Loading...
Plans - c - goo o� fwe STRUCTURAL CALCULATIONS i��ZkK.71 FOR RIVER TERRACE EAST CONDOMINIUMS RECEIVED 12 PLEX- DOWNHILL MAY 02 208 CITY OV TICARD (POLYGON NORTHWEST) suILDI`G DIVISION S.S4u°Tut? S0 PRoi4s OFFICE COPY 44.1 15472 sra_. V:i: .. ' ,'d 1.OVrr I x I EXPIRES; ill1J1' MARCH 8,2018 171r-"‘ 7 Si JOB NUMBER: 1 7-Ti 74 4 t- ,..? 441 iii• 0,, li _, FROELICH ENGINEERS ? * * * LIMITATIONS * * * ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT, WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND/OR LIABILITY IS ASSUMED BY,OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS. A Main Office A Central Oregon 6969 SW Hampton St. 745 NW Mt.Washington Dr.#205 Portland,Oregon 97223 Bend,Oregon 97701 503-624-7005 www.froelich-engineers.com 541-383-1828 Page 1 of 129 3 � 111 T., x 41 FROELICH ENGINEERS ; Scope of Work Client: West Hills Development Project: River Terrace East Project Number: 16-T100 Date: February 15, 2017 By: YSP Scope of Work: Froelich Consulting Engineers, Inc. (FCE) has provided full structural lateral and gravity design of the project per the 2012 International Building Code (IBC). Froelich Consulting Engineers, Inc. has provided details only to the areas pertaining to our design. Froelich Consulting Engineers, Inc. did not design or review the details for the entire project. Project Description: This new three-story multi-family apartment building wood sheathed wood framed wall structure is constructed with gang-nailed wood roof trusses, wood framed floors, with slab on grade main floor. Conventional foundations (concrete continuous footings and stem walls and spread footings) are used for building support. A Main Office FROELICH ENGINEERS A Central Oregon 6969 SW Hampton St. 745 NW Mt.Washington Dr.#205 Portland,Oregon 97223 Bend,Oregon 97701 503-624-7005 www.froelich-engineers.corn 541-383-1828 Page 2of129 Client: West]ai=ls Development • Project: River Terrace East Proj.N: 6-tT100 Date: "i5'2.0l7 By: YS' FROELICH ENGINEERS! Project Design Criteria Project Description New three-story multi-family apartment buildings Gang-nailed wood roof trusses. Wood Framed Floor. Light-framed wood sheathed wood walls. Slab on Grade Conventional Foundations Project Location Portland,OR 4Se54g°N 122,84"W Average Elevation-350 f(approximate) General BuilBuilding Official: Phone Number: Budding Code(s):2012 International Building Code(IBC) 2014 Oregon Structural Specialty Code(OSSC) ASCE7-10 Roof Live Load: Ground Snow load 15 psi(Snow load Analysis for Oregon 2007) Minimum Roof Snow Load-.: 25 psi (Snow Load Analysis for Oregon 2007) Snow Importance Factor(15) 1.00 Deflection Criteria.::. 11240 Floor Live Loads: Residential Live Load— 40 psf (IBC Table 1607.1) Corridor Live Load— 100 psi (IHC Table 1607.1) Wind Load: Basic(3-Second Gust)Wind Speed 121) mph(OSSC Figure 1609) Exposure_ I3 Wind Importance Factor(1,0 1,00 Seismic Load: Occupancy Category Il (IBC Table 16045) Seismic importance Factor(10 1.00 Site Class°- 1) Mapped Spectral Acceleration:Values(Ss)= 0.985 g Mapped Spectral Acceleration Values(SO=- 0,36 g Design Spectral Response Parameter (Sas)= 0.726 g Design Spectral Response Parameter(So,) 0,403 g Seismic Design Category- B Response Modification Coefficient(R) 6.5 Light-framed walls sheathed with wood panels Shear Walls(Bearing Wall System) Soils Data: Allowable Bearing Pressure 2500 psf Exterior Footing Depth= 18 inches* Page 3 of 129 Client: West Hills Development Project: River Terrace East 44— Proj.It: l 6=F l00 bite: 2/15/2017 �' rty: YSP FROELICH C'.,J0IN 5.0 0i Dead Load Calculations Roof Dead Load Top Chord of Truss Component Weights IActual(psf) Comments Framing 4 Roof Trusses Roof sheathing 2 518"shth Roofing(Asphalt Shingles) 3 Misc. Total 100 psf Bottom Chord of Truss Component Weights f Actual s Comments Mechanical 1.5 Ceiling 2,8 (1)5/8"gyp Ball Insulation 1.5 Sprinklers 1 Miss. 1.2 -Focal 8.0 psf 4psf added for Seismic Base Shear Total Roof Dead Load= 18.0 psi' Calc. Floor Dead Load Component Weights 'Actual 030,. Comments Framing 3 Joist Framing Sheathing 3 7/8"shth Floor Covering 11 1.25"Floor Topping(Cyperete 105 lbs/113I Mechanical Ceiling 5.6 (2)5/8"gyp Flooring Sprinklers 1 Misc, 1.4 Total-- 27.0 psf 8psf added for Seismic Base Shear Cale. Corridor Floor Dead Load Component Weights J Actual{psflj Comments Framing 2 Joist Framing Sheathing 3 7/8"shth Floor Coveting 13 1,5"Floor Topping(Concrete 150 lbs/ft3) Mechanical I Ceiling 5.6 (2)5/8"gyp Flooring 0 Sprinklers 1 Misc, 1.4 1 Total 27,0 psf Exterior Wall Dead Load Component Weights I Actual(psl)( Comments Framing 1.5 Sheathing 1.5 1/2"shth Interior Gyp Finish 2 8 5/8"gyp Insulation 1..5 Siding 23 Fiber Cement Siding Misc. 0 4 Total 10 'psi- Interior sfInterior Wall/Partition Wall Dead Load Component Weights (Actual(psi)! Comments • Framing 1.7 2x6{off 16"o.c- Interior Gyp Finish 5.6 5/8"gyp each side Insulation 0.5 Fiberglass Batt Insolation as occurs Misc. 0 2 `Bslal 8 psf Page 4of129 Client: i4'e t ffifis Dc ia:rvicerE, Project: River C :cc i,a>t Proj.#: 16-11tO Date: 2/152:1:- 4 f w By: YSP FROELICH ENGINEERS t Hat Roof Snow Load Calculation: Based on the following Codes: 2012 OSSC ASCE 7-10 Snow Load Analysis for Oregon 3rd ed.December 2007 Maximum Elevation: 450 ft Ground Snow Load(Pg)= 15 psf Determined from Snow Load Analaysis for Oregon(3rd ed.December 2007) Terrian Category= B(Partial Exposed) per ASCE 7-05 Table 7-2 Snow Exposure Factor(Ce)= 1.0 per ASCE 7-05 Table 7-2 Thermal Factor(Ci)= 1.0 per ASCE 7-05 Table 7-3 Importance Factor(I)= 1.0 per ASCE 7-05 Table 7-4 Flat Roof Snow Load(pr)= 10.5 psf Pf=0.7*Ce*Ct*l*Pg Where pg_<20 psf(pr Min)= 15 Where pg>20 psf(Pt Min)= 10.5 Use(pr)= 15 psf Use(pf)= 25 psf per 2012 OSSC 1608.1 ....---I 0 79.w pep,"o C - Y 74 ,3X, 0 X c\i Vi; -c5 , ..,,,,,,, f,SS•,, (7°-=-1: , , ,,,, . , . a_ ali rimmowillicamb .,:. _ - _ -,„,j 11111111.01MMISIMEM 1 pi ' 4,-74 .1.1..•==11==....n /1 1 Ill _ E ! 4 _ 1..14./ , . .,33 ,- 3 , 3 1.... , . . . ' ! 1....., ..i. vmmelmor...immwe IRR,,,, . :33:--.41*-- 41 I •;:if .11;•11.A'1,..11:1., 1 'ir:`,:?•MaRirtabIli '' /j 3 4 • -''`'',.'1'e313111t1 "413-3,,,_.. 1 ..3`::.11:1:::$14P10 '*:•1W1',,A1CVV1S?1>T$1' ,3"' 1 1i3"•.A*.,,•,:,4% +.35343.0 •„,,, • 33', / iii 1 1 .*::S.,..% ...,_ ., , '....,.;,'V.4... ..-.,1 ----i....,. :41.11:;.:11/1":..4 , "...N,,14?-4-1X.0.,..Wa . , ::"4"; tr.,.1*;.‘".4',..V,Xka,* • ""'L",7-11%,- Z"..1 %;;;,'.40.1414;;S";:k .:' ,,:'...1",. ...-%.........•.1-::.%;ii,°, -c-.'1,-)i, ,, 1 Set*.s• ...:>4*,,, ,-., sv,1. ..0,,z5-%:$mA44.Nr.' / '.fs,'..', inr.; .sx.,.v.vA., ...c..1.•‘,.."4*:A0,..:4.-$e•f: / ,4,....V ', ..„-,1 ve,f0i... '-'"__ 1 int.41M:>,44,::,t,:, ..,_ ,,,,.,....____i N.,,,..$4.c..,:v,,y,,,,,,v4.), Kg ',`-- `,1:k$:: , fg. :4, . 1 _.—me 0...0...6e.'....;;;***. ' \,:.' 6.4. IT-- , Rtm:64.4.6.,..t.6?6,,,, I <4....W.::Air.;;A16 / ,,,,,016..* 6,t, '''-'' '" ..,,,w.,-9.4,,,65:76.",..vw .. —.— - .6.+ • *. •6. . &6.'w.k.- MINIM ,., ti P4 N4V4.0c•''' .:,,,,:-: 4,,t1,. --' ----r T '.4.s",, ...t664.VZ:`::*"3137 .," s----- ...66.-1 14L$4,:AZitf.14':11*,:,,r„..,4i. ...IX,4,4„,...,•.,, ,,,,,,:',:-.4.7...1 ,. %.*:: . 1 \c.,../41.::,75,.4-,/..:-P - (-1-''''A -/ `1›X`1,*14f," ---.*... --*"1-'" i "'e,..,14..t., • A41...N'1 s ;X: 11)> ,f , .r.....___,(....:.1.1—Z.1 ——......1 i.........1 s•:.,%.1.,,,,,„A''';I::"J• 0 ° m!_.‘,47t,: 1/48, I1 ',MI ....' .-..,,,,,,,.....,‘,. :,?::,'",:z.,r ,,, ,..r,,... ..„.. 1,. '''-'''''''-'-' :,,V ..": .. 1. , , ,, ,, .: -4.,...,- --------- ,,,,-,,, 1 _.„,„,,,„ , C.:.-: b.%-‘,..1 1.: , " f t 4\ 1 f.,,..!..t) ,'"'-- -111-1 11 1.11 1:1 Z t )1..-!...3'''-'1 j11`,41.4",.' k _ . ''-ii'..';' -.qi; N.'•,----7,,,----,1-w‘------r., --.',----------- '. .'-'. . , ''' ,. c ...,,2,..,. ,,,,,,, ,a,,,,,.., is:,,,,,,, 1 i ,1'..,:, '''''''' ,k"... '.. _..... .. .... . _ .1.1. ! ,.. . ,1,4teeaV 1., ....oi' I 1..-:,..__—.9F,.; .; :7;2 .:..-7:-.7..--.....-:::...=:.:,; . —...--- ,—,>,,1!.t.16-X,,,„,A. lay '' 1 ,...... , '4-.4.1 '6,.: . -1------- ---'-'" 4.1'......:',,Aillift :: r!: ' . . "6.7 .. , i '''.`e 6, 1 \ en, .4.6iV.:40.,4% ; .66 11. / . - Tr ..,--:---i„-_-------.„7:i - . .e.Z. 'I' 1 !1...!......,]$, , itqcy, ,L :'''' (.:„1.) . -- v.. ,> i ' `.' ' 1 ' ' ; 1 7 7 44:44.40,P•14:0%, II 1 1..4—, / ,,, ' : 1,:adft.1*;•0%.,$. 1 .---- , .' V i I OtOiNeWto.idtkr 4 i-. i if * H 1 , , i ,......,. . ''' 4 13,1 1,34¢'4,1X1.1:3,. A A.,*• : ;i'' k..•% i I , --- „... . 17,,::4.......-: , ''''''' ; , itaalt,CENiagal __I *,•`4 W., 0 ,,, , , it: ' -'''.,,,).' ,.. ........._ „ „ ..._.... , . ,, . ,,,e1,&,, ''''c...!.D.t.... . I ...i. . 1 .4 ,...., . vx . ‘,...... , ., ....... CLIENT: Page 6 of 129 Pc:di:pod,0,0g.7,r--7.7223 503-624-7005 PROJECT: 745 NW MI.Virf,o ffgf,..';f Dr..265 NUMBER. Bend,Oregon 9:733 541-383-1828 FROELICH - ' , ' DATE: EGSER 12303 AW ifport ay,Sure 200 NINSg Broomteld,Cob-ado 83021 Is wiroe%ch elipm.Tr,„com 720-560-2269 BY e00 c A-Riei A.4-.t Ai a De's I 1 ..,,,-..,- ..•,,,,,-7,,,,,,,M,...,....-........ ..51,-=-4-.MM.,,re, RC>C5 IC (:)6 A 1:::› le0 40 Y; 113 P5F- F)..5F ooic SAJoW .-oill Dr.0-5 USE iP12,6:-- /144A/t4lic mirieds52,2.t-i cDc. _ ---:--r-=-L-r-,-- --------:-t,--_,, ---- .4_,...:.- goo,r CILA2DER ittuss : ( Fixk. REAcTioAl CAJty) , - 4, ...... " 1::,Asosfsd2ct) ...0 .1- -5 Ls 175014 RGt-zi : t - spik-eu It -0 t-, 1._ s J300 RG43/ : Pe, 13 DL142. ) ( •36 * 3 (z,) (25) -s- 50 R...F. otr 1.700 ,s,1s 2coo DL, (1‘ ft-F pc..Fe-o AA- R ) CL ; /5O0 Au stms, 17:1t50 CLIENT o), 2,‘„, Page 7 of 129 PROJECT: ' ,z,-N''. '.'- .'g:..- -.,9 to 10-,20.5 NUMBER: , ''''-' ,1-.-.2 :::`,(_,-.;,-.• ,07'1',3 11 28112P FROELICH DATE 1231).- 4,,T)cA,Aa''Su,to.200 ENGINEERS , 1-:',,,-.'orrf e c (.oloroac 8W21 720 560-2269 BY: 26t I 1' bl.„s Cz-f)(1 43 ) -‘' ' 6 I SL c .35) ,s,5o t FL/7 Si_#. 2,cov4 (10) 043) -c 115c) 1 Pt, DL c 1300 l' S.I-- e 1 60014' Ro0 F Hae 's : R14 1 : 0' .... / S PAN s 3-° S L r(til)t z5) ' 25P I • -, p(Fe.o.m.. GrtAct..0.eit TztP5-s) e,, 2-0 ik.R —SPA N I 6 —0 F DI— 0 OA 5( ) s" .2 00P .,F 5Ls (111) (2...5) x-2-75pc 1 Page 8 of 129 .- _ ._._.._._.._ __ ....,_..,.._. __ COMPANY PROJECT................_....._..,_-______ __ 0 0 dvV(--) k> , !Aug.;.3.['d'11515:4i RHI w+;t; 9 x4 1 3G'St WA06#OR 01210_€SIGN Design Check Calculation Sheet T� woo,1Wo31es Sizer 10 42 Loads: t u.1 F777---------17'' i t t:1 N It :,. :.p z.ct h..d t f:,, 4.21 545,1 ...0 , T. ca42. f.iftal. 1111L 0.10 3.21 27'2,0 275.11 Of 4'33 ifotot. 2,00 GSI 11, ra,:,,1E 2.0D ?iii) I Sol° _ :F ;::) CUT. 13.0 gli Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): ,p.- 3_13- -.,.. -.,. f i ._ W r al 3'F0.. 11111?:1:c r,.d: Dead `,',14 ?`) Sens$ 11611 914 Fart -__ , .:,1 1142 1223 ;sped=:.y 1101 .42:1 :an: 1 1.'011 1/17 nea1l0, Live 1.0.0 , (13.0,1 0.4:1 11.91 Load c.,#1; #2 142 visit', 0.:i4. 01')4 M-Ar ,r::',) 0.53 0.19 CO m 1.11 1tl,1)1 !:b s:;ppoli i..ii. .11 622. bis Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7-114") '.. Supports:All-Timber-soft Beam,D.Fir-L Ne2 Total length:31-1..3";volume=0.5 cult.t Lateral support:top=a1 supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: c a.. 1 .'::e ,:.leO-#r, vatao 11070 Ar�:r ysrlYe,V 7 h? - 102 gaz buy' .7) i. Is,' 560 - 2335 psi * 0.42 !),,,ad lol1`n "i,V. .::...:.'30 Live 0.01110 ;<[. <L. 1.10= 0.2001 111 0.01 To _1I'r 2.0 fr 4/9°9 1.11.5 - 5,124; i3. .2- Additional Data: FACTOR5; 1/11)),l:'')l GN. gb :I1. CM :ltv Cr girtCn LG0 10') 1.12 1,00 .e0 .- _ - - 1,00 .s0 1,00 2 i12'' bog 1.17 1,04 1.00 0.99:; ...1100 1.,04 1.00 1.0600 - 2 :13 rep' 625 - 1,40 1,':13 - 1.00 - - 12.1 4.6,i 1.01 1.00 - - - - 1_40 1,00 - 2 ;n,Er:' ,.:2' tt i.L..7 1,III 1,1/'1 .. _. - - 1..111, 1.6:1 it CRITICAL LOAD COMB:NATIONS: ih^a, ; L!': 41 r ."_:, ,!_ o01. Y rhea f,,3n :304 1ba L=: 12 - 1414, :3 152 it:.,-ft: 21e#2,#ctieE. 1111 ae iii,;e, 1.11 12 {t.ci:a:1) J=O-al L.-ic*,e. -- ad , at . is ,,- -700 L:'•cdncentt4:d L-,__._htlooke AI-_ ILC';, ace listed n-thee 1,013:ai.0. ;;;att071 14,:,)r:or'l'ia.zbLoo'1. ;3011 1_111 i 1011 2812 CALCULATIONS; 0141,4:14n: LI .. , e1)b .1int "Limef 4111 '': lot? r Deilbotion. from...... .........leadi Lords (1100, wind. snow::,; ighat t.'.> 1 en-. 1.'_0 1,'.,,L..::4 [ ll.,',t.icml 4 Live Load 00)1,012,0,. 5,...._2::1. 11",111:1°M 1 V). ..o r 11-1.63' 10 = 61-14.5011 aa 0.04) Design Notes: 1 WoodWoths analysw and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Speoticali,n(NDS 2012).cod NDS Design Supplement. 2 Please verity Met the default deli0014 in Omits are appropriate for your application, 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4:4,1: Page 9 of 129 • COMPANY PROJECT rx � {) P a J k !Aug 23.20.1 ... R112 n-.va as ,.ar `€ - _—...._......... III L. Design Check Calculation Sheet .da,t;U`tr',r1s 44w,.>:11.42 Loads: 3 .. i ! EEE 3 Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): ¢ntiar. o,E.d: Ov,/I 029 229 Stow 741, 4)44,1 To Lal 1470 14711 t: Het,;, 1470 147r Svpoo7k 1.627 .1.527 A,:,: /C,n. ^1,,:tk. 0.90 0.90 l.as:9 c,x i, 112 42 °::g,;, 0.67 0.6' z ,1.1,7 0.07 '� Ci) 1.00 L> 1.00 �D'b'oppurt: 1..11 1.11 Fcp 5,4, 62i1 625 Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7-114") Supports:All-Timber-soft Beam,D,Fir-L No 2 Total length:8'-1.3";volume=1 1 cu.ft.: Lateral support:top=at supports.bottotn=at supports: Analysis vs.Allowable Stress and Deflection using NDS 2012 1 <101:,.-00,,,, )t. .lx:a.m vn'a.a'o °)1loug>, YAOsr 43010 0044434)se 4-x1,10 Ph= 26.E 41o' -. 1:4,33 psr rb/4b' . 31.6', Vend 0.04 4,1995 . 1:41' 0.00 .. 2.12,199 0.70 11 6,27 a,rs. a.{:... ..1<- /711 0.-30 1/24,1 in O.32 Additional Data: FACT2R9; T'1.)".042 Cl' Cl - Cf. 2e 1:4 Ci. ll,i; 1,17 1.00 1.0'0 - - ... 1.011 1.01, 1..00 900 1.114 1.00 1.00 0.991 1:.3(4,0 1.00 1.00 .00 1.00 Fop' 670 - 1.00 1.00 as a 1.0 4D11 so, 4.40 1.00 - - .- - 1.130 1,00 -• 2 E3111.1.11,1 1,06 ,.OD -. _„co _.CO - 214 1icAL WAD 2)054)31 10lIONS: S0:472 : 12 12 .. Ds)), V 1457, V dee>,n .' 11.52 1.., 57721.13 .1 L,. 42 e 0+9, 01^ 2200 104-ft Cet1,?4ticc: LI; 4 - hive, t.:' 42 f142 i1<0u, O-E,S,, ,v., , :.,J 6.040.2 Teinpecc lute roof live Ixecuncentcated Pe,earthquake, d in 100 Anslyeia output t± :.z4,.. A"Cti"1-10 I ::',C 2012 CALCULATIONS: CO ,::::1,: 000 1n-14.02 "Li_- .4'4,.x01 t. n 4oe) all 001 .:x./ 1074.5 lA.^,,, 0.02, .now..,) 'at'-. .40, 04,::e 1.,%21_..,1 Leo*) Deflection) ,::,e load t :t:..<.o:ion. .._,.e..al. ac...._L.-y )4'}= 4,'.. .. ....43,69" 2::—13`-_,15” 1,0 9.11 Design Notes: I Woodworks analysis and design are in accordance with the ICC Intematianai Building Code(IBC 2012),the National Design Specifrcolion(NDS 2012).and NDS Design Supplement.. 2 Please verity that the default deflection limits are appropriale for your application 3 Sawn lumber bending members shall be laterally supported according to tete provisions of NDS Clause 4.4.1, CLIENT: 5969SWn f 'o ,^ ,Oregon /7223 Page 10 of 129 503-624-7005 PROJECT: wk /45 NW Mt i.'o hin ;cn Di.#205 NUMBER: .."4 Bend.Oregon 97703 541-383-1828 FROELICH DATE 12303 Airport Way.Suite 200 ENGINEER 5 x Broomfield.Colorado 80021 720-560-2269 BY: wH o 01— PL. F k _ '/, a / ice r& e/. `. 240 e.0 Tcx S2. AJAI { Pane 11 of 129 Client: Project: Project#: Date: By: FROELICH ENGINEERS b WIND FORCE CALCULATION-C&C Walls ASCE 7-10 SECTION 30.6,30.7 (Third Printing) Design Wind Loads on Components and Cladding-Walls Basic Wind Speeds Input 3 Second Gust Vas= 120 mph Exposure Category= B Wind Directionality Factor Kd= 0.85 Table 26.6-1 (page 194) Mean Height of Roof,h= 40 ft Topographic Effects Input Hill Height H= 0 ft Table 26.8-1 (page 196) Length of 1/2 hill height Lh= 1000 ft Table 26.8-1 (page 196) Dist. From Crest to Bldg.x= 100 ft Table 26.8-1 (page 196) Height Above Local Grade z= 15 ft Table 26.8-1 (page 196) Horizontal Attenuation Factor m= 1.5 Table 26.8-1 (page 196) Height Attenuation Factor g= 3 Table 26.8-1 (page 196) Shape Factor Kl/(H/Lh)= 1.3 Table 26.8-1 (page 196) Output-Topographic Multipliers Ki = 0.00 K2= 0.93 K3 = 0.96 Topographic Factor = 1.00 Terrain Exposure Constants nominal height of boundary zg= 1200 Table 26.9-1 (page 199) 3-s gust exponent a= 7.00 Table 26.9-1 (page 199) Page 12 of 129 Pressure Coefficients Input Velocity Pressure Exposure Coefficients Kh (see below) Table 30.3-1 (page 259) Height(ft) Kh qh(psf) Velocity 15 0.70 22.0 Pressure 20 0.70 22.0 Output qZ 25 0.70 22.0 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 I h= 40 0.76 23.8 qh External Pressure Coefficients(GCr)-Use Figure 30A-1 for h <60 ft,30.6-1 for h>60 ft GCS,,_+/- 0.18 Table 26.11-1 (page 201) Pressure Coefficients on Exterior Surfaces of Walls Zone GCS, Zone 4 (+) 0.90 Figure 30.4-1 for h<=60(page 277) Zone 5 (+) 0.90 Figure 30.6-1 for h>60(page 290) Zone 4 (-) -0.90 Zone 5 (-) -1.80 Calculate Wind Pressure, p, per Equation 30.4-1 or 30.6-1, using cts Exterior Face of Surface Zone p(psf) Zone 4 (+) 25.74 with Positive Internal Pressure Zone 5 (+) 25.74 with Positive Internal Pressure Zone 4 (-) -25.74 with Negative Internal Pressure Zone 5 (-) -47.19 with Negative Internal Pressure Page 13 of 129 • .---... !COMPANY PROJECT A a iiil t,i- WoodWorks Cez 13,201609:29 earn1 Design Check Calculation Sheet 11.1oodWorks Sider 1242 Loads: 1pdd Ldrn 2td:rt Lnd Ctarr llnd ,L0drti 'Vm.pd • '' . . - Maximum Reactions(lbs), Bearing Capacities(lbs)and Bearing Lengths(in) : .i. ' i 1 . 6. .9'i.5- D.,1 il lid ;2 I 327 mnrernrld ,.. TPta1 'LL6 196 Bearn : . Capdclry Fnam 226f 2256 12upc,or': 2860 2266 Anali0es Beam 0.09 0.09 AupporL 0,03 0.09 Load 00.m.5 #2 #2 LcrIgrn 0.50. 9.621' Min rnq'd 0.50' Cb 1.00 1.00 Pt, nOn 1.cio 1.00 Cb nupporr 1,50 1.00 i'ci, n0L, 625 625 14)Mmum bearing!engin setting used:1/2-fur end supports Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7-114") Supports:All-Timber-soft Beam,0 Fir-L No 2 Total length:9I-1,0";volume=1 6 Cu ft:; Lateral support:top=at supports,bottom=at supports;Oblique angle:90 0 deg; Analysis vs.Allowable Stress and Deflection using NDS 20t2; 171'(7 0.' (2 V,too IA1nian YA1uv Unit Analynisidesten Sooari x-n. Cv 6" ;,,' 22,1 k!po fviCy' 0,00 " n' - 2,j pdl fFv. Boodrng(41 x-x 1: . () „..,, L.T.1 7dp-11 .2/FL y-y 1:1-, '11,1. i3O' - 1900 kip-ft 12/52' - 0.I# Dead 0-:fit o,.:FigLPI, Live cello 0, 6 - it652. 0.,i5 ,, L/7#0 L0 0_35 0.35 Additional Data: FAITORn: .6/6:{ps1)CD OR Ct ;;L: O6 215. Ix Cfrt Ci In 1-C# Fvy' 100 1.60 1.C' 1.1.1 - - - - 1.00 1,00 - 2 5by' ROO 1,72 1.,:iC: .1.. 1.000 1.300 1,05 1_00 1.00 1.00 - 2 Fop' 625 - 1.5'i ',DC: - - - - 2.00 1,00 - 6 1,11 iill.:-,, 1,00 1,00 - ,„ ... - 1.00 1.00 - 2 (line' 0:56J ,011ion I.5 1.:i7 1.00 1.30 - CRITICAL.LOAD COMBNA"flONS: :Moat : LC: #2 - 66- 77, '' - 15.:, v ,'.n1-o: -, 1712 11,1 Mending1,d: LC :::: Deflectlnn: LC #2 .. , i1.. x 10.6: LC i2. - .6.6..,.771 ttOt6', r.,-dc.,ad 1.,-1 ,6 Scsaow W-wco.i. I-impact Lr-rdnr iivc Idn.cncentrated F.e.arthq52ke All 17''1(2 II:-- j:istd :6, c' Aoal. 0rd.p0n Load COinbi ,.. : A'.:',;:,E 7-1 i 260 2512 CALCULATiONS: DnflII ..'.,' : Fl = 120706 IL-rn2 5.1y = #1...LA06 2.1d-.lnd T7td.1 Do'.7,1 ...' - 1. . 7,, Ilnad Dni#dtb-,r.. + Live L.cad.. Deri4cti.nn. LaL#ral 876bilily H-1! .1d, - 9'-0,50" Le - 16b-7.632 1R71 - 0.6A Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement, 2 Please verify that the default defection limits are appropriate for your application. 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4A 1. CLIENT: .n Q7223 Page 14 of 129 AY� 503c24-70:-.1!.; PROJECT: N 745^4 M. q r ctu D'.#205 NUMBER: � E •�d Ot n 97703 541-383-1825 FDOELIC - DATE: 12303 Airport Way,Suite 200 ENGINEERS ?, Brocmfieid,Colorado 80021 720-560-2269 BY; 1 i £ oF A)9 -0 L 1f Ft-F =-51...4- (2.5),t- 175, 1 1 1 1 1 • • Page 15 of i 29 �,, COMPANY PROJECT ! 4 ,7::::., : „.,,,, 1 ,:„ „.„.:, -,.,,: ,, . .,,, WoodVt, r , \ 3 F 2017 1173.0 F011,w„) I Design Check Calculation Sheet :cc,'4Size,.10 42 Loads: — • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): .:.- ®® { ,T--- :i- 0 0• 0,0,5- . D.;:-., 4 4E, .. iien :.�t.s' t; '.�'.E:4 tz_`Y "1 R01):Ocu 0.55. 0.413 4.107 su?p4740, 1,78. .4 m 01'4: BC 40. rh. M78 0,50. CB 1.00 i.00.. Ci min :21.el tAitimurn beating iengt4 setting used:142'404 era fdappu'tt4 Lumber-soft,D.Fir-L,No.2,4x10(3-1/2"x9-1/4”) 0144.014.An-Timber-soft Beam,0 44r•L Nn.2 Icaut length 6-1.0':valuate=1.A cut;.; Latera'Snppo l;;op=at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012 '1310114130 on A«ta.y4148 MatIme4 ;£scxa4o V40474 0544 l 207 Bend f.: 4.' .. 4 04 _. 1 :1 ve I.t . - ;q -est. __-.. 2:03 ' ....f Additional Data: pd e° 00 - 0 .., 0.S'I 1.eat CRITICAL LOAD COMBINATIONS- Mien:: LC 4 - B40 V :,.,. ._ r;d404 +i; 1.0 __ re..1 L. i.:: .t SC 4_ za: 08,7640 1.=1.:v :. .._ :e0' 21,2 41-4.401'' '' -- .h:u_k., 7411 10 3 ted i., µA*. - J 1.^ad }t-tai'::' ..94.2. . . ...v. .- CALCULAT40441 ':,:3'i' dett,,,,,._:,. .-_.... _, :s.^:: .a: nnn-dent 1,03 ' 101:1:1 0,:d!_-..,. I-.0:v.. -- :. : , 1'>_t— i, 31142,4x'.4 l4:: 4,: 4 .. 41' Design Notes: I WocxtWnitcs analysis and design are;n am:44301e with the 4CC'irate oo'.40a4 eutta,ag C7)01 4.60 20012;..the Notional Design Specification(NOS 2014 and NOS Design Supplement.. 2.-Please verify Mat the defauli deflection films are 141pteprtate for gout aop+i_ation 3.Sawn!umber bending members shags i'se'313:3l'y supported 410042ing tc lire c v.,i_.,Of*.24,Ctatuse 4 4.1 Page 16 of 129 '',' ,,..,2... / J 1 : 1 , 1 i 1,Q9 r ,,,,.,,,,,..,,,,I.,.._47;.„..,,.„,.,:-...,--,...-, -- L---(-' \ ) ,-,,, J : i........._.______ , I (- , - ---- j; - ---„„,,,,, 1 rF,./....=•:::-.,:i Q 1 , ir t el 1 f 1 4•,` 'r#: -., IA 1 1 / ----- ..,,,, i J 1 1 ..,===,,-; ''''' ', • ,.. \, II J ,• 11131 . • " ...T.z.;7,....,-n i, p.it) . Nk.sk\j‘ 1 (:1):' i \ ., ,.._._.......... „_ --,„ .. .,,,1: •..,: 4 .. , .---4 1- 0 I ,„..„... ....I.--1. ?c/ .. .......-„,-,,-...,,,,,-- ., ,, i ,, \ ... [I' , t T- ,. ,) i - If , ../ , ti 1 1 -'1, • ..(I -........ koi ....11."-' .1“ MintCL,===,. L 1 C;) ? (1:::: .,...) 4 ' ....., *3 t 1..,...,., `",....., ,,.., F , i\ ' 4 -zr R k, iii: (1 p / ii ,,,,r) -- , \ il .. , .. , ,.. ,........,,, 3 li . _ iii-_,_ ii, i, A • II ..-" ri, ....,-•-,,,,,,....„...:‘,...4 1,,,,,Itt% ,.., vr43. . • . . ,,,.„, T,' 11(4 At,, cl V :41 1: iks) ''7'' - .... '.§ ....4 i ....„-- - tr I 11. -/.... NM < . • , --,,,,,,,,,. - II ,...., I 0 ...r., I I , ,,:,();:ii,r),.-,...., 0 :8 12, i 1 -, , : ., ,, I i ..; 41 I I --. MI-*-lr'...--". r' 4 tril / i \ II , , ‘ ..,„ , cfp.,11 1,-, ,, -'.... ......,..„ c,....-. , . ,. ,,..: , Ie \ & 0 \ _ $ 'fin! 04 .os \ N ,,„.,.... , "" ,-4:-.I• 0 i, - - , ‘si T. 61;) „... . .7,-.....,-.:7____Ir ..„ ........., N ',.. ,..:71:... til 1 I : 1..1 -1:::). 11.114; ''- , '‘ 1 1 : 1 ft.: . '''',,... \ ,,,,, `......„,,, I - ' . -,....„,„.. \ Il ', 6,,,-., 4-`1 ,•.7..1 ; ..,...., ,1 \ i / I: .. . . . , ‘ . , p; 1 ....,..,„„.. - ® „.:). 4o, k.. .: ........- "1-1---- ' 1 i 1 I i Ci ENT, ort 2?3 Page 17 of 129 503-624 700E PROJECT: 45 o h o,C X1.05 NUMBER: Bend Of ego, 97703 541-383 1822 FROELICH DATE: ENGINSERS d 12303 Airport 01 -�,Suite 20 Brocmf i ,Colorado 80021 �� .. 720-560-2269 BY; R.D. e.. F 1)0,4 61-49 o c tooe Live _s-1 f hoc .T s 3 '0 SPAAJ r /5 S PA Air IS I } Roseburg Page 18 of 129 K ot 4tit l 20173.11.5 iU )Engine 2017.1.0.4 genal..Dzg,6 c 156'_ Viember Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None Standard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total Dead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beaml T / / 17 9 0 17 9 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift I 0' 0.000" Wall Not Checked N/A 1.750" 799# -- 17' 9.000" Wall Not Checked N/A 1.750" 799# - Vlaximum Load Case Reactions Isedfcr a{J ig pts t batt(e ire tomb)to cary'sg mantes Live Dead 477#(358p11) 322#(2420) ! 477#(358p1t) 322#(242p1f) )esign spans 1710.750" Product: 11 7/8" RFPI-400 16.0"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. 411owable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 3576.'# 4315.'# 82% 8.87' Total Load D+L 'Shear 799.# 1480.# 54% 0' Total Load D+L (L Deflection 0.5684" 0.8948" 0377 8.87' Total Load D+L _L Deflection 0.3393" 0.4474" L/632 8.87' Total Load L ;onto!:Pos.Moment DOLS:Live=100%Snow=115%Roof=125%Wind=160 SIMPSON a,paid long ae tr.d, s d then r�{rfA'a wuas Kami L.Henderson EWP Manager cgg-t(c)2D16 snp5o,Strogre c°nfny Inc all RIGHTS RESERVED. Pacific Lumber&Truss erg is defied as vheite melte,fit=Fist,beano grc$&on)m this danigmeas �aiaiafa lords,lcEctrg Caritas,at Spas Welmtbis shed.The mud 6e r°riever)'aq�gi� Beaverton.Oreoon 13 1.22_ , Roseburg Page 19 of 129 2.461)1 1 of iEk iL_neinc3017.LO.d uyitils D.uab.c 1563 Member Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None Standard Load: Moisture Condition:Dry Building Code:IBC/IRC _lye Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 Terry _ a�,.r, r?...,c=,•,•�,,a� >.,,,_»,,,,�r�.n� „ ...�;;,•...M. . ,�aa,,. �_xu ,« r�Frsr,,� x< .,.,,u, a Gs,.,, ,,,_�..s. ,, <;-� 15 2 0 15 2 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift 0' 0.000" Wall Not Checked N/A 1.750" 821# - 15' 2.000" Wall Not Checked N/A 1.750" 821# - Vlaximum Load Case Reactions Isaifa p it kais(v Fe lam)toc 4g menbes Live Dead 490#(306p1f) 331#(207p1f) 490#(306p1f) 331#(207p11) design spans 15'3.750" Product: 11 7/8" RFPI-400 19.2"O.C. PASSES ESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. knowable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 3142.'# 4315.'# 72% 7.58' Total Load D+L ;hear 821.# 1480.# 55% 0' Total Load D+L L Deflection 0.3714" 0.7656" U494 7.58' Total Load D+L _L Deflection 0.2218" 0.3828" L/828 7.58' Total Load L ontrol:Pos Moment DOLS:Lve=100%Snow115%Roof=125%Wind=160% SIMPSONKami L.Henderson EWP Manager 4 cq ft(c)�stySm�,svgreCa Ir.ALIRIGHTSRESERVED. Pacific Lumber&Truss ssirg rs d9srtJ as vls,the menta,floe jdsl,bin o shwa,m tts darwig mtris ailaia la Leak,Ding Codlios•ad Seals fatal a tlis shat.The c mist be reienel tH a q it Beaverton.Oreaon 1 t,z S1 't'OC"i. 3rd Floor. Span 5'-0"(Corridor Joists) PASSED 1 piece(s) 2 x 6 Hem-Fir No. 2 @ 16" OC Page 20 of 129 • Overall Length:5'7" 0 a o All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual',0 Location Allowed Result LDF Load:Combination(Pattern) System:Floor Member Reaction(lbs) 455 @ 2 1/2" 1367(2.25") Passed(33%) -- 1.0 ID+1.0 L(All Spans) Member Type:Joist Shear(lbs) 346 @ 9" 825 Passed(42%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 565 @ 2'9 1/2" 801 Passed(71%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 Live Load Defl.(in) 0.079 @ 2'9 1/2" 0.129 Passed(L/784) -- 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load Defl.(in) 0.100 @ 2'9 1/2" 0.258 Passed(L/617) -- 1.0 D+1.0 L(All Spans) TJ-Pro'"Rating N/A N/A -- -- Deflection criteria:LL(L/480)and TL(L/240). •Top Edge Bracing(Lu):Top compression edge must be braced at 5'5"o/c unless detailed otherwise. • Bottom Edge Bracing(Lu):Bottom compression edge must be braced at 5'5"o/c unless detailed otherwise. •A 15%increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NDS. •No composite action between deck and joist was considered in analysis. Bearing Length Loads to Supports(lbs) Supports Total Available Required Dead fawer Total Accessories 1-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board 2-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live Loads Location(Side) Spacing ;(0.90) (1.00) Comments'; 1-Uniform(PSF) 0 to 5'7" 16" 27.0 100.0 Residential-Living Areas Weyerhaeuser Notes SUSTAINABI.F FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator Fortefe S rf.t.sare Operttc_._.r_.._..._ .-._._........._._:__j_Ja-tN.__ates.... 3/612010. 4.0t:4s PM Forte j5,2,Designrc;;ne:i „0 0.44 a it Kent rt fir._.,: c:rr ` Page 1 of 1 ' Page 21 of 129 1 7 MEMBER REPORT 3rd Floor, Scar,6'-0"(Deck Joists) PASSED 1 piece(s) 2 x 6 Hem-Fir No. 2@ 16" OC ovecal' Length 6'7" , II E All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results 1 Actual IIS Location Allowed Result LDF Load:Combination(Pattern) System:Floor i Member Reaction(lbs) 285 @ 2 1/2" ITIMESI Passed(21%) -- 1.0 D+1.0 L(All Spans) Member Type:Joist Shear(lbs) 227 @ 9" alliall.Passed(28%) r 1.0 D+1.0 L(All Spans) Building Use:Residential I Moment(Ft-lbs) I 425 @ 3'3 1/2" 801 Passed(53%) 1.00 1.0 D+ 1.0 L(All Spans) Building Code:IBC 2012 Live Load Defl.(in) 0.064 @ 3'3 1/2" 0.154 Passed(1/999+) 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load Defl.(in) 0.108 @ 3'3 1/2" 0.308 Passed(1/688) ® 1.0 D+1.0 L(All Spans) T7-Pro" Rating N/A N/A -- -• -- • Deflection criteria:L1(1,/480)and TL(1/240). • Bracing(Lu):All compression edges(top and bottom)must be braced at 6'4 1/2"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A 15%increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NOS. • No composite action between deck and joist was considered in analysis. Bearing Length Loads to Supports(lbs) Supportsoor Total Available Required Dead F Total Accessories Live 1-Stud wall-SPF 3.50" 2.25" 1.50" 119 176 295 1 1/4"Rim Board 2-Stud wall SPF 3.50" 2.25" 1 50" [ 119 176 295 1 1/4 Rim Beard •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live 3 Loads Location(Side) Spadng (0.90) (1.00) Comments 1-Uniform(PSF) 0 to 6'7" 16" 27.0 40.0 Residential-Living Areas I Weyerhaeuser NotesSUSTA.NAPLE FORESTRY NITIA'NE Weyerhaeuser warrants that the sizing of its products will be In accordance with Weyerhaeuser product design criteria and published design values. y Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to :assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable :forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-I153 and ESR-1387 and/or tested lin accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx. IThe product application,input design loads,dimensions and support Information have been provided by Forte Software Operator Forte Software Operator Job Notes 8/24/2016 9:00:37 AM J. """ `_� Forte v5.1, DesignEngine:V6.5.1.1 Yasha Sarraf Pc.::,, 9 f-reech Engineers Joists-4te 1 `503)924-3311 ysarraf©froel:h-engineers C-C3m Pape 1 of 1 CLIENT 696;SW-id—:•on Si Ponlorn Oregon 97223 Page 22 of 129 • 4 r03-024-7035 PROJECT. " /45 NW M* Washing'on Dr#205 NUMBER Bend,Oregon 97703 541-383-1328 FROELIC DATE 12303 Airpo4 Way,Suite 200 ENGINEERS , Brocmfie d Colorado 80021 720-560-2269 BY 3RD A-00A SEAMS: SPAN s' to -0 DL s (i2 )(27 ) ic32.5 PLC t Ls ( 17,1) G-to ) s'a Pcic 3F821: q- SPAAJ DLstit-i )12.; ) s SS° PLF Ocii)e-10 ) 'c 566 PCF 3FB3/ : v.. SPAAhr .5-0 PIP EX, (-3.5) (Z7.) r LLs(3.51)((co ) ,v 35° PIP"' 3,FB .SPA Al s. (S)lag '31 PLF L (3) ( (o) 12-0 Ri-k- PAN 5 -0 DL sc Pt/7- Page 23 of 129 • 1 COMPANY PROJECT _._._.._. t x WoodV\JoksV I „, 24,2 13 04: 1 3.-61 emu Design Check Calculation Sheet A's:ari l/M s Sizer 12 42 Loads: 143.:32 1411 4151. I • Maximum Reactions(lbs),Bearing Capacities(Ibs)and Bearing Lengths(in): -.:.--_ ._.."- -.__ - ,w 10''3 7•-_.. _nha_-�� .,....w..-- ---- 'y IQ'-1 B' Ve3ci1224 172: L49.r 24:4 2491 94031.. 4 t=3n 4195 93.3-103, 0 5i.ey .m 4195 41911 43-,4 -1.164 ,50.11494. 1.04 1.0n 0.94 ;. n44 L<> .. :1 0:0 44 .92 1,399519 1,43 1.00 1.59 ch r:,r. 1.05 g.011 natpp3x33. 1.11 4.1.1 1413 445 62`_. Glulam-Unbar.,West Species,24F-1.8E WS,3.112"x11.718" 8 laminations.3.1 r2•maximum width, Supports:AS.Timber-soft Beam.D.Pir-L No 2 Tola length:10'-3,7';volume= 3.0 cut.; Lateral support lop=full,bottom=at supports; Analysts vs.Allowable Stress and Deflection using NOS 2012: " 114 9 Lai. Bending _1%., _ _ 1,91114 9.49 m .'9413 1,191, 0.1' ,r.13-- t., 13.34 - -. ra`. z C-41 n .3,27 'f ...,, 1.,: Additional Data: 443C1'0 -. _ .._ Cr 5,193 011.nex L1-11 - -;5-; 1.. 1,0 _. _ ... 17,4' •+ 2104 1.30 L 1.34 1.n4n - ..-:6 401 ... 2 .c' 051, - i 3 .:. .5 nullIon :t 1,00 F..sry' 1' 49 m3111nn 4.04 1.90 .- CRITICAL LOAD COMBINATIONS: 4145, 404,3n11-41:"314 . .:. 44 - ... 11-311434,51,ng 1,4 42 n j4-1. c115 , 40,904 L-11ve 4-sn3w W-43n.j 131,3440J 4.4,401' 1135 1-005,450,33,3 ALL az'v . ,Aria 2..5 _ - : ,t. a,r ,. .,s. 1 54 2 CALCOLAT'IONS: "^ os 111 mytJo 1',t31 i032.19293 "..:.",.. 5.1 0111141, _ ..-. ., .. Design Notes: 1.WuodWorks analysis and design are in accordance wills the ICC irIne93tlo'al h:olid nt7 Code li621 2012),the National Design St'ecifical:en(NDS 2012),and NDS Design Supplement. 2 Please verify that ttie default deflection limits are appropriate for your app icalie,i.. 3,Giulem design values are 00.materials conforming to ANSI 117-2012 and'93:49101'0.'n1 in accordance win ANSI A190.1 2007 4 GLULAM:had=atduat breadth x actual depth. 5..Glulam Beams shall be laterally supported accerdi 11 in the provisions of NDS Cause 3 3 3 0..GLULAM:bearing length based on sma,ier of Pcp tension).Fcc(ccmp'4). Pape 24 of 129 COMPaw PROJECT �.., • dWo „3< Design Check Calculation Sheet Loads: Maximum Reactions Obs),Bearing Capacities(lbs)and Bearing Lengths(in): Glutam-Uabal.,waat spotvss.204.0E 10•45,3-112”0147,41- 3..(r -1t2"xti.7,413..CT mu:.w:n rmzr,. Tope Nr03 4,4?`.O5 RO• 'n 1.1.11. 148, .0. YvA,totor'M M4ds'04... Analysis vs.Allowable Stress and Deflection apraes7a42t IS « Additional Data: 135E All z Y. CALCULATIONS: ..s..._.-_ -_* _..,....._ Design Notes: roaa✓:'x<sx-xlti4and:) .'1OP0 twcrbsrxx'nn INT ECC::atemaNaPi Rtdin9 C,h( 002124,i`nYO'..iOw4331•.Oct.ate,.,CG324323.a-43 NOS C'es:Y.bupieNNI 2 pkext..wx'iyy:hal;M heresy debeppe!:dents Pre a 'vaa 744 t<:a esppic'a:fm 3 GkSo-n kryjn vakrs a3 kg mai ear.:6n'ar!r4t.;ANSI 111.x10 PRO EpaNAPR1sb21.3.:433.0C art;ANSI Ai91-240' 4 GW,.AM'.00 4.3344 ae R95 s smut 3,04.. 5 Gubx!e 339500bP III44434•4 44334333 3,31e 4s3445,'M4t+#NDS 04333333 13 32LULP `•*ee.403 te15:R 13ete0 C3 somie<a!r_L`I'.P:3t+ln).F_p ecenp'a). • Page 25 of 129 COMPANY PROJECT A.:3 24,201e 09.13 2fi.33 Design Check Calculation Sheet 4'io,^,dWoris Sizer 10 42 Loads: tarn Flood, ibe I S07t-weinhi Dead Full UFI Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) 971 me.. .,m„m�..,.,_ ...._,,.,....._,......__ ctl Uu€'actor d: Ilead 253 L,.i'•1.4 1131 53 Total. 1.1.43. _..... Capacity 1 boom 1142 .^..er f, 11 43 1206 Anal/ban a e 1.00 1.00 Suppott e.90 ,,:1 comb #2 J.9` ,ntie.rt.ii 13.52 .., #2 Ban .r'-R`d 0.52 0.52 p C-52 OM min 1.00 .00 CM <'e:crt .00 1.11 Lumber-soft,D.Fir-L,No.1,4x6(3-112"x5-112") Supports:All-Timber-soft Beam,D.Fir-L No 2 Total length:6-1.0";volume=0 7 Cu ft; Lateral support:top=full,bottom=at supports: Analysis vs.Allowable Stress and Deflection using NDS 2012 _"r :alb i .l: •esu. ai r .�, I e.-. __..r = '%2 FO- Bendi - t-1 iD 972 ... = 1320 lb/IL DeadIn_,I'n 0.02 =, z0/999 ' I,i.ve Dell0.56 a 0/979 0.1 = 2/390 in 0.: Tatial. Den,.. 1.9 0/6:9 0.25 _ .. - - Additional Data: FACTORS: FiEtesiiCE, CM Ct CL ,. -. - LCS lv 180 .00 1.00 - _ .0 2 2 Fb 0 1.00 .00 1.0000 1.000 1.300 1.00 1.00 Fc 625 - 1.00 1.00 ,. _ _ 1.00 1.00 _. C' 1.7 million 1.00 1.00 - - 1.00 - .. C411TICAL LOAD COMBINATIONS: ,... -- Shear . LC 60 - 0+*' V -^ 134. 3r. - n th,1 J . 1,C #2 L : I M -13') les-ft Cl91n 1.1'7o a'' -c .:. LC 117 ... 11.-111 D,d 4 7-l_.e S-unow n ind ri.impact -- - ;f --v. Lc=conceutteted foudbiUgason All LC'o are listed in the nalyols output Load ... ASCS 7-10 4 IBC 2019 Betiant'.1..11 111 3 ,85e1C . Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(18C 2012).the National Design Specification(NDS 2012),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application 3.Sawn lumber berdina members shall be laterally supported accordina to the provisions of NOS Clause 4 4,1 Page 26 of 129 COMPANY PROJECT o ri <s -:< - Cep, 3,2..61"v._., ..FB4.w.vb Design Check Calculation Sheet t,%oUUV'0'+S Sizer 10.42 Loads: , rt ar Fall 1,13. ell 4,0a,43 fivu 461111 Oft - Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) : 1, 11'-8 2" I 111-7-I- flve 104 781 "total i2.21 "l. '.i��:.- c<i, 4444... 4444._Spae 1221 4444.. is z a r.y x1 it 4;p":.' 2443 3 l'ini Opinf i.00 1,00 Suppdtt 0.41 0.i7 Load i.enuf h( 1.06. .:`0 M34n .443`0 1.08 A.3;- c..b 1.08 CI, vin 1.043 ? :;;. "lb . .-v'.r:t. 1.11 1-11 FCM COP 625i ;i2, Lumber-soft,Hem-Fir,No.2,4x12(3-112°°x11-114") Supports:All-Timber-soft Beam,D.Fir-L No 2 Total length:11-82°;volume<3 2 cu ft,; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: e r 4on Analysis Val e Design Value 41.14 F.t ul ar>I r_ iPn Ia lrx. 5 J 34 Fvi 120 1.v 1+,l 8en4ingt° fb - 571 h.. -- ..'. psi fn'ft, 0.16 Dead Deft rt 0.01 = vi,/939 Live Deft n 0,39 -: <L:999 e.39 -" 4164100 In 0.25 'fetal ',5a.fl°4i 0..20.'" L/092 5,59 - li;:=M1 2i1 +1.35 Additional Data: FACTORS: ?,lElpsilCW CM Ct CL CI Chin Cr Cfrr FY' 150 0 1.00 1,00 - -- - 1 C.a Ct 30 14 rt,', 850 .30 1.00 1.00 1.000 1.100 1.03 1.-00 1,00 3.00 - Coo' 405 - 1.00 1,10 - - - .3, 1.30 - .. E' 1.3 0+511ion 1.00 1.40 - - - - 1.4) 3.95 -- ?°i; million 1.00 1.00 - - ._ - 1.50 0.35 - _. CRrr1CAI..LOAD COMBINATIONS: Shear LC 52 - D4-1, V ._ 1212, V design = 1006 lbs z3emiirg;,1' 14 112 iii, D+;:, M. = 3511 Lb:;-ft VeflC:CC.t.or:. -:f. #2 _ (t'tl.: (Live) C #1 - r;+z t 1::+l i ➢ dead =live Siiisnow W ma__d0.p4cl L_roof live i,( -Gen=_.t-( .-th".u.aite All LC are listed i ti Analysis output •n Lead combinations:. .45;.E: 7-�i.it / MC 2012 CALCULATIONS: Deflection: 5414 _ 54105(1+, lb-vn2 "l,t,;e" deflection Det.Le.-oCi-n from all z,an ..3..d leads (11.0' w:'•:d, sne.,.-E Total Deflection ... 0(Dead Load Deflection) " Live Load Deflection, Design Notes: 1 WoodWorks anaiysis and design are in accordance with the ICC International Swirling Coca(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application. 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4 4 1 Page 27 of 129 0° v COMPANY PROJECT -141 r or l � c 2017 09.3 -s; Feb 20:r 09.39 3h,..5 h.xb Design Check Calculation Sheet WoodWorks Sizer 10 42 Loads: .. -.. Type 1:;,1,12 i) 'Location Ma2114.,V2 :7:4`"- 1 0£ I r a 1 1 P $ s ; Loa7 Live 1- i r .t�.. 2211-woisb1 Dead Plit.7 1911, 9.i Olt Maximum Reactions(lbs), Bearing Capacities(lbs)and Bearing Lengths(in): m.. 13.-24" } 221__.2. _.........,.....�. ' 13'- 2" Doad 500 369 Live 192 192 ItaC!:Or2J S - - tat 1300 4320 144ar=n_.15 2222.. 2_222 2222.. CaDaoit.yY tbta:r; 1322 1399 s<ppo"t. "149 2942 Ana I/Dos 1..00 1.00 S 2 001`. 0.41 Load corm. ill Pit Lbog411 1.22 l.22 :4:n lingi2 1.22 1.22. 1.06 1.00. min 1.00 l.00 oh sap'ort 1.11 1.11 x aD 63 b Lumber-soft,Hem-Fir,No.2,4x12(3-1/2"x11-1/4") Supports:All-Timber-soft Beam,D Fir-L No2 Total length:13'-2.4';volume=3 6 cu ft.; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012 IDti4ur9Dn Analysis Value Cosi::, clue. t2,,i. Anslts1s/Desi:a Y:eor f-3 - 44 Fv, ps:. a 2,9'/ I1Cni;144(*) 1t1, =_ 429 Fb' = 1Io 1.'' b/lb' 1.3= €bad. Do/11, 0.12 o <L/A99 Live Deflin 6,1E :.: <L/999 0.44 -_ '3E'i to 0.36 Tot:at 13ctiln 0.93 Lf423 1.66 ':f2.19 to 050 Additional Data: FACTORS: 9/Elnsi}CD CM Ct :;f . 3 :to Cr ..f:ri: 7, 1:Ca lv' 150 - LOU 1.00 LOU - 1.99 _ 9 1.0; 2 Fb'. 1156 1.00 1.O0 LOU 1.006 .1.103 _. . 2 .nc; 6:p' 405 - 1.00 :1.00 - -- - .I,00 1.00 - 6' 1.3 million 1.00 1.00 - - 1.00 0,95 - 2 Lain' 0.41 million 1.O0 LOU - 2 CRITICAL LOAD COMBINATIONS: 1,6",, 7C 12 - P,i- V - 137a, V deb:Ig': -" 71611 (t,,2 r er'd i.nq'r). L:'" 02 ... L:i"LY - 44487 lb^ ft Os l=e<,tiont Lei 112 - 0+1. (live) L': v2 = 041: (total.) '2=;no:1 t:-.i.vo. r...>cw W w"_n,, '-- „+ct I,: roof live 1..-Con'entret cd 1_-bar/quake 916 Cr,' listed it the Analysis output Load <m1 irv,t:i.oris. Asch :-1.0 / IBC 2012 CALCULATIONS: Deflect:-o,,: 1'F _. 140t,06 9-i.n2 i-inn" deflection rr = nfle,.t-ien frosi a11. a.l:-dc:,11 _:2199 ,_<"ve., wind, ofb4,44 Tota_ Dn-flestl.on " 1.00t.tad toed DitIllectiend Lv. L..s Defiectian. Design Notes: 1,Wood Works analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement 2 Please verify that the default deflection limits are appropriate for your application. 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4 4 1. CLIENT: St. (Druc;cri 97223 Page 28 of 129 • 503-624-7005 PROJECT: 74:5 NV,'\,1t.Wo:,hinglon Dr.#205 NUMBER: - Oregon 97703 841-383-1828 FROELICH DATE: 12303 Airport Way,Suite 200 ENGINEERS ; Broomfield,Colorado 60021 720-560-2269 BY: 1-4 PLCOR NOR • 1 • F,1•4 . * ' t.PAAis DL 5 (114. ) .4- (.4 05 RS LL (1. s,/) (40) S 600 PL • 1 • Page 29 of 129 COMPANY PROJECT 11 r Wood rks Wo , W A3c; 24.23'6 06,.23 Design Check Calculation Sheet v......IWOrks zer 10 42 Loads: 051, 606.6 fxj, E1 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): Tlr x!.xd 611 V4i. 1,3v6 036 '311, -focal 1517 1671 1.166,6 153 Ennen 1.00 1.60 L06,3 mm1, 1.0n6iE 6.32 0.73. 0,12 61.6 1..6 t. .1.11.. 1. Lumber-soft D.Fir-L,No.2,4x8(3.112"x7.114") Supports:Al-Timber-soft Beam,D Fir-L No.2 Total length:3'.1,4';volume=OS cu.ft.. Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection us111sNOS 2012: Cssrerrov A .0 Ai.,.:. r:s '2iriiv Asalysxu/Zoz,.a3S. C:nean 3,61 sv t:cc1 (roll'r, Additional Data: eAetons: eletpsi1CD .13 322 ,11:6 12, Cfc. i, int:vu :9 - t. .. _ - d.. ... CRtTtCAL LOAO COMh NATti)r 00:10ntic7, Li C __- ... „c IA1,3116 a1:n 11 ^.Ai.CLt.AY ONS. `t0ca1 _ rte.._icr, -. ..;.,;r:l iy.., .. :I06111_ . .. .. -. _ £.13 Design Notes: 1.:WaodWorks analysis and design are in accordance with the ICC International Building Code BC 20110),the National Design Specification(NOS 20121,and NOS Design S'ipplerrent. 2 Please verify that the default de eot on hrnits are appropriate for your applivation.. 3.:Sawn lumber bendng members shall be laterally sf;ppo^ed armording to the provisions of:NOS Clause 44.1. { , 2.2ff. 1..4 , \ ....._f i'‘,1\} '"'" ra;f /Th! ., C 2.?.....1.04,,,,. as' 4 .7,..i'v) 7--;-% , CI . .--,....) ' . =......-1,..- --,.. *.I. .... MIIIMIIMIIIIWL "1 " , n204, -..Y!....„,-1 .POiSIT, „a ., 1•22012211 .„,„ / .7 \('.,'„ ‘"':' fc""*Z"I .„ `,€,, -..'..''...1//,,,5 . ., i:7 tr,,,,t5,. 4it: / I tk't-• / (1...• iyr ' ..______..----------- 1 ,„...., / I a-.-,. . .< C // .-------- .r.... ., .....—.....„, i = . i / lb' ' a . A ......4' A .1 i tY7,‘,.: p•-•., • '0. 1 . I , UN "' -,,,,, .../17., .. 1 it/ 1 11 1 / [1 ''''' - i „ , 1 ,,,, , i , i i , . , -...,) ,.....___........ . t. ... i ' e „ --..,• ' „, , , '.-. 1,---'t.'• ----"------------- a---- - ......,------- ....,-- , ------ . , „.. - : i '..., ,,.., .... .. Ft, i rtt',,t •„,/„. _ , I ,....._:, /TJ.: ,,........ J,,,I ',.;:..,7:.-..t." ----= ' =A---/ i t t cf./tr.= -it-=,•=t 1 :t'',.:, $ ,...-- 4. -, 1 / .,..— .,----. 1 / ,--' r 1-7------\ / -----,1 '-';---4 ,;:1!,` ,1 r '.22:!:), t ''''`'''`, / , , . ,” ti A k... A .1 A !i :H -1 ,, .L / IC3 / 1-, ,, .t e .._, . , — rill , I t. 1 g , „........„ I 1 I *1 , 1 ; A * , t!--4.--.1...... „...._ r , --4, t/ , , . .i. /i K 4..— t ,t. 1 1 .4 4. , r- i II .4 f / * tsP- WM i / (1 !..ii if fl A / 1.1 / If„ VII I ''''' ',/ C r / ZO I .... i / ' ' i ' .1 ',- I NI, 1/ . ,... ...61 , 7".""*".'! I ..„. -., , , „ -,a / .....4.... /„../::-,.. 1 7.1, / / • I } • ., : t / .,.„ i i 1 ., .., .- / , „..„---- , '._-__L..-i--._.-.„•. ',---.....:„.... ..-1----- I cal 1 i _ - : .i.,,,Iti. . co ci 1 _.. ..---- o i co i g it] ...-L.., 1 / . ,,...-., I c. 2, PA4._ I, +. ' . Y,,,, — Cort ,,,„,_ ,XD - 240 czeme CLIENT: t 695y 1 F r cn 2' Page 31 01129 503..6247 , PROJECT`. h Ori ? F 745 1 4c rt; _Dr-,205 NUMBER: Bono,n eF.;. t03 541-383-1828 FROELICHDATE: NE ! N E E R S a 12303 Airport"J.y.St�i��20 Broomfield,Colc,ruda 30021 720-560-2269 BY 2e D IAjG . 3 �' rest Es► .A) } 1 I jj 1 CLIENT ': 6969 SW Homr-t/ 2* Pei'onci Orr,gon 972',3 51 3-624-7005 4' :.•' PROJECT: Page 32 of 129 : .... 745 NW Mr Vine.tn-,,,,r,- A=, NUMBER Bend,C o-r,n 977o3 541-3331828 FROELICH DATE ENGNEERS 123C3&rood nevoy;-THt-21Y, I Broomfiolci,Colorado 80021 720-560-2269 BY +.i'431/4.1,Nr" CI 0.-'524.1Ft K. : L V 2-C) PS F Ps p . "'Ircx,:vv- .5trilger. — 3,rel ic2e,or: US- /00 i .., AAS S 1 —C./ L.t (z)(2.0) jr c4° P4 ,I.L.,‘. (2:) Ciao) Zoo P i-",e- n4,.....6 e1/2.- .,.. 2:4' Ie )-: . .... ... ,5PAN.4*-le -0 e.....e ic D L x q CD SI--.°Pe: 4 /12.... /..."...-ic Zoo L 0 ,I.,1,6 30.;:.s.1".s : / PA") r p, ..... a PSF BEA AA. Ar Z-AAJ DIA)C; : , .2,pAAJ r to0 bi...„- (31)(a0) ,c 60 ic-F Lee_ s C33 (1 00) _t-- 300 Pc-'4. .... , „„ Pc,kArr to A TZ) 0.., 3 47- 9 C._F.X- el" (I LL t _ 2.5 ( 511.5 CS- DL / r _ r a) Strklex15 Di._.s. (400 4,,1- x 1‘0 0 COMPANY PROJECT- cod Wo r k S Page 33 of 129 Feb.15,2018 1632 Stair Stringer-3rd Flaorwwb )(iv mwirivi(Iv ihin Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load TVPe i.is'ribn-ion = loos_il'- ._ _" ..i_ Loadl read =tall l;DI. 40.5 plf Coad2 Fall _D1. 200.0 plt Self-weigh' Dead Full Sri, 5 I olf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 9•-8.64• T-9.5" Unfactored: Dead 212 212 Live 783 783 Factored: Total 995 995 Bearing: F'theta 520 520 Capacity Beam 1169 1169 Support 1523 1523 Des ratio Beam 0.85 0.85 Support 0.65 0.65 Load comb #2 #2 Length 0.50* 0.50* Min reg'd 0.50* 0.50* Cb 1.00 1.00 Cb min 1.00 1.00 Cb support 1.08 1.08 Fcp sup 625 625 'Minimum bearing length setting used:1/2"for end supports Lumber n-ply,Hem-Fir,No.2,2x6,3-ply(4-1/2"x5-1/2") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:9'-8.64";Clear span:9'-3.77";volume=1.7 cu.ft.;Pitch:8/12 Lateral support:top=full,bottom=at supports;Repetitive factor applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflectionusing NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 45 = 150 psi Bending(+) fb= 1020 Fla' - 1271 psi fb/Fb' - 0.80 Live Defl'n 0.30 - L/380 0.31 = L/360 i, 0.95 Total Defl'n 0.42 = L/270 0.47 = L/240 in 0.89 • Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfa Cr Ctrt Ci Cn LC# Dv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1..00 1.00 1.00 1.000 1.300 1.00 1.13 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - F. 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: • Shear LC #2 =0+5, V max - 824, V design = 739 lbs Bending(+) LC #2 =D+L, M= 1929 lbs-ft Deflection: LC #2 -D+L (live) LC #2 - D+L (total) D-dead L-live S-snow W-wind I=impact Lr=roof live Lc-mouse:crated E=earthgua'ae 911 LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 27.0e06 lb-int/ply "Live" deflection =Deflection from all non-dead loads (1.i-✓e, snow...) Total fief notion = 1.50(Dead Load Deflectoon) + Li-se load Pef]ect i on. Bearing: Allowable bearing at an angle ='theta calculated for each support as per NDS 3.10.3 • Design Notes: 1.Woodworks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NOS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. 4.BUILT-UP BEAMS:ii is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 5.SLOPED BEAMS:level bearing is required for all sloped beams. COMPANY PROJECT Page 34 of 129 ; -~- COMPANY PROJECT Nage-35 of 129 (1 I WWoodWorksk „�. .,l21 tl:axt r> la.: ,,.t Feb.15,2018 16:30 Landing Joists.wwb Design Check Calculation Sheet Woodworks Sizer 11.1 Loads: Load Type Distribution Pat- Location [ft-.] Magnitude Unit tern Start End Start End Loadl Dead Full Area 20.00(16.0") psf Load2 Live Full Area 100.00(16.0") psf Self-weight Dead Full UDL 2.2 elf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 6'-1.64" l 0' 6-0.82" Un factored: Dead 89 S9 Live 409 409 Factored: Total 498 498 Bearing: Capacity Joist 498 498 Support 960 960 Des ratio Joist 1.00 1.00 Support 0.52 0.52 Load comb #2 #2 Length 0.82 0.82 Min req'd 0.82 0.82 Cb 1.00 .00 Cb min 1.00 1.00 Cb support 1.25 1.25 Fcp sup 625 625 Lumber-soft,Hem-Fir,No.2,2x8(1-112"x7-1/4") Supports:All-Timber-soft Beam,D.Fir-L No.2 Floor joist spaced at 16.0"c/c;Total length:6'-1.64";Clear span:6';volume=0.5 cu.ft. Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); -- Analysis vs.Allowable Stress and Deflection using NDS 205: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 54 Fv' = 150 psi fv/Fv' = 0.36 Bending(+) fb = 682 Pb' = 1173 psi fb/Fb' = 0.58 Live Defl'n 0.07 = <L/999 0.20 = L/360 in 0.32 Total Defl'n 0.09 = L/836 0.30 = L/240 in 0.29 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emirs' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = D+L, V max = 492, V design = 389 lbs Bending(+): LC #2 = D+L, M = 747 lbs-ft Deflection: LC #2 = D+L (live) LC #2 = D+L (total) D=dead L=live S=snow W=wind I=impact Lr=ioof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 61.9e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.Woodworks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT Nage 36 of 12-5 . K] r k �' ,Ian.11,2015 14:33 Stringer Cross Beam.wwb + NAgewl- s op .gy„'7 F(45 t'2.142,2 1',1,5 Design Check Calculation Sheet Woodworks Sizer 11.1 Loads: Load Type Distribution ? ift1 Magnitude -L_ Dead _ cern Start4512 End t Endib_ Loaci Loac2 Live = 0 Cl 1590 lbs Load3 Dead Point 2.14 512 lb, Load! Livemotn^_ 2.14 1890 lbs 'oad5 Dead Point 3.64 512 lbs Load6 Live Point 3.64 1890 lbs Self-weight Dead Full CDL 7.7 plf • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): Y 4'-3.31" t 4� Un factored: Dead 784 784 Live 2835 ia30 Factored: Total 3619 2619 Bearing: Capacity Beam 3619 3619 Support 4007 4007 Des ratio Beam 1.00 1.00 Support 0.90 0.90 Load comb 82 *2 Length 1.65 1.65 Min req'd 1.65 1.65 Cb 1.00 1.00 Cb min 1.00 1.00 Cb support 1.11 1.11 Fcp sup 625 625 Lumber-soft,D.Fir-L,No.2,4x10(3-1/2"x9-1/4") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:4'-3.31";Clear span:4';volume=1.0 cu.ft. Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion- Analysis Value Design Value Unit Analysis/Design Shear fv* = 128 = 180 psi fv*/Fv' = 0.71 Bending(0) fb= 930 Fb' = 1080 psi fb/Fb' = 0.66 Live Defl'n 0.02 = <L/999 0.14 - L/360 in 0.17 Total Defl'n 0.03 = <L/999 0.21 = L/240 in 0.16 *The effect of point loads within a distance a of the support has been included as per NDS 3.4.3.1 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt Cr. Cn LC9 Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1..00 2 Pb'. 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - 1.6 million 1.00 1.00 - - - - 1.00 1.00 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC *2 =DOL, V max - 3619, V design* = 2769 lbs Bending(+): LC *2 = Dot., M= 3868 lbs-ft Deflection: LC 92 = D+L (live) LC t2 = D+1. (total) D-dead 1,-live S-snow W=wind I=impact Lr=roof live Lc-concentrated E=earl hoaa'<e All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: DI = 369e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (live, snow Total Deflection = 1.50lDead Load Deflecton) + Live Load Deflection` Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • Page 37 of 129 _.., ...�.._�,..,._.._..u_.........,__. COMPANY PROJECT :3; W • Design Check Calculation Sheet Loads: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): -21 Glutam-tlnbal.,West Species,24F-1.8E WS,3-1/2"x11-71a" 8 wnnrvea,3.2'rtanitaxr,avian, st!pp<,n,r Ae•7wtb61-ERR Thom,O fn L No 2 %Ed length.1P.S2 Toone• :0c a.: LSItt eu>pat.It n Si.Eellnn=Si. Analysis vs.Allowable Stress and Deflection e,xx ng#SSS 20,2 Additional Data: R --^'+A_TORO COMEPTAT NS' Design Notes: 1 YJ.xx.'C,R3 oaroyom ood clew,za;n loorT orioo rekr.ICC!rz¢mataSM 130 Cole(INC 2010)103 SOER er 5..Soon tOCIP NCR...w SoppAP R. 2.Pietme vetch 2e,t!e Re moo oerr f:on SOA,ate aas+aa a ttr lvur apWirafwn. ,Loom deowo,Num aro!a!alO'imia orxtxxe'>a A821117.2010 rod tt»nulaceued in2.30WeICS.8225512122 ,;?r,: A.G:2AM508- 9103148510309:5155x. 5 CWM:Ergo.4sral4rAdm-d79:24a!e4onowras32 IN.{rovYKKH N NDS C41m<332 e 0,131503 to RoolO,35 boo.0 15155Popoo,501. x c? N4 {E, ,,,,,,,,cie° ,,,,S,L,„.;:b,a: 4) al 41) -1µ OA e I µ'r . i „LH. „, , , ,„ n' wi 1 1113 ; `y tAs97,,,,,, , £S / `?, t3 \„,, ,„ Z " f ..r .N.' J` i_. *., g i li 3 aid d •� S g, F, E k / / ,-.- f /' Y s,„, r(( vec� r k . N,.i "�.':7j "+..'.^p,. 1# ' y«,11 4 p.b. 1” S. ffiY. x �IIIIII + .R , ` { fir' „ el I 1 '''',,,,, Y ,o x t p H�� NN S,_!«S,.Af.7 N. ,,--- d`'1 ..e^<1 ®: <$ }rr�.r'.„^. S\x.,� < .' ' ..il -0 ,, ..._.1 Y . 1 ( t1 1 'F f �r { +c •.y: 1 1 1 6 ( � t { i [ h 1 �a �' ' 1 .�..>. 1 $ tt 1. t 1 1 i i ss r E { 1 za\ tooJj t' I v .1 >� 1 " ��! 1` ss f f { t ..–— -".- € 1 s p',, i t f "a i` 1 1 1 I !� 1« 1 .' :1, ss« f t / t 1 t _ ! 1 k I k A 1 t fin• B , t 1 1 f t f ? 1- E p '!6"" f f 1 !7 1 1 a ff 1 -�at F t :�;. :? 1 i s„ t f� 1 1 C 1 a 1 g I t gds ,'I t 1 i k 1 / k 1 f I t_ 1 L_ �. �..� t • { ; t t € f ,«_. Asn 1 wr A i+ _ v t t 1 i t s {, .....,... .«....�.., I r 1 .. �1 i { . It B 1 $ t 1 1 1 r Q' rrr q x. ......._....,. r— ,-- 1""" 4, z _a- ; _... .� .. -_.4 'f.,_m�.. _ ,. ^._l; (gyp Lam_ _ _ ,S . 1 �t !, ji t _____� W J L-2.—J ' _ - ,} �.i"P 'Z {$'' •...{ Li ,`fi' SL' t ¢€ 1€', t ^ E F 7 C ,414,,,,WWwWW w..k w as...,.,;. #x.,,,,,WW,,,,,,,,, k".a..a ,nwaw' X /.. J\ CLIENT: 6 ?rt17 Page 39 of 129 503-624-70:11,5 PROJECT: r7 715 NW to Dr '208 NUMBER: [ion Oro;y:.-% 541-393-1828 lei FROELIC -I DATE: ENGINEERSI 12303 Airpor:'Way Suto220 Broomf@`a COcr_._:3 80321 :a sans r ts; 720-560-22,59 BY. / G» 1 t/ 4 k)4 DEAC) 10140 t' i Jt Doe_ Live ( x i c, " • LP PSS k 41 PCA "k 6) PLF .c2. f > Z20 PLF kousoot -? J-v-1„:72.11,1 0&c) 1 0- ( ./GL) ( c0*-1 )((i, 4-. ‘ 4:,S1 ) -7 77 ../ 7 /5,t gsn ,99 3 ."---ST--4r SZ. ° dld Cl' 1 4r ( ±:2)ci 404- .j. 0-LI 4- (±.2.)( Si) 4-0-Z i ' (±.2)(SO4-07.1 $1(1 / °- oZ s ivV(zi. ../ • VE1, ‘ 0•00?s --1 sO ot hos -7-7 44 aogS %--IQ tc, yz.3 1 wozi.3.-S.'0 sz3v07 ...vv‘ 4 • $ ' ht(3. d I A- (Ez)(Z) 4r°Z111.- (t2-)c,Z) 4"ozi (LCKL) /ICJ I d jd 021 hi 4 0 I , dld 1 g. r (± t)(S) "-K] / /114' ll s rvbrct ; / 0 0 3 -Z, ift o "9 I -ir(00 ) (z) s --7-7 4 it°CV? I 3r (.4:)eg)(Z) 1 la ( co '-'0-LID W XI"' 9 hOcrsi .5.->V" ..9(3 —I, f, f . 5 (i)(12)(M4**QS 7'7Q •i On , • I CZ( I :sw tr9,9 -2Y007 j is,/ ... o9Ztt!'073 CL. fittt't ttat,ttuwti-t,givo9,,A AI. .AE1 1.u;n8 opt....to,n,-) p-3q-,t-ti tSL133NION3 rc A'j',,10'.i,,-; he0 ' ' 011] 0 d d ' ±:... -•,- 1 '0,3 6381/\111N .•tt td< -,' - , t t1,-, I3CO2.1d -1 ,es, . -',...,,„ ' 61. 10 Ot,aped ..- , ,.. , 11\13110 CLIENT. :,',V!-:-:, . (.;:-] -•: 1-criLlid,r.,,,,.,:;:..- ,-17:7'23 Page 41 of 129 PROJEC1 '• 755 NW iv! `,"Via -iing`cn[-.1!-.o235 NUMBER: Be-d,(1)•ogor 97703 41-383 1828 FROELICH DATE: 123(3 Airii-aor!Vv-.,iv,Suits 200 ENG1NEERSA Broorriaakti Color000 80021 720-560-2269 BY. 1 I ri FEV-1/ : • / •.... e. PA4,44 S 'is 0 ' i*:)oJT LoAD AT 2 -0 ( fr-R-om, iFC114,4PE:1:3) , , Dims. Z.),Foo*t 14/eloo* x 13 1 cot- I / I IF B5.,,, / , .... "SPAA)$7-6 g WI : , r , ; DL. 12.o i 1 \\2.0 FF LL s- ( 1311t )3141,- 2.9,) ((-40) s k\24) PLF i SPAAI s 7-0 C)Ls. (114 t)(1g) t 12.0.e(L4 )(2-7.41Zot(t45(714.)402,0 i 95o Rt..F Cs/..t. ',-35(too )t 0 i..k l'.4t.l') Lo) C ‘62,0 1 St-s: CIO CaS) s. -S5(0 Pt.-F At r-t, 'SP /kJ r 14 -0 (A),- i ! c CAr tz0 -14‘5)(27)-t- ja. 105)(24).4, 12-0 3- 122.6 PLF- i ,,, , s't t5 -T. 2- ) ( Li o ) (.0 .11 s' It 0 2-S Le F 11F*Byil A.A1 s 12:_e, (,;')(2.7 ) s ‘, 440 Pt-F Lu,s- ( ).(‘-~to ) ki) s34 0 PC-F i .S1.---, (2-5 ( -2_,S) •.. .-5 0 Pl.."12 CHENT 696,9 S+': Page 42 of 129 Pcrtlarci, 97223 503-624-7005 PROJECT: 745 N8VMI V7zsrOon -e2'05 NUMBER: Bend.C)regor,97703 541-383-1828 FROELICHDATE' 12303 Alrporr Su'e,200 ENGINEERSA Broomfielc,Colorcgo 80021 720-560-2260 BY. Pr` /• i LA SPAN s- tio % ( rx (i (6:)(z7)1. 1 lo (6/)(2-7j 0 960 PLF L-0 (&') (z5) r /5oI'( PotAir toAc, Apr 2.1-6- ( Ffe-om iF ) 41 - (reso.A can L)L. 3&oo Licoo* s 2 Co 0* i-1- 22-00 hoot SL o )CO/ fa,10 ° 5.PAA3 * ID I*1r PO tiz AO e, .3) tk) I -riz.o (Z 4 ) Lticio F gQ s(5.5.0° A-3) IC/50c" LimS (3)( 14 1) ((AO) S pL,F r 2- PO= LL (4. 'cc ; F s- LczAr) AT creom. iFaio) 3-106 * q00 sLc ;Go CI_ENT ,1 U St 77223 Page 43 of 129 503-624-7035 PROJECT' {' 745 NW Mt',Va,Th' gton:fir-P205 NUMBER: Pertd,Or€4.ror 97703 581-1331820 FROELICH 'SATE. 12303 H r ENGINEERS ; rood Way Suote 200 Broorr1eia,Colorado 80021 720-560.2264 BY- C s 7-50PL > (3 .t , 41 1.) ,SPO go2p >F 604 0 !,21; ,,,eLe , , „os, . ,, .ovcam) L 051 641)4 v t5' s /coo Page 44 of 129 COMPANY PROJECT , . Wood WO r ks Design Check Calculation Sheet Loads: ,. • Maximum Reactions(lbs),Bearing Capacities(lin)and Bearing Lengths(in): : „.. . , 1-12 AM...AA TAO.WAS?.0.0.3.0 TVA.w r.k.sr Stutts.TAppsA tArt A21.3.1APAS40301.10.001M011e*.a,..m.for P.,thku*,,,,, Glulam•Bal.,West Species,24F-1.tE WS,9-112"x7-112" 5 Tsminat....,5-1./ StatoOs 11...?Asoft D10-1 1.2 '204?mg.CA 7'....ley. 1 0041 Lateosi soy..?op.T04 bolt..A Analysis vs.Allowable Stress and Deflection.9 NOS 2012: Additional Data: CRITECAL WAD COMTNATiONS. r.st tt ta...er.1.A1 Es AI 3,3tstas.:„..: 55,0 1-1, ESC CALCULATiONS: Design Notes: sysar.0st K.Aigt 51,aCCOOWIRA iN ICC 00....ittA 032.3.0 Code I 300??:?2, 0. DAV. 0353 25323.st,.0 DAV. 00009 0.3s AM 7t4 de,atit 3iT4141.0.T.4048 01 3,04 835404Os 0 00A001 694,9,re,uex ?tr ox.e.Ass ost.T.A0 It ANT?II 1,10 syd As.ANS?A IX 1.2001 4 G.A.AV 039484481400 0&21.1V .10.5 t. ls0Y??...84 0ta4,0 00101,15.trd AT. I depth 0 VA*318 3O.330.syyp04ttsc0041011 V TA 94.3.3%. ?405 CAYA 3 3 7 013,03.51......0.f...??stud At 4003...s. Stttstv't) ysat AAtstintAl Asitt ?0s5s1'.S.0s3TAA. . gwer,dews Page 45 of 129 COMPANY PROJECT X24 ereyse , Woo \'\/orks ' s"` - .. 15,201710:44 12E92 5,0) 4444. 4444. ..,_. _.�.�....-...-��.. ................4444. 4444 4444..,. .�,... Design Check Calculation Sheet 1042 Loads: 41 54441 6.54 :0512:4,451 1.,4411 135591 4 15x0 ex. 0.4436 55541 950,0 r 00,20 t%r. 1154 1,04,0 P toad 10. t,hatitd Live . 40,3 65 14.5a 22,.,. .: 0441 r gm, 4 g..a4a1z snow fl£ del.:'-rwiethe Dead F':i.41100 95 13,4, Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): . iY it' 22' Oe«d 514 11(111 4515 014, 2501 1886 SnOV 1377 3.0,5 134 94g401003 4444 aot:;x1 0756: 5:310 49:6 11e4,440,41 Capacity 1195::: 51.56 191,42 A>s3 Support 6939 1E915 9124 Rnal.::l0, Beam 1.00 .ab. 1,55 Support: 0,97 , 0,97 R load coma 33 53 Lon"jrh 1.49 9.15 1,40 N r, 495.41 1.69 ':.3._:,'- 1.40 1.50 .9f ob ,ca 1400 auppa - 1.07 a r7 t,J" Foos laza 2275 053629 00441.4) . „#�t:€mrnrrrn 09 4334 4004014 gn+l rat4 by ear ataevea W0$1 ar,ae 4'5395511043 mernbnr: Glulam•Bat„West Species,24F-1.8E WS,5-1(2"x15" 10 laminations.5-112"maximum width, Suppo;ls:All-Timber-soft Beam,D.Fird No.2 Total length.22'-14";volume= 12 7 du,D.; Lateral support:top=full,bottom=al supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: ,_.CP Ana.y.l:.S Solo_ V.42, :141.1' Al.,4'16 i.4n4:7:0.,,t, Hs:::drrgl'-1 lb-.1534 - 201 nen t-nq t-; ft,..: 13393 2394. l -, 2 >, D0,1 Defr's 0,55 - 41.4 990 Live Pell':: '009 :'439 0,3' - 0/350 4444. v.,..._. 4444... Additional Data: PAC"41941, 95#tpsi15b 5,4 05 51 95 499 Cf C9, 144545 5,4,354 29:e sv' 205 r 2450 "b 2400 1.119 1.00 ,,5', 0..-, - bye 1.8 04111,an 1.051 _ .. _. .. 4.00 mil i 1 CRITICAL LOAD COMBINATIONS: Sh^_a_ 3 0C .32 - :i-a, V „ 12114, 'd aesi551--..- , _lb:,,4.j LC 02 - 115 _ ` LC .. • 0 i., 91. 229:1 14.-1._ .._i=10.0,.1{r,+. LIC 02 5,70 11,445, Lt: #2 - 0?1, 144701, 1.....=55 0-1.10e 2 ,00ew a=u_nd :._':, ........ I49,55,59,55 Ali. 101'r are 44:004:-1 _s ore,'V:...t-_v 48,954 J.^ Load c,,nbi.n0t:iooa: till;; :10 , 195 2817 CALCULATiOa t0: .:',lecrior,; 01 - 2104.1,5 105 :,1545' 159159c':.n - 7501F O5-r ,_ 5.45 T0441. 5efirctia 5, 1,35195,4 Lead 589,18,5:185, 1.aar ...ability , 3. 14445 _: _ ...: Design Notes: 1.WooriWorks analysis and design are in accordance with the'CC 3itiemaiio•:ai Betiding Code(IBC 2012),the 001(0033 Design Specification(NOS 2012).and NUS Design Supplement. 2.Please verity that the default deflection'limits are appre,ra:s for gem application 3 G3ulam design values are for materials conforming 3o ANS!117-2010 and rs'anclam used it 010910ance with AN21.5150.1-2007 4 Grades with equal bending Capacity in the top and 90521,.edges or the bear 4,0'06,290'6erl are recommended for continuous beams. 5 GLUtAM:bxd=actual breadth x acual depth, 8.Diatom Beams shall be laterally sepporte0 acce9C hg€e the provisions of NOS Clause,.3.0. 7.GLtiLAM:beating length based on smaller of Pcp lens on.°015,c01,'pe). Page 46 of 129 .- 1111._ _ -_ .._._ 111_1..._ COMPANY PROJECT 2J t 1''''' .0 odWo r4 Aug 24,20:5 14178 31713-Mwb ..,r 7:5177.70:te 177 77st65: 1 1111 _-........ Design Check Calculation Sheet Loads: Lad :yoe. .V:; 117,1. 1 Lototia € L1 ) d= )-:_-t: Load1 1111.. 1350.4. olf Losd7 Live. 741 510. 1.500,0 _oi ..ytm- hoed .. ., 39.6 l 1111 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): } _. ..21-0.2' 111_1..-1111_ �..�.<..,��. L.,.m...m.. 4 1 4' . 20' ,1- 7 Toad 141:£12 1302 11344 11395 Ems.:t-r,1, 1111_ 1111. _:,73:. ;50:01 25':3:. C,1R..<;:1011760' ,', 3.0 2671. 757..0. nad/..3 11.')6 11,4E 1.00 II) 12 h >,3 10 I,JJc'>FJmY, V. 6.i0 onli 6.10°. Cl, 1.00 t.n() Chm.. .ut 1,00 .sxps:t t1 1.00 1.1);1 62 .1Mrradnum befirLng.*0510 governed by the r6go,ied width 01 the 1uppp11e7p n efette 1 Giulam-Unbal.,West Species,24F-1.8E WS,8414"x28-112" 17 laminations,6.314"maximum width, Supports:All-Timber-soft Beam,U Fir-L No:2 Total length;21'-0.2";volume=25.1 wit.; Lateral support top=full,bottom=full; Analysis vs.Allowable Stress and Deflection„sing NOS 2012: ..x:±0.. hohlysis 1.141 O401On '0.010h tIn€9. ,AmAl x n1,414tgn Ot,.ac tc. Ca psi 7 ,r.,, , 0.4) Bending1'1 lb--21:.3 F!;' 2170 11'°1. fel Ph' :e 0,41 01)1101 110 f 1'), 0..32 I,9757 Live 0413',, 0,26- 11/461 s.,ca _ Ed36C, 10 0.37 '1'0 1x1 Oet 'n 0„74 1,-4 t I 1,01 - k -.', ,1, 9,,72. Additional Data: FACTORS: PtEtp041 Ci) CM 1:1. et Cy Cr Cfrt Wu000 Cn"Cvt 1,110 - 205 1,00 1.00 1,511 _ .. ,- 1„00 1.00 1,00 10, 241):: 1.00 .,O0 1,00 1.1100 0,904 1,))01 1.00 1.60 1.40 - 2 Fop' 054 - 1.00 1.C70 - 1.0 ,million 1.5C 1_00 - - -. 1.04 .- .iny' 0.05 minion 1.90 1.00 - - - 1,010 1' 2 CRITICAL LOAD COMBINATIONS: Shen 12 , 07 - 25131, 0:03: 12241 1.)11 i{en 3a,4;";' CF 02 = 914 a4- 1)(17:7.4 lne-.`''. Deflection: Le 82 - u+;, 17.001) LC 112 - D,b itaall lt'dead L-11ve ...on,.,. 0-011,') T-imhoor t 1 roof livo L<=c,.':00111,tot-. V vetthquake /11.1..IC's ere 140015 im t1_.;Ans1001.) cs:;p..t Load'oMhihat.kor:,: 44,71 17..10 / lac 2411.2 CALCULATIONS: 3"..LLroticasi: fl a 161118406 lb-1,2 wive" deflation a Deflation fiom oil hon-dead loads ;Love, wind, ono441 Total. 17,1100030,1-- 1,1011.,,.zd.Load E' 1- t',oa1 1 Live l,arci tesle tio-,. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC international Building Coda(MC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement.. 2.Please verify that the default deflection limits ate appropriate for your application. 3..Glutam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A100.1-2007 4 GLULAM:bxd=actual bread11 x actual depth.. 5 Giu'am Beams shalt be laterally supported according to the provisions of NOS Clause 3:.3..3,. 6..GLULAM:bearing length based on smaller of Fcp(tensioe).Fcp(comp'n).. Page 47 of 129 _ .. s I PROJECT .w.,..._...,........_......__...... ....�.._.- ---• i .. 11 .;;t, _..„„ ._ Design Check Calculation Sheet Loads: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): (--- ....m,.___.,._ -.... xf..,- r _„„–,....., —,. ,..,.. — i ,z ===..„=„ ....,.___.._._ ;e els- Glulam-tinbal,West Species,24F-1.SE WS,5-112"x21" la bs,an5'/7''a 5-12-odoirnrn wiar, Sag Ca:Aa-:;,ot+»..a.oi1a n,O.Frt Not Tobi 5°n:a-91'.AA me= 7 0 cJ x: Lale a Support top::a,11r'a,0001,::!W: Analysis vs.Allowable Stress and Deflection.044 Rog 202: Additional Data: Design Notes:.. .. 1 i4's>,o,T osa a-E 2,ar=t drRl5l ate n araNtal a 1011:he ICC'tvmrali0la e;Wsns Coda(f55 2412).the Nnkow Omup:Tpno[:aion(NO2 2^'21.010))08 20200 S„,,,,aa 2 r!dose verity that the M'at t 1Yf vteas 1N114 we 10tacaR 10 far yap ap 105100 311FJiyin Peaar{:akreg ara 4),rraa'iffixcanfpttip to ANSI 110-23101 rwrvda510144a, eorr+an0e win kNS3 A1`.21-20(it 4.0 OE..AM-OW=Wool Growth x a).1).4aa.,xh rjj Oka.EY->srre,4101 No 0, .!'doorO 0 :N.g 1.0 The,� of NOR CWJae 9 J 3 3 5(0)25001 4tarOJ itovil te.S to xn,afm of Pc 74002011),Pcpisomx,4 Paae 48 of 129 COMPANY PROJECT , _A , W ,, od . I ,,,, ._ ,44.44 24,20,6 14:41 IF1452,4 Design Check Calculation Sheet ti me,J0orks Sizer 10 42 Loads: ',ere 22424 2,2 yrere 244 14421.? 2211 '112. .0 E' 3. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): i r s• s Unfacteraa: Dead 3099 A999 Live :i9a3 3861 Factored; Teta:. 0'90P Mdse ~Beam C066 226E: oepcct. 9481 8487 As:slit/ea Seam :1,00 1.00 3speuct 0.94 - .94 Load ceoM. 42 _2 length 3.5:7 Mir, xe:q'd E.90 Ch 1,00 1.00 Ce mart 1.09 1..00 . :ler 0-1 1.11 F support:e`=& a2 ,.. • Giulam-Unbal.,West Species,24F-1.8E WS,3-1/2"x17-718" 8 laminations,3-1/2'maximum width, Supports:All-Timber-soft Beam,0.Fir-L Na2 Total length:T-1..0':volume= 20 tuft.: Lateral support term full,bottom=at supports; Analysis vs.Allowable Stress and Deflection„sing NOS 2012; Pet ter,fon- R0015a:P.a Val(fe '01000 n Dai.?ten - Uxi... Ana ve„efr2e244.144 Shear. 20 4 _^4 10 -: '35 es: Y = 0.09 Bending t<j It- .+ k'5' ._ 2"'TO psi fn/FB' m 9.'9 Dead Pe'l't: .OR X4,3 t.ivc Cefi'rt 0,06 N 001000 '76:', In 27 To he21.' G .4 .. 2.34 = 2'242 .3.n. 0,45 Additional Data: FACTORS): Fur,rpetleC CM Cr. CL C21 Cf. Cr efrr Note tr. :# 205 2 1.00 ,• -1 ir' -t>`-t 2100 0.00 i,.__ 0.15 4,000 3,000 1.00 1.00 1.30 1,00 - 2 Fcp' 650 - 1.10 1..00 - ,. 3..E)t3 .. .. « 0' 1.3 reiliieu -8.00 1.00 1,00 - feeisly' 0.05 1..00 1.00 _ m x..... .. 2 CRITICAL LOAD CO3,18.NAT!ONS: Shea:: : LC #2 01-S. '. " 7£39, '1 dessge 0020 Cu Banding i-:: LC #2 - 6141, u - 129C2 les-ft Oefoe;crias: SC re. . Oct, L r. #2 sl.: L=d^_ad 5.1iv,..."srow h _ou _ 3.paCt 1.r.reef lave. .,n-en_ i5s:atm, F-_arteees-:.e Oil LC' .05, fas rvialys.Le outpeD oar cemh .as; ,-SCE -., . te,7. _..e CALCULATIONS: •t.l',c',,tN, - %'resp '.-:n2 i:e II - ,efi^ _ -Deflection feem of -dead load' ;live, ,e.._. `1ct _ .efl,ctf.. - 50 .E.«„ ....i_ .i i0e t-:s"; t Idea Lead Deflec 0o-n.. Design Notes: 1 WoodWoras analysts and design are in accordance with the:'CC international Fording Code(ICC 22012),the Nalianal Design Specification(NDS 2012),and NDS Design Supplement, 2 Please verily that the default deflection limits are appropriate for your application.. 3,Gahm design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A100.1.2207 4,GLULAM:bad=actual breadth x actual depth. 5.Glulam Beams shall be laterally supported according to the provisions of NOS Cause 3..3.3.. , 6,GLULAM:bearing length based on smaller of Fcp(lension).Fcp(comp'r:), • Page 49 of 129 • COMPANY PROJECT ,d5-114- 4111. t y` _ A00.24,2910 14:41 1F00 web Design Check Calculation Sheet Ws9411.0043 aizei 1042 Loads: D1o,risnt4y6 Ssi ,9 1, Soi ,. 16,AL, Tins fol.! 901. 19264G mir Load3 9no0 1Pli 0111 190.0 pif ` 0lod ' r 3, i..'„ 911 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): -•sr- _... ........ _.._._�. . _.W... ... ._ <�. 20 factea e:5. Lead 3521 3671 Live 3500 su Snow 1321 :i21 ea:::Ira: Total 1433 A9r Enatiasp apayity •F.i:am. 7499 99 :,epos 790,. `15 Ana11Dos f� &anm 1.00 .oh Support: 0.91. 5.99 Lnad c,rn tF41 Length 1.30 3..Sti1 14)11 a'd 3.:,n .3.10 5.30 1.00 CF 00 min 00 er Lar ..ppor:r .r:. l.11 Glulam-Unbal.,West Species,24F-1.8E WS,3.112"x11-718" s laminations,3.1/2•maximum width, Supports:Alf-Timber-soft Beam,D.F'ir-L No 2 Total length:7'-6,81;volume= 2.2 al ft; Lateial support:top-lull,bottom=al suppoi1S; • Analysis vs.Allowable Stress and Deflection using Nos 2012: Cr1x-_i&;t R4)711fa Q061.11, .O r. [ Or)t Adol sss6. ,ore r Slingsiru«-: 1p:; - av• _' Zti': psi. t i"r' m._.._�.Cn ti»; "-9401 02 v 190 5> - 0100 pc.. 1r'.2;' 0.00 Dead De`1'e 0.09 ,u.<1,4599 tie":l'n 0.01 m 004999 0.29 n L42013 in 0.i0 Total De:1'n 0.1.3 m. 1146.3 :3a 4_'24') x.. 0,4') Additional Data: :. a1 (10 a, 1'! ;, '1, 1 ,_ 11,12:9 1.1,11v1 :.:-n '.a:::t':045: 0/0{psii"'+ CM 20' 265 1.t)0 1.00 1.,00 .. - ...)0 1,011 ...00 E''o` 2400 o.2% 1.00 1..00 1.00'0 1.96:1 1.00 1.00 00 1,00 - Pcp' 650 - 1.00 1.00 -- - _ _ .. _ 141 1.B million 1,00 1,00 - - a &'tiny' 0.05 million 1,20 1.00 _ 1.01) CRITICAL LOAD COMBINATIONS: Shed c ' LC 02 -Oil„ V 7209, V dmsi'n 1970 its v0d:0g(..: LC 92 v 0.).., 4=. 1309`: Cet':Lect:ioo: LC 4) 51.7511,151 Ilio.,) 1:C 0 15ti.S; D=-de*t 1.49ive 3 snow 4,441.0d t _.o,,,c1 1,1023) 14.e Ltncsonnntrats4 lmeaft4diske .11. 1,Cla or, listed in 0 Analysis ...1.;,.. ::d . >3,irnc'i010. ASC.0 9-10 r 112i:292' CALCULATIONS: £:e`.10<3:1. : i:T. •:, 999005 Alt 192 9Live9 dmilectiod - [._F- .1111 011.0.31': :r<>; ar.) 1/19d, e::....; Total 0.,lO ooti n,.-1.05400,4 Ltad dmile,t1Dol m 1.1vm x. ..1 1drltsition, Design Notes: 1.Woodllork5 analysis and design are in accordance with the ICC tniematior:al Building Code('1/C 2012),the National Design Specification(NDS 2012),and NOS Design Supp ement.. 2 Please verity that the default deflection limits are appropriate for your application. 3 G'ulam design values are for materials conforming to ANS1117-2010 and rnanufacturod in accordance vrlh ANSI A190:1-2207 4 GLULAM:bed=actual breadth x actual depth. 5..Gtulam Beams shall be laterally supported according to the provisions 01 NDS Clause 3..3.3. 6 GLULAM:bearing length based on smailer of Fcpftension),Fep(cdntpn).. Page 50 of 129 COMPANY PROJECT 45, ; WO 0 d WO r ks ,nb 13,26_1;0.14 125.4I Wet -28 Design Check Calculation Sheet WeetTA Irks Sioor 10.42 Loads: 4409 =-1 84,4 1224.4 1' Loac2 144e 1228-4 PI! 8541T-ve14;44 424 28.8 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): .S.- y 7777.«w,W ted. mm - ...._._.... Un Eacte red x: Bead 9247 0247 7577 's 04 aTo4.21 .5121 160.4 Clearing. 7777/777 - 7777. 7777 7777. _.-__. __ 7777 7777 Capacity Beam 10424 15624 Suppert 17200 :7280 4011/411. Beam 1.02 1..02 Suppasr 0.91 9.07 Load cam?: 22 42 Length c 4.71 3,71 147(0 24g'd 4.7i 4.71 Cl, 1.00 1.20 C6 e:,; 5.i7 P.01,022.07 Cb St:y„pct 1..^' Pep stip 025 fan Gtuiam-Unbal.,West Species,24F4.8E WS.5-1f2"x2t" theenet€eetc V II2"ra tierce 07 58404, SuppeftsA.4•T8nlses4eft Seale(,07Ftr.t.#a.2 TWA ll IA.14'414`:weenie a 114 c1x_h:: Lateral support:tope full,bottom°at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: ..71,1.0 Anal irs.. Talus Des ica Vet ge 0:ot Autriysisiheside she iti _ to/'rht. v h.S9 Benda g i 14 - 1780 2344. al l'S 0.75 Dead 001.'0 2,16 :479 Live 2.421'n 4.1t t1.1904 2.45 ' 1,2822 ta 2.27 Additional Data: (� FACTORS: - `(6 Civ 1r 2111,Votes Cn*Cve 1:14 265,r - - - 1.00 1.00 1,00 db'+ 24,11 -,.... 1.422 2.078 ..22 .v 1..00 1.10 - 7 Fcp' 550 - 1.0 -. .- - ... 1.00 ... .. 8' 1,8 adilioa 1..22 1,24 - - - - 1.00 - - 2. E mmy' 2.05.,illien • .1.0: CRITICAL LOAD COMBiNAT lO6;5: S hea - S2 - - 11811 .os Bending€+1: L; 42 Ott. .72 le Deflect n,: LC 22 - 11-51 ;14vel V =2 _ Tat Etetal; pedal, _ I:erce0 Live _.--Con_e0C.xated 2-eet024cake 111 LC's ar, listed 1: c xxnei a2iens: 1772..uR..,, Load< <. 177770 154 7272 CALC€JLAT€ONS: Deft '.c:: 70-424.01; 1h--185 - - .-+...; icy-i, ;live, vied. sort) Tott"tle:t.s' 041. _1,22 Octle248,01 ...:.c Lead OeflectLon. Design Notes: 1..WusxlWorles anaiysis and design are in act:.rdance with the ICC letern;'.cnal Building Coda(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. 2 Please verify that the default deflection::nits are appropriate 11r 5531 ap.p?wfi0n.. 3.Gutam design values ore for materials conforming.o ANS,117-2010 and manu!aoured Ir,accordance with ANSI A1180.1.2007 4 GLULAM:bxd 0 actual breadth x actual dep€h.. 5.:Gtulam Beams shall be laterally 539201307127102,2310 the previsions of NCS Clause 3S 3. 9.:GLUtAM:hearing length based on.-nailer of Foch€en>€enc,Fcs(comp'n).. Page 51 of 129 COMPANY PROJECT h WOod\i\/o €51.0y..7.4. 01514:44 1 c3&u'w'.1 Design Check Calculation Sheet Woodworks Sicer 10 42 Loads: 7- 15S5541: 12:25 r 2,01 111 0011 t I, Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 1111.. iCti "F 117 2212 J'- 07 ,..:�. :. 1111 1111 1111. 1111 0,757 15237 1000,0:1 0 ,.,:t: 11400 0106 111_.1,00,41.437 1.00 ;,00 :. 12 t,t, vY.:i 1..9 1..S4 + 1.71 1.71 t.cin 1107 0220 Glulem-Unbal.,West Species,24F-1.8E WS,5-1/2"x11-7/5" 8 laminations,5-1)2"maximum width, Supports;Ail-Timbersoit Hearn,D.Fit-i Nn.2 Total length:12'.3 5';volume e 5 6 cu It Lateral supped;tap=full.bottom=al sappais: Analysis vs.Allowable Stress and Deflection wont(Nos 2012: .. 00,190100 Ceas"tc V,1 . 00431 z,L1.'4:4s ev - 00' 4' - _x110' hr3A it 3ayis; " _ 1 +,i _N -21:0:) pr1 .14 - 0,..r2 ?,•ass Y t`r: - 72!1127 1,.i.ve 0,11'0 0.13 = :794 :1.41 -- IJ..,: 0,12 _72000S __ e. 7,10 - :,!700 41,01 11210 ... .1 Additional Data: FACTORS: elf.ip i(Ci) CM Cr CS CV C[+.•. Cr 1:1:0 Ey' 2eh 0,70 1,00 11.00 - 4 ., 1.00 1,117 1.00 2 2,1•03 1.00 1,00 1,00 1,000 1,000 1,011 1,70 1.01 L. J .. fop+ - 1.54 1.011 _ .1,00 1,011 .. .. E...i;;•.' 1,21 f.00 11,01: - .. ..-_ - .- CRITICAL LOAD COMBINATIONS: 11' 111.1, V sr 0184, V deeiea =- '7£700 It30 . 1.0 „ - s�1., II•- 1011' lb-0-fi .,.'.''1:4< 127 11? :1, 1:.:301 1,': 02 co, 771::1,111 oda ve. v 4 4102 1,41;0p,,,,, reef 1110 10-000-2.4-7117,40,1 '1.411 :p; _0a24 Lae 1:;:+0,1 .. a : I.1.1.4-c11 1 e A04.1 y01 y01 outpu 1. 1031.0 ..-CC: -1+I : IBC 2012. 1250:t!2A11121111 0414*:1i ;;: m 11010OO b-io2 1..:1.e<_t.t r; lecti7n rent an nun_,I o.).1(341,1.0 11100, 01 00, 4,00.7 .-.4,1 11,01001:1,0 ..57;1..x) 1.,140 Dei.Lectioal : G.v5 Led 1,031:-'.4;0, Design Notes: 1.Woodworks analysis and design are in accordance with the ICC International Building Code{SSMC 2012),the National Design Specification(NOS 2012).and NOS Design Supplement. 2 Please verity that the default deflection limits are appropriate for your application 3 Glulaan design values are for materials conforming to ANSI 117-2010 and manufactured In accordance with ANSI 0190,1.2007 :. 4 GLULAM:bed a actual breadth x actual depth. Glulam Seams shall be laterally supported according€a the provisions of NDS Clause 3.3.3. E GLULAM:bearing length based on smaller of Fco(tension),Fcn).p(comp' 1111.. 1111. 1111... Page 52 of 129 ....._..,.._....,..,.....,...me ............ ._..._....... COMPANY PROJECT ._..�.._ .._..,._.,_._. Design Check Calculation Sheet Loads: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): ) �+t3s Glulam-Unbal.,West Species,24F-1.SE WS,5-1f2"x1s" tbiemsesci a S>.?'roilA5Ree xlttt. wy ata AS:resek+ese R44*, $14,1 13333*43MM PAP WAerea S6433S: xtrMe +n;ICP,-1iA..r AereC Analyaia vs.Allowable Stress and DeflectioneCW Nos xon: Additional Data: All rev ILet CALCULATIONS: EZ ^...♦. ..t .:.::.n a'..r,•. eel ::a.e. t, '.:..'1. , ...,..'i t,ta:Ce.:e<.a^.t s.ac '.f:x..:.;.e ;. :-:n= :._:.•-•., Design Notes: WmJVVoere a tress SPA 0 va p ACT44?we's'ef, 1 'vmaW 5.:5i...h1 Cale. ,.,l.. j.:w N .x«:Ste' .x iMC T 2012)SPA NDS Dtagie P3443333**. 2 P.m<mil OM!he tAMatd 6eh:+Ar M sr »a t. 3 CAA.,CeeAR ANSi :t._ t.: _,.,. P CLAUS LPA a'.=uN to T%KE:iA.4551^ C'aAan Beenn51.3YDe 15555 Rt.Y;PUib1X:x'<itit'Ass Vas.pi A CD 45 02222.4 ha.a±g letgtM1h .a xr:Ser« f epp.•mx,f p n Page 53 of 129 COMPANY PROJECT li01 20 M. 004 9 Design Check Calculation Sheet n_cOA rks Sizer le 42 Loads: __ r 1 .,L) 24 ,.21 1 9arcial 1101, 0,24 3,24 130.6 130.0 ol0 1 003 Pactial )CII, 11.24 14.24 200.0 ;.i • 34,93 ftriani 0E3 11.24 44.::4 130,0 130 •. £ ,3l.al 003 1:,24 14.24 50.0 31.0 ..32 farthq001, Print; U,.1 >Gi± <411)44<32<1=_- P<:::t: '1.:24 - f h-3:.. 001)10 34.24 -110100 ) 162 Fol)t<4)') ..__ Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) r..�.i.. 1111.. _... ' _.. ®.. 1413.7 _-i 1111.. - 1111 ".•^�.».................a..®,e ._.....__.._' _:':e.....<.,..«........a.-. 1111. �+� ....,,........., .. .1111 1111 ..<...,:_� 1111 ...,_....�........_._ _-_ ...d...-11_,11..-.e..v..... 092d 1131 11.10 Adee .r;fa 123;1. 392 164 -7124 322.0-124,0. Vt 00.0. 1924 19a021r::;: 61)31 g..2 (9?R 2:ri P1 1.66 0.24 tJad ce,03) 90 41 "tir. x Ei.55 tco en•230 00 1.00 9E noppo.i 1 11 1.11 396 3,26 633. 631, Giulam-Unbal.,West Species,24F-1.8E WS,3-112"x11-7/8" 8 lanlinsaans,3-1/2'.maximum width, Supports:-All-Timber-son yearn,C).Fir-!?4o 2 TOW length:14'-37";volume= 4.1 cid.`I Lateral support:top-full,00401)1=at sup"parts, Analysis vs.Allowable Stress and Deflection tx;,.0 Nos 2012: -. on '3 4,sin Waive EcJiw, Va e 2931: 4)484``)1 0,?NmI4n =bay+r f s.s 2,3 ,? " 424 f l-3. E 30,' ,.. 0.4-4.. L++,., 331a 44' c 31140 s:ai 352["b" ... O.H4 r';me O.0'')a .1999 ,,/349 7.4-; - 1/300 0.31 1-.;i .21. ..';JF? 0, ) 3:24)3 0,4a Addltlan0li Data: FliipsilCO <'M r'.1- 1..'i. CV ")''t: C"r '100:4 CII.CS, reit 11S0 1.n13 1.00 1.00 - - ;; r}" t-i1C .,60 2144 1.44 t.o;) 4,00 3..004 1,600 4,43;3 i.a 1,00 1.00 - F--i, Pie' - 1.60 1.00. 2 .9 nallian 1.00 1.00 , 1.04 - n�:.", ;.40 4.00 Clic-1CAL i.003<C.(17-10i14413040: shun, 143 C4.=C, V::. 6044, V design #e - G+, EM 212212 164-fr_ 0,00.0.06) 03 - 04,721 itivei Lc "'3 _ €3413 1001611 3.913)4 I-2).00093 ,9vz333 live Lcevoncentrated 312,d026tleake n`1 3C's o.o Bated in 16e Ara1_yaia eufpvt :;c. 4902. 0 / :....21112 379e3 16-162 "34 :x ..;:i,..e, - .i":.,..:<t- , ._ ^•a aft non ad 103911 1 wind, aaow } _ori ,143 . :3l r'ad,..,a1 .,. )9<, .:..<m 'Live 103') Deflection. , 1111.. 1111... 1111... 1111. _1111 ... 1111. 1111 Design Notes: 1 4Vnrnlworks analysis and design are in accordance with the ICC International Building Code 1140 2312),the 40)410a)Design 0pecit;cai en(203 2312),and NOS Design Supplement 2!Neese verily that the 441811t deflection limits are appropriate for your application. 3 Gette;n design values are for materials OYrnlorming to ANSI 117.2510 and manufactured n accordance with ANSI.150.1.2007 4 GLOAM:bud re eGual bossed:x actual depth.. 5 Glufarn Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3, S..GU/LAM:bearing:engin based on smatter of Fcpjlcnswn2 rep(co npS).. • 1 Page 54 of 129 ....,. _ . COMPANY PROJECT —_-- ••� $$x� r ,3' Wood i � `F� is..v-t4 Design Check Calculation Sheet .Loads: I4 , •Maximum Resctions4lbs),�Beacing=CapatitLes-{tts}and.A.lea(ils eogLhs lnl.:_—_ _.�....._3.as _.___.......... —2,----.,— _ t ..._.__,,...:.-- —.„_„..._..— _—.._—. --,--222„,--- .1 1 . i • t 3 l 3 -r Glulam-0nbat.,West Species,24F-1.8E WS,3.112"x11-7/8" Supporta:Al 7};c<a,.:k a.re.01101 No 2 Total 1h::T.3$'fatinx•• `:2 n#r; Lew-a:1009 0{W.04.irk300.C 070(01.; Analysis vs.Allowable Stress and Deflection at1if•O Nos 201a. Additional Data: S CA 24tSTi NS Design Notes" t W:oY,0tr2Ra.,Rea'-1 r1 r.810 M:w0I.8^x:2 Mxr.0.11'1'1,1inftiredi iredi 9,-I,C.;21.8,:0 2012)t`>e h:r.w111:.E.}n 07..`00..Jcal 11,220 i N.:'.0020 Supyer:Ped 2 Nos,vefify 11,1%he deleut 209.0 01 timim Ma 5F9'.9' f"t+1 99PAOlfx 360447 der.,r,..A.kwee aro 1.alea.a4 tvloRy.Og 23(.300.011:72010400.000 t.i, 7700CP341RIWR'ANSI A1R0 1.21010 4 61.01..W-tek:S=a:twi 1-,rt001!2Y700 dep,N S Gksiar7 ctarrzs a0>31n1Ren09.x.1+07.J aeur019970P00(40000003102060(04032. 0 GLULAM.txetrt03etc77103x h:2n 03ude✓44 110911,s/o01, _'•m19''Y; Page 55 of 129 _ - _. ...... COMPANYI PROJECT --- • k dWwoo or s 4,4 Nov.i9'2016 19:55t 11.'812 x+wh Design Check Calculation Sheet SiZ,10.7 Loads: 7 5.0 flai4 11'.' i'. - -..rye 5,74 15a0 t.ref'? 150,0 L0424 041, l020,0 Load" 175.0 tlf Maximum Reactions(Ibs),Bearing Capacities(lbs)and Bearing Lengths(in): i.___ .,�,,...........,....�,.m. ......,_.__.... 10'-11.5' read 4710 4106 live ::01 5002 03100 :1674' 1146 1331:41. 10330 10300 aeariaqt Capacity 0334 :0220 Doppoot 10616 69 .'shalt Des lle,mnIt 1„(1l leppoit 0,97 97 Loam �• .,t3 42 112 3, Minn h teg'J 2,09 .0t Cb 1.00 Gil CI,mise 1.00 1,09 Cb auapr.el:, 1.24 1-0 Fob ,up 0, 6:2.' Glulam-Unbar.,West Species,24F-1.5E WS,5.1!2"x13-112" 9 laminations,5-1/2"maximum width, Supports:All-Timber-soft Beam,D,Fir-L No.2 Total length:10'-1 t,8';volume a 57 cu ft; Lateral support:lop=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection wing NDS 2012: O t014:1AEy0!1 y s 5,A x=o ba?a1.ys€x r.rcaidn ,61'026,0 firOS. 1 p,1 Ft if i.•..,.. 0,a6 05010 Defi'n 0,11 0; 30 3.i V. oefl.r, 0,16 az 1002:. ., 0.44 .1:0 00111'n 0,3f, v ),iJ:'i . ,n 0,60 Additional Data: EATICIlag Y111,4761.11:1) :;MVl :.t.. ..r 13: Ci Cfif Notes CaaCva. 1,64 Eva', 2402 ..;N) 1.02 1,00 1,0201.211L-211 . 2 Frp' 550 - 00 1.409. 14' 1,61,02 .€.((:' (er0ny' 15,05 million 1.00 1.0::) - - 3 CRITICAL LOAD CCMff 1NAT€ONS: Sbeat 3 LC 02 = 043, V= 10E74, v 04znn 234:l Ibs 0c2din9;;-i: LC 12 == ot-L, 15- tuge;., Jgg...10 Deflection, LC 11'1 . ('3.7511,42i 1fLivr.'r 3,C D3 1I+,7011,151 :03,_) 3>cte3a 12=11ve 11.ocow)43,,i rl_ i pool r soof ia_ 1,c-_v:,e.f-alert (-003 _.lustre A11 IC's ase listed in the Analysis caipei Load:xamd:inat Lor+s: 03007-10 / `.:.0 20.2 CALCULATIONS: :a:Yimcti.>e: rl -• 20:111026 16-1,,. deflection='Deflection from a _dee.d Loads717,26, --- tau. Total. Deflection . 1.50(Dead load Valtectle.I t t:i.r 1.4 64 Deflection, Design Notes: 1 YJoodWerlcs analysis and design are in accordance with the ICC International Building Code{IBC 2012),fie National Design Specification{NOS 2012),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application.. 3,Gluten)design values are for materials conforming 10 ANSI 11.22010 and manufactured in accordance with ANSI A190.1-2007 4.GLULAM:bad=actual breadth x actual dept's. 5,Giutam Beams shall be laterally supported according to the provisions of NDS Clause 3.3 3 6,GLULAM:bearing length based on smaller a1-;:pfO'r.5son),Fcy(comp'n). CLIENT Page 56 or 129 Pc.,;rt 41, PROJECT: 746 ' "roc;0";42°5 NUMBER. 54; 363-1823 FROELICH DATE: 12303 Aroor coy,Se LOU ENGINEERS1, Broc,irf Draco 80021 720-560-:1260 BY: "1:r. Ftc,,,coel ---____ F 1 spAAJ 30 DL, 1z0 4. (75(23 ) 1 -t (3 ti(2:7- `t?-0 FL F f / F.1-4 pAAJr 0(k 45( 17) 1Mo -1k4-1 5(7-7)i- 120-1 ( -4f)(2.7, 12-0 (1$1)(.7---T) Itt50 Pt-F LL ( -31-t )t, o ) -11 -t 5 )((40)x 112 Sts (145 (ZS) .c So PLP e 0--(Fieom, 1 F S 1_11-(40045:t LL s (-1000$ F143, : DLs e(-F Page 57 of 129 COMPANY _.,......._PROJECT ..__....._...._... li fi (R) oodWor k Aua 24,201ft 14::7 11. vrrrc, Design Check Calculation Sheet WoodWorks Sizer 10 42 Loads: L'1011 Tyr, 26,1:11sns,aa Pa, 131.1 Matslt,iai Unit Eta,t (<,.ulivo 2011 Ell, 600.0 ielf-ealent need .1 DEL 6.0 Elf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 3'2 2'...__...._.._ ...,m, .,.,_-_._,..... .m._.. _..... p • 1315 lie 1992 0E2 Factated, _....... __... Jot.xil 2336 2019E C:ap9.9.ty trial 1:194£: 2396 i4'000,t 2603 265 /vial/Des fleam 1.00 1,60 z)post: 1.90 'Odd Eva34, 0.30 : A2 L0000<0 1.10 Min r ,'a 1. 0 ..Ol .f Ct. l.:ar. -.1a. II Cb 1.00 €.n(':. Cb -',pport: 1.11 7..11 1.11 Coe svp 621,_ 629. Lumber-soft,D.FIr-L,No.2,4x8(3-112"x7-114") Supports:All-Timber-soft Beam,O.Fir-L No 2 Total length:3L-2 21:volume=0.8 cu ft.; Lateral support:top=at supports,bottom=at supports: Analysis vs.Allowable Stress and Deflection using NOS 2012: C'.<L e,Ciam 46.41 g3 LS t li,eii - t- Vane 0011. ATtd3.!/S.`.3f JCS SQn ,flea le:'- 9 V. 1.39 psi 10/20 - 19.14 Ben..^.100(10 En,V 44 t>` :: 11.41.• psi ft/FC' 0.ce Doan loll',' :,01 v. .0043 Live f<,11' 0,SLI <',/')V9 ,,.1. = L1305 0.0$ A..-.ksi 0e11", 0,02 .. 1'5 e II2a0 :n a 4.14 Additional Data: FACTORS: F/Elpsi)CO CM Et ;:f. ('t' Cite cc oftit C± C:) LC11 Fe' 100 1.00 1,00 1.00 = - .. 1,03 1.010 1.06 19.4 900 1.00 1,00 l.011 9.990 1.00 2 F44:,t 025 -• 1..00 1,00 - -. 1..00 -1,6 mill.:oe 1,00 1,00 v _ 1.002 7.56 m.11Ioa 1.30 1, ,) -. v 1.09 1.40 - 2 CRITICAL LOAD COMB1NAT)ONS: 3;,c - LC k2 - .2.9;=E, V aloailn - 1340 ik.s end'. e1 : LC 42 9 Ina-fl, 13 42 CIS=Gn_c.1.0102 1 .<.:..a 1,-5,65 1000:: LE-cenoontrated T" .,stivia.:L, 01.1 lisled i.r: CIE 0 ):;1.0x:4: Load < f at.i. 0 SatlE 116 2x'12 CALCULATIONS: ) n C EI= Ilea Ii. 422 "Liv ellect,9, 06,1edllon las,all no0 da20 leads 9 sane ToIsl Oelleollso = i.0010 .x<9f ee L ) le,.i.n. 1.10:0.0_ •,tag,:. , 13' 1. - 3'-1.13"1._ L.- - 0, ,„ RE - 6.23 Design Notes: 1..WoedWotks analysis and design are in accoalance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),aro NUS Design Supplement, 2.Please verify that the default deneciion Hants are approydale for your application. 3.:Srmn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4,1 Page 58 of 129 COMPANY PftOJE„t SI- 7W d Wo r K S is Design Check Calculation Sheet Loads: • • Maximum Reactions fibs),Bearing Capacities fibs)and Bearing Lengths(in): CO 4 i, 3,4 44,4 Gloism-Unba1.,West Species,24F-1.eE WS,6-1/2"x7-112” 544444.44.4S3N4.',44444.44 34,44.14:At,Th AM-M Saxe;1)4,44.No 2 ,3441bt44h'34444:vakmae 1!:44141; lxbruf tommtxt Lop 44 wow.,tArtioto4.at PAXONLs: Analysis vs.Allowable Stress and Deflection yNostois Additional Data:. Design Notes: 5•:11.,Y,vse.s aiwvi PMCM W44.44.,54443.0 CAW 3,444433,21.4.5444.404.034440.4444.,W40"3.3',"4"t2osmg�:='4 O0000Y t'k:n*AtO.t}2•aw 0'O .4* scsma"e,te TIP m:Nt ap}#es000 2.(C:t.-,hsgs:=arms M.Ott P.M.Y4M4,44•44444444.ANSE It444313043sWK.0 ax'gsa;CY33aAer9AAtf31 A11411,10)7 Ct.tt,P ?.-L:,C000&OY,". aw3:'Mo'!0. 00Ooo'!PAP,.Mtait.be PA:a'000 a#.wt.!t50000550000.0050505000500005000003 6 GCV_W.M:Aea,:.3 CC 0`41400:0ooyaavv or 744444.031 FAA,AP/500). • Page 59 of 129 � COMPANY- PROJECT 1 WOOd Wo rk - ' F +.�.1 0 Ao5 24,2014 14:011 101.13 wwb Design Check Calculation Sheet ,14wi'AL1,4::52.^-f 10 42 Loads: -.,:r rr l lloop 250.0 0.; Ola btabt ^mai :,011 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): a i Ii 3 ltd ____ _._ _- ______ .. Retettbreel Read 1734 1734 Il.e 2064 2004 Anew 57B 575 Tota- 3711 3 729 Beating; v `apeolte Beam: 1112. 37s Suppect 41.39 4133 Awa 11Ses Beam 1.00 Support Lit, 0.30 Load masa, 42 42 Mir 'd 1.71 t;b nit, 1,00 1,00 EbtruppecF 1..11 1.11 Tep sap 625 .25 Lumber-soft,D.Fir-L,No.2,4x8(3-112"x74/4") Supports:All-Timber-soft Beam,0 F4-L No 2 Total length:3'-3.4";volume=0.8 cuft;; Laleral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection us€ng NOS 2012 CCiton,i rt Aeak,in Velon a�aann `Ifo , ort A x tte.. n swear .. 1'2l 44 " 01 da. eenng:+} iv a 1100 la - , 2. _ - 0,64 Dead Def.t.'r 6,01 e 41/B04 Live Oe1O10 O.02 • 41,1499 0.10 . 0/040 , Total Pefi'o ,..!.' - <L/099 0.10 4. 11240 in ...22 Additional Data: FACTORS: P/E(psi}CD CI. CF : CrCOO4 ry EB0 ,00 P, 1..73 ,- - _ 66 1.00 1.02 2 F.14 1100 1.00 7.00 1.06 6.996 1.3110 1.00 1.00 1.0010 Fop' ..2 l €.03 ... . .0.60 - - (' 1.6 t•.i1:.0n 1. 6,0 _ - .. :0? ;0 .. 2srd.n' 0,5B 0.211300 1.v0 1.00 - - .. 1.00 1.6B . 2 CRITICAL LOAO COMO:NAT:'ONS: She. LC 42 0.0 - 35.76, V demi, ^ 2639 11.0 60221n41:3: L•. 42 . :N.•u, 4_: /13 b...ft Defle..t_<m 121 #2. - S^i. (l e} LC 42 = 0:_: (total: .dew. LelaYe - Wewind Wsin.: /einpact Lc=roof 1 ._. ,.o,:2' av, .r.rr..- , ke All i lisr.ed in 1.6,:Analyais output_ end 00,0200,. on+:: AS0fi 7-10 / 002 2012 CALCULAT'IONS: nefieetion: E = L?nenh 11,-202 live' de4leclion :: 006 ectian from,,11 Ron-deed 5._003 {live, 0 ..-,. Total D l.1eoti.or . n(f.ad Lmad €41.entl201 e Live 1,24 DefleAtlee. ..atr__c_ 03.2022(1.3 , .Gu 3'-3.69" L, . 5.23" RR 4, 0.72 Design Notes: t,Woodworks analysis and design are in accordance w:ih the ICC intematlonal Building Code MC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your appliralior. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1 CLIENT: Page 60 of 129 • 503-624 70 5 PROJECT: 745 NW Mt n Lf #20.!s: NUMBER: Bend.Oreaon 97703 541-383-1828 FROELICH DATE ENGINEERST, 12303 Airport Way,Suite 200 Broom`ieki,Colorado 80021 BY: 720-560-2269 6969 S,,,v i,ampIr:-.T. PAGE 503-62,1-7005 PROJECT- Page 61 of 129 , ofec,a, ;,45 N'w MT.Viushing1c,n ID;.1r20'2 Numr3E.R: .0,1'nc.Oregon 97701 '0,11-3Ki-1826 FROELICH DATE; 123C3,Airpc.rt Way Suite 200 ENIC31NEERS3 E3roomil1d,Coco:'o 60021 www.froelich-englaters.com 72I-.95602269 BY: I-4 iv 0 Ai ce_ . WJAJr C-©n D CI-2 0• 00 2-5 67 kz_ ka7- r- V AA.P 12-Z_ C" 1-4 ON EA cc-t Co iv.5- PF USE ( ) A3S &4E./v.0 cF Co!Li)ItA. . .„„ - _ -Page 62-et 429...._. i COMPANY PROJECT 0 Wood\iVork ® July 23,2014 05:07 Column I Design Check Calculation Sheet Sizer 2004a LOADS (lbs, psf,or pif) Load 111Pe _ _r'.bution Magnitude Location (ft) Start End Start End . r d 3m.p 48.0 ". No l Wind Full MAXIMUM REACTIONS (lbs): 0' 27' Dead Live 548 648 Total > 648 Glulam-Balanced,West Species, 24F-1.8E WS, 5-1/2x7-1/2" Self Weight of 9.5 plf automatically included in loads; Pinned base;Loadface=width(b); Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 27.00=27.00[ftl;Lateral support:top=Lb, bottom=Lb;Load combinations:ICC-IBC: Analysis vs. Allowable Stress (psi) and Deflection (in) using NOS 2001 : Criterion .ano i.5 �lL .s il . t tJaluc Ana:1ysi.s/Design Shear.. v "v :24 ..M,.384 tv/Fv' 0.06 Bendi ..t-) _13.26: Fb' ..... 3640 fb;£°'b' 0.27 Axial - 6 F - 3Ft9 fc/Fc' -, 0.02 Axial Bea_. - 6 Fc. 1440 `c/Fc* .. 0.00 Combined axie .. . k s ,de load bending) Eq.3.9-3 , 0.27 Live `, .. L.85 - L 9r. 1.80 -- L/180 0..72. Total Defl'n 1.65 = 1d196 1.60 3/160 0,,92 ADDITIONAL DATA: FACTORS: F CD 4 Ct CL/CF CV Cfu Cr C f t Moues LC4 Fb'-t 2400 1 .E.2 1.00 1.00 1.030 1..000 1.00 1.00 1.00 1.00 Fv' 240 1.jC 1.00 - _ _ - 1.00 1.00 Fc' 1600 0.9C1 0 . 1 .00 0.270 - - 1.00 - Fc'coatb 1600 1.6'.1 - _ 0.155 - - _ - _ - E' 1.8 10-111;n .co_ 1.00 - - - - 1.00 - Fc* 1600 0.93 1.27) 1.00 - - 1.00 - 1 Bending' Li ' <r- i, :6 = 4374 lbs-ft Shear : 20# 2 -- .60JW, V - 446, V design = 646 lbs Deflection. LC°f 2 -- .':o .. 61= 343e06 lb-.n2 Total Deflect'.. ,_ -- 1.33 Bea,.. Load Deflection) + Live Load Def?ecllo .. Axi.a.l. , 1,0,.. .,.:.7.. 1 - 256 lbs Combined , 30. 2 - .33-W; '1 - fci.eE) = 0.98 (D=dead. L=live _xo.; W-wind r=impact C'=construction _L1 tratsd ) (All .LC's are __s.2._ in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3. GLULAM:bxd=actual breadth x actual depth. Page P3 of 129 COMPANY PROJECT WoodWorks Feb. 15, 2018 10:00 9' (1)2x6 HF2 (3300).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loads Dead Axial (Ecc. = 0.00") 3300 lbs Self-weight Dead Axial 15 lbs Lateral Reactions (lbs): 9 w 0 w o 0' 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber n-ply, Hem-Fir, No.2, 2x6, 1-ply (1-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length:9'; Clear span: 8'-10.5"; volume=0.5 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0 [ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 402 Fc' = 771 psi fc/Fc' = 0.52 Axial Bearing fc = 402 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearing fcp = 402 Fcp = 405 psi fcp/Fcp = 0.99 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1 .100 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1 .00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1 .00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 3315 lbs Support : LC #1 = D only; R = 3315 lbs, Cap = 3341, Lb - 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. Page64o717.9- , COMPANY PROJECT WoodWorks® Feb. 15, 2018 10:00 9'(2)2x6 HF2 (6500).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit. Start End Start End Loadl Dead Axial (Ecc. = 0.00") 6500 lbs Self-weight Dead Axial 31 lbs Lateral Reactions (lbs): 9' W m m � 9, Un factored: Dead Factored: L->R Load comb #1 #1 Lumber n-ply, Hem-Fir, No.2, 2x6, 2-ply (3"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width;continuous lower support Total length: 9'; Clear span: 8'-9.0";volume= 1.0 cu.ft. Pinned base; Load face=width(b); Built-up fastener: nails; Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 396 Fc' = 771 psi fc/Fc' = 0.51 Axial Bearing fc = 396 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearin fcp = 396 Fcp = 405 psi fcp/Fcp = 0.98 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1 .100 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 6531 lbs Kf = 1.00 Support : LC #1 = D only; R = 6531 lbs, Cap = 6682, Lb = 3.00", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015),and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. • F'age 65 of 129 COMPANY PROJECT ivhbMWoodWorks 0 Feb. 15, 2018 10:01 9'4x6 HF2 (7500).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 7500 lbs Self-weight Dead Axial 36 lbs Lateral Reactions (lbs): 9' W w D o 0 p 0' A 9' Un factored: Dead Factored: L->R Load comb #1 #1 Lumber Post, Hem-Fir, No.2, 4x6 (3-1/2"x5-112") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length: 9'; Clear span: 8'-8.5";volume= 1.2 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 391 Fc' = 771 psi fc/Fc' = 0.51 Axial Bearing fc = 391 Fc* = 1287 psi fc/Fc* = 0.30 Support Bearing fcp = 391 Fcp = 405 psi fcp/Fcp = 0.97 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 7536 lbs Support : LC #1 = D only; R = 7536 lbs, Cap = 7796, Lb = 3.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. Page E6 of 129 • COMPANY PROJECT Wood Wa r ks';' Feb. 15, 2018 10:02 9'4x8 HF2 (9000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 9000 lbs Self-weight Dead Axial 47 lbs Lateral Reactions (lbs): I 9' I m 0 0' 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber Post, Hem-Fir, No.2, 4x8 (3-1/2"x7-1/4") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width;continuous lower support Total length:9'; Clear span: 8'-8.5";volume= 1.6 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0=9.0[ft]; Ke x Ld: 1.0 x 0.0=0.0 [ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 357 Fc' = 373 psi fc/Fc' = 0. 96 Axial Bearing fc = 357 Fc* = 1228 psi fc/Fc* = 0.29 Support Bearin fcp = 357 Fcp = 405 psi fcp/Fcp = 0.88 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.304 1.050 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.050 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 9047 lbs Support : LC #1 = D only; R = 9047 lbs, Cap = 10277, Lb = 3.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015),the National Design Specification (NDS 2015),and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. . - aagge67of129 COMPANY PROJECT WoodWorksc Feb. 15, 2018 10:02 9'6x6 HF2 (13000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type . Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 12000 lbs Self-weight Dead Axial 56 lbs Lateral Reactions (lbs): 9' co cn m -a 0' v 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Timber-soft, Hem-Fir, No.2, 6x6 (5-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length:9'; Clear span: 8'-6.5"; volume= 1.9 cu.ft.; Post and timber Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 399 Fc' = 430 psi fc/Fc' = 0.93 Axial Bearing fc = 399 Fc* = 517 psi fc/Fc* = 0.77* Support Bearing fcp = 399 Fcp = 405 psi fcp/Fcp = 0.98 *Column requires a bearing plate at top as per NDS 3.10.1.3 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 0.90 1.00 1.00 0.831 1 .000 - - 1.00 1.00 1 Fc* 575 0. 90 1.00 1.00 - 1.000 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 12056 lbs Support : LC #1 = D only; R = 12056 lbs, Cap = 12251, Lb = 5.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015), the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. Page 68 of 129 , COMPANY PROJECT Wood Works ,14.. \ `tit't'A MU fCM W,)ot,OtS36,. Feb. 19, 2018 15:29 9'6x8 HF2 (16000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 16000 lbs Self-weight Dead Axial 74 lbs Lateral Reactions (lbs): i 9' 'I' w -1 N D -O m 0' 9, Unfactored: Dead Factored: L->R Load comb #1 #1 Timber-soft, Hem-Fir, No.2, 6x8 (5-1/2"x7-1/4") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width;continuous lower support Total length:9'; Clear span: 8'-6.5";volume=2.5 cu.ft.; Post and timber Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0= 0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 403 Fc' = 473 psi fc/Fc' = 0.85 Axial Bearing fc = 403 Fc* = 517 psi fc/Fc* = 0.78* Support Bearing fcp = 403 Fcp = 405 psi fcp/Fcp = 1.00 *Column requires a bearing plate at top as per NDS 3.10.1.3 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 0.90 1.00 1.00 0.914 1.000 - - 1.00 1.00 1 Fc* 575 0.90 1.00 1.00 - 1.000 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 16074 lbs Support : LC #1 = D only; R = 16074 lbs, Cap = 16149, Lb = 5.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. Page 69 of 129 • COMPANY PROJECT 3 " WOOdWOrkr Feb. 10, 2011 17:00 5 1-8x6 glu-lam.wwc Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End 1:,<3a .i. Dead Avi.a..l. (1_;i.;.. - 0.00") :5000 "lbs Self-weight Dead Axial. 80 lbs Lateral Reactions (lbs): 9' co 0' 9' Glulam-Balanced,West Species, 24F-1.8E WS, 5-118"x7-112" 5 laminations, 5-1/8"maximum width, Support: Non-wood Total length:9'; volume= 2.4 cu.ft.; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0=9.0 [ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2012 : Criterion Analysis Value Design Value Unit Analysis/Design Axial Sc -= 652 Mc' - 1140 psi fc/Pc' = 0.57 Axial Bearing fc, -= 652 Fc::* -= 1440 psi fc/Fc* = 0.45 Additional Data: FAC'TO2S: F/E(nsi)CD CM Ct CL/CP CV Ole Cr Circ Notes LC# [c' 1600 0.90 1.00 1.00 0.792 - - 1.00 - 1 Fc* 1600 0.90 1.00 1.00 - - 1.00 - 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 25080 lbs D=dead L=l iae S=snow W=wind _=impact Lr=roof live Lc-concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICC-IBC Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012),the National Design Specification (NDS 2012),and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4. GLULAM: bxd= actual breadth x actual depth. Page 70 of 129 COMPANY I PROJECT 0t 0. d WO rks® .,,,, °Feb.10,2017 18:19 5 1-2x7 1-2 ghi-lam wwo Design Check Calculation Sheet WcodWorks Size:1042 Loads: jrDfatributlent atien )ffi C13L4F _ tern Start End Start End_ Itoaal. 1, 1661f-weigh'. lesad Axial S5 Lateral Reactions(lbs): w A. Cr 9` -,Dead 363 -:353 f2LL,VFactored: 393 Load r_o'3 41 ..7 .343 Load comb #1 irl. Glulam-Balanced,West Species,24F-1.8E WS,5-112"x7-112" 5 laminations,5-1/2"maximum width, Support:Non-wood Total length:9';volume= 2.6 tuft.; Pinned base;Load face=width(b);Ke x Lb:1,0 x 9.0=9.0[ft];Ke x Ld:1 0 x 0.0=0 0[ft]; Analysis vs.Allowable Stress and Deflection using NOS 2012 :,rxtt...ua Analys r, Vulue Lea go Votes ldatit, lT'tta'ysis<10 si.0aa Shear Cc ._ 4 CV' = 25g6 Bendingr, fb - 602 FL, 141 0,3't ic- - 102 c' - 1203 psi _ 0.62 C.P. _n"c'. \":�... eccentric rscrsent'.? .4 _i 41.82. T:z "._ring _. f 802 Ft - 1440 psi _,...Fc r 0..56 :ot 0811:.'0 0,33 .. 1Ll999 Live nn:c.;.'44 negligible Total bet-1'n 0, .. Li819 0.60 '= 0/186 0,2.2 Additional Data: f'a•-'T`ru:-- Pi i“psi)00 :t-i Ct 01..E/CP .. :to cfrt 10:1 EACTORS: 266 ,90 1.e3 _ 0 .,0 _ - ,0,J r-OS:, i. Fb't 2433 0,91 1-00 0,394 1,000 1.00 LOU 1,00 1.00 1 (:00 0.90 1.53 1.5E 0,831 -. ) - .t. E' 1.4 : millionLOU .. Emir 0.35 million 1,00 1.00 ._ - - - 1. Eedny' J,S'i million 1,02€ 1,56 - moi);: 0.90 1.00 1,00 -. .. w - 1.01 - 't CRITICAL LOAD COMBINATIONS: Sheer LC 41. _= O only, V = 383, V design 3£3 lbo Fit ndi.::;,1 t'r t, 10 41 .. ri only, 04 - 3144 lbs-ft C)e3 1,.00t:.is>n: 100 41. -- T7 only itotui) a ia1. L: 47. ._ D only, P - 33345 lbs 1.5 41 ._ U ;n1y Cl,'- 2148 FcC-43420120 Fxe/ --`c(6xeld)-- 832. Drd aci =l.io ,,--slow .s--oLd 1-impact Le-root live Ler-concentrated a eart:'tqua;c" All IC's 3re Hated in the Analysis rnitp'it read combinations: -18C CALCULATIONS: Deflection: FT .... 346:206 lb-in? 'Live. deflect.ior, :elect.,n from li .c4-0.oad loads (live, wind, snow-1 Total Deflection -= 1 00)0e d Load Deflection; t Live Lead Deflection. Lateral cc .. i _ -1: Lii - , Le DB 7.02 Design Notes; 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NOS Design Supplement 2 Please verify that the default deflection limits are appropriate for your application. 3 Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190 1-2007 4 GLUtAM:bid=actual breadth x actual depth. 5.Axial load eccentricity applied in direction of load face only.It is the designers responsibility to check for effect of eccentricity in the other direction • Page 71 of 129 COMPANY PROJECT ..�.._. ° od Wo r kS Feb 10,2017 18:19 5 1.8x6 glu;ar_WA'c Design Check Calculation Sheet WoodWarics Sizer 10 42 Loads: 3'a<: �l f 1. , , 1 E �, l�t �a�: , .., ,.v, isd .,tar:. Eco 3.00"1 an000 lba Y 1'ii.41. Dead . /5 tbe Lateral Reactions(lbs): rt __________,1 Dead 732 -232 Dead comb 232 #1 --k 232 Load.cnin2.z 61 #1 Giulam-Balanced,West Species,24F-1.8E WS,5-112"x6" 4 laminations,5-1/2'maximum width, Support:Non-wood Total length:9';volume= 21 cu ft.; Pinned base;Load face=width(b);Ke x Lb:1 0 x 9.0=9 0[ft];Ke x Ld:1 4 x 0.0=OA[ft]; Analysis vs.Allowable Stress and Deflection using NDS 2012: Y i.+erion IA1-4 y i qr, value. Unit Anal' 0/Uastgr; Shear 0.04 Bending :1 759 33 2150 p; b/11,' 0.:35 Axial • I'. = 750 F - 203 pal fc/;'C'' 'T 0.5.3 Combined COx..al 0 nc,entri= triocaft Eq.15,4-3 0,75 Axial Bear-axeg 20 F - i.440 psi. -./FC' 0.53 D=ad Dct:i. 71 . _ ?99 Li ve Defi' neatid;1.1ti Tram' 0503. A i. u :.it ,,5"a '.115'9 :s.ri 0.26 Additional Data: FACTORS: F/OlDsi..CD Cit Ct. (' ;".P CV C`tt Cr O et Ootea ?:C6 265 0.90 00 1..00 - 1.00 1.00 I. Fb'+ 2400 0.91' .0 0,995 1.000 0.00 1.00 3,0/' 1.00 1 Fc' 1600 0,90 of 73 0.9.35 - _ - „3 - t.. 0' 1.8 million l.00 t.40 ,. Erni:^.' 0.95 million 1.00 1.05 - _. - 3,00 - 1. Rainy' 0.85 million ,00 <^i? - _ m 1.00.. •- 1600 0.90 2.00 t.99 - _ - 1.00 - CRITICAL LOAD COMBINATIONS Shear 9 -_ D only, . - 1.32, V design. 232 lb Eendingi+i: LC 51 - D °r iy. M - :72s ibs'13 Ciefi.ecton: DC ':#7 = :,. only •tal.; Axial : 91. only, F .::: 25066 Ins Ey LC 91 - or, y - _. 71 10=2,lii•14t3.' xolS-11.gtx,.,d,:^ 759 Th-dead :.::ai c ,taro ra ls,1 ,ipoot. toot live L_..=..o0cor,t.rated E=earlhgsa:i1' 931. CC:'s ar.. tieteii aitit“061.s qtr put Load ' CALCULATIONS: Deflection[ ET - 17.-e<6 .i_._ ,17 "Live" deflection = Deflect.i,. frc. all non-dead- to ,l.. Ieste, wind, snowy: Total Deflection 1.92 ittdati1.<<,." 7;.tkc ,.l3ni -+ Live Load Deflection, Latera_ stability ;+. : }_c. _ = i.6'--,.75" Rt? 6.26 Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(1405 2012),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190,1-2007 4 GLULAM:bxd=actual breadth x actual depth. 5 Axial load eccentricity applied in direction of load face only.It is the designers responsibility to check for effect of eccentricity in the other direction. • Page 72 of 129 . • COMPANY { PROJECT l t 1WoodWorks® € ��., ^•'�� .. .... . .,,---- Feb,10,2017 18.191 5 1-8)(6 cia fam.vwc 3 Design Check Calculation Sheet WoodWorks Sizer 10 42 Loads: LOad TYPc ' 'a1:,- Location rftl Magnitude f)rti t, ,:.eld, Start End Otart Fed Leath Dead t13 ,,:0"' 330en ins ,,,,..,, Sc11 R5 0eileAxial 51 iba Lateral Reactions(lbs): m 0e 8' UL ) `7.1;:11 -,j,72 Dead 112' .'72 ft->L Wad coml.: ill z.>k 112 Load C'3m1) 51 li Glulam-Balanced,West Species,24F-1.8E WS,5-112"x6" 4 laminations,5-112"maximum width, Support:Non-wood Total length:W;volume= 1.8 cu ft; Pinned base;Load face=width(b);Ke x Lb:1,0 x 8,0=an[ft];Ke x Ld:1,0 x 0 0=0 0[ft]; Analysis vs.Allowable Stress and Deflection using Nos 2012: Criterion Analysis V. r- 1:C::le;n 5aIPD I;fnit. Analyaisivosign Shear t3 X35 psi. 1 F'3' 55 t:: lc, , 51):pia) 1 trig `;1 potDa/FW 3 Axial r. - 1082 I219 -::i ^/B" 0.737 Combined ?aX.ai,. 1 eccentLie ps,mext,3 -{ 1. >;. Axial Mk:3ri.ng fc 1001 pri fciFc. Y ..10 :. Peri Pef.1'❑ 0.0 <1/999 Live u;fl'n neotigibto Total oot14.n ro.,a `C,,95:i o.53 - Lilao .in 0.15 Additional Data: FACTORS: f iElpsi)Ci) CM 'Jl. ClaMel 6V 5111 1t. Not)13 a;# Fa' 265 ..00 1,0 _ _ - - 00 00 1 1•=b'= 310 e,933 1.05 1.:.. 01-000 1,00 1,50 1,00 1.00 1 Fe' 1600 90 1,00 1,00 O.0,11 ... 0;i -_ I 0' 1.4 rall',ion 1,00 1.00 - - 1-00 - 1 3el,,' 0,95 >x)1.iion 1,O0 1.00 - - - - 1,63 - f k)n:;.ny' 0.'8S million 1.00 1,00 _ - - - 110.3 - 1 Pc'- 1 . .000 0.90 .00 - _ ._ _. _ 1.110 - 1 CRITICAL.LOAD COMBINATIONS: Shea. TdS. S1. - 1' 331.l.y deo 3114 -" 172 )t,ca lilenelingt ): .LC 01 - D _,'1y, M -- 1:35 1L... .t. Deflection: LC 41f? only {Cot.;'on Axial " LC 111. 1) 1:3,1.5, R - 33001 lr.r: Eq.l1.4...3 : LC :':t r) only /1' 21.51. k":71_'28112000 ere/:s=-r::;6xf-i:=i 500 11=003:d ;<=1_a. 1 snow 4d--wind leia,;:ac. ;:,,o01, 1,0e :,c-c ntrated E=earftuluake Al). [.:.'is are hi.3ted n : An lysis o'15ruLoadLoaCOalbi-=.a.tip3.., icc-1i'., CALCULATIONS: Deflection: 51 - 118in-in., "Live. deflection Deflection all -dead ioa.So hive, wind, snow,,., • 01:11l. Deflection 1.,533Lead Load ( ..t. -- t n; Live Lead Deflection.. Lateral :,tri r t_ ), 1,a =:c 143-8.63" 63 - 5.92 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4.GLIJ AM:bxd=actual breadth x actual depth. 11/18/2016 Post Capacities I Simpson Strong-Tie Post Allowable Compression Loads for Douglas-Fir-Larch Page 73 of 129 L rmCar E perp Ca Compression Capacity Parallel to Grain,Pc(100) Compression Capacity Parallel to Grain,PC(160) Framing Grain, Nominal Tep Plate Height{it) p Plate height(It,} Size Gra 3a Pc-L SIMPSON 8 9 10 11 p 12 8 10 ii 12 2v4 a 2.i) 3340 !! "C _ 5570 m,�.._ _ _1�� , tips./lv�,�vd�,v<sironphn;c;t�rrril ..... 7.: 9 G�Sti�: 1;361�rJ i 4lncla 4x 2 i 7655 7395 q 3i rbOrl f { 8 ` 34x.1 a r. ( 5010 14 0 '. 4A6 '72 ..::;8;t4.-5,-,011540 -. ,,....'_ 35 _ } 1221 L 4x8 q f! 1` t• 1,;093 - g... I 4 X16035 i 4x10 2 20235 1,1r8 3 t 20365 tt"# 71 i ' 2x6 '2 r 5155 89,0 1 �. • '= 1 1J.:'.?.:.'- 11030 - -, 1 ;:, . 3x5 295 14995 . r,4rJf= •w3 1fi385 '! i ; LI--iii-4 x6 2 10375 17935 1 (; ,3 4_i0 11.4 'i 22060 it I r= -,1 1-(14z1 1 6-inch .., m .,� , Wall _4xc 120313 20925 t , 1 q r€a L 1 . 25735 -;.:,,,,,,,,,,j,,,„„,„,:',,,'.,',7,„,,,.1[`� ,., t L Y 9 1 'ux�vxw mwaw..i.I 2x i 2 i t'1,, "; 33090 r ( • „ � a 15470 26 05 � � f � a i•[--§6?-x--,---------r 1 it 1 18905 25260 1 ( t. 1 ," _ 34255 i T I (- 74 ,_,... ....._ *1 ( 25780 34450 l a 46715 "5 See footnotes Post Allowable Compression Loads for Southern Pine Lumber Perp to Compression Capacity Parallel to Grain Pc(100) Campressian Capacity Parallel to Grain Pc(160) FramingGrain Nominal fop Plate lfelght(it.j Nominal Top Plate Height(It)) i. Size f Grade p „:,___,,,,..,.,i wv c 8 t,„„„t„..,_„,.. ,.- 10 11. 12 B 9 10 11 12 2x42 2963 1, 3 • 3x9 #2 4995' 3 1 2 2x4 #2 • 5935 4 4 Ir cn r 4x4 *2 69203 x 4 i Wa I ( ,,.„4.i„'/ :3"2x.11- #° ( 8004 .. • l 1._. ? ......4x8 ,._.. =2 1 14335 I , I 4x102 1829© t 1 2x6 #2 4660 `,3 30 1 3x6 ;_... sr' 7770 � €�'3; r =-P c 4 $ 6220' ''', 8 Ir;Ch 1._ 2 2x6 #2 7325 --77., ;,t,_ 10 r, i =� 4' 4 1 ,z I Wall h4x5 j 2 y[( r 0{8p75 -7.7177,71 1 14r-11117 i ' ; ( 4g d 3 2x6 i ;2 , ».{ 1383e I« ,.. 8 £ .7 ft 150 -.. `i'''��r�...... ..�~ L "V ��^ Ys ay - 6x5 ..;..... X7090 21495 __j_,mm202s0• q_ 78835 17260 15655 30025 20820 X3595 20610 17975 6x8 1, #1 a5 29315 ( 27690 25680 235 t1 21395 40940 36575 32180 28105 24515- See footnotes Post Allowable Compression Loads for Spruce-Pine-Fir _._..Lumher j Perp to Compression Capacity Parallel to Grain,Pc(100) Compression Capacity Parallel to Gram Pc(160) Framing Size Grade Grain N lmfnai Tap Plate Nal2:171st(lt,) Nominal Top Plate tierght fit.) Pc 1 9 1011 ( 12 8 1 10 1 11 12 2/4 ,r1 .2 1 2230 ,,..,--Ti .' I_.,;:-...,,,,,,,;-.--1.i_ 1250 1570 t30o 2930 2340 1 05 15/5 1025 lii 3x4 1 =2 3720 4625 3745 i 30303 ! 2560 2170 4885 3895 3!?5 I 2630 2210 4 inc'1 2 2x9i.,_4711../22,1 4465 _5545 4495 I 3695 ' 3085 2605 5865 4675' 3805 3135 F 2635 yVa4. x4 # 205 6470 1 5243 #. 1•1C 3595 1 3040 0840 5455 1 4440 : 3680 3095 3 2x4 1 2 t. 0095 8320 l 6745 57,5 i 4620 = 5210 8795 7015.- [ 5710 ...E 1730 3980 il 4 24 ,#1r# 8925 11095 1 89`0 7395 1 6165 .. 5215 11730 :1s55 3 76„„1.,5:.,„. 615 i ,,,310 5010 ;2 x8i. #;1.'„,2' r 3303 7745 i 6885 t. 6035 5255 _ 4575 96(30 I 8055 6770 5725 ' 4885 6 Inds 3x6 i •71= 845 2905 1i475 r' 103&0 i 8760 7625 1673Q1 13425 11280 J.i 9595 8195 I 74+712 226 .,x.._ 1,. 15485 € 13 1 12070 10515 1!"3"1",, ";'_, 1519 "f1;,1-1,—„,'';','",',:,,;;":",,,,:„„; 00 16110 1( 13540 11450 ! 770 x 2x6 3 rr1 #2 3 10720 --`7...'---....---- _ : #.. `- 1 . 1 j S I Y "-"7-1----2-",,r/,1",;":'2", 3 � All i. 4---2,16 � 111°214025• . l 9 � _ '... 7 s See footnotes httnc•/Auw�n4 cirnnfrt; nnm/nrnriiinto/r.nnnartnrA/wrxx1-concrr action-cnnnectors/technical-notes/Dost-caoacitl es 3/E 11/18/2016 Post Capacities!Simpson Strong-Tie Post Allowable Compression loads for Hem-Fir Page 74 of 129 Lumber Perp to Compression Capacity Parallel to Crai•n Pc(100) Compression Capacity Parallel to Grain Pc(160j Framing Grain Nominal Top Plate Helghl(it) SIMPSON p Plate k12�x11it Ott Size Grade pb 8 9 10" 11 12 8 1U i 11 12 ( ...�.� 17 0 riS,W. 2x4 �: �12.� 2630 ?11� 1, t0 1435 ,. 1 1e�0 1455 1230 1 438 ' ? . 2335 4570 "' v '"(Y '£Is Ilw gti2ttS�S}m 3+4 �2 a5 6 2c�41 R v2rtrorl n; z , • �2 5260 1 42 0 X4}0 2875220422°;; 5485 4355 I '0 1 7925 2460 c mil 1x4 2 •+s`'.3 t 6140 -935 ., 5 1 3 5 2830 6400 5085 1 1125 t 3415 ' 2820 �`' -4 6380 7890 6340 ' 5155 4310 '133„6,. _ 62.`30 1 6535' 6405 i 4390 5690 4 - >r 8305 10525 ; A455 6215 5750 } 4850 .109/0 8715 l n 5 I 5855 1 492o w 5n 11810 104 0 8365 9085 l 7735 k 0}75 5395 4580 4 -- -", 61"3340 7950 58130 5905 5065_ 4. 1 3x6 �2 §�70 13250 11470 98do � 844U" 7270 .15640 �_� 128 � 107#0 8935 __ 7635' Walt {$g 2f� : 2 1 5085 15900 13765 1w a 725 18765 15470 12850 1««0$790 }9j1..._,—,,,,,,,i,„----; {5 ,t y.»....3 2x6 G.:-«- ,_M....1_ 136f' _ 4`3 . 1,51q8 g390 :5150 .j �• 61 13745 3 2x6 11-�� 10023 spa) : 206455 1. 51 1 J f,,,,,;,;,,, 2x6 �2 233 5 05 5 _.. 231' 20260 17455 r, �.ti ' 85 t5 5 183 85 2 See footnotes Post Tension Loac Tasles Post Tension Loads for Douglas-Fir-Larch Allowable Tension Lumber ,ww�.. w_. Framing . . 1 Pt, (160) Bolt Diameter(in.) Size Grade __ 0 '/z a ala ......._.___w .. .�m .m. �_. �..w 2x4 #2 7245 6080 5820 5305 5045 3x4 2 12075 10 35 9705 8840 8410 = # 1 � 90 ' 121 as 15610 1 Dasa 4-Inch 4X4 :22 169014190 1358512375 11775Wali 3-2x4 21735 18240 17465 15915 15135 4x6 #2 23025 19325 18500 16855 16035 4x8 i #2 28015 123510 22510 20510 19510 4x10 #2 32765 27500 26330 23990 22815 2x6 #2 9865 8860 8635 8185 7960 i 3x6 #2 16445 14765 14390 13640 13270 2-2x6 #2 19735 17715 17265 16370 15920 Wall 4x6 #2 23025 26670 20145 19100 18575 3-2x6 ; #2 29600 26575 25900 24555 23885 6x6 # 32670 29330 28585 27100 26360 6x8 #1 44555 39995 38980 36955 35945 See footnotes httnc•//wle,wctrnnnticrnm/nrrvtiictc/cmnoctnrc/wmrl-rnnctn ntiroi ennnartnraHxhniral-nntas/cost-canacaties 4/E 11/18/2016 Post Capacities I Simpson Strong-Tie Post Tension Loads for Southern Pine Page 75 of 29 Allowable Tension i Lumber jyt SIMPSON rain Bolt Diameter (frt Size Grade .._., /r .,v i {i�ttosaiwRww.stronotie.comil e-z e r t , f 1 3x 7 #2 ,., 2,,,V.',0 t" 7595, ., i I 65.8 ry , 2-2x4 #2 i s(, I 91 10) i 4-Inch 4x4 '�� . .,510630 t a. 9215 . Wail 2x4 #2 17oro 14275 1 13670 i 12455 11845 4X6 i #2 f) 155710 1 141850 1 530 1 12870 4x8 I #2 2233u 18740 1/ 1 1635U 5°= J _._. . 4x10 I #2 ,73,0u....., � t¢ =, 18015 , 6 #2 7�.x 0 7; ;�; 6930 6570 689 3x6.. 2 1320 _1 1185011550 X 0 5 , .1 5 2-2x6 #2 15840 14220 13860 13140 12780 6-inch , . .,. ___ Nall 4x6 #2 18 489 165(.„40; 16170 15330 14919 I 3-2x6 #2 23760 21330 1 20790 19710 19170 6x6 E #143560 1 39105 38115 l 36135 35145 • 6x8.. l #1.. . 59400...1..._..53325 ..__._ 1975 ....49275 47925 See footnotes Post Tension Loads for Spruce-Pine-Fir Lumber Allowable Tension Framing Ott (160) K_ ,. ,, bolt Diameter(in.) Size Grade __ — /z l ���_,. 2x4 ; #1! 2 5670 1 4760 4555 4150 3950 3x4 I #1/#2 9450 1 7930 7595 6920 ' 6580 4 4-Inch 2-2x41#1/#2 11340 I 9520 ' 9115 8305 7900 Wall 4x4 #1/# 13230 11105 1 10630 9685 9215 3 2x4 1 #1/#2._ 17010 14275 1 13670 12455 11845 4-2x4 1 #1;#2 22680., 19035 1 18225 16605 15795 • 2x6 i #1i#2 7_72 } 1 6930 1 6755 1 6405 6230 ' 3x6. 1 #1/#2 12870P 11555 11260 10675 118385 1 6-inch 2-2x6 #1/#2 15445 13865 i 13515 12810 1 12460 Wall a W ,_ ti.... .x 1 3-2x6 #1/#2 23165 5 207 9 i 20270 19215 18690 4-2x6 #1/#2 ;28315 1 2512.E 241:5 23490 22845 See footnotes httos://www.stronatie.com/products/connectors/wood-construction-connectors/technical-notes/Dost-capacities 511 Page 76 of 129 Gient: West Hills Development I'rojece River Terrace East I'coi.5: 16-TI 00 Dale: 3/6/2013 YSP FROELICH ENGINEERS, Cont. Spread Footing Design At Building Ext. Wall (II to joist) Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 832 Roof SL(psf) 25 Ftg Dead Load(plf) 435 Floor DL(psf) 27 Live Load(plf) 320 Floor LL(psf) 40 Snow Load(plf) 300 Wall DL(psf) 10 IBC Eq.16-9(plf) 1587 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1567 IBC Eq.16-11(plf) 1732 Tributary Areas Total bearing(psf) 866 Roof Trib(ft) 12 Allowable brg(psf) 2500 Floor trib(ft) 8 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1.5 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 832 Footing width(in.) 24 Live Load(plf) 320 Footing depth(in.) 12 Snow Load(plf) 300 Cont. Spread Footing Design At Building Ext. Wall (I_to joist) Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1138 Roof SL(psf) 25 Ftg Dead Load(plf) 435 Floor DL(psf) 27 Live Load(plf) 960 Floor LL(psf) 40 Snow Load(plf) 125 Wall DL(psf) 10 IBC Eq.16-9(plf) 2533 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1698 IBC Eq.16-11 (plf) 2387 Tributary Areas Total bearing(psf) 1267 Roof Trib(ft) 5 Allowable brg(psf) 2500 Floor trib(ft) 24 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1.5 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1138 Footing width(in.) 24 Live Load(plf) 960 2098 < 2 5 0 0i f = 2 X 6@ 16 Footing depth(in.) 12 Snow Load(plf) 125 p Cont. Spread Footing Design At Int. Brg Wall - Basement Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1795 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 1800 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 3885 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 2335 IBCEq.16-11(plf) 3623 3595*10/8 (increase for Tributary Areas Total bearing(psf) 1943 Roof Trib(ft) 10 Allowable brg(psf) 2500 dbl span joists) = 4494 Floor trib(ft) 45 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1795 Footing width(in.) 24 Live Load(plf) 1800 Footing depth(in.) 12 Snow Load(plf) 250 4494 < 5000 p 1 f = (2) 2 X 6@ 16 Page 77 of 129 Cont. Spread Footing Design At Int. Brg Wall - 1st Floor _Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1390 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 1200 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 2880 2 5 9 0*10/8 (increase f o r Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1930 db 1 span njoists) = 3238 IBC Eq.16-11 (plf) 2768 p Tributary Areas Total bearing(psf) 1440 Roof Trib(ft) 10 Allowable brg(psf) 2500 Floor trib(ft) 30 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1390 Footing width(in.) 24 Live Load(plf) 1200 3238 < 5000 p l f = (2) 2X6@16 Footing depth(in.) 12 Snow Load(plf) 250 Cont. Spread Footing Design At Int. Brg Wall - 2nd Floor Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 885 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 600 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 1775 1523*10/8 (increase for Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1425 dbl joists)S IBC Eq.16-11 (plf) 1813span ] ) = 1903 Tributary Areas Total bearing(psf) 906 Roof Trib(ft) 10 Allowable brg(psf) 2500 Floor trib(ft) 15 Footing OK Wall height(ft) 30 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 0 Dead Load(plf) 885 1903 < 2500 p 1 f = 2X6@16 Footing width(in.) 24 Live Load(plf) 600 2500 p 1 f = (2) 2X4@16 Footing depth(in.) 12 Snow Load(plf) 250 Page 78 of 129 • Cont. Spread Footing Design At Party Wall Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1030 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 880 Floor LL(psf) 40 Snow Load(plf) 50 Wall DL(psf) 10 IBC Eq.16-9(plf) 2200 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1370 1910*10/8 (increase f o r IBC Eq.16-11 (plf) 2018 dbl span joists) = 2388 Tributary Areas Total bearing(psf) 1100 Roof Trib(ft) 2 Allowable brg(psf) 2500 Floor trib(ft) 22 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 0 Dead Load(plf) 1030 2388 < 2500 p l f = db 1 2 X 4@ 16 Footing width(in.) 24 Live Load(plf) 880 Footing depth(in.) 12 Snow Load(plf) 50 Cont. Spread Footing Design At Corridor Wall Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1345 Roof SL(psf) 25 . Ftg Dead Load(plf) 290 Floor DL(psf) 55 Live Load(plf) 900 Floor LL(psf) 100 Snow Load(plf) 625 Wall DL(psf) 10 IBC Eq.16-9(plf) 2535 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 2260 IBC Eq.16-11 (plf) 2779 Tributary Areas Total bearing(psf) 1389 Roof Trib(ft) 25 Allowable brg(psf) 2500 Floor trib(ft) 9 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1345 Footing width(in.) 24 Live Load(plf) 900 2489 < 2500 p 1 f = 2 X 6@ 16 Footing depth(in.) 12 Snow Load(plf) 625 " - - Page /9 of-1-23 COMPANY PROJECT 1WoodWorks Feb.15,2018 14:04 Ext HF 9ft 2x6 at 16(2500p/f TL 35psf W).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location Ift' .r ,iitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 2500 plf Lateral Wind Full Area 35.00(16.0") psf Self-weight Dead Axial UDL 12 pit Lateral Reactions(lbs): 9' D o -o 9' Onf act o red: Dead Wind 210 210 Factored: L->R 126 126 Load comb #2 #2 Ext Wall Stud Lumber Stud,Hem-Fir,No.2,2x6(1-1/2"x5-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 16.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.5 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 23 Fv' = 240 psi fv/Fv' = 0.10 Bending(+) fb = 450 Fb' = 2033 psi fb/Fb' = 0.22 Axial fc - 406 Fc' = 771 psi fc/Fc' = 0.53 Axial Bearing fc = 406 Fc* = 1287 psi . fc/Fc* = 0.32 Support Bearing fcp = 406 Fcp = 405 psi fcp/Fcp = 1.00 Combined (axial compression - side load bendimg) Eq.3.9-3 = 0.58 Live Defl'n 0.15 = L/706 0.90 = L/120 in 0.17 Total Defl'n 0.15 = L/706 0.90 - L/120 in 0.17 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.389 - - - - - 3 E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max = 126, V design = 126 lbs Bending(+): LC #2 = .6D+.6W, M = 294 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 3349 lbs Combined : LC #3 = D+.6W; (1 - fc/FcE) = 0.59 Support : LC #1 = D only; R = 3349 lbs, Cap = 3341, Lb = 1.50", Cb - 1.00 D=dead L=live S=snow W=wind I-impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 27.0e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT page 80 ot 129 • } - WOO WO r S ; ;g;;,u sir �s.>Ci.> t��..� Feb.15,2018 14:05 let HF 9ft 2x4 al 12(17000 TL Spsf W)wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 1700 plf Lateral Wind Full Area 5.00(12.0") psf Self-weight Dead Axial UDL 10 elf • Lateral Reactions(lbs): 9 03 A o' 9, Unfactored: Dead Wind 23 23 Factored: L->R 14 14 Load comb #2 #2 Int Wall Stud Lumber Stud,Hem-Fir,No.2,2x4(1-1/2"x3-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 12.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.3 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 4 Fv' - 240 psi fv/Fv' = 0.02 Bending(+) fb = 119 Fb' = 2346 psi fb/Fb' = 0.05 Axial fc = 326 Fc' = 376 psi fc/Fc' = 0.87 Axial Bearing fc = 326 Fc* = 1345 psi fc/Fc* = 0.24 Support Bearing fcp = 326 Fcp = 405 psi fcp/Fcp = 0.80 Combined (axial compression - side load bendixg) Eq.3.9-3 = 0.95 Live Defl'n 0.06 = <L/999 0.90 = L/120 in 0.07 Total Defl'n 0.06 = <1/999 0.90 = L/120 in 0.07 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.500 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.280 1.150 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.163 - - - - - 3 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.150 - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max - 14, V design = 14 lbs Bending(+): LC #2 = .6D+.6W, M = 30 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 1710 lbs Combined : LC #3 = D+.6W; (1 - fc/FcE) = 0.20 Support : LC #1 = D only; R = 1710 lbs, Cap - 2126, Lb = 1.50", Cb = 1.00 D=dead L=Live S-snow W=wind I=impact Lr-roof live Lc-concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 6.97e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. • COMPANY PROJECT 'age o WoodWorks® „ Feb.15.2018 15:49 Int HF 9ft 2x4 0115(1250pIf IL 5psf W).wwc Design Check Calculation Sheet Wood Works Sizer 11.1 Loads: Load Type Distribution Location [ft) Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 1250 plf Lateral Wind Full Area 5.00(16.0") psf Self-weight Dead Axial UDL 7 plf Lateral Reactions(lbs): 9 WD O 0 0 9' Unf actored: Dead Wind 30 30 Factored: L->R 18 18 Load comb 42 #2 Int Wall Stud Lumber Stud,Hem-Fir,No.2,2x4(1-1/2"x3-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 16.0"cic;Total length:9';Clear span:8'-10.5";volume=0.3 cuft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0 Eft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 5 Fv' = 240 psi fv/Fv' = 0.02 Bending(+) fb = 159 Fb' = 2346 psi fb/Fb' = 0.07 Axial fc = 319 Fc' - 376 psi fc/Fc' = 0.85 Axial Bearing fc = 319 Fc* = 1345 psi fc/Fc* = 0.24 Support Bearin, fcp = 319 Fcp = 405 psi fcp/Fcp = 0.79 Combined (a,ial compression side load bending) Eq.3.9-3 = 0.99 Live Dell's 0.08 = <1/999 0.90 = L/120 in 0.09 Total Defl'n 0.08 - <L/999 0.90 = L/120 in 0.09 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 11s'+ 850 1.60 1.00 1.00 1.000 1.500 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.280 1.150 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.163 - - - - - 3 E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emirs' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.150 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max = 18, V design = 18 lbs Bending(+): LC #2 = .6D+.6W, M = 41 lbs-ft Deflection: LC #2 = .6D+.6'd (live) LC #2 = .6D+.6W (total) Axial LC #1 = D only, P = 1676 lbs Combined : LC #3 - 0+.60; (1 - fc/FcE) = 0.21 Support : LC #1 = D only; R - 1676 lbs, Cap = 2126, Lb = 1.50", Cb = 1.00 D=dead L=live S-snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 6.97e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.Wood Works analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT Page 82 of 72-9 T R WoodWorks° 0.s040.40. Feb-15,2018 14:15 Int HF Oft 2s6 at 12(3300p1f TL 5psf W).wwc NN ,w:tts:flfi. „,Zitp1 f_rti'A' Design Check Calculation Sheet Woodworks Sizer 11.1 Loads: Load Type Distribution Location [ft) Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 3300 plf Lateral Wind Full Area 5.00(12.0") psf Self-weight Dead Axial UDL 15 plf Lateral Reactions(lbs): 9 cn p 0 o' 9' UnLa etc red: Dead Wind 23 23 Factored: L->R 14 14 Load comb #2 42 Ext Wall Stud Lumber Stud,Hem-Fir,No.2,2x6(1-1/2"x5-112") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 12.0"c/c;Total length:9';Clear span:8'-10.5';volume=0.5 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 2 Fv' = 240 psi fv/Fv' = 0.01 Bending(*) fb = 48 Fb' = 2033 psi fb/Fb' = 0.02 Axial fc = 402 Fc' = 771 psi fc/Fc' = 0.52 Axial Bearing fc = 402 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearinc fcp - 402 Fcp = 405 psi fcp/Fcp = 0.99 Combined (atrial compression - side load bendi g) Eq.3.9-3 = 0.24 Live Dell's 0.02 = <1/999 0.90 - L/120 in 0.02 Total Defl'n 0.02 = <L/999 0.90 = L/120 in 0.02 • Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fe'comb 1300 1.60 - - 0.389 - - - - - 3 E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Ervin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 i.. CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max = 14, V design = 14 lbs Bending(+): LC 42 = .6D+.6W, M = 30 lbs-ft Deflection: LC #2 - .6D+.6W (live) LC #2 - .6D+.6W (total) Axial : LC #1 = D only, P = 3315 lbs Combined . LC #3 - D+.6W; (1 - fc/FcE) = 0.60 Support : LC #1 = D only; R = 3315 lbs, Cap = 3341, Lb = 1.50", Cb = 1.00 D=dead L-live S-snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 27.0e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection - 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.Wood Works analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. FROELICH CONSULTING ENGINEERS INC., Client: Project: Project#: By: Footings Maximum Allowable Required Required Dimensions Used Dimensions Footing Bearing Footing Size Load P gano"' Area r ( tot) W(ft) L(ft) W (ft) L(ft) D(in) Weight Pressure 18"x cont x10" 3500 2500 1.40 1.18 1.18 1.5 1 10 188 2458 24"x cont x 10" 14000 2500 5.60 2.37 2.37 2 3 10 750 2458 36"x cont x 10" 27000 2500 10.80 3.29 3.29 3 4 10 1500 2375 2'-6"x 2'-6"x 10" 15500 2500 6.20W 2.49 2.49 2.5 2.667 10 833' 2450 3'-0" x 3'-0"x 12" 21000 2500 8.40 2.90 2.90 3 3 12 1350 2483 3'-6" x 3'-6"x 12" 27000 2500 10.80 3.29 3.29 3.5 3.333 12 1750 2465 4'-0"x 4'-0"x 12" 37000 2500 14.80 3.85 3.85 4 4 12 2400 2463 4'-6 x 4'-6"x 12" 52000 2500 20.80 4.56 4.56 4.5 5 12 3375 2461 Required Area: =(Ptot/galtow)os Bearing Pressure =(Piot+W1k)/(W*L) —(Ptot+Wfd/(W*L*3.1415/4) -o w CD 0Q co 0 N Client: Project: Proj.#: Date: By: FROELICH ENGINEER 5 1 ASCE 7-05 Earthquake Load Cs Factor Importance Factor(Seismic) I = 1.0 Basic Seismic Force Resisting System Light Framed Wood Shear Wall R = 6.5 Design Spectral - 'Response Acceleration Seismic Design Coefficient Development Latitude Longitude Sas SO1 Category Cs 45.559 -122.853 0.726 0.403 D 0.1117 - Information in table was obtained from USGS website - Conservatively design all structures in all developments for the Cs design value specified below Controlling Cs Value= 0.1117 Use Cs = 0.12 for Design in all Developments I Equations: I Cs = SRS*I/R Response Coefficient :fl co C. b Paoe 85 of 129 Client: Project: River Terrace ; Project#: 16-T 100 Date: 11/18/2016 By: YSP FROELICH ENGINEERS A WIND FORCE CALCULATION- MWFRS Side-Side Event ASCE 7-10 SECTION 27-2 METHOD 2-ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 120 mph Wind Directionality Factor Kd= 0.85 Table 26.6-1 Wind Importance Factor IW= 1.00 Wind Exposure Category= B Building Parameters Horizontal Dimension of Bldg B= 54 ft Measured Normal to wind direction Horizontal Dimension of Bldg L= 146 ft Measured Parallel to wind direction Mean Roof Height h = 40 ft Highest Roof Level h„= 40 ft Approximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 Output- Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid Topographic Effects Input 'fill Height H = 0 ft Figure 26.8-1. Length of 1/2 hill height Lf, = 1 ft Figure 26.8-1 Dist. From Crest to Bldg. x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 Horizontal Attenuation Factor m = 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor K1/(H/.Lh)= 1 Figure 26.8-1 Output -Topographic Multipliers K1 = 0.00 K2 = 1.00 K3 = 1.00 Topographic Factor Kzt= 1.00 Page 86 of 129 • Gust Effects Input Integral Length Scale Factors = 320 ft Table 26.9-1 Integral Length ,Seale nominal height of boundary zg= 1200 Table 26.9-1 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 Power Law Exponent E = 0.33 - Table 26.9-1 Minimum Height zm;,, = 30 ft Table 26.9-1 Integral Length Scale of Turbulence L,= 310 ft Output-Background Response Factor Q= 0.88 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.85 Pressure Coefficients Input Length to Width Ratio L/B= 2.70 Height to Length Ratio h/L= 0.27 Roof Pitch= 9 : 12 = 36.87 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients C, (see below) Figure 27.4-1 Direction Cp Height(ft) Kh qZ(psf) Velocity Windward 0.8 15 0.57 18.0 Pressure Leeward -0.27 20 0.62 19.6 Output qZ Roof Windward 0.40 25 0.67 20.8 Roof Leeward -0.6 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 h- 40 0.76 23.8 qh hparapet= 0 0.57 18.0 qh Page 87 of 129 Design Wind Pressui es p (psi) - ( Ci„= (-) 16 psf(8psf for roof) nein per 27.1.5 Internal Pressure Coefficient GCp; = -0.18 Figure 26.1 1-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+L«, RWW+RLW Height 15 16.6 -1.2 17.8 ft 20 17.6 -1.2 18.8 25 18.5 -1.2 19.7 30 19.3 -1.2 20.5 40 20.6 -1.2 21.8 50 21.6 -1.2 22.8 60 22.6 -1.2 23.8 70 23.4 -1.2 24.6 80 24.1 -1.2 25.3 90 24.8 -1.2 26.0 100 25.4 -1.2 26.6 120 26.6 -1.2 27.8 40 20.6 -1.2 7.5 -4.7 21.8 12.20 Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures p (psf)-GC0=(+) 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCp; = 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 8.0 -9.8 17.8 ft 20 9.1 -9.8 18.8 25 9.9 -9.8 19.7 30 10.7 -9.8 20.5 40 12.0 -9.8 21.8 50 13.0 -9.8 22.8 60 14.0 -9.8 23.8 70 14.8 -9.8 24.6 80 15.5 -9.8 25.3 90 16.2 -9.8 26.0 100 16.8 -9.8 26.6 120 18.0 -9.8 27.8 40 12.0 -9.8 2.3 -9.9 21.8 12.20 Parapet 0 27.0 -18.0 45.0 Design Load Case I Controls - By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures {ASI:)) p (psf)-GC.pi=(-) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.l Internal Pressure Coefficient GCp;= -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - 1 Windward 1 Leeward 1 Roof WW 1 Roof LW 1 WW+LWI RWW+RLW J Page 88 of 129 • Height 15 9.9 -0.7 10.7 ft 20 10.6 -0.7 11.3 25 11.1 -0.7 11.8 30 11.6 -0.7 12.3 40 12.3 -0.7 13.1 50 13.0 -0.7 13.7 60 13.5 -0.7 14.3 70 14.0 -0.7 14.7 80 14.5 -0.7 15.2 90 14.9 -0.7 15.6 100 15.3 -0.7 16.0 120 15.9 -0.7 16.7 40 12.3 -0.7 4.5 -2.8 13.1 7.32 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASD) 0 (psf)-GC -=(+) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp1= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.8 -5.9 10.7 ft 20 5.4 -5.9 11.3 25 6.0 -5.9 11.8 30 6.4 -5.9 12.3 40 7.2 -5.9 13.1 50 7.8 -5.9 13.7 60 8.4 -5.9 14.3 70 8.9 -5.9 14.7 80 9.3 -5.9 15.2 90 9.7 -5.9 15.6 100 10.1 -5.9 16.0 120 10.8 -5.9 16.7 40 7.2 -5.9 1.4 -5.9 13.1 7.32 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 • Page 89 of 129 Client: Project: River Terrace Project tt: 16-T100 Date: 11/16/2016 By: YSP FROELICH ENSI N EERSE WIND FORCE CALCULATION- MWFRS Front-Back Event ASCE 7-10 SECTION 27-2 METHOD 2 -ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 122 mph Wind Directionality Factor Kd= 0.85 Table 26.6-1 Wind Importance Factor IW= 1.00 Wind Exposure Category= B Built ine Parameters Horizontal Dimension of Bldg B = 146 ft Measured Normal to wind direction Horizontal Dimension of Bldg L= 54 ft Measured Parallel to wind direction Mean Roof Height h= 40 ft Highest Roof Level fin= 40 ft Approximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 Output-Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 26.8-1 Length of 1/2 hill height Lh= 1 ft Figure 26.8-1 Dist. From Crest to Bldg. x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 Horizontal Attenuation Factor m= 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor K l/(H/Lh)= 1 Figure 26.8-1 Output-Topographic Multipliers K1 = 0.00 K2= 1.00 K3= 1.00 Topographic Factor Ict= 1.00 Paae 90 of 129 • Gust Effects Input Integral Length Scale Factors = 320 ft Table 26.9-I Integral Length Scale nominal height of boundary zg = 1200 Table 26.9-1 3-s gust exponent cc= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 Power Law Exponent e = 0.33 Table 26.9-1 Minimum Height za,;,,= 30 ft Table 26.9-1 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.83 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.82 Pressure Coefficients Input Length to Width Ratio LIB= 0.37 Height to Length Ratio h/L= 0.74 Roof Pitch= 10 : 12 = 39.81 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients Cp (see below) Figure 27.4-1 Direction C, Height(ft) Kh q2(psf) Velocity Windward 0.8 15 0.57 18.6 Pressure Leeward -0.50 20 0.62 20.2 Output ch Roof Windward -0.20 25 0.67 21.5 Roof Leeward -0.6 30 0.70 22.7 40 0.76 24.6 50 0.81 26.3 60 0.85 27.7 70 0.89 28.9 80 0.93 30.0 90 0.96 31.1 100 0.99 32.0 120 1.04 33.7 h= 40 0.76 24.6 qh hparapet= 0 0.57 18.6 qh Page 91 of 129 Design Wind Pressures p (psf) - GC'1,;_ (-} 16 psf(8psf for roof) rain per 27.1.5 Internal Pressure Coefficient GCp; _ -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 16.7 -5.7 22.4 ft 20 17.8 -5.7 23.5 25 18.6 -5.7 - 24.3 30 19.4 -5.7 25.1 40 20.7 -5.7 26.4 50 21.7 -5.7 27.5 60 22.7 -5.7 28.4 70 23.5 -5.7 29.2 80 24.2 -5.7 29.9 90 24.9 -5.7 30.6 100 25.5 -5.7 31.2 120 26.7 -5.7 32.4 40 20.7 -5.7 0.2 -5.0 26.4 8.00 Parapet 0 27.9 -18.6 46.5 Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 WDesin Wind Pressures p (psf) -CCj,;=(+) 16 psf(8psf for roof) min per 27.1.5 Internal Pressure Coefficient GCp;= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+L,W RWW+RLW Height 15 7.8 -14.6 22.4 ft 20 8.9 -14.6 23.5 25 9.8 -14.6 24.3 30 10.5 -14.6 25.1 40 11.8 -14.6 26.4 50 12.9 -14.6 27.5 60 13.8 -14.6 28.4 70 14.6 -14.6 29.2 80 15.4 -14.6 29.9 90 16.0 -14.6 30.6 100 16.7 -14.6 31.2 120 17.8 -14.6 32.4 40 11.8 -14.6 -5.4 -10.6 26.4 8.00 Parapet 0 27.9 -18.6 46.5 Design Load Case I Controls - By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures (ASD) p (psi)-C.CR,;=(-) 16 psf(8psf for roof) min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp; = -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- 1 Windward I Leeward 1 Roof WW i Roof LW J WW+LW} RWW+RLW J Page 92 of 129 • Height 15 10.0 -3.4 13.4 ft 20 10.7 -3.4 14.1 25 11.2 -3.4 14.6 30 11.6 -3.4 15.1 40 12.4 -3.4 15.8 50 13.0 -3.4 16.5 60 13.6 -3.4 17.0 70 14.1 -3.4 17.5 80 14.5 -3.4 18.0 90 14.9 -3.4 18.4 100 15.3 -3.4 18.7 120 16.0 -3.4 19.4 40 12.4 -3.4 0.1 -3.0 15.8 4.80 Parapet 0 16.8 -11.2 27.9 Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures (ASD) p (psf)-GCS =(Al 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GC/A = 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.7 -8.7 13.4 ft 20 5.3 -8.7 14.1 25 5.9 -8.7 14.6 30 6.3 -8.7 15.1 40 7.1 -8.7 15.8 50 7.7 -8.7 16.5 60 8.3 -8.7 17.0 70 8.8 -8.7 17.5 80 9.2 -8.7 18.0 90 9.6 -8.7 18.4 100 10.0 -8.7 18.7 120 10.7 -8.7 19.4 40 7.1 -8.7 -3.3 -6.4 15.8 4.80 Parapet 0 16.8 -11.2 27.9 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Page 93 of 129 + COMPANY PROJECT r rfgkS 1 i od g("�,� 12 y, 0..J r k s -eb,5,2017 11:13 Front Back E'se,nt-Beam Ccorept web V "+ SOFT WARE 100 WOO i•;FS,Gni Design Check Calculation Sheet ,loosiWorks Sim-10 42 'Loads: Load Type Distribution Pat- Location tft M:,gnitudc Vr:i ;T Start Ped 7., ,',0d Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): • t....._ ,,,,g_xf__ -00'.15•.®.... "3"."' - t I'r #+ " y 82'•05" tAn 007-I' t oatro :d. Dead 50factored 16 ei 0 „ 50 9°4 -}� .f n.... 1R otal 5. Beating: ,,RR V (t;�ry 14 Capacity t'y;6✓ .� ./ r Beam 691 tl ✓ ,,w691 Support 701 f4[�6° 1781 O spry r'` r 781 An 1/Des Y '^' r ' 3 0.02 0.04 y 0.02 gar i:rk 0.02. 0.06 } : 0.02 loud cam* II 61 61 Length 0.50+'. 0.50" 0.50' Min c q'e1 0.50" 0.50' + 0.50' Cb 1.00 1.75 Cb min 1.00 1.75T0 ,„" ... 1.00 Cb ui:poxt 1.18 1.10 1.18 %' nal j 625 525._ 625 `MinxOkum ooheatingonglhsot(irxp used;1P2'fOf old suppotss and Or hat ult+atirrsuppOnsOA f j} wR6•-_w}:. Glulam-Unbal.,West Species,24F-1.8E WS,2-118"x6" 4 tamioalions,2-1/8'maximum width, Supports:All.Timber-son Beam,D>Fir-L No.2 Total le0gtte 00'•1:.5';volume= 7.7 cult; Lateral support:top=a1 supports,bottom=al supports; WARNING:Member length exceeds typical stock length of 60.0[111 Analysis vs.Allowable Stress and Deflection:rainy NDS 2012: rr riOtr Ana ysio Vida,. Design tala €1 O 611 Ana u • ai :.kir.n 1 linear iv- 3 kv = 230 pal t rry - 0.ut Bending ft) fb= 124 Os' = 803 pal fb/fb' - 0.15 bending(-I fb= 190 lb' = 771 psi fb/Ft.. - 0.2S Dead Deli's 0.47 -01/999 Live Defl'n negligible Total Defi'n ,, 0.71 - L/710 2.10= L/240 A _ n.34 Additional Data: FACTORS, F/E(psi)CD CM Ct CL CV Cfu Cr Cfct Notes Cn'Cvr LC0 Fv' 265 0.90 1.00 1.00 1.00 1.00 1.00 1 Pb'+ 2400 0.90 1.00 1.00 0.372 1.0011 1.00 1.00 1.00 1.00 - 1 1450 0.90 1..00 1.00 0.591 1.000 1.00 1.011 1.00 1.00 1 Fop' 650 - 1.00 1.00 - •• 1.00 - E' 1.8 million 1.0D 1.00 - Emmy' 0.05 million 1.00 1.00 .. - 1.00 - .. 1 CRITICAL LOAD COMBINATIONS: Shear I LC a1 = D only, V 26, V design = 25 lbs Bending/I): LC 01 = 0 only, M= 132 lbs-ft Bending(-I, t.0 81 = D only, 0= 202 lbs-ft Deflection: LC 81 n D only (total) D=dead L=live S=snow N=wind 1-impact Lr=roof live Lc=concentrated E-eart uua ke All Lc's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012 CALCULATIONS: Deflection: EI= 60.0e06 lb-in2 "Live"deflection=Deflection from all non-dead loads (live, wind, silo.I nnw...f Total Deflection= 1.50(Dead Load Deflection) + Live Load Deflection. Lateral stability (+): Lu= 42'-0.50" Le=77'-4.25" RB . 35.12 Lateral stability (-): Lu= 42'-0.50" Le=77'-4.25" RB= 35.12 Design Notes: I.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactures in accordance with ANSI A100.1-2007 4 Grades with equal bending capacity In the top and bottom edges 01 the beam cross-section are recommended for continuous beams. 5,GLULAM:nod=actual breadth x actual depth: 8.Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3. 7 GLULAM:bearing length based on smaller of Fcppension),Fcp(comp'n). Page 94 of 129 " COMPANY p PROJECT , - WO 0 d.0 rk s -c,a.e.2017 19.13 Side Side Evert-Beam fcncept,w.vk; Design Check Calculation Sheet Wood'.Vrdcs Si000 1042 Loads: .cad Type .o•at ion (fti t .1-.,;e •.-,• .. Y 01<10 Otui Stat. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): y - _ --55•-2. _I 1 ,,. -" 25,0 5" 1 301" - . ---„,_.-55- .5, Un@' _oared:. Dead 10 17 17 i.0 Factored: "1 7 -n Total ID Bearing: Capacity if91. 10:1. 1299 1209 Support 1111 ,o... 701 791 Aral/ilea Beam 0.01 ,1.0, : c,G2 "•el ` Sup rt 0.01 x0,02 0,02 0.01 1 Loadncomb. 01 F:1 11 1 Length 0.50' 0.50' 0.50' 0.50' ?tinreq'd 0.50' 0.504 (. Ccdn `. 20' Cl, .01. '1 0175. 2.10 ,00 1e ' Cbb aup:.ort. 1.19 1.19 1,10 1.19 Coo Asp 625 625 6.75 05 -M neadm bearing nth aethr j used:1112'tot and suppans and 1127 tat ieftel x cutlptlts Glulam-Unbal.,West Species,24F-1.8E WS,2-118"x6" 4 laminations,2-119-maximum width, Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:55'-2:0";volume= 4.9 Cu ft; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: Crites/oh. Anal,yala Valle Design Valise 5511 Analyeleff1tsfqn sear re= 2 0< ' 0 psi : - 51 _ 3esdinglti b 40 E - 1290 po.: F0 :_ 0.04 liendingr-i 8b= 51 k'h' " 1.098 psi r:b;€0' ... 0.::0 Dead Def1'a 0.07 =<LJ998 Lion Defl'n negligible Tet. be_l'n. 0.40 " L. 799 -1.25» L1240 .in 0,09 Additional Data: FACTORS: P/clpoli:o CM Ct ::L CV Cf:: Cr Cfrt Notes X'o'Cvr LC8 265 0.90 1.00 1.00 - •• - 1-00 1.00 1.00 5'+ 2409 0.90 1.00 1.00 11.599 1,000 1.00 11.00 1.00 1.50 - 1450 0.30 1.00 1,00 0.941 1:000 1.00 1,00 1.00 1.00 _ rep' 950 - 1.00 1,00 - _. 7.,Gig .. .. roi.lkion 1.00 1.00 - 1.00 - ... Iloiny' 0.85 million 1.00 1...00 - , ,. 1.0=:' -. - CRITICAL LOAD COMBINATIONS: :ear : LC#1 = 0 only, V= 15, V design" 14 150 0s0dir5(+i0 LC 01 =D only, 0= 51 lbs-ft Bending(-1: LC 01 - only, 41= 01 lie-ft Deflection. LC 51 0 only itot:all 0=dead L=live 3 w W--wind 0-impact Lr=roof live L.,, coocentrated E-eas'%:q,.takc All LC'a are listed in rhe Analysis eutpo_ Load combinations: ASCE 7-10 / IBC 2012 CALCULATIONS: Deflection: Si = 09.0006 15-4:12 "Live" deflection= Deflection from all non-dead loads flive, wind, ,,.1.12.01 Total Deflection" 1.10iDead Load Deflection; I Live Load Deflection. Lateral stability 511: La 21:'-0.50" Le= 46'-0.94" 06 21.10 Lateral stability (-): Lu- 251-0.50" Le= 4e'-0.94" RG= 27.10 Design Notes: 1.WoodWorks analysis and design are in accordance with the CC International Building Code(IBC 20/2),the Nelonal Design Specification(NDS 2012),and NDS Design Supplement. 1 Please verify that the default deflection limits are appropriate for your application. 3.:Cistern design values are for materials conforming to ANSI 117-2010 and manufactured in acootVance with ANSI Al 501-2007 4.Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams, 5.GLULAM:bed=aduat breadth x actual depth. 0.Glulam Beams shalt be laterally supported according to the provisions of NDS Clause 3.3.3. 7..GLULAM:bearing length based on smaller of Fcp(tensicn),FCp(comp'n). • Page 95 of 129 Client: Arbor r: Proeject:: River Terrace 12 Plex DH Project#: 16-T100 > DatFeb-17 By: YSP FROELICH ENGINE-E R.S d Lateral Design - Wood Walls Shear Walls SEISMIC: Site Classification: D Occupancy Category: II Occupancy Importance Factor I = 1.0 System Over-strength Factor Light Frame Walls with Shear Panels I W= I 3.0 Response Modifiaction Coefficient: Light Frame Walls with Shear Panels R= I 6.5 MCE Short Period Pectal Response accel.: Ss= 1.088 MCE 1-second period spectral response accel.: S1 = 0.590 5%damped short period spectral response accel.: Sps= 0.726 5%damped 1-second period spectral response accel.: Sp1 = 0.500 Seismic Design Category(ASCE Table 11.6-1 & 11.6-2): D Seimic Response Coefficient(ASCE 7-05) EQ 12.8-2 Cs=Sps/(R/I) Cs= 0.112 Controls Eq 12.8-3(max)-in addition to sections 12.8.2, 12.8.2.1, Table 12.8-1 Cs=Sp,/(T(R/I)) Ta=Cehnx Ta= 0.365 Ct= 0.02 Cu= 1.4 from table 12.8-1 h„= 48 T= 0.511 )er12.8.2 x= 0.75 Cs= 0.211 Eq 12.8-5(min) Cs=0.01 Cs= 0.010 Eq 12.8-5(min) Cs=0.044Sps1 Cs= 0.032 Cs= 0.112 Allowable Stress Design: 0.7E Cs= 0.078 Page 96 of 129 Seismic Dead Loads Note: Dead Load includes 10psf for interior walls/partitions Level diaph2area Dead Load Int.Wall Trib Wall Int. Wall Wall Wt Ext.Wall DECK SQ F f [Total DL (ft ) (psf) L(ft) height(ft) Wt(psf) (psf) L(ft) 10 PSF !I (Itis) Roof 4150 18 300 5 10 10 300 2160 106860 4tn Floor 4150 27 300 10 10 10 300 2160 174210 3rd Floor 4150 27 300 10 10 10 300 2160 174210 2"°Floor - 3000 27 200 10 10 10 200 1080 122080 Total= 577360 Seismic Base Shear(Working stress Design) V=Cs(DL) V= 45141 lbs Vertical Distribuition Level Weight Height Wt" Ht vv2t"c)!Total V Pi=(Wt(Ht)/Total)`V Roof 106860 40 4274400 0.301 45141 - 13583 =VN 41"Floor 174210 30 5226300 0.368 45141 16607 =V4th 3"'Floor 174210 20 3484200 0.245 45141 11072 =V3td 2th'Floor 122080 10 1220800 0.086 45141 3879 =V2nd Total= 14205700 1.000 V,r= 13583 lbs V4th= 16607 lbs (Allowable Stress Design Loads) V3r0= 11072 lbs V2nd= 3879 lbs 45141 Diaphragm Loads Level _ wpx(itbs) V;(lbs) V;(lbs) w;(lbs) FDX=((lV;)/(Zw,))"wDX Roof 106860 13583 13583 106860 13583 =F,f 4`'Floor 174210 16607 30190 281070 18712 =F4th 361 Floor 174210 11072 41261 455280 15788 =F3rd 2""Floor 122080 3879 45141 577360 9545 = F2nd Min Diaphragm Loads SDS= 0.726 Fpmin-0.2*Sps*Wpx*I*0.7 Level Fpmin Roof 10861 V,t= 13583 lbs 41"Floor 17707 V4th= 18712 lbs 3`d Floor 17707 V3rd= 17707 lbs 2"4 Floor, 12408 V2nd= 12408 lbs (Allowable Stress Design Loads) Page 97 of 129 Client: Arbor Project: River Terrace - 12 Plex DH Project#: 16-T100 0.4-, Date: 2/8/17 , By: YSP FROELICH ENGINEERS SEISMIC LOAD Story Distribution: Areas: Roof: 13583 lbs Roof: 4146 sq ft 4th: 16607 lbs 4th: 4146 sq ft 3rd: 11072 lbs 3rd: 4146 sq ft 2nd: 3879 lbs 2nd: 3000 sq ft WIND LOAD Story Distribution: Level Windward Leeward Total Front-Back Event Roof: 109 36 145 4th: 114 38- 152 Redundancy Factor, p 3rd: 107 36 142 2nd: 100 33 133 Side-Side Event Event Per ASCE7-10, p = 1.0 because of large amount of shearwalls and Roof: 110 37 146 because no wall takes more than 33%of the story shear. 4th: 96 32 128 3rd: 88 29 117 2nd: 81 27 108 Front/Back Event SEISMIC WIND Trib Area Load Trib Width Windward Leeward Combined? Load 'Design Load Load Typ- LEVEL GRID s (sq ft) (Ibs) (ft) (lbs) (lbs) (YIN) (lbs) (lbs) Roof AA 830 2719 16 1740 580 Y 2320 2719 S AC 2590 8485 50 5438 1813 Y 7250 8485 S AE 726 2378 14 1523 508 Y 2030 2378 S 4th AA 830 3325 16 1824 608 Y 2432 3325 S AC 2590 10375 50 5700 1900 Y 7600 10375 S AE 726 2908 14 1596 532 Y 2128 2908 S 3rd AA 830 2216 16 1704 568 Y 2272 2272 S AC 2590 6916 50 5325 1775 Y 7100 7100 S AE 726 1939 14 1491 497 Y 1988 1988 S 2nd AA 600 776 16 1596 532 Y 2128 776 S AC 1875 2425 50 4988 1663 Y 6650 2425 S AE 525 679 14 1397 466 Y 1862 679 S Side/Side Event SEISMIC WIND Trib Area Load Trib Width Windward Leeward Combined? Load Design Load Load Typ LEVEL GRID % (lbs) % (55) (ibs) (lbs) (YIN) (lbs)__ (lbs) Roof 11 16 2173 15 903 301 Y 1205 2173 S 12 34 4618 35 2108 703 Y 2811 4618 S 13 34 4618 35 2108 703 Y 2811 4618 S 14 16 2173 15 903 301 Y 1205 2173 S Page 98 of 1 4th 11 16 I 2657 15 1 792 264 Y 1056 2657 S 12 34 5646 35 1848 616 Y 2464 5646 S 13 34 5646 35 1848 616 Y 2464 5646 S 14 16 2657 15 792 264 Y 1056 2657 S I 3rd 11 16 _ 1771 15 724 241 Y 965 1771 S 12 34 3764 35 1689 563 Y 2252 3764 S 13 34 3764 35 1689 563 Y 2252 3764 I S 14 16 1771 15 724 241 Y 965 1771 S 2nd 11 16 621 15 668 223 N I 668 668 W 12 34 1319 35 1559 520 N 1559 1559 W 13 34 1319 35 1559 520 II N 1559 1559 W 14 16 621 15 668 223 N 668 668 W Client: Arbor • Project: River Terrace- 12 Plex DH +=(ytt^-V4-u3=V2)/Li ., =Leng€h of individual wall Project#: 16-T100 :.t=Total length of wall along gridline Date: 8-Feb La=Length of tuontent mm in wall(if different than wall length) `" By: YSP air \Vail Height the to roof t4 Height of wall flr3-ilr4 .11s :(l<rflhr,J ir'1+f3+ham+3)4-r:4(lr4+/i_-42. '_). r b.3-1r2-11-1'202)i- : F R O E�L�I C H 13 Height of wall flr2-11r3 irr a 2=HaTht of wall fir'-11r2ENGINEERS € V'rf Hori::ce l force at gridline from roof _ L. g lir, =[J ((rrr)+F'1{orf)+r3(h•.rF'2Ialtix— V 4 Iloti_mttal force at gtrdlinoftot 4'tlt Lr Shear Walls & Holdowns v3 Horftomal force at gridline from 3'tlr V2=Horizontal force at gridline from 2'flr r Roof to 4th Floor r unit shear inv;all IVitrd:Mr..-0.6[(RrrihxRoojDL)*(1fpji x Ifci(DL. ) (Frei aloorD, 1::. Ms= Overturn at?lumen when upper wall Is Roof DL: 18sf p stacked above lower wall Seismic:Mr=(O.b-.?450[(Rtt•lbxlCaoJrJL) +illrih>:liattUL ) -r:%riL•<tic Floor DL: 27 psf Mu-Overturning moment when upper wall ic. Wall DL: 10 psf tot stacked or does sot ex is t Knit),Wttitt Drib=Roof.wail.and floor tfu-Mr Me--dir Stud Spacing: 16 inches oc triburaty area,used for calculating dead load zzt- - La r.c. L. Mx"K eel sting moment due to dead load Tu=Tension if walls not stacked Mr S: t 2 Ts Tension if walls stacked Wind :C= I,. 12 12 [(Rzrib x RaofDL)+(Wail, II ofilX., (Ftrir' lrt>>DL r] S Sind spacing Ms 11 CsCompressionatends,ifEsailsstacked Seismic- —i1+a. 4Ss)[(Rtiib:KRooJDL)-(t{'.rtaxWohp ) rPrr;n I T.: 12 Wall L Lt La ha Vd v Mu Ririb Wtrib Ftrlb Mr Cs Tu Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (Ib) (plf) (Ib*ft) (ft) (ft) (ft) (Ib*ft) (lbs) (Ib) Nailing Event Front/Back Event AA 17 17 17 9 2719 160 24472 8 9 0 16851 1611 448 --- 6/12 S AC 23 69 23 9 8485 123 25455 8 9 0 30845 1279 -234 --- 6/12 S AE 13 29 13 9 2378 82 9596 8 9 0 9854 910 -20 --- 6/12 S Side/Side Event 11 3 18.5 3 9 2173 176 3172 12 9 0 686 1282 828 --- 6/12 S 3.5 18.5 3.5 9 2173 151 3700 12 9 0 934 1282 790 --- 6/12 S 4 18.5 4 9 2173 132 4229 12 9 0 1220 1282 752 --- 6/12 S 12 36 36 36 9 4618 128 41563 12 9 0 98819 1379 -1590 --- 6/12 S 13 15 58 15 9 4618 80 10749 12 9 0 17156 941 -427 --- 6/12 S 14 3 18.5 3 9 2173 176 3172 12 9 0 686 1282 828 --- 6/12 S 3.5 18.5 3.5 9 2173 151 3700 12 9 0 934 1282 790 --- 6/12 S 4 18.5 4 9 2173 132 4229 12 9 0 1220 1282 752 --- 6/12 S -D v Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 o 240 350 450 700 900 psf u) 0 Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 NJ 335 490 630 980 1260 psf Client: Arbor Project: River Terrace-12 PIex I ,°=(1rf+V4-V3-V 1 Li Length of individual.wallProject#: 16-T100 r=Total length of wall along g idline .,f''; a Length of moment alar in wall(if .4 Date: 8-Feb ifferent than wall length) By: YSP trt=Wait Height Ilrx to roof 1. t4=Height of wall flr3-1114 ALs=[Fri(ktr/4-M-h..3Alta,--11.3-41::.-2)--F3(F3+h2-1) i^_(122)]x Li F R O E L I C H t3 Height of wall flr2 flt3 -.=Height of wall tl[1 ftr2 E N G I N E E R S R 'rf=-Horizontal force at gridline front roof L 4-H«uor.iat force at gridline hnm4"Or Mu=[Fkf(ltti+F"4(iiii+r'3(ht)+Y2(m)]. Lr Shear Walls & Holdowris '3=Horizontal force at gridline from 3'eflr '2=Honzcnual force at midline Cent'2'd dr L- th rd • Unit shear in wall Wind:Mr=0.6[(RtribxRoofDL)+t(i'tribxrraflDL)-(FtribaFloorDL)[ 4 Floor to 3 Floor is Overturning moment when upper wall is L- . = Roof DL: 18 psf .tackedabovelow�erwall Seismic :Mr=(0.6-.14Se;)[(RtribaRoofDL)+(WhitxWaliDL1+(FiribaF;oarDLij_- f u=Overturning moment when upper wall ii Floor DL: 27 psf tot stacked or does not exist Wall DL: 10 psf 'tub,Ntrib.Fttib=Roof,wall,and tloor Tu_.1-/u-Mr Ts_dls-Mr fibular:area,used for calculatingdead load Stud Spacing: 16 inches oc ir=Resisting moment due tode-ad load a.=Tension if walls not stacked 1-is :5;'2 Tension if walls stacked (Find:C=— _[(Rtrib a RoofDL)-(If'mib uff'ailDL)+(Drib x FloorDL 1] L.=Sad spacing - S.'Z, s=Contpressionat ends,ifwalls stacked Seismic:Cs=`1L<Lc+ 12 (1+0.14Sa)[(Rtrib..RoojDL) (WW ib a Wall DL)-(Firth xFioar'DL) - Wall L Lt La hrf h4 Vd V4 v Ms Mu Raab Wtrib Ftr;b Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid _ (ft) (ft) (ft) (ft) (ft) (lbs) (lbs) (0) (Ib"ft) (Ib"ft) (ft) (ft) (ft) (Ib*ft) (lbs) (lbs) (lbs) Nailing Event Front/Back Event AA 17 17 17 9 9 2719 3325 356 81585 54394 8 18 12 46664 5275 455 2054 MST37 3/12 S AC 23 69 23 9 9 8485 10375 273 84862 56579 8 18 6 64063 4047 -325 904 MST37 4/12 S AE 13 29 13 9 9 2378 2908 182 31990 21328 8 18 12 27288 2937 -458 362 --- 6/12 S Side/Side Event 11 3 18.5 3 9 9 2173 2657 392 10574 7050 12 18 4 1130 3895 1973 2802 MST48 3/12 S 3.5 18.5 3.5 9 9 2173 2657 336 12336 8225 12 18 4 1538 3895 1910 2701 MST48 4/12 S 4 18.5 4 9 9 2173 2657 294 14098 9400 12 18 4 2009 3895 1848 2600 MST48 4/12 S 12 36 36 36 9 9 4618 5646 285 138562 92381 12 18 4 162760 4219 -1955 -3545 --- 4/12 S 13 15 58 15 9 9 4618 5646 177 35835 23892 12 18 4 28257 2759 -291 -718 --- 6/12 S 14 3 18.5 3 9 9 2173 2657 392 10574 7050 12 18 4 1130 3895 1973 2802 MST48 3/12 S 3.5 18.5 3.5 9 9 2173 2657 336 12336 8225 12 18 4 1538 3895 1910 2701 MST48 4/12 S 4 18.5 4 9 9 2173 2657 294 14098 9400 12 18 4 2009 3895 1848 2600 MST48 4/12 S Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 240 350 450 700 900 psf Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 335 490 630 980 1260 psf 5 ni m o P S. N (0 • , , 4 Client: Arbor Project: 44, ,,,, ,,,, ,,,,,,,, , Project#: River Terrace-12 Plex DN_ o=(i'rJ' i'4+v a'f)'L Length of iadtvidual wail 16-T100 -t=Total length of wall along gridline La=Length of moment meat mm in wall(if Date: 8-Feb different than wall length) By: YSP rrf=',t all Height nix to tool h4=Height of wall tlr3-flr4 A4x=[4'"rfllvf+h$ h3:1t2+})w Pt{Fr1+h3r IL?.<')+I'i(;v+iQ+l)+V?(;>v);x L 43=Height of wall ilr2-flr3 LI F R O E_L I C H 12=Height of wall tlt1-112 E N G t N E C R a a Vrf=Horizontal force at gridline Sem roof V4=Horizontal force at gridline from 4'fit Mu [Iii(110+f 4(hi)+1".2(h1)+V2(10.1,< Shear Walls & Holdowns V3=Horizontal force or gridline from 3'=tlr Lr V2=Horizontal force at gridline from 2"Cr 3rd Floor TO 2"d Floor Vait shearin wall Wind:fir=O.6f(Rtr•ib x RoofDL)=(N'rrib a Wnl/UL)+(i-trib x bloorVL 1]�' Ms Overturning moment when upper wail is ' Roof DL: 18 psf stacked above lower wall Seismic:.lfr="0. -- t 6-.l4 S )[(Rarib x RooiD1)>(Wirth x t!id(DL 1';Falb t F1corDL )]--- \bt=Ovrmssn no tnon cut alien upper wall is _ Floor DL: 27 psf or otack-osI urbannotessi Wall DL: 10 psf !tirib,Wit:t,,Firib=Root;wail.nod lieu; >-t„-fir f p nbutais area.ased for cal-.aiat mg dead load T�_ T.-=��-Mr Stud Spacing: 16 inches oc La tiG=Resisting moment due to dead load To=Tension if it ells not stacked fs=T..nsion it ,tacked iraid:C=4La-S 3[1Rp.ib x Roo/DL)a(limb.<lIlo.DL 1+(urns finnwPL)1 4=Stu 1 p cin ` s S.' Ca=C mpre,e,on m end>,if wall:stacked Seismic:Cs=—+—(1+0.14SmkLitrib-RooJDL)-(li'irib xlruirDL)--t Fri b.-FloorDL iJ L 1-' Wall L Lt La hrt h4 h3 Vrt V4 V3 v Ms Mu Rtrlb Wtrib FIN, Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (ft) (lbs) (lbs) (lbs) (pill (Ib*ft) (Ib'ft) (ft) (ft) (ft) (Ib'ft) (lbs) (lbs) (lbs) Nailing Event Front/Back Event AA 17 17 17 99 9 2719 3325 2272 489 162471 74842 8 29 24 77918 10352 -181 4974 Shth(2)Sides HDQ8 4/12 S — AC 23 69 23 9 9 9 8485 10375 7100 _ 376 169027 77879 8 27 24 139989 8129 -2700 1263 MST37 3/12 S AE 13 29 13 9 9 9 2378 2908 1988 251 63709 29349 8 27 24 44722 5681 -1183 1460 HTT5/MST37 6/12 S Side/Side Event - 11 3 18.5 3 9 9 9 2173 2657 1771 535 20992 9635 12 27 8 1574 7513 2687 5489 Shth(2)Sides MSTC48B3 4/12 S 3.5 18.5 3.5 9 9 9 2173 2657 1771 459 24491 11241 12 27 8 2143 7513 2599 5300 Shth(2)Sides MSTC66B3 4/12 S 4 18.5 4 9 9 9 2173 2657 1771 401 27990 12847 12 27 8 2799 7513 2512 5112 MSTC66B3 3/12 S 12 36 36 36 9 9 9 4618 5646 3764 390 275086 126260 12 _27 8 226702 8157 -2790 1344 MST37 3/12 S 13 15 58 15 9 9 9 4618 5646 3764 242 _71143 32653 12 27 8 39358 5258 -447 2119 MST37 4/12 S 14 3 18.5 3 9 9 9 2173 2657 1771 535 20992 9635 12 27 8 1574 7513 2687 6473 Shth(2)Sides HDQ8 4/12 S 3.5 18.5 3.5 9 9 9 2173 2657 1771 459 24491 11241 12 27 8 2143 7513 2599 6385 Shth(2)Sides HDQ8 4/12 S 4 18.5 4 9 9 9 2173 2657 1771 401 27990 12847 12 27 8 2799 7513 2512 6298 HDQ8 3/12 S Seismic 6/12 4/12 3/12 2)4/L2)3/12 ' 240 350 450 700 900 psf Wind 6/12 4/12 3/12 2)4/1:2)3/12 335 490 630 980 1260 psf 2) to m 0 0 fV CD , , „, . ..v. .. 4 Client: Arbor Project: RiverTerrace-12 Plex DH :._Lcugth of individual wall YSP t=Total length of wall along gridline Date: 8-Feb illierent than wall lentil a=Length of moment ann to wall(if By: , ) rf----Wall Height firc to roof v=(Vrf-,-V4,,,l3-,-V 2):'Lt Project#: 315.[Vrf(Mf*I4*113+1r2+.3)+V40-1±h3ish2+2).V.X 113*Ir2+1)+1,202)1,.-11 • _, -•1 #1' 4=Height of wall fft3-1114 ' Li =Height of wall t1r2-flr3 FROELICH ,2=Height of wall fIrl-flr2 ENGINEERS 'rf=Ho,izontal force at gridline from root . L Me,- :jI ,-V34hV ( H '4=Horizontal force at gridline from 4'fir -(H (rM=1"4041il-,- 2aix—1t Shear Walls & Holdowns '3=Horizontal force at gridline front 3''fir2=Hori:ontal force at- ridline front 2'fir '.Unit shear in wall Wind Mr=0.6[(Rtrib x RoajDL ti) 1VIrib xtValIDL 1+(Firth x FloorDL 2nd Floor To Foundation is=Overturning moment when upper wall is , L' tacked above lower wall Seismic:Mr*--10.6-.14 So*R/rib x Rog/DL)..-(Firth xlVailDL)*1 Fmib x FloorDL>]— (a Roof DL: 18 psf2 ---=Oserniming moment when upper W all is Floor DL: 27 psf or stacked or does not esiat Wall DL: 10 psf •[lib,Wtrib.Futb=Root'.wall.and floor Ta II,-Mr r,=(it-If ribruar;atm used for calctilatiaz dead load LCI L Stud Spacing: 16 inches oc tr=rt,isonf moment due to dead load u=Tension li walls not sraaedifs S;2 , Wind:C'=.—+—[Rolb,RovfDL)+ 0(( 15z froliDL 1-tf'rib x FloorDL)1 e,=Tension if walls stacked 1 12 -• =S[lid spacing Ms S 's=Compression at rads.if wails stacked Seismic'Cs=—«—,--(1=0 14 S)[(Ririb i BoafDL)..(44a.iii s VailDL to(Foot•FiooraL)1 L 12 Wall L Lt La hrf h4 h3 h2 Vrf V4 V3 V2 V Ms Mu Rob Wtrib Ftrib Mr Cs Tu Ts Comments lioldowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (ft) (ft) (lbs) (Ibs) (lbs) (lbs) (pit) (IbIt) (1b*ft) (ft) (ft) (ft) (Iblt) fibs) (lbs) (lbs) Nailing Event Front/Back Event AA 14 14 13.5 9 9 9 9 0 0 0 776 55 6983 6983 8 36 36 72087 1601 -4823 -4823 --- 6/12 S AC 23 69 22.5 9 9 9 9 8485 10375 7100 2425 411 262833 85152 8 36 36 194561 12765 -4863 3034 HTT5 3/12 S AE 13 29 12.5 9 9 9 9 2378 2908 1988 679 274 99058 32088 9 36 37 64051 9042 -2557 2800 HTT5 4/12 S Side/Side Event 31 2 14.8 1.5 9 9 9 7 2173 2657 1771 668 863 25348 6900 12 34 12 877 17545 4016 9504 Shth(2)Sides HD12 3/12 S 3.5 14.8 3 9 9 9 9 2173 2657 1771 668 634 47810 15526 12 36 12 2747 16598 4260 9560 Shth(2)Sides HD12 4/12 S 10 14.8 9.5 9 9 9 9 2173 2657 1771 668 493 136600 44360 12 36 12 22426 15040 2309 7421 Shth(2)Sides HD12 4/12 S 32 7.5 44 7 9 9 9 9 4618 5646 3764 1559 354 73195 23914 12 36 12 12615 11117 1614 8654 HD12 3/12 S 33 5 50 4.5 9 9 9 9 4618 5646 3764 1559 312 42941 14029 12 36 12 5607 10203 1872 8296 HD12 4/12 S 7 sl, (0 CD 0 NJ 0 'V CO • Page 103 of 129 Client: Arbor Project: River Terrace- 12 Plex DH Project#: 16-T100 Date: 2/8 By: YSP FROELICH E N S I N E E R S 1 Diaphragm Design LOADS Front Back Side- Side Level Seismic Wind Design Load Seis/Wind Seismic Wind Design Load Seis/Wind Roof 46 145 145 S 206 134 206 S 4th Floor 59 116 116 S 284 114 284 S 3rd Floor 42 56 56 S 268 85 268 S SHEAR & NAILING Level Grids Wtab (ft) V(lbs) Ldiaphragm (ft) n (plf) Nails Spacing Blocking Front Back Event Roof AA-AC 40 5800 66 88 8d 6/12 no AC-AE 40 5800 66 -, 88 8d 6/12 no 4th AA-AC 40 4640 66 70 10d 6/12 no AC-AE 40 4640 66 70 10d 6/12 no 3rd AA-AC 40 2231 66 34 10d 6/12 no AC-AE 40 2231 66 34 10d 6/12 no Side- Side Event Roof Grid 11-12 35 7203 150 48 8d 6/12 no 4th Grid 11-13 35 9923 150 66 10d 6/12 no 3rd Grid 11-14 35 9390 150 63 10d 6/12 no Page 104 of 129 • Chord Ties (Dbl Top Plate Splice) Level Grid L (ft) Depth (ft) Ws/w (pif) T=W*L`/(8`D) # 16d nails or Strap Front-Back Event Roof AA-AC 40 66 145 439 3 MST27 AC-AE 40 66 145 439 3 MST27 4th AA-AC 40 30 116 773 5 MST27 AC-AE 40 30 116 773 5 MST27 3rd AA-AC 40 30 56 372 2 MST27 AC-AE 40 30 56 372 2 MST27 Side- Side Event Roof Grid 11-12 35 80 206 394 2 LSTA 12 4th Grid 11-12 35 80 284 543 3 LSTA 12 3rd Grid 11-12 35 80j 268 514 3 LSTA 12 Use (14) 16d nails at all double top plate splices or a Simpson MST27 strap.. Page 105 of 129 Client: Project: Proj.#: ,.. Date: By: FROELICH ENGIN EERSI ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 5/8"ASTM A36 Threaded Rod for Simpson HTT16 / HTT22 I HTT4/HTTS 1 Number of Anchors s, = 0 in. (see Fig 0.625 Inch Diameter s2 = 0 RD.5.2e1) 8 Inch Embed 2500 psi Concrete Footing NoesiQf= 5.250 (kips)Allowable Design Tension D.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF = 0.75 D.4-General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor W for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor W= 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing Q) = 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summa cl)Nn Wind ONn Seismic Summary From Below ONn SW= 1.0 SF= 0.75 eDNs= 9.83 9.83 7.37 kips tGNcb= 19.01 19.01 14.26 kips ONpn= 121.71 121.71 91.28 kips ONIsb = 198,14 198.14 148.60 kips 11)Nsb9 = 198.14 198.14 148.60 kips Minimum (1)Nn = 9.83 9.83 7.37 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 ONAilowable= 7.02 5.27 kips Ndesign < iiDNAllowable 5.250 < 5.27 Therefore, Anchor Design OK Page 106 of 129 • • Client: Project: • 44111 Proj.#: E- '41111( Date: By: • FROELICH ENGINEERSt ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations 115.1 -Steel Strength for Anchor in Tension do (Anchor Diameter) = 0.625 inches n = 1 #of anchors nt= 11 Number of Threads per inch A3e= 0.23 in.2-(effective cross-sectional area of anchor) luta= 58.00 ksi- (tensile strength of anchor material (not the yield strength) not exceed 1.9fy or 125 ksi) N„= 13.11 ksi -(Eqn_ 0-3) �` Anchor 4)= 0.75 Nsa = nA ,J -uta 0:1)Nsa= 9,83 kips 13.5.2-Concrete Breakout Strength of Anchor in Tension s, = 0 inches (see Fig. RD.5.2.1) sZ= 0 inches (see Fig. RD.5.2.1) Anc(for single anchor) = 578 in.2(see Figure RD.5.2.1) A„,(for group'anchor)= 782 in.2 (see Figure RD.5.2.1) AN„(for single anchor) = 576 in.2(see Figure RD.5.2.1) AN„ (for group anchor) = 576 in.2 (see Figure RD.5.2.1) 4fec.N= 1 Eqn. D-9 (Anchors not Eccentrically Loaded, 4i, = 1.0) 4)ea N= 1.000 Eqn. D-10 &D-11 4.3c,N= 1 (1.25 for cast anchors. 1.4 for post-installed) Section D.5.2.6 k,= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 fc= 2500 psi 1.5*her= 12 het= 8 inches 0.7+0.3(Cminl1.5het) = 1.000 c 12 in -distance to closest edge of concrete _+CPIf min= Ar c6 = k c ?f.._r Nb= 27.15 kips -(Eqn. D-7) No= 27.15 kips -(Eqn. D-4) A Nog= 0.00 kips -(Eqn. 0-5) chg `_ ec,NV/ed,,'4'l�l cp �• b Reinforcing 4)= 0.70 eco dnNcbg= 19.01 kips Page 107 of 129 Client: Project: Proj. r Date: By: FROELICH EN 6l NEERS4 ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) 05.3 -Single Anchor Pullout- headed or embedded nut Use Plate Washer? Y Plate Washer Width = 3 inches Nut diameter= 0.985 inches Nut or Plate Washer Bearing Area= 9.000 in2 Abrg = 8.693 in2-bearing area of embedded anchors head or nut tPc,p = 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value (AGI 318-05 Section D.5.3.6) n= 1 #ofanchors Na= 173 87 (kips) Eqn. D-15 p -4r38 'e Np„= 173,87 (kips) Eqn. D-14 1Vp —1'1. rye yF Reinforcing 't = 0.70 OHP„= 121.71 kips D5.4 -Anchor side-faced blowout -Headed Anchor (Required only if anchor is near an edge where ca, < Anchor is not close to Edge of Concrete. Analysis below NOT Required. Ca2= 5 distance to perp edge of concrete from anchor cat = 12 in -distance to closest edge of concrete Nsb= 283.05 (kips) Eqn. D-15 Factored N$b= 100.25 Reinforcing 4)= 0.70 / WNse= 198.14 kips Nth = 160 Cal A brg of C s = 0 in -spacing of outer anchors in group VVV Ngbg= 283.05 (kips) Eqn. D-16 ( Reinforcing 0 = 0.70 N = S +�Nsbg= 198.14 kips sbg + 6csb a1 Pace 108 of 129 • Client: �� Project: FROF11C11 Proj.a: (ON Hi NG Byte: ENGINEERS JINC ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 718"ASTM A36 Threaded Rod for Simpson HDQ8 1 Number of Anchors si = 0 in. (see Fig 0.875 Inch Diameter e2 = 0 RD 5.2 1) 8 Inch Embed 2500 psi Concrete Footing Noesign = 9.230 (kips) Allowable Design Tension D.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y Sp= 0.75 D.4 -General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor 1) for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor Q = 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing c = 0.70 If rebar is present around anchor: 0.75 Otherwise, 0/0 Summa 4)Nn Wind ONn Seismic Summary From Below crINn Sw= 1.0 SF= 0.75 tDN,= 20.09 20.09 15.06 cl)Ncb= 25.87 25.87 19.40 kips Npn 117.59 117.59 88.19 kips cl)N3b= 227.21 227.21 170.41 kips mNsbg= 227.21 227.21 170.41 kips Minimum ON,= 20.09 20.09 15.06 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 ONAuowabie= 14.35 10.76 kips Ndesign QNAlowabis 9.230 < 10.76 Therefore, Anchor Design OK ... ........_. .. Page 109 of 129 ' ' Client: S Project: FRO ' $ Tiau Date: ENGEERS INC ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations VISSMINORM D.55.1 -Steel Strength for Anchor in Tension do(Anchor Diameter) = 0.875 inches n = 1 #of anchors nt= 9 Number of Threads per inch ASe = 0.46 in.2-(effective cross-sectional area of anchor) foto= 58.00 ksi-(tensile strength of anchor material (not the yield strength) not exceed 1.9fy or 125 ksi) Nsa= 26.78 ksi -(Eqn. 0-3) Anchor 1) = 0,75 Ar tANsa= 20.09 kips . .-.s,a YZse futa D-5.2 -Concrete Breakout Strer►rlth of Anchor in Tension Si = 0 inches (see Fig. RD.5.2.1) S2 = 0 inches (see Fig. RD.5.2.1) A„,(for single anchor) = 784 in.2(see Figure RD.5.2.1) A„c(for group anchor) = NA in.2(see Figure RD.5.2.1) ANc,(for single anchor)= 576 in.2 (see Figure RD.5.2.1) ANco (for group anchor) = 576 in.2(see Figure RD.5.2.1) 4 ec,N= 1 Eqn. D-9 (Anchors not Eccentrically Loaded, LiJi = 1.0) Ped.N = 1.000 Eqn. D-10 & D-11 Uric,N = 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 k,= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 f,c= 2500 psi 1 5`he,= 12 her= 8 inches 0.7+0.3(cm,„11.5het) = 1.050 c,nin= 14 in -distance to closest edge of concrete ;,-^� I � e / , h 1 5 Nt,= 27.15 kips -(Eqn. D-7) ' NOb= 36.96 kips -(Eqn. D-4) r z ;c N,a,g= 0.00 kips- (Eqn. D-5) Lv cbg ' Vec,NVed,N Y'cp,NNb Reinforcing 1)= 0.70 co tpNot,g= 25.87 kips Page 110 of 129 • Fio 5 Client: s ff ? Project: . Proj.g: D11SOITING Bvte: ENGINEERS NC ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) 05.3 -Single Anchor Pullout-headed or embedded nut Use Plate Washer? Y Plate Washer Width = 3 inches Nut diameter= 1.438 inches Nut or Plate Washer Bearing Area= 9.000 in2 Abrg = 8.399 in2 -bearing area of embedded anchors head or nut Wc.P = 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value(ACI 318-05 Section D.5.3.6) n = 1 #of anchors Np 167.98 (kips) Eqn. 0-15 t — tfir}> ?..f� c Npa = 167.98 (kips) Eqn. D-14N�� —Lnlr f. Reinforcing {p= 0.70 (4)Npr,= 117.59 kips D5.4 -Anchor side-faced blowout -Headed Anchor (Required only if anchor is near an edge where ca, < 0.4haf; Anchor is not close to Edge of Concrete. Analysis below NOT Required. cat= 14 distance to perp edge of concrete from anchor Cay = 14 in -distance to closest edge of concrete Nsb = 324.59 (kips) Eqn. D-15 Factored N3b= 162.29 Reinforcing rD = 0.727.2 = /1 r mN3b= 227.21 kips N ;b — 1 b0 cal •` brg tf c S= 0 in -spacing of outer anchors in group N,bg= 324.59 (kips) Eqn. D-16 Reinforcing = 0.70 N = 1 + A' ON=pg= 227,21 kips sbg sb tical P Igo 111 01 129 Client: .,., Project: FROELICH Proi.#: O Byte: EHCPIEERS INC ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) 1"ASTM A36 Threaded Rod for Simpson HhDQ11 /HHDQI4I HD14A IHDU11 Anchor description: IHDU14 1 Number of Anchors Si = 0 in. (see Fig 1.000 inch Diameter s2= 0 RD.5.2.1) 12 Inch Embed 2500 psi Concrete Footing NDesran = 13.710 (kips)Allowable Design Tension D.3- General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 D.4 - General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor rp = 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation fess than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing <D= 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summa a oNn wind 111)Nn Seismic Summary From Below cDNn Sw= 1.0 SF=0.75 cpN$= 26.35 26.35 19.76 kips Oict,= 29.64 29.64 22.23 cl)Np,= 115.01 115.01 86.26 kips ct)I\I,b= 288.91 288.91 216.68 kips 4)Nsbg = 288.91 288.91 216.68 kips Minimum ON,= 26.35 26.35 19.76 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 ONAlicewabte- 18.82 14.12 kips Ndesrgn 0NAitowsbte 13.710 < 14.12 Therefore, Anchor Design OK Page 112 of 129 • Client: } y Project: FRORICH : Proj.#: N IIM Dote: By: ENGNEERS,INC ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations 0.5.1 -Steel Strength for Anchor in Tension do (Anchor Diameter)= 1.000 inches n= 1 #of anchors nt= 8 Number of Threads per inch Ase= 0.61 in.2- (effective cross-sectional area of anchor) fats = 58.00 ksi - (tensile strength of anchor material (not the yield strength) not exceed 19f or 125 ksi) N55= 35.13 ksi- (Eqn. D-3) �" Anchor CD = 0.75 1 Y sa = fAal se✓ alta G>N„= 26.35 kips D.5.2 -Concrete Breakout Strength of Anchor In Tension s; = 0 inches(see Fig. RD.5.2.1) s2= 0 inches (see Fig. RD.5.2.1) An,(for single anchor)= 1100 in.2(see Figure RD.5.2.1) Ani(for group anchor) = NA in.2 (see Figure RD.5.2.1) ANw(for single anchor)= 1296 in.2 (see Figure RD.5.2.1) ANCO (for group anchor) = 1296 in.2 (see Figure RD.5.2.1) N= Eqn. D-9 (Anchors not Eccentrically Loaded, LP-1 = 1.0) fed,N= 1.000 Eqn. D-10 &D-11 41c N= 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 = 24 (24 for cast anchors, 17 for post-installed) Section D.5,2.2 fc= 2500 psi 1.5-The= 18 het= 12 inches 0.7+0.3(Cm;n11.5het) = 1.000 cm,n = 18 in -distance to closest edge of concrete �-a = J AI {? 4 5 Nb= 49.88 kips- (Eqn. D-7) Nob = 42.34 kips-(Eqn. 0-4) fQ Ncbg= 0.00 kips - (Eqn. D-5) chg — Am: c ec,<ti' td; tir7-),,v r n Reinforcing to = 0.70 ,eco ONcbg= 29.64 kips • Page 113 of 129 .. Client: . - 1 1 ly Project: Fito , coNsuatits Date: By: ENGINEERS NC ACl 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) 05.3 -Single Anchor Pullout- headed or embedded nut Use Plate Washer? Y Plate Washer Width = 3 inches Nut diameter= 1 625 inches Nut or Plate Washer Bearing Area = 9.000 in2 Abrg = 6.22 in2-bearing area of embedded anchors head or nut 11-1c,p = 1 For an anchor located in an area of concrete where no cracking at service loads is anticipated, otherwise use 1.0 value (ACI 318-05 Section D.5.3.6) n = 1 *of anchors Np = 164.30 (kips) Eqn. D-15 Np =-4-hrz8f c Np,= 164.30 (kips) Eqn. D-14 Reinforcing (t) = 0.70 0Np, = 115.01 kips D5.4 -Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where c31 < 0.4hen Anchor is not close to Edge of Concrete. Analysis below NOT Required. ca2--.: 5 distance to perp edge of concrete from anchor cal = 18 in -distance to closest edge of concrete N$b= 412.73 (kips) Eqn. 0-15 Factored N* = 412.73 Reinforcing (t)= 0.70 (t)Nsb= 288.91 kips N sb = 160 cA b„ •Nlif7C— s= 0 in -spacing of outer anchors in group Nsbg= 412.73 (kips) Eqn. D-16 1 Reinforcing ct = 0.70 N.1)g = I + S N s b CON sbg = 288.91 kips '\. 6ca, i Page 114 of 129 • Title Block Line 1 Titre: Job You canDsgnr: . changes this area using the"Settings'menu item Project Desc., and then using the'Printing& Project Notes. Title Block`selection, Title ick Line 6 ► i r :0 uta?m i : t.. ,,.,,;...ifltrt+srP' ,,Cri sept; �U'iltil ti46C,1C i , c a Cantilevered Retaining E 4ERC LC,INC..MINI 1,E9M 6.1.0009,Yer.6,t Lt0.09 n ' ' '- ,":A ,,;�,s '. ,' ,, ' . Licensee::--OE` ^CONSULTING. NGINEERS° Description: 4'-C'Wait • Criteria Soil Data Calculations per ACi 319-4a,ACI 530.08,IBC 2009, - 2,500.0 psf CBC 2010,ASCE 7.05 Retained Height - 4.00ft Ai!o:':Soil Be=ring Wail height above soil - 0,00 t Equivalent Fluid Pressure Method Slope Behind Wail = 3 00 1 Heel Active Pressure = 35.0 psi t Height of Soil over Toe = 6.03 in Toe Active Pressure = 33.0 psfrft. Water height over heel .. 0.0 ft Passive Pressure = 330.0 psi/ft Vertical component of active Soil Density,Heel = 110,00 pvof Lateral soil pressure options: Soil Density,Toe = 0 00 pcf NOT USED for Soil Pressure. F ,,tion Ccefr otNn Ftg&Soii = C 500 NOT USED for Siid ng Resistartce. NOT USED for Overturning Resistance. Soil aght.to ignore forr pasar�e pres,ure = 3 co in Surcharge Loads Lateral Load Applied to Stem _ Adjacent Footing Load Surcharge Over Neel = 50 0 psf Lateral Load = 20.0 ply Adjacent Footing Load = 0.0 lbs Used To Resist Sliding 6,Overturning ,,He ght to Top = 4 00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Haight to Bottom = 0 30 ft Eccentricity .. 0.00 in Used for Sliding&Oveitur 3int3 - _ Wall to Ftg CL Dist 0.00 ft Axial Load Applied to Stem Footing Type Line Load . . ____. . _ Base Above/Below Soil 0.0 ft Axial Dead Load = 500 0lbs at Back of Wall r. Axial Live load = 0.0 lbs Wind on Exposed Stem - 0.0 psf Poisson's Ratio - 0.300 Axial Load Eccentricity 0.0 in - Stem Construction Toot em °sign Sumnlari 3i em ox Wail Stability Ratios Design Height Above Ftg ft= 0.00 Overturning - 2.43 OK Wall Material Above`Ht' _ Concrete Sliding = 2.25 OK Thickness in= 6.00 (Vertical Component NOT Used) Rebar Size = # 4 Total Bearing Load = 1,948 lbs Reber Spacing in= 12.00 ...resultant ecc. - o.22 in Rebar Placed at = Edge Design Data - Soil Pressure @ Toe - 1.51e psf OK fbiFB+faaFa _ 0.270 Sail Pressure @ Heel - 0 psf OK Total Force @ Section lbs= 623.8 Allowable = 2,500 psf iloment._Actual ft-i= 960.0 Soil Pressure Less Thai Allowable ACI Factored = 1,818 psf Moment Allowable ftp= 3.559.5 ACI Factored Heel = 0 psf Shear...,Actual psi= 13.2 Footing Shear @Tae = 0 6 psi OK Shear Allowable psi= 67 1 Footing Shear @ Heel = 10.4 psi OK Wail Weight psf= 75,0 Allowable = 75.0 psi Rebar Depth 'd' ;n= 4.25 Sliding Calcs (Vertical Component NOT Used) Lap splice if a ve fl= 12.00 Lateral Sliding Farce = 597.0 lbs ap splice if below lr= 8.40 Hoc c embed less 100%Passive Force - - 371.3 lbs into footing in= 8.4Q less 100%Friction Force = = 978.9 lbs Concrete Data _ _._ i c psi= 2,300.E ii Added Force Req'd = 0.0 lbs OK ey psi= 60,000,3 .. for 1.5:1 Stability = 0.0 lbs OK Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 • Page '15 of 129 Title Block lame , T; „R You can changes Lois area 1~sg'u. using he"Settings'menu item and then using the'Printing& pry,ect N vL. �tiv1:.;. Tile Bock'selection. flue Bk c k Lyre r .;,..:iii, s F5 P^Ott ts4tt ti 3f?tfrrk s5s ,*rh1Erc � y �r� � ��r.i Ca ntilevered Retaining Wall � a E"l4F.CALC INC,lw+33-[>ii l,g J?r.11.111C3 W.1-.6.11.101:9 W#atlW=06OO2304 - •`.. 5.,.j'-'::''': _ ..tet; IW tga:!�` , fon .4:4 ; *I ICenise ':`.FRO ,1G 4.. .ANSUI11 G. ....GINE --; Description: 41-0'1 Wait Footing Dimensions&Strengths Footing Design Results Toe Width = 0 75 ft Toe Heel Heel Width - 2.010..... Factorad Pressure - 1.813 0 psf Total Footing Width = 2 75 Mu' Uawmni = 462 0 ft-lb Footing Thickness = 12.00 in Mu`"Dovinand 69 887 ft-lb !iii'u 'Design - 392 887 ft-Ib Key Width = 3.00 in Ae a 1-Way Shear = 0,63 1037 psi Key Depth = 3 tri in AilC vt 1 vVay She r - 75.00 75 01)psi Key Distance from Toe -- t3.uO it Tc,,e Reinforcing = 4 7 618 00 in - > SI �i d It6rcJ1600in 1`c '' 2,500 jai I'`j" - 60.000;;5 *�.. Footing Concrete Density - 150 00 Pct key Reinfcccig - None Spec`e Min.As 1-a = 0 0018 :Ditherl 1 Acceptable Sizes vac Spacings Cover @ Top 2.00 @ Btrn.= 3.00 n Tors. Nat req d,MU<S'Fr Heel Not req'd,Mu r.t S"Fr Key No key defined Summary of Overturning&Resisting Forces&Moments. OVERTURNING..... ....RESISTING Force Distance Moment Force Distance Moment Itemlbs ft, t-=b_ lbs ft ft-1b Heel Active Pressure - 437 5 1 57 729 2 Soil Over He& = 860 0 2 00 1,320.0 Surcharge over Heel = 79 5 2.50 198.9 Sloped Soil Over Heel = Toe Active Pressure = Surcharge Over Heel = 75.0 2.100 150.0 Surcharge Over Toe = A.djacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem = 509.0 1 00 500:0 Added Lateral Load = 80 0 3 SO 240 0 'Axial live Load on Stern = Load ai Stem Above Sail = Soil Over Toe = 0 38 Surcharge Over Toe = Stern Weight(s) = 300.0 1 00 300.0 Earth @ Stem Transitions = Total = 597.0 O.T.M. = 1:1c8-0 Footing Weight = 412.5 1 38 557 2 ResistingiOverturning Ratio = 2.43 Key Weignt Vertical Loads used IorSoil Pressure= 1,947.5 lbs Vert.Component = Total= 1;947.5 lbs R.M.= 2;837.2 1-A+.iat live load NOT included in total displayed,or used for overturning resistance.but is included for soil pressure calculation. Page 116 of 129 Title Block Line 1 Tile job rt • You can changes this area using the'Settings`menu itern and then using the`Printing a Project.'Votes Title Block"selection, Title Block Lute 6 3 r°' iatr :::,:,'/,' m ._ _..._.. __._,__. Fs3-'. 11 psi i t.T in(s 4. r F Succi r h' it,�, ;:i &L-:• ram er �F..x6 Cantilevered Retaining Wall EltEFtcAtC,itiC.1 20.1 I.Suati.11a0M.Yar:8.11 tour f lC4:41t OeOO23a4- , .,ii :. A , �3` „� 3t � Til : J. Title Clock tine 1 Title Page lila q1 129 You can changes this area Os- ' • using the'Settings'menu iter~ F, '?-,-.. and then using the'Printing& Project Notes Title Block'selection. Ti 8aock1_the6 P e,1 ,3.4r2513 !,50 s C1 $ V P t� f ta" { Wall 74,!:p,.2‘) ii< i 1-i in r,,;vt,,' as30,,+b`1.,i •Aii)t- ,. .,1,i&.u'.�f+oS�rdEr ka i CE1tERCALC,NC.1963-2t111,mund.6.11.10 al,Vet 6,1110 os tic.#.:?KYit-08*02SQ4,: . m ,.r ..,!. , . ,' .,- ?`4 t Liie!inseCIFROELIC :CONSULT NG NG NEM, Description: 6-0''Wain Footing Dimensions&Strengths Footing Design Results . 9 ToeWidth�J.. 1.00 ft Toe Heel . Heel Width - __ ._ELI_ Factored Pressure = 2.121 0 psf Total Footing Width _ 4 00 Mu' Upward = 867 0 ft-lb Footing Thickness = 12 00 in Mu'-Downward = 12.3 2,864 ft-lb Mu; Design = 844 2,864 ft-la Key Width 0 00 in Actual 1-Way Shear -- 5.07 21.53 psi Key Depth = 0 00 In Allow 1-Way Shear = 75 00 7500 psi Key Distancefrom Toe 0.00`t1„ Toe Reinforcing = 4 7�'� : fit;in rc = 2 500 tis F'/ = 60,000 00 psi Heel Reinforcing = 4 ,015.00 in Footing Concrete Density = 150 00 pcf Key Reinforcing = None Sped Mira.As% = 0.0010 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ 8trn.- 3.00 in Toe: Not r g'd,Mu<S'Fr Heel: f 11.75 irt,#5r 18 25 in.iit'.@ 25.75 in,47@ 35.25 in,#L@ 46.25 in,#9@ 4 Key: No Ivey defined Summary of Overturning Resisting Forces &Moments ..._OVERTURNING ,,...RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-lb its ft ft-lb Heel Active Pressure = 857.5 2,33 2.000 8 Soil Over Heel = 1.540 0 2.83 4,363 3 Surcharge over Heel = 111.4 3.50 389.8 Sloped Soil Over Heel Toe Active Pressure = Surcharge Over Heel = 116.7 2.83 330 6 Surcharge Over Toe = Adjacent Footing Load Adjacent Footing Load = Axial Dead Load on Stern = 500.0 1.33 866.7 Added Lateral Load = 180.0 4.00 720.0 'Axial Live Load on Stern Load @ Stem Above Soil = Soil Over Tce = C.50 Surcharge Over Toe = Stern Weight(s) = 600,0 1,33 900.0 Earth§ur Stem Transitions = Total = 1,148 9 O.T.M. = 3,110.6 Footing Weioht = 600.0 2.00 1,200.0 Resisting/Overtuming Ratio = 2.37 Key Weight = Vertical Loads used for Sail Pressure= 3,350.7 lbs Vert.Component Total= 3:356 7 lbs R.M,= 7:360.6 ',Axial live!cad NOT included in total displayed,or used for overturning resistance,but is included for soil pressure calculation. Page 118 of 129 Title Bock Line , Title AcG , nstrr You can changes this area . Project usual the`Set9ngs'menu iters and then using the'Prinsing& PrCieCt r<ic,.: . Title Block'seloodo^. Yi��R.li P:s MAR til ,`e!�}:P pie Block Use 6.........._._ _ cantilevered Retaining FO;R:",t ll'p,"S TS73tn Lrrr.� Creeksi , is ja titEt 'ria& `rd e eeert rx,6 :mgry�� SttE CAzC.rtaIBe3-2011.suvls.tI.ia09,Ver.t t.to.as , LLL #s, 10800230"►,... ..„_:•,,•.:..:::,;,,,,,,,i,. ....;:._. . ,> ;• ..•--: .. ,x 3... ,1 :I.z, `i ,�4 " Ucetnsee fR0EUCH CONS LTING.ENOINEEF,iS Description: S'."Wail Criteria Soil Data Calculations per ACI 318.08, ACI 53048,IBC 2009, CBC 2010,ASCE 1-05 Retained Height = 8.00 ft Allow Soil Bearing = 2,500.0 psi Wail height above soil = 0.00 ft Equivalent Flue;Pressure Method Slope Behind'Wall = 0.00:1 Heel Active Pressure = 35.3 osftft Height of Soil over Toe = 6.00 in Tee Active Pressure = 30.0 p`f tt Water height over heel = 0.0 ft :Passive Pressure = 330.0 psfift Vertical component of active Soil Density,Hee! = 110.00 ocf Lateral soil pressure options: Soil Density,Toe = 0.0O pot NOT USED for Soil Pressure FrictiOn Loa~btwn Ftg&Soil e 0.5:;1; NOT USED for Sliding Resistance Soil,,v. , NOT USED for Overturning Resistance, eft..passive ignore pre sure = 0.00 in Surcharge Loads Lateral Load Applied to Stern Adjacent Footing Load Surchage Over Heel 50.0 pot Lateral Load - 40 0 f Adjacent Footing Load = 0.0 lbs Used to Resist Sliding&Overturning ..Height to Toe = 8.00 ft Footing Width = 0.00 ft Surcharge Over Toe 0.0 psf Height to Bottom = 0.00 ft Eccentricity = 0:00 in Used for Sliding&Overturning __ , 'Mall to Ftg CL Oist = 0.00 ft _..., Axial Load Applied to Stem Footing Type Line LoadBase Above/Below Soil Axial Dead Load 500.0 lbs at Back of Wail e 0.0 ft Arial Live Load - 0.0 lbs Wind on Exposed Stem = 0.r'psi Poisson's Ratio = 0.300 Axial Load Eccentricity 0 0 in Design Summary Stam Construction Top Stem Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning 2.55 OK Wall Material Above'Ht.' = Concrete Sliding - 1.59 OK Thickness in= 8,00 (Vertical Component NOT Used) Rebar Size = it 5 Total Bearing Load = 5,225 lbs Rebar Spacing in= 8.00 ...resultant ecc. = 9.94 in Rebar Placed at = Edge Design Data Soy;Pressure a Ice - 1,809 psf OK fbiFB+faJFa _ 0.467 Soil Pressure @ Heed _ 91 psf OK Total Force @ Section lbs 2,309.6 Allowable = 2,500 psf Moment...Actual ft-I= 6,872.2 Soil Pressure Less Than Allawabie AGI Factored @ Toe = 2,171 psi Pvicment.....Allowable f-1= 14,711.7 ACI Factored a'3 Heel = 109 psf Shear...,.Actual psi= 33.7 Shear.....Alowabie psi= 57.1 Footing Sneer @ Toe = 13.0" psi OK Wall Weignt psf= 100.0 Footing Shear @ Heel = 38.5 psi OK Rebar i Depth n sf= 0 Allowable = 75.0 psi splice e in= 12.22 Lap sp.icC'f above Sliding Calcs (Vertical Component NOT Used) Lap splice if below In= 6.00 Lateral Sliding Force _ 1,880.'7 lbs Hook embed Into rooting in= 6:00 less 100%Passive Force = = 371.3 lbs Concrete Data __.... '- less ..less 100%Friction Force = - 2,610.8 lbs00.0 to p5 = 2.0 Added Force Fteq'd = 0.0 lbs OK Fy psi= 60,000.0 ....for 1.5:1 Stability = 0.0 lbs OK Load Factors Dead Load 1.200 Live Load 1.500 Earth,H 1.600 Wind.W 1.600 Seismic,E 1.000 Page 119 of 129 Title Block Line 1 Title You can changes this area C..'isgnr: t using lhe'Settings"menu item ProjecDesc.: and then using the'Printing 8.. P refect Notes Title Block'sefection. Tide BItck.Lind 6 , Fi.q:Pk-611;"4611i,TiratAiWtin.3.-Or."4.1/44.7,,s1,10,;,?,1-frENi.--ke4-4C40..t,e:cosierecti Cantilevered Retaining Vial!, • ENERCALC,INC,vinats,C.046.11.1009,ver.s.t1.1109 Lic4t:.KWtOet0023IXV'•!: ;: ,::!'.!:,ir3:!!iAP:',,tgiVtot;,Vo§;ktgggt4;4„:wrfAA::re„'•i:W!:,?;,T'v-i,....;ii,,,,:,,i,?'.•;:r:.:-,,:-,t,,,liiIiiiicertseelf.R0 Xr,Hconu mrateso Nun Description: 8'43'WO .. ..,. .. ...._. Footing Dimensions&Strengths Footing Design Results ...„ - ... . . Toe Width .,. 1 50 fil Toe Heel Heel Width -..: ___. 4 cia, Factored Pressure = 2,171 109 psf Total Footing Width 5 51) Mu''Upward = 2,231 0 11-lo Fooling Thickness „,-. 12 00 in Mu- Downward = 277 0 i'i,lb Mu. Design = 1 954 6,572 ft-lb Key Width = 0 CO in Actual 1211,tay Shear = 13 62 36 48 psi Key Depth = 0 00 in Allow 1-Way Shea: = 76.00 75.30 Pei Key DIstance from Me '.. 0 0 ft Toe Re;ntbrorg = #7 .@.15 00in 2500,,osi . Fy = 60,0(10 psi heel Reinforcing ri. #8(51 16.00h Footing Concrete Density = 180 00 pci Key Reinforcing = None Specla Min.As alo = 0.0018 Diner Acceptable Sizes&Spacings Cover rD.Top 2.00 itli. Biro= 3.00 in Ta c:: Not rec(d,Mil<S'Fr Heel: #4@,11 CO in,#5/4 17 25 ir,#8( 24 25 n,47@,33.00 r,#450)43 53 in,496 4 Key No key defined Summary of Overturning&Resisting Forces & Moments .., OVERTURNING„.. ....RESISTING Force Distance Moment Force Distance Moment Item ft ft-lb Its ft ft lb Heei Active Pressure = 1 417 5 300 4,259.5 Soil Over Heel = 2933.3 343 11,244.4 Surcharge over Heel = 143.2 4 50 644.3 Sloped Soil Over Heel Toe Active Pressure = Surcharge Over Heel = 168 7 3 83 8389 Surcharge Over Toe rit Adjacent Footing Load Adjacent Footing Load = Axial Dead Load on Stem = 500 0 1.83 916 7 Added Lateral Load = 320.0 5 00 1,600.3 *Axial Live Load on Stern Load cp Stem Above Soil = Soil Over Toe = 3 75 Surcharge Over Toe -..1 Stem Vveight(s) = 800 0 1.83 1,466.7 Earth©Stern Transitions at Total = 1,880.7 OTA. = 6,496 8 Footing Weight . 825.0 2 75 2,266.8 Resisting/Overturning Ratio = 2,55 Key Weight Vertical Loads used for Soil Pressure= 5,225.0 lbs Verb Component Total= 5,225.3 lbs R.M.= 16,535,4 'Axial live load NOiT included in total displayed,or used for overturning resistance,out is included for soil Pres21.rre Catd3tiOn Page 120 of 129 4 ,.,. CLIENJ , 5';'69 FAA/Hampton SP P;xt.:,:wid.'O'reoon-,7223 Sa3,62.47,X4 PfKIJECT NUMBER'. .,i';L,-T:,.,:- 74.5 N.o.N Mt Wshinc4d,on Or '44444, ....,41 - ..,.-.. .,.....:- Bend.Oregon 97701 541,3&"4-' 1828 DATE. :ROELICH ENGINEEREti BY:. 7.0..ise ...:L........ — Jr-E7 1 ,,,,-9,-„;:-4i• ,, ,i,„ ..'," 1--- _..... 4 4 ., , ..,..„.4,4,affif-e., 4.4 „,„4,-, ,,,,,,,, ,,,,,,,,,,,, -, ,,, , , ....„4. , at,f-V" 14 9'44, Fr =- .„ 5";04,0esc .., ' Wei it Rpir;ly ‘,04 rcita fige- at,o, 47,3 X V dor i- 41 14.Co ri z DL::-: 4-bort 1 .1roopli Ji livr F 549/.5 x0,3 r 15-I*s f fi . or,2, 4t—• --1-"-` 1(1 ---------- , 7Op *-- 4— *--- 4 k ...___ Page 121 of 129 °r i`? 9 SNS'"h':.1"`^�.. St CLIE.N T: s. '� r 223 SO:".,-624-7005 PE O,'EC1� a. — 7,15 NW Mt WoshIng1on Dr,#205 i/�-�'++. j_ Be d,C±Gco1 97701 54231B28 DATE: :ROELIC f ENGI NEER91 BY: I , t40 14— SurC.Iterte 54p,;/ eti\Ae = 35;0,11 35oleif bL= t p 4 - 4 — ip C a� I }'r 0-2;c-ow= 5- Or= I, ,3 x ; ''S3 +,rret m _mow. f Z 6'x t, 58 s'r I E E - - a - a ' ,, — , ? 4)7/7*.f. rrr- 57" A,',r Froelich_ r',oc,_ Pra eLt Titiii Page 122 of 129 - Engineer: Pr o ect ID: t- ratY gri Deser: FR0ELICH ri,'e=c'hU;etsL�'m too 4d 103.1.BE`t'li C1 A 1Vt1 CBE't.ECr ; Cantilevered Retaining all ENERCALC,1Nc 1913-201¢ Buids.1 t3,Ven8.1a.e.16 Lk-#.¢ t 11 r,:h' ." . <s '''i, _y, fssgg f : .f "1,C tf . -GEE C°I.CO U TING GINEERS'1 Description Garace k_. 2a l S Criteria Soil Data Calculations per AC(318.11, ACI 530.11,IBC 2012, • Retained Height 1'.50 ft Allow Soil Bearing = 2,500.0 psf CBC 2013,ASCE 7.10 • Wall height above soil = 0C ft Equivalent Fluid Pressure Method Slope Behind Wail = 0. 0: 1 Heel Active Pressure = 35.0 psi/ft Height of Soil over Toe = 12 00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0.0 ft Passive Pressure = 330.0 psf/'ft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 110.00 poi NOT USED for Soil Pressure. , Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. Soil height to ignore NOT USED for Overturning Resistance. forpassivepressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = 0.0 psf Lateral Load = 70.0 pif Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 10,00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psi ...Height to Bottom - 0:00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load Base Above/Below Soil 0.0 ft Axial Dead Load = 500.0 lbs at Back of Wall Axial Live Load = 1,100.0 lbs Wind on Exposed Stem _ 0.0 psf Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Design Summary Stem ConstructionTop Stem 2nd Stem OK Stern OK Wall Stability Ratios Design Height Above Ftg ft- 2.00 0.00 Overturning = 2,73 OK Wall Material Above"Ht" = Concrete Concrete Sliding = 1,59 OK Thickness in= 8.00 8.00 Slab Resists All Sliding! Rebar Size _ # 5 # 6 Total Bearing Load = 10,739 lbs Rebar Spacing in= 6.00 6.00 ...resultant ecc. = 12.27 in Rebar Placed at = Edge Edge Design Data Soil Pressure @ Toe = 2,372 psf OK fb1FB+fa/Fa = 0.653 0.938 Soil Pressure @ Heel = 313 psf OK Total Force @ Section lbs= 3,087.0 4,379.0 Allowable = 2,500 psf Moment....Actual ft-I= 10,242.2 17,686.8 Soil Pressure Less Than Ailowaole ACI Factored @ Toe = 2,944 psf Moment.....Allowable ft-I= 15,562.2 18,848.3 ACI Factored @ Heel = 386 psf Shear.....Actual psi= 46.1 71.1 Footing Shear C@ Toe = 22.3 psi OK Shear.,...Allowable psi= 82.2 82.2 Footing Shear @ Heel = 52.5 psi OK Wall .Height psf= 100.0 100.0 Allowable = 82.2 psi Rebar Depth 'd' in= 6.19 5.63 SlidingCaics Slab Resists All Sliding! Lap splice if above in= 14.06 '4,05 Lateral Siding Force 3,500.5 lbs Lap splice if below in= 14.06 10.64 less 100%Passive Force = - 733.3 lbs Hook embed into footing in= 14.06 10.64 less 100%Friction Force = - 4,819.8 lbs Concrete Data 'd 0.0 lbs OK f c psi= 31000.0 3,000.0 Added Force Re q Fy psi= 60,000.0 60,000.0 ....for 1.5:1 Stability = 0.0 lbs OK Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.600 Seismic,E 1.000 -- FroeI E7 _ Preject iiie: Page 123 of 129 En9ine=r: Projee:ID: Project Dec-: 73 ., FROELICH CtN 03 N'i.r:.=d'1 Cantilevered Retaining�8taltlltl Wall rde=c.lLfw$',.3cuq}Frci >\14-101-1SE,,r.tfSCCA I SCIte EU; .. 9 ENERCALC,INC.1983-2014,Build.6.14.9.16,Wr,6.14 8.16 Lie.£#:t `,460023 u....� ... /.u�. . ': ; . ._ .: t:1aelifiee, W R..:_LJC. 4 NSU; c 1 T. t '-i T Description: Garage Ret Waif-No Seismic Footing Dimensions & Strengths Footing Design Results Toe Width • 2.50 ft Toe Heel Heel Width = 5.50 Factored Pressure = 2,944 388 psi Total Footing Width , 8.00 Mu':Upward = 8,367 0 ft-lb Footing Thickness - 16.00 in Mu':Downward = 1,163 0 ft-lb Mu: Design = 7,204 17,687 ft-lb Key Width = 0.00 in Actual 1-Way Shear = 22.31 52.45 psi Key Depth = 0.00 in Allow 1-Way Shear = 82.16 82.16 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #6 @ 6.00 in fc = 3,000 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 12.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @Top 2.00 0 Stm.= 3.00 it Toe: #40 9.00 in,#50 14.00 in,#60 19.75 in,#70 26.75 in,#80 35.25 in,#90 44 Heel: #40 6.25 in,#5@ 9.50 in,#60 13.50 in,#70 18.25 in,#80 24,00 in,#90,30. Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING .....RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-lb lbs ft ft-lb Heel Active Pressure = 2,882.2 4.28 12,329.2 Soil Over Heel = 6,114.2 5.58 34,137.4 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure = -81,7 0.78 -663.5 Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem = 500.0 2.83 1,416.7 Added Lateral Load = 700.0 6.33 4,433.3 'Axial Live Load on Stem = 1,100.0 2.83 3,116.7 Load @ Stem Above Soil = Soil Over Toe = 275.0 1.25 343,8 Surcharge Over Toe = Stem Weight(s) = 1,150.0 2 83 3.258.3 Earth @ Stem Transitions = Total = 3,500.5 O.T.M. = 16,699.0 Footing Weight = 1,600.0 4.00 6,400.0 Resisting/Overturning Ratio = 2.73 Key Weight = Vertical Loads used for Soil Pressure= 10,739,2 lbs Vert.Component Total= 9,639.2 lbs R.M.= 45,556.2 *Axial live load NOT included in total displayed or used for overturning resistance,but is included for soil pressure calculation. a Froelich Engineers Project Title: Page 126 of 129 • Engineer. Project ID: r, Project Descr: FROELICH ENOINEERSI ti ti1r 'DoakPt w 14 TO-$13E ISCa I MSCH 1 ECC .wCantilevered Retaining C ENERCA84u .6.14. . 6,Ver6.14.8.16 KW O'8UO23 ' �. Me ..1,t4'2' .' l' •..'4 ...i -!€ R DUCK QNS. . INGtE..c 1 ORS Description: Garage Ret Mat-WI Seismic ' Criteria Soil Data Calculations per AC1 318-11, ACI 530-11,IBC 2012, Retained Height - 11.50 rt Allow Soil Bearinc = 3,330.0 psf CBC 2013,ASCE 7.10 Wail height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wail = 0.00: 1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe - 12.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel - 0.0 ft Passive Pressure = 330.0 psflft Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 110.00 pcf NOT USED for Soil Pressure. FriCt A btwn Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. NOT USED for Overturning Resistance, Soil height to ignore for passive pressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel = 0.0 psf Lateral Load = 85.0 pif Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning .Height to Top = 10.00 ft Footing Width •- 0.00 ft Surcharge Over Toe = 0.0 psi ,,,Height to Bottom - 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stern Footing Type Line Load Base AboveiBelow Soil Axial Dead Load = 500.0 lbs at Back of Wail 0.0 ft Axial Live Load = 0.0 lbs Wind on Exposed Stem = 0.0 psf Poisson's Ratio - 0.300 Axial Load Eccentricity = 0.0 In Design Summary Stem Construction Top Stem 2nd Stem OK Stem OK Wall Stability Ratios Design Height Above Ftg ft= 2.00 0,00 Overturning = 2.58 OK Wall Material Above"Ht" - Concrete Concrete Sliding = 1.52 OK Thickness in= 8.00 8.00 Slab Resists All Sliding 1 Rebar Size = # 5 # 6 Total Bearing Load = 9,639 lbs Rebar Spacing in= 6.00 6.00 ...resultant ecc. = 13.26 in Rebar Placed at = Edge Edge Soil Pressure @ Toe = 2,203 psi OK Design Data Soil Pressure @ Heel - 207 psf OK fofF6+fa/Fa r 0.704 0.978 Total Force @ Section lbs= 3,207.0 4,529,0 Allowable = 3,330 psf Soil Pressure Less Than Allowable MomentActual ft-i= 10,722.2 18,436 8 ACI Factored @ Toe = 2.644 psf Moment Allowable ft-1= 15222.0 18,848.3 ACI Factored @ Heel _ 248 psf Shear Actual psi= 48.7 74.7 Footing Shear @ Toe = 19.5 psi OK Shear Allowable psi= 75.0 82.2 Footing Shear @ Heel = 52.5 psi OK Wail Weight psf= 100.0 100.0 Allowable _ 82.2 psi Rebar Depth 'd' in= 6.19 5.63 Sliding Cates Slab Resists All Sliding! Lap splice if above in= 16.48 25.07 Lateral Sliding Force _ 3,650.5 lbs Lap splice if below in= 16.48 4.03 less 100%Passive Force = • 733.3 lbs Hook embed into footing in= 16.48 4.03 less 100%Friction Force = • 4:819.6 lbs Concrete Data Added Force Re^'d = 0.0 ins OK f psi= 2,500.0 3,000.0 ....for 1.5: 1 Stability = 0,0 lbs OK Fy psi= 64.040.4 60,000.0 Load Factors _ Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1,600 Seismic,E 1.000 �u peers ,, r1 Page 1 C t ; r♦ t dirt Qi: r. ProiectDes:,.. o'llrt:4. FROELICH Fie.Car �, sOckti.K'n* s`a14-T�3-S,6ElWISCCA VMISCnP-1113 �lr ,ji a EftGALC,INC.198a-2gid,BuiW:6.t4.e,i6,Ver.6.i4.6.16 23O414%h5^'l9kg, �-. U. 1 .�»' �, z'.r M °'... i Otite &it.z„,OEMICHO a..,!..$ 'WONG..,..„ 1. s Descriptior,: Garage Rei Wall WI Seismic Footing Dimensions&Strengths l l Footing Design Results Toe Width = 2.50 ft Toe Heel . Heel Width = 5.50 Factored Pressure = 2,644 248 psf Total Footing Width _ 8.00 Mu':Upward = 7,482 0 ft-lb Footing Thickness - 16.00 in Mu':Downward = 1,163 0 ft-lb Mu: Design = 6.320 18,437 ft-lb Key Width - 0.00 in Actual 1-Way Shear = 19.54 52.45 psi Key Depth - 0.00 in Allow 1-Way Shear = 82.16 8216 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #6 i 6.00 in ft = 3,000 psi Fy = 60,000 psi Heel Reinforcing = #6© 12,00 in Footing Concrete Density - 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0,0018 Other Acceptable Sizes&Spacings Cover @,Top 2.00 @ 8tm,= 3.00 in Toe: #4@ 9.00 in,#5@ 14.00 in,#6@ 19.75 in,#7@ 26.75 in,#8@ 35.25 in,#9©44 Heel: #4@ 6.00 in,#5@ 9.25 in,460,1 13.00 in,#7@ 17.50 in,#8@ 23.00 in,#9©29. Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING .....RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-lb lbs ft ft-Ib Heel Active Pressure - 2,882.2 4,28 12,329.2 Soil Over Heel = 6,114.2 5.58 34,137.4 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure = -81.7 0.78 -63.5 Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load - Adjacent Footing Load = Axial Dead Load on Stem = 500.0 2.83 1,416.7 Added Lateral Load = 850.0 6.33 5,383.3 *Axial Live Load on Stern =- Load Load @ Stem Above Soil = Soil Over Toe = 275.0 1.25 343.8 Surcharge Over Toe = Stem Weight(s) = 1,150.0 2.83 3,258.3 Earth @ Stem Transitions = Total = 3,650.5 O.T.M. = 17,649.0 Footing Weight = 1,600.0 4.00 6,400.0 Resisting/Overturning Ratio = 2.58 Key Weight = Vertical Loads used for Soil Pressure= 9,639.2 lbs Ver;.Component = Total= 9,639.2 lbs R.M.= 45,556.2 "Axial live load NOT included in total displayed,or used for overturning resistance,but is included for soil pressure calculation,