01 = AL/299 Live Defile 0,.01 - 03/934.1 0.16 = L.360 1m 0.00 Stats 0910'4 9.02 A1.15313 0.75 " L!2433 ,In 0.14 Additional Data: FACTORS: r/EtpsilCD CM i'L (7. CP 071_3 Cr LC5 -. 170 1..00 „.Ort 1.00 ... - 1.00 1.00 ••s. 900 1.110 }9 1..1)9 1.906 1..J .00 2 Ch'; f.r;i 625 - 1.00 3.00 - -. - E' 1.6 million 1,00 }..SD - - _ 0.00 mallion 4.00 1,00 4 . ._ e.) 2 fttiICAL LOAD COMMOTIONS: Shea_ ; LC 162 . , V 2329. V da:o:gn " 1.349 12+; radime ':'1: LC 43 " 0'.:, )4 '109 .1.bs-ft. f,::t:iecta.>n; 0:7 nv2 z ;1+L. (1�ive) L(; 's2 - DI-A, tt't-al7 -<!e.d L..i_vc -s Ilvn Lc.cancectrated. r. 6! ',tinned in the ^1riiel y'i'.. autput 1,0301 a n?ricat:.l:;.ns: ASCE. 7-10 / 10C 2012 CALCULATIONS: Ve£_e-:vv.ion; ES= 170761, 11-102 "Lig- def7ectl Ccilectlon from all rm.-21.d1 >desi ,e .1 Total. relnt11o,, 1.'.:0(DoaLoad tad U*{i f 'i.en) +Live Land 1 ...ie.;:. n,� .. 1+11.3+1 stair 1(117 1+1: - 1;-1.11." L_ 6 - 6.13 Design Notes: 1.WaodWorks analysis and design are in accordance with the ICC international Building Code(IBC 2012),She National Design Specification(NDS 2012),and NDS Design Supplement, 2..Please verify that the default deflection limits are appropriate for your application, 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4,4.1 r Paae 58 of 129 • COMPANY PROJECT '' Design Check Calculation Sheet Loads: Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): y _ ,. .. ..«.......,.... .,_ ?.4-v ren "., 6582 i6)64 oex fxaa:- 1,GJ 3.12 2: .Co ,cu Glulamd)nbat.,West Species,24F-1.0E WS,5-1!2'x7-1f2" 5Nomm`ost,,.i-)t2'A**5 ar.::Affii. Stggxxls:A4.nenNer-656 Sere:t)TIAL NA Latera!ANNAN:tai'M 6m356314,t1Warnm ei 6464m4a: Analysis vs.Allowable Stress and Deflection Additional Data: 1 _t Lr L 'e AEOE i,1, CACMABsr a Design Notes: t WIG0PP(+4R LW W2 WbB.:WC+sf tL:4,i1I WI:4:„:6172.LEN 600#4yn"w.'34,45.z l650t0l2/W4150 044404 3sg)L)s+�uK 2..266444*WI Is*tmRAMAA 240.32a424624333 AP 4446..WANv 1344' Si $.meas.Magri ROAN;re At ISVANAID 44.44642.2 Aih51 t)7236354 l0 /3422.34453-✓42.1064,YIn AN5,A1:W5.I'2557 J.ISW.AM:t':=.xttmi bawl1:Y,00,:kgkn, 5 014 55$1555 AMA be Eden*NANNA4*!0%11618 to the iN4333:045 ca NOS(An.333 LS:.CW:AM:bar#g INNENbasedon sytiNeel Fay,<,ee:Momm.Ftp{urobrrt; • Page 59 of 129 • COMPANY f p PROJECT El -* WO o d rk Wo Aug,24,2014 14:57 10119 writ) Design Check Calculation Sheet 4Va44Y/4ar<r;s;zcr 10,42 Loads: (C1-) _�t.e.,i. ani-t .:r:9 Start died t.:.. 1ii1 aiL 1220,0 pit Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): 3••,r untmrtottdi ca,3734 Live 20v 2004 .3n>s. 519 579 Tote: i_.,x 3732 ,< `cream 3799 Support ..,. 4739 haai./Clea Seam 1.00 , 0 Support t#.?C 0.44 Load 00.•r.2 4'L Leputa 1.71 N1 Mit) 1.71 1,90 i.a0 129 1.00 1,90 "h 'x::lpp nt 1.11 1.11. €'.:c Oep 629 625. Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7-114") Supports:All•Timber-soft Ream,D Fial No 2 Total length:3'-3.4";volume=0 8 car.ft; Lateral support:lop=al supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS zo12: Cl t9rio' A 06,4 14419,. 0.4E43' Va vn 12,111 A1u£ i VS >/ •a1grt Shear iv r 121 110 1.01 1 1'1.61 Ren4: .1!: Ii, -- 1100 t' f,.,Fb' '. 0.44 0,,:>d 00,1 .. <L2393 Li.v. f ` - 1,/393 01.0 a 1./350 0.14 Total 5130;',. 0. 3 - <i./999 0.16 1.1210 a.^. 0,2.2 Additional Data: FACTORY: F/E(pa3)C0 3t 0i CF Cfu CrCfrC CI Co 1.114 F. .n^, 1 _ . 1.00 ,00 1.00 cod 1.00 0.413, 1.300 1..04 1.00 1.00 1.00 - ,. 614' 225 - 1-ka, 1,a0 - ,. .. 1.00 1.00 I.' 7 5 ad11ion 1,110 1.110 ,_ 100th' 0.511 million ^. 1.00 1.00 - 2 CRITICAL LOAD COMIT€?MONO 11.13 squ0L, 35e .;Sh dal, " 2t0 Orn1ir,<li1l: 17 . 2131. 15,,.ft 1":fl.f.._uo. 101 32 - 1-1, i7.; LC 0 �1 01 1tc 0-dead 1.di.ve u 4=,,,1.0. 1-impart lammoof L ,, <. .-.,Y+_ :,',rrtlai';a'e :.i.1 11s°cd al.y.+:l.s Output load :+marl^r':,,: 05CE ?"1.0 ,1 7.140 :.0.I.2 CALCULATIONS: 1108001 6,,s = 7Ref" _`Gr_02 i_ "Live.de.Cloct D-1.113 r. from a12 nun-dead 1__clo tfi a'0, wind, Scw,) T:>t.a.) 0efientr.r 1,;,0iO4.d Load Deflention1 Live Load Defle.tico. 1.301,1.31 l,11.1-_1' 11„ 1,0 3'-i.69" 1. 0+•.5.6.9" 00 " .0,34 Design Notes: I.Woodworks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specilicaidon(NOS 2012),and NOS Design Supplement, 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4,4.t. CLIENT: 6969 SW Harlo-on St. Page 60 of 129 Porllond,Oregon 97223 503-624-7005 PROJECT: 745NW Mt Washing tor,Cr.#205 NUMBER: Bend,Oregon 97703 [-� 541-383-1828 FROELICH DATE: ENGINEERS 12303 Airport Way,Suite 200 Broomfield.Colorado 80021 BY: 720-560-2269: } , . ,°.%,•?6";' ' flJ5YO ,;7223 5C3,h24-70°5 PROJECT Page 61 & 129 • , 745 • r- N\Ar rvIt,Wcisr,irgt;pn Dr,152.05 NEJMBER, ra,Oregon 97701 541-383429 FROELICH DATE ENOINEERS ! 1230'3 grport Way Si..J;te 200 Broomfield,CLk-,)roc 60021 www.tioelicli-ertgineers.com 720-560-2269 BY: •-41.- C-0 L UM. - 0 Ai ViA Ce_ W'4/ o1D : z_ cl 00'2_56 1-<z_ kL7-. v AA-P kz-rs- 9 LOAD ON ON 67::AC-1-t COLLiik,\ k/5" Q.3-6 'F' t7') ( 3.6 ) .• FLF USE- (2.) A3S EA 6-- 'Joo Co t_u tv. Al . . a Page-62-oftom__ _._._- COMPANY PROJECT -100, t . Works® July 23,2014 05:07 Column/ Design Check Calculation Sheet Sizer 2004a LOADS (lbs, psf,or pif) : f,oad Type Distribution gn t '`e Location fit] Pat- Start End Start End trn 1::'.3.,;:1_ ,..,nt. l'}uli UDE, 48.0 To MAXIMUM REACTIONS (lbs): 0' 27' Dead Live e 8 C-lu Total 18 - lfi Glulam-Balanced,West Species, 24F-1.8E WS, 5-1/2x7-112" Self Weight of 9.5 plf automatically included in loads; Pinned base;Loadface=width(b);Ke x Lb: 1.00 x 0.00=0.00(ft]; Ke x Ld: 1.00 x 27.00=27.00[ftl; Lateral support:top=Lb,bottom=Lb;Load combinations: ICC-IBC; Analysis vs. Allowable Stress (psi)and Deflection (in)using NDS 2001 : C L' !.eriort Analysis Value Design Value An tiysls/De52.9f Shear fv _ 24 Ftr' 384 fv/Ey' . 0.0 1 Fscndir:q`+ fb - €.Ox8 's Pb' = 38 :1 fb/Fb' =_= 0.27 Axial fc = 6 Fc' 389 ,.-r./Fr' - 0.02 Axial Bearing Sc = 6 Fc, -- 1440 fc/Fc* - 0.00 Combined ',axia. compresslon + e.de load benu_n a) Eq. 9-3 ..' 0.27 Lige Oef....'n 1.65 = L/196 1.80 -- L/'180 0.92 Total Defl'n 1.65 = 1.1196 1.e0 -- z./180 0.92 ADDITIONAL DATA: FACTORS: F CL CM Ct CL/CP CV Ci_7 Cr Cfrt Notes LC# En'- 2400 1.60 1.00 1.00 1.030 .1.000 1,00 1.00 1.00 1.00 F v' 240 1.601 )0 1 00 - - - 1.00 1.00 2 Er' 1600 0.901,0:0 1.00 .2?0 - - - 1.00 - _ .H c'comb 1600 1.60 - 0.155 - - - - _ 2' 1,8 million 1.0 1.00 - - - 1.00 Fc* 1600 0.90 1.30 1.00 - - 1.00 - 1 Sending(e) : L08 2 -- .60+:4, M = 4374 lda-St Shea. : .._CS 2 = .50+-1, 648, V design -- 648 lbs Deflection: L0# 2 - .68+W d E1= 348e06 lb-int Total Deflection = 1.90)Dead. Load aeflecricn; +- Live Load Defi..crion. rex:..a.l. ;,x ._ .- 0 ,,.,1.2r, s'' = 256 l:,c, Combined , LC,4 2 _ .60.W; (1 - fr/F.:7E) 0,:n .. l - .+i 1-impact C-,construction rs`ru:.titin Ci,d=c.onc, titrated t D'l=sui;d<:d v ....�.;e: ..z=::r ti:;.. U;`--` Y'LCA ... .T+1�.2 ,. 's ,�- (Al..L LC's are in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSIIAITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. Page 63 of 129 • COMPANY PROJECT � � WoodWorks® Feb. 15, 2018 10:00 9' (1)2x6 HF2 (3300).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [.ft] Magnitude Unit Start End Start End Loads Dead Axial (Ecc. = 0.00") 3300 lbs Self-weight Dead Axial 15 lbs Lateral Reactions (lbs): 9' 03 O CD o A 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber n-ply, Hem-Fir, No.2, 2x6, 1-ply (1-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length:9'; Clear span: 8'-10.5";volume=0.5 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 402 Fc' = 771 psi fc/Fc' = 0.52 Axial Bearing fc = 402 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearing fcp = 402 Fcp = 405 psi fcp/Fcp = 0.99 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0. 90 1.00 1.00 0.599 1.100 - - 1.00 1 .00 1 Fc* 1300 0. 90 1 .00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1 .00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 3315 lbs Support : LC #1 = D only; R = 3315 lbs, Cap = 3341, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. Nage 64 of 129 COMPANY PROJECT WoodWorks� v SOT: WOO EJ Df_5t:h Feb. 15, 2018 10:00 9' (2)2x6 HF2 (6500).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 6500 lbs Self-weight Dead Axial 31 lbs Lateral Reactions (lbs): 9' 0 o a' D 0 CD 0' 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber n-ply, Hem-Fir, No.2, 2x6, 2-ply (3"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width;continuous lower support Total length:9'; Clear span: 8'-9.0";volume= 1.0 cu.ft. Pinned base; Load face=width(b); Built-up fastener: nails; Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 396 Fc' = 771 psi fc/Fc' = 0.51 Axial Bearing fc = 396 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearing fcp = 396 Fcp = 405 psi fcp/Fcp = 0.98 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1 .00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1 .00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 6531 lbs Kf = 1.00 Support : LC #1 = D only; R = 6531 lbs, Cap = 6682, Lb = 3.00", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc-concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. • age 65 of129 COMPANY PROJECT 4Il '' .1. t 1 t WoodWorks® .•„„k‘,„. sa>f:'SSRI 1,1rk'r4f C'I)t,c-3:,,,', Feb. 15, 2018 10:01 9'4x6 HF2 (7500).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Load/ Dead Axial (Ecc. = 0.00") 7500 lbs Self-weight Dead Axial 36 lbs Lateral Reactions (lbs): 9 co v b o m Cr A 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber Post, Hem-Fir, No.2, 4x6 (3-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width;continuous lower support Total length: 9'; Clear span: 8'-8.5";volume= 1.2 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 391 Fc' = 771 psi fc/Fc' = 0.51 Axial Bearing fc = 391 Fc* = 1287 psi fc/Fc* = 0.30 Support Bearing fcp = 391 Fcp = 405 psi fcp/Fcp = 0. 97 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1 .00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc* 1300 0.90 1 .00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1 .00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 7536 lbs Support : LC 41 = D only; R = 7536 lbs, Cap = 7796, Lb = 3.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 1 Nage 66 of 129 COMPANY PROJECT Wood Wo rksJ <fjF7S 4 f FOR zF000 L+EWCA, Feb. 15, 2018 10:02 9'4x8 HF2(9000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 9000 lbs Self-weight Dead Axial 47 lbs Lateral Reactions (lbs): 9 m CD 0 v 0' 9' Un factored: Dead Factored: L->R Load comb #1 #1 Lumber Post, Hem-Fir, No.2,4x8 (3-1/2"x7-1/4") Support: Lumber-soft Sill plate,Hem-Fir No.2; Bearing length=column width; continuous lower support Total length:9'; Clear span: 8.-8.5";volume= 1.6 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0=9.0 [ft]; Ke x Ld: 1.0 x 0.0=0.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 357 Fc' = 373 psi fc/Fc' = 0.96 Axial Bearing fc = 357 Fc* = 1228 psi fc/Fc* = 0.29 Support Bearin fcp = 357 Fcp = 405 psi fcp/Fcp = 0.88 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.304 1.050 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.050 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 9047 lbs Support : LC #1 = D only; R = 9047 lbs, Cap = 10277, Lb = 3.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. Page b/of T29 COMPANY PROJECT WoodWorks® Feb. 15, 2018 10:02 9'6x6 HF2 (13000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 12000 lbs Self-weight Dead Axial 56 lbs Lateral Reactions (lbs): 9' co -I v D o m 0' Un factored: Dead Factored: L->R Load comb #1 #1 Timber-soft, Hem-Fir, No.2, 6x6 (5-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width;continuous lower support Total length:9'; Clear span: 8'-6.5';volume= 1.9 cu.ft.; Post and timber Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 399 Fc' = 430 psi fc/Fc' = 0.93 Axial Bearing fc = 399 Fc* = 517 psi fc/Fc* = 0.77* Support Bearing fcp = 399 Fcp = 405 psi fcp/Fcp = 0.98 *Column requires a bearing plate at top as per NDS 3.10.1.3 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 0.90 1.00 1.00 0.831 1 .000 - - 1.00 1.00 1 Fc* 575 0.90 1.00 1.00 - 1.000 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 12056 lbs Support : LC #1 = D only; R = 12056 lbs, Cap = 12251, Lb = 5.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. Nage 68 of 129 COMPANY PROJECT WoodWorks® Feb. 19, 2018 15:29 9' 6x8 HF2 (16000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 16000 lbs Self-weight Dead Axial 74 lbs Lateral Reactions (lbs): 9 w H N 0 C m 0' 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Timber-soft, Hem-Fir, No.2, 6x8 (5-1/2"x7-114") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width;continuous lower support Total length: 9'; Clear span: 8'-6.5";volume=2.5 cu.ft.; Post and timber Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 403 Fc' = 473 psi fc/Fc' = 0.85 Axial Bearing fc = 403 Fc* = 517 psi fc/Fc* = 0.78* Support Bearin fcp = 403 Fcp = 405 psi fcp/Fcp = 1.00 *Column requires a bearing plate at top as per NDS 3.10.1.3 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 0.90 1.00 1.00 0.914 1.000 - - 1.00 1.00 1 Fc* 575 0.90 1.00 1.00 - 1.000 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 16074 lbs Support : LC #1 = D only; R = 16074 lbs, Cap = 16149, Lb = 5.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. • Page 69 of 129 COMPANY PROJECT WoodWorks Feb. 10,2011 17:00 5 1-8x6 glu-lam.wwc Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: Load Type Distribution Pat- Location Eft] Magnitude Unit tern Start End Start End LoadDead Axial (too. ( 00" ,.... ( - �;. � } 25000 lbs Self-weight Dead Axial 80 lbs Lateral Reactions (lbs): v 9' Glulam-Balanced,West Species, 24F-1.8E WS, 5-1/8"x7-112" 5 laminations, 5-1/8"maximum width, Support: Non-wood Total length:9';volume= 2.4 cu.ft.; Pinned base; Load face =width(b); Ke x Lb: 1.0 x 9.0=9.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2012 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc - Pc' 1140 psi ::c/Fc' = 0.57 Axial Bearing fc -: 652 Eck _= 1440 psi fc/Fc* = 0.45 Additional Data: FACTORS: F/E(psi)CD CV ;::t. CL/CP CV Cfu Cr Cfrt Notes LC# Fc' 1600 0.90 1.00 1.00 0.792 - - 1.00 - 1 Fc* 1600 0.90 1.00 1.00 -- - 1.00 - CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P -- 25080 lbs D=dead L=live S=snow r;=:•.ird impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICC-IBC Design Notes: 1.Woodworks analysis and design are in accordance with the ICC International Building Code (IBC 2012),the National Design Specification (NDS 2012),and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4. GLULAM: bxd=actual breadth x actual depth. 1 Page 70 of 129 COMPANY PROJECT 4k ,,,..., vii A ir 0 ',11.7,:. '' o d or ks !, VII 0 W 74t400404' Feb.10,2017 18:19 5 1-2x7 1-2 go-lam wwc Design Check Calculation Sheet WoodWorks Sizer 1042 Loads: LOACt Typc 0.efflbutldo Pat- Location f-11 Maenitede all torn Sfart End Start End Loadl Dead Axaal -4,c.o. = 1.25' 9300U lbs Self-welobt Dodd Asjal 110 - lba Lateral Reactions(lbs): co ID N 04 CD I '0 cr a 9. Unfactored: Dead 303 -30S Factored: , R-01, 308 Load ctaah 41 L-IR 384 Load comb 51 31 Glulam-Balanced,West Species,24F-1.8E WS,5.1/2"x7-1/2" 5 laminations,5-1/2maximum width, Support:Non-wood Total length:9';volume= 2.6 win:, Pinned base;Load face=width(b);Ke x Lb:1 0 x 90=90[ft];Ke x Ld:1 Ox 00=00 MI; Analysis vs.Allowable Stress and Deflection using NOS 2012: CriteriOn Analyslt Value L3,M194 Value Coil lAoalriXiDeSilft Shear I> 14Pr' A, 0.35 psT tv/Fo' 0.06 Bending(.) lb ,,. 512 Fb' - 2148 pi fb/Fb' ,.. 0.37 Axial fc ,, 802 Pc' 0. 1203 psi fc/Fc' n 0,0 Combined 6a>>•al , eccentric n.,ment7 E3.15.4-3 Axial Searing fc - 092 Fc. - 1040 pal fe/Fc. - 0.56 Dead Deli. n 0.03 - <1./939 Live Defi'n negligible Total Defl'n 0.14 - L/810 0.60 . utao to. 0.22 Additional Data: FACTORS; EiEipsiCD CM CL CL/CP CV Cfn Cr Cfrt Notes '('ii Ev' 265 0,90 1.00 1.20 - . - -. 1.90 1.00 1 Et0+ 2400 0,50 1,00 1,00 0.394 1.00D 1.10 1.00 1.80 1.00 1 Sc' 1600 0.90 1.06 I,0I, 0,835 - - 1,00 - 1 5' 1.8 million 1,00 1.00 - - - - 1.00 - 1 Emin' 0.95 million ILDO 1.00 - - .1 Eminy' 0.85 million 1.00 1.00 - - - 1 Fe. 1600 0.90 1,00 1.00 - - 1.09 - 1. CRITICAL LOAD COMBINATIONS: Shear , 1,1 81 •-=,-- D :ally, V = 303, V design - 303 lbs Bendingfil: LC 41 - D only, 11 - 3044 lbs-0t Deflection: DC 01 - D only !total) Axial LC 81 ... D only, S - 33085 138 Eq,15.4-3 : LC 41 - D only 40'0 2,40 FcE=43925620 Pxo/0-fc(6xe0d) 000 D=dead 0.-i 1>-c S-anow 16-wind I-impact Lo.roof live Dosconcentrated Enearthguake All. DC's are listed in the ADalySiS OULpt Load combinations: ICC-IBC CALCULATIONS: Deflection: ET - 340e06 lb-in2 fLive" deflection .. Oeflectkon Loom all ata-dead loads (live, wind, snow-) Total Deflection ::. 1.50Dead Load Deflection) 4. Live Load Deflection, Lateral stabilfty 3i3; Lu ---- 9' Le - W-6,15" 1111 ,.; 7.02 Design Notes: I,WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. 2,Please verify that the default deflection limits are appropriate for your application 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190,1-2007 4,GLULAM:bxd=actual breadth x actual depth. 5.Pedal load eccentricity applied in direction of load face only It is the designers responsibility to check for effect of eccentricity in the other direction. Page 71 of 129 _.�._..__ COMPANY PROJECT oodWo r 14• Feb 10,2017 19:19 5 1-8x9 glu-tarn wwc Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: Load Typo Distribution Far- Locn,ion t Maonitude Unit: d • End P al 1111. bead Axial „c, 1.00') 300b1 Self-weight D ad _ A..:.i 63 T3 Lateral Reactions(lbs): 16' 0' 9' Unfsctor>d: 1111. 1111... 1111 . Doa0 232 ...232 Factored: 1111. . 2 t.. 232 load comb 41 2332 load comb . 41. 41 Glulam-Balanced,West Species,24F-1.8E WS,5-112"x6" • 4 laminations,5-112"maximum width, Support:Non-wood Total length:9';volume= 2 1 tuft.; Pinned base;Load face=width(b):Ke x Lb:1.0 x 9.0=9 0[ft];Ke x Ld:1 0 x 0.0=0,0 MI; Analysis vs.Allowable Stress and Deflection using NOS 2012: Criterion.. )Ameiyrxis Y41.u4 Design Value Unit AnalyslSiBe41qc. Shear tv Ai Fe' 2:31„ 11 f. tv>0'vM. ' . .04 0eodinq i+i fh :.. 759 gb. =, 21::,01 pal tbi'b' ... 9.35 Axial. To = 760 Fc' :- 1203 psi fc/ c.' 0.63 Combined lax:al + ecr_ent.ri cisserit i Eq.15.4-3 y, 17.75 Ax:a? Bearing. ' zc: ::: 750 Ft," :..,4ti p<:z. f<.,I'Y. ,m 0.53 Death lcf1'n 0.3 = 5:7999 . L.i.ve etl'n negligible Total 09f1'r 0,16. « 0/494 0.60. - L/1(16 in 0.26 Additional Data: FACTORS: O'fB(psii D CflkCL/CP -C- Crr Cfrt. Natter LC4 Fp' 265 0.00 1.0i3 1,90 - ... .. ... 1.00 1.00 1. Fb'+ 2400 0.90 1.00 1,00 0.995 1.000 1,00 ..05 1,00 1.00 1 Pc' 1600 0.90 1.00 :1.00 0.1135 - - - 1.00 - E' 1.a million 1.00 Lop - Ervin' 0.95 million 1.00 1,00 - - - 1.00 - 1. Eninv' 0.85 million 1.00 1.00 - _ ,i1; 1: 1500 0.90 1.00 1-.000 - -. - - 1.00 - CRITICAL LOAD COMBINATIONS: _eat Li: 41 = .i only, V - ' 2:32, v d0-0 n 232 lba Bendingi+i' SC 111 - 1 only, M = 2091 lbs-ft Eeriect=.an: TC 41 = D only (total.; Axial . EC 61. ... 0 only, P :_ 2506n lbs Fq.15.4-3 1.,C 91 = D only Fb'::: 215:; 'F=217112400 Pxn1S=fcifxo/d;::.: 759 D=dead =-live 5-snow W 'hind i .impa_L ..--,.,f. . (.... oncent,nred -.earthquake All 503 are listed in he Analysis output load combinations: ICC-15C CALCULATIONS: Deflection: ;r1 :. 270e06 lb...in2 deflee. en = Deflection from all non-Prod iota_ wind, enox.„S Toto_ Deflect..-n = (Band Load DeTle...::C.n) r Liar Load Collection, Lateral stability i+i. 1.:w = Le. = 16'-1i.751(5 - 5.28 Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application. 3 Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4 GLULAM:bxd=actual breadth x actual depth. 5.Axial load eccentricity applied in direction of load face only It is the designers responsibility to check for effect of eccentricity in the other direction. Page 72 of 129 COMPANY PROJECT .r, i: wo WoodWorks® Feb.10,2017 18:19 5 1-8x6 glu-lam.wwc Design Check Calculation Sheet WoodWorks Sizer 10,42 Loads: i load ?yh�� ilzstz.t..,.-c F`c,. :,�.atz v, ,-c#:; b:aynE Cn<Ie Unit fern Start End 6.11.aft Pnd L<.ad7. Dead Ax'.r,i. {-c., . . :).oO”l '13880 1(10 Self-weight Deb: _ =a,,l 161 lbs Lateral Reactions(lbs): it co 51 l> 0, c e' E->L 172 Load comb 01 1.-212 1.72 L<ad. Comb 111. lr Glulam-Balanced,West Species,24F-1.8E WS,5-112"x6" 4 laminations,5-112"maximum width, Support:Non-wood Total length:8';volume= 1 8 cu ft; Pinned base;Load face=width(b);Ke x Lb:1.0 x 8,0=8.0[fI];Ke x Ld:1,0 x O 0=00[fti; Analysis vs.Allowable Stress and Deflection using NDS 2012: 0:11,4110:1 ,Analyitz.8 Value 01019x.1 al;:.. 08-It ysibi usi913 wheal. _:.2v x 0 i;3/' i 134 ,;:1 fvflvv1 -. iendi.s71-1 in 00 11151 = 1151 pal _l. Axial Cc. -. I002 Fe. 1279 psi felle' 76 COmhi.need 195 31.. t eccentric Ament) I 1. 1.-.1 _ 0.05 Axial Io-a t.c,q fc 1002 FO' 1410 ;;::i. ::i0"," 10 Deadi)e.tt'n 0..5 .. <1/999 . 1:-.L( ,o l l'n. n negligibi.A l'ot.as tof1'n 0.00 -1,/999 8.53 L1150 in 0.15 Additional Data: FACTORS: F/Eipoi}C:D CM Ct CL/C.= CV Cie Cr - '':t Notes :04 Py' 265 0.90 1.0 0 1.00 - .. - -. 1.00 1.00. 1 1:h1, 2400 0,90 1.08 1. 0 9.4511 1.€100 1.00 1.00 0 1.10) 1 Fe' 19:00 0.90 1.00 1.00 0.06:8 - - - 1.00 - 1 t.' 1.11 million 1.00 1..00 - ..- - 1.00 .- 1. Ervin` 0.95 million 1.00 1,00 _ _ - .- ,,ot, - 1 bwany' 0.05 mi.11.ien 1.00 1.00 - _ -. _. t 40 ... 1 l's' 1600 0.90 1.00 1.00 - ._ ... - 1.00 - 1 CRITICAL LOAD COMBINATIONS: Shear : 1,C 01. = 0 only, S 172, v deoiO^ :.: 172 ':.t>r hending(+): LC 01 _: 0 only, M = 1375 lbs-ft: Deflection: 7,C N1 = B only {total? Axial : LC #1 1, only, P - 33461 lbs Eq.15.4-3 : LC 01 = 0 only Yb'- 2151 icE.211112400 000/h're 6xxe/d.i 500 N=-dead ..=1• e : snow '9- and 1=111(1901. Lf=teof live Lc=concentrated C-:earthquake All s are 1, ted in. ne Analysis out uL Loa: combinations: 100-190 CALCULATIONS: Deflection: ET 1.78e06 1;;-ixi2 'Live" deflection -. Deflection -331331 811. non-dead loads live, wind, 3/1393/..,`, ,.al Deflection ... 1..500lead Load Deflection ... Live LDeflection. .a= 8' Lateral stability .t --1. 1: Le -. 'Y'-g,r.,S" RB - 5.92 Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement, 2.Please verify that the default deflection limits are appropriate for your application. 3 Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4.GLULAM:bxd=actual breadth x actual depth.. 11/18/2016 Post Capacities Simpson Strong Tie Post Allowable Compression Loads for Douglas-Fir-Larch Page 73 of 129 Y c� 0 y Lumbarii Per to • Compression CapaC11 Parallel to Grain,P 1 0) Compression Capacit Parallel to Grain,Pe(160} :',..Framing Size Grain, Flom1na17op Plate Height(it.? SIMPSON p Plate Height(ft 1 Gratia PC1 8 9 10.. , _ .11 t2 .. 8 10 11 12",._ 2x4 �7 32 z I, .. . 336# a r�} n z �? 541',.. 3_S2 5579,-,,,-t I (fitips 1lwvdtv stroriatl,r;,- 2 s d263 0 6685. .:::. 4 .};r I 1x9 ,. 2 . .I 1655_ 73.95 � }.:'Stl --'1=-2 .4' f° X845 9510 • 10034 r y 420 ?! j 12330 1 11 40 12215 - j s 4x8 F 1{, y 15800 11540 i _ I 16035 Pi„.: $ 1 ,... ., 4x10 t 3 I 20235 19087 ' 20366 2x6---1----7,; "--1; xff 5155_ 8970 ( � 1 -� -3-5'.'47:5---- � � � 1 � 4 � 111030 33I'''' � � • 3x6 fi1 8595 14945 L'13.-:,',-,'. ( - t , 1 a 18385 1.y.,£; --,2`,-;',J.5 -f,1 77, 1, ,, a 2-2x6 r2 10315 17935 I 1 -. 1 22060 , : s wall 4x6 . 1 12030 20925 [ = �_ 25735 �2x s 2 15470 26905 '''.3'.0 33494 ----,77c., £' �t ;€ ;__.6x6 l� 1 18905 25260 i 1 ! 1 ;� 39255 }' «' ti 6x8 ._.....?1 ..,1 2578• 34450 -31.-- ( �'� _ 46715 - �_ _. ------ • ..,?9.18.:5-71._�A.-.::1 (' � , 6 .. See footnotes Post Allowable Compression Loads for Southern Pine Lumber Perp to Compression Capacity Parallel to Grain,PG(100) Campresslon Capacity Parapet 10 Grain P�(1611) Framing � � Grain, Nominal Top Plate Height(#t l Nominal Top Plate Height(tt i Size ! Grade .p Pc ------i 9 10 1112 8 9 �10 11 12 1 2ti4 #2 1 2965 € ± 3x4 ?r2 4945 1 . 2-2x4 #2 5935 . r ..._...,,. --17;:','",,„_2.-------- µ .__.._. _,.,. ,... __..... _µ,,.« 4^InC t 4x4 �2 6924 --- -.til,;,-_,.,,,, i _ ti i ± Y'�%i:I 3"'2x4 {,.. #� s I i [ 4x8 #2 1487 t I - k 4x8 #2 14335 ,... 1 ; 1131, t i, #x10 ;2 18290 I 3xV #L i IA��A� ?_. 5 }1:),'I-, „-,.£; i� £ n fi -., {{;70 ,..«...:3(()) .....« }} 'N,,':,;; „i I, 2x6 ' 4660 J12.M ±� �”. i � Y � � �� l £1: '± 3. J -l� � 16i�i1 i 1 2-2x6 #2 i 9325 £ ...1..--.7717"- ,I,',„.2,-;',,,!--- Y 1z1 ,, ii,,..t Ss S "_..ii.,,,,.,_:_„,,,,„,„ 1 i ± {,)} $ Wail 4xfi 6 #2 t i 0875 } E { s g 7 } t 7 t'(, .) mo=t } e� I 32v6 #2 1x985 2'1 oa !£sr f 1 '< .1-1(‘'-' 6x #1 . -I I ., ,w. ,w�u , �. ..,... _ _ a,_ C95 21495 20270 I e, 5 27260 15655 30025 24824 23695 20fi14 17975 (_...,_4 As ?33°5 77-19-;j'1-571. 27640• ' 26680 23540 21345 40944 mm 36575 32180 28145 24515 -1 See footnotes 10 Post Allowable Compression Loads for Spruce-Pine Fir Lumber Perp to Compression Capacity Parallel to Grain Po(100} Compression Capacity Parallel to Gram Pe(160) _ Framing Size^V Grade Gra€rt, Nominal Top Plate Hi Height(11""� ^m Nominal Top Plate#teighl(tt} uy# m, ^« 11- P 8 , .1 Q } 1/ 22 8 C i 10 11 12 c 2x4 ,ii, 2230 2775 ( 2250 1 18 0 1540 1305 2930 2344 1905 1 1575 }_ 1325 3x4 17 2 3720 4625 3745 „ , 33810 , 25 0 21 0 4 35 3895 1 3175 2630 2210 $ Ire t 2 x9 1z 2 4465 5545 1..2495 3693 Ota I. 635 5865 2655 t -7„""177,1-i"— [a ' 4675 3''05 316+ C , r �4x' °1 a2 205 6974 5245 ` 1.510, r 359 3040 6840 5455' 1 4440 ,._3680_. 3035 1 3-2x4 17 2a„ ( 6695 8320 1745 5z+5 } 4625310 8795 . 7015 1 5710 1720 t 3980 t 42x4 1 fist,, -99° 11495. 6 0 ! 7395 6155 52}5 11730": -9355; 7615 _2310 I 631€1 2x6 #1/#2 3505 7745 8885 6035_ 5255 4575 X920 8055 6770 .� 5725 4885 1 ._ '16600 13425 112$0""9545 I 8145 b in_h 1 3x6 s :i7"2 845 l 1290 7485 11475 t 10000 87641 , 7625 Wall ..2.2x6 #it#2 7015 15485 ( 13770 22470 10515 9150 19204 1611 13540 11450 ( 9770 3 9x6 a1 2 105211 7 7 f+13 1�t t 3' y£c �� f Sr0 1;,, 0 yva a"8x6... _, 112 1 14D25. . _ ..... _�7 }rr 19,::::)...._ 3 ' fie __ .. „,,,(7/5_, r �a See footnotes httry -//w A/V.v ctrrvInti 'r m/r,rwil lntclnnnnartor.c/w( c-cnnctructinn-cnnnectcus/technical-notes/cost-caoacit€es 3/5 • 11/18/2016 Post Capacities I Simpson Strong-Tie ` Post Allowable Compression Loads for Hem-Fir Page 74 of 129 . Lumber Perp to Compression Capacity Parallel to Grain Pc(100) Compression Capacity Parallel to Grain Pc(160) FramingSize Grade Grain, Nominal Top Plate Height(it.) p Plate Height(tt..._ ,,. SIMPSON I Poi- 8 9 10 1 11 12 8 ,,,fir 1D I 11 12 2x4 #2.., ...1 2125 2630 i 211,, 1730 1435 1210 X2745 iz 4 1770 I 1465 ; 1230 3x4 #2 ; 3545 43$5 ` 3525 2880 232 a 2020 4571 1oS7'i" 0A 2s 1)wvv 443-1rongtle m / 4 2_r + 1 a2 l 25S 5260 l, 4230 3460 2875 t 242 5485 4355 3540 i 2925 2460 1 i1 4x4 ,... x2 ) 4950 6140 .4335 41 5 .3 5 ; 2830 6400 ; 5085 4125 3415 28/0 <' r l ''3=2 1C' nI 6380 7$90 1 5340 � 5185 l 4310 i 36,55...... 8250. , 6535", ( 5305 43°0 3690 'i 204 - a2 oaua 1€}525 $405 i 6-15 5750 4850 10970::: 8715'. 7075 5855 4920 r 2x6 42 3340 7950 Y 6880 ,,, 5905 5065 43b5 93$5 I 7735 5425 ) 5395 } 4580 6-Inch 3x6 l #2 5570 13250 11470 ( 9$40 8440 a.. 7270 15640 12890' 107;10 I 8995 7635 18765 15470 128,E 10790 91£s5 LYall 2-2xfi I— #2 6085 15900 X13765 _ 11810 10130 872 m 3 2x6 #2 10025 23855 '� f14„,--1 ,1.,51P5 1'0' 2810 23205 192; 16165 � ., 4 2x6 )._. #2 13365 �1�0 -7 r rs' ' 9260 1€4` / ',I. 3 Y ,,,,,,g5790 _. 5 .. 18325 'a r See footnotes Post Tension Load Taoles Post Tension Loads for Douglas-Fir-Larch Lumber Allowable Tension F __ Pt, (160) Framing Bolt Diameter(in.) Size Grade ----.7----r-. a__ f� 1 2x4 #2 7245 6080 5820 5305 5045 3x4 --Tr 12075 10135-1- 9705 8840 8410 2-2x4 #2 14490 12160 I 11645 10610 10090 4-Inch 4x4 #2 16905 1 14190 I 13585 12375 11775 Wall 3-2x4 #2 21735 182461 17465 15915 15135 .._ 4x6 #2 23025 19325 18500 16855 16035 4x8 #2 28015 23510 l 22510 20510 19510 4x10 #2 32765 27500 26330 23990 22815 2x6 #2 9865 8860 1 8635 8185 7960 3x6 #2 16445 14765 14390 13640 13270 2-2x6 #2 19735 17715 17265 16370 15920 � _ , . ,. 6-Inch Wall 4x6 ,,, #2 23025 20670 1 20145 19100 18575 3-2x6 #2 29600 26575 25900 24555 23885 6x6 #1 32670 29330 28585 27100 26360 W 6x8 #1 , 44550 39995 i 38980 36955 35945 See footnotes ht+nc'!lwlllaN ctrnnrlthP rnm/nrrvv{I lrtc/rnnnPrtnrc/wrW'I-rnnctrl IntiM-r.onnP.r tnrA/tr?r:hnir:.'al-nntRs/nos(-r..a(aci ties 4/f. 11/18/2016 Post Capacities[Simpson Strong-Tie Post Tension Loads for Southern Pine Page 75 of 129 . , . Allowable Tension , Lumber SIMPSON Pi, (160) 1 , Boll Diameter(in.) i-7.u.,°,3,4-, -i•,,,.4 , Size i Grade , ,„ , ___,...., „„,„ „,., ,, __,„,„,„ , -- -chtLos://www,stronotie.cornit 1 <.tr:-.,1' 1 rc-2.gile go'cl.y2 , . .=74/ i 'i;3(; 4555 4150 3956 3x4 1 #2 ci'i,',,, 1._ 4 - ' : -:,-„, 7595 6920 6580 I 2-2x4 i #2 1 ,,3,','' 95'20 9115 J 8305 7900 4-Inch 4x4 1 #2 13.25 1 ' ;:x'i3 10630 95130 9215 Wall 3-2x4 I #2 -170'0 !4:275 13670 12455 11845 1 4x6 1 #2 18483 :55,10 14850 13530 12870 1 ;- 4X8 #2 22335 ,67?,', ..;• 17945 1 16350 15550 J.,i 4x10 I #2 24605 6r,,c„,n L,/..;' 19770 18015 17135 _ _ 2x6 #2 7930 '7110 6930 6570 6390 ....___ __ „ , .. _ 3x6 #2 13200 11850 11550 10950 r10650 2-2x6 #2 15840 14220 13860 13140 12780 6-inch _...... 4x6 #2 18480 16590 16170 15330 14910 Wall , 3-2x6 #2 23160 1 21330 20790 19710 19170 6x6 #1 43560 ' 39105 38115 36135 35145 6x8 #1 59400 ' 53325 i 51975 49275 47925 See footnotes Post Tension Loads for Spruce-Pine-Fir I- Allowable Tension Lumber Pt, (160) Framing ------ Bolt Diameter(in.) Size Grade a ' u - [___±,L6/ _ ?A 1/2 1 JL 2x4 #1!#2 5670 4760 4555 4150 3950 3x4 #1/#2 9450 7930 7595 6920 6580 4-Inch 2-2x4 #1/#2 11340 1 9520 1 9115 8305 7900 Wall I 4x4 I #1/#2 13230 1 11105 1 10630 9685 1 9215 13-2x4 t #1/#2 17010 14275 13670 12455 11845 $ [ 4-2x4 1 #1/#2 22680 1190351 18225 16605 15795 2x6 #1/#2 7720 6930 r6755 6405 6230 3x6 #1/#2 12870 11555 11260 I 10675 10385 6-Inch 2-2x6 #1/#2 154451 13865 13515-1 12810 12460 Wall i 3-2x6 #1/#2 23165 20795 20270 19215 18690 J4-2x6 #11/#2 2835 I 25.420 I 24/75 1 23490 22845 See footnotes . httos://www.stronatie.com/oroducts/connectorstwood-construction-connectorsitechnical-notes/Dost-caoacities 5/! i Page 76 of 129 AOmit: West Hills Development Projret: River Terrace East Proj.#: 16-T100 ,^ Date: 3/6/2018 y By: YSP FROELICH E N G t N E E R S E Cont. Spread Footing Design At Building Ext. Wall (II to joist) Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 832 Roof SL(psf) 25 Ftg Dead Load(plf) 435 Floor DL(psf) 27 Live Load(plf) 320 Floor LL(psf) 40 Snow Load(plf) 300 Wall DL(psf) 10 IBC Eq.16-9(plf) 1587 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1567 IBC Eq.16-11(plf) 1732 Tributary Areas Total bearing(psf) 866 Roof Trib(ft) 12 Allowable brg(psf) 2500 Floor trib(ft) 8 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1.5 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 832 Footing width(in.) 24 Live Load(plf) 320 Footing depth(in.) 12 Snow Load(plf) 300 Cont. Spread Footing Design At Building Ext. Wall (I_to joist) Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1138 Roof SL(psf) 25 Ftg Dead Load(plf) 435 Floor DL(psf) 27 Live Load(plf) 960 Floor LL(psf) 40 Snow Load(plf) 125 Wall DL(psf) 10 IBC Eq.16-9(plf) 2533 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1698 IBC Eq.16-11(plf) 2387 Tributary Areas Total bearing(psf) 1267 Roof Trib(ft) 5 Allowable brg(psf) 2500 Floor trib(ft) 24 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1.5 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1138 Footing width(in.) 24 Live Load(plf) 960 2098 < 2500 p l f = 2 X 6@ 16 Footing depth(in.) 12 Snow Load(plf) 125 Cont. Spread Footing Design At Int. Brg Wall - Basement Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1795 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 1800 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 3885 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 2335 IBC Eq.16-11(plf) 3623 3 5 9 5*10/8 (increase f o r Tributary Areas Total bearing(psf) 1943 Roof Trib(ft) 10 Allowable brg(psf) 2500 db 1 span joists) = 4494 Floor trib(ft) 45 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1795 Footing width(in.) 24 Live Load(plf) 1800 Footing depth(in.) 12 Snow Load(plf) 250 4494 < 5000 p 1 f = (2) 2x6@16 • Page 77 of 129 Cont. Spread Footing Design At Int. Brg Wall - 1st Floor Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1390 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 1200 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 2880 2590*10/8 (increase f o r Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1930 dbl span njoists) = 3238 IBC Eq.16-11 (plf) 2768 p Tributary Areas Total bearing(psf) 1440 Roof Trib(ft) 10 Allowable brg(psf) 2500 Floor trib(ft) 30 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1390 Footing width(in.) 24 Live Load(plf) 1200 3238 < 5000 p 1 f = (2) 2X6@16 Footing depth(in.) 12 Snow Load(pit) 250 Cont. Spread Footing Design At Int. Brg Wall - 2nd Floor Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 885 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 600 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 1775 15 2 3*10/8 (increase f o r Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1425 dbl joists) = 1903 IBC Eq.16-11 (plf) 1813 span Tributary Areas Total bearing(psf) 906 Roof Trib(ft) 10 Allowable brg(psf) 2500 Floor trib(ft) 15 Footing OK Wall height(ft) 30 Stemwall ht.(ft) 0 Stud Wall Loadings Results 19 0 3 < 2 5 0 0 plf = 2X6@16 Stemwall width(in.) 0 Dead Load(plf) 885 p Footing width(in.) 24 Live Load(plf) 600 2500 p 1 f = (2) 2 X 4 @ 16 Footing depth(in.) 12 Snow Load(plf) 250 i Page 78 of 129 Cont. Spread Footing Design At Party Wall Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1030 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 880 Floor LL(psf) 40 Snow Load(plf) 50 Wall DL(psf) 10 IBC Eq.16-9(plf) 2200 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1370 1910*10/8 (increase f o r IBCEq.16-11 (plf) 2018 dbl span joists) = 2388 Tributary Areas Total bearing(psf) 1100 Roof Trib(ft) 2 Allowable brg(psf) 2500 Floor trib(ft) 22 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 0 Dead Load(plf) 1030 2 3 8 8 < 2 5 0 0 plf = db 1 2 X 4@ 16 Footing width(in.) 24 Live Load(plf) 880 p Footing depth(in.) 12 Snow Load(plf) 50 Cont. Spread Footing Design At Corridor Wall Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1345 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 55 Live Load(plf) 900 Floor LL(psf) 100 Snow Load(plf) 625 Wall DL(psf) 10 IBC Eq.16-9(plf) 2535 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 2260 IBC Eq.16-11 (plf) 2779 Tributary Areas Total bearing(psf) 1389 Roof Trib(ft) 25 Allowable brg(psf) 2500 Floor trib(ft) 9 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1345 Footing width(in.) 24 Live Load(plf) 900 2489 < 2500 p 1 f = 2X6@ 16 Footing depth(in.) 12 Snow Load(plf) 625 COMPANY PROJECT Page /9 of 129 WoodWorks® :40,41,4 CF. rlt,nxi t f+:; Feb.15,2018 14:04 Ext HF 96 2x6 at 16(2500p1f TL 35psf W).wwc Design Check Calculation Sheet Wood Works Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 2500 plf Lateral Wind Full Area 35.00(16.0") psf Self-weight Dead Axial UDL 12 plf Lateral Reactions(lbs): 9'co -- A0' 9' Unfactored: .. Dead Wind 210 210 Factored: L->R 126 126 Load comb #2 - #2 Ext Wall Stud Lumber Stud,Hem-Fir,No.2,2x6(1-1/2"x5-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 16.0"cic;Total length:9';Clear span:8'-10.5";volume=0.5 tuft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 23 Fv' = 240 psi fv/Fv' = 0.10 Bending(+) fb - 450 Fb' = 2033 psi fb/Fb' = 0.22 Axial fc = 406 Fc' = 771 psi fc/Fc' = 0.53 Axial Bearing fc = 406 Fe* = 1287 psi fc/Fc* = 0.32 Support Bearing fcp = 406 Fcp = 405 psi fcp/Fcp = 1.00 Combined (axial compression - side load bending) Eq.3.9-3 = 0.58 Live Defl'n 0.15 = L/706 0.90 = L/120 in 0.17 Total Defl'n 0.15 = L/706 0.90 = L/120 in 0.17 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.389 - - - - - 3 E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Ervin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+,6W, V max = 126, V design = 126 lbs Bending(+): LC #2 = .6o+.6W, M = 284 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 3349 lbs Combined : LC #3 = D+.6W; (1 - fc/FcE) = 0.59 Support : LC #1 = D only; R = 3349 lbs, Cap = 3341, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc-concentrated E-earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 27.0e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.Wood Works analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT a e,-Ficr0g 141 y WoodWorks® ttlxrrx457 > <<z .n>r t:za.0 Feb.15,2018 14:05 Int HF 9ft 2x4 at 12(1700pIf TL 5psf W).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft) Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 1700 plf Lateral Wind Full Area 5.00(12.0") psf Self-weight Dead Axial UDL 10 plf Lateral Reactions(lbs): 9, co p o' A 9' Unfactored: Dead Wind 23 23 Factored: L->R 14 14 Load comb #2 - #2 Int Wall Stud Lumber Stud,Hem-Fir,No.2,2x4(1-1/2"x3-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 12.0"c./c;Total length:9';Clear span:8'-10.5";volume=0.3 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 4 Fv' = 240 psi fv/Fv' = 0.02 Bending(+) fb = 119 Fb' = 2346 psi fb/Fb' = 0.05 Axial fc = 326 Fc' = 376 psi fc/Fc' = 0.87 Axial Bearing fc = 326 Fc* = 1345 psi fc/Fc* = 0.24 Support Bearin4 fcp = 326 Fcp = 405 psi fcp/Fcp = 0.80 Combined (axial compression - side load bending) Eq.3.9-3 = 0.95 Live Defl'n 0.06 = <L/999 0.90 = 1/120 in 0.07 Total Defl'n 0.06 = <L/999 0.90 = L/120 in 0.07 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.500 1.00 1.15 1.00 1.00 2 Ft' 1300 0.90 1.00 1.00 0.280 1.150 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.163 - - - - - 3 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.150 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max = 14, V design - 14 lbs Bending(+): LC #2 = .6D+.6W, M = 30 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 1710 lbs Combined : LC #3 = D+.6W; (1 - fc/FcE) = 0.20 Support : LC #1 = D only; R = 1710 lbs, Cap = 2126, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc-concentrated E-earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 6.97e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (live, wind, snow. Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. • Page 81 of 129 COMPANY PROJECT Wood,..,M, ,,Or>x-.axt to,,s<e,co,irr n.,',.' Feb.15,2018 15:49 Int HF Oft 2e4 at 16(1250p11 TL 5psf W).wwc Design Check Calculation Sheet Wood Works Sizer 11.1 Loads: Load Type Distribution Location [ft) Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 1250 plf Lateral Wind Full Area 5.00(16.0") psf Self-weight Dead Axial UDL 7 ptf Lateral Reactions(lbs): } I 9' fc o o -o 0' 9' Un factored: Dead Wind 30 30 Factored: L->R 18 18 Load comb #2 #2 Int Wall Stud Lumber Stud,Hem-Fir,No.2,2x4(1-112"x3-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 16.0"c/c;Total length:9';Clear span:8'-10.5';volume=0.3 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NOS tots: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 5 Fv' = 240 psi fv/Fv' = 0.02 Bending)+) fb = 159 Fb' = 2346 psi fb/Fb' = 0.07 Axial fc = 319 Fc' = 376 psi fc/Fc' = 0.85 Axial Bearing fc = 319 Fc* = 1345 psi fc/Fc* = 0.24 Support Bearing fcp = 319 Fcp = 405 psi fop/Fop = 0.79 Combined (axial compression - side load bendimg) Eq.3.9-3 = 0.99 Live Defl'n 0.08 = <L/999 0.90 = L/120 in 0.09 Total Defl'n 0.08 = <L/999 0.90 = L/120 in 0.09 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.500 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.280 1.150 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.163 - - - - - 3 E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.150 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max = 18, V design = 18 lbs Bending(+): LC #2 = .6D+.6W, M = 41 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 1676 lbs Combined : LC #3 = D+.6W; (1 - fc/FcE) - 0.21 Support : LC #1 = D only; R.= 1676 lbs, Cap = 2126, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 6.97e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.Wood Works analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. COMPANYPage 82 of 129 PROJECT WoodWorks® 'p '\ Af'?FFeb.15,2018 14:15 Int HF 9ft 2x6 at 12(3300ptf TL 5psf W).wwc ryt'R8L'FOR>SZn:7t>L?€S7.��; Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 3300 plf Lateral Wind Full Area 5.00(12.0") psf Self-weight Dead Axial UDL 15 plf Lateral Reactions(lbs): t 9' -- 1' CO> -4Ki 0' A 9, Unfactored: Dead Wind 23 23 Factored: L->R 14 14 Load comb #2 #2 Ext Wall Stud Lumber Stud,Hem-Fir,No.2,2x6(1-1/2"x5-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 12.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.5 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor.applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 2 Fv' = 240 psi fv/Fv' = 0.01 Bending(+) £b = 48 FIs' = 2033 psi fb/Fb' = 0.02 Axial fc = 402 Fc' = 771 psi fc/Fc' = 0.52 Axial Bearing fc = 402 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearing fcp = 402 Fop = 405 psi fcp/Fcp = 0.99 Combined (axial compression ' side load bendieg) Eq.3.9-3 = 0.24 Live Defl'n 0.02 = <L/999 0.90 = L/120 in 0.02 Total Defl'n 0.02 = <L/999 0.90 = L/120 in 0.02 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.389 - - - - - 3 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: • Shear : LC #2 - .6D+.6W, V max - 14, V design = 14 lbs Bending(+): LC #2 = .6D+.6W, M = 30 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 - D only, P = 3315 lbs Combined : LC #3 D+.6W; (1 - fc/FcE) = 0.60 Support : LC #1 = D only; R = 3315 lbs, Cap = 3341, Lb = 1.50", Cb = 1.00 D=dead L=Live S=snow W=wind I-impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 27.0e06 lb-int "Live" deflection - Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. FROELICH CONSULTING ENGINEERS INC., Client: Project: Project#: By: Footings Maximum Allowable Required Re wired Dimensions Used Dimensions Footing Bearing Footing Size q��oµ. - Load(Ptot) Area W(ft) L(ft) W (ft) L(ft) D(in) Weight Pressure 18"x cont x10" 3500 2500 1.40 1.18 1.18 1.5 1 10 188 2458 - 24"x cont x 10" 14000 2500 5.60 2.37 2.37 2 3 10 750 2458 W 36"x cont x 10" 27000 2500 10.80 3.29 3.29 3 4 10 1500 2375 2'-6"x 2'-6"x 10" - 15500 2500 6.20 2.49 2.49 2.5 2.667 10 833 2450 3'-0" x 3'-0"x 12" 21000 2500 8.40 2.90 2.90 3 3 12 1350 2483 3'-6" x 3'-6"x 12" 27000 2500 10.80 3.29 3.29 3.5 3.333 12 1750 2465 4'-0"x 4'-0"x 12" 37000 2500 14.80 3.85 3.85 4 4 12 2400 2463 4'-6"x 4'-6"x 12" 52000 2500 20.80 4.56 4.56 4.5 5 12 3375 2461 Required Area: _(Ptot/gallow)°.5 Bearing Pressure =(Ptot+Wf;g)/(W*L) _(Ptot+Wfrg)/(W*L*3.1415/4) co w 0 N CD 4 Client: Project: Proj.#: Date: By: FROELICH ENGINEERS ASCE 7-05 Earthquake Load Cs Factor Importance Factor(Seismic) I = 1.0 Basic Seismic Force Resisting System Light Framed Wood Shear Wall R = 6.5 Design Spectral Response Acceleration Seismic Design Coefficient Development Latitude Longitude Sns S01 Category Cs 45.559 -122.853 0.726 0.403 D 0.1117 - Information in table was obtained from USES website. Conservatively design all structures in all developments for the Cs design value specified below Controlling Cs Value 0.1117 Use Cs = 0.12 for Design in all Developments I Equations: I Cs = Sps*I/R Response Coefficient I CD CO 0 N CD Page 85 of 129 Client: Project: River"Terrace Project#: 16-T100 Date: 11/18/2016 �._ By: YSP FROELICH EN GINEERSA WIN])FORCE CALCULATION- MWFRS Side-Side Event ASCE 7-10 SECTION 27-2 METHOD 2-ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust V3,= 120 mph Wind Directionality Factor Kd= 0.85 Table 26.6-1 Wind Importance Factor IW= 1.00 Wind Exposure Category= B BuildinE Parameters Horizontal Dimension of Bldg B= 54 ft Measured Normal to wind direction Horizontal Dimension of Bldg L= 146 ft Measured Parallel to wind direction Mean Roof Height h = 40 ft Highest Roof Level h„= 40 ft Approximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 Output- Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H — 0 ft Figure 26.8-1 Length of 1/2 hill height Lh = 1 ft Figure 26.8-1 Dist. From Crest to Bldg. x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 Horizontal Attenuation Factor m= 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor K l/(H/Lh)= 1 Figure 26.8-1 Output-Topographic Multipliers.K1 = 0.00 K, = 1.00 K3 = 1.00 Topographic Factor Kn= 1.00 Page 86 of 129 Gust Effects Input Integral Length Scale Factor = 320 ft Table 26.9-1 Integral Length Scale nominal height of boundary zg= 1200 Table 26.9-1 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 Power Law Exponent E = 0.33 Table 26.9-1 Minimum Height zm;n= 30 ft Table 26.9-1 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.88 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.85 Pressure Coefficients Input Length to Width Ratio L/B= 2.70 Height to Length Ratio h/L= 0.27 Roof Pitch= 9 : 12 = 36.87 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients Cp (see below) Figure 27.4-1 Direction Cp Height(ft) Kb qz(psf) Velocity Windward 0.8 15 0.57 18.0 Pressure Leeward -0.27 20 0.62 19.6 Output qz Roof Windward 0.40 25 0.67 20.8 Roof Leeward -0.6 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 h- 40 0.76 23.8 qh hparapei= 0 0.57 18.0 qh Paae 87 of 129 Design Wind Pressures p (psi) -GC1,;= (-) 16 psf(8psf for roof) min per 27.1.5 Internal Pressure Coefficient GCp; = -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 16.6 -1.2 17.8 ft 20 17.6 -1.2 18.8 25 18.5 -1.2 19.7 30 19.3 -1.2 20.5 40 20.6 -1.2 21.8 50 21.6 -1.2 22.8 60 22.6 -1.2 23.8 70 23.4 -1.2 24.6 80 24.1 -1.2 25.3 90 24.8 -1.2 26.0 100 25.4 -1.2 26.6 120 26.6 -1.2 27.8 40 20.6 -1.2 7.5 -4.7 21.8 12.20 Parapet 0 27.0 -18.0 45.0 Design Load Case I Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures n (psf)-GC,i-(+1 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCp; = 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 8.0 -9.8 17.8 ft 20 9.1 -9.8 18.8 25 9.9 -9.8 19.7 30 10.7 -9.8 20.5 40 12.0 -9.8 21.8 50 13.0 -9.8 22.8 60 14.0 -9.8 23.8 70 14.8 -9.8 24.6 80 15.5 -9.8 25.3 90 16.2 -9.8 26.0 100 16.8 -9.8 26.6 120 18.0 -9.8 27.8 40 12.0 -9.8 2.3 -9.9 21.8 12.20 Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls -By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASD) p (psf)- CCp,-(-1 16 psf(8psf for roof) min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp;= -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction k Windward 1 Leeward 1 Roof WW ( Roof LW IWW+LWI RWW+RLW j Page 88 of 129 Height 15 9.9 -0.7 10.7 ft 20 10.6 -0.7 11.3 25 11.1 -0.7 I1.8 30 11.6 -0.7 12.3 40 12.3 -0.7 13.1 50 13.0 -0.7 13.7 60 13.5 -0.7 14.3 70 14.0 -0.7 14.7 80 14.5 -0.7 15.2 90 14.9 -0.7 15.6 100 15.3 -0.7 16.0 120 15.9 -0.7 16.7 40 12.3 -0.7 4.5 -2.8 13.1 7.32 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASD) p (nsf}-GCr„=(+) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp;= 0.18 Figure 26.11-1 Wail Raaf Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.8 -5.9 10.7 ft 20 5.4 -5.9 11.3 25 6.0 -5.9 11.8 30 6.4 -5.9 12.3 40 7.2 -5.9 13.1 50 7.8 -5.9 13.7 60 8.4 -5.9 14.3 70 8.9 -5.9 14.7 80 9.3 -5.9 15.2 90 9.7 -5.9 15.6 100 10.1 -5.9 16.0 120 10.8 -5.9 16.7 40 7.2 -5.9 1.4 -5.9 13.1 7.32 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Page 89 of 129 Client: Project: River Terrace Project#: 16-T100 Date: 11/16/2016 o, By: YSP FROELICH ENGINEERS I WIND FORCE CALCULATION-MWFRS Front-Back Event ASCE 7-10 SECTION 27-2 METHOD 2 -ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 122 mph Wind Directionality Factor Kd= 0.85 Table 26.6-1 Wind Importance Factor IW= 1.00 Wind Exposure Category= B Building Parameters Horizontal Dimension of Bldg B= 146 ft Measured Normal to wind direction Horizontal Dimension of Bldg L= 54 ft Measured Parallel to wind direction Mean Roof Height h= 40 ft Highest Roof Level h„= 40 ft Approximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 Output-Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 26.8-1 Length of 1/2 hill height Lh= 1 ft Figure 26.8-1 Dist. From Crest to Bldg. x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 Horizontal Attenuation Factor m= 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor Kl/(H/Lh)= 1 Figure 26.8-1 Output-Topographic Multipliers K1 = 0.00 K2= 1.00 K3= 1.00 Topographic Factor Kit= 1.00 Page 90 of 129 Gust Effects Input Integral Length Scale Factors = 320 ft Table 26.9-1 Integral Length Scale nominal height of boundary zg= 1200 Table 26.9-1 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 Power Law Exponent E = 0.33 Table 26.9-1 Minimum Height zm;f= 30 ft Table 26.9-1 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.83 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.82 Pressure Coefficients Input Length to Width Ratio L/.B= 0.37 Height to Length Ratio h/L= 0.74 Roof Pitch= 10 : 12 = 39.81 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients Cp (see below) Figure 27.4-1 Direction Cp Height(ft) Kh q2(psf) Velocity Windward 0.8 15 0.57 18.6 Pressure Leeward -0.50 20 0.62 20.2 Output ch Roof Windward -0.20 25 0.67 21.5 Roof Leeward -0.6 30 0.70 22.7 40 0.76 24.6 50 0.81 26.3 60 0.85 27.7 70 0.89 28.9 80 0.93 30.0 90 0.96 31.1 100 0.99 32.0 120 1.04 33.7 h 40 0.76 24.6 qh hparapet- 0 0.57 18.6 4h Page 91 of 129 Design Wind Pressures p (psf) - (SCE„=(-) 16 psf(8psf for roof) min per 27.1.5 Internal Pressure Coefficient GCp; = -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 16.7 -5.7 22.4 ft 20 17.8 -5.7 23.5 25 18.6 -5.7 24.3 30 19.4 -5.7 25.1 40 20.7 -5.7 26.4 50 21.7 -5.7 27.5 60 22.7 -5.7 28.4 70 23.5 -5.7 29.2 80 24.2 -5.7 29.9 90 24.9 -5.7 30.6 100 25.5 -5.7 31.2 120 26.7 -5.7 32.4 40 20.7 -5.7 0.2 -5.0 26.4 8.00 Parapet 0 27.9 -18.6 46.5 Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures p (psf)- GCp,=(+) 16 psf(8psf for roof) min per 27.1.5 Internal Pressure Coefficient GCp;= 0.18 Figure 26.11-1 Wall , Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 7.8 -14.6 22.4 ft 20 8.9 -14.6 23.5 25 9.8 -14.6 24.3 30 10.5 -14.6 25.1 40 11.8 -14.6 26.4 50 12.9 -14.6 27.5 60 13.8 -14.6 28.4 70 14.6 -14.6 29.2 80 15.4 -14.6 29.9 90 16.0 -14.6 30.6 100 16.7 -14.6 31.2 120 17.8 -14.6 32.4 40 1I.8 -14.6 -5.4 -10.6 26.4 8.00 Parapet 0 27.9 -18.6 46.5 Design Load Case 1 Controls -By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASD) p (psf) - GC1,; (-) 16 psf(8psf for roof) min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp; = -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- I Windward I Leeward I Roof WW ( Roof LW I WW+LWJ RWW+RLW I IPage92 of 129 Height 15 10.0 -3.4 13.4 ft 20 10.7 -3.4 14.1 25 11.2 -3.4 14.6 30 11.6 -3.4 15.1 40 12.4 -3.4 15.8 50 13.0 -3.4 16.5 60 13.6 -3.4 17.0 70 14.1 -3.4 17.5 80 14.5 -3.4 18.0 90 14.9 -3.4 18.4 100 15.3 -3.4 18.7 120 16.0 -3.4 19.4 40 12.4 -3.4 0.1 -3.0 15.8 4.80 Parapet 0 16.8 -11.2 27.9 Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASD) p (psi)-GC0=(+) 16 psf(8psf for root)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp;= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.7 -8.7 13.4 ft 20 5.3 -8.7 14.1 25 5.9 -8.7 14.6 30 6.3 -8.7 15.1 40 7.1 -8.7 15.8 50 7.7 -8.7 16.5 60 8.3 -8.7 17.0 70 8.8 -8.7 17.5 80 9.2 -8.7 18.0 90 9.6 -8.7 18.4 100 10.0 -8.7 18.7 120 10.7 -8.7 19.4 40 7.1 -8.7 -3.3 -6.4 15.8 4.80 Parapet 0 16.8 -11.2 27.9 Design Load Case 1 Controls -By Inspection Parapet Loading per ASCE7-10 27.4.5 Page 93 of 129 4 e ,p-+ COMPANY PROJECT j $ o si Feb.8,2017 11:13 Front Back Evert-Beam Concept:»wb S0f1 WARF FOR WOOD Ofil(,N Design Check Calculation Sheet WoodWorks Sitar 10 42 Loads: 'Load Type Distribution Pat- Location Ift1 Magnitude Unit Serra Star[ R,,d Start :End Lnact. ;;a.arl E.i:: U k. Ne - ....z, nit Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(In): i �_ w fi a' 4.2':'0.5" ,'. 0. 00•1' l,read 'd q s Factored:i16 �'f CI i d 50 f it.kA i 1/r(,'P r J co" ) 4 Total 26 Heating:: '{:. 50 V b !u 1R Capacity *s if Deem 691 t!',J' 1209 ` P_. 7691 e, Support 7111 °T.' 781 °,,.L3 ^, T81 Anal/Des �+ Be 0.02 0.04 ` Support 0.02 0.06 4..kr ` t.o-2 Load comb 41 Ml 41 Length 0.50' 0.50• 0.50• Min req'ei 0.50' 0.50• 1i Cb 1.00 1.75 , 0.50' . CO min 1.00 1.75 a 1.00 Cb»appals 1.10 1.18 nI 1.00 .10 1'rp eu ay 625 625, 4 , 1625 'Minimum beating length betting used.I/2"far end supports and lYY.Mr tremor support i7Cy Glulam-Unbal.,West Species,24F-1.8E WS,2-118"x6" 4 laminations,2.118'maximum width, • Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:80'-1.5';volume= 7.1 54.113 Lateral support:lope at supports,bottom=al supports; WARNING:Member length exceeds typical stock length of 60.0011 Analysis vs.Allowable Stress and Deflection using Nos 2a12: Crttrrimr Analysis Melee Design= Maitre 11001 A^,alys a :an Shear. iv= 3 Eel238 psi t r tv 0.'ui Eending(+) fb= 124 Pb' - 003 psi fb/Fb' - 0.15 Dending(-t £b= 190 kb' = 771 psi fb/Fb' ' 0.2S Dead Defl'n 0,47 -.L/999 Live Defl'n negligible Total. Defl'n 0.71 = L/710 2.10= L/240 in D.34 Additional Data: FACTORS: F/Elpsi)CD CM Ct CL CV Cfu Cr Clot Notes Cn'Cvr LC4 Fv' 265 0.90 1.00 1.00 - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 0.372 1.000 1.00 1.00 1.00 1.00 ^ 1 15'- 1650 0.90 1.00 1.00 0.591 1.000 1.00 1.011 1.00 1.00 • 1 Fop' 650 - 1.00 1.00 - 0' 1.8 million 1.00 1.00 - - 1.00 - 1 ' Esdny' 0.85 million 1.00 1.00 1.00 - -- 1 CRITICAL LOAD COMBINATIONS: shear : LC Al =D only, V= 26, V design= 25 Ahs Hendingt+): LC 81 = D only, M= 132 lbs-ft Bending(-): LC 41 = D only, M= 202 lbs-ft Deflection: LC MI = D only (total) D=dead L=live S=snow W=wind 1'-1.mpact Lt=roof live Lc=concentrated 9-earthquake All I.C's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012 CALCULATIONS: Deflection: ES = 68.8106 11.-in2 "Live" deflection = Deflection from all non-dead loads !live, wind, snow...1 Total Deflection= 1.50(Dead Load Deflection) + Live Load Deflection. Lateral stability (+): Lu= 42'-0.50" Le=77'-4.25" R9 = 35.12 Lateral stability (-I: La= 42'-0.50" Le=77'-4.25" R0= 35.12 Design Notes: 1.WoodWorks analysis and design areal accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190,1-2007 4 Grades with equal bending capacity in the top and bottom edges of the beam cross.section are recommended for continuous beams, 5 GLULAM:bad=actual breadth x actual depth 6 Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.33, 7 GLULAM:bearing length based on smaller of Fcp5ension),Fcp(comp'n). Page 94 of 129 COMPANY PROJECT w . .,,,, ,•,, .,,.„ 0 ks,..„, 101 5,2017 1113 Side Side Scent'Seam Concept wwb '1bir1.44, Design Check Calculation Sheet Wm:Works Sizer 10 42 Loads: .. _ Loaf Type imiiiiiifiiitfoil lisr Location f10.1 Magolteda tisi, torn 51a3t god Stott. End .L.,=.91 n,,,,,,, kilo 0230. No 1.., ..E.; ..... Maximum Reactions(tbs),Bearing Capacities(lbs)and Bearing Lengths(In) 550-2' t -, -- I I - 25.05' 55".13" • gofer:toted: Dead tit If 17 10 iscrosed: Total 19 17 17 00 tiesrlrigi Capacity 1eam eel 1209 1209 691 dupport iiii Siii 181 111 Aris110ea Beam 0.01 a.01 001 0.01 8099e1 0.01 1.02 0002 0.91 Load comb 11 al 11 SI Longin 0.504 0.50' 0.504 0.50, !din req'd 0.50. 0.-',0. 0.502 0.SO- O: 1.00 1.15 1.15 1.00 cis min 1.01 1.'75 1.15 1,00 lb support 1.19 1.18 1.11 1.19 Fire map 625 625 625.... 125 *Mtnitffitat heating length Salting ute,tili 112'i son Supports sad fir kg interior SupponS Glulam-Unbal.,West Species,24F-1.8E WS,2-118"x6" 4 laminations,2-1(6'maximum width, Supports:All-Timber-soft Beam,D Pit-L No2 Total length:5540';volume= 4,9 cuAt; Lateral support:topo at supports.bottomat supports; Analysis vs.Allowable Stress and Deflection using NDS 2012 0 Ct0t9r109 Atm t yst 4 Valise Defiltin Veltse belt MA `1.1. 610..tqn Smear fv. 2 Fe a 230 ' psi rvIrv. = 0.',1 1teeding ft) fle= 40 Pb' ,. 1292 psi Iblirtit . 0.01 Bending(-) lib.. 57 Pb' "1090 psi Min,. Dead Ceti n 0.07 =<Id 999 Live DesElin negligible Total frei:Vo 0. 11) - 1L/999 0,22 - L1240 in 0,111 Additional Data: FACTORS: 14/1(peli121 CM Cl CL CO Cfn Cr Cfrt Notes Cri.Ces LcI Tv' 265 0.90 1.00 1.90 - - 1-00 1.00 1.60 ii e5'. 2400 4.90 1.00 1.00 0.095 1,000 0200 1.00 1.00 1.00 , 211" 1450 0.1)0 1.09 1,00 0.541 1.000 1.00 1,00 1.00 1.00 1 Cop' 6011 - 1.911 1090 - 0' 1.0 isillion 1.00 1.00 - 1.00 . - • Dainy' 0.05 million 1.10 1.(pl - + - .•• • CR)LICAL LOAD COMBINATIONS: near i LC 01 = 0 only, V= 15, V design ,-, 14 lbs 1e9d1091+1: LC 111 =1 only, M= 50 lbs-Cr 11andingt-13 LC 01 m 00910, II m 61 lbs-ft Deflection: LC 01 = 9 only itotal: imdead L=live Smsnow Wmeinci Isiimpatt Lm-roof live 1,-,co00e900ated E=earitignake All 1,10 are listed In the Analysis output Load combinations: 1104197-01 / IBC 2012 CALCULATIONS: be:fleet-Lori: Er - 98.0e56 lb-in2 "Live" deflection= Deflection from all non-deed loads (love, wind, anon 1 Total Deflation- 1.50ibead Load De(lection) e Live Load 9e£lactic,. Laterel stability fa 0 r Le =22.-0.50" Le = 46'-0.94' <0= 21.10 Lateral SCObil,ty --.): La - 25'-0.50" Le =46,-0.94" 90= 27.10 Design Notes: I WoodWorks analysis and design are in acconfance with the ICC International Building Code(1131 2312).the National Design Specification(1400 2012),and NOS Design Suppleme01 2 Please verify that the default deflection Omits are appropriate for your application, 3 Giulam design values are for materials conforming to ANSI 117-2010 end manufactured in acconlance with ANSI Al 90.1.2007 S.Grades with equal bending capacity In the top and bottom edges 01 160 beam cross-section are tecommended for continuous beams 5 GLULAM:bad=actual breadth x actual depth. S.Gluiam Beams shall be laterally supported according to the provisions of NOS Clause 3.03. 7 GLULAM:bearing length based on smaller of Fcp(tension),Fcp(compin), Page 95 of 129 Client: Arbor 4\e Project: River Terrace- 12 Plex DH Project#: 16-T100 -, Date: Feb-17 By: YSP FROELICH EN IN:=EPtsa Lateral Design - Wood Walls Shear Walls SEISMIC: Site Classification: D Occupancy Category: II Occupancy Importance Factor I = 1.0 System Over-strength Factor: Light Frame Walls with Shear Panels I W= I 3.0 Response Modifiaction Coefficient: Light Frame Walls with Shear Panels R= ] 6.5 MCE Short Period Pectal Response accel.: Ss= 1.088 MCE 1-second period spectral response accel.: S1 = 0.590 5%damped short period spectral response accel.: Sps= 0.726 5%damped 1-second period spectral response accel.: SD1 = 0.500 Seismic Design Category(ASCE Table 11.6-1 & 11.6-2): D Seimic Response Coefficient(ASCE 7-05) EQ 12.8-2 Cs=SDs/(RJI) Cs= 0.112 Controls Eq 12.8-3(max)-in addition to sections 12.8.2, 12.8.2.1, Table 12.8-1 Cs=SQ1/(T(R/I)) Ta=Cth0x Ta= 0.365 Ct= 0.02 C = 1.4 from table 12.8-1 h„= 48 T= 0.511 )er 12.8.2 x= 0.75 Cs= 0.211 Eq 12.8-5(min) Cs=0.01 Cs= 0.010 Eq 12.8-5(min) Cs=0.044Spsl Cs= 0.032 Cs= 0.112 Allowable Stress Design: 0.7E Cs= 0.078 I Page 96 of 129 Seismic Dead Loads Note: Dead Load includes 10psf for interior walls/partitions Level diaph area Dead Load Int.Wall Trib Wall Int. Wall Wall Wt E Wall DECK SQ FT Total DL (ftz) (psf) L(ft) height(ft) Wt(psf) (osf) L(ft) 10 PSF (lbs) Roof 4150 18 300 5 10 10 300 2160 106860 4"'Floor 4150 27 300 10 10 10 300 2160 174210 31-1 Floor 4150 27 300 10 10 10 300 2160 174210 2n°Floor 3000 27 200 10 10 10 200 1080 122080 Total= 577360 Seismic Base Shear(Working stress Design) V=Cs(DL) V= 45141 lbs Vertical Distribuition Level Weight Height Wt* Ht w`t")trotai V IVT =(Wt(Ht)/Total)*V Roof 106860 40 4274400 0.301 45141 13583 =Vrf 4th Floor 174210 30 5226300 0,368 45141 16607 =V4th 3"'Floor 174210 20 3484200 0.245 45141 11072 =Vara 2""Floor 122080 10 1220800 0.086 45141 3879 V2nd Total= 14205700 1.000 Vrr= 13583 lbs V4th= 16607 lbs (Allowable Stress Design Loads) V3rd= 11072 lbs Vend= 3879 lbs 45141 Diaphragm Loads Level - WPx(ibs) V;(lbs) V;(lbs) Zw1(lbs) Fpx=((/V;)/(Ew1))*wPx Roof 106860 13583 13583 106860 13583 =Frf 4`"Floor 174210 16607 30190 281070 18712 =F4th 3rd Floor 174210 11072 41261 455280 15788 =F3rd 2""Floor 122080 3879 45141 577360 9545 =F2nd Min Diaphragm Loads SDs= 0.726 Fpme0.2*SDs*wPx*I*0.7 Level Roof 10861 Vrf= 13583 lbs 4th Floor 17707 V4th= 18712 lbs 3fd Floor 17707 V3rd= 17707 lbs ,rJ 2 Floor 12408 Vend= 12408 lbs (Allowable Stress Design Loads) Page 97 of 129 Client: Arbor Project: River Terrace - 12 Plex DH Project#: 16-T100 Date: 2/8/17 By: YSP FROELICH ENGINEERS ! SEISMIC LOAD Story Distribution: Areas: Roof: 13583 lbs Roof: 4146 sq ft 4th: 16607 lbs 4th: 4146 sq ft 3rd: 11072 lbs 3rd: 4146 sq ft 2nd: 3879 lbs 2nd: 3000 sq ft WIND LOAD Story Distribution: Level Windward Leeward Total Front-Back Event Roof: 109 36 145 4th: 114 38' 152 Redundancy Factor, p 3rd: 107 36 142 2nd: 100 33 133 Side-Side Event Event Per ASCE7-10, p= 1.0 because of large amount of shearwalls and Roof: 110 37 146 because no wall takes more than 33%of the story shear. 4th: 96 32 128 3rd: 88+ 29 117 2nd: 81 27 108j Front/Back Event SEISMIC WIND Trib Area Load Trib Width Windward Leeward Combined? Load Design Load Load Typ LEVEL GRID (sq ft) (lbs) (ft) (lbs) (lbs) (YIN) (lbs) (lbs) Roof AA 830 2719 16 1740 580 Y 2320 2719 S AC 2590 8485 50 5438 1813 Y 7250 8485 S AE 726 2378 14 1523 508 Y 2030 2378 S 4th AA 830 3325 16 1824 608 Y 2432- 3325 S AC 2590 10375 50 5700 1900 Y 7600 10375 S AE 726 2908 14 1596 532 Y 2128 2908 S 3rd AA 830 2216 16 1704 568 Y 2272 2272 S AC 2590 6916 50 5325 1775 Y 7100 7100 S AE 726 1939 14 1491 497 Y 1988 1988 S 2nd AA 600 776 16 1596 532 Y 2128 776 S AC 1875 2425 r 50 4988 1663 Y 6650 2425 S AE 525 679 14 1397 466 Y 1862 679 S Side/Side Event SEISMIC WIND Trib Area Load Trib Width Windward Leeward Combined? Load Design Load Load Typ LEVEL GRID % (lbs) % (55') (lbs) (lbs) (YIN) (lbs) (lbs) Roof 11 16 2173 - 15 903 301 Y 1205 2173 S 12 34 4618 35 2108 703 Y 2811 4618 S 13 34 4618 35 2108 703 Y 2811 4618 S 14 16 2173 15 903 301 Y 1205 2173 S Page 98 of 1 4th 11 16 2657 15 792 264 Y 1056 2657 S 12 34 5646 35 1848 616 Y 2464 , 5646 S 13 34 5646 35 1848 616 Y 2464 5646 S 14 16 2657 15 792 264 Y 1056 2657 S 3rd 11 16 1771 15 724 241 Y _ 965 1771 S 12 34 3764 35 1689 563 Y 2252 3764 S 13 34 3764 35 1689 563 Y 2252 3764 S 14 16 1771 15 724 241 Y 965 1771 S 2nd 11 16 621 15 668 223 N 668 668 W 12 34 1319 35 1559 520 N 1559 1559 W 13 34 1319 35 1559 520 N 1559 1559 W 14 16 621 15 668 223 N 668 668 W Client: Arbor 4 Project: River Terrace- 12 Plex DH. _ t =(v,* 71-V *V2)1Lt LengHt of individual wall Project#: 16-T100 Lt=Total length of wall along gridline Date: 8-Feb ..a=Length ofmontentmatn:wall(if different than wall length) By: YSP air-!Wall lletgltt ihx a loaf 14=Height of walltir3-f1r4 tfs,IVrjlap-Tri+113+h2+3)+G4L4+1z,+4r2+2i 1":1,3+'r'--1)+1"{112) - F R O E L I C H t, Height of:call flr2-t1r3 i:r 42=Height of wall fir1-tir2 E N G t N E E R 6 E Vrf 'Hori;natal force at gridline from roof . L fht --_ bif IrC) 1'-1la)-1'300 4, 111th]xs--- Horizontal force at gridline trvm 3't1r t ( Shear Walls & Holdowns V3 Horizontal force at gridline from 3'd lir Li V2 Horizontal force at gridline from rd fir r Roof to 4th Floor ,,,=i,,,it sit in wall Wind:Mfr=0.6[(Ririb x RoofDL) t,ffirib x WallDL)+(Ftrib.c FnorDT i`--;; N1s=Overturning;moment when upper wail is Roof DL: 18sf P stacked above lower wall Seismic:Mr=(0.5-.14S4Rrrxh x KogJDL)+iIb''tr ib x 11.010L )4 i;:Yrzb x 17c Floor DL: 27 psf Nfu-Overturning moment when upper wall is Wall DL: 10 psf sot stacked or does not exist Rtrtb.Wu ib 1/1db-Roof,wall,and floor Mu-Mr Ms-fir Stud Spacing: 16 inches oc ❑Yhutat area,used for calculating dead load Tu= La Ts- L Mx=Resisting moment due to dead load Tu=Tension if walls not stacked Mr S l 2 Ts Tension if walls stacked Wind :C= LQ + 12 [(Rrrih x RoojVL)+(Wrrih- ti'al%DL)+(Ftrib FloarDI,,,] S=Stud spacingi n Cs-Caurpressiun at ends,if walls stacked Seismic :CS'4.+Nl?"(1-0.14 S f(Rrrib x ReeiDL)+(Il',rii,x lfaiiDL)-(Frith r I Wall L Lt La ha VII v Mu Rtrib Wtrib Ftrib Mr Cs Tu Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (Ib) (plf) (Ib*ft) (ft) (ft) (ft) (Ib*ft) (lbs) (Ib) Nailing Event Front/Back Event AA 17 17 17 9 2719 160 24472 8 9 0 16851 1611 448 --- 6/12 S AC 23 69 23 9 8485 123 25455 8 9 0 30845 1279 -234 --- 6/12 S AE 13 29 13 9 2378 82 9596 8 9 0 9854 910 -20 --- 6/12 S - Side/Side Event 11 3 18.5 3 9 2173 176 3172 12 9 0 686 1282 828 --- 6/12 S 3.5 18.5 3.5 9 2173 151 3700 12 9 0 934 1282 790 --- 6/12 S 4 18.5 4 9 2173 132 4229 12 9 0 1220 1282 752 --- 6/12 S 12 36 36 36 9 4618 128 41563 12 9 0 98819 1379 -1590 --- 6/12 S 13 15 58 15 9 4618 80 10749 12 9 0 17156 941 -427 --- 6/12 S 14 3 18.5 3 9 2173 176 3172 12 9 0 686 1282 828 --- 6/12 S 3.5 18.5 3.5 9 2173 151 3700 12 9 0 934 1282 790 --- 6/12 S 4 18.5 4 9 2173 132 4229 12 9 0 1220 1282 752 --- 6/12 S v Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 0 240 350 450 700 900 psf up 0 Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 N e9 335 490 630 980 1260 psf Client: Arbor Project: River Terrace-12 Plex =(1'rf+'v4-L'3+P2}iLr LangtPt of individual wall Project#: 16-T100 .t=Total length of wall along gridline a-Length of moment ann in.wail cif. a; Date: 8-Feb iiffcrertt.than,wall length) By: YSP Id=Wall Height tint to roof L t4 Height of wall1L3-thr1 :11s=[6'rich,s+lrl:ki-e/72+3)711[4+16-lf_+2)+173013=1x2+1) falx:)}<Lt F ROELICH i2 Height of wadifit'fh;i t2=Height of wall fh t[tr2 E N G I N E E R S t 'IT=Horizontal force at gridline front roof L Mo=(r,,(,til- 4(hii Client: Arbor DPraoteje:ct: River Terrace-12 Plex Dh ,._.. -3 V4-r,3,V2),LT Length of individual wall Project#: 16-7100 ...t=Total length of wall along gridline 8-Feb :.a=Length of moment ann in wall(if , different than wall length) 4•43- .c334''' By: 'ISP irf--3 Wall Height nix to roof , L ad=Height of wall ftr3-fIr4 Ifs,[vgAkf-Fh4+ji3+/32-33)-3-V 4044413+h2+2)+174{14+fa+1)+1202))x— LI FROELICH a 3=Height of wall flr2-fli3 a?=Height of wall fIrl-flt? ENGINEER5f. Vrf=Horizontal force at gridline from roof _ L VI=Horizontal foe at gridline from 40 Ill Mit=[Pp/0+VII till-,-V 3(hi),-V 2(10ix— Shear Walls & Holdowns V3=Horizontal force at grid/son from 3'fir Lr V2 xt Horizontal force at gridline from 20 fir i L' 3rd Floor To 2nd Floor ,:=Unit shear in wall it hid Mr=0 6[ltitrib x Hoof OL)+Or trib al+;JIM),-(I.trib a P laorDL Ms--3:Overturning moment when upper wall is Roof DL: 18 psf stacked above lower wailII' Seimic:Mr=(0.6-.14504(R/rib a Roo`DL)±(Winds›,lt'sllDL)s-(Ftrib s FleorDs:ij— Sin=°yenta/wing moinem wlien upper wall is 2 Floor DL: 27 psf sot stacked on does not exist T., - Wall DL: 10 psf ttrib,Wttib,Ftrib=Roof;wall.nod floor Tu=lin-Mt ,_313 If, ributaly area,used for calculating dead load La Stud Spacing: 16 inches oc mi.=Resisting moment due to dead kind To=TTrnsension ion if all not stacked Ms S c) WOO:C= .--4Istrib x RootDL!+(Ifrr 4 Wal,DL)+0,i,eb x flow,91,)1 Ts= i f wafts stacked L 1? 3,-Scud spacing ifs S',•.2 Ca=Compression at ends,if walls stacked :Seismic Cr: =---s-—(1-s 0.14 s,•)),,Ittrlb,Its.tDI.,I+(1rtrib a frtiliDL i,I Ftrib,I-loco DL T1 L 12 Wall L Lt La hrf h4 h3 Vrt V4 V3 v Ms Mu Rtrib'Wtrib Fob Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (ft) (lbs) (Ibs) (Ibs) (ph) )l1)0) (1b*1t) (ft) (ft) (ft) (1b*ft) (lbs) (lbs) (lbs) Nailing Event Front/Back Event AA 17 17 17 9 9 9 2719 3325 2272 489 162471 74842 8 29 24 77918 10352 . -181 4974 Shth(2)Sides HDQ8 4/12 S AC 23 69 23 9 9 9 8485 10375 7100 376 169027 77879 8 27 ,24 139989 8129 -2700 1263 MST37 3/12 S AE 13 29 13 9 9 9 , 2378, 2908 .1988 251 63709 29349 , 8 27 24 44722 5681 -1183 1460 HTT5/MST37 6/12 S Side/Side Event 11 3 18.5 3 9 9 _ 9 2173 2657 1771 535 20992 9635 12 . 27 8 1574 7513 2687 5489 Shth(2)Sides MSTC48B3 4/12 S 3.5 18.5 3.5 9 9 9 2173 2657 1771 459 24491 11241 12 27 8 2143 , 7513 2599 5300 Shth(2)Sides MSTC66B3 4/12 S 4 18.5 4 9 9 . 9 2173 2657 1771 401 .27990 12847 12 27 8 2799 7513 2512 5112 MSTC66B3 3/12 S 12 36 36 36 9 9 9 4618 5646 3764 390 ,275086 126260 12 27 8 226702 8157 -2790 1344 ., MST37 3/12 S 13 15 58 15 9 9 9 4618 5646 3764 242 71143, 32653 12 27 8 39358 5258 -447 2119 MST37 4/12 S 14 3 18.5 3 . 9 9 9 2173 2657 1771 535 20992 9635 12 27 8 1574 7513 2687 6473 Shth(2)Sides HDQ8 4/12 S 3.5 18.5 3.5 9 9 9 2173 2657 1771 459 24491 11241 12 27 8 2143 7513 2599 6385 Shth(2)Sides HDQ8 4/12 S 4 18.5 4 9 9 9 2173 2657 1771 401 27990 12847 12 27 8 2799 7513 2512 6298 HDQ8 3/12 S Seismic 6/12 4/12 3/12 2)4/1:2)3/12 240 350 450 700 900 psf Wind 6/12 4/12 3/12 2)4/1:2)3/12 335 490 630 980 1260 psf ip rD co 0 . ,..... o — 0 to to Client: Arbor r=(Vrf+V 4+4'3+V 221LI ,. Project: River Terrace-12 Plex Di-! =Lngtli of individual wall • Project#: 16-T100 t=Total length of wall along gridline .4.„ ..... a=Length of moment aria in wall(if Date: 8-Feb ifferent than wall length) By: YSP .rf--s,Wall Height flrx to boot L 4=Height of wall flr.5-11r4 ,Als,[1,1(hif-,14-i-h3-i-h2+3)+1,4044-h3+112+2)+VX.16+112+11+1'202)1<— Li •3=Height of wall ftr-fir.- FROELICH ,2=Height of all fill-fir:1 ENGiNEERSI 'rt=Horizontal force at gridlino from roof L Mt,=[Vrf(hi)*V4(10a(hi)4-V 200]X— "4=Horizontal force at gritiline from 44'flr it Shear Walls & Holdowns r3=Hotizonial force al Odium ir0111 r 11r '2=Horizontal force at gridline front 2.'''fir L.' 2nd '=Unit shear in wall Wind:Mr=0.6f(Rtrib c RoofDL)-a(Wirth Y.WeiliDL)+(Firth x FloorD1,)1 Floor To Foundation .Is=Overturning nioment when upper wall is Roof DL18 psf 1.• tacked above lowll er wail Seismic:lit'=(0.6--..14 S..4(R:rib x RoqIDL)±(irtrib x WailDL.).(Firth a FloorDl.)1-- : :ru=Overniming montent when upper wais Floor DL: 27 psf iiist stacked or does not exist „,.. u- s_ Wall DL: 10 psf ,nib,Wtrill,guilt=Root'.wall,and floor To MMr rlit-lit' ributary area.used for calculating dead load La L Stud Spacing: 16 inches oc :1r=Resisting mot due to dead load ru=Ten siou if walls not stacked Ms S/2 Mud:C= =—[(Ricib::.,IMMIX)*(Wmib a Ira!1.13,1)«,,Farib x FicoaDL)1 rs,=To sioa if walls stacked I. 12 =Sind spacing Ms Si' :s=Compression at ends,if it ails stacked Seismic:Cs=—-«--(i 4-0,14 S..)[(Riaib a Roc.fDL)=(WtrilA x irMIDL)4.(FritO a FloorD1)] L 12 Wall L Lt La hrf h4 h3 h2 V4 V4 V3 V2 v Ms Mu Reb Wtrib Ftrie Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (ft) (ft) (lbs) (lbs) 6bs) (lbs) (pit) (1b*ft) (1b*ft) (ft) (ft) (ft) (1b*ft) (lbs) (lbs) (lbs) Nailing Event Front/Back Event AA 14 14 13.5 9 9 9 9 0 0 0 776 55 6983 6983 8 36 36 72087 1601 -4823 -4823 --- 6/12 S AC 23 69 22.5 9 9 9 9 8485 10375 7100 2425 411 262833 85152 8 36 36 194561 12765 -4863- 3034 HTT5 3/12 S . ' AE - 13 29 12.5 9 9 9 9 2378 2908 1988 679 274 99058 32088 9 36 37 64051 9042 -2557 2800 HTT5 4/12 S . ---, Side/Side Event 31 2 14.8 1.5 9 9 9 7 2173 2657 1771 668 863 25348 6900 12 34 12 877 17545 4016 9504 Shth(2)Sides HD12 3/12 S 3.5 14.8 3 9 9 9 9 2173 2657 1771 668 634 47810 15526 12 36 12 2747 16598 4260 9560 Shth(2)Sides HD12 4/12 S 10 14.8 9.5 9 9 9 9 2173 2657 1771 668 493 136600 44360 12 36 12 22426 15040 2309 7421 Shth(2)Sides HD12 4/12 S 32 7.5 44 7 9 9 9 9 4618 5646 3764 1559 354 73195 23914 12 36 12 12615 11117 1614 8654 HD12 3/12 S 33 5 50 4.5 9 9 9 9 4618 5646 3764 1559 312 42941 14029 12 36 12 5607 10203 1872 8296 HD12 4/12 S 1 sv co o o ro o ND LC/ Page 103 of 129 Client: Arbor Project: River Terrace- 12 Plex DH Project#: 16-T100 Date: 2/8 By: YSP FROELICH ENGINEERS 1 Diaphragm Design LOADS Front- Back Side -Side Level Seismic Wind Design Load Seis/Wind Seismic Wind I Design Load Seis/Wind Roof 46 145 145 S 206 134 206 S 4th Floor 59 116 116 S 284 114 284 S 3rd Floor 42 56 56 S 268 85 268 S SHEAR & NAILING Level Grids Wthb (ft) V(lbs) Ldiaphragm (ft) n (plf) Nails Spacing Blocking Front-Back Event Roof AA-AC 40 5800 66 88 8d 6/12 no AC-AE 40 5800 66 88 8d 6/12 no 4th AA-AC 40 4640 66 70 10d 6/12 no AC-AE 40 4640 66 70 10d 6/12 no 3rd AA-AC 40 2231 66 34 10d 6/12 no AC-AE 40 2231 66 34 10d 6/12 no Side- Side Event Roof Grid 11-12 35 7203 150 48 8d 6/12 no 4th Grid 11-13 35 9923 150 66 10d 6/12 no 3rd Grid 11-14 35 9390 150 63 10d 6/12 no Page 104 of 129 Chord Ties (Dbl Top Plate Splice) Level Grid L (ft) Depth (ft) Ws/w(plf) T=W"L`/(8'D) # 16d nails or Strap Front Back Event Roof AA-AC 40 66 145 439 3 MST27 AC-AE 40 66 145 439 3 MST27 4th AA-AC 401 30 116 773 5 MST27 AC-AE 40 30 116 773 5 MST27 3rd AA-AC 40 30 56 372 2 MST27 AC-AE 40 30 56 372 2 MST27 Side- Side Event Roof Grid 11-12 35 80 206 394 2 LSTA 12 4th Grid 11-12 35 80 284 543 3 LSTA 12 3rd Grid 11-12 35 80 268 514 3 LSTA 12 Use (14) 16d nails at all double top plate splices or a Simpson MST27 strap. • Page 105 of 129 • Client: Project: Proj.tt: Date: BY: FROELICH ENGINEERS I ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 5/8"ASTM A36 Threaded Rod for Simpson HTT16/HTT22/HTT4/HTT5 1 Number of Anchors si = 0 in. (see Fig 0.625 Inch Diameter s2= 0 RD.5.2.1) 8 Inch Embed 2500 psi Concrete Footing NcvS1gn= 5.250 (kips)Allowable Design Tension D.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 D.4- General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor CD for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor cD= 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing QD = 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summary (DNn Wind CDN. Seismic Summary From Below CDN Sw= 1.0 SF= 0.75 (Ns= 9.83 9.83 7.37 kips ONcb- 19.01 19.01 14.26 kips ci)Npn= 121.71 121.71 91.28 kips 198.14 198.14 148.60 kips d'Nsb4= 198.14 198.14 148.60 kips Minimum ONn= 9.83 9.83 7.37 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 MN/knowable= 7.02 5.27 kips Naosign < ONAitowebis 5.250 < 5.27 Therefore, Anchor Design OK Page 106 of 129 • • Client: Project: „ Proj.#: Date: By; FROELICH ENGINEERS! ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations 0.5.1 -Steel Strength for Anchor in Tension do(Anchor Diameter) = 0.625 inches n= 1 #of anchors nt= 11 Number of Threads per inch Ase= 0.23 in.2-(effective cross-sectional area of anchor) luta= 58.00 ksi- (tensile strength of anchor material(not the yield strength) not exceed 1.9fy or 125 ksi) Nsa= 13.11 ksi -(Eqn. 0-3) Anchor 4)= 0.75 N Y sa nAse✓ uta DDNsa = 9.83 kips 1/5.2-Concrete Breakout Strength of Anchor in Tension s, = 0 inches (see Fig. RD.5.2.1) s2 = 0 inches (see Fig. RD.5.2.1) An,(for single anchor) = 576 in.2(see Figure RD.5.2.1) A„,(for group anchor) = 782 in.2(see Figure RD.5.2.1) ANco(for single anchor) = 576 in.2(see Figure RD.5.2.1) AN„ (for group anchor)= 576 in.2(see Figure RD.5.2.1) 4 ec,N= 1 Eqn. D-9 (Anchors not Eccentrically Loaded, 4/, = 1.0) 4jed.N= 1.000 Eqn. D-10 &D-11 4)c.N= 1 (1.25 for cast anchors. 1.4 for post-installed) Section D.5.2.6 = . 24 (24 for cast anchors, 17 for post-installed) Section 0.5.2.2 fC= 2500 psi 1.5"het= 12 he = 8 inches 0.7+0.3(em;n/1.5het) = 1.000 Cmin= 12 in -distance to closest edge of concrete f Cry = k, _ f'c h ,. Nb= 27.15 kips -(Eqn. D-7) Ncb= 27.15 kips-(Eqn. 0-4) r v> Ncb9= 0.00 kips -(Eqn. 0-5) cb '1/1 ec,N ed,NV cp,,V N b Reinforcing cD = 0.70 .eco ONcbg= 19.01 kips Page 107 of 129 Client: Project: Proj. Date: By: FROELICH EN GINEERS1 ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) D5,3 -Single Anchor Pullout headed or embedded nut Use Plate Washer? Y Plate Washer Width = 3 inches Nut diameter= 0.985 inches Nut or Plate Washer Bearing Area = 9.000 int Abrg = 8.693 in2-bearing area of embedded anchors head or nut 4'c,p = 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value(ACl 318-05 Section 0.5.3.6) n= 1 #of anchors Np= 173.87 (kips) Eqn. D-15 A; = Abrg 8.r Np,= 173.87 (kips) Eqn. D-14 1Vt<� 1 yAcP Reinforcing N = 0.70 nn (1)Np,, = 121.71 kips 05.4 -Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where ca, <0.4hef, Anchor is not close to Edge of Concrete. Analysis below NOT Required. cat 5 distance to perp edge of concrete from anchor Ca, = 12 in -distance to closest edge of concrete Nsb= 283.05 (kips) Eqn. D-15 Factored Nsb= 100.25 Reinforcing t)= 0.70 lAbrg ONsb= 198.14 kips s5 = 160 Cal 4 -``f C s= 0 in -spacing of outer anchors in group �t Nsbg= 283.05 (kips) Eqn. D-16 i Reinforcing = 0.70sbg _ + SN �N,be= 198.14 kips _ 6sb ai Page 108 of 129 1r( Project: FROFI ` .' Proj.st: ONSHNG ; BDYte: ENGIIEERS INC ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 718"ASTM A36 Threaded Rod for Simpson HD48 1 Number of Anchors s, = 0 in. (see Fig 0.875 Inch Diameter s2= 0 RD.5.2 1) 8 inch Embed 2500 psi Concrete Footing Noe$1gn = 9.230 (kips) Allowable Design Tension D.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 D.4-General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor Q) for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor = 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing = 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summa 41N.Wind CDNn seismic. Summary From Below tiNn SW= 1.0 Sr= 0.75 cl)Ns= 20.09 20.09 15.06 kips oNcb= 25.87 25.87 19.40 kips (I)Npn= 117.59 117.59 88.19 kips cl)N3e= 227.21 227.21 170.41 kips cONsbg = 227.21 227.21 170.41 kips Minimum ON,= 20.09 20.09 15.06 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 triNAuowabie= 14.35 10.76 kips N design O NAtbwable 9.230 < 10.76 Therefore, Anchor Design OK Page 109 of 129 Client: ', Project: V Proj. ( NSUhT1N By: ENGIEERS,INC ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations D.5.1 -Steel Strength for Anchor in Tension do(Anchor Diameter) = 0.875 inches n = 1 #of anchors nt= 9 Number of Threads per inch AS8= 0.46 in.2-(effective cross-sectional area of anchor) fate= 58.00 ksi -(tensile strength of anchor material (not the yield strength) not exceed 1.9f1 or 125 ksi) Nsa= 26.78 ksi - (Eqn. D-3) Anchor c = 0.75 7� {� 014,,= 20.09 kips T1 y sc7 se✓ utca 0.5.2 - Concrete Breakout Strength of Anchor in Tension s, = 0 inches (see Fig. RD.5.2.1) s2 = 0 inches (see Fig. RD.5,2.1) Ano(for single anchor) = 784 in.2(see Figure RD.5.2.1) A„(for group anchor)= NA in.2(see Figure RD.5.2.1) AN (for single anchor) = 576 in.2 (see Figure RD.5.2.1) ANca (for group anchor)= 576 in.2(see Figure RD.5.2,1) 4Jec,N= 1 Eqn. D-9 (Anchors not Eccentrically Loaded, = 1.0) 4jed.N= 1.000 Eqn. D-10 & 0-11 4►c,N= 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 k,= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 fc= 2500 psi 1,5`h8F= 12 he,= 8 inches 0.74-0.3(cm,,i1.5hef) = 1.050 cm;n= 14 in -distance to closest edge of concrete ! 5 1� _ � .1 'C Nb= 27.15 kips- (Eqn. 0-7) Ncb= 36.96 kips- (Eqn. D-4) 'r i;vc N Ncpg= 0.00 kips-(Eqn. D-5) cbg 4 V'ec,NYed,NYcp,N b Reinforcing tD= 0.70 Nev (Moog= 25.87 kips Page 110 of 129 `, Client: �, "" j, Project: • FRO 1C' Proj.#: Date: • ENGI1EERSIMc ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) 05.3 -Single Anchor Pullout-headed or embedded nut Use Plate Washer? Y Plate Washer Width = 3 inches Nut diameter= 1.438 inches Nut or Plate Washer Bearing Area = 9.000 in2 Abrg= 8.399 in2 -bearing area of embedded anchors head or nut yla P = 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value(ACI 318-05 Section 0.5.3.6) n = 1 #of anchors Np = 167.98 (kips) Eqn. D-15 t 'p Ab,.48 r. NP„ = 167.98 (kips) Eqn. 0-14 N —N r Reinforcing 0= 0.70 0Np„= 117.59 kips D5.4-Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where ca, < 0.4hei Anchor is not close to Edge of Concrete. Analysis below NOT Required. cat= 14 distance to perp edge of concrete from anchor Cai = 14 in -distance to closest edge of concrete Nab = 324.59 (kips) Eqn. D-15 Factored Nab= 162.29 Reinforcing 0 = 0.70 = 160 WN,b= 227.21 kips N sb a tVA brg S= 0 in -spacing of outer anchors in group Nsbg= 324.59 (kips) Eqn. D-16 Reinforcing 0 = 0.70 N = 1 + S .j�vT CON 1 = 227,21 kips sbg sb \ 6cat � Page 111 of 129 � Client: !I Project: FROmai'' Pro,.CONSUET1NG Byte: INC ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) 1"ASTM A36 Threaded Rod for Simpson HhDQ11 /HHDQ14 I HD14A/HDU11 Anchor description: 1H0U14 1 Number of Anchors s, = 0 in. (see Fig 1.000 Inch Diameter s2= 0 RD.5.2.1) 12 Inch Embed 2500 psi Concrete Footing NDesign = 13.710 (kips)Allowable Design Tension 0.3- General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 D.4 -General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor Q = 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation fess than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing = 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summary ONn wind ONn Seismic Summary From Below 0:1)Nn Sw= 1.0 SF=0.75 ON,_ 26.35 26.35 19.76 kips ONtb= 29.64 29.64 22.23 kips 4)NFn= 115.01 115.01 86.26 kips rANga= 288.91 288.91 216.68 kips uNsbq = 288.91 288.91 216.68 kips Minimum ON,_ 26.35 26.35 19.76 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 ONAiiowable= 18.82 14.12 kips N d es ign ONAiioweWe 13.710 < 14.12 Therefore, Anchor Design OK Page 112 of 129 Client: 12144a Project: FROR H Proj.it: 'CONSULTING Date: EiGNEE ,IIC ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations D.5.1 -Steel Strength for Anchor in Tension do(Anchor Diameter)= 1.000 inches n= 1 #of anchors nt= 8 Number of Threads per inch Ase= 0.61 in.2-(effective cross-sectional area of anchor) fats = 58.00 ksi- (tensile strength of anchor material (not the yield strength) not exceed 1.9fy or 125 ksi) Nsa= 35.13 ksi- (Eqn. D-3) Anchor c = 0.75 1 V sa ---= nAse J ai to cDN„= 26.35 kips 0.5.2 -Concrete Breakout Strength of Anchor in Tension s 1 = 0 inches(see Fig. RD.5.2.1) S2= 0 inches (see Fig. RD.5.2.1) An,(for single anchor)= 1100 in.2(see Figure RD.5.2.1) A„(for group anchor)= NA in.2(see Figure RD.5.2.1) AN„(for single anchor)= 1296 in.2 (see Figure RD.5.2.1) AN„(for group anchor) = 1296 in.2(see Figure RD.5.2.1) ylec N= 1 Eqn. D-9 (Anchors not Eccentrically Loaded, '411 = 1.0) Wes N= 1.000 Eqn. D-10 & D-11 41c.N= 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 k, = 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 fc= 2500 psi 1.5*hs1= 18 tint= 12 inches 0.7+0.3(crnin/1.5het)= 1.000 Crnin = 1$ in -distance to closest edge of concrete N cb _ c -NIc h s 41 Nb= 49.88 kips-(Eqn. D-7) Ncb = 42.34 kips-(Eqn. D-4) A Nig= 0.00 kips-(Eqn. D-5) Ncbg = 9/ ecAV ed,NVjcp,N N 17 Reinforcing = 0.70 ANco oNcbg= 29.64 kips • • Page 113 of 129 Client: 4 Project: • FTP FROELICH Proj. Ti Date: CONSUL,MG By: ENGI1EERS INC ACI 318-05 Appendix ID - Tension Failures Cont. (Page 3 of 3) 05.3 - Single Anchor Pullout- headed or embedded nut Use Plate Washer? Plate Washer Width= 3 inches Nut diameter= 1.625 inches Nut or Plate Washer Bearing Area = 9.000 in2 Abrg = 8.22 int-bearing area of embedded anchors head or nut 4Jc.p = 1 For an anchor located in an area of concrete where no cracking at service loads is anticipated, otherwise use 1.0 value(ACI 318-05 Section D.5.3.6) n = 1 tt of anchors Np= 164.30 (kips) Eqn. D-15 -Arp Nrn = 164.30 (kips) Eqn. D-14 =N prt p Reinforcing D = 0.70 = 115.01 kips 05,4 -Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where c31 < CI.4hen Anchor is not close to Edge of Concrete. Analysis below NOT Required. ca2= 5 distance to perp edge of concrete from anchor cal = 18 in-distance to closest edge of concrete Nab= 412.73 (kips) Eqn D-15 Factored Nisi) 412.73 Reinforcing (1>= 0.70 Nsh = 160 C at VA brg .„[FIT cinsisb 288.91 kips s= 0 in -spacing of outer anchors in group Nsbg= 412.73 (kips) Eqn. D-16 s) Reinforcing cl)= 0.70 Nv)g = N sh 4/145bg = 288.91 kips \ 6Cal Page 114 of 129 Title Block tine 1 Title: Job# ` You can changes this area Osgnr: using the°Settings'menu item Project Desc,: and then using the'Printing& Project Notes: Title Block'selection. Title Block tine B ?nit1.u MAR2113.,3 F . .<., .,._. . tr, . . Potiiokot1tTl73(.ta3rV set,34,s;ti0,�y#.;-g"itt£rxjuw nihil "L'o(((ci rrtu:e _5: Cantilevered Retaining Wall ENE C11.C.INC 15832811.8,ti.B.11.t0, ,Yer.k1 18.89 Lit;it:KW=t 0O 4 x : - 4, ,.•w'..Y.. 1 ,-,,'' •a 4., ' , ,Licensee':'FROELICH CONSULTING ENGINEERS Description: 4'-0'Watt Criteria • Soil Data Calculations per ACI318-08,ACI 530.88,IBC 2009, CBC 2010,ASCE 7-05 Retained Height = 4.00 ft Allow Soil Bearing = 2,500.0 psi Wall height above soil = 0.00 ft Equivalent Fluid Pressure Methcd Slope Behind Wail = 0.00 i Heel Agave Pressure = 35.0 psitft Height of Soil over Toe = 6.00 in Toe Active Pressi,re = 33.0 psilft Water height over heel -- 0.0 ft Passive Pressure = 330.0 psftft Vertical component of active Soil Density.Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 0 CO pcf NOT USED for Soil Pressure. Fiction Ccefff chin Fig 3 Sol' = 0 500 NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. Snit r pasheigsive ignore e = for pas�rve pr.,s3u�.. 0 00 in Surchargein= Loads Lateral Load Applied to Stem _ Adjacent Footing Load Lateral Load 20.0 pAdjacent Footing r- 0.0 lbs Surcharge Ove;VNcei = 5t,7 0 psf9 Load Used To Resist Sliding&Overturning ,,Height to Top = 4 00 ft Footing Width = 0.00 ft Surcharge Over Tee = 0.0 psf ,..Height to Bottom = 0.00 ft Eccentricity - 0.00 in Used kir Sliding&OverturningWall to Ftg CL Dist - 0.00 ft Axial Load Applied to Stem Footing Type Line Load _. . Base Above;Below Soil 0.0 ft Axial Dead Load -= 500.0 lbs at Back of Wail Axial Live Load = 0.0 lbs Wind on Exposed Stem - 0.0 psf Poisson's Ratio - 0300 Axial Load Eccentricity 0.0 in Design Summarr ® __..__.._.___ Stem Construction Top Stem ... .,,._.. ._. Siem OK .Wall Stability,Ratios Design Height Above Ftg ft= 0.00 Overturning - 2.43 OK Wail Material Above'Fit' = Concrete Sliding = 2.25 OK Thickness in= 6.00 (Vertical Component NOT Used) Rebar Size = # 4 Total Bearing Load - 1,948 lbs Rebar Spacing in= 12.00 :,.resultant ecc, = 6;22 in Rebar Placed at = Edge Design Data Soil PressureToe = 1.515 psf OK (b FB+F Fa 0.270 Soil Pressure o©Heel - 0 psf OK Total Force @,Section lbs= 623.8 Allowable := 2,500 psf 1. = g Soil Pressure Less Thal Allowable rte nen( tial tt 60.0 ACI FactoredToe - 1.618 psf Moment ..Ai.owaole ft-1= 3.559.5 AGI Factored @,Heel = 0 psf Shear....Actual ps = 13.2 Footing Shear @ Toe = 0 6 psi OK Shear Allowable psi= 671 Footing Shear @ Heel = 10.4 psi OK Wax'We got psf= 75 0 Allowable = 750 psi Reber Depth. 'a' in= 4.25 Sliding Dales (Vertical Component NOT Used) Lap splice if above in= 12.00 La:splice if be+ow in= 8.40 Lateral Sliding Force = 597.0 lbs less 100%Passive Force = = 371.3 lbs embed into forting in= 6,40 _.___ _ ..... . �,_ _. less 100%Friction Force - Concrete Data 976.8 lbs Fn psi- 2,000,0 Added Force Req'd = 0.0 lbs OK Fy psi= 60,000.0 .. for 1.5:1 Stability = 0.0 lbs OK Load Factors _. .....__ w. Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Page 10.,5 of 129 Title Block Line 1 Title. You can changes Lhis area D'Synr: using the*Settings*menu item Project Des c.: and then using the'Printing& Project Notes Title Block`selection. Title Bioc'k Lite 6 . Wit& prsi �t�ry, gq.(_. ,. �.y_y,. �j p,�} �,y �\j jjj .�. �tt t.'r�stFSa' "ri`3t .1 5711�?u t.Y,*wtfvt..« 'R "ShC3�:. Cantilevered to lnln ' ai E:1ERG+lC.3tic t?&3.2si t ti,3,4;4.b.F Li Qs29,Yor.$,11.t61,9 U;#:KW-06002304- ... ;-A„ - - , . ' ..G' .—Licensee "FROELICH CONSULTING ENGINEERS Description: 4-0'Wall Footing Dimensions&Strengths . Footing Design Results Toe Width = 0 75 ft Toe Heel Heel Width = 2.00. Factored:Pressure - 1,818 0 pet Total Footing Width = 2 75 Mu' upward = 462 0 Nb Footing Thickness = 12.30 in Mu':Downward = 69 887 ft-Ib Mu. Design 392 887 it-Ib Key Width = 0 CO in Actua 1-Way Shear _= 0 63 10.37 psi Key Depth - t?00 n Allow 1-Way Shear = 75,00 75 00 psi KeyDistant from Toe = ,,.Gear j 9 Toe Reinforcing it-- #7 18 00 in Fe = 2.500 psi Fy = €2)000 Lisi Heei Reinforcing = #6 @ 16 00 in Footing Concrete Density = 150.00 act Key Reinforcing = None Speed Min.As% _ 0 0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 ©Sun.= 3.i u n _ Toe Not read,Mu<s Fr Heel: Not redid,Mu:5*Fr Key No key defined Summary of Overturning&Resisting Forces&Moments .....OVERTURNING..... RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-Ib lbs ft ft-lb Heel Active Pressure = 437 5 1 97 729.2 Soil Over Hee! = 660 0 2 00 1,320.0 Surcharge over Heel = 795 2.50 198.9 Sloped Soil Over Heel = Toe Active Pressure = Surcharge Over Heel = 75.10 2.00 150.0 Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem = 50,0.0 1 00 500.0 Added Lateral Load = 80 0 3 30 240 0 •Axial Live Load on Stem = Load @ Stem Above Soil = Soil Over Toe = 0 38 Surcharge Over Toe = Stem WYeight(s) = 300.0 1 00 300.0 -• Earth @ Stem Transitions = Total = 597.0 O.T.M. = 1,168 0 Footing Weight = 412.5 1.383 567 2 Resisting/Overturning Ratio = 2.43 Key Weignt Vertical Loads used for Soil Pressure= 1,947.5 lbs Vert.Component = Total= 1:947.5 lbs R.M.= 2;837.2 'Axial live road NOT included in total displayed,or used for overturning resistance.but is included for soil pressure calculation. Page 116 of 129 Title Block Line I Title: .lob m You can changes this area Dsgnr: using the°Settings°menu icer^ Project Desc. and then using ttte'Printing& Project Notes Title Block°selection. Title Bok Lin6 ,6,.43 of t z1ts„ .° Bock . Fie:?1201 tett r 173 fArt r Pxs :leo"Iota.it'hYrliocC,r ...a?rs erxca Cantilevered Retaining ail ENR C,INC.l9H3-anLBolt tt.rL*Ve:8.t1.10 C Lie,:#:KW43002304= , ' e '=a;, -.,._ .fi y4, . . .-: ro•. .2Licensee:FROELICHCONSULTING ENGINEERS Description': o-cWail Criteria Soil Data Calculations per ACI 318.08, ACI 530.08,IBC 2009, CBC 2010,ASCE 7.45 Retained Height = 6.00 ft Allow Soil Bearing = 2,500.0 ps# Wall height above soil = 0.00 it Equivalent Fluid Pressure Method Slope Behind Wail = 0 00 Heel,Act';9 Pressure = 35.0 psfffi Height of Soil over Toe = 6.00 in Toe Active Presssre = 30 0 psf tt Water height aver heel -- 0 0 ft Passive Pressure = 330.0 psfift Vertical component of active Soil Density.Heel - 110.00 pcf Lateral sod pressure options. Soi Density Toe = 0.00 pct NOT USED for Soil Pressure. Friction;Deft b^rvn Ftg&Soil - 0 5370 NOT USED for Sliding Resistance soil height to ignore NOT USED for Overturning Resistance :„r passive pressure -- a go in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = 60 0 psf '-ateral Lead = 30 0 plf Adjacent Footing Load = 0,0 lbs Used To Resist Sliding&Overturning .Height to Top = 6.00 ft Footing Width _ 0.00 ft Surcharge Over Toe 0.0 Psi. ,..Height to Bottom = 0.00 ft Eccentricity _ 0.00 in Used for Sliding&Overturning Wall to Ftg GL Dist _ 0,00 ft Axial Load Applied to Stem Footing Type Line Load .... _.._. Base Above/Below Soil Axial Dead Load = 500.0 ics at Back of Waii 0.6 It Axial Live Load 0.0 lbs Wind on Exposeo Stem _ 0.0 p` Poisson's Ratio - 0.300 Axial Load Eccentricity = 0.0 ie: best n SummaryStem Construction Top sten _ ... .. ......, sPem,•K Wall Stability Ratios Design Height Above Ftg it= 0.00 Overturning - 2.37 OK Wall Material Above"Ht" = Concrete Sliding = 1'8 Gtr Thickness in= 8 00 (Vertical Component NOT Used) Reber Size = It 6 Total Bearing Load IT 3,35'lbs Rebar Spacing in= 12.00 ...resultant eco. = 8 31 in Rebar Placed at = Edge Design Data - - _ _ . Soil Pressure @ Toe = 1,767 psf OK For'FB+fa1Fa = 0.377 Soil Pressure @ Heel = 0 p`f OK Total Force @ Section lbs= 1.334.7 Allowable = 2,300 isf Moment Actual ft-I= 3,313 2 Soil Pressure Less Thar;Al cviabl} Moment,..Allowable f-1= 7,993 ACI Factored @ Toe = 2,t21 psf ACI Factored @Neel = 0 psf Shear....Actual psi= 19 Footing Shear @ Toe = 5.1 psi OK Shear....A ilowaole os.= 571 Footing Shear @Heel Wail Weight lag= 1.X'0 21.5 psi OK Refer Depth 'd' in= 6.19 Allowable = 75.0 psi Lap splice if above in= 12.00 Sliding Gatos (Vertical Component NOT Used) Lap splice if below in= 6,00 Lateral Sliding Frame = 1.148.9 lbs iioc-R embed into footing in= 6.00 less 100%Passive Force = - 371.3 lbs Concrete Data less 100%Friction Force = - 1,678.0 lbs fo psi= 2,000.0 Added Force Req'd = 0.0 lbs OK Fy psi= 60,000.0 .. .for 1.5:1 Stability - 0.0 lbs OK Load Factors Dead Load 1.200 Live Load 1.600 • Earth,H 1.600 Wind,W 1,600 Seismic,E 1.000 ^ . , Title Block Line 1 TiUe: Page��314:1/ 1cs You can changes ��� O�� ' Project : u�nO�e^Ss�nOy menu item ' and then using the'Printing& ProjectNotes � Title ock selection, Cantilevered Retaining Wall Description: 6'-d•Wel _ _ Footing Dimensions Footing Design Toe Width = 1.00 ft To* *;le| Heel Width = _ ....AO_ Factored Pressure = 2 � 121 0 � T�s|FooUngW�� = .4 00 Mu' Upward ~ 967 0 ft-lb Footing Thickness = 1280in mu' Oownwam = 123 2,864 ft-lb Mu: Design = 644 2,864 ft-lo Key Width OOOiri Actual 1-Way Shear = 501 2153px| Key Depth = O00/n Allow 14WuSheer Jr. 75.8U 75.00psi key Distance from oe = 0.00 ft Tn*R'eiong = # in rc = 2.530 psi Fy = 50,000 psi Heel Reinforcing = #5� �� ��n Fon�nQCoo��teDensity = 150.30ud Key Reinforcing = None Speed Win As°A = 0.0018 Other Acceptebie Sizes&Spacings Cover @ Top 200 @8|m= 3.013 in Toe: G^Fr Heel: #41@, 11 75 in,lif5d 1825in.xtt-ift:25J5in,#Y@,35.25in,#8@402§in,xQ04 Key' Nmkmy defined - ' —'- -__ -- Summary of Overturning&Resisting Furcms&Moments — _ ....ASSISTING Force Distance Moment Force Distance Moment Item lbs_ . ft ft-lb lbs ft ft-lb Heel Active Pressure = 07 5 2,53 2{000 Soil Over Heel = 1.540U 2.83 4.363J Surcharge oier Heel = 111.4 3,58 3888 Sloped Soil Over Heel = Toe Active Pressure = Surcharge Over Heel = 116J 2.83 330 Surcharge OveToe = Adjacent Footing Load =- Adjacent Footing Load AdjacencFootin8Luad = Aiai Dead Load on Stem = 500.0 1.33 666.7 Added Lateral Load = 180.0 4.00 720.0 *Axial Live Load on Stem = Load( Stem Above Soil = Soil Over Ice = 0.60 Surcharge Over Toe = Stem Weight(s) = 608D 1.30 800.0 - - -- ' Earth @ Stem Transitions .:-- Total Tota| = 1.148Q O.T.M. = 3.110 8 Footing Weight = 600.0 2.00 1.200,0 Ratio = 2.V Key Weight = Vertical Loads used for Soil Pressure= 3,356.7 lbs Ven.Component =__ Total= 3,356380.6 °Axial live toad NOT included in total displayed,or used for overturningresistance,but is included for soil pressure calculation. . Page 118 of 129 ' Title aock Line 1 Title: Job ft You can changes this area Dsgnr: using the'Settings'menu item Project Deco.: and then using the'Printing& Project Ivlctes; Title Block'selection. Title Block Line 6 m,,,,,.._. FS '-^...F',1 Y�:�d E33rr}2?Elf;, .uFi,1 Fla.piall ut-x13(Ax iSCeek xK* c't1iijri a r,:e7 c4T4 . ` Cantilevered Retainirig V411 lw;iCRt,,tt.C,INC,t 20118M16.1,t.ta.t7%,Ver.BAtto.as Lae.#:°KW tt ;. : , ., ;_'>¢ , s .°� .- :. - ."�Licensee.FR+Et.1C ..CONSULTING ENGINE FIS Description: 8'-0'Web CriteriaSoil Data Calculations per ACI 318.05. ACI 53048,IBC 2009, _ - - CBC 2010,ASCE 7-05 Retained Height = 8.00 ft Allow Soil Beating = 2;500.0 psi Wall height above soil = 000 ft Equivalent Fluid Pressure;Method Slope Behind Wall = 0.00:1 Heel Active Presse"a = 35,0 psfift Height of Soil over Toe = 6.00 in Toe Active Pressure = 30.0 psfift Water height over heel = 0.0 ft Passive Pressure = 330.0 psi/ft Vertical component of active Soil Density,Heel = 113.00 pcf Lateral soil pressure options: Soil Density.Toe = 0.00 pcf NOT USED for Soil Pressure cion Cr)-S! otwn Pig&Soil = 0.500 NOT USED for Sliding Resistance Soii ;eight to ionone NOT USED for Overturning Resistance, for passive Pressure = 0.00'sa Surcharge Loads Lateral Load Applied to Stern Adjacent Footing Load Surcharge Over Heel = 50.0 psi Lateral Load = 40.0 psf Adjacent Footing Load = 0,0 lbs Used To Resist Sliding&Overturning ...Height to Too' = 8.00 ft. Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf .Het ht to Bottom = 0.00 ft Eccentricity 0 00 in Used for Sliding&Overtumi Wall to Fig CL gist = 0.00 ft Axial Loadlied to Stem Footing Type Line Load Af?P Base Above/Below Soil = 0,0 ft Axial Dead Load = 500.0 lbs at Back of Wail Axial Live Load _ 0.0 lbs Wind on Exposed Stem = 0.0 psf Poisson's Ratio - 0.300 Axial Load Eccentricity = 0.0 in Design Summary Stem Construction Top Stem .__ stets OK Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning 2.55 OK Wall Material Above.He = Concrete Sliding 1.59 OK Thickness in= 8,00 (Vertical Component NOT Used) Reber Size = ft 5 Total Bearing Load = 5,225 lbs Rebar Spacing in= 5.00 .,.resultant ecc. = 9.94 in Rebar Placed at = Edge Design Data • _ _0 ... Soil Pressure a Toe = 1,809 psf OK re/FB+faiFa = 0.467 Soil Pressure aHeel - 91 psf OK Total Force Section lbs= 2,309.6 Allowable = 2,500 psi Moment..Actual ft-t= 8,872.2 Soil Pressure Less Than Allowable frlome,st.....p,ilowable it.-1= 14,i 11.7 ACI Factored'Toe = 2,171 psi ACI Factored a Heel - 109 psi Shear Actual osi= 33.7 FootingShear @ Toe = 13.6 psi OK S�neerA lowable osi= 87.1 Footing;Shear©Heel _ 38.5 psi OK Rebar','call Wight psf= 100.0 eeDepth ,3 in= 2019 Allowable = 75.0 psi Sliding Coles (Vertical Component NOT Used) Lap sp'ic9 if above in= 12.22 Lap splice if below in= 6,00 Lateral Sliding Force _ 1,880.7 lbs Hock embed into footing in= 5.00 less 100%Passive Force = . 371.3 lbs Concrete Data less 100%Friction Force 2:210.1;lbs fc psi= 2.000,0 Added Force Req'd = 0.0 lbs OK Fy psi= 60,000.0 ....for 1.5:1 Stability = 0.0 lbs OK Load Factors - -- Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1 600 Seismic,E 1.000 Page 119 of 129 P Title Block Line 1 Title: yob You can changes Ibis area D gnr. P;eject.Deco. using the`Settings'menu item and ffien using the'Printing& Project rotes Title Bleck"selection, Title Stock Line 6 1'rias la MAR Aa sofa Fi.s_n ;11.0 alt t i t 3d',try t a Fucks Ap, •MIEN G at;tnarr Fcaz pn ev r C�' it all ESE RCALC,W.4834011,6u f:ii.11.1009.V.eal1.10. Lic:#:KW-0600230IF- .-? _:, ,:. . .. .,l' ~ ,.'9 :'fT . 'cettseO FROEUCHCONSULTINGENGINEERS` Description: 8'-0'4da(! Footing Dimensions&Strengths Footing Design Results Toe WidthF 1 50 ft l'Qe_ h?aaf . Heel Width 4 C0. Factored Pressure = 1 d psi �; 17! c Total Footing W`oth 5 50 Mu' Upward = 2,23' 0 n-le Fooling Trkc.;k less - 12.00 in Mi Downward = 277 0 it1 Mu: Design = 1 954 6,572ft-lb Key Width - 0.00 in Actual' `•Nay Shear -= 13 50 39 48 psi Key Depth i= ,..i00 in Allow I Way Shear - 75 00 75 00 psi Key Distal _r_ from Toe _ 0.00 ft Toe Reinforcing = 4 7 IL IS 00sr. 1:" = 2,5o psi r=y = l}I Ut7 psi Heel Reinforcing 'i= 6`o 1n 0,I;! Footing Concreto density - 150.00 poi Key Reinforcing = None Spec o Min.As°%a = 0.0018 Other Acceptable Sizes&Spacings Cover l Top 2 00 tar BIM— 3.00 in Toe Not' 'd,Mu<S"Fr Heel: #41@1100 in,#5@ 17 25 in,;ij L;24 25 in,47(33.00 in,4S r5 43.50 in,#±fnr 4 Key: No key defined Summary of Overturning &Resisting Forces & Moments OVERTURNING.. .....RESISTING..... Force Distance Moment Force Distance Moment itembs ft ft-lb lbs ,ft, ft lb .. _ T Heel Active Pressure = 1.417.5 3.00 4,252.6 Soil Over Heel = 2 933.3 3.83 11,244.4 Surcharge over Het: = 143.2 4 50 644.3 Sloped Sail Over Hoe. - Toe Active Pressure - Surcharge Over Heel .. 1600 7 3 83 635.9 Surcharge Over Toe = Adjacent Footing Loud - Adjacent Footing Load = Axial°earl Load on Stem - 500.0 1.83 9167 Added Lateral Load - 320.0 5.00 1,600.3 'Axial live Load on Stem = Load @ Stem Above Soil = Soil Over Toe = 0.75 Surcharge Over Toe _ Stem'height:f.>j - 800 0 1.83 1,466.7 Earth 0 Stem Tracsiti;rs - Total = 1,880.7 O.T.M. = 6,496.8 Footing'height _ 825.0 2.75 2,268.8 ResistinglOverturning Ratio = 2.55 Key Weight Vertical Loads used for Soil Pressure= 5,225.0 lbs Vert.Component = Total= 5,225,0 lbs R.M.= 16,535,4 'Axial live Load NO :nciuded in. tal display ,or used for overturning resistance,but t inducted for soil pressure c.atct lation. Page120 of 129 it C LI E NT oco'9 sw Hampton St Portland,Oregon 97223 NUMBER.. 745 NW Mt Washington Dr sy2P5 Bend.Oregon 97701 541-3K-1823 :ROELICH ENGINEEREit BY. Ret kvall a c JJ a g a___ - ---- ._ 1.........., ....,i1 :,,e Vie = Arffieir Ci—,- epviat f 4$%/ve 5 3. Dili eizzfii -Pe 3 o4..totoz at 7 /0",„,x, Fr i -t7-2,3.. •• e I),r - – .2 576)..0iphf I :`,476t ------' wail erPply .5.44 rt-karfe. 44. 42,3 x V4J* T., istvri z. DL;,-. 5-o9rt f (-1-=*-- .1 rap,if jcesf 1-10r;% 10 , 70 p$1 4 9— (4 °A--- „ ..... t. Paae 121 of 129 6969 S`h 4arnptor St OtPortland.Oregon 97223 . 503-624-7005 rPROJECI'. .,.; - _ -'1 .-s NUMBER: *6` , s 745 NW Mt Washingtrxn Dt.*205 Bend,Oregon 97701 541,3831828 DATE: FROELICH ENGI NEERSt .. .. BY: t'/d 14-1/ ca 1,0 L $4,.;t etttie 3s,.II po>s= = 35O, .. Gam- 1 a'dz -f h t's.= ca 5" ar. 1. 3,x S "SS AP/W-4 4 4 ci W"air ii D L. P/ il" ,.."--'emam------ E-4 ' ii I !'s.f 4,r7-7, 3 +�w.aw-xn........mavws,-�-vim. 4-.- .a,- 1 Froelich Engineers Project Title: Page 122 of 129 `1 Enuxneer: Project ID: r Pr.;iec,Leser. FROELICH File= Stls ;Doug's rt edskit-103-t,SETWISCCA4 i'1ttSCRE t.ECt cantilevered Retaining Miall ENERCALC,INC 1983.2014 Buid6.1d0.f6,ver.6.14,d.16 Li&#.t:W 1 31 ,/,:£ -. 'a ! , . =! N � >' , .. ycenSoe:PROF ItC =CO S L NGcENGINEERs'I Description: Garage Ret Wail No Seismic Criteria Soil Data Calculations per ACI 318-11, AC!530-11,IBC 2012, CBC 2013,ASCE 7-10 Retained Height = 11.50 ft Allow Soil Bearing = 2,500.0 psf • Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wail = 0.00: 1 Heel Active Pressure = 35.0 psi/ft Height of Soil over Toe = 12.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psftft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 110.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. Soil height to ignore NOT USED for Overturning Resistance. for passive pressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load pit Load = 70 l Latera .0 Adjacent Footing Over Heel = 0.0 psf1 Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 10.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ..Height to Bottom = 0:00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load Base Above/Below Soil 0.0 ft Axial Dead Load = 500.0 lbs at Back of Wall Axial Live Load = 1,100.0 lbs Wind on Exposed Stem = 0.0 psf Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Design Summary Stern ConstructionTop Stern 2nd Stem OK Stem OK Wail Stability Ratios Design Height Above Ftg ft= 2.00 0.00 Overturning = 2.73 OK Wall Material Above"Ht" _ Concrete Concrete Sliding = 1,59 OK Thickness in= 8.00 8.00 Slab Resists Al!Sliding f Rebar Size = # 5 # 6 Total Bearing Load = 10,739 lbs Rebar Spacing in= 6.00 6.00 ...resultant ecc, = 12.27 in Rebar Placed at = Edge Edge Design Data Soil Pressure @ Toe = 2,372 psf OK fbiFB+fa/Fa _ 0,658 0.933 Soil Pressure @ Heel = 313 psf OK Total Force @ Section lbs= 3,087.0 4,379.0 Allowable = 2,500 p.sf MomentActuai ft-I= 10,242.2 17,686.8 Soil Pressure Less Than Allowable AC!Factored @,Toe - 2,944 psf Moment Allowable fti= 15,562.2 18,848.3 ACI Factored @ Heel 388 psf Shear Actual psi= 46.1 71.1 Footing Shear @ Toe = 22.3 psi OK Shear Allowable psi= 82.2 82.2 Footing Shear @ Heel = 52.5 psi OK Wall Weight psf= 100.0 100.0 Rebar Depth 'd' in= 6.19 5.63 Allowable = 82.2psi SlidingCalcs Slab Resists All Sliding! Lap splice if above in= 14.06 24.05 a Lap splice if below in= 14.06 10.64 Lateral Sliding Force _ 3,500.5 lbs Hook embed into footing in= 14.06 10.64 less 100%Passive Force = - 733.3 lbs Concrete Data less 100%Friction Force = • 4,819.6 lbs Added Force Re 'd = 0.0 lbs OK f c psi= 0,000.0 0,000.0 G Fy psi= 60,000.0 60,000.0 ....for 1.5: 1 Stability = 0.0 lbs OK Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 Froelich L.aE,nears Project"Dile: Page 123 of 129 Eni)ineer: Project ID: }, Project Descn: FROELICH Cantilevered Retaining Wall pile=clUsp Doug\Pf cts114-tax-1.BEra,�isCcA-1941SCRE-1.EC6 9 ENERCALC,INC.1983-2414,8uild:6.1411,t6,Ver•&.14.8.16 Lic.#*.KW-06002304 6 ,..'"`' " ' --;7',,'- Q' . .,,..,.,.. 2" gA,E,, !..M* m" UCenSB ,FRO CH:CO 8 L. N ENG ,EER1 Description Garage Ref Wall-No Seismic Footing Dimensions & Strengths Footing Design Results Toe Width = 2.5011 Toe Heel Heel Width = 5.50 Factored Pressure = 2,944 388 psf Total Footing Width = 8.00 Mu':Upward = 8,367 0 ft-lb Footing Thickness = 16-00 in Mu':Downward = 1,163 0 ft-lb Mu: Design = 7,204 17,697 ft-lb Key Width = 0.00 in Actual 1-Way Shear = 22.31 52.45 psi Key Depth = 0.00 in Allow 1-Way Shear = 82.16 82.16 psi Key Distance from Toe - 3.00 ft Toe Reinforcing = #6 @ 6.00 in fc = 3,000 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 12.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Speed Min.As°io = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: #4@ 9.00 in,#5@ 14.00 in,#6@ 19.75 in,#7@ 26.75 in,48@ 35.25 in,#9©44 Heel: #4@ 6.25 in,#5@ 9.50 in,#6@ 13.50 in,#7@ 18.25 in,#8@ 24.00 in,#9@ 30. Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-lb lbs ft ft-ib Heel Active Pressure = 2,682,2 4.28 12,329.2 Soil Over Heel = 6,114.2 5.58 34,137.4 Surcharge over Heel = Sloped Soil Over Heel Toe Active Pressure = -81.7 0.78 -63.5 Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem = 500.0 2.83 1,416.7 Added Lateral Load = 700.0 6.33 4,433.3 Axial Live Load on Stem = 1,100.0 2.83 3,116.7 Load @ Stem Above Soil = Soil Over Toe = 275.0 1.25 343,8 Surcharge Over Toe = Stem Weight(s) = 1,150.0 2 83 3,258.3 Earth @ Stem Transitions = Total = 3,500.5 O.T.M. = 16,699.0 Footing Weight = 1,600.0 4.00 6,400.0 Resisting/Overturning Ratio = 2.73 Key Weight = Vertical Loads used for Soil Pressure= 10,739.2 lbs Vert.Component = Total= 9,639.2 lbs R.M.= 45,556.2 *Axial live load NOT included in total displayed or used for overturning resistance,but is included for soil pressure calculation. • Page 124 of 129 8,In Cone WI#5 @ 6.in a/c • _ '[-?-ii--CfAl,„"A '-'. ,„.?...,s,.• ,:-:, - i A A i< 4., ,. 13(4" ,4 -401 I *1, l' * I I * 11'-6" 11'-6" *11 I.I *1 i ao,, Bin Cone w/#6 @ 6.in o/c -- il *P 1 2.0' 4`77,,,v ..k,Wir,.' 4411 1.0.A :,$".'7. :;,*,.4),,'\.\ );..ie ' irl 2" -* ,'•.-7-4 R,,,,,y,,.... ., .•;*-Ar * e..., ,,,,, ,4,,..,",; „,., .,,,,,,„,,,, „4„:-:),,,,,,-..-,..,-. .. . 4 T. 011;,.."'„..f.241;a1?Zt:,:`,1,:2:^v,,,,,,...,„.. Y y Y ;tiding Restraint . . ,„„„. * • A Y #60,6.in A @Toe Designer select 2t-6" 5.6" #54)12til?ht)riz.teinf. -.4 @ Heel -41 O.- ti Page 125 of 129 r DL=500., LL- 1100.#, EGG=0 in T 3 70.ps 1 st%ls, a�XdY liding Restraint Pp=733.33# x y 3500.54 312.75psf 2372.psf Frcelich Engin e ro ect Title: v 9� e„rS P, Page 126 of 129 Engineer: Project ID: Project Descr: FROELICH ENOINCERS1 Cantilevered RetainingWali Fite=c:ttusersuit, t ds‘1t-Tos-t;SE SCC IVAISCRE-1.EC& , ENERCALC,INC._ 3udd:6.14.0.16,Ver:6.14.8.16 ;:#'::kW-06002304. ,`.', ....': ' n,.. ,f.. : ?~8t ttse� f,FRO LtCit.CONSULTING.EN. IN R f4: Description: Garage Ret Walt-W/Seismic Criteria Soil Data Calculations per ACI 318-11, ACI 530.11,IBC 2012, Retained Height = 11.50 ft Allow Soil Bearing = 3,330.0 psi CBC 2013,ASCE 7.10 Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wail = 0.00:1 Heel Active Pressure = 35.0 psfift Height of Soil over Toe = 12.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psflft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 110.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. Soil height to ignore NOT USED for Overturning Resistance, for passive pressure = 12.00 in ' Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = 0.0 psf Lateral Load = 85.0 plf Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning .,,Height to Top = 10.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stern Footing Type Line Load Base Above/Below Soil 0.0 ft Axial Dead Load = 500.0 lbs at Back of Wall Axial Live Load = 0.0 lbs Wind on Exposed Stem = 0.0 psf Axial Load Eccentricity = 0.0 In Poisson's Ratio = 0.300 Design Summary Stem Construction Top Stern 2nd Stem OK Stem OK - Wall Stability Ratios Design Height Above Ftg ft= 2.00 0.00 Overturning = 2.58 OK Wall Material Above"Ht" = Concrete Concrete Sliding = 1.52 OK Thickness in= 8.00 8.00 Slab Resists All Sliding 1 Rebar Size = 4 5 4 6 Total Bearing Load = 9,639 lbs Rebar Spacing in= 6.00 6.00 ...resultant ecc. = 13.26 in Rebar Placed at = Edge Edge Design Data Soil Pressure©Toe = 2,203 psf OK fb/FB+fa/Fa 0.704 0.978 Soil Pressure @ Hee: = 207 psf OK Total Force @ Section lbs= 3,207.0 4,529.0 Allowable = 3,330 psf MomentActual ft-1= 10,722.2 18,4368 Soil Pressure Less Than Allowable ACI Factored @Toe - 2:644 psf Moment Allowable ft-I= 15,222.0 18,848.3 ACI Factored @ Heel •- 248 psf Shear Actual psi= 48.7 74.7 Footing Shear @ Toe = 19.5 psi OK Shear Allowable psi= 75.0 82.2 Footing Shear @ Hee; = 52,5 psi OK Wall Weight psf= 100.0 100.0 Allowable _ 82,2 psi Rebar Depth 'd' in= 6.19 5.63 Sliding Dales Slab Resists All Sliding! Lap splice if above in= 16.48 25.07 Lateral Sliding Force _ 3,650.5 lbs Lap splice if below in= 16.48 4.03 less 100%Passive Force = - 733,3 lbs Hook embed into footing in= 16.48 4.03 less 100%Friction Force = • 4,819.6 lbs Concrete Data Added Force Req'd = 0.0 lbs OK fc psi= 2,500.0 3,000.0 ....for 1.5: 1 Stability = 0.0 lbs OK Fy psi= 60,000.0 60,000A Load Factors Dead Load 1,200 Live Load 1.600 Earth,H 1.600 Wind,W 1,600 Seismic,E 1.000 *. rraecr: Engireers Project .tie: Engineer: Page 1 F1o° aa: Project Descr: FROELICH CantileveredWan Fie=c kers tigt.Proiev vts-toa-l,8FRt.{LSCC 41VISCR i.EC6 , E,tERCALC,INC.1983-2014,8uiid:6.t4.8,16,Ver..6.14.8.16 Lit. ftKIAP08002304 ._ .:' :,',;,2,-,.- ;t",:: � 5 :17-7- ,.. ., a .'' ..- . I icenseee -OELICIECONSULTINGANGINEERS. Description Garage Ret"'Wall i Seismic Footing Dimensions&Strengths ' Footing Design Results Toe Width = 2.50 it Toe Heel Heel Width = 5.50 Factored Pressure = 2,644 248 psi Total Footing Width _ 8.00 Mu':Upward = 7,482 0 ft-ib Footing Thickness = 16.00 in Mu':Downward = 1;163 0 ft-lb Mu: Design = 6,320 18,437 ft-lb Key Width - 0.00 in Actual 1-Way Shear = 19.54 52.45 psi Key Depth = 0.00 in Allow 1-Way Shear = 82.16 82.16 psi Key Distance from Toe - 0.00 ft Toe Reinforcing _ #6 @ 6.00 in fc = 3,000 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 12,00 in Footing Concrete Density - 150.00 pcf Key Reinforcing = None Spec'd Min,As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Etm.= 3.00 in Toe: #4@ 9.00 in,#5@ 14.00 in,#6th 19.75 in,#7@ 26.75 in,#8@ 35.25 in,#9@ 44 Heel: #4@ 6.00 in,#5@ 9.25 in,#6@ 13.00 in,#7@ 17.50 in,#8@ 23.00 in,#9@ 29. Key: No key defined Summary of Overturning_ &Resisting Forces&Moments OVERTURNING...-. .....RESISTING Force Distance Moment Force Distance Moment Item les ft ft-lb lbs ft ft-lb Heel Active Pressure = 2,882.2 4.28 12,329.2 Soil Over Heel = 6,114.2 5.58 34,137.4 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure = -81.7 0.78 -63.5 Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem = 500.0 2.83 1,416.7 Added Lateral Load = 850.0 6 33 5,383.3 *Axial Live Load on Stern = Load @ Stem Above Soil = Soil Over Toe = 275.0 1.25 343.8 Surcharge Over Toe = Stem Weight(s) = 1,150.0 2.83 3,258.3 Earth @ Stem Transitions = Total = 3,650.5 O.T.M. = 17,649.0 Footing Weight = 1,600.0 4.00 6,400.0 Resisting/Overturning Ratio = 2.58 Key Weight = Vertical Loads used for Soil Pressure= 9,639.2 lbs Vert.Component = Total= 9,639.2 lbs R,M.= 45,556.2 *Axial live load NOT included in total displayed,or used for overturning resistance,but is included for soil pressure calculation. Page 128 of 129 1 �' 8.in Conc w/#5 cLD 6.1n o/c s.Er -,s x 1 A C '44_..1 3/4" s':'' 9,_6' 4;t 11'-6" 1V-6" 1 43 d 4 8.1n Conc w/#6 @ 6.in o/c . ., i, to;F <1 Eh4 ""' I'll 2 112" 2�O If Hiding Restraint «....+ ... ,.w, 4I _..._A { 1'4" 6 6.in a 3w @Toe Designer select N " #6@12d1?horiz.taint2'�6 rm- + 5-6 .. @ Heel 4 Page 129 of 129 r DL=500.,LL=0.#, Ecc=O,in Y 85.0s iding Restraint E Pp= 733.33; 3650.5# 206.5psf 2203.3psf