Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Plans (9)
Page 1 of 126 FROELICH ENGINEERS ; Scope of Work Client: West Hills Development Project: River Terrace East Project Number: 16-T100 Date: February 15, 2017 By: YSP Scope of Work: Froelich Consulting Engineers, Inc. (FCE) has provided full structural lateral and gravity design of the project per the 2012 International Building Code (IBC). Froelich Consulting Engineers, Inc. has provided details only to the areas pertaining to our design. Froelich Consulting Engineers, Inc. did not design or review the details for the entire project. Project Description: This new three-story multi-family apartment building wood sheathed wood framed wall structure is constructed with gang-nailed wood roof trusses, wood framed floors, with slab on grade main floor. Conventional foundations (concrete continuous footings and stem walls and spread footings) are used for building support. A Main Office FROELICH ENGINEERS A Central Oregon 6969 SW Hampton St.' 745 NW Mt.Washington Dr.#205 Portland, Oregon 97223 Bend,Oregon 97701 503-624-7005 wwvv.froelich-engineers.com 541-383-1828 Page 2 of 126 s 4 Client: West Hills Development 11.:': ' '41\ Project: River Terrace East Proj.8: 164100 Date: 2'15!2017 By: YSP FR4EIll CH E.N G 3 N t E R 0°. Project Design Criteria Project Description New three-story multi-family apartment buildings. Gang-nailed wood roof trusses. Wood Framed Floor,. Light-framed wood sheathed wood walls. Slab on Grade Conventional Foundations Project Location . Portland,OR 45.548'N 122.84°W Average Elevation=350 11(approximate) General Building Department: Building Official: Phone Number: Building Code(s):2012 International Building Code(IBC) 2014 Oregon Structural Specialty Code(OSSC) ASCE7-10 Roof Live Load: Ground Snow Load= 15 psf(Snow Load Analysis for Oregon 2007) Minimum Roof Snow Load= 25 psf (Snow Load Analysis for Oregon 200?) Snow Importance Factor(Is)-.: 1.00 Deflection Criteria— Li240 Floor Live Loads: Residential Live Load= 40 psf (IBC Table 1607,1) Corridor Live Load= 100 psf (IBC Table 1607.1) Wind Load: Basic(3-Second Gust)Wind Speed= 120 mph(OSSC Figure 1609) Exposure= B Wind Importance Factor(1w)-- 1,00 Seismic Load: Occupancy Category= 11 (IBC Table 1604.5) Seismic Importance Factor(Ir..) 1.00 Site Class D * Mapped Spectral Acceleration Values(Ss)-- 0.985 p Mapped Spectral Acceleration Values(S3)= 036 g Design Spectral Response Parameter (S0s)' 0.726 g Design Spectral Response Parameter(S01)= 0.403 g Seismic Design Category— D Response Modification Coefficient(R)— 6,5 Light-framed walls sheathed with wood panels Shear Walls(Bearing Wall System) Soils Data: Allowable Bearing Pressure— 2500 psf Exterior Footing Depth-- 18 inches* Pate 3 of 126 Client: Wel Ills 1)evtlopment Project: River Terrace Fait Proj.A: 16-T1 00 Date: 2/15/2017 By: YSi' R FROELICH ENGINEER 5 l • Dead Load Calculations Roof Dead Load Top Chord of Truss Component Wei.hts IActual(psi)] Comments Framing 4 Roof Tn.tsscs Roof sheathing 2 5/8"slat Rooting(Asphalt Shingled 3 Misc. 1 Total- 10.0 psi Bottom Chord of Truss Component Weights 1 Actual(psfl Comments Mechanical ],5 Ceiling 2.8 (1)5/8"gyp Hatt Insulation 1,5 Sprinklers 1 Misc, 1.2 Total- 8.0 psf 4psf added for Seismic Base Shear Total Roof Dead Load= 18.0 psf Cate, Floor Dead Load �ComponentWeights �Actual(pal) Comments Framing 3 Joist hramina Sheathing 3 7/8"shth Floor Covering 11 1,25"Floor"Popping(Cvperete 105 Ihs/113) Mechanical 1 Ceiling 5.6 (2)5/8"gyp Flooring 1 Sprinklers 1 Misc, 1.4 Total- 27.0 psi 8psf added for Seismic Base Shear Cale, Corridor Floor Dead Load Component Weights JActaal(psf)! Comments Framing 2 Joist Framing Sheathing 3 7/8"shth Floor Covering 13 1<5"Floor Topping(Concrete 1501hs/03) Mechanical 1 Ceiling 5,6 (2)5/8"gap Flooring p Sprinklers 1 Misc. 1.4 Total= 27.0 psi Exterior Wall Dead Load Component Weights I Actual(psbj Comments Framing 1 5 Sheathing 1.5 1/2"shth Interior Gyp Finish 2.8 5/8"ow Insulation 1.5 Siding 2.3 Fiber Cement Siding Misc. 0.4 total- 10 psf Interior Wall/Partition Wall Dead Load Component Weights [Actual(psfl] Comments Framing 1.7 2x6 811 16"0.c. Interior Gyp Finish 5.6 5/8"gyp each side insulation 0.5 Fiberglass Batt Insulation as occurs Misc. 0.2 Total- 8 i'sl- Page 4 of 126 Client: West 1-liile Development Project: River Terrace East Proj.#: 16-T100 Date: 2/15/2017 rT By: YSP FROELICH ENGINEER SI Flat Roof Snow Load Calculation: Based on the following Codes: 2012 OSSC ASCE 7-10 Snow Load Analysis for Oregon 3rd ed.December 2007 Maximum Elevation: 450 ft Ground Snow Load(P9)= 15 psf Determined from Snow load Analaysis for Oregon(3rd ed.December 2007) Terrian Category= B(Partial Exposed) per ASCE 7-05'Table 7-2 Snow Exposure Factor(CO= 1.0 per ASCE 7-05 Table 7-2 Thermal Factor(C1)= 1.0 per ASCE 7-05 Table 7-3 Importance Factor(I)= 1.0 per ASCE 7-05 Table 7-4 Flat Roof Snow Load(pt)= 10.5 psf Pc=0.7*Ce"Ct'I'P9 Where p9 s 20 psf(pt Min)= 15 Where pS>20 psf(pf Min)= 10.5 Use(pf)= 15 psf Use(pf)= 25 psf per 2012 OSSC 1608.1 • 19(y rry r' ,-... . .avl 0 0e .,. ,......_ . .. _ 7f ZI (....., r-, ,2x) BX' co , CN.1 f VX) (631 CS € 0 _ '_____., 111111111111=111111111.111111 a. ._ , . . en ,',v..z„,; (,,,.,.,,'-W,:,.I1.Dg.I1 IN''',''„T;.,`,:'2.”!„:.:,.V.•,,/'A{:.4•'*fli,e.a•.,.•4s...,.'2•.,,M1..,....,k.. .-.- ....,..„...,I.I', ,,, I.t‘'ter•IkXi.-..9'kk''.:.A.,Z•,0,+.p.4:.1.,4•,,.......w.,-:.-_tI.7m41„€,7.,4,i,.•,.•.;*•4....4.—.,p...,-p.....-.••_.„.:,-':i;„2'/...„,-0..'-,-..''r„,r.„.,..._...i,,.*_,._>_,s,e,.e„,,.,v$w: .4,.g•.„,4I ) 11 + . EINIMINF4 1 IIII4/..../O...I1i... f',1'• ..; ,t. ...y,-,' ••..;,i, •,,,livir,IN •• 4,c, -?e• •tc%le / 1 r;,-..„„::::__. N:..:,;04., &•,,,,, ..,otce — _ ---, / , '-• ill '",*:-..".: It 1 11,0,..:4:Wit4.".::*.v cart7A.60: : --, --I-----i..7' 11...*.- INNI: Sr 4,,,,, ----J.- ,,,,,-;:;„ i 1 mwoho. 0.- ._,...... °•:k0:.,,X4M.,?'' k,..%.,rop ,tv4..,,...... , • .4 1,p; * —;,' •1,4/.0' \;..W , .„,,,,If / i ii ,„..,„,,x, t..4...•.4,..,1 i •,,WV? , . ........ ...T.,*...w4,-, 4501T4i4). ll Al !t 1 1r i * I ----- ,,,k0 "li•k? 'f. . ___ a „ ............_...,..... ...,....... .._ .... .__ .. ....„,_ ._.— .-inierwpww---- --- A .eri'l til'''' ..... \;',.ef,' "tr ' ' ...” P... .11m111,41.ne : :t 0 i I 'IRO) \4a) •1,r r-, 11 q • 11” , 1 ‘,. i 0 i .,„, I, •i :1 .... . —'r -........._ • ,,,,„ f ,..; 0 Vqe(:. 1 ..'-Y r.:7,7' ... l . • , , A 0,:::,,,,,,,,,..1 .,,,,../ , •- rnj , . . , i,,-- 1, ... , ,k., ,...... .. P 4ss,,,,i ,,-:/- ,. '•• , , , ' • , I ' • ''','R.t••' !! / ,3./.',.,,'?,',..1 t.,14. .„'`,:' ,,, it. i 1 ...;:**N: ..e., • ' .....„. „ . '..` ' ' •.,*•.•• ..k...., ..,„ -14- ..;,' .... 4iA .x i ' , .F.....,.. , ,..,-- -- '01,0-4.: ' 1.,.. 1 .irt-,...V.A,,4,,,,,, ., . ichr.,. i: -Vsf,..1,'• ,,,,,,,__,.:.,........:•• I ,-.4.0/44e.A.,,......... .,,,>•Zon,44,,,v4vv.*, z7 i I 1 #.41<Ntot* 1 7.1= li i ,: ,; ,,.;,. ' ,I--i„.„7. 4;4' .4,„-.7„-../ i I i .'0:4 eh,:'14,4 i f i i.l. „r -...,,v,,,,,,, >, t ..,...,„ '•,,,ix,i)0 1, ; (p I .., / '4,,,,-,4m.s.N., ,,,,,k, --;•• ',----- :,,,,,,,,,ou.....k.. ... Ii t ' `4,.• 1 ';:g I 77 ";::•.. .'41.4.*.,&;;;;It:41$;40: I 1 / ill;hrkikA4*.$4 ilk kr >0,t,*,:::***"*X4,1::Ve4 1 ktoSt':!:',.A..:`;',,X04:0,5'14:4'7;$4.-.>. i 4,•,''4,,. . —-,44,,,,:xek,....q.4,,,,,,:>.,,,,,,.. , 1 1".141.4,S;S:....:„Met et.'&6"--°,ifj,v; , •(• Po.* .,,... ,•14i.r.00x.y14,9-***,•,,, .." . , 1 Alt,''''• :„:,,,,,,,;,.:,...„:„...t.:.,,,,..,.„*N rWatiat.., .03.4 2,2&$( / ....,:, .01 7:;;!e...*.....-=2....”2.=="2222222 11 ......g . ,4 5• I . 103 IWANNYAMMINIMI AllMlitit. CI I 1 e 611ffillileil,,... ., .. .. t i 'DX/ vi").•<., k. CLIENT: 69o9 nomplor,ST ;••• po.itiana.Oreoon c'7223 Page 6 of 126 503-624-7005 PROJECT: -5i‘e • "••ii•• ;•;,t'• '•••.• 74.sr-N MT.Wcsnirig,,tori Dr.r;20t, NUMBER.. ' BET:a Oregon 9710i 5,11-383-1628 FROELICHDATE: 12303 Airport Way',Suite 200 ENGINEERS !: Broomfield,Colorado 80021 www.troch-engi neercorn 720-560-2269 BY: ecoc AeA AA-14)6m. FC)0 14 DEAD tebdto 1: 13 Ps r goo A)00,) (,ottc) 25 Use Jae- tjic -Tr e ssa2,,,-( R 00 rituss - rose. ie 6 AcT I As Chit ) t?Gt 2 D fc rne)(:)'4 t'get 0 SPA DLØ12,4 Pc" 1-1-5 RA ' s 1300 1 Pe, 13/ I . DLL2.1) tc3 3 6EJ Pt-P. 14.00 DLr 7—'504 * ° 2.ocx) 1FLoic DL " 1,7 ) 0 r k 245 f) ,riao R ) , CLIENT: p. I(. Porth---a, "223 Page 7 of 126 503 4 700) PROJECT: 745 Mt wcm.-„itc-,D- 420, NUMBER, .01V 0,gor,97- 5,11-122-15'28 FROELICH DATE: 12303 Air por. Swk=:CO ENGINEERSi Brcurr 8002; • 720-560-2269 BY . . 2.61, bt_s ( )(13 r 1— r(24 (25) 575° ftF 2,,c4 2,6cx) ,r (co)(2..5) 24?0 DL-s- 13ooft PAAi : Roo HDR R A 3 —° s t(ttl)t 7-5) 1 PL f DL ("35 ( ) 6;•<".)011' (104) (31) (2-5) 56) R v4, .• 1')A NI* .‘ , DL (itk )(AZ) PLF F t Ott) czs) Page 8 of 126 n COMPANY PROJECT r s® Aug.:23,2016 15;41 RHI um3 Design Check Calculation Sheet Woodlnforks Sizer 10.42 Loads: Load _ . ....a 1:.5.41 04ad a_ 3 f ,pI:t L,a..12 11. 215.1 p1.5 load3 d Polut 7.'.:-. LoadnSnow 7paot 2,m self -si-at« _ad -_: ,..:. � 1.f Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): ,... ... . Unfactoree, 305 Dead 410 414 Scow 630 -raototed: 1673 Total 1132 _. Bear. :g; - Capacity 1523 Beam .11.32 1627 :.pport 1369 Anal/Des 1,00 Beam 20 1,00 Support ..30 tad 170.x_ 01 0.42 Lc90 ogu6 _.. +.74 0.74 kin re3'd f1.54 1..00 Cb t-Od. 1.00 Cb min 1.00 Cb sspp.rc 1.33.i1 in.fp cap 623 62. Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7.1141 Supports:All-Timber-soft Seam,D Fir-L No 2 Total length:3'-1,3';volume r 0$cu.e.; Lateral support:top=at supports,bottom.at supports; Analysis vs.Allowable Stress and Deflection using Nos 2032: Critaci.on 7r.:.vr x Deeltea 1..faZuP 1,11.13 2,0.0.74t0/7,e41,71, S baA... ., 17 - 5'1C9' 0.31 B ndiau. 1379 os1 fb!co' 0.42 Dead D-4 ' '-s Li e 0e61`r ,043 0,1"-m `C 3:.Grad' 0': ' 23 .3,1.5 2,, 1 Additional Data: TACTcas. r' -i .11 � 0n Ce Tv' 100 .5 3 0 - _ _ _ 2 913 .. 7 G 3.29. _ .. _ _ .,. Pup 622 _ k r - ... .. 2 1.6 million- 1.0,1 -. 2 ,58111. .. _ 2.00 - 2 CRITICAL LOAD COMSINATONS r Shear 42 _ _ ..'.;:a Bending• 02 - - ___ 1..1. n Det:).e_tion: °.0 42 .. LC 42 - `;=sr,�w' .�-r„ , %.,ova.. -.,air Yr=^cad Lollop -.:<. ._ �'rc-' _•..� :: .,, .s:,.. .. _ ..�.. Al: 1<C'0 are lasted in the Apely.11,. output toad Combina1 i..,u... 1721711 . 1`S. 2.12 CALCULATIONS: Def1n.-tiac: T.I -- 1.4eeIi '1P...1o2 Liv deflection- ,f. ..c. .. > 1 1..-"1c. x ry : :.2""t ... LutexAl. a: A'CZ d . a _�,... Le - 2F. : .. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NOS Design Supplement. 2.Please verity that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall De lateraily supported according to the provisions of NOS Clause 4.4,1. • Page 9 of 126 COMPANY PROJECT 31 WO dt "vvorkS Aug 23,'2016 15:42 IRTIZAwrti *ONO'. '22,2S,0 Design Check Calculation Sheet Virg:Wants Sger TO 42 Loads: 3.1.r., 236.0 pltt 6311 2061 61 I 3.3 334 --42.24 91,2 9934 20.Li 2.312 4.1 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 602.421 423 6.19 40260 813 346 3362634 I I, t 4 33 5360,03: 13.2p422 2 6 y. ni “, 66'2 333 t 01: I.9Q 2942346 3.30 4.90 600.4 36312 2122 1,,g 2 3 3.31 <331'.4 0.67 1.3? 1.04 0-19 1.30 1.119 C12 nuF.F232.3. 2.11 14: 3.23 4222.i Lumber-soft,D.Fir-L,No.2,4x8(3-1/2"x7-1/41 Supports:In-Timber-soft Beam,D Fir-L No 2 Total length:6%1 3';volume=1 1 cog; Lateral WWI: at supports.bottom-at supnons; Analysis vs.Allowable Stress and Deflection using NOS 2012: V13 -<:1 1491. A464.2 31, ./1.1--A61,3444, 2333412 222-2. + 412 3 333 432 1166 p6t Thin,' 3 3.64 DOild . - 93 9 Li 4.322 32234'3 9.33 - 34;623 2..23 LI 336. 0 3:2 1"311 934103 9.19 .3 623113. 9,:421 42411 t.-24 - Additional Data: • FACT93122: 42.22 Cc 2344: -0. Cn 033 4-4 0. 91 ;...20 1.00 1n 1 :)0 1.03 - 266' 625 1.39 CRITICAL LOAD 31014210iNA 4344N13. <3<,- r LC 42 2 9.3, - 14472 V-4243,43 2.- 1142 1124 249.012 691 21 2 .22 3.6, 24 26106 4.23E1964,493.4 L9 132 42 4..11 1109 121; 42 3 949 0,14,1,5 r.,-1,1v, 4.44-6661 11662 2.23.-003693.6466661 33,3412640a Iv 24341 LC , are 146629 in 6129 .66,11-6,6 40.3y34 1,34394 22.23962.23,44 333 2 2,23921 7-13 / 13,2 2312 CALCULATIONS' 4,3 4193t2.423 2 Er 42 1733133 16-3.32 `124.59"213 tlenti33 123f46-361.36 6929 all 6.64-24.621146319 111992, 4400, 330.64. 263.91. 0923.43.94.10n 1.33;694- 72304 23f2.9.9912ont . 0.9.6. 2,069. 4ett1.0962.63. 2,24,94.31 9,06,11 Ly I 2;2 L0 42-.1-693 .13" 2,11. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(INC 2012),the National Design Specification(NOS 2012),and SIDS Design Supplement 2 Reuse verity that the default deflection limits are appropriate(or your application, 3.Sawn lumber bending members shall be laterally supported accenting to the provisions or NOS Clause 4,4,1, CLIENT: 6969 SW Hampton Si. 10 • ,i.p.„. . Portand Cregc,n 97223 Page of 126 503-624-7005 PROJECT: 745 NW Mt Washiraton Dr.#205 NUMBER: Bend.Oregon 97703 541-383-1828 FROELICH CI Denvc,or-;070 DATE: 12303 Airport'Way,Suite 200 ENGINEERS !, Broom8old,Colorado 80021 720-560-2269 BY: 4DocAi /-1D/ 0 ,- . , F i IA) i A:10 X I 441111 t _ i 40*Cf X.7 ,,,, . / / Ps :Pi! Z Z . ., - . 1 1 H i 1 , r -i :4 .1- * /1 : i 2,..Zit, . 1 i ,4101. i 1 , , . . . , . , , . . Page 11 of 126 Client: Project: Project#: Date: By: FROELICH ENGIN EERS1 WIND FORCE CALCULATION-C&C Walls ASCE 7-10 SECTION 30.6,30.7(Third Printing) Design Wind Loads on Components and Cladding-Walls Basic Wind Speeds Input 3 Second Gust Vas= 120 mph Exposure Category= B Wind Directionality Factor Kd= 0.85 Table 26.6-1 (page 194) Mean Height of Roof,h= 40 ft Topographic Effects Input Hill Height H= 0 ft Table 26.8-1 (page 196) Length of 1/2 hill height Lh= 1000 ft Table 26.8-1 (page 196) Dist. From Crest to Bldg.x= 100 ft Table 26.8-1 (page 196) Height Above Local Grade z= 15 ft Table 26.8-1 (page 196) Horizontal Attenuation Factor m= 1.5 Table 26.8-1 (page 196) Height Attenuation Factor g= 3 Table 26.8-1 (page 196) Shape Factor K1/(HfLh)= 1.3 Table 26.8-1 (page 196) Output-Topographic Multipliers Ki = 0.00 K2= 0.93 K3= 0.96 Topographic Factor Kzt= 1.00 Terrain Exposure Constants nominal height of boundary zg= 1200 Table 26.9-1 (page 199) 3-s gust exponent a= 7.00 Table 26.9-1 (page 199) Page 12 of 126 Pressure Coefficients Input Velocity Pressure Exposure Coefficients Kh (see below) Table 30.3-1 (page 259) Height(ft) Kh qh(psf) Velocity 15 0.70 22.0 Pressure 20 0.70 22.0 Output qZ 25 0.70 22.0 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 h= 40 0.76 23.8 qh External Pressure Coefficients (GCS,)-Use Figure 30.4-1 for h<60 ft.301.6-L for h>60 ft GCp;=+1- 0.18 Table 26.11-1 (page 201) Pressure Coefficients on Exterior Surfaces of Walls Zone GCp Zone 4(+) 0.90 Figure 30.4-1 for h<=60(page 277) Zone 5 (+) 0.90 Figure 30.6-1 for h>60(page 290) Zone 4 (-) -0.90 Zone 5 O -1.80 Calculate Wind Pressure,p,per Equation 30.4-1 or 30.6-1,using q► Exterior Face of Surface Zone p(psf) Zone 4(+) 25.74 with Positive Internal Pressure Zone 5 (+) 25.74 with Positive Internal Pressure Zone 4 (-) -25.74 with Negative Internal Pressure Zone 5 (-) -47.19 with Negative Internal Pressure Page 13 of 126 COMPANY PROJECT WoodWorks® rr a c ooa,'rsran Dec.13,2016 09:39 Beamt Design Check Calculation Sheet Wood Works Sizer 10.42 Loads: Load Type 3: `.: .hot i-c n . Location. Lo fLj Magnitude Unit tarn Start End Start MI U111,1 Wind _Tull 0181- 22.0 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) Dead Wind 327 327 Factored: Total 196w . Bearing: 1�6 Capacity Than 2266 2266 Support 2256 22266 Anal/Des Beam 0.09 Support 3.09 0.09 Load Comb 62 5.09 Length 0.504 #2 0.50. Cb +2.00 0.500 Cb min 1.00 .00 C:; support. 1.00 1.'00 =.'cp star; Elio. 1.00 Sic `Minimum bearing length setting used:112"for end Supports: Lumber-soft,D.Fir-L,No.2,443(3-112"x7.114") • Supports:All-Timber-soft Beam,D,Fir-L No 2 Total length:9'-1.0';volume=1,6 cult.; Lateral support top=at supports,bottom=at supports;Oblique angle:90.0 deg; Analysis vs.Allowable Stress and Deflection using NDS 2012: trateriob A1141J)318 Ya ..o Deolgn la o Unit A s: S.ilTtwedrili Shear a-a iv = 0 t v' - 268. kips tv✓ev. 0.00 =y far .. 1.1. I V' _ 706 pal fv/Fv' ._ 0.04 73ending(+) x-x Lb = 0 8b' " 1031. kip-ft f0/Sb' _ 0.00 y-y fb = 358 Oh' ."10 kip-ft fb/Fb' = 0.14 Dead tef1.'n negligible Live D06L'n 0.16 = L/092 U.45 w L/240 in 0.35 Total. Def%'n 0.16 = ,5/692 0.45 -- L/040 in 0..35 Additional Data: 011000)45, . i E insJ CM Ct %:l: c- .,. .i�u Cr rt Ci Co LCC 'ivy'` 180 1.60 1.00 1.00 .,. - T.00 1.00 - 2 Thy' 900 1.60 1.00 00 1.00(: .1,300 ..0_5 1.30 1.00 1..0:; - 2 Fop' 625 - 1-00 1,50 -. - ,60 1.00 - 0' 1.6 million 1.00 1.00 - 1.00 5.00 - 2 lain' 0,58 million 1.00 1-00 w .... - - 1.00 .00 - 2 CRITICAL LOAD COMBINATIONS: Shear C 02 " .6P.:..614, V = 1.'30, V design " 182 109 endi_00()1: LC #2 " .SD+.SW, tl - 441 lbs-St Deflection: LC #2 - 4D-.614 (live) LC #2 .OD*.5i4 (total.; h=dead ::olire. Siiianow W":wind -i:r -_ r,a _ Lratoof live Lc-concentrated E=earthquake Y All are listed in the Ana Y Load o,tanat;.ona. ASCE', 7 .-1: 1)35 2012 CALCULATIONS _ . i=e:. .rx.ri.:xt: El = .':.'t(sr,;f in:. Ely = 41.4e06 lb-. 2 'Live" deflection = Deflection from a3.' -:read leads ilive, wind, shoo...} Total Deflection 1. 0(Dead toad Deflection) + Live LoadDeflection.. Lateral stability _ -'r:.50` Le - ...0 ..c3" li''. = 3.65 Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement, 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1 CLIENT: Page 14 of 126 ���' PROJECT:l 7473: j..1. .. _her rfor3[7r.#20� NUMBER: FROELICH DATE: 12308 K . -t} civ,:suite 200 ENGINEERS Broomf:id,Colorado 80021 BY: z ;,, .. ' i • 1 i i i i 1 Page 15 of 126 COMPANY PROJECT N N 57 WO od Wo r k 1-tec 21.1t 11:N RS1 wwb Design Check Calculation Sheet 1AloitVAinAs Siato 10 42 Loads: Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): �-.._._—.-.. ,..e, ®..,,a F.,,,..,.a.n,..�..,...�. y'_t•gid. .,..-..- ..,d__.��m.. mm..-. { nnet • S i ,`n 7num twang'easnn SMit#r.3i iaaett tdz'totogoa seppoes `•.[ Lumber-sort,O.Fir-L,No.2,4x10(3-112"a9-114"l Supports.All-To'ber-con Geom.D.Fir-t_Ne.2 Tela:length:E..1,0':voltorte=1 4 co 114 Lateral sopped,tope a!s ttports,notte0 C at Supports: Analysis vs.Allowable Stress and Deflection using NOS 2012 tee ten Ado„y,: 43.2:1 171a1 %to,.a Ana tJ'x<3eb0sn I Additional Data ▪ 1 FantCRrtICAL LOAD C014 011NA.TiONS ttatte1LA 7t- t; 2 t.,▪ad <5. LAY CICS Design Notes: 1.WoodWorns analysis and design are in accordance with the ICC International nodding Cade,l0C 2012j, on Ma5cna.Coo ge Specification(NOS 2012),and NOS Design Supplement. 2.Please verify 1310`the default dene aIon,alas are approp^ace for your applicaitdn, 3.Sawn somber bending members shalt be taterairy supported accaniing 10100 provisions of NDS Clo.rse 4.4 1 . ivf,r.,,,wci .47Id 4,I 'v (VI lry VW / 6 .. a , “D 1 :Immull......."1.1 1'131) N vz \.,i.;,...„„z= ,— ,—) _ 71 —4, "1..-.............., p,ri „. t311. 0 ---• 1 -- .....'''''''' 0) i '''' ' • --,""-- 1 --- , r - / 0_ , ,.. - ..1 i , ,/ 1 , , ,,,, 1 - i ,...,P•/ ;.,,, i,'S'../ / I ri , i 'T"— f .. .. .........,,, , / / 0 v / 4,,,, s'M 1 / / _.....,; /, . / . .._ . , i ...... ,...... __ 1 i 7,- - . . . / ,..,... .. .... ..,,,, ., ... .. , 2.: , ,........,,,..,.,, , , „, , ., ....,, _K.. ze 1.1:7.7.,:a rigg: .g...- ...._. g — *1511 i 1 —, ...........„_ —._. . i S 0 D 11 . ,,,,,,,, g, g Nq /NI I --- ---•:, t- '1" ... 4 / I ,, I i i I I ' —.Val / a L , C4 U ggg4atia, , g J j r i i 1 tgrg, iir g I , sg4g-gii: .,,. 4%.I "kr si-,,, j . ..„... • 111111MillI ' l',,, I' • • ; I 1 :4'' LTi tt> •."'" :t''''' „ A ii 1 ..,, , ,.. .... .. i .„„.. ..C:31,-- 1 i , sirain::: I. 1 i 1 i - ‘*0. 1 i 1 1 1 ,' 10, / .•1 I • 1 !.' " 1 1 4 -11 z---,-:=1.--•:---I 0,. I I I i. , in ,r--- 71 - i i i iii 1 Vidi -fl 41 / i.--,.. .77;=„„--;7:-.===:- 4 ,., tr.- il I i 1 ,I i If ""-" "" 1 1 ...... , ,,,-.."'-- i I 0 I '2; cfr--"''''''' i ‘,,L, , Z — _. 1 i\ -. 1 1 i ' i ,', .....„,,,'''''''' >, 1 i '. , ...---'- ,c. I ,,id 41, 'I , , I .at + rpt, ' \ , P '''' e'? .1 ..) r 11:1110111 , , ; ; ,...;1 ; 7 _..E71_, . I i ' 09 ii" 0,AI 41/4 =..s... , —,, / 1111, (3x) r)vx •,,/ i cai Si \,...., 4C .'3' Nviea. CLIENT , 6C oc :,,, I- ,1 PcrIla-,7 0- gc( 9/123 Page 17 of 126 4 :T'' ...",. 5032 I '005 PROJECT 5.,146 jr 745 NW 1`,4'Vio-,-,1--1,17..x>Cr"4:l,f, NUMBER: S., -;..M. Bend Crecc-Q '03 54D3831828 FROELICH IID - DATE-n3t,'' 12303 A rper Way SJIte 2G0 ENGINEERS ; Bfaamf e a Cobra( )80021 720-5602269 BY: A D 1,7f 3 r-e-extVe, f AAA Aj Cx . 1 r C 13840 ZO A 0..r. 2 0 .g. q 0 co, -tap R 6-1 Lia i FA fr\-1 .s, 1 2. -0 / 5PAN 0. (5-0 u... PA Ai r t3 :: ccoy-x-,- or ) ( D . ) E 1-22-i Roseburg ' P 2 19 )of :Fk:on 2017.3(15 ifiLo'Engine 2017..0.4 axials D a.b se 1562 Member Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None standard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: 0480 live,L/240 total )ead Load: 65 PSF Deck Connection:Glued&Nailed Filename:Beam1 is n t f ii / /4 4 O 11 4 0 / 7 700 1 2280 3earings and Reactions Location Type Material Input Min Gravity Gravity Length Required Reaction Uplift I 0' 0.000" Wall Not Checked 3.500" 1.500" 104# -126# 4' 4.000" Wall Not Checked 3.500" 1.500" 1404# 3 15' 8.000" Wall Not Checked 3.500" 1.500" 1474# 3 22' 8.000" Wall Not Checked 3.500" 1.500" 337# - Naximum Load Case Reactions Ised fa mryig odd Ica (a fire lu>ak)to caning mantas Live Dead -118#(-88p1f) -814-61)11) 552#(414p1f) 853#(639p1f) 565#(424p11) 909#(682p1f) 1 163#(122p1f) 174#(130p1f) )esign spans 4'1.375" 11'4.000" 6'9.375" Product: 1.5 RigidLam LVL 1-3/4 x 11-7/8 16.0"O.C. PASSES DESIGN CHECKS Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Mlowable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 1019.'# 8031.'# 12% 10' Even Spans D+L 'legative Moment 1329.'# 8031.'# 16% 15.67' Adjacent 2 D+L 'legative Unbrcd 1292.'# 5156.'# 25% 15.67' Adjacent 1 D+L ;hear 665.# 3048.# 21% 15.1' Adjacent 2 D+L tax.Reaction 1474.# 3899.# 37% 15.67' Adjacent 2 D+L II Deflection 0.0488" 0.5667" 0999+ 10' Even Spans D+L I Deflection 0.0211" 0.2833" U999+ 10' Even Spans L :ontrol:Max Reaction DOLS:Live=100%Snow=115%Roof=125%Wind=160% Design assumes a repetitive member use increase in bending stress:4% SIMPSON All r=te rales ae'ratrnaks d ttar rive auas Kami L.Henderson 1 Cargt(c)2016tySmpecnstra,gTeCancayIre.AllRIGHTSR RVED EWP Manager Pacific Lumber&Truss rang is Mined as Afau the manta,fbajost,tam v grra show)co the da+ag mats Tri.cdie dssig)oitoia fa Leds,t,aiig Cadtios,ad Sfax feted o,ths shed.Thee must Ice mooned by a¢dAied Beaverton.Oregon F I-22 Roseburg2:51pi l of iI3.of Engnnc2(117.I.Q4 ¢ui;Js D t:bsc 1562 Vlember Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None >tandard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 19 6 0 OO 19 6 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift I 0' 0.000" Wall Not Checked N/A 1.750" 658# — 19' 6.000" Wall Not Checked N/A 1.750" 658# - Naximum Load Case Reactions Isei fa T#Y*9 pont ka (04ie I)to caryig mambas Live Dead 393#(393p1f) 265#(265p1f) 393#(393p11) 265#(265p11) )esign spans 19.7.750" Product: 11 7/8" RFPI-400 12.0"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. Jlowable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 3232.'# 4315.'# 74% 9.75' Total Load D+L ;hear 658.# 1480.# 44% 0' Total Load D+L EL Deflection 0.6290" 0.9823" U374 9.75' Total Load D+L .L Deflection 0.3755" 0.4911" U627 9.75' Total Load L :ontrol:LL Deflection DOLs:Live=100%Snow=115%Roof=125%Wind=160°/ SIMPSON p°'Ed g g trab"aEsdthe' Kami L.Henderson EWP Manager Ccp,cjt(C)21161y Simpson StrmCogTe nPary Ir ALL RIGHTS RESERVID. Pacific Lumber&Truss svr�ocU cU asHtaithementis,fRm jtist,h®o vgrde;shinmIFis&a' mays rtOq GileriaIvt L by Coxitiaa,art Stas wed„,h,IRS sfm.The cRSg meat be revienei(y a q>�ifi� _. . Beaverton.Oregon A I_27_, 2:4�p1 Roseburg I of Rc:Ni 2017.3.(1.5 iBu Engine 2(117.L(1.4 IaiaLs D:aabsc 1562 Ulember Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None Standard Load: Moisture Condition:Dry Building Code:IBC/IRC _lye Load: 40 PSF Deflection Criteria: L/480 live,L/240 total )ead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 17 9 0 O 17 9 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift I 0' 0.000" Wall Not Checked N/A 1.750" 799# - 17' 9.000" Wall Not Checked N/A 1.750" 799# - Vlaximum Load Case Reactions Iseifa pat tech(v ire kat) ca 4 mentos Live Dead 477#(358p1f) 322#(242p1f) . 477#(358p11) 322#(242p1f) )esign spans 17'10.750" Product: 11 7/8" RFPI-400 16.0"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. 411owable Stress Design Actual Allowable Capacity Location Loading 3ositive Moment 3576.'# 4315.'# 82% 8.87' Total Load D+L Shear 799.# 1480.# 54% 0' Total Load D+L FL Deflection 0.5684" 0.8948" L/377 8.87' Total Load D+L _L Deflection 0.3393" 0.4474" L/632 8.87' Total Load L :ontrol:Pos.Moment DOLs:Live=100°/Snow=115%Roof=125%Winc=160% SIMPSON A a ''�*"g ae ana,s°' Kami L.Henderson EWP Manager $ i Cq=041(C)23'6 bV Smrcm Stra 1 e Co F (66.All RIGHTS RESERVED. Pacific Lumber&Truss sseg ednal a;Wx i the menthe.,flea pG t>mn a grc sh m the dating mets*fcafe ee,g,adaia fv lmk,Lmiy Cacttios,ad Spas Wed m this sheet The ctsiji mist to revienej ty a clxifi i Beaverton.Oreaon B 1-22-- ; Roseburg2:46pt I of Lacon 2017.3.05 iY6aouEnginc'_0I7.1.0.4 uci4s Dut�:r;l 6fi2 Vlember Data )escription: Member Type:Joist Application:Floor Top Lateral Bracing:Continuous Bottom Lateral Bracing:None standard Load: Moisture Condition:Dry Building Code:IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live,L/240 total Dead Load: 27 PSF Deck Connection:Glued&Nailed Filename:Beam1 T T 15 2 0 15 2 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift 0' 0.000" Wall Not Checked N/A 1.750" 821# — t 15' 2.000" Wall Not Checked N/A 1.750" 821# — daximum Load Case Reactions Ise,fv 41,1*9 01Wes(a freIrk)tocarlig mambas Live Dead 490#(306p1f) 331#(207p1f) 490#(306p11) 331#(207p1f) Design spans 15'3.750" Product: 11 7/8" RFPI-400 19.2"O.C. PASSES DESIGN CHECKS Minimum 1.75"bearing required at bearing#1 Minimum 1.75"bearing required at bearing#2 Design assumes continuous lateral bracing along the top chord. Design assumes no lateral bracing along the bottom chord. Lateral support is required at each bearing. knowable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 3142.'# 4315.'# 72% 7.58' Total Load D+L ;hear 821.# 1480.# 55% 0' Total Load D+L EL Deflection 0.3714" 0.7656" U494 7.58' Total Load D+L _L Deflection 0.2218" 0.3828" 0828 7.58' Total Load L :ontrol:Pos.Moment DOLE Live=100%Sno 115%Roof=125%Wind=160°/ S�MPSON' Aft px°ra, e"aia"a,scthe'r crecva Kami L.Henderson EWP Manager g r co>m�(C)�tsry s,�sro recur�,y �a alc,Ts a av o. Pacific Lumber&Truss svg is thref as vha,the mamba,flog idst,bear,v grda,shwa,o this baadg ma3s cpiccie cksig,aofa fcc Imo,Emig Card o-s,ad SMs fislei o,this shad.The±67r must he reAmed b7 a c}u'iAiai Beaverton.Oreaon r.111 r "' �x 3rd Floor, Span 5'-O"(Corridor Joists) PASSED 1 piece(s) 2 x 6 Hem-Fir No. 2@ 16" OC Overall Length:5'7" o e • 5, ! All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results' Actual @ Location Allowed'-4 Result LDF Load:Combination(Pattern) t System:Floor Member Reaction(lbs) 455 @ 2 1/2" 1367(2.25") Passed(33%) -- 1.0 D+1.0 L(All Spans) Member Type:Joist Shear(lbs) 346 @ 9" 825 Passed(42%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 565 @ 2'9 1/2" 801 Passed(71%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 Live Load Defl.(in) 0.079 @ 2'9 1/2" 0.129 Passed(L/784) -- 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load Defl.(in) 0.100 @ 2'9 1/2" 0.258 Passed(L/617) -- 1.0 D+1.0 L(All Spans) T)-Pro'"Rating N/A N/A -- -- -- •Deflection criteria:LL(L/480)and TL(L/240). •Top Edge Bracing(Lu):Top compression edge must be braced at 5'S"o/c unless detailed otherwise. •Bottom Edge Bracing(Lu):Bottom compression edge must be braced at 5'5°o/c unless detailed otherwise. •A 15%increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NDS. •No composite action between deck and joist was considered in analysis. Bearing Length Loads to Supports(lbs) Suppotts Total Available =RequiredDead Floor Total. Accessories 1-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board 2-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live Loads ', Location(Side) Spacing (0 90) (1.00) - Comments 1-Uniform(PSF) 0 to 5'7" 16" 27.0 100.0 Residential-Using Areas Weyerhaeuser Notes tt$)SUSTAINABLE FORESTRY INITIATIVE Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator Opera Forte Software tor I Job Notes 3/6/2018 4:0'/:43 PM Operator ! o€ v � ..C)wsicrEngine: ;8.6.0.1< 13,1 -i c,h Eng,rmers Jo;st0.Otto (`i()`3)624- nh o',k n/_froeI c,h.c COrr, 1 Page 22 of 126 PASSED • Y 1, '"j" MEMBER REPORT 3rd Floor, Span 6'-0"(Deck Joists) y 1 piece(s) 2 x 6 Hem-Fir No. 2@ 16" OC Overall Length: 6' 7" G • All locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual 0 Location Allowed Result LDF Load:Combination(Pattern) 1 System:Floor Member Reaction(lbs) 285 @ 2 1/2" 1367(2.25") Passed(21%) -- 1.0 D+1.0 1(All Spans) Member Type:Joist Shear(lbs) 227 @ 9" 825 Passed(28%) 1.00 1.0 D+ 1.0 L(Ali Spans) Building Use:Residential Moment(Ft-lbs) 425 @ 3'3 1/2" 801 Passed(53%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 ;Live Load Deft.(in) 0.064 @ 3'3 1/2" 0.154 Passed(1./999+) -- 1.0 D+ 1.0 L(AII Spans) j Design Methodology:ASD ;Total Load Deft.(in) 0.108 @ 3'3 1/2" 0.308 Passed(L/688) -- 1.0 D+ 1.0 L(All Spans) TJ Pro Rating N/A N/A -- • Deflection criteria:LL(1/480)and TL(L/240). •Bracing(Lu):All compression edges(top and bottom)must be braced at 6'4 1/2'o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A 15%increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NOS. • No composite action between deck and joist was considered in analysis. Bearing Length M Loads to Supper(lbs) §l 1 Supports Total Available Required Dead Floor Total Accessories I Live l 1-Stud wall-SPF 3.50" 2.25" 1.50" 119 176 295 1 1/4"Rim Board 2 Stud wall SPF 3.50" 2.25" 1.50" 119 176 l 295 1 1/4Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live Loads Location(Side) ;, Spadng (0.90) (1.00) Comments 1-Uniform(PSF) 0 to 6'7" 16" 27.0 40.0 Residential-Living I Areas 1 Weyerhaeuser Notes (71p'susra : .E,i;For ',T. ,,r,r",s,F Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. `fit Weyerhaeuser e>pressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to ;circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/ser»ces/s_CodeReports.aspx. 'The product application,input design loads,dimensions and support information have been provided by Forte Software Operator Forte Software Operator Job Notes 8/24/2016 9:00:37 AM .� . -.. i Forte v5 1,Design Engine:Yashar Safmf r'cur V6.5.1.1 ;•roelict:Frginz ers 1 Joists,4te (5031924-6311 I u... -c rrs,r „ i a CLIENT. "•- r'°(..''')Icslut,,4'''i.,":';-L-' -;z(1:.r,'?i:2:23 Page 23 of 126 503 .24-70"35 I /45 NW M' 1Ncst -,g )Dr 47('D PROJECT: -._ NUMBER. 13,;ru..Oego :97703 t,41 383-1828 FROELICH ii) ,,,,,o,,- DATE: 12303 Nrport Way,Suite 200 ENGINEERS3 Broomfield C ;;Yodo 80021 720-560-2269 BY: , -Slap ,044ycz,e. SerAAA,s: , • , , spA Al r tO -0 Ms- (12 )(2. ) c.32.5 PLC LI ( nil) ( -to ) r Liva ?tic 3Fr32/: i ,... AVAJ r 1-1 -0 / DLtqf-t )12.7. ) s 0 ri--P „SF B3,.. : PAAir 5-0 1 / PLF r. .L., (35) (2 ) r 95 1 (-Ls(3,5/,)(lco ) r- .3.50 Pit-P' 1 FB41: bi-, ( ) C2-3 ) .1- "c81 PLF L L s (3') ('-to) r lao PLF i 7Siz e5/: SFAAJ s V3-0 DL$ cio Pt_r•-- , i III. • Page 24 of 126 COMPANY PROJECT 1`01-: • ® 11:11 . Wo 110 0 rks` Aug,24 2014 09:11 31151 wwb Design Check Calculation Sheet wpoowoos Scent 10 42 Loads: .. . . i,oad 7.1-9, 4',"4,a:a-.,r, ,,-- 1,,,aad ;11:4 Madni,ada Main ,a,n 4aai, 91ad Maa41, F.11,i idad2 Livd 490.4 plt 4e 1 -4,4,141t: nuud p:t Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): t , —,.._ „ 10,-3r— —_, „_. . 4 10'4 0' Unfa,aorad: Da,d 1321 1124 3131>> 2414 4434 Faatored: Toaal. 4134 411a Beane-,' Capackr,4 Meam 4139 4193 Suppoar 4499 4469 Anni/Oea tiewu 1.90 1:M9 Sdppora 0. 4 0,,34 Ldod ..ada,U d0 ;,2 Length L31:, 1.9M Min req'd 1-05 i.OH 913 2.33 1,1O Cb eco 111 1,99 Cb pport 1.11 1,11 Fdia. mmn 923 625- Glulam-Unbal.,West Species,24F-1.8E WS.3-1/2"x11-7/8" 8 laminations,34/2"maximum width, Supports:All-Timber-soft Beam,O.Firt Not Total length:10*-3.7%volume= 30 cult Lateral support:top=full,bottom-at supports: Analysis vs.Allowable Stress and Deflection using NOS 2012: Zxttetidd AMM1ya91 /,, :-t- 990>9. Yrcima Maa4 AMalama.aMaaz.0;n . :1131314 2,/:.. i 1 ?'.. . .-n n. ?.,,71,,, ,, 1.44 Mending,M fa.a 191,1 3ac' . 2.,20 p00. ._.Co4 , 13,44 Dead 3ef1'4 3,99 a <1043M9 Lave Del.I'd 1.13 a 34330 M.3,, . r..0233 an 7.59 Ida,a1 DeWd , 119 . 40,i44.: ?,.:a = ,..2.. , 1r, 9.53 Additional Data: MCTORM: 7,0: pai,29 CM ,I'; ,..•,, C/ 4:3d Cs Cfat 5033es 40,044 ICI 1,3e 269 3 -33 133,9 SI.d0 , - - - 1.CM 1.00 1,30 Z 417'...- 5400 1,110 I.,::,M > 02 1.000 ,.1f, 1.00 1.00) 1.90 1.90 - 2 Faa, E' 3-5 4,1.1A031 1.,,0 1 0:, - .., , - 2 loony' 3.44 En111.ida 1..00 1.00 - „ , CRITICAL LOAD COSISiliAriONS: LC 12 - t-.:-.L .,,, .134, ,,'0,,-,,N - 32N.,7 21. Bendingi.;: 12 .2 -, '3 :- N , 10.200 ii,,,N, 1.1142 .. 0+9 333 22 . C•-. r.W0,1.2. [..dna.) 1.1100 4.504, iiwIll, 3,1,4,0>, 1.-- >3 1. 0, 1.,:-.,,,,cen2,a11ed F.,,eitztaquace 511 LC'. 410 i. ,,, 14 ;t0-1 33,, y41, N,,,t.-, f.,..,d ,,om.N.:i.nar,,,.n,b: ,-17, ; T.0C. ',,, 2. CALCULATIONS 2,210c9i123t 4-i; . a 9,,,.6 In., 1.,-2, 344-1 4.:.>> 2=fi==:,.4 4 fly>- i,ed De f4.E.,:::Lon.. Design Notes: 1.WociaWorks analysis and design am in accordance with On ICC International Building Code('SC 2012).the National Design Specification(NOS 2012),and NOS Design Supplement 2,Please verify that the default deflection limits are appropriate for your applicallcn. 3.Glulam design values are for matenals conforming to ANSI 117.20)0 and manufactured in accordance with ANSI A190,1-2007 4 GWLAM:bud=actual breadth x actual depth. 5.Gilliam Beams shall be laterally supported according to the provisions of NOS Clause 3 3 3. Et,GLULANt:Dealing length based on smaller of 5cp(tansion),Fcp(comph) Page 25 of 126 wM. _ COMPANY PROJECT • %VoodVVorks® a4 11 Ann'*'f:'1 ::F 9'.'earn Design Check Calculation Sheet bawd:lath&Taxa 104:" Loads: Maximum Reactions jibs),Bearing Capacities(lbs)and Bearing Lengths(in); -- tz • l `'d Glulam-UnbaI.,West species.2SF-1.eE WS,3-1/2-x11-7/r' I anneartaree 34 i2 AWnaken WM, Cb 15 Tr;er,RA Eenh.O Pat Na.2 Tota be q}is4-t;r,rotope t„q;i, :sane ru.rge,xt-R15E%a.RR,,al mappens Anelyels vs.Allowable Stress and Deflection w:hq sas yn; Additional Data: E?E Design Notes: 1 WaaCArtneRuyan and'HJT err,...Ryas/Re...Ryas/Rene;me CC'Rae rst.M a::Wr.-,Cads A1.2)127.sbe Sam.Oeuth Camonxppn(RCS 2912,and NDS Damp+ub 4. 7 Masse away that the thane.de15Ckn MR&an aporanrme be Rae eAmeserer 1 CNAsa demo,vaam ant R matmaks OOret.s.4.,93 150 1377E13 rev nkY"an.=afa7:n uCJI..e+ah AN,,A150 1.2D17 4 OWIAM wd a wane breadth 1 aeuat data&.. S.GIWtn aau+n shat tehfeaty.4.-P..4 aarleq to1.*ec i.:s,*150&Cra+sa 3.7 S GENLAM:...Mg 5141,based en snake M PRade:tis).'Ty!ar.a;:Y. Page 26 of 126 COMPANY I PROJECT 4/4 ood Works Aug 24.2016 08:13 3F83 wwb Design Check Calculation Sheet WoodWorks Sizer 10 42 Loads: Luas Deed , 25.5 Lca3.12 Live ;p.5.11 B0L .1, Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 5s Bead 532a-- hive 695 490 Total. 1143 ,.•z zaear i..a: Capacity Bean 1143 ;:s Supporr 1246 172 Anal/Des Bear 1.50 1.00 Supp:^.r% 0.90 Losc cora; -42 Length 5.52 . 2 Min red', 0.52 5.52 Cb 1.00 1,59 Cb n 1,52 -0 CP support 1,11 1.1: ?cc cut 625 r525 Lumber-soft,D.Fir-L,No.1,4x6(3-112"x5-1/2") Supports:All-Timber-soft Beam,D,Fir-L No.2 Total length:6-1.0";volume=0 7 curt Lateral support:top-full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: y^4s gsl5 a1 i 03e9 e<-. Va s e ;ani A x 1,:t/De B3_ x2 , psi P0Ming(4; # 9, _ _„ _.. Dead De`l' _ 993 Live Dell` 3.06 - '979 0.17 - 360 ap 2.37 Total l'efl'a 5.39 = 11186 0.25 = L/245 1.35. ,.Additional Data: FACTORS: CIBcpsiiCT, >4 Ct CL CF Cfn Cr Cfrt 23 Cc LC4 F r' 111 01 3.00 1.01 -. b` :11 1.01 1.00 1,00 1.000 _. _ Flu` 625 - 1.55 1.20 - -5' ... ... 1.7 mi Ilion 1,00 1,00 - CRITICAL LOAD COMBINATIONS: 5h'),r Lc 02 ...: D..>uv ... 1134, V deszgr. _ 910 lbs tobdi. gi _ 2- 1431 __ De'.1.1731.Gl.: Lc 42 = D LI:ye) L\ 02 ... '_ (totall iP:::C1E`,3:: v�>l4E 'SR:Jty h' t....: '1....8C': ..,.�'...,}r, ..Ve. .;:.....-,.:'..2 3111_ LC: are 11 sted in LLe Load (,)17;b1.711;ions; 9 3 1 . 360 2,3 2 CALCULATIONS: Det: actin.: _ 112.5e06 n2 "Live" deflection ofcon-dead- . Tote' L:..;..c..t:;_i 1,70fDea7 Load DeflectictD 1,3ve Load ,a:. ...: Design Notes: 1 WoodWorks analysis and design are in accordance with the CC International Building Coda(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1 • Page 27 of 126 COMPANY PROJECT l' I , _ „,,,, X Al i - I woodWor 0 !'.. , :-- WoodWorks®S :, Sep 9,2016 10:51 3FB4 wwb Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: T,-,k,d Type ?Iv:;2 Bca.,cL T:2.2. :11a6,. FIBT:, loy,i7 L-2, Fp11 BBL 22C.0 p.2.2 . Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): t- 11-8r P4 11-271- ' BntaccT- : llva 701 001 latal 1221 1221 avar2a9. Capacity i.1,.mm 1221 1221 SupparT. 24112 2:50B AnaliDea 11:iam 1.0G' 1.00 anppc, t 0.47 0.47 Load caab 22 2 LvntC 1,03 1.03 Min :. l_oe 1.00 Cb 1.00 1.00 Tic auzpoB 1.1.1 1.11 B7p sup +.52..,, Bn Lumber-soft,Hem-Fir,No.2,4x12(3-1/2"x11-114") Supports:All-Timber-soft Beam,D Fir-L No 2 Total length:11.-8 2";volume=3.2 cu ft; Lateral support:tap=full,bottom=at supports: Analysis vs.Allowable Stress and Deflection using NDS 2012: 11r2;1:e0:.= AzAlysz..s 1talue. Dcaign Wile 11111.5 AnA1y$13/ 151gm , a1vTar s tv .= 34 6Tv' = 2 paa ..,16v'' B.32 Ber.:ilngi, fb = T71. Fb' . .7'i3 pa fbinp$ .- 0,76 DIvad N,fi'n 0.07 , 0:1/999 Limv B.',. C.0S -, :.-1.1904 0.29 = !1../21,. in 1,L2T, Icai Def1'm 1 .ZO = L1092 c,.5e . :,,,:-A,:, il ,:,,.-... Additional Data: FkCTC)R3: F/31q)BilC0 1124 (.--t CL Cl lb C7 Cf,2, 2. To 114 150 1.00 1,00 1.00 - .. - 1.00 1.6C 11 2 Tb5:- 35c; 1.10 1.,:io 1.30 1. c.; 1.1D1 1.:,c, 1.:.;c3. 1. ,: c, .,:c - i'cp' 405 - 1200 1.00 - - B' 1.3 million 1.00 1.00 - .. - - 1.IC. 0.33 , 2 Em2aL 1.47 milliot, 1.00 1.00 - 1' CRITICAL LOAD COMBINATIONS: sheet : LC C2 = 0,19 V = 1932, V 'aes:171: = 1136 lba Bec.di-,04): LC 42 - D+L, X - T1511 ln,B-It BcflecLon: LI 12 .. L'6-1, :iivel CC 42 = 1›.1. tocal: B=lead L=live S=onow W.,1919 1.=1:41pat ..,7.,,,,I.,..,: lame 9119o:..0: 11'1' 41.. 1-Ll'a are listaaq .17. T-Tla A-naLy1.5 c-B-cpaC 122.0d " 1. .910: ASCE: 7-10 I IBC 2012 CALCULATIONS ).afiAvrtlr,n: ET - 540e06 111.-i92 :.i.e.tr.19cticm = Ce? :1.r:'1' fimar. all noc- ea, Icav,s '1,22? , ,4,1c,1, mc.aw- Tatal Beflectiaa = 1,50“3ead 3.199 rj.flec:icr. ,- Liva L2ad 19f1em::1cn. Design Notes: I WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement 2 Please verify that the default deflection limits are appropriate for your application, 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4 4.1. Ii li MEMMEMONW • Page 28 of 126 • COMPANY PROJECT git Wood Works® Feb 9,2017 09:39 3FE35.wwb Design Check Calculation Sheet WoodWorks Sizer 10 42 Loads: Load iftl Magnitude 5,nat tera S,47:1 Fod St:srt. FD41 Loadl 7eus rill a" 33 Load2 0sa 125.5 pit Self-woiDhe. FOL 21,ff Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): • f 130012 thidmt::im,sah Dead 0q0 01h3 Idoe 751 702 ei4furod: rotal 17a5 De:trim:4, Dapacidi :450 2540 ArairSoa Seam 1.55 1.00 Support: 5.47 0.41 Load pcmh 57 Lonqlh : 22 1.22 Min req'd .22 1.22 cb oc; 1.50 CD min 1.50 1.00 tdo acysamrt 1.11 7cp :alp 3,20,‘ Lumber-soft,Hem-Fir,No.2,4x12(3-1/2"x11-1/4") Supports:All-Timber-soft Beam,D.Fir-L No2 Total length:13-2.4;volume=3.6 cu ft.; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: 0001.10 Uvsign V -e Unit AnAlyz1.15.nesa4n 5he.it - 44 7v' 120 psa t3370d• Deading ,i flo - 120 11.,' psi. 74:471,' a 5.9a Dead Defl'n 5,12 01/075 Live Defi'd 5.10 - 4L;99!1 0.44 - d:.!!10 in 0.36 Total pet"Yti , 33 L/47-4 L/240 In 5.00 Additional Data: FACTOR3: F/Edpsi:CD CM O, 10ft ' Cr 1.13300CI Co LC4 ISO 1.05 i.5D 1,00 - - 1.00 0.00 1.00 2. 71)', 8470 1.5M t.5D 1.01! 1.000 1.105 i.50 1.DD i.00 5,00 - 2 Fop' 405 i.05 1.05 - - 1.55 1.00 - F" 1.3 :ni1i13,8; 2 Emi " 5.47 m!)Li ca l.54 3,50 - 2 CRITICAL LOAD comeNArioNs Shour ! LC !" - )07t; deatmn 1161' Lfoi T.C. 42 M - 44:07 tba-ft Deflection: LC 47 a, Dal, lavei LC 42 - 5,1. 7,deid S-snow 1-370acf lraroof live Loaconosatrated Fi•oarthquaR Ald LC's are listed in Analysaa outpot Load oombinatlonoi ASCE ,--1D 7 10C 170t2 CALCULATIONS. Deflection; lb-ln2 "Liv " deflection - 00-31.'33';0'7from all :ionadaad loads: live. wird, 330017-.1 Total Deflection a 1,..55Dead Or, Daflectiord 4 Live Loss! 7oflactich. Design Notes: WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NOS Design Supplement, 2.Please verify that the default deflection limits are appropriate for your application. 3 Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1 _ _ CLIENT: Ors,, n 97223 Page 29 of 126 813'5241-7005 PROJECT: RJf ton Dr,4205 NUMBER: 97/03 -383-1828 FROELICHUte DATE: 12303 Airport Way,S 200 ENGINEERSR BrO0inft-10.Colorado 80021 720-560-2269 BY. itzt. AtOR • • 3F M - • ZS 0 r)Lr ( ) (2:4 ) r 440S PI-S. • LL (1 " ) (40) s eoo Page 30 of 126 • COMPANY PROJECT a � ' %VoodVVorks. Aug 24,��1 .:r:<'3 3=H1xwa - 6666 6666... 6666. 6666. . Design Check Calculation Sheet W000WorxW Siler 10 42 Loads: blf 1.747 4911 212, 690,9 .e Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): • 3.1 4 1 44 111fq: 901 930 ..cr 7.<: 14271 C9;5260412 169, 1776 1091 1740 1745 6434 1_71 :yr_ 3' ..M i0 42 1.044 1.74 9.77 Min ea' ::2:..nn n1.90 "`7 246 990 C1,9_ 020 Lumber-soft,D.Fir•L,No.2,4x8(3.112"x7-114") Supports:An-Timber-soft Beam.D Fir-t.No 2 Total length:3'-1 4";volume=0.5 co Y.; Lateral support:top=at supports,bottom=at suctions. Analysis vs.Allowable Stress and Deflection using NDS 2012 y&_4 2r 122.44 : 4014 A;°u.':jx 11111 1144 :12,40161 . 9,10 9.01 ...- 1 n - 9129014 - 1291“1 1. 9,99 Additional Data; + c-.-t .03 _ .0 1.00 ...00 �2 1.40 6.010 ..�, -.-�;) 1.00 - 2 ;9 049.91 97 4011,94 1.90 7.09 CR4T1CAt,t:?0C C':%hMB'P'tATiONS: 110,ea _ _ _-- _ f __ _ . _._L_:.42,644-.4;4:646 !:: � c` .. P.fl nn 2444 0.61,14i..420;.. 211.1 4414 : x 2 11.0 - - - 011 640-J44:1 - ..<w,.. 1.1.1 2,1120,9r. . 1,19:90961 1444,2 9e111e4b009. 1794 1424 bettectibb. Design Notes: 1.WoodWorks analysis and design are in amotdance with the ICC International Building Code 013C 2012),the National Design Specification(NOS 22012),and NOS Design Supplement. 2 Please verify that the default deflection?units are appropriate far your appiioation. 3.Sawn lumber bending members shall be laterally supported according to the provisions 01 NDS Clause 43.1 41) 10.1lig.) , XE ).* so• 296% r 1 til IR / 1 3 / ....... -.1 4' I NIP alrewer. 11 i 1 „15,2p I, .,, ....... /1,, i,:.....i— . ,....A . , -- s „-- t --„, El , I, , „.. , „...,...., „....., .0,20,,e„, IN& - 1,,........... ' ': ,, h!..... =,.....'.1 , ii ....., ,A --. "-i.: 1 V.:-.7.- „._:::!. -1 - 1111111111601 - :i di 1ir i i \ nom.-- .....„--— 1 - 11- -c--- LI 24' \„,” i • - - ....... , _ I TYP f 4,- ..11..............1. 1 -0 0 :0 1 0 (.4 0 0 I I [ — iv (5) j-'XB) X1'/I XE 2."41;) recag /3--R-AmtAla ;C r u OteV,in VS223 Page 32 of 126 005 PROJECT: 14:5 NW Nilt1c ry Dr., %?; NUMBER: :u. Bend.OR-_,con4 703 • 541-383-1628 FROELICHL Y DATE: J 2303^�)�..!�`f(i CW,,SUiI0 2 0 ENGINEERSA Broomfield,Colorado 80021 720-560-2269 BY, FRAA,,AAAJ DESS • • • CLIENT 50,oC S , -lor-,r,•;:,r-,St • Fp--lcx c Oregon 07223 Page 33 of 126 503-624-2005 PROJECT: / 4 .,.. Vi , cariloglon Dr#205 NUMBER: 5-r-353-1 328 FROELICH7-1 ::'''''''Er:YI'l-'. DATE. NGNERS12303 Airport\'`.,lay,Suite 200 EIEI Broornfolc,Colorado 80021 wwss.froetich-engi n eer111 720-560-2269 BY: 1 ST Ifco 8674 M., 4:7 G z.r.--9 R. <- : i 2,... 1, e, 1 1 1 i 2F c3 , / '-J1 2;-- .., 2_00 c5)(z1-)(2) - Lao 1 . *,...),,._,.. - : L..E. . 1 /— 3 44 1 i Oec...k..s. Aeolv6 --z 1 q ( Fax:,/41/4 Ci-r 0._ 2.0cs ) &0°*. At Org, 119(11') v 1/%1'0 DI_s it )..-r (...-if I)(25)(I 2.1) s 2-ci0 0 2F Sze'', i 1- Di_• (3)(VT) _ir .?1 pi...p- 1 1 ! 0i to I Li L L 0(3) (cto ) s I a° PCP. t I I 4.' 9 0 PLF 1r ILI ( )(7-') (4.4 0) -sr k G 0 Pc..c i , IT LOAD e,-sitiAkFzem. 2.p BO 1 DL. 39 250* i LL A-Z4-50* S -= 2.,,tve,o44 15:Ba . , i• Ar\I s- Zo 0 DL s- 12-0 )(2-1") 1- 11° PI-F CIEN2 nton ST Poiyard,Oregon 97223 Page 34 of 126 A l'ttl.,,, .. ,. 03 24 73J5 PROJECT: L 7451NW t t Wash r "o- f 225 NUMBER: F ,.., Bend,Oregon 97703 /-� t%t °J [� 541-383-1828 FROELICH ❑ 0`'nv r fir,. , DATE: E i 1 G t t+! E E R S 8 12303 Airport Way Suite 200 Broomfield,Colorado 80021 w-ww.fraeiich-engineers.com 720-560-2269 BY. 'SPAN s S I O t l r Lo2 -a i 1 ,:B 3 tc�o t "r -192..04 Lt r. -L. s 'i D o b , $100 9 . 21, (357. d` •spAN s S (om.)1 DLr 12.0 (13 5 (z7)112.0 -t-( 55 cz1) tl2o LLr 03t53 (.40)5 20 PLF SPAN s 7— I'. tJL: (/y ')CI8) t 12.0*( 11)(z-7)t ► tCLISt •` ,fl0 PLF . ,A LLxc,3'r3 -) x. (too ) t01t/A. >,') Lcto) s 2.c> PL Lr (I4- ') (2.5) r —S50 FL-F CO I - ' . - ' E Lr 12.0 +b5)(27) 1- Iz.o ..t.(zf) 2-'; s .4-'30 PLF L L: ' F' Z`) t �.c - mob , FB 1: i .. Sf AA1 s 12 _6 DL s (2 )(18;-f1- i20-r (35(Z-7)-1-)2-0-t-(3 ) CZ-7) L L.,- ( ' 4o ) c ) s -i 0 PLS` CLIENT: 6969 SWroti N Sr. • Portland,Oregon 97223 Page 35 of 126 503.624-7005 PROJECT: ,7111 745 NW Mt.Wasnington Dr#205 NUMBER: Bend,Oregon 97703 541-383-1828 FROELICHC)ffe DATE: ENGINEERSA 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 www.frvelich-engineer>.c4,m 720-560-2269 BY: „° ,' r U SPAAJ CAI -- ( ' )(i8) + 12 -t (é)(2. )-rhZo -r (6)( ? ) el,c) ?t,F L ( 2 ) (6')(oco ) s q PLF 1--x ( 6') (2.5) c15oPGA- Pot/kir AGFP 1Nr Lo farms ( FReo 1F s$, ) Po 4A)r cAD _o- Greco,► r.82.) DL 5 DL s ZBao s 1550 LL s I Soo 1750- t SLr ger) * 2F SPAAJs )Li -© v DLt (z.')('1) Y 12-0 rt ( t') (z7 )112 tC t f)(2-7•J P'ra1NrtvAo o,32 tt) 19 3.30.44, 1 LLs ( 2)( 1r) (q0) s o FGF • r 5 Ls (7-1)( Z5 ) 5o Ft-F Lts(13Z3)C >("kb s`�Yo Fes 11 [�t_. r 1 Z 1- Pt-r'= {,,,.,t,,, s �- a pt-t tl . f •SPAAlr F''otAir 1.4=6A Co AT % _ 6 ( ctzom, IFt310) CL SL EQ s 53 CLIENT: s)s; --k Po- • • • 7'22-• Page 36 of 126 PROJECT: NW NUMBER: 54 -n3 FROELICHDATE: 123=03=1,;por' ENGINESS BrecedCccdOU21 BY: 72a 560-22 -) 2-17S 12 jo 0 L Ar ) t4t (q5(2.4)4.!co-149)(2-4) to t,(491.(ZX.„ 1020 Pt-F „,/ • 60A "I"-Ace:PA^. 61.../eLl",e, Tizos.m, Ale.oVc5,0) ) ) CC* Sibs. (155 IN) (25)X /5-00 bz , v Wo r Wood s COMPANY PROJECT 2T)/12 tl) ?FPI Ape Page 37 of 126 • Design Check Calculation Sheet IR 4? Loads: • , , • • •, • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): vat . ,,• ••747,... .74,416 71.47,7.1.3,11 70,40441....,7 0.0.111 moo.,oo A MARA...Abel Abb.k feekeekb bed beeeetyPotett PAPP*cetAW Ix beeeRy;keep.kte-wwe%I%bew Ik 00 Met.:See Akeekee levate for renweNn horn%AAA Iced 4001,041.1/(1,(1 Sisters-Sal.,West Species,24F-1.8E WS.S-1/2*x7-1/2" ;%ekewebette.41/7-mememum mak, Sweerle A.Yierber.mel Beam.0 7w.d. ? Tww AAA k SlIP intent. I 7 og , tkkekt eemmt.ky-kW,bekkeeT at summAN Analysts vs.Allowable Stress and Deflection .??0,5?el?: Tee.eye-, 7.7).-beee, e e,e Additional Data: • IAT( ;074- Design Notes: WeerMalts ar,aask 61.1 wAegn Re$I1 A.Xtfair•FIF%eh Ike!CC.InberabernIRANTrA Coke pEC 210 Ct.TN 711.7.4 (NOS 3I)12), 50.8 Anse Supbeernet 2 Poem wity Ihat ha defect debeetem 50,4, Eporeprets Son week appieetkA 3 0,0W:1,1.01%Rees am by beleria%kontoeviro MANSE I 17,201b wed maketsmItemi ace:Teem%mit)4,71;i1 A)%)I 2607 4 Orbees tAtI eve tmeeleAcapteity us the Rep a04%trek NA.re elf newt,kree4werAlmn (.0elliP0430410,0•1111400.1 beck% =echo mad%I<:ANA%TPA OwAten*11115*1,4 be NW*%%poked ee.bwefeng le:he betweAne et NOS Clause 0133 2 GLULANI:merino keep%IRANI en enn4105elb:RIM-beim%7Cp(7,mbeeM1 S lee:OAR deileMlon%Week.twen defenbireks ANA embeeket bark.Ave deRekkon.C1Ni0554&tient:a.. detwe) , . Page 38 of 126 COMPANY - PROJECT ,AMPk,. lig lik w R p 0 V WO 0 dWorks i Feb 11.2017 12:09 2PB2 vivit) Design Check Calculation Sheet WoodWorks Sizer 10 42 Loads: .. , V11 Utart 000 aSwit Ke4 Loaci ,,,,,,i .:...,,,7,3 1,74. N', 7.,-. ti., , ,•.,:,. t3.1, pI8 Load.? 5 o ev 6,4,57 151 No 8.87 ]..6.7 In.-j i:44 ' plt 11,0U 15 1,87= 18D8 1=8 Loadr, Live 881=4 4 74 .444 13758 los loadS f.aa 4: >4 =8 14.88 481 lbe 1.4417. '1,tv= Ms 14.88 1151 ler 8745181. .711, No P,.16 22,D8 278.8 278.8 Of Load17 Liu= P3,7-,, ;.,:.:1, N, 14.71 13,18 I88.D 158.1 pit lboall 148w UL 11.85 1171 lb, 104,112. 5880, 2=1st =o 3.88 2885 ,km, AeU-weicbt .8514 ,==11 U111 84, 11,8 1111. 'Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): ......,___ „___ , 22-1 2" --. t i I - . - . . . 1 tla 11' z .. Unfact.,,,, Dead lf,, 7150 21144 070 Snow 1724 ' 3781 1.15 Vecto=em: , . Total 4141 11718 3300 boutiog. Capas7Ty Beee, 4118 .4"841 3385 8.557011 1121444 1477 Anal/De, 1=am 1.81 1,83 1,00 Support 4.17 1.87 0,97 Load comb 11 e1 e2 Lanett, 1.ID 1.85 0.1,5 Ms= coe'd 1.40 4,100/81, Cr. 1.88 1.18 1,07 Cl 414111. 1_87 1.10 1,11 Cb:Pippo,: 1.01 1. 7 1.07 Fon r., 821 63:5 825 hlvanimem 0053 14444111 govemed by itte(Clawed width PIMP auppOrfinig min/401e Glulam-Bal.,West Species,24F-1.8E WS,5-1/2"x1S" 10 laminations,5-1/2"maximum width, Suppolsi All-Timber-soft Beam,D.Fir-L No 2 Total!engin:22i-1.2";volume= 12T Or,11 i Lateral support:lop=full,bottom=al supports: Analysis vs.Allowable Stress and Deflection using NDS 2012: ctittet-loh A.n.slyr.,1 V41448 1.8014411 Valbe Unit Aealt1.41,410a108 Shea, fv - 148 t141 . r65 D71 ,t=r-erm v 8.8'8 Do031o=,.1 p=s '1.,"4. a 6s7 beruil ng •-• . Z,741 1,-, fb:Pt' 7, 0,30 74=a,1 7,,1118 1,15 Live 101,', 7.13 --.I.=.611 8.81 . 4.15,11' to Total.De f 11ii iii,ri 9 <1.,,iii11i ii,-1.1, = i,i Z 4 is 1,I. Additional Data: FACTORS, TrE74'=1i,18 CM Ct. CI, 21 C8 Li CEis Uotre CA1671, 7.40 11.` 284 1,811 1.77 ,77 - 1,10 1,10 1.10 2 tb`v 8101 1.IS I.18 1.48 1.880 1.840 1,18 1.11 1.88 1.48 - 8>0,- 2477 1,41 7.18, 1_44 7,111 1.181 1.78 1.07 1,71 1,.7c , R Foe' 611 it' - Eirday' 1.86 m111167, 1.84 1.1,7 - .. . CRITICAL f.OAD COMBNATiONG: shnJn ) Lic 02 .4=1, V 7, 0112, V 188,4,,,, ,.• 0,:):,7 L'ss B8>ner:74 4 I, LC et, 7= 171, ,? = 15713 ,13-E:, 7,7,1m=d Loli.ve 584=cou,17,714840 1=1,,,,,,,,, Limroot 1.ive Lc,,,,,,,,e,==tiat=0 117==uria1481,, ALI LC'7. are 11,,,,, i, 8,,,, 11,3 ,,,,, .,,,m164 1,0411 ,7,mbit,181,,,,, A11,17, 1...1 : 16,1, : CALCULATIONS: niiiii.i.en him): iit "Live"der ie.:it:inn = hiininn ii t in) i:roni a i ii nari-dean )csda tive, wind, dr,: , Toto1 PoLtoct A^,5 '. .1...",:i%17:4.1 44,4.1 741:11:5:1144 -, 1.,Va. tozur 1,eleo1i.ca. Latoial S74ob51.11s- i'' , La = II' Lo 7, 211-6.11" 111 = 11. 1: Design Notes: I WoudiAloexs analysis and 48>55)147>4 in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),arid NOS Design Supplemera 2.Please vanity That lye 400.4)1 001144444047 limits are aoprondale for your application 3.Gliders design values are for materials conforming to ANSI 117-2010 and manutedured in accordance with ANSI A190,1-2037 4.Grades with equal bending capacity in Me top and hohom edges of the yearn crose.section are recommended for continuous beams. 5 GLULAM:WI=actual breadth x actual depth. S.Glulain Beams snail be laterally supported according 13 1148>provisions of NOS Clause 23 1 7.GLULAM:beating length based on smaller of Frmdension).Fop(compin). Page 39 of 126 COMPANY PROJECT 1A s "-ARWo h a i./ feo.'1.1 l:<":it 2'r'Ci3w0:12 Design Check Calculation Sheet Wood Wi;hs Sizer 10:42 Loads: i.<:. "21.4' 1514.4 r ..6d.: Gni. 4611 :;r TStart 45s 0,1 pi U2.02 .tact ..;0 nt° ..:.. - .,. 32.6 p1 t • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): H X?' _:..20'4 2•1 enfae644,6,' _.1111 Dm,d 6132 ..._ : 2426 1E16 7 f^.44.441,11: ;6^r2.,44 1111 1111.. 1111 11511 bempeee 12`25 1.742" Anaiebna 0.66 r7 Ldo4V:.4 -a 1.2a 1. . 14 mei - - ° 42 Ltemth 4.21 Nin 4e..23 4,234 flb 1,0n Loa ;x, , :b F 4 p,,,'. ±i25. ''''MPPn1u4417040651r0518 Caveman Say 4620 ruddRed aRp1h al the topped:6g mamt8r: Glulam-Unbal.,West Species,24F-1.8E WS,6-314''x21" 14 laminations,6-3/4"maximum width. Supports:Ali-Timber-soft Beam,0 Fir-L No2 Total length:20'-&.5";volume= 20A cu,ft,:. Lateral support:lupe toll,bottom=kb Analysis vs.Allowable Stress and Deflection using NDS 2012: • 1111*8.ete:1 A4,41 yaznc IS Its% ben ice Ve lye >:i... `.nal.Qft -1:esipb . t2yj1'u' 6,5.1 ssn • t; .:., t - .... pet Lhf/t. - 0.94 044d Dee.1.56 Live ,3 x L1301 en 2,51 To. .. 0466 .210 1.11. 12,6741 0°1,R Additional Data: FA;-<;16s. effiima11651 CM Ct. CL CV 6)5. <x 1145 Nete Crc 44,. rv° .00 1,110 1.0=1 1,00 Sb'-, 4410 11 1,111 0.923 1.00 1.00 1,00 1,00 - 2 ':,1' 6201 .. 1..1n 1.00 e• 60 Se:. 6.`a :14CRITICAL LOAD COME NATION$:e _hoax' ;: . Mf-L, - 17530, sieA m !4212 :b3 Nend 3 ;. ,{ 02 . ti.'::.. e. . 661111 155-f4 Deft: .012". 4.7, ftelly, 7,440 41,4015.0 _ live 5c-" ..."_.s^ed r-cacthr;.�;ake All -, ,.t. CALCUviT>ON,3; 0e014:44,4n: 1 4. 3551,16 1 _ "Liee" 44fleetIma belltee4154 -dead .wends 1i•✓'., 41041, sn44.1 Total befle,__r . ,,,,x.0 :7:0.1,..Ctioni 4 .....a 0-ad Deflecta,n- Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012).the National Design Specification(NDS 2012),and NDS Design Supplement. 2 Please verify Mal the default deflection limits are appropriate kr your sppli anon, 3 Giulam design values are for materials cm:donniing to ANSI 117-2010 and manufa0uted in accordance with ANSI A1901-2007 4.GLUtAM:bid=actual breadth x actual depth.. 6.Giulam Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3.: 6..GLULAM:bearing length based on srnailet ct Fep(tension).Fcp(comp'n),. • Page 40 of 126 ' _ "�" _ COMPANY PROJECT 41! 7iii) ® y I %%too Works 5435.11,2017 12:13 2084 w'wb Design Check Calculation Sheet WoodWorks Sizer 1042 Loads: Lo8,1 .,',..3.,,.,:i.,3"" Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(In): ____ __3.33.3 m m 5,.8.: — f _ 3333.. a•_3• Oral actin re:l, 2a91 {±eav 7002 2591 t, e. 7134 3333 ;u .real: 3333. 2 5457 lora: 1>L:_., 3333... i00<,ifstl Cepa.-it? Beat, 1014 Sc75 — 3475 Support 1`.i{:.. Anal/Sas � 4ci Beam d. 0.96 0.96 Supncr E: _.e0 00 Load eamb 2 1.55 Length 4.37 i.>9.. M,, r'ay's 4.27.. Fp.. Ci, 1.511 .1.00 Ce c.... 1.00 A,55 Ce support .013 r,60 ' — ***Mown)4'r's ' 6 25 gearing imago o governed by tins f(3%,),4•44.1 WO el the sueLmiling member Glulam-Unbar.,West Species,24F-1.8E WS,5-112"x96-112" 11 laminations,5-1/2'maximum width, Supports'All-Timber-sot Beam,D.5ir-L No 2 Total length:8'-80';volume= 5A co fl Lateral support:top=al supports,bottom=full; Analysis vs.Allowable Stress and Deflection using NOS 2012: Fritarken ,l74Vales I 3Srat 0,41 __ ., 54eai 5.13:5 pal fvirs,4 ^' 13 5 t7.ad eaf.P0 2.3.4 Live b1'o 0.04 . c le 4.14 7574.11 Is°1'a rl,111 .__..� - 74740 10... - :8.0 1 Additional Data: FACT:L00 F: 33147 77n Ck 3.. C2 Cfo ify4 065 74 .. `.. ..'n _ .0s.e 1.3e 2 Cop' F`>G _ 1 _ " .9 al.,.acn .. 3.: 2. CRITICAL LOAD CL MB'7.IATION • - _- s'4.._ :n..4 Shear 6(. 4 _ Defftc,ctao_: L4 k2. Ak. :1131_. ka tee i. Load comaioa47aas, Ae42 7-17 . 3134. CALCIli.ATIOS: _)e 1 t' . _ -r 06,35 4L-leC dana4tien a Datlektkaa ,all ner.a.ikad le4da tklva, wle.f. se—.w... 'fatal C'-. 1 c •. r;.. 3eflacrleal 4 Lit, La4ai 3333':. ,,a. L,. 1.001 .sk 1 ,+:: .'_r ...9E 10- 17.5k Design Notes: 1 WeooWorks analysis and design are in accordance wilts the ICC International Building Code(IBC 2012),the National Design Speciecation(NDS 2012),and NOS Design Supplement.. 2.Please verity that the default deflection emits are appropriate for your application.. 3.Glulam design values am for materials contorrning to ANSI 117.2010 and manufacture;In accordance with ANSI A190.1 2007 4.GLULAM:bad=3Gusl breadth a aduai depth. 5 Glulam Beams shall be laterally supported according to the provisions of NDS Clause 33 3. B.GLULAU:bearing length based on smaller of Fcp(lension),Fcp(comp'nJ- Page 41 of 126 COMPANY PROJECT wood\A/ q, 4 0440 Feb.11,2011 12:15 2F85 web Design Check Calculation Sheet WoodMilts Siam 13 42 Loads: 3 ecaa-3TY444 4444 . .^ ,,t. • 44477,4 441: eel 01,11pit Fri_ er<< ntf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 5.,,7, o�3a f.,,' 2880 1411 04,4,^,. : ed444 4 44 44 Seuttuu: :p x<:=l' 4444. 444,4, 6145 An :rl.'.,.,s 6748 4.44 1.00 Suppurt 73444,1 ,. ..R.. 42 n.1: r:ea,e h42 Min g':s l:as 1,84 041.001.44 .. 1,40 1.00 Cl: ruc:,,::>_e. 0.07 10 <c sup ;z= - 1.01 4444 615 Glulam-Unbal.,West Species,24F-1.8E WS,5-112"x9" 6 laminations,5-112"maximum width, Supports:All-Timber-soft Beam,O.Fir-L No 2 Total length:8'-3,7":volume= 2,9 vu 0; Lateral support.top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2912. C721ter.1.4 ,A0.1.5141e Yxloe RU4Stp `24 :e- tlrtOc 340aa1041404744l14=40 .y o141 £P- 2124 1243 - 4/005 :,r 4,204. - Hk 1 17:41114 '4 14.26e7 :''/0' 0441.'0 12 4 02022 8.'25 .. 44 -.0441' x 194 ,4i . 97 45 Additional Data: FACTORS: C/iipsilCD CM Ct C.., 024 048 Cr Cftr. :,,ten .00 2.5 c"4 2100 1,04 1, '1.00 1.1100 1.410 ,. - 2 '0 - LOU ). - i. r.-..., 4.70 i...-4-8 1,00 1.00 t .. , GRlTIL:AL LOAD COMBINATIONS: «. : CO rt)., : .. ^ .,14. :1:0 .. s. .. 4444.., s.. Cie',. ...t-. t. 0"._,.104/0: ,24 02 = 041 1 A1� . .1. i .e AI.rl 1 __ __ :8:4 04.444A44.1440: ASC.: , 18C 21.2;,: 021,C144F:1;/0i41. /7/I'.-7tr:.oa: 01114-4,2 'L ,z: 4444 i.e,. frum 411 :z ,s...mads ,::vt; ., Design Notes: i WoodWorlss analysis and design are In accordance with the ICC International Building Code(IEG 2012),the National Design Specification(NOS 2012),end NOS Design Supplement 2.Please verify that the default delecAon limits are appropriate far your application. 3 Glu;am design values ere for matenats conforming to ANSI 117-2013 and manufactured in accordance with ANSI A190.1-2007 4 GLUI.AM:hxd=actual breadth x actual depth. 5 Gluiarn Beams shall be laterally supported according to the provisions of NOS Clause 3 3.3. 8.GLULAM:bearing length based on smaller of Fcp(lension},Fcp(comp'n): • Page 42 of 126 _. ...,....___....-- _ COMPANY PROJECT k,® If 0 0 d wo r Feb.i t,2011 12:16 2FB5 wash ';fri'r'14'4334+t34 WO taO C... :'4 Design Check Calculation Sheet WocdWotks Sizer 10 42 Loads: Load „, .= m . -YF ,.et .�_::.: . .ocecian 1121 _, Magnitude !::rt: ioadf ;:;`cad u,:z.. :t'_.... "T ?' v pit 1 Loa'i2 Live120.0 ptf i,6,- :;naw . 350,0 p.11. :"'."ad sill 1;11 5-6 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): Pead 2357 2557 2959 2s59 1331 135) rantoixidl rota! 6044 6044 }SegeinQ: Capacity Near, 6044 6044 Support 6444 1,414 .Arial/Flex loam 1..00 .04 Ss;pncrt 5.94 0.04 Load bis. 53 116 Ni,gth 2.6e 2.66 ':seq'd 2.66 2.66 Cb '.ilii 1.60 Cb,r... 1.00 1.00 Cl,support 1.11 1,11 Fc;,sap 6:25 625. Glulam.Unbat.,West Species,24F-1.SE WS,3-1f2"x11.718" 8 laminations,3412'maximum width, Supports:AH-Timber-soft Beam,D Fir-L No 2 Total tenglh:T-11.3';volume= 2.3 Cu ft.; Lateral support:lop=full,bottom=al supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: halter-ion 2,7411442,7411442,741144,41.5'44,1 43263 ee Vale= -30314 21.045x5.1410653.101n eheer .. 1.75 - .. 2s5 2'4% iv/rv' ,. 0,94 Fser,di:g i+1 fb .. ).Se.'; ,5: -2100 tin:' 13,/Fl,' 4.61 Deed Left' 0,07 - 4314a4 Lzv14467Deui'y 0.07 412964 ..30 lne 0.23 Total Oef1'r, 0.17 -. 1'51.. 0.33 .. 1./240 Is 0.14 Additional Data: 0112T0€1S: f/filan1l2D CN C1 EL CV Cie Cr -.f_t 001^.51 Cn+Ev: 1.01 Fv' 269 1.,1111 LAO. 1.05 ... 101.00 2 fn'. 2403 1.00 1.00 1.00 1.300 1.000 1,00 i.,('0 1.04 1.60 - 2 Fop' 656 - 1-110 3..00 E' 1,6 million 1,00 1,00 1,00 - . 3 - Eniny' 0.05 million 1.00 1.00 4 - �. --.40 - 3 CRITICAL LOAD COMBINATIONS: Shaar : bC 02. = 0•L, - 5550, V design 453' 164 Nendinglli, LC 52, a 1'81., '4 r '.4720its-it Dello,.lien: L.n 43 .7111.15; (11ve0 LC 43 = 13,'i1,11,11, 1t4,':a1; Prdead L=. S'-s.<oo rewind i=imp t.;. >,,.: 11-,L::-,or.certrated Enearthqua6e 1,14'a ate 3,114,1 :n the Arae ds Loo:' combinations, 0000 '1-14 . 12!:4,Y CALCULATIONS, Deflection, E1' = 016s0 11:-10,1 ar4vea duf1entano Aeflentint, trou a:i.., ,..,n-d3,1 OAd0 lI:.ve, a-id, snow.:.:' Total Deflection 1.1,1(Deed Lead fs;f'-eniden, + Live 1,02,1 0,6111.en4.:ion. Design Notes: t.WoodWorks analysis and design am In accordance with the ICC International Building Code(MC 2012),the National Design Specification(NOS 2012).,and NOS Design Supplement. 2,Please verify that the default deflection limits are appropriate for your application. 3.:Glutam riesge values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4,GLULAM.turd=actual breadth x actual depth. 5.Glufam Beams snail be laterally supported according to the provisions of NDS Clause 3:3.3. 8::GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). Page 43 of 126 COMPANY j PROJECT 1 od o r Feb..11,2317 12:17 2'B7.wwo Design Check Calculation Sheet We+dWorlcs Sizer 10.422 Loads: r.:ood -:2.;:111 :ast -.-on 9it L'oco,lof ;f::'.. 0n:to' fninl loan 2011 Cot 44-3 p11 tit 630,0 *?1' f 11,4 1'1'11 pll • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): } _.. 14'-5 0' 34°-.:4' 1 5.421 5421 1,vc 1:'01 4924 focini,Total s- 13 lin 19346 1 3=';6 19346 111,11M1 '1002,; =u;=i,.:,r:. O.90 4.51 Load ors 92 1. .:g(t, 2.ea Min '.3 2,09 CO1.044 !.00 .1d1, 1.00 t..LE? CO -:.p: .... -. ; 1.12 . 225 32f> Glulam-Unbal.,West Species,24F-1.8E WS,5-112"x15" 10 laminations.5-112'maximum width, Supports:Ail-Timber-soft Beam,D Ftr•L No 2 Total length:14'•5,8";volume= 8.3 cuft,; Lateral support tap=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: =:1129frs,i3o Ana1>an.a valor 511, 'r'.i lot Unit. Ana1yala/£rno€s... n9sAzFF :4'+ 1+ 2611 pdi 1+200' 1Te - 014 iu' =2400 10,100' t1 a Dea0 fet '': J 353:0 5,411'-, 0.23 37 :: fl3119 in 3.46 Tatl Off,',; n..30. Y';: 5,41 .1, x... _in n.04 Additional Data: 014270015, ::ipoi•)C- CM :r0 fin,-to C.'022 - 0v' 255 1,05 1.19 _ .. Fa'+ 2403 ..30 1.00 1.05 1,500 1,010 ...10 nn 2,1';'0 .,3n - F_p` 933 - 1,0 E' 1,4 millInn 1.00 1,00 , •• R. - 0 i^y' 0.09.+31 ion • -. ... - - t CRITICAL LOAD COMBINATIONS; Shndo LC 1:'. 0+1., • 10173, V.3001.)": e2:. Ceffnc,ons 3C g2 Igt: eeee La •Fa _4 ._t fr-tooE lot, .-<c...._..-t.. C.naKthouoion A11. 1.C'o ote liottd on 00+Annlyolo a::;rs food co.,Oloatl,,di, 92113 0-15 / 430 201/ CALCULATIONS. 0+,)i::;::i, 111 004+56 1b-1e2 -00cc 0+1OnflentIon E4.49,oil 0 .>.3da (4150•. wind, Tot {. Deflection _: _,_^ L 5 3,1,14 - r: Lime .. ..:..,ono.._. Design Notes: 1 WoodWorSs analysis and design are to accordance with the ICC international Building Code(SC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. 2,Please verify that the default detection limits are appropriate for your application_ 3.Giula:'n design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI MOO 1-2007 4.GLULAM:bad=actual breadth x actual depth.. 5.Giularn Beams shall be laterally supported according to the provisions of NDS Clause 3.3,.3. 8,GLULAM:bearing!engirt based on smaller of Eq)(tensine),Fcp(cotrrp'n). • Page 44 of 126 W, COMPANY PROJECT 1<tIN. orks' Feb.11,2017 12:18 2FLi8:ewe 3 _ i,4Fwg-4w,01.1 14 ii:iti Design Check Calculation Sheet WoodWoeo sitar 10.42 Loads: 4e-04t 642e, 134d 410,, C.0 I"r,: .ie. 240,253.1 113.•. Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) ® __ -__ .n_M__ 12,4,0" 04140444.40, ad _ L.,v.. 14•'e 1477 iinow 10. i)H 131,44.0, nest i2_, 4041 424,31.4 4014 4.44 4244 1•.14 lca.!4 ...:: 1.00 1.Cn 0.94 02 02 nl"cc,,,, #;. 1.07 crg t'(:1 .00 1.07 :y'; 10 1.00 Mi. 1.0: CV me. 1.00 LII 1.11 ; , (.14' 625 Glulam-Unbal,West Species,24F-1.8E WS,3.1/2"x11-7/8" 8lam€nations,3.112-maximal width, Supports:At-Timber-soil Beam,0 fir-t.Not Total length:12'-3,7";volume= 3B cu IL; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: stat,..-on /0404.1414 143143 44,414444 V4104 0010su1Y4001 010+0 .Nese - 29 241411,22 0:.411 nee e4) 040' eive 14646' 044 d r:_.1' 0 1:; 1,144 4 11`n 4.14 01710+ 0,11 .. Le160 . . 0.30 15001 4.':1'4 0.:1 ,.. 14146 1/240 a: :10,04 Additional Data: 66CT003, 41440411c4 CM CC C1 CV Cf, .... Cfre Vv 24 �0 1.01, .00 .. - - 0, 4) 1,00 :2; 6b' ..14 1.00 _ 001.610 1.46 1,00 ..0. 1,Vi1.00 001:' 650 .. 1.00 .00 .. ,. ,. .... 0' 1.4 me11104 1.00 1.0006 _ e_� .43 1.11 1.00 1.09 - - Y:.. - .. CRITICAL LOAD COMI:NA7i0NS: .150 02 t 044130 = 2466 Hending4140 11 01 - 12716 1.4-11 Lr.9Leckion: 1'.' 02 4i 641 1C 82 . s1, 0'4.,:J 5.1.ms':- .n.1...4.w .•4.2 . Lr....t0o0 11,e 1,000.,:m.4141,1 :. -7 ..;:anis;' 611 t4',14 444 11,102 In 144, 11;:: i:V`_ Load c6.41442.::000:: l:.^. 0012 CALCULATi ON'S: 113611001 i.c,o: RI - - -:n7. 'Live. ,0 ct 6031. _ 011 444-4660 10024 ii464, w1nde4.4-4.4 T4141 t `heti 040.04a_. 26,.1::011041 r 51... 1.441 C4131000106. Design Notes: I.WoodWorks analysis and design are in acoonlance with the ICC International Building Code('BC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement.. 2 Please verify that the default deflection limits are appropdate for your application.: 3.Glulom design values are for materials conforming to ANSI 117-2010 and manufadured in accordanar with ANSI A190.1-2007 4 GLULAM:bed=actual breadth x aduai depth, 5 Giulam Beams shalt be laterally supported according to the provisions of NOS Clause 33.3: 8..GLOOM:bearing 160009 based on smaller of Fcp(tenstoo),Fcp(comp'n).. Page 45 of 126 COMPANY PROJECT jWoodWorks Design Check Calculation Sheet WW::t4Yttnti SAW Loads: I aa' • Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): �. .4r o • s, • Glutam-UnbaL,West Species,24F4,11E WS,6-0!Y'xtS" 10 wrirrtem.,S-1f2'mmkr m c ie,. S.gpiAs Al-Timber aoe 90.,0fir-L No 2 Toata WO:e-a.7•;YR..37 cu11 lMrtml sappbA:top"N,bohom=al supports; Aftatysis vs.Allowable Stress and Deflection ot2m NOS 2012: Addititsae tt D tta; • are Design Notes: '.W200Wmk+m'.atrus sod ONN:l02o in seomkooc2o sot 11 the;CC REanlloo al 6.krru 3 i:MN 002 21121 the NA O 3lAio+0tx41M11002 NOG 20i21:x012 MOS 3es4m 5uf:Aa ri 2.744.4201200 5441191,1,*tad Wit M.WO;120200100200202002012102202000010020202 30022:.0et4I2lAa.vo$00112u tadorc02 5 L ANS: 17.2002 a.atu*u'020022 011 aei2,M:'+ea 40 ASS1 A190.17007 4 GL2LAM:boo-x•.utl dsoAhx 0:x1 COOMR. 5 OC-Nen Roams Mlaraysioc00lep 022arercd 000006•e4w of Nk3;20002333. 5 021(2120 2000005900910 Wooed on 00,181kr o?0097002 012 12570024;0) • Page 46 of 126 + COMPANY PROJECT lart kr '4- 6' : 0 0 r s - od\A7 0 • Feb..11,2017 12:23 251310 vnvb 4/4' Design Check Calculation Sheet • Wood Works Siler 10.42 Loads: Load T2461: u,lt Loa .1 - Lerd2 Full 301, 120,6 pit 5611 625 66 a 4':t Load4 6,1ot _ba • Loac5 earthquake Ia>a.aS Earthquake Rolut 14,16 Its Loadi Eariqu:oku 11.1.1 12006 Look$ Dant Po4ra 3.14 1233 1o, Loa toad 3,a.r110 tque 8qiot Ito eat ..eight 0-:_. Fall 611'. 15.S VII Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): t .._ _...... m.,.®14'_3 J- - S "-- -- -, .......,.,. 14'.5.9" lita_tocaa: Dead 3860 4580 7,i,: ::236 1443 .:060 359 350 Earthquake 522: _1221 Uplift ''tat 7013 0103 Beacinc.. Cape:::.Ty Bean. 7810 5103 Cutproa 9849 52.60 al/Don beam 1.,50 1...80 Support 8.51 0.97 Load c«mt. EES 'I` .ength 2.£5 1.,71 Mu) ruga ^2.13 • 1.'1 Cb 1.06 1.00 Cb til.ri 1.5f: ;00 Cb support $,01 1.07 Glulam-Unbal.,West Species,24F-1.8E WS,5-1/2"x11.718" 8 laminations,5-t12'maximum width, Supports:AU-Timber-soft Beam,0 Fir-L No-2 Total length:141-3,0';volume= 85 coil.; Lateral support:lop=full,bottom"at supporta; Analysis vs.Allowable Stress and Deflection using NDS 2012 Lm.:sorn zon .441,1,1:A ra::s hobo Ie r `P,.. ,:z 44Oaly io'ber.1.n flimaT .. 00/0v1 4.3.1 - 14'39 24,n - i'.0,0-.. ^= €b,E's3 De.;'..^Oefl`n 0.25 t' 0012' % 1• :11.4599 0,47 _ 14260 Tmt,,. Doll': 0.. 110330 _ 6.7 6 ..,. , 0,30 Additional Data: FACTORS: -/Elps.)C)) CM Ca _ 0 .7 RV' 264 1.01' 1 - - 2 10 1 2400 1,03 1.69 1,31 1.106 1.,05 1.60 11.60 1.50 - 2 6511 - 1.60 11.18 ,. C' 1.0 mil 1.,00 - _ .t. ... S E:mi010' 0.85 million03 1,':0 - CRITICAL LOAD COMBINAT OIiS: ay;'): 1.2 2 DeCr .. loora.,n: 1.0 45 1 _6..dead 1.-..Ile[: :0,>N q.6.16116-3.0, 1carosf 44,e 16.4 . '_.10:: '....:I:.11e A7._ (41'a.- are li3--i in t0_ l:'3 ' _ .. 1.014 ora:innt'a:mut 001)0.0-10 ; 18': 2512 CALCULATIONS: D:^le,,,ir;., Fl ::: 1361006 :1,11110, .,.v. deport 1'€. ,.0001_., , am Total Defluction e 1.530_1 " Lo3,1 ballet:clot: "- 6661 Se lsorleo. Design Notes: I.WoodWorks analysis and design are in accordance with to ICC Intemati0nal Building Code(IBC 2012),Me National Design Speolfica0on(NOS 2012),and NDB Design Supplement. 2.Please verify that the default deflection limits are appropriate Inc your application. 3,Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accunlance with ANSI 4190 1-2607 4,GLULAM:bud"actual breadth x actual depth.. 5,Glulam Beams shad be laterally supported according to the provisions of NOS Clause 3.3.3. 6.GLULAM:bearing length based on smaller of Fcp(tenslon),Fcp(rnmp'n). Page 47 of 126 .COMPANY PROJECTJuly o d\No ks o Feb..i1,2017 12.24.. 2FB10.wwb ti.<?,1W0Of 10.9 1v1,V0 1 Design Check Calculation Sheet Woodworks Sizer 10.42 Loads: L,cati:n '.ft; N.,r1:.101, :;r;.E:. 11,1aU, 1104 110.0 p15 1.cati2 10.oe 11c11 U01 120.0 pit 1.14<3 .:1. 00f, 50.0 0.0) srttafe 3' 0.In 12001 Its Lcu,1l. Uurftwavvie. r.. -1230. 10 1:=.:015 010.,7:rn. '2 .2000 3.441 Facthqua0e t<;:r,L 1.:I..78 12000 ., 40a<7E head 2.:10 1600 i2:s 14,418 headi':;ir,t. 14.1E .18011 Its P.oadli) 0'0:_0:1 04.10 400 7.1,00731. Li., I' 0:t: 81 4 'a 1•s OCAS idxht: fe.d f•0 003 15.'1 pt.I' Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 14'.1.8' • Un tic cored 0 Dead :lead) 1060 rive441 oUnaw 35V `0 414t80801u1., 5221 5131. raetotadi Si 1k1 011 Total 1010 (170'3 bee eiber apxe9ty throe "Ie 1 6103 .0022o rt: 0)29 6200 P n ni r':v,3 firamr 1,00 1..00 :;u11.0'. 0.07 0,97 Load nmb 45 42 1ee310 2.13 1.31 Yie. req'O 2.7.9 1.71. eb 1.00 1.00 Ci'rn . 1.170 1.00 to support < i.7 1.07 tog sup +1.111 625 Giulam-Onbal.,West Species,24F-1.8S WS,5-112"x11-778" B laminations,5412'maximum width, Supports:AD-Tvnher-soft Beam,D,Fir•L No.2 Total length:14'-3,9-;volume= 6 5 ca.11; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using Nos 2012: C n r ie7,040, 0.00 V.! Y i t Unit Mal els/Des0<in iftlear iv. ti:: j n: tv?i:"V` .48 5erdin0t41 in ra.1474 at' -: 2100 psi fb/£b' = 0.60 Dead Defi.'1 0,29 . 1:1507 Live Defl'n 0.13'* 41./999 0.41 1.1)00 0.29 Total. OeOt'r: 0..51 =•. (.4300 0.31. .. 0.4240 i.n 0.40 Additional Data: FACTORS: 0/01051)217 CM Ct CL CV Cf, C. Cf.^t Notes Ce1CV0 F::4 263 1,00 1.90 1.00 .. .- 1.00 1.00 1.00 2 66'+ 2400 1.00 1.00 I.U0 1.0010 1.000 1.00 1.170 ;00 1,03 - 2 Fcp' 650 - 1.09 0,00 - - - - 1.00 - 8' 1.6 o- 11,.0=. 1.00 1.00 - <misy' 0.05 million 1.00 1.00 -. 7...00 - . 5.. CRITICAL LOAD COMBINATIONS: shear f LC .2 - 091, V. 5075„ V dingo: 4573 1bn feendin?t7I, LC 42 - 001, 14= 75449 k:.•:-ft. Onilez...co LC 85 . '1+.'7;:11• 701 IC 46 01,1`i ii.'-"-i•.?k:j l otoit 0=d..d 1,.=live n.unow W.w1.00 1.: ct 1,c,roof live i.c:'')ncenttate. r rthquake All LC'¢,are listed In the Analyst, ...put load •••••nbientices: 108651':._11, 1 1116.20012 CALCULATIONS: De0i1e0t:;.oa, B7 = 1.1010:09 1.c- 112 "Live" deflection -()et1ect:ion 1all nen dead ioain slave, wind, scow Total Deflection e 1.50(Dead Load 5,.)1.ectio,) 1.0,4 Load Den ce::f,r:. Design Notes: 1.WoodWortis analysis and design are in ar coe3pce with the ICC International Building Code(IBC 2012).the National Design Specification(NDS 2012).and NOS Design Supp emenl,. 2.Please verity that the default deflection limits are appropriate foryourapplication. 3.Giulam design values are for materials cenionning to ANSI 117-2010 and manufactured in accordance with ANSI A100.1.2007 4.GLULAM:bxd=adual breadth x adual depth. S Giuiam Beams shell be laterally supported according to the provisions of NDS Clause 3.3:3. B.GLULAM:bearing length based on smaller of Fcp(lensicn),Fcp(comp'n). Page 48 of 126 COMPANY PROJECT ITeh. 44 .:4311'.vav .% TorT k Design Check Calculation Sheet 15504¢5ele 54e 50.43 Loads: • Maximum Rasetiens#lb5},leeting-Cortee':ties-(tbeyend-Beering Lengths tin)^---- Y.)5" J'; sQ Glulem-Unbat..,West Species,24F-1.8E WS.3.1/2ell-7f8" tape kt'Sr'CR.3-3 V',mime h /0cull, weer*ewer'tow A4,talanm at'**pm: Analysis vs.Allowable Stress and Deflection Nos 2053: Additional Data: ?6115,It,f: Design Notes: Worytederks40450Araer deri(pi ere h aomedace*Of the i.,:,iae Stena)S.rdioa(=rae(310 ilii i)it.NMaxv TAleor`ERTA ARTho(CS.2350...5515433 04034 55014445.5 F Ptv*e eerily 0254 the de!Ae derkettt 47346te epptortree 34 year P 45045. 3 p*Jlra&elgo aaitMe ere C.iralelVitE conterromete ANS 157:E1Eo d .,:eoruted usereArRe'hale ANS)x150.1-2'007 vLULAM:trot.*tear behe55tt)ac eta dello 5 Ge4n3 Emma data 0e kderaf(a.pfw5ted eseeme0 re the wee..of NDS Cle:u*33 3 6 OLULAM:Wrong Rogat:roved eo ornaler a(tegetensor0.Fep(Caro( • Page 49 of 126 COMPANY PROJECT 0 s. Wo y.l Nov,18:2016 15:55 2F892 wwC Design Check Calculation Sheet WoodWor4.s Sizer 10,42 Loads: Lead TyPte c. _.v. Lcoaller, -i: Ma4bLowda faa,il0za't rai t a tua b0011 Chow Pn7rt. 5.74 1500 lba Load3 .3-ad S. 77 111.0 tali L:;adk Live Full1020.0 511 • Lnad5 Shaw Full t44 175.6 PIt Bell-weight. Dead r:.:t � 1'.2 011 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) ....._.. Unfactored: 0``--98�,. Daac :35 Live 5601 4710 Bcaw 1876 1746 5140 Factored: Total 10336 _. 10160 Hearin,: .. _ Capacity • Beam 10316 Support. 10616 15358 Anal/0es 10569 Beam 1.00 Support 0.57 1.00 Loud comb 42. 0,97 Length 4.$4 9" 2..91 :'.i.n too':] 2,91 1.30 2'6 min 1,00 5.00 Cb r ll,:>:'1 1.0 1.00 Fo e :.c 4125 1.07 Glulam-Unbal.,West Species,24F-1.8E WS,5-112"x13-1/Z" 9 laminations,5-1/2"maximum width, Supports:All-Timber-soft Beam,p.Fir-L No 2 'total length:10'-11:,8";volume= 5:Ice ft.; Lateral support:top=Inti,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: Caltezion Anayals Value, Deaiva 54,111e 00it A'.alya,a?teeu..p, Bheat liv= l ?. i P,i RP .i:st ti 40=2059 f > 2400 psi L.,,ll 4 0,86 Dead Defl'e 0.14 - 11935 Live Do"I'n 0.18 w L/031 0.26-a, '366 rn 0,44 Total llnfl'o 0.36 = 1.1955 0.74 1/847 'n 0.69 Additional Data: FACTORS: F/E1psi3CD SM CD. CL CV Clu Cr Clit 5ntee =:'Cvs LC5 . Fv' 255 ,0::i .00 1.05 - .. .. 1,00 .00 -1.00 2 Pb'+ 2400 1,00 1.00 1,00 1.080 1.000 1.00 1.00 1.00 LOU - 2 Fop' 650 - 1.00 1.00 - - F.' 1.8 million 0.00 1,00 - - .. 7,35 3 Entity' 0.95 miliior: 1.00 1.00 .- _ 1OG _ _ 3 CRITICAL LOAD COMBINATIONS: Sh+na. 12 = D'--L, V- 174. V - 7911 Maeend.l Re i+i; 10 42 0.1., M- 240-08 lbs-el:.i Deflection: LL: 42 = 0:,75(Ltfl tilval tel 13 r- 0'.751515) itotall D=d i 4,..11e4 t. ow W.wia4 Ti,impact la,,v5v14 :..'e Lc'-t oentratt 8-earthquake All LC'o are listed in the Ana`:.v.^k:3 cutp::t Load ons: 1010E 7-10 / 275 2012 CAL.CULATICNS, Deflection: BI :, 273::,.06.1b 10:1 "Live. 1 f::.etC. raefitg:ti.n EV,Ifiao ll n-dna.d loads :Sive, wind, 12210W-,ir. Total Deflection= 1.50i0r.ac ';.a:f i:e:lact:i,ci + r.•..-e Load i-n:lectien. Design Notes: I.WeodWartrs analysis and design are in accordance with the ICC international Building Code(110 2012),the National Design Specification(NES 2012),and NDS Design Suppiernent. 2.Please verify that the default deflection limits are appropriate for your application. 3.Giulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1.2007 4.GLULAM:bed=adult breadth x actual depth, 5.Giulam Beams drat be laterally supported according Coithe previsions of NES Clause 3.3.3. 8..GLULAM:bearing length based on smaller of Fcp{lension),Fcp(comp'e). CLIENT: Page 50 of 126 503<12:,'0.73 PROJECT: 11 Dr "Ltu NUMBER: Irl FROELICH 1 ! DATE: 1 3v ..rr` Alf pC - 'Uitt 1c E N G t N E E R S 6 J::t �v d 720 E.6:',226C BYE R, : FHI : ,es tAi Ls 10 * ( Z o FLF LL.s Io P LFFP 2.y: t'A _ 12-0 1. 1.7- it45 0 FAL LL X ((Li 0 Pt- " oo - ' . LL cl000s if bL% toS o Pc' A- / ,,.o35 Page 51 of 126 COMPANY PROJECT wJv Aug 24,X191::5,' 7FHi west, Design Check Calculation Sheet WoodWorks Sizer 10,42 Loads: Lead 1111 T...e r".t 1Yr :.. i Load) Ldve s .. 419,A Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): p.,,v3.r"'T.,3 ..,._.._....»..m. ."1111.- ....e...„�...e -111,1"_................_... ,,,�W_'. 4, 3'. 7' tlVe,.. 2:5::4 1.3:4 _ 3'2 loll? a add.red Tdcd1. 991) 2114 fearingt aam 2d1) Supyo: 22. J.++;. t. )163 ,r„ 1.10 ;,e1+�, r; 03 1R,' 0,42 11,1,1cb` 1,i0 M4rer,1 L.14 ac 14)0 1.00 ,..l i. 42X2 "•l Lumber-soft,D.Fir-L,No.2,4x8(3-1!2"x7-114") Supports:All-Timber-soft Beam,D-Fir-L No 2 Total length:3'-22":volume=0,9 cu,ft.; Lateral support:lop=at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012 C i az3R!3. h,eavp v €.ue '1 ia', ..90e Of:Of:d ..21, e at5.9.44rs �. 3e;3 4 .* 04 r ._ 41,61 Dead ,2.' 0.01 8 41,/191 0142.. De.fpc 5.08 <11991 0,14 -,Y i4 Additional Data: 024)4tta, Fr- :c1^.c cm Ce. 02. 17 34'.. ,,.: 'Co lt> 9v"0 0191 9.aft _ . 2 ecp C211 - 1,f: '111 1,6 m,L:li.rn `.Ji) 1,30 _ - &ru;' 9.58 eitilo5 1,05 1.1' - 2 CRITICAL LOAD COMBINATIONS: 3hezz 02 _ 21114,i, dadd01- I'-1 ...� 4er'a._ry 14): 92 . l,lest:dn: " 442 ., 0'i.: Z.41 .149.4a3j 0.5ead 344.1ive fd040w 4i- 1 1 �_ _._1111 .., 024341 "::3fi_ ALL ii.star: LfS htrx ,:or::b.;t,t.11.1,00, men'1_10 ,' L CALCULATIONS; Deflection: GT lb-in) "Live deflection _ Deflection fro d_ ,,,.s,_, Total. Deflection ,t'.eda l'e lents. ... .:3f:11r:1:. „uxkA i x ry 4-11 y, 4'-1,1+. 1,0 C'_,.74, n. .. ,1111, Design Notes: t WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 20121,and NOS Design Supplement, 2:Please verity that the default deflection limes are appropriate for your application. 3:Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4..4,1.. Page 52 of 126 • _.., COMPANY PROJECT . TT 21718'.:CY; fN2.mem T1 'w. St3f;e tZ -EtIIx ora, t iib'<;.Y Design Check Calculation Sheet Loads: • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): i • Glulam4Jndal.,West Species,24F-1.SE WS,5-172"x7-11Z" 5 brk14.11t 5.10'mndntm With, 5opWns'As-Rotor-soft Born,0 F:1 No 2 Total i ph iJ4,solute 111W.ft, LATTA support loom A support.bottom.N seppo,b: ArldtysiS vs.Allowable Stress and Deflection.slag'40520121 5d1?ooaot Rata: .,.tFcc1 AG C,ItYPPTATiONE III Design Notes: N.'u'ANJarMh unstops CM:atom we C axadkene Wens oho ICO tanotO tsaanl PneM3'Ni CWe 050 2012),Co NAN.0ea39n S;aONTE e:NTJ.^OC2),AM NOT OCVgn Supporter. '.. 1 Phase yeTOy Pot t,d 11A 1effmtoIt bW two typrophC:ar yvar W%y6.11 1 3 Gk#ztr desJIIJakao arc Ra t.*,00reorpotgtc ANSI1I T2010 Nod:TbrRteearto as a txam:..<"og1ANS.0193 I-7:50'7 4 GU:LAM:11 a Beta.R eat Tactual JeMIT 5 CAA.Rama 4.0 be bloat/.4,1.+4'4 01x.0:5 to Pm 01,0150 p1 NOS Game 33 3 S 000 CM'te 0115 CrI)b law4 ns Bier sR KGOonomm5,ropleor,V) Page 53 of 126 mm _ COMPANY PROJECT , e, W a4 - _ K Yo rk Aug.24,20118 14:51 1 Fr13.wvrb Design Check Calculation Sheet WoaM'orks Sizer 10.42 Loads: :etd 095,9 fnll 079, 1,4319 Live 'u7 0L 1290,9 ult ,tom Tell 101 139.0 ^1f .... 40 ,. Maximum Reactions{lbs),Bearing Capacities(lbs)and Bearing Lengths(in): • 1,owd 1731 1734 1 e, 9044 2004 Snow 575 513 :.i. 4710 3738 cApoty neam 1194 738 Support 4131 4139 13,vie 1,i:0 .ii0 'Support 0,97? 3.90 .,< .ores at. 3« n900µ 1.71. 01,e. 0479'S 1.71 1.71 - ::i? 1.1:7 1,00 CI,mzu 1.00 1,00 Cb .,ucpn... 1-11 9.11 :Tap Anb 71715 .619 Lumber-soft,D.Fir-L,No.2,4x8(3-1/2"x7-1!4") Supports:All-Timber-soft Beam,D,Fir-L No.2 Tole!length:3'-3,4";volume=0.8 Cu::ft,; Lateral support top=at supports.bottom=et supports; Analysis vs.Allowable Stress and Deflection using NDS 2012 z.ierr.ars rria.!; s'ss Sale a ,mae Salon =:71' Ana 471„ D<xz�In _. tinea ..0 .2 t. us, Ben'.sl n 0«1 '3 »11170 5' a 1115 150/11r _ 9.31 CMaS 3ef.i.'0 - 99 .110b 10017n 3.02 ,10 !30 1•# TOtAj. 'Ott: a 0.0 a 791,70491 ..93 - 3.1240 in ..<_„ Additional Data: tACTGRS. FiE1p3i1CD 2M Ct C:. .70fa 09/' 1)0 .09 - - . .2 Mb•µ, 9.0 -.UC 1,10 1.00 0.0946 1,010 1,03 - Fop` 025 ... 1,oG 1. •" _ _ _, :..:'.;i .,:, ... 1.6 11'ic.a 1,19 1,00 .. _ _ - 2 Twit.' (1.50 million 1.91' 1.19 CRITICAL LOAD CCMBINAT(ONS: �..� .. (91 i#2 _ V ;.90 .-. 2133 . s endisgl''. 02 - 0,10, M= 2011 ..os ft Do`10,5::l<ln: 1✓C Ili: OVAL 1_._. Dwiee:S 1791,va S.mnaa a'-70.,o'£ 7...:.,., .: n -µ1i LC" are 13ated the Ansltc.i, :, :x; 5u17p;:t Load 9:;ab3natione, F..,.?~ 1,1 , 101.2119 CA1.Ci1LAT;ONS: Deflection: - 1.79r. 10-..r,2 'Live" 301.1acclot- 1)01' .t-iw, 911 < 1,tds w,t9, s...,,;....1 Total Ceflect:ua ear' teflectise 47 Live ntrd 07001,03,tt. Lateral. stet/30111y .. .. , ,,... - a t -Z Design Notes: 1 WoodWotks analysis and design are in accordance with the ICC International Buikting Code(IBC 2012),the National Design Spermsration(1408 2012),and NOS Design Supplement. 2,Please verify that the default deflection limits are appropriate for your application. 3:Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1, CLIENT 69O9 Portiend,aegOn 97223 Page 54 of 126 503-62.4-7005 PROJECT: • /45NW MI.Vnicshington Dr-205 NUMBER: Bend,Oregon 97703 541-38341328 FROELICH Denvel Once DATE. 12303 Air oort Way.Suite 200 ENGINEERSi Broomfield,Co'orodo 80021 720-560-2269 BY: . , 45tril9er Srcl' ioa P&P L (Z)(2. ) (-1 0 Lz.„,, (a (/00 ) 2 co Pe.-fr- 451-01/4-z,A1,- 2'1'1 er) ,f- PAALr. F: B/12„ 30',.sts _ 0 P5F irao PSC:: EA AA. kr Z„„AAio.fAiGpAAi, , r IQ_O b L (3')(z ) • Pez,tA„.17- to 4E> c34. 9 AA (1) „r. 2 004-4 (5-0 A D e 4-16a L COMPANY PROJECT407 pith MIR WotdWo Bks K - Feb.15,2018 16:32 Stair Stringer3rd Floor.wwb 90.... Sf/f..53WAg'D-ORZ tiTh-11.1 Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Pat- Location (fit Magni_Ode ".r-it tern Start -,nort -nc L.oadl Dead Full OCT 40.0 pit Load2 Live Full UCL 2.00.0 plf Self-weight Dead Full UCL 5. 1 f Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 9'-8.64" • • T-9.5' Unfactored: Dead 212 212 Live 783 783 Factored: Total 995 995 Bearing: F'theta 520 520 Capacity Beam 1169 1169 Support 1523 1523 Des ratio Beam 0.85 0.85 Support 0.65 0.65 Load comb #2 #2 Length 0.50* 0.50* Min req'd 0.50* Cb 1.00 1.00 Cb min 1.00 1.00 Cb support 1.08 1.08 Foo sup 625 625 'Minimum bearing length setting used:1/2'for end supports Lumber n-pfy,Hem-Fir,No.2,2x6,3-ply(4.1/2"x5-1/2") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:9'-8.64";Clear span:9'-3.77';volume=1.7 cu.ft.;Pitch:8/12 Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value . Design Value Unit Analysis/Desicv Shear fv - 45 = 150 psi fv/Fv' - 0.30 Bending(*) fb= 1020 Fb' = 1271 psi fb/Fb' 0.00 Live Defl'n 0.30 - L/380 0.31 = L/360 in 0.95 Total Defl'n 0.42 = L/270 0.47 = 1./240 in 0.59 Additional Data: FACTORS: F/E(psi1CD CM Ct Cl. CF Cru -Cr Cfrt Ci Cn ICO Dv' 150 1.00 1.00 1.00 - - - - - 1.00 1.00 1.00 Fb1+ 850 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = D+L, V max = 824, V design = 739 lbs Bending/+l: LC #2 - D+L, M- 1929 lbs-ft Deflection: LC #2 =D+L (live) LC 92 = D+L (total) D-dead L-live S=snow W-wind I=impact Lr=roof live Lc-concentrated E=earthcuake All 1.C's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 27.0e06 lb-int/ply "Live" deflection = Deflection from all nn-dead loads (live, w. snow. Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflections Bearing: Allowable bearing at an angle F'theta calculated for each support as per NDS 3.10.3 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 4.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 5.SLOPED BEAMS:level bearing is required for all sloped beams. COMPANY PROJECT A A tit lit 4'o � 6:D Feb.15,2018 16:30 Stag Stringer-2nd Floor.wwb 401118.S8f6 6OR i4'd8i.lD fi£51E24' Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Pat- Location [ft) Magnitude - nit tern Start End Sart End Load] Dead Fill TEL No 40-0 plf Load] Lire Full UDI. No 2.00.0 plf Self-weight read Full UDE No 5.1 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 19'-8.57" 4' 8'-0.64" 16'-1.29" .lnfactored: Dead 181 512 181 Live 670 1690 670 Factored: • Total 852 2402 852 Bearing. F'theta 520 520 520 Capacity Seam 1169 2720 1169 Support 1523 2402 1523 Des ra-10 Beam0.73 0.88 0.73 Support 0.56 1.00' 0.56 Load comb 62 82 F2 Length 0.50* 0.79 0.50* Min req'd 0.50* 0.79** 0.50* Cb 1.00 1.48 1.00 Cb min 1.00 1.48 1.00 Cb support 1.08 1.08 1.08 Fop sup 625 625 625 'Minimum bearing length setting used:1/2"for end supports "Minimum bearing length governed by the required width of the supporting member. Lumber n-ply,Hem-Fir,No.2,2x6,3-ply(4-112"x5-1/2") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:19'-8.57";Clear span:9'-7.38",9'-7.38";volume=3.4 Nu.11.;Pitch:8/12 Lateral support:top=full,bottom=at all supports;Repetitive factor:applied where permitted(refer to online help); WARNING:Member length exceeds typical stock length of 18.0[ft) Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design _ Shear fv= 59 = 150 psi fv/Pv' = 0.40 Sending(*) fb = 613 Fb' = 1271 psi fb/Fb' = 0.48 Bnding(-1 fb- 1090 Sb' = 1271 psi fb/Els' = 0.86 Live Defl'n 0.14 = L/828 0.32 = L/360 in 0.43 Total Defl'n 0.20 = L/588 0.48 = L/240 in 0.41 Additional Data: FACTCEES: F/ElpsilCD CM Ct CL CF Cfu Cr Cfrt Ci Co LC* 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 £b'+ 650 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Flo.- 850 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear I.0 82 = DEL, V max = 1065, V design = 978 lbs Bending)+): LC 42 = D+L, M= 1159 lbs-ft Sending I-): LC 82 = DOL, M= 2061 lbs-ft Deflection: LC 92 = D+L (live) LC 92 -Sul. (total) D=dead L=live 5-snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake Allt.C's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: CI = 27.0e06 lb-int/ply "Live" deflection - reflection from all nn-dead loads (live, wind,. snow...) Total Ceflection = I.50(Dead Load Deflection) + Live Load Deflection. Bearing: Allowable bearing at an angle F'theta calculated for each support as per NDS 3.10.3 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NOS 2015),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application. 3.Continuous or Cantilevered Beams:NDS Clause 4.2.5.5 requires that normal grading provisions be extended to the middle 2/3 of 2 span beams and to the full length of cantilevers and other spans. 4.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 5.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 6.SLOPED BEAMS:level bearing is required for all sloped beams. COMPANY PROJECT , kijk i 41 so,Bs rz>N WCi0.1>t ts:r.,ti, Feb.15,201816:30 Landing Joists.wwb Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Pat- Location (ft) Magnitude Unit tern Start End Start End Loadl Dead Full Area 20.00(16.0") psf Load2 Live Full Area 100.00(16.0") psf Self-weight Dead Full UDL 2.2 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 6'-1.64" .� 0' 6%0.82" Un factored: Dead 89 89 Live 409 409 Factored: Total 498 498 Bearing: Capacity Joist 498 . 498 Support 960 960 Des ratio Joist 1.00 1.00 Support 0.52 0.52 Load comb #2 #2 Length 0.82 0.82 Min req'd 0.82 0.82 Cb 1.00 1.00 Cb min 1.00 1.00 Cb support 1.25 1:25 Fcp sup 625 625 Lumber-soft,Hem-Fir,No.2,2x8(1-1/2"x7-1/4") Supports:All-Timber-soft Beam,D.Fir-L No.2 Floor joist spaced at 16.0"dc;Total length:6-1.64";Clear span:6';volume=0.5 cu.ft. Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 54 Fv' = 150 psi fv/Fv' = 0.36 Bending(+) fb = 682 Fb' = 1173 psi fb/Fb' = 0.58 Live Defl'n 0.07 = <L/999 0.20 = 1/360 in 0.32 Total Defl'n 0.09 = L/836 0.30 = L/240 in 0.29 Additional Data: FACTORS: F/E(psi)CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = D+L, V max = 492, V design = 389 lbs Bending(+): LC #2 = D+L, M = 747 lbs-ft Deflection: LC #2 = D+L (live) LC #2 = D+L (total) D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 61.9e06 lb-in2 "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • COMPANY PROJECT 1 %%O 0 d' /�/O r ks Jan.3I,2018 14:33 Stringer Cross Beam.wwb ni t3hHf CEW WOf ii)DPW:N Design Check Calculation Sheet Wood Works Sizer 11.1 Loads: Load Type Distribution P Location [ft) Magnitude Unit tern Start EndStart End I,oadl rear Point 0.64 d12 lbs i.oad2 Live Point 0.64 1890 lbs Load Dead Point 2.14 012 lbs l.oad4 Point 2.14 1890 lbs ioad5 read Point 3.64 512 lbs l.oad6 l.1',e Point 3.64 1890 lbs Self-weigh, read tall OCL 7.7 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in):t y 4'-3.31' ,;:(TI 4I 5" o' Unfactored: 784 read 784 2735 Li. 2735 Factored: 3619 Total 3619 Bearing: Capacity 3619 Beam 3619 . 3619 Support 4007 Des ratio 1.00 Beam1.00 0.90 Support 0.90 82 Load comb 82 1.65 Length 1.65 1.65 Min req'd 1.65 1.65 Cb 1.00 1.00 Cb min 1.00 1.00 Cb support 1.11 625 rco situ 625 Lumber•soft,D.Fir-L,No.2,4x10(3-112"x9-1/4") --" Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:4'-3.31';Clear span:4';volume=1.0 cult. Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflectionueing NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv* = 128 Fv. = 180 Isi fv*/Fv' = 0.71 Pnding(+) fb - 930 Pb' = 1080 psi fb/Pb' = 0.86 live Defl'n 0.02 = <L/999 0.14 = L/361 0.17 Total refl'n 0.03 = <L/999 0.21 = L/240 in 0.16 *Tie effect of point loads within a distance c of the support has been included as per NOS 3.4.3.1 Additional Data: FACTORS: F/£(psi1CC CM Ct CL CF Cf. Cr Cfrt Ci Cn LC8 = 180 1.00 1.00 1.00 - - - - 1.00 1.00 1..00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fop' 625 - 1.00 1.00 - - - - 1.00 1.00 - - EL 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear : 1.0 82 = D+L, V maw - 3619, V design* - 2769 lbs Bending(+1: LC 87 = r+L, M- 3868 lbs-ft reflection: LC 82 =VOL (live) 1.0 82 -D+L (total) D-dead L-1 ine 0-snow W=wind I=impact Lf-=roof live Lc=concentrated E=earthquake A11 I.C's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 • CALCULATIONS: Deflection: EI = 369e06 ib-in2 "Li'.,e" deflection = Deflection from all nn-dead loads (live, wind, snow.) Total reflection - 1.50!Dead Load Deflection) + Live Load reflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • ..J i € 0 € t 0 i i E 1 I `_Y 1 aea a s i i tc rs€ €x ' e� £ E La.—._,..�,.1 1 , E #1 i ,I.. E.......�.d ..�............. „.! 4.„,,—_-_,...„4.—...........,— i E° 4 o 1 s eQ if,. 1 t €€ I I I sx3. Y E3yyyI. d E 1 t f 1 € € 3 i ; E €5 i € € I 1 i i • I j j j 1 € t E I { € , € �3 € E i € E E I E E 1 r4.4 € E € 1 €. . j €' ! r f t 1 E 3. a f a . . F L--?-j .. ' • 23' y l i 0 II '�,,.,..•' F .vim.�..........._.*... to a) oi co "5u*5 *e, Der) g14G 6 w N 6) ,X..— E1 Page 60 of 126 A:: i , ,- - , , ,... _ , , - %;(,f,1:0-, , ,, , - , FROELICH = DAT: U ' -Si,1 /2_ 0 1 (; ENGINEERS ;. I . ' 4,„,,) P4:;„7--A,)Da 12) ,„ DLF-''S G,...AJ q cc)AicRe-.7"-, ; 150P5 F),, Y,tz_s 5 o F5 F ( PP DL_ 1 ki 0,c) 1 Gitaro3e... U. Ale. (-Oct J '5. 110 'PP : 0 ee -3cx=1? ) i q.5kkt.5 1 i 1 DC--'st ,A) : 3coc* S\-. .A, „; 12- --a 1.1.6 *la q -1 ,,- 47 ,..,..,....— _ arn I— oid- ff ./? 0 C- 't--- 1,,,,,,)--,,E. 1 3/4"x11 7/8" LVL @ 16" oc joists e ex.,- A. Sa„,Tz' (20 ,....0 ) A & -irlPly 6 L, c' LI-..1- 3 04::09 cp, c, 47, At Iea-sk' 1 1 1 I i 190e;i-s, To qix- A-4-'A-I - 1e° 2. S A 2. .5 AAA,V . 1 , 1 I 1 2-15- 7:39pr l of >Ream 2017.3.0.5 rReamFnginc 2017.1.0.4 aterials Database 1562 Vlember Data Description: Member Type: Joist Application: Floor Top Lateral Bracing: Continuous Bottom Lateral Bracing: Continuous Standard Load: Moisture Condition: Dry Building Code: IBC/IRC _ive Load: 40 PSF Deflection Criteria: L/480 live, L/240 total Dead Load: 60 PSF Deck Connection: Nailed Filename: Beam 1 Aember has been designed for a concentrated live load of 1500 lbs distributed over a 2' 6.00"square area / /4 0 0 10 0 0 / 3 0 0 , 0 / 17 0 0 3earings and Reactions Input Min Gravity Gravity Location Type Material Length Required Reaction Uplift I 4' 0.000" Wall HF Plate(405psi) 3.500" 2.589" 1835# -- ? 14' 0.000" Wall HF Plate(405psi) 3.500" 2.384" 1690# -- 1 17' 0.000" Wall HF Plate(405psi) 3.500" 1.500" 310# -500# Maximum Load Case Reactions sad for applying point loads(or line loads)to carrying members Live Dead 487#(365p1f) 729#(547p1f) 586#(439p1f) 699#(525p1f) 1 -187#(-140p1f) -85#(-64p1f) Design spans 4' 0.000"(left cant) 10' 0.000" 2' 9.375" Product: 1.5 RigidLam LVL 1-3/4 x 11-7/8 16.0" O.C. PASSES DESIGN CHECKS Design assumes continuous lateral bracing along the top chord. Design assumes continuous lateral bracing along the bottom chord. Review gravity uplift reaction force of 501lbs at bearing 3 and ensure that the structure can resist appropriately. 4liowable Stress Design Actual Allowable Capacity Location Loading 'ositive Moment 1578.'# 8031.'# 19% 9' Span 2 CLLmd Jegative Moment 2840.'# 8031.'# 35% 4' Span 1 CLLmd Shear 1144.# 3048.# 37% 13.99' Span 2 CLLs2 ,tax.Reaction 1835.# 2746.# 66% 4' Span 1 CLLmd FL Deflection 0.0564" 0.5000" 0999+ 8.5' Span 2 CLLmd _L Deflection -0.0441" 0.2500" U999+ 7.5' Span 1 CLLId FL Defl.,Lt. 0.1632" 0.4000" 20588 0' Span 1 CLLmd .L Defl.,Lt. 0.1565" 0.2000" 20613 0' Span 1 CLLId ;ontrol: LL Defl.,Lt. DOLs: Live=100% Snow=115% Roof=125% Wind=160% Design assumes a repetitive member use increase in bending stress: 4% SIMPSON All product names are trademarks of their respective owners l .+',ai Copyright(C)2016 by Simpson Strong-Tie Company Inc.ALL RIGHTS RESERVED. 'assing is defined as when the member,floor joist,beam or girder,shown on this drawing meets applicable design criteria for Loads.Loading Conditions,and Spans listed on this sheet.The Page 62 of 126 COMPANY PROJECT (:0 WO d Wo r k U Design Check Calculation Sheet Loads: Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): .-_.x ..... ........... ...,....- r. ,,.�....,.....,......ate .....«.......,,._.,..,..._ _ .-_ �......«._ ... ..... ,,........_ ..,,...«........ ..,...., Lumber.sait.t7.Fir-a.,No.2,4x10 i3 1!2"x8.113"{ nee tr Tetal ..,d 4t-2. H ti.'. Analysis vs.Allowable Stress and Deflection„sing NOS 2012: Design Notes t.voodW,,cs ane(Xss an4 de:job ti:e it 2«.7.,{.10,1 wee tae ..0: ter e1 e:Rie Ced.a t,E,T 2C X. the Natiela Nat. Caai4:.;*e rN-.a:, , DE z 'r:i are NCE.OeN e Sept leeeett. 2 Please ve:lp that ne defeee.leeerttan limits ate abbet4'12 aur (..C-, 3 Sawn anther Cert g.Cer..;w"4 s.a i be ietctelly.«t.Der av tteeote.:#< tee rrav s,. .,.',DC Cease 4.4 CLIENT' 696C,SIN Hampton.St. Portland,OregOn 97223 Page 63 of 126 503-624-7005 PROJECT: 745 NW Nit.Washington Dr.#205 NUMBER: Bpn 0!eaon 97703 541-383-1828 FROELICH DATE: ENGINEERSE 12303 Airport Way.Suite 200 Broomfield,Colorado 80021 720-562269 BY: • ' „ /*C:NC:7/A) GC I ..• ..• • ..• 5 PI ERO„ECT Page 64 of 126 715,ew 1-‘,,;(1--:,-;rg.31-)C.-4-2;5 NUMBER: • ec-ci 07731 FROELICH 123C1 rpor-Way LOU ENGINEERSi Broorrft,„J, 0J000 80',,?; BY H.6.1 HT- Co c,u c.) v./A c4.. W1D : (1 2 (3, (:),0-Lt5(.7 z_ k 7. r• V r't P 1Z ' 6 I 9 c+0, o A L.)— &A Co CuikA, tv UG- (2 ) A3S e5A EAJD or Co Lu AJ 1 COMPANY PROJECT �`1'age 65 of T26 I `� ,:: WoodWorks 1 July 23, 2014 35:07 Columnl Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf, or plf) : Load - yW $' , t f 1t_. Location iftl Pat- Staff Dn.. Start End tern jLoadl 'Wind I? 3 MAXIMUM REACTIONS (lbs): { 0' 27' Dead Live 642 646 ' Total 64S, 646 Glulam-Balanced,West Species, 24F-1.8E WS, 5-1/2x7-1/2" Self Weight of 9.5 Of automatically included in loads; Pinned base; Loadface=width(b); Ke x Lb: 1.00 x 0.00=0.00(ft];Ke x Ld: 1,00 x 27.00=27.00(ft]; Lateral support top=Lb,bottom=Lb;Load combinations: ICC-IBC: Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion .... ;.Ysxz Vaiiie , 1 . ,r n Vaiue AnaiyaL..s/Designn Shear. .v _. 24 .&"n • 3$4 f= J1✓v' ,. 0.05 F' s 1('1T i"=g rs.: f.b - D.1 L'i. -- 3$40 ;:b1 E'f)r 0.21 Axi,x1 Lc = _ Ec 269 __.IF.. 0.02 A, i.al tat: rlrig :.. -- 14. foie . = 3.06 combined a;,, _, f r ... d^ l ens fl .9 ... ?; Live D , i n L/196 9 1 - 0.':i.'" .ot.al. 0 ? _.c_ - F/1'2 1 .$0 .1..60 6,92 ADDITIONAL DATA: FACTORS: . CO CM 2 11 Fb'+ 2400 1 .60 1 1.00 1.020 0.060 1.00 1,06 1 .00 1.20 2 240 .E.. 1.00 1.00 - - ,. 1.00 1.00 7 Fc' 1600 0.90 0 _0 - 1.0 1 E'o'...ornb 1600 1.61: ... C.155 '^ - 2 5' 1.0 million 1.0 1.0C _ - 1.60 - * 1600 0.30 1 .00 - - _.t 1. Bending(+: _ 0211 2 - .60°'i'r', 1.. - 4274 les-ft Shear 2 .... .60,-W! - ;4. V desIgn 949 lbx - Deflectlon: -,,Cif- 2 = .7. -ti ED= __. e E 10-1r:2 Total Deflection - ,..00:Dean Load _efleotio.,. + Live Load Deflection. Axial . 1 0 on F. _ 256 lbs Combined�r ,.£ =_C4 2 . ._,'oi; . __ _v : ) 0.93 (D=idee'ad L=live ... ...>os li Ni d I=impact C=crnstruct-.on CL,:a -coic. mora ei) (Ail LC's are listed in Ana are output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. � s COMPANY PROJECT Wood Works`J $O:741A RP FC1A'5F'0E.ES i7r'14:'4 Feb. 15, 2018 10:00 9' (1)2x6 HF2 (3300).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 3300 lbs Self-weight Dead Axial 15 lbs Lateral Reactions (lbs): I 9 co 0' 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber n-ply, Hem-Fir, No.2, 2x6, 1-ply (1-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length:9'; Clear span: 8'-10.5";volume=0.5 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 402 Fc' = 771 psi fc/Fc' = 0.52 Axial Bearing fc = 402 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearing fcp = 402 Fcp = 405 psi fcp/Fcp = 0.99 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 3315 lbs Support : LC 41 = D only; R = 3315 lbs, Cap = 3341, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT •ft' t Wood SO1OO4Ff FOR t4'OOD DEcm, Feb. 15, 2018 10:00 9' (2)2x6 HF2 (6500).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit • Start End Start End Loadl Dead Axial (Ecc. = 0.00") 6500 lbs Self-weight Dead Axial 31 lbs Lateral Reactions (lbs): 9 W -1 m 0' 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber n-ply, Hem-Fir, No.2, 2x6, 2-ply (3"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length: 9'; Clear span: 8'-9.0";volume= 1.0 cu.ft. Pinned base; Load face=width(b); Built-up fastener: nails; Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Repetitive factor: applied where permitted (refer to online help); Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 396 Fc' = 771 psi fc/Fc' = 0.51 Axial Bearing fc = 396 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearin fcp = 396 Fcp = 405 psi fcp/Fcp = 0.98 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 6531 lbs Kf = 1.00 Support : LC #1 = D only; R = 6531 lbs, Cap = 6682, Lb = 3.00", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT Wood Works® c SQFtO.R(FOR Si 000(:S5!C:', Feb. 15, 2018 10:01 9'4x6 HF2 (7500).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 7500 lbs Self-weight Dead Axial 36 lbs Lateral Reactions (lbs): 9' tEl I H o m Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber Post, Hem-Fir, No.2, 4x6 (3-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width;continuous lower support Total length: 9'; Clear span:8'-8.5";volume= 1.2 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0= 0.0 [ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 391 Fc' = 771 psi fc/Fc' = 0.51 Axial Bearing fc = 391 Fc* = 1287 psi fc/Fc* = 0.30 Support Bearing fcp = 391 Fcp = 405 psi fcp/Fcp = 0.97 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 7536 lbs Support : LC #1 = D only; R = 7536 lbs, Cap = 7796, Lb = 3.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification (NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT 1144111 11 WoodWorks® f)'n lYt(3i'.3 f53G' Feb. 15, 2018 10:02 9'4x8 HF2(9000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 9000 lbs Self-weight Dead Axial 47 lbs Lateral Reactions (lbs): 9' co v D o m 0' A 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Lumber Post, Hem-Fir, No.2,4x8 (3-1/2"x7-1/4") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length:9'; Clear span: 8'-8.5";volume= 1.6 cu.ft. Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0=9.0[ft]; Ke x Ld: 1.0 x 0.0=0.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 357 Fc' = 373 psi fc/Fc' = 0.96 Axial Bearing fc = 357 Fc* = 1228 psi fc/Fc* = 0.29 Support Bearin fcp = 357 Fcp = 405 psi fcp/Fcp = 0.88 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 0.90 1.00 1.00 0.304 1.050 - - 1.00 1.00 1 Fc* 1300 0.90 1.00 1.00 - 1.050 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 9047 lbs Support : LC #1 = D only; R = 9047 lbs, Cap = 10277, Lb = 3.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2015),the National Design Specification (NDS 2015),and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT • WoodY r s Feb. 15, 2018 10:02 9' 6x6 HF2 (13000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 12000 lbs Self-weight Dead Axial 56 lbs Lateral Reactions (lbs): I 9 t cu -1 m cr, D o m A 0' 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Timber-soft, Hem-Fir, No.2, 6x6(5-1/2"x5-1/2") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length: 9'; Clear span: 8'-6.5";volume= 1.9 cu.ft.; Post and timber Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 399 Fc' = 430 psi fc/Fc' = 0. 93 Axial Bearing fc = 399 Fc* = 517 psi fc/Fc* = 0.77* Support Bearing fcp = 399 Fcp = 405 psi fcp/Fcp = 0. 98 *Column requires a bearing plate at top as per NDS 3.10.1.3 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 0.90 1.00 1 .00 0.831 1.000 - - 1.00 1.00 1 Fc* 575 0.90 1.00 1.00 - 1.000 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1 .00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 12056 lbs Support : LC #1 = D only; R = 12056 lbs, Cap = 12251, Lb = 5.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrate dE=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 40 COMPANY PROJECT ,‘ WoodWorks' ,,„ cd>1-1-W ARE FG#ivn0{J Of UGN- Feb. 19, 2018 15:29 9'6x8 HF2(16000).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Loadl Dead Axial (Ecc. = 0.00") 16000 lbs Self-weight Dead Axial 74 lbs Lateral Reactions (lbs): I 9' w coTscn D o 0' A 9' Unfactored: Dead Factored: L->R Load comb #1 #1 Timber-soft, Hem-Fir, No.2, 6x8 (5-1/2"x7-1/4") Support: Lumber-soft Sill plate, Hem-Fir No.2; Bearing length=column width; continuous lower support Total length:9'; Clear span: 8'-6.5";volume=2.5 cu.ft.;Post and timber Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 403 Fc' = 473 psi fc/Fc' = 0.85 Axial Bearing fc = 403 Fc* = 517 psi fc/Fc* = 0.78* Support Bearin fcp = 403 Fcp = 405 psi fcp/Fcp = 1.00 *Column requires a bearing plate at top as per NDS 3.10.1.3 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 0. 90 1.00 1.00 0.914 1.000 - - 1.00 1.00 1 Fc* 575 0.90 1.00 1.00 - 1.000 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 16074 lbs Support : LC #1 = D only; R = 16074 lbs, Cap = 16149, Lb = 5.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design fi , and NDS Design Supplement. 2.SpeciPlease cation verify(NDS that the2015)default deflection limits are appropriate for your application. Page 72 of 126 e. COMPANY PROJECT iL?i WoodWorks® Feb. 10, 2011 17:00 5 1-8x6 glu-Iam.wwc Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: • Load iype.... Distribution Pat- Location [`ti Magnitude Unit tern Start EndStart End Lead/ Dead Axial (Ecc. = 0.00") 25000 lbs Self-weight Dead Axial 80 lbs Lateral Reactions (lbs): 03 tv ft_ o Ch 73 1 __ ... 0` 9• Glulam-Balanced,West Species,24F-1.8E WS,5-1/8"x7-112" 5 laminations, 5-1/8" maximum width, Support: Non-wood Total length:9'; volume= 2.4 cu.ft.; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0=9.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2012 : Criterion Analysis Value Design Value ;:nit_ Analysis/Design Axial I 652 Fc:' = 1140 psi ft/Fc" = 0.57 Axial Bearingfc 652 Fc* = 1440 psi fc/Fc* = 0.45 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CV Ctu Cr Ctrt Notes LC# Fr' 1600 0.90 1.00 1.00 0.792 - - - 1.00 - 1 Fc* 1600 0.90 1.00 1.00 - - - - 1.00 - 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 25080 lbs D=dead L=live S=snow W=wind I=impact Lr=roof live Lc-concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICC-IBC Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification (NDS 2012),and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI Al 90.1-2007 4. GLULAM: bxd=actual breadth x actual depth. • Page 73 of 126 COMPANY PROJECT n WoodWorks® Fab 10.2017 18:19 5 1-2x7 1-2 gfu-lam,vrwc Design Check Calculation Sheet WocdWorks Sizer 10 42 Loads: Pita doodi Dead YS 'e 1. :Dant, 1.13dc1 SiSe1f-wolaeh Dead Axial . Lateral Reactions(lbs): 9' m -I 0' 9' 353 Factored: T1_ 118.3 S,->33 322 load uenw al 41 Glulam-Balanced,West Species,24F-1.8E WS,5-1l2"x7-1/2" 5 laminations,5-112"maximum width, Support:Non-wood Total length:9';volume= 2 6 cu.ft; Pinned base:Load face=width(b);Ke x Lb:1.0 x 9.0=9 0[ft];Ke x Ld:1.0 x 0.0=0.0[ft]; Analysis vs.Allowable Stress and Deflection using NOS 2012: Cri t e,a.on Atx.il.lysi.:l;f'.3a°1* 1i?sign Value Unit A va;31Cc x£q: Y'.dx:Si' iv >... 3.8 Ye' ".. 2331 pni Bnr.<1.ru; fb 802 - 21 Axial .. _ ' _ Com2dined ;;FX,al _c._ re. ,amend} - 32 Axial. :.lt;er:.e4 fc .- 302 003 = 1.446 ;..r,s ._ - 9.n6[:lead Dat.: 0.093 = <1,1999 - .. Liva 1343110 negligible Total I1e.fl'n 0.13 _ :L/''10 0.99 _ 511314 in 0.22 Additional Data: 34 t .... Cr Fe' 285 0.90 1.0:` - « _ - . 1.99 313 = 2409 0.90 1.00 1.00 :o .....,.. 1.99 1.09 1.00 F". Fa 600 8. 00 1.00 0 E' '1 ee1.00 .. « -- .` 1 Emir' 0.9n million 1.0f: 1.00 .. - l34O y. 0.35 aMlllon 11.00 Fct 600 0.00 1.13D 1.00 - « .... - CRITICAL LOAD COMBINATIONS: Shear : 1:C 31 D Only, V -. 03: 40, 233 inr L+e:d..:'zu LC )» 13 only, - 3444 lbs-ft Deflection: LC #1 e .3 en.,.' Axial . LC 41 _ -Sa P:q.15.4-3 . 52 8i = D only Fn =43925620 P: C... ;exe' - .322 All SC's are listed in the 13x.alysis output Load combinations: EC., IBC CALCULATIONS: Deflection: EI 348e.06Lz, ".avedelection - ids,- cti -,14l t ` .a s:o....., Tot Deflection - 1.59:Dead Lead Deflection) 1,10e ,i .e` ec ::. _.ater"ai. etebilaL- ._u = 9' Le = 18' . 7.92 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement 2 Please verify that the default deflection limits are appropriate for your application. 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190 1-2007 4 GLULAM:bxd=actual breadth x actual depth. 5,Axial load eccentricity applied in direction of load face only It is the designers responsibility to check for effect of eccentricity in the other direction, Page 74 of 126 •COMPANY PROJECT , t,-id FiA "ir l'e!.:, . ... , orks®r" ,.-.' r Feb.10,20t 7 18:19 5 1-54 glo-tarn wwc Design Check Calculation Sheet WoodWorks Sizer 1042 Loads: lbs Se. i xq!. ;,+ Lateral Reactions(lbs): 9• . 0 del 0 ....n e 9 virile red: 032 Dead i2 Factored; 232 Load ccisb 232iil al cruors: # Glulam-Balanced,West Species,24F-1.SE WS,5-1!2"x6" 4 laminations,5-112"maximum width, Support Non-wood Total length:9;volume= 2.1 cu,ft.: Pinned base.Load face=width(b);Ke x Lb:1,0 x 9.0=9.0[ftl;Ke x Ld:1,0 x 0.0=0.0(ft], Analysis vs.Allowable Stress and Deflection using NOS 2o12: i t,_-. Analysis '/a L-. '.) , - i Ana yala€Deaie0 33e0.1 Iv 11 v' -- 21:1 p.91. rvilIV. ,,,, 0.04 Bonding - -:,- 1i 2.95 Axial ` 1 's.; Fr' a 12::',3 pal er.t%3` 0.2.3 2c r ).,14 tax..a.: , Ls = 0.75 0. Axial fie. :ing = - fc.Fc 53 Dead 1.11 - '909 Live i0efl'a Total De>. s /643 0.0 = 12183 >. 0.26 Additional Data: ':xOriJ; 2 (pSL)CD ` - i9rNotes L: 3 7'r' 55 0.90 1 , - 0 1 :b' 2.401) 0.00 1.00 1.00 0.9951.010 1.0U 1.00 1 1600 0.)is 00 ,233 - - - 1 1.8 minion 1.00 3,00 ., _. . 1 CCoin' 65 million 1.90 - ._ - - Fei-ny' .85 million 1,00 1.00 - .- 1} 00 - 1 1600 0,93 ..1 , 1, - - .. CRITICAL LOAD COMBINATIONS: ':ear 1.0 s' - 1.:3r. = 232 Deflection: 1.2 .,,a1 Axial , LC % - 25000 _,, 0q.15.4-3 C s E ,, fx_ }s.!?]j 17,-live 0t .: r �x .. ..- , . -.. .n.c:.-an,. i- . . ke All. 1.2':x are liat.d in i;f 31 .->. I p Load C':i!Tt:; .'i:it:... ..l. ;....:,...rq:, CALCULATIONS: "Live" denection -.c•. loads . ...) total Deflection 3 i :Li.,.,e ',mad Caflectinm, Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NOS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application.. 3 Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4 GLULAM:bxd=actual breadth x actual depth. 5.Axial load eccentricity applied in direction of load face only It is the designers responsibility to check for effect of eccentricity in the other direction Page 75 of 126 COMPANY PROJECT s ood Wo r ® Feb.10,2017 18:19• 5 1-Bx6 giu-lam wwc Design Check Calculation Sheet WoodWorks Sizer 10 42 Loads: Load Typo _. ..«Jit ffcl Magnitile Tinil a Self-welght Dead X_ 61 lbs Lateral Reactions(lbs): v 0' A 8' it a . nap,;:" Dead 172 Factored: _.1 7z Load comb 172 NI Looe cava 41 41 Giulam-Balanced,West Species,24F-1.8E WS,5-112"x6" 4 laminations,5-1/2"maximum width, Support:Non-wood Total length:8;volume= 1.8 cu.it.; Pinned base;Load face=width(b);Ke x Lb:1,0 x 8.0=8 0[ft];Ke x Ld:1,0 x 0.0=0.0 ft Analysis vs.Allowable Stress and Deflection using NDS 2012: Cxit rt.on AnalY5Is Value Unit. Anael?si i sign u..axa« fr 8 s' .. 2.40i vtty` :. 6.03 "i ndinf id; . 1.,3 Axial Combined Saxal ncoesfiln :s.+., F.';....0.v - 0.85 Axial 0:Sr:;lc - 0.70 Dead Doti.'n 0 :1.390 oxa3 01'>x 0.0ra '(./fill:? 1.53 - tai0 io 0.15 Additional Data: F'A,CTORE: A cr. 'S l Ct .. .Ci' ., Cr Cfrt FV' 265 .90 1.001.00 _ - 0 0 e 9 .5 I:.1 0410 0,90 1.00 1,00 1.000 1,00 i.00 1.00 1.00 1 Fe' 6.00 0,90 1.00 F:' r 1_8 a 11. .co 1,00 1.00 _ _. 1.00 Emi.n' 0.95 million 1,00 1.0T, - - 1..00 - Pcciny' 0.05 sniilio 5) 1. - _. - 1..00 - 600 0,901.00 _„ 1.00 _ - - - 1.00 CRITICAL LOAD COMBINATIONS: Shear LC ill = D only, V = 172, V design _ 112 ,+.. 9endlogt.i: LC 41. ._ D only, M - 1375 .09 ..... Deflection: LC iii - `l only . .. Axial : LC 41 22::01 ...., Eq.1:.+1-3 . LC if 0&=26112100" _ :"x;±„> - 10 0-=dead L=live S=anew 6),:wi:•, € tae c Lo,foncentfaced t earthquake 01.1 LC arc listed lc the, f Ta._ - ,; notptt. Load combinations: -IBC CALCULATIONS: . Defier cin ' ... '590 .. 'Live" deflectlen Deflection ,..',7 all 3,03 JL f e._..„, Total re.sec n = 1.90fDesd Load tref1nniln 1,1ve LoadDeflection. Lateral stability (4): - __ ..4. Rh 92 Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NOS Design Supplement, 2:Please verify that the default deflection limits are appropriate for your application, 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4.GLULAM:bxd=actual breadth x actual depth. 11/18/2016 Post Capacities 1 Simpson Strong-Tie Post Allowable Compression Loads for Hem-Fir Page 77 of 126 Lumber Perp to Compression Capacity Parallel to Grain Pc(100) Compression Capacity!Parallel to Grain Pc(160) FramingGrab, -- - � Size Grade ? Nominal Top Plate Height(ft) SIMPSON`p Plate Height(tl) 1 Pc a 8 _ 9 10 11 ( 12 8r. 10 11 12 2x4 2 2125 �3 2115 17 0 1435 1210 21 5 ' � 1770 t t6 3x4 y 3545 - 438$ l 30202395 s i[ £} ..., .-, �«, 5 £ 2020 4570 4 c t ( 'j t 12 TA c0 . ,_ �v Sia is llwe (5trorratfi n 1 S2F 4230 X60 t 28,5 2425 85 35$ Y."4-6----7--2 2� 2460 °r}3 i 4x4 2 iryt8 . ,. 4560 ! 614? 4935 4035 f 3355F 2830 .6400717 85 4125 3415 1 2870 " r 3 x4 i 6380 i 7890 ;1 6340 5185 4310 1 3635 18230. 6035 ( 5205 4390 t 3690 ‘1-2x4 r2 8505 1 10525 1 8455 1 6915 1 5750 I 4850 10'970 . ' 8715 . .1 7075 5855 -4920-- ! a i 9 _ , � .,,�. ...-......—., „.,..x i _ ... 6 4364 S a l 7735 X125 i 5395' 1581! ,i 3a6 42 570 1320 11470 9 ✓' .� 2x6 �l 3340 IsaO. 6881}- 5 8408440 72701560 118 ���10710 8915 635 6685 15900 137653 ' 1181 01 8725 ' 8765 , S470._ . 12850 4 1079 • 7 W"latih 2 2x6 s� � .� (-. � 9165 ( r 3 2x6 #2 10025 ,� 19,751� 3'':45—i j r._._- ..__. 4.2x6 € o2 13365 t'? a 27525 '.1.,,_236?0 2021 t 1435 .37535. 1 ',30935 : _p25-__( See footnotes Post Tension Loac Tastes Post Tension Loads for Douglas-Fir-Larch Allowable Tension Lumber -.. ._1 Framing --- .-.. - fit, 1 60) Bolt Diameter(in.) Size Grade ... wa� _. ._ i 0 t f T/$ 1 1 2x4 #2 7245 1 6080 ( 58205305 5045 3x4 ' #2 12075 I 101157 9705 s 88408410 1 2 2x4 #2 14490 12160 10090 11645 10610 1 .�._.._,, _. t 4-Inch 4x4 #2 16945 i 14190 113585 112375 - 11775 1 Wall 3-2x4 #2 21735 , 18240 ' 17465 15915 15135 4x6 #2 23025 19325 1 18500 16855 i 16035 . 4x8 #2 28015 i ......_ 23510 1 22510 20510 1 19510 4x10 #2 32765 1 27500 17 26330 23990 22815 2x6 #2 9865 I ....8860 8635 8185 1 7960 3x6 1 #2 16445 ' 14765 14390 13640 13270 2-2x6 #2 19735 17715 17265 16370 15920 6-Inch . L Wall 4x62 23025 1 20670 20145 19100 18575 3-2x6 #2 29600 1 26575 25900 24555 23885 1 6x6 #1 32670 29330 28585 27100 26360 6x8 , #1 44550 1 399 .. __ ti_ 95 38980 36955 35945 See footnotes mM6.. 11n8/20/6 Post Capacities I Simpson Strong-Tie Post Tension Loads for Sohern Pine Page 78 of 126 , • -- --------------~----�------�----------------------- ---'-------7 . Allowable Tension , . Lumber • • — ~ 411t0S:Vwww.otron^ue.00^m i 4-inch i 4x4 • ,^84v it i 6x6 #1 . 43560 39105 ' 38115 36135 1 35145 .t See footnotes Post Tension Loads for Spruce-Pine-Fir l Allowable Tension - ., Bolt Diameter(in.) I 0 f , ,1/2 1 Va 1 v , 11 3x4 #102 9450 7930 I 7595 1 6920 i 6580 iI 4-Inch 2-2x44 #1142 11340 1 9520 i 9115 I 8305 1 7900 j I Wall [ 4x4 t #1/#2 13230 1 11105 I 10630 1 9685 I 9215 I . r: li 6-inch l28/U _„.. ,.„„.. ._ See footnotes / . mm=^�"*°"�,m"on,^m�o�. nonvmrosv�.""""~. �°^==^ "a""= = Client: West Hills Development Project: River Terrace East Proj.#: 16-T1 00 Date: 3/6/2018 ., By: YSP JA FROELICH .__..........._... ENGIN E E R S i Cont. Spread Footing Design At Building Ext. Wall (II to joist) Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 832 Roof SL(psf) 25 Ftg Dead Load(plf) 435 Floor DL(psf) 27 Live Load(plf) 320 Floor LL(psf) 40 Snow Load(plf) 300 Wall DL(psf) 10 IBC Eq.16-9(plf) 1587 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1567 IBC Eq.16-11 (plf) 1732 Tributary Areas Total bearing(psf) 866 Roof Trib(ft) 12 Allowable brg(psf) 2500 Floor trib(ft) 8 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1.5 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 832 Footing width(in.) 24 Live Load(plf) 320 Footing depth(in.) 12 Snow Load(plf) 300 Cont. Spread Footing Design At Building Ext. Wall (I_to joist) Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1138 Roof SL(psf) 25 Ftg Dead Load(plf) 435 Floor DL(psf) 27 Live Load(plf) 960 Floor LL(psf) 40 Snow Load(plf) 125 Wall DL(psf) 10 IBC Eq.16-9(plf) 2533 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1698 IBC Eq.16-11 (plf) 2387 Tributary Areas Total bearing(psf) 1267 Roof Trib(ft) 5 Allowable brg(psf) 2500 Floor trib(ft) 24 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1.5 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1138 Footing width(in.) 24 Live Load(plf) 960 2098 < 2 5 0 0i f = 2X6@16 Footing depth(in.) 12 Snow Load(plf) 125 p Cont. Spread Footing Design At Int. Brg Wall - Basement Loading Criteria Foundation Results ' Roof DL(psf) 18 Dead Load(plf) 1795 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 1800 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 3885 - Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 2335 IBC Eq.16-11 (plf) 3623 3595*10/8 (increase for Tributary Areas Total bearing(psf) 1943 Roof Trib(ft) 10 Allowable brg(psf) 2500 db l span joists) = 4494 Floor trib(ft) 45 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1795 Footing width(in.) 24 Live Load(plf) 1800 Footing depth(in.) 12 Snow Load(plf) 250 4494 < 5000 p 1 f = (2) 2X6@16 Cont. Spread Footing Design At Int. Brg Wall - 1st Floor Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1390 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 1200 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 2880 2590*10/8 (increase f o r Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1930 IBC Eq.16-11 (plf) 2768 dbl span joists) = 3238 Tributary Areas Total bearing(psf) 1440 Roof Trib(ft) 10 Allowable brg(psf) 2500 Floor trib(ft) 30 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1390 Footing width(in.) 24 Live Load(plf) 1200 3238 < 5000 p 1 f = (2) 2 X 6@ 16 Footing depth(in.) 12 Snow Load(plf) 250 Cont. Spread Footing Design At Int. Brg Wall - 2nd Floor Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 885 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 600 Floor LL(psf) 40 Snow Load(plf) 250 Wall DL(psf) 10 IBC Eq.16-9(plf) 1775 15 2 3*10/8 (increase f o r Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1425 IBC Eq.16-11(plf) 1813 dbl span joists) = 1903 Tributary Areas Total bearing(psf) 906 Roof Trib(ft) 10 Allowable brg(psf) 2500 Floor Crib(ft) 15 Footing OK Wall height(ft) 30 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 0 Dead Load(plf) 885 1903 < 2500 p 1 f = 2X6@16 Footing width(in.) 24 Live Load(plf) 600 2500 p 1 f = (2) 2X4@16 Footing depth(in.) 12 Snow Load(plf) 250 Cont. Spread Footing Design At Party Wall Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1030 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 27 Live Load(plf) 880 Floor LL(psf) 40 Snow Load(plf) 50 Wall DL(psf) 10 IBC Eq.16-9(plf) 2200 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1370 1910*10/8 (increase f o r IBCEq.16-11 (plf) 2018 dbl span joists) = 2388 Tributary Areas Total bearing(psf) 1100 Roof Trib(ft) 2 Allowable brg(psf) 2500 Floor trib(ft) 22 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 0 Dead Load(plf) 1030 2388 < 2 5 0 0 plf = db 1 2X4@16 Footing width(in.) 24 Live Load(plf) 880 p Footing depth(in.) 12 Snow Load(plf) 50 Cont. Spread Footing Design At Corridor Wall Loading Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 1345 Roof SL(psf) 25 Ftg Dead Load(plf) 290 Floor DL(psf) 55 Live Load(plf) 900 Floor LL(psf) 100 Snow Load(plf) 625 Wall DL(psf) 10 IBC Eq.16-9(plf) 2535 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 2260 IBC Eq.16-11 (plf) 2779 Tributary Areas Total bearing(psf) 1389 Roof Trib(ft) 25 Allowable brg(psf) 2500 Floor trib(ft) 9 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 8 Dead Load(plf) 1345 Footing width(in.) 24 Live Load(plf) 900 2489 < 2500 pff = 2X6@16 Footing depth(in.) 12 Snow Load(plf) 625 COMPANY PROJECT WoodWorks® Feb.15,2018 14:04 Ext HF 9ft 2x6 at 16(2500pI)TL 35psf W).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 2500 plf Lateral Wind Full Area 35.00(16.0") osf Self-weight Dead Axial UDL 12 plf Lateral Reactions(lbs): 9 I xD0 o• Unfactored: Dead Wind 210 210 Factored: L->R 126 126 Load comb #2 #2 Ext Wall Stud Lumber Stud,Hem-Fir,No.2,2x6(1-1/2"x5-112") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 16.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.5 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 23 Fv' = 240 psi fv/Fv' = 0.10 Bending(+) fb = 450 Fb' = 2033 psi fb/Fb' = 0.22 Axial fc = 406 Fc' = 771 psi fc/Fc' = 0.53 Axial Bearing fc = 406 Fe* = 1287 psi fc/Fc* = 0.32 Support Bearing fcp = 406 Fcp = 405 psi fcp/Fcp = 1.00 Combined (axial compression - side load bendimg) Eq.3.9-3 = 0.58 Live Defl'n 0.15 = L/706 0.90 = 1/120 in 0.17 Total Defl'n 0.15 = L/706 0.90 = L/120 in 0.17 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fe' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 2 Fr' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.389 - - - - 3 E' 1.3 million 1.00 1.00. - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max = 126, V design = 126 lbs Bending(+): LC #2 = .60+.614, M = 284 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 3349 lbs Combined : LC #3 = D+.6W; (1 - £c/FcE) = 0.59 Support : LC #1 = D only; R = 3349 lbs, Cap = 3341, Lb = 1.50", Cb = 1.00 0-dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: CI = 27.0e06 1b-in2 "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead.Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 1 COMPANY PROJECT Wood Wood M 101( 501,tla,9 pow 1.1-1•0 1)DES/GN Feb.15,2018 14:05 Int HF 9ft 2x4 at 12(1700pIf TL 5psf W).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 1700 plf Lateral Wind Full Area 5.00(12.0") psf Self-weight Dead Axial UDL 10 plf Lateral Reactions(lbs): • 9' m > is o• � 9, Unfactored: Dead Wind 23 Factored: 23 L->R 14 14 Load comb 02 #2 Int Wall Stud Lumber Stud,Hem-Fir,No.2,2x4(1-1/2"x3-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 12.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.3 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor.applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 4 Fv' = 240 psi fv/Fv' = 0.02 Bending(*) fb = 119 Fb' = 2346 psi fb/Fb' = 0.05 Axial fc = 326 Fc' = 376 psi fc/Fc' = 0.87 Axial Bearing fc = 326 Fc* = 1345 psi fc/Fc* = 0.24 Support Bearing fcp = 326 Fcp = 405 psi fcp/Fcp = 0.80 Combined (a':ial compression - side load bendimg) Eq.3.9-3 = 0.95 Live Defl'n 0.06 = <L/999 0.90 = L/120 in 0.07 Total Defl'n 0.06 = <L/999 0.90 = L/120 in 0.07 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 . Fb'+ 850 1.60 1.00 1.00 1.000 1.500 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.280 1.150 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.163 - - - - - 3 E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emirs' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fe* 1300 0.90 1.00 1.00 - 1.150 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max = 14, V design = 14 lbs Bending(+): LC #2 = .6D+.6W, M = 30 lbs-ft Deflection: LC #2 = .60+.6W (live) LC #2 = .6D+.6W (total) Axial LC #1 = D only, P = 1710 lbs Combined LC #3 = D+.6W; (1 - fc/FcE) = 0.20 Support : LC #1 = D only; R = 1710 lbs, Cap = 2126, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 6.97e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT 1/0 lv WoodWorks® 4 s<n.r;YANz <5 M.,,,t)0,s<. Feb.15,2018 15:49 Int HF 9ft 2x4 at 16(1250plf TL 5psf W).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ftl Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 1250 plf Lateral Wind Full Area 5.00(16.0") psf Self-weight Dead Axial UDL 7 plf Lateral Reactions(lbs): 9 1. WD -4 A 0' 9' Un factored: Dead 30 Wind 30 Factored: 18. L->R 18 18 Load comb #2 Int Wall Stud Lumber Stud,Hem-Fir,No.2,2x4(1-1/2"x3-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 16.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.3 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0(8];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 5 Fv' = 240 psi fv/Fv' = 0.02 Bending(+) fb = 159 Fb' = 2346 psi fb/Fb' = 0.07 Axial fc = 319 Fc' = 376 psi fc/Fc' = 0.85 Axial Bearing fc = 319 Fc* = 1345 psi fc/Fc* = 0.24 Support Bearing fcp = 319 Fcp = 405 psi fcp/Fcp = 0.79 Combined (axial compression - side load bendiAg) Eq.3.9-3 = 0.99 Live Defl'n 0.08 = <L/999 0.90 = L/120 in 0.09 Total Defl'n 0.08 = <L/999 0.90 = L/120 in 0.09 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.500 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.280 1.150 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.163 - - - - - 3 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc* 1300 0.90 1.00 1.00 - 1.150 - - 1.00 1.00 1 Fcp sup 405 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max = 18, V design = 18 lbs Bending(+): LC #2 = .6D+.6W, M = 41 lbs-ft Deflection: LC #2 = .6D+.68 (live) LC #2 = .60+.6W (total) Axial : LC #1 = D only, P = 1676 lbs Combined : LC #3 = 0+.68; (1 - fc/FcE) = 0.21 Support : LC #1 = D only; R = 1676 lbs, Cap = 2126, Lb = 1.50", Cb = 1.00 D=dead L=live 0-snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 6.97e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow._) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT WoodWorks siotF11451 FOR t;<fl)fg:'ira:.'t• Feb:15,2018 14:15 Int HF 9ft 2x6 at 12(3300p11 TL 5psf W).wwc Design Check Calculation Sheet WoodWorks Sizer 11.1 Loads: Load Type Distribution Location [ft] Magnitude Unit Start End Start End Max Axial Load Dead Axial UDL (Ecc. = 0.00") 3300 plf Lateral Wind Full Area 5.00(12.0") psf Self-weight Dead Axial UDL 15 plf Lateral Reactions(lbs): 1 9 c °'D 0 0 ° A 9' Un factored: Dead Wind 23 Factored: 23 L->R 14 Load comb #2 14 #2 Ext Wall Stud Lumber Stud,Hem-Fir,No.2,2x6(1-1/2"x5-1/2") Support:Lumber Stud Bottom plate,Hem-Fir No.2;Bearing length=stud thickness;continuous lower support Spaced at 12.0"c/c;Total length:9';Clear span:8'-10.5";volume=0.5 cu.ft. Pinned base;Load face=width(b);Ke x Lb:1.0 x 0.0=0.0[ft];Ke x Ld:1.0 x 9.0=9.0[ft];Repetitive factor applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2015: Criterion Analysis Value Design Value Unit Analysis/Design Shear fv = 2 Fv' = 240 psi fv/Fv' = 0.01 Bending(+) fb = 48 Fb' = 2033 psi fb/Fb' = 0.02 Axial fc = 402 Fc' = 771 psi fc/Fc' = 0.52 Axial Bearing fc = 402 Fc* = 1287 psi fc/Fc* = 0.31 Support Bearinm fcp = 402 Fcp = 405 psi fcp/Fcp = 0.99 Combined (a_ral compression - side load bending) Eq.3.9-3 = 0.24 Live Defl'n 0.02 = <L/999 0.90 = L/120 in 0.02 Total Defl'n 0.02 = <L/999 0.90 = L/120 in 0.02 Additional Data: • FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fv' 150 1.60 1.00 1.00 - - - - 1.00 1.00 2 Fb'+ 850 1.60 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 2 Fc' 1300 0.90 1.00 1.00 0.599 1.100 - - 1.00 1.00 1 Fc'comb 1300 1.60 - - 0.389 - - - - - 3 E. 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 2 Fc" 1300 0.90 1.00 1.00 - 1.100 - - 1.00 1.00 1 Fcp sup 905 - 1.00 1.00 - - - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Shear : LC #2 = .6D+.6W, V max = 14, V design = 14 lbs Bending(+): LC #2 = .6D+.6W, M = 30 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) Axial : LC #1 = D only, P = 3315 lbs Combined : LC #3 = D+.6W; (1 - fc/FcE) = 0.60 Support : LC #1 = D only; R = 3315 lbs, Cap = 3341, Lb = 1.50", Cb = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2015 CALCULATIONS: Deflection: EI = 27.0e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2015),the National Design Specification(NDS 2015),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. FROELICH CONSULTING ENGINEERS INC., Client: Project: Project#: By: Footings Maximum Allowable Required Required Dimensions Used Dimensions Footing Bearing Footing Size ganow Load(Piot) Area W(ft) L(ft) W(ft) L(ft) D(in) Weight Pressure 18" x coni x10" 3500 2500 1.40 1.18 1.18 1.5 1 10 188' 2458 24" x cont x 10" 14000 2500 5.60 2.37 2.37 2 3 10 750 2458 36" x cont x 10" 27000 2500 10.80 3.29 3.29 3 4 10 1500 2375 2'-6" x 2'-6" x 10" 15500 2500 6.20 2.49 2.49 2.5 2.667 10 833 2450 3'-0" x 3'-0" x 12" 21000 2500 8.40 2.90 2.90 3 3 12 1350 2483 3'-6" x 3'-6"x 12" 27000 2500 10.80 3.29 3.29 3.5 3.333 12 1750 2465 41.0"x 41.0"x 12" 37000 2500 14.80 3.85 3.85 4 4' 12 2400 2463 4'-6"x 4'-6"x 12" 52000 2500 20.80' 4.56 4.56' 4.5 5 12 3375 2461 Required Area: _(Piot/galtow)os Bearing Pressure =(Piot+Wft /(W*L) =(Piot+Web)/(W*L*3.1415/4) 0 (0 00 N 0 N 6) 414i Client: Project: Proj.#: Date: r By: FROELICH • ENGINEERS d ASCE 7-05 Earthquake Load Cs Factor Importance Factor(Seismic) I = 1.0 Basic Seismic Force Resisting System Light Framed Wood Shear Wall R= 6.5 Design Spectral - Response Acceleration Seismic Design Coefficient Development Latitude Longitude SDS S01 Cateaory Cs 45.559 -122.853 0.726 0.403 D 0.1117 - Information in table was obtained from USGS website - Conservatively design all structures in all developments for the Cs design value specified below Controlling Cs Value : 0.1117 Use Cs = 0.12 for Design in all Developments Equations: s = Ds*i 'esponse Coefficient I -ow :n CD GO w 0 N CD Page 84 of 126 Client: Project: River Terrace Project#: 16-T100 Date: 11/18'2016 - By: YSP jY FROELICH ENGINEERS 1 WIND FORCE CALCULATION- MWFRS Side-Side Event ASCE 7-10 SECTION 27-2 METHOD 2-ANALYTICAL PROCEDURE Basic Wind. Speeds Input 3 Second Gust Vas= 120 mph Wind Directionality Factor Kd= 0.85 Table 26.6-1 Wind Importance Factor Iw= 1.00 Wind Exposure Category= B Building Parameters Horizontal Dimension of Bldg B= 54 ft Measured Normal to wind direction Horizontal Dimension of Bldg L= 146 ft Measured Parallel to wind direction Mean Roof Height h= 40 ft Highest Roof Level hn= 40 ft Approximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 Output-Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 26.8-1 Length of 1/2 hill height Lh= 1 ft Figure 26.8-1 Dist.From Crest to Bldg. x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 Horizontal Attenuation Factor m= 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor K1/(H/Lh)= 1 Figure 26.8-1 Output-Topographic Multipliers K1 = 0.00 K2= 1.00 K3= 1.00 Topographic Factor lct= 1.00 Page 85 of 126 Gust Effects Input Integral Length Scale Factor£ = 320 ft Table 26.9-1 Integral Length Scale nominal height of boundary zg= 1200 Table 26.9-1 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 Power Law Exponent E = 0.33 Table 26.9-1 Minimum Height zmin= 30 ft Table 26.9-1 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.88 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.85 Pressure Coefficients Input Length to Width Ratio LB= 2.70 Height to Length Ratio h/L= 0.27 Roof Pitch= 9 : 12 = 36.87 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients Cp (see below) Figure 27.4-1 Direction Cp Height(ft) Kh qZ(psf) Velocity Windward 0.8 15 0.57 18.0 Pressure Leeward -0.27 20 0.62 19.6 Output qZ Roof Windward 0.40 25 0.67 20.8 Roof Leeward -0.6 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 h_ 40 0.76 23.8 qh hparapet - 0 0.57 18.0 qh Page 86 of 126 Design Wind Pressures p (psi)- GCS,;_ (-) 16 psf(8psf for roof)mm per 27.1.5 Internal Pressure Coefficient GCP;= -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 16.6 -1.2 17.8 ft 20 17.6 -1.2 '18.8 25 18.5 -1.2 19.7 30 19.3 -1.2 20.5 40 20.6 -1.2 21.8 50 21.6 -1.2 22.8 60 22.6 -1.2 23.8 70 23.4 -1.2 24.6 80 24.1 -1.2 25.3 90 24.8 -1.2 26.0 100 25.4 -1.2 26.6 120 26.6 -1.2 27.8 40 20.6 -1.2 7.5 -4.7 21.8 12.20 Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures p (psi)*GC0=(+) 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCP;= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 8.0 -9.8 17.8 ft 20 9.1 -9.8 18.8 25 9.9 -9.8 19.7 30 10.7 -9.8 20.5 40 12.0 -9.8 21.8 50 13.0 -9.8 22.8 60 14.0 -9.8 23.8 70 14.8 -9.8 24.6 80 15.5 -9.8 25.3 90 16.2 -9.8 26.0 100 16.8 -9.8 26.6 120 18.0 -9.8 27.8 40 12.0 -9.8 2.3 -9.9 21.8 12.20 Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASD) p (psf)-GCr„=(-) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCP; = -0.18 Figure 26.11-1 Wail Roof Horizontal Effects Horiz. Direction - 1 Windward I Leeward I Roof WW I Roof LW I WW+LWI RWW+RLW 1 1 Page 87 of 126 Height 15 9.9 -0.7 10.7 ft 20 10.6 -0.7 11.3 25 11.1 -0.7 11.8 30 11.6 -0.7 12.3 40 12.3 -0.7 13.1 50 13.0 -0.7 13.7 60 13.5 -0.7 14.3 70 14.0 -0.7 14.7 80 14.5 -0.7 15.2 90 14.9 -0.7 15.6 100 15.3 -0.7 16.0 120 15.9 -0.7 16.7 40 12.3 -0.7 4.5 -2.8 13.1 7.32 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASD) p (psf)-GC0=(+) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp,= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.8 -5.9 10.7 ft 20 5.4 -5.9 11.3 25 6.0 -5.9 11.8 30 6.4 -5.9 12.3 40 7.2 -5.9 13.1 50 7.8 -5.9 13.7 60 8.4 -5.9 14.3 70 8.9 -5.9 14.7 80 9.3 -5.9 15.2 90 9.7 -5.9 15.6 100 10.1 -5.9 16.0 120 10.8 -5.9 16.7 40 7.2 -5.9 1.4 -5.9 13.1 7.32 Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Page 88 of 126 Client: Project: River Terrace Project#: 16-T100 4 Date: 11/16/2016 x. By YSP FROELICH ENG 1 N E E R S I WIND FORCE CALCULATION-MWFRS Front-Back Event ASCE 7-10 SECTION 27-2 METHOD 2 -ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust V35= 122 mph Wind Directionality Factor Kd= 0.85 Table 26.6-1 Wind Importance Factor IW= 1.00 Wind Exposure Category= B Building Parameters Horizontal Dimension of Bldg B = 146 ft Measured Normal to wind direction Horizontal Dimension of Bldg L= 54 ft Measured Parallel to wind direction Mean Roof Height h= 40 ft Highest Roof Level fin= 40 ft Approximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 Output-Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 26.8-1 Length of 1/2 hill height Lb= 1 ft Figure 26.8-1 Dist. From Crest to BIdg.x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 Horizontal Attenuation Factor m= 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor K1/(H/Lh)= 1 Figure 26.8-1 Output-Topographic Multipliers K1 = 0.00 K2= 1.00 K3= 1.00 Topographic Factor Kn= 1.00 Page 89 of 126 Gust Effects Input Integral Length Scale Factors = 320 ft Table 26.9-1 Integral Length Scale nominal height of boundary zg= 1200 Table 26.9-1 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 Power Law Exponent E = 0.33 Table 26.9-1 Minimum Height zrnin = 30 ft Table 26.9-1 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.83 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.82 Pressure Coefficients Input Length to Width Ratio L/B= 0.37 Height to Length Ratio h/L= 0.74 Roof Pitch= 10 : 12 = 39.81 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 27.3-1 External Pressure Coefficients C, (see below) Figure 27.4-1 Direction Cp Height(ft) Kh qZ(psf) Velocity Windward 0.8 15 0.57 18.6 Pressure Leeward -0.50 20 0.62 20.2 Output qZ Roof Windward -0.20 25 0.67 21.5 Roof Leeward -0.6 30 0.70 22.7 40 0.76 24.6 50 0.81 26.3 60 0.85 27.7 70 0.89 28.9 80 0.93 30.0 90 0.96 31.1 100 0.99 32.0 120 1.04 33.7 h= 40 0.76 24.6 eta hparapet-_ 0 0.57 18.6 qh Page 90 of 126 Design Wind Pressures p (psf)- GSC p;= (-) 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCP; = -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW±LW RWW+RLW Height 15 16.7 -5.7 22.4 ft 20 17.8 -5.7 23.5 25 18.6 -5.7 24.3 30 19.4 -5.7 25.1 40 20.7 -5.7 26.4 50 21.7 -5.7 27.5 60 22.7 -5.7 28.4 70 23.5 -5.7 29.2 80 24.2 -5.7 29.9 90 24.9 -5.7 30.6 100 25.5 -5.7 31.2 120 26.7 -5.7 32.4 40 20.7 -5.7 0.2 -5.0 26.4 8.00 Parapet 0 27.9 -18.6 46.5 Design Load Case 1 Controls - By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures p (psf)_CCri=(+) 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCP;= 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 7.8 -14.6 22.4 ft 20 8.9 -14.6 23.5 25 9.8 -14.6 24.3 30 10.5 -14.6 25.1 40 11.8 -14.6 26.4 50 12.9 -14.6 27.5 60 13.8 -14.6 28.4 70 14.6 -14.6 29.2 80 15.4 -14.6 29.9 90 16.0 -14.6 30.6 100 16.7 -14.6 31.2 120 17.8 -14.6 32.4 40 11.8 -14.6 -5.4 -10.6 26.4 8.00 Parapet 0 27.9 -18.6 46.5 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-l0 27.4.5 Design Wind Pressures (AD) p (psf)- GC1,,=(-) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCP; = -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- 1 Windward [ Leeward I Roof WW I Roof LW I WW+LWI RWW+RLW I Page 91 of 126 Height 15 10.0 -3.4 13.4 ft 20 10.7 -3.4 14.1 25 11.2 -3.4 14.6 30 11.6 -3.4 15.1 40 12.4 -3.4 15.8 50 13.0 -3.4 16.5 60 13.6 -3.4 17.0 70 14.1 -3.4 17.5 80 14.5 -3.4 18.0 90 14.9 -3.4 18.4 100 15.3 -3.4 18.7 120 16.0 -3.4 19.4 40 12.4 -3.4 0.1 -3.0 15.8 4.80 Parapet 0 16.8 -11.2 27.9 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 Design Wind Pressures(ASD) p (inf.)-GCpr=(+Z 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp;= 0.18 Figure 26.11-1 WaII Roof Horizontal Effects Horiz. Direction Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.7 -8.7 13.4 ft 20 5.3 -8.7 14.1 25 5.9 -8.7 14.6 30 6.3 -8.7 15.1 40 7.1 -8.7 15.8 50 7.7 -8.7 16.5 60 8.3 -8.7 17.0 70 8.8 -8.7 17.5 80 9.2 -8.7 18.0 90 9.6 -8.7 18.4 100 10.0 -8.7 18.7 120 10.7 -8.7 19.4 40 7.1 -8.7 -3.3 -6.4 15.8 4.80 Parapet 0 16.8 -11.2 27.9 Design Load Case 1 Controls -By Inspection Parapet Loading per ASCE7-10 27.4.5 Page 92 of 126 .. - COMPANY PROJECT W. ® 0 o d W. 0 r k s Feb 4,2017 11;13 Front Back Event-Beam Concept wwn sni.T04141.,1..1 didr.)104,i),41r, Design Check Calculation Sheet WoodWorks Sizer 10 42 Loads: 14I0147 1 fri../ loatr1hotioo Vat- Location fftj Madhirnde 0:1,11 fern Starr Mnd Starr end 1.440i idnoa Fall UOT N. 1.0 Slf, Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): I _ « r.._ A 10 clr a 0- ._ f' i'1,,,.//h '5C4' 64' -- e. ,,, -; n,,d 45P , .I',:, ,,,c, Ai, .. VO 1 hadrino. ',7",>' /1 Capad1tv i60;› .500 p na.3,1 aholicioi ..0 6-04 0 0,42 support 6.00 06e5 .06 4.-A,N'5 4.42 Lt.......h #1 41. . 11 1,roth 4.54, 4.54, t $r 0-5'3' M,11 0 0.00- Mt,0 7.50' 0 C, a.to. OT 1.00 1,1O 1.00 Ch non 1.661) 1.40 Ch .4,,,szt 1.15 1.11 13 1.11 C.f. ao. .25 tam$ 6411 'aftiinifftiall bearing MOM a',00100 uSed.1/2"tar and SUPPort6 sad lir rot Pathos'MtP0b1161 \ Ve Glulam-Unbal.„West Species,24F-1.8E WS,2-1/8"x6" 4 laminations.2-1/6"maximum width, Supports:All-71mber-soft Beam,0 Fir-L No 2 Total length:80'4 5';volume= 7.1 cut.; Lateral support:tope at supports,bottom=at supports; WARNING:Member length exceeds typical stock length of 60.0 tiu Analysis vs.Allowable Stress and Deflection ening NDS 2012: Ce it,es,04 AS.02441% 'Also Ssisilp Velqa 04010 Iksi*110051/110441,07< 53,o., Papsi x yr'Sii' - 0.9 i el: =., 0,,1 Ft' - a03 ovi fbi-Eb' - 0.11 0o.d1.11H3 147. 144 pa i fl'/11,. a, 1.115 Doid End4)7< 4,17 o ,1a990 ftv. 5.111'6 nedloiltle Total 1147.1', 0.71 a 11110 1.10 4, 5/140 In 0.44 Additional Data: FACTORS: F/7tpald16 CM Ci. Cl. CV Cfn Cr 71,17. Notes do.Cvo TC# 245 4.94 1.00 1.10 V - - 1.40 1.04 1.011 1 5.'. 2400 0.40 1.00 1.03 0.172 1.600 1.00 1.00 1.00 1-00 - 1 ✓131_ 1450 5.50 1.00 1.00 0.1911 1.500 1.01 1.05 0.00 1.09 - 1 .,,,p. 650 1.00 Leo - .. - 1,70 - 47' 1.47 million 1.00 1-00 . V - 11 faninv: 0.05 rdilion 1.60 1.09 - - - 1 CRITICAL LOAD COMBINATIONS: Shear : LO 4,1 - 0 only, V- 10, v dealgh - 25 lbs 5.s.rAi nix ;i1 07 41 - 0 only, fi - 132 the 10 D andio1J1-11 Lt 47. - U 011 , M a: 202 liar-ft 1.11,...,..: LC 41 - V only (311,.11 2:373,))1 1,111.. Soah.o.Tav1on 1.1.11e03, 1,-Toof live Lo.contentratod 0.04<rthquake 4711. fd'o d,o 113711d in the Analysis oorpor 1 0,1a p.mhi1la,1o3-3<: addS 7-0) / ISC 21112 CALCULATiONS: Definition, Fl - 64.1..44 11,-1o1 VV4II,V..VV< da1leordoh . Oefl.orthe from ail aon-dead loads Clive, wind, soow,d f ohaa 1:17,174<,,1'. -- 1-5431:ea11 Load Oeflact/001 .Live Load D73f1ection, 7,10.40;s1 1110111.1101' (11: La - 12' 0.50. To. 17)-4,25" RN - 31.12 1,41.170:7111111 .77 toil 1., o 42.-01,50" 137 o 71.-4,25. CC " 35.12 Design Notes: I.Woodworks analysis and design are in accordance with the ICC International Building Code(IBC 2012).the National Design Specification(NDS 2012),and NM Design Supplement 2 Please verily that the default deflection limits are appropriate for your application. 3 Gilliam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190 1-2007 4 Grades with equal bending capacity In the lop and bottom edges of the beam cross-section are recommended for continuous beams, S.GLULAM:bed=actual breadth x actual depth, 6 Glulam Beams shall be laterally supported according to the provisions of NDS Clause 333 7,GLULAM•bearing length based on smaller of Pcp(tension),Fcp(comen). Page 93 of 126 , -4,3* odW, orks® 0 .Er,Ew lad nll'a f42)5()08,488)), PsiRd:J:CoEveTra.Elearr,c,.pt COMPANY 0,17 . . , . .. . - N Feb d,2 1113: „. . Design Check Calculation Sheet WoodVVorks Sizer 10 42 Loads: (I'll Type flstsihatien Pat- Lc, fit, Matude iadt 'no c ,,; ,,a lt,T Ficrt 2nd Dear:, Dsd 1:8 Id! 1 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 55,2' ----I A I. 25'45" 30,1' Et:fa:doted, 0 so -a ' In o. 1. 4 Factored! Tore' 10 5584 51 10 beating: 2opacity bet, 591 12,' 0011 auspost 41 151 Ass)./Des a.am mal a.m ,,o) c i.al Suppott 0.01 8..2 ..02 0,01 Insd cnob 81 1:1 al 41 Ion.l. -14 D.8.0l 0.50. 0,58. 0.50. Mia req'S 8.50. 0. 64 0. 0- 0.50' 1.15 1.75 1,00 C. min 1.00 1.75 1.15 1.00 G. sniiport 1.18 1.184.16 1.14 fon six. 623 _ .25_ 6125 f2'` 4, *htnicoon bearing/engin setting used ter*mid supports and litter lotentor:Suppona Giulam-Unbal,West Species,24F-1.8E WS,2-1/8"x6" 4 laminations,2-1/8'maximum width, Supports All-Timber-soft Beam,D.Fir-L No.2 Total length:55,2.0%volume 4 4.9 cult; Lateral support:Itir at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection usine NDS 2012 fittaosden Snalyale Vaasa DeAlgo Vaide Unt:t An&tye5a/gairinn Fbear ' ry. 2 fvw . 2.19 pal 10/42' - 0.01 flendira4f4d 24 . 46 F.' m I'll psi f./F.' m 0,04 bendingf-f 0>m 54 kll' . 10148 psi 41,/Pb' " 0.05 Dean 22,51'n 0.08 - 41/808 Ilve Defl's negligible T.t.a :.,.I'm ,-,,')- elf/8(49 1-25 - 4./740 Co 31,08 Additional Data: itadT022; Tiffpall(10 CM Ct. 015 CV 701, Cr Pool notes cc'-:04 4.24 (s' 285 0.90 LAO 1.00 - - - . 1.011 1.I. 1.14 .. Ely, 2424 5.0') 1.00 1.00 0.51lb 1,000 1.,la 1,40 1.00 1,00 - Pb'- 1.C-30 0.9n 1.33 1.00 0.141 0.000 1.00 1,00 1.00 1.00 - 1 lap' C50 - LAO 1.00 - - - - 1-(01 - - - F.' 1.0 million Lao Loa - - - - 1.0.3 - fmny' 0.05 million 1,00 1.00 m - - 1.00 - CRITICAL LOAD COMBINATIONS: Shear , LC 41 . 0 only, V- 15, V design-4 .14 lbs ,5884.bbi'll IC 'Ii n II only, M 51 1084-ft net ieo,lcc' LC 111 - 0 only (total) 0.doid 1.11v4 F.5ow 6:4wind Imimpaer Lr.root live Lameohoentrated 2-'earthquake Al.. IC's are lin'-ed Is the Analysis output 1,31 COleaattaKAGU, 01012 7 14 / 401 2012 CALCULATiONS: 0efioction: El . 62.8,06 lb-in2 "Live' deflection a'Deflection from all non-dead loads (live, wind, snow-) Tot.i Deflection- 1.50fDead Load Deflectionl • Live Load Deflection. Isteral stability ',-U Lu .25 -0,54n Le. 46 -0.941 no. 27.12 1stars1 sfabidaty f-i: L.=2.5.-0.50'. Le= 46'-0,841 AB Design Notes: 1.WoodWoiks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. 2.Please verily that the default deflection limits are appropriate for your application. 3 Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2057 S.Grades with equal bending capacity in the top and bottom edges of the beam cross-section ave recommended for continuous beams 5.SWAM:bud 4 actual breadth x actual depth. 8 Gilliam Beams shall be laterally supported accenting to the provisions of NDS Clause 33,3 7.GLULAM:bearing length based on smaller of Pcp(tension),Fcp(comp'n), Page 94 of 126 Client: Arbor Project: River Terrace- 12 Plex UN Project#: 16-T100 h Date: Feb-17 :;<:., By: YSP FROELICH Z N Ls I N C.E R S, Lateral Desiqn Wood Walls Shear Walls SEISMIC: Site Classification: D Occupancy Category: II Occupancy Importance Factor I _ I 1.0 System Over-strength Factor: Light Frame Walls with Shear Panels W= J 3.0 Response Modifiaction Coefficient: Light Frame Walls with Shear Panels R= 6.5 MCE Short Period Pectal Response accel.: Ss= 1.088 MCE 1-second period spectral response accel.: Si = 0.590 5%damped short period spectral response accel.: Sos= 0.726 5%damped 1-second period spectral response accel.: Sol = 0.500 Seismic Design Category(ASCE Table 11.6-1 &11.6-2): D Seimic Response Coefficient(ASCE 7-05) EQ 12.8-2 Cs=Sos/(R/l) Cs= 0.112 Controls Eq 12.8-3(max)-in addition to sections 12.8.2, 12.8.2.1, Table 12.8-1 Cs=Sot/(T(R!l)) Ta=Cthnx Ta= 0.365 Ct= 0,02 Cu= 1.4 from table 12.8-1 h„= 48 T= 0.511 )er12.8.2 x= 0.75 Cs= 0.211 Eq 12.8-5(min) Cs=0.01 Cs= 0.010 Eq 12.8-5(min) Cs=0.044Sos1 Cs= 0.032 Cs= 0.112 Allowable Stress Design: 0.7E Cs= 0.078 Page 95 of 126 Seismic Dead Loads Note: Dead Load includes 10psf for interior walls/partitions Level diaphZarea Dead Load Int.Wall Trib Wall ' Int. Wall Wall Wt Ext.Wall DECK SQ FT Total DL (ft ) (psf) L(ft) height(ft) Wt(psf) (psf) L(ft) 10 PSF (lbs) Roof 4150 18 300 5 10 10 300 2160 106860 4`h Floor 4150 27 300 10 10 10 300 2160 174210 3rd Floor 4150 27 300 10 10 10 300 2160 174210 2"°Floor 3000 27 200 10 10 10 200 1080 122080 Total= 577360 Seismic Base Shear(Working stress Design) V=Cs(DL) V= 45141 lbs Vertical Distribuition Level Weight Height Wt*Ht "dU J/T°re, V f Vi=(Wt(Ht)lTotal)"V Roof 106860 40 4274400 0.301 45141 13583 =Vrf 4th Floor 174210 30 5226300 0.368 45141 16607 =V4th 3rd Floor 174210 20 3484200 0.245 45141 11072 =V3rd 2"Floor 122080 10 1220800 0.086 45141 3879 =V2nd Total= 14205700 1.000 Vrf= 13583 lbs V4th= 16607 lbs (Allowable Stress Design Loads) Vire= 11072 lbs Vend= 3879 lbs 45141 Diaphragm Loads Level wp,,(lbs) V;(lbs) V;(lbs) Ewa(lbs) FpX=((EVt)/(Fw1))*wpx Roof 106860 13583 13583 106860 13583 =Frt 4d,Floor 174210 16607 30190 281070 18712 =F4th 31°Floor 174210 11072 41261 45528015788 =F3rd 2""Floor 122080 3879 45141 577360 9545 =F2nd Min Diaphragm Loads Sas= 0.726 Fpmin=0.2*Sos*wpX l*0.7 Level Fpmfn Roof 10861 VK= 13583 lbs 4t" Floor 17707 V4th= 18712 lbs 3rd Floor 17707 V3rd= 17707 lbs 2'Floor 12408 Vend= 12408 lbs (Allowable Stress Design Loads) Page 96 of 126 Client: Arbor Project: River Terrace- 12 Plex UH law . Project#: 16-T100 g � ,y' Date: 2/8/17 �: By: YSP FROELICH ENGINEERS ! SEISMIC LOAD Story Distribution. Areas: Roof: 13583 lbs Roof: 4146 sq ft 4th: 16607 lbs 4th: 4146 sq ft 3rd: 11072 lbs 3rd: 4146 sq ft 2nd: 3879 lbs 2nd: 3000 sq ft WIND LOAD Story Distribution: Level Windward Leeward Total Front-Back Event Roof: 109 36 145 4th: 114 38 152 Redundancy Factor, p - 3rd: 10736 142 2nd: 100r 33 133 Side-Side Event Event Per ASCE7-10, p= 1.0 because of large amount of shearwalls and Roof: 110 37 146 because no wall takes more than 33% of the story shear. 4th: 96 32 128 3rd: 88 29 117 2nd: 81 27 108 Front/Back Event SEISMIC WIND Trib Area Load Trib Width Windward Leeward Combined? Load Design Load Load Typ LEVEL GRID _ (sq ft) (lbs) _ (ft) (Lbs) (lbs) (YIN) (lbs) _ (lbs) Roof AA 830 2719 16 1740 580 Y 2320 2719 S AC 2590 8485 50 5438 1813 Y 7250 8485 S AE 726 2378 14 1523 508 Y 2030 2378 S r 4th AA 830 3325 16 1824 608 Y 2432 3325 S AC 2590 10375 50 5700 1900 Y 7600 10375 S AE 726 2908 14 1596 532 Y 2128 2908 S 3rd AA 830 2216 16 1704 568 Y 2272 2272 S AC 2590 6916 50 5325 1775 Y 7100 7100 S AE 726 1939 14 1491 497 Y 1988 1988 S 2nd AA 600 776 16 1596 532 Y 2128 776 S AC 1875 2425 50 4988 1663 Y 6650 ` 2425 S AE 525 679 14 1397 466 Y 1862 679 S Side/Side Event SEISMIC WIND Trib Area Load Trib Width Windward Leeward Combined? Load Design Load Load Typ LEVEL GRID % (lbs) % (55`) (lbs) (lbs) (YIN) (lbs) (lbs) Roof 11 16 2173 15 903 301 Y 1205 2173 S 12 34 4618 35 2108 703 Y 2811 4618 S 13 34 4618 35 2108 703 Y 2811 4618 S 14 16 2173 15 903 301 Y 1205 2173 S Page 97 of 126 4th 11 16 2657 15 792 264 Y 1056 2657 S 12 34 5646 35 1848 616 Y 2464 5646 S 13 34 5646 35 1848 616 Y 2464 5646 S 14 16 2657 15 792 264 Y 1056 2657 S 3rd 11 16 1771 15 724 241 Y 965 1771 S 12 34 3764 35 1689 563 Y 2252 3764 S 13 34 3764 35 1689 563 Y 2252 3764 S 14 16 1771 15 724 241 Y 965 1771 S 2nd 11 16 621 15 668 223 N 668 668 W 12 34 1319 35 1559 520 N 1559 1559 W 13 34y 1319 35 1559 520 N 1559 1559 W 14 16 621 15 668 223 N 668 668 W • Client: Arbor Project: River Terrace _V4*V +V 2) Le -=Length individual wall Project#: 16-T100 A=Total length of wall along gridline AI' Date: 8-Feb La=Length of moment mw in wall(if drfftrcnt than wall length) 11 By: YSP nf-Wall Height ills to roof r . 5::. Yr iltr +3 +1 Fel+h3-712.-i i 3034-11222(/;2)L 14--Height of wall tlry-1114 I �+ir1+123+let ) ;,( .-1).4-i" i.r FROELICH 13=Height ofwallflr2-11x3 12=Height of wall flrl-tlr2 E N G I N E E R S Vrf-Horizoa:al force at gridline from roofL S'4 Horizontal force at gridline frau:4"hit Mu=[Vrft;Ili)+V4(hi)r1.3(Er_.l+1'2(hi))x Lt Shear Walls & Holdowns V3 'Horizontal force atgridline from 3'° ie V3=horizontal force at gridline from 2''it ,L Roof to 4th Floor t 'Unit shear in v.all !filed:,ler=0.6[(Rrrib:x RoofDL)_(lf trib x 1Ic11DL) (Frrib� FloorDL n Ms=Overturning moment when upper wall is Roof DL: 18 psf stacked above lower wall Seismic:Mr=(U.b 14S,e)[(RtribxRool7}L)+(iltribxlluIWL)- (PrribxF/< Floor DL: 27 psf Niu-,Overturnntg moment when upper wall is Wall DL: 10sf tot stacked or does not exist p &Ztrib,Wail),Ftrib-Roof wall.and floor Mu-Mr 3/es-11i- Stud Spacing: 16 inches OC ril uran area a ed forcalculatinsr dead load Tie= ;s=La L \9.r=Kesistir:g moment due to dead load Tu=Tension if walls not stacked t1r Si 3 r t /! L t Ts Tension if walls stacked Wind :C='�+ 1 [(Ruth x Roo./DL)+(Wrrib iVe 13, ): (Ftrib C Ficerl.3L} S Stud spacing its S i_. Cs--Comptessionatends.ifwallsstacked Seismi�c :C.:= ZIT 1, (1+0.143.)j(Rtrib�Roo/Z7L)+iIl'tiaxllahDL)-'.FtrhaI Wall L Lt La ha Vrf v Mu Rtrib Wtrlb Ftrib Mr Cs Tu Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (Ib) (plf) (Ib*ft) (ft) (ft) (ft) (Ib*ft) (lbs) (Ib) Nailing Event Front/Back Event AA 17 17 17 9 2719 160 24472 8 9 0 16851 1611 448 --- 6/12 S AC 23 69 23 9 8485 123 25455 8 9 0 30845 1279 -234 --- 6/12 S AE 13 29 13 9 2378 82 9596 8 9 0 9854 910 -20 --- 6/12 S Side/Side Event 11 3 18.5 3 9 2173 176 3172 12 9 0 686 1282 828 --- 6/12 S 3.5 18.5 3.5 9 2173 151 3700 12 9 0 934 1282 790 --- 6/12 S 4 18.5 4 9 2173 132 4229 12 9 0 1220 1282 752 --- 6/12 S 12 36 36 36 9 4618 128 41563 12 9 0 98819 1379 -1590 --- 6/12 S 13 15 58 15 9 4618 80 10749 12 9 0 17156 941 -427 --- 6/12 S 14 3 18.5 3 9 2173 176 3172 12 9 0 686 1282 828 --- 6/12 S 3.5 18.5 3.5 9 2173 151 3700 12 9 0 934 1282 790 --- 6/12 S 4 18.5 4 9 2173 132 4229 12 9 0 1220 1282 752 --- 6/12 S Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 240 350 450 700 900 psf Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 335 490 630 980 1260 psf Client: Arbor Project: River Terrace-12 Flex =(orf+6'4-1-'3, et%Lt -Lersih of individual trap \ Project#: 16-T100 t=Total length of wall along stidliae Date: 8-Feb a=Length of mentent anti m wall iif i trent than wall lenntil By: YSP irf=Wall Height tlrx to roof L 14=Height of wall 11t3-1lr4 :lts=[ki,1(1rr f-;rl+113+h2+3)4-V4(Irl+Jaz.H2+2)-VYFt3+h2+1)--(^..1;112)]:.- F R O E I C H 13=Height of wall flt2-f1r3 r'=Height of wall tlrl-fl¢ _ E N G i NE E R S 6 'rf=Horizontal force argridline from roof Mn=[Prfthi)*t'4(hi)+i'3(Iti)-V2(iti)la 'd=Horizontal force at gridline from 4'h 0r & '3=Horizontal force at gridline from 3`d❑r Lr Shear Walls Holdowns '2=Horizontal force at gridline from 2°`tit' 4th rd unit shear in wall Wind:Mr=0.6[(Rtrib x RoofDL)+(1Vtrib x WallDL)-(Ftrib x FloorDL)[L. 4 Floor to 3 Floor 1s-Overturning moment whenupper wall is -tacked above lower wall Seismic :Mr= 0.6-.1451 Rtrib x Roo DL)+(IVtrib xWaliDL I+(Ftrib x FloorDL)1—2 Roof DL: 18 psf du=Overturning mome ( )[( f nt when upper wall is Floor DL: 27 psf rot stacked or does not exist Wall DL: 10psf -ttib,A'hib,Fttib=Roof,wall,and floor Mu-Mr My-,lfr p tilxttaty area,used for calculating dead load Tu- La Ti= L Stud Spacing: 16 inches OC tr=Resisting moment elite to dead load u=Tension if walls not stacked Aft S'2 Tension (walls stacked Mild:C=L a i2 [(Rn•ibxRoofDL)+(Wirt aWaIIDL)=(FicibaF'oorDL)1 .=Surd spacing 3f<_ S/2, R a=Compression at ends,if walls stacked Seismic:Cs= L—a+ 12 (1+0.14Se)[(Rtrib s os fDL).(lYcrib a WaIIDL)+(firths FloorDL)] Wall L Lt La hrt h4 Vo V4 v Ms Mu Raib Wfr;b Ftrlb Mr Cs Tu ' Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (lbs) (lbs) (plf) (Ib'ft) (Ib'fl) (ft) (ft) (ft) (Ib'ft) (lbs) (lbs) (lbs) Nailing Event Front/Back Event AA 17 17 17 9 9 2719 3325 356 81585 54394 8 18 12 46664 5275 455 2054 MST37 3/12 S AC 23 69 23 9 9 8485 10375 273 84862 56579 8 18 6 64063 4047 -325 904 MST37 4/12 S AE 13 29 13 9 9 2378 2908 182 31990 21328 8 18 12 27288 2937 -458 362 --- 6/12 S Side/Side Event 11 3 18.5 3 9 9 2173 2657 392 10574 7050 12 18 4 1130 3895 1973 2802 MST48 3/12 S 3.5 18.5 3.5 9 9 2173 2657 336 12336 8225 12 18 4 1538 3895 1910 2701 MST48 4/12 S 4 18.5 4 9 9 2173 2657 294 14098 9400 12 18 4 2009 3895 1848 2600 MST48 4/12 S 12 36 36 36 9 9 4618 5646 285 138562 92381 12 18 4 162760 4219 -1955 -3545 --- 4/12 S 13 15 58 15 9 9 4618 5646 177 35835 23892 12 18 4 28257 2759 -291 -718 --- 6/12 S 14 3 18.5 3 9 9 2173 2657 392 10574 7050 12 18 4 1130 3895 1973 2802 MST48 3/12 S 3.5 18.5 3.5 9 9 2173 2657 336 12336 8225 12 18 4 1538 3895 1910 2701 MST48 4/12 S 4 18.5 4 9 9 2173 2657 294 14098 9400 12 18 4 2009 3895 1848 2600 MST48 4/12 S Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 240 350 450 700 900 psf Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 335 490 630 980 1260 psf i Client: Arbor r=(I 'P4+ft+'v'2)'Lt Project: River Terrace-12 Plex UN =Length of individual wall Project#: 16-T100 _t=Total length of avail along gridline Ca=Length of moment ann in wall(if Date: 8-Feb different than wall length) -_ ' By: YSP iii=Wall Height tiny to roofL h4=Height ofwaliflr3-tlr4 Ms=[1;rPirf+Ml+11:4-4)2,314-1'404+1)3+1i2+2)=I'Va+h2+li+1"3;h2);xLt F R O E L I C H 113=He ght of wall fit 11r3 12=Height of wall ar1-1712 ENGINECIRS a Vrf-Hoffa ontal fame at gridline from roof =[Y"rp(k•')+i'4i h')+V3(hi)+6'21h+)., L 1'4=Horizontal foment gridline from 4"fir Lt Shear Walls & Holdowns V3=Horizontal force atgridlneRoth 3"tlr 1'2-Horizontal force at gridline from 2"fir L rd rid -Unit"hear in wall Wind Mr=U.6[(Xh'ib x Raof➢L)-())trib x FYa11DL)+(Hid)x NlootDL)[ 3 Floor To 2 Floor \d=Unitshnnring moment whoa upper avail as L` Roof DL: 18psf stacked above lower wail Seismic Mr=(0,6-.l4 Se)[(Rtrib a RoolDL)+IWirib x ltallDL)+(Firth x FloarDL)]- A4u=Oventuntue moment when upper wall is Floor DL: 27 psf toastacked or does not exist Wall DL: 10 psf 2trib,Wtrib,Farib=Roof,wall.tad floor To_:Ma-Mr Ta Ms-Mr rabutary arca,used for calculating dead load La L Stud Spacing: 16 inches oc Mr=Resisting moment due to dead load Tu=Tension if walls not stacked ifs S;`2 Wind:C=—-)-—[(fltrtb xRooJDL?+(ll'irib a lTalIDL)+(Ftrnb nFlaorDL)] fs=Tension if walls stacked - L 12 9=Studspaciug Ifs Sit Cs=Compression at ends,if wails stacked Seismic:Cs= - T 1-(1+0.14Sca((Rfrib r RooJDL)-(}i'an k x lFal?DL a r(Firthx FloorDL)] Wall L Lt La hd h4 h3 Vri V4 V3 v Ms Mu Rlr,b Wlr;b Fulb Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (ft) (lbs) (lbs) (lbs) (pit) (Ib"ft) (Ib`ft) (ft) (ft) (ft) (Ib'ft) (lbs) (lbs) (lbs) Nailing Event Front/Back Event AA 17 17 17 9 9 9 2719 3325 2272 489 162471 74842 8 29 24 77918 10352 -181 4974 Shth(2)Sides HDQ8 4/12 S AC 23 69 23 9 9 9 8485 10375. 7100 376 169027 77879 8 27 24 139989 8129 -2700 1263 MST37 3/12 S AE 13 29 13 9 9 9 2378 2908 1988 251 63709 29349 8 27 24 _44722 5681 -1183 1460 HTT5/MST37 6/12 S Side/Side Event 11 2 14.8 2 9 9 6 2173 2657 1771 671 14867 5371 12 24 8 670 7927 _ 2351 5152 Shth(2)Sides HDQ8 4/12 S 3.5 14.8 3.5 9 9 9 2173 2657 1771 575 30717 14099 12 27 8 2143 9292 3416 6117 Shth(2)Sides HDQ8 4/12 S 5 14.8 5 9 9 9 2173 2657 1771 448 43882 20141 12 27 8 4373 9292 3154 5753 HDQ8 3/12 S 12 36 36 36 9 9 9 _4618 5646 3764 390 275086 126260 12 27 8 226702 8157 -2790 1344 MST37 3/12 S 13 15 58 15 9 9 9 4618 5646 3764 242 71143 32653 12 27 8 39358 5258 -447 2119 MST37 4/12 S 14 3 18.5 3 9 9 9 2173 2657 1771 535 20992 9635 12 27 8 1574 7513 2687 6473 Shth(2)Sides (2)MST48 4/12 S 3.5 18.5 3.5 9 9 9 _2173 2657 1771 459 24491 11241 12 27 8 2143 7513 2599 6385 Shth(2)Sides (2)MST48 4/12 S 4 18.5 4 9 9 9 2173 2657 1771 401 27990 12847 12 27 8 2799 7513 2512 6298 (2)MST48 3/12 S Seismic 6/12 4/12 3/12 2)4/1:2)3/12 240 350 450 700 900 psf Wind 6/12 4/12 3/12 2)4/1:2)3/12 335 490 630 980 1260 psf Client: Arbor Project: River Terrace-12 Flex UH =Length of individual wall s'=14'rf+V 4-J'3.-r2),'La Project#: 16-7100 t=Total length of wall along gridline Date 8-Feb a=Length of moment atm in wall(if iffereot than wall length) eft By: YSP rf=Wall Height Om to roof 4 Height of wall@r3-tfr4 lls=(4'rAhrfth4+h3+lr2÷3)+PA(/r9rn3+h2+2)=YXh3=It?+1)+4'2(ir2)jr.L ,3=Height of wall flr2.11r3 Lt F RO E L I C H t2=Height of wall ftrl-flr2 • E N G I N E E N S t 'rf=Horizontal force at gridline from roof '4=Horizontal force at gridline from 4e0 fir Ma=Eli!t tui+4'4(ki}+Y�(ht+r200]x� Shear Walls & Holdowns '3=Horizontal force az gridline from 3`4 fir Lt '2=Horizontal force at gridline front 20 tlr L' 2"d Floor To Foundation '=Unit shear in wall If-ind::hfr=0.b[(RdribxRooJDL)t(IVrribxif'aliDL i=(FtribxF'oorDL)]— is=Ovmoning moment when upper wall is - tacked above lower wall L- Roof DL: 18 psf2 Sei.retic:;llr=(O.b–.Id:Sx)I(RrribxRoqlDL)t(R'rrrLxll'a/lDL)-(FtrifixFloorDL)�— 'fu=Overt un ung moment when upper wall in Floor DL: 27 psf at stacked or does not exist Wall DL: 10 psf 'hub,Wtrib.Fu'ib=Root-.wall.and floor Ms—ter Mt-Mr I ihmary area.used for calculating dead load To= Ts=- Lel Stud Spacing: 16 inches oc tr=Resisting moment due to dead load L • n=Tension if walls not stacked Afs S+2 ==Tat sior if walls stacked ma.C=L+ 1 )(Ruib;•�RoofDL)e(R;rib ztVoilDL)+(Fr::bx F,'norDL)1 Stud spacing S=Compression at ends.if walls tacked Seismic -Cs=Ms S_'3t1+p.14S,_t[(Rnib r,RoolDL)+(Wrath xtlmIDL)-I Fib•Ffoo,'DLl L 12 Wall L Lt La hr h4 h3 h2 V,1 V4 V3 V2 V Ms Mu Rtdb Wtnb FI,b Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (ft) (ft) (lbs) (lbs) (lbs) (lbs) (plf) (Ib`ft) (Ib`ft) (ft) (it) (it) (Ib`ft) (lbs) (lbs) (lbs) Nailing Event Front/Back Event AA 14 14 13.5 9 9 9 9 0 0 0 776 55 6983 6983 8 36 36 72087 1601 -4823 -4823 --- 6/12 S AC 23 69 22.5 9 9 9 9 8485 10375 7100 2425 411 262833 85152 8 36 36 194561 12765 -4863 3034 HTT5 3/12 S AE 13 29 12.5 9 9 9 9 2378 2908 1988 679 274 99058 32088 9 36 37 64051 9042 -2557 2800 HTT5 4/12 S Side/Side Event 32 7.5 44 7 9 9 9 9 4618 5646 3764 1559 354 73195 23914 12 36 12 12615 11117 1614 8654 HD12 3/12 S 33 5 50 4.5 9 9 9 9 4618 5646 3764 1559 312 42941 14029 12 36 12 5607 10203 1872 8296 H012 4/12 S 31 3 18.5 2.5 9 9 9 9 2173 2657 1771 668 589 32673 10610 12 36 12 2018 13730 3437 8589 Shth(2)Sides HD12 4/12 S 3.5 18.5 3 9 9 9 9 2173 2657 1771 668 505 38119 12379 12 36 12 2747 13367 3211 9327 Shth(2)Sides HD12 4/12 S 4 18.5 3.5 9 9 9 9 2173 2657 1771 668 442 43564 14147 12 36 12 3588 13108 3017 8770 HD12 3/12 S r Page 102 of 126 Client: Project: Proj.#: /11111( 11( Date: FROELICH tNC3t NEERS[ ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 5/8"ASTM A36 Threaded Rod for Simpson HTT16 1 HTT22/HTT4/HITS 1 Number of Anchors si = 0 in. (see Fig 0.625 Inch Diameter s2= 0 RD.5.2.1) 8 Inch Embed 2500 psi Concrete Footing Noesign= 5.250 (kips)Allowable Design Tension D.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF - 0.75 D.4-General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor(f for anchors using load combinations from AC! 318-05 section 9 2 Will anchor be governed by brittle steel failure? N Anchor cA= 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing c= 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summa. ITONo Wind 1 ONn Seismic Summary From Below ON, Sw= 1.0 SF=0.75 m DNS= 9.83 9.83 7.37 kips (1)Ncb= 19.01 19.01 14.26 kips cPNDn_ 121.71 121.71 91.28 kips ciyNsb = 198.14 198.14 148.60 kips ONsbg= 198.14 198.14 148.60 kips Minimum (PR,= 9.83 9.83 7.37 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 ONAunwabie= 7.02 5.27 kips Ndesign ONAltowebie 5.250 < 5.27 Therefore, Anchor Design OK Page 103 of 126 Client: Project: Proj. : Date: By: FROELICH ENGINEERS r AC1 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations 1.5.1 Steel Sirens,th for Anchor in Tension do (Anchor Diameter) = 0,625 inches n = 1 #of anchors nt = 11 Number of Threads per inch A = 0.23 in.2-(effective cross-sectional area of anchor) fats= 58.00 ksi-(tensile strength of anchor material(not the yield strength) not exceed 1.9fy or 125 ksi) N;a= 13.11 ksi-(Eqn. D-3) Anchor c= 0.75f ON„ = 9.$3 kips . cx = sP✓ ista 0.5.2-Concrete Breakout Strength of Anchor in Tension Si = 0 inches (see Fig. RD.5.2.1) S2 = 0 inches (see Fig, RD.5.2.1) Arm(for single anchor) = 576 in.2(see Figure RD.5.2.1) A„ (for group anchor) = 782 in.2 (see Figure RD.5.2.1) AN,, (for single anchor) = 576 in.?(see Figure RD.5.2.1) AN�0(for group anchor) = 576 in 2(see Figure RD.5.2.1) y'e�.N = 1 Eqn. D-9 (Anchors not Eccentrically Loaded, 411 = 1.0) N = 1.000 Eqn. D-10& D-11 N = 1 (1.25 for cast anchors. 1.4 for post-installed) Section D.5.2.6 = 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 f c= 2500 psi 1.51h„e= 12 he= 8 inches 0.7+0.3(c,n,„11.5he,) = 1.000 Cmir= 12 in -distance to closest edge of concrete _. . r', i .s Nb = 27.15 kips - (Eqn. D-7) { :h _ c %J.1 e Vier Ncb= 27.15 kips -(Eqn. D-4) Yom' Ncbg = 0.00 kips-(Eqn. D-5) ="'cba v Viec,NV ed,N cp,VNb Reinforcing ct= 0.70 A k>e, 0N,b9= 19.01 kips Page 104 of 126 Client: Project: Proj.#: ilie Date: : By: FROELICH EN GINE ER.SI ACl 318-05 Appendix 0 - Tension Failures Cont. (Page 3 of 3) 05.3 -Single Anchor Pullout headed or embedded nut Use Plate Washer? Y Plate Washer Width = 3 inches Nut diameter= 0.985 inches Nut or Plate Washer Bearing Area = 9.000 in2 Abrg = 8.593 in2-bearing area of embedded anchors head or nut tlje.a = 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.O value(ACI 318-05 Section 0.5.3.6) n = 1 #of anchors Np= AT , 173.87 (kips)Eqn. D-15 r 11z,,, $ c Nv,= 173.87 (kips) Eqn. D-14 N .--_-.--_-ATV Reinforcing 0= 0.70 (1)Npr,= 121.71 kips 05.4 -Anchor side-faced blowout Headed Anchor (Required only if anchor is near an edge where ca, <0.4her: Anchor is not close to Edge of Concrete. Analysis below NOT Required. caz= 5 distance to perp edge of concrete from anchor Cal = 12 in -distance to closest edge of concrete Nsb = 283.05 (kips) Eqn. D-15 Factored Nsb= 100.25 Reinforcing = 0.70 ONsta= 198.14 kips N sb = 160 c a 1 li14 brg f'C s= 0 in -spacing of outer anchors in group Nsbg = 263.05 (kips) Eqn. D-15 i Reinforcing =A= 0.70 N = 1 + IN;o oNsbg= 198.14 kips L tical Page 105 of 126 � {�i Client: ot F P ROFLICH Proj,#: 'CONSOLING sate: FNE ER INC ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 718"ASTM A36 Threaded Rod for Simpson HDQ8 1 Number of Anchors Si = 0 in. (see Fig 0.875 Inch Diameter s2 = 0 RD.5 2 1) 8 Inch Embed 2500 psi Concrete Footing Naesign = 9.230 (kips)Allowable Design Tension D.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 D.4 -General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor 4) for anchors using load combinations from ACI 318-05 section 9 2 Will anchor be governed by brittle steel failure? N Anchor (I)= 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing c1)= 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summa ON. wind ci)Nn Seismic Summary From Below tDNn Sw= 1.0 SF= 0.75 RNs= 20.09 20 09 15.06 kips ONcb= 25.87 25.87 19.40 kips Q>Npr: ~ 117.59 117.59 88.19 kips sb= 227.21 227.21 170.41 kips 4aNsbg= 227.21 227.21 170.41 kips Minimum cDNn= 20.09 20.09 15.06kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 ONAgowabie= 14.35 10.76 kips Ndesign g3NAikswabse 9.230 < 10.76 Therefore, Anchor Design OK Page 106 of 126 Client: k., '', Project: FRCEI Proj.#: IONS�+(� G' Date: ACI 31 8-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations 0.5.1 -Steel Strength for Anchor in Tension do(Anchor Diameter) = 0.875 inches n= 1 #of anchors nt= 9 Number of Threads per inch A.= 0.46 in.2-(effective cross-sectional area of anchor) feta = 58.00 ksi -(tensile strength of anchor material (not the yield strength) not exceed 1.9f. or 125 ksi) Nsa= 26.78 ksi - (Eqn. D-3) Anchor 4) = 0.75 ./V a '� nAse futa ONsa= 20.09 kips D.5.2 - Concrete Breakout Strength of Anchor in Tension s1 = 0 inches (see Fig. RD.5.2,1) S2= 0 inches (see Fig. RD.5.2.1) Anc(for single anchor) = 784 in.2 (see Figure RD.5.2.1) A„(for group anchor) = NA in.2 (see Figure R0.5.2.1) ANS(for single anchor) = 576 in.2 (see Figure RD.5.2.1) At,; (for group anchor)= 576 in.2 (see Figure RD.5.2.1) 4) h = 1 Eqn. D-9 (Anchors not Eccentrically Loaded, 4,1 = 1 0) 4 ed N= 1.000 Eqn. D-10 &D-11 ,.p0,,1= 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 lc,= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 rc= 2500 psi 1.5`he,= 12 hey_ €° 8 inches 0•7+0.3(Crr r/1.5het) = 1.050 -._ Gtr= 14 in -distance to closest edge of concrete N = k ,Vrf'' �:,f 1 Nb= 27 15 kips- (Eqn. D-7) Net)= 36.96 kips - (Eqn. 0-4) ,r N�9 = 0.00 kips-(Eqn. D-5) 1�'!"cbg � � :V ec,„NYEd,<'�"l,'�c��,�t z b Reinforcing 4) = 0.70 `VCV 0Nc,si= 25.87 kips Page 107 of 126 a o Client: ? � Project: PROLE "� Praj_#: CONN 8Date: ACl 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) D5.3 -Single Anchor Pullout- headed or embedded nut Use Plate Washer? Y Plate Washer Width = 3 inches Nut diarneter= 1.438 inches Nut or Plate Washer Bearing Area = 9.000 int Abrg= 8.399 in2-bearing area of embedded anchors head or nut `'c,n = 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value(ACI 318-05 Section D.5.3.6) n = 1 #of anchors N¢ = 167.98 (kips) Eqn. D-15 N,� =11�, 3/'L Np, = 167.98 (kips) Eqn. D-14 j!/�yx _:y=� ,r r> Reinforcing = 0.70 SNR„= 117.59 kips 05.4 -Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where ca. < 0:4h ) Anchor is not close to Edge of Concrete. Analysis below NOT Required. `+a2 = 14 distance to perp edge of concrete from anchor ca, = 14 in -distance to closest edge of concrete Nat}= 324.59 (kips) Eqn. 0-15 Factored N„ = 162.29 Reinforcing 0 = 0.70 ON,b= 227.21 kips ill , -- 160 c r;l A br V fr c s= 0 in -spacing of outer anchors in group Nabg= 324.59 (kips) Eqn. 0-16 Reinforcing 0 = 0.70 At _ i + S ter NNg�= 227.21 kips 6 e sb al Page 108 of 126 e � Client: ti ; Project: FROFIICH Proj.#: (ONSUITING` Date: INC ACI 318-05 Appendix 0 - Tension Failures (Page 1 of 3) 1"ASTM A36 Threaded Rod for Simpson HhDL111 l HHD014! HD14A IHDU11 Anchor description: 1HDU14 1 Number of Anchors s1 = 0 in. (see Fig 1.000 Inch Diameter s2= 0 RD.5.2.1) 12 Inch Embed 2500 psi Concrete Footing NDesign= 13.710 (kips)Allowable Design Tension D.3 -General Requirements (AC1318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 D.4 -General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor ct for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor 0:1:1 = 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing (I)= 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summa ONn wind tNn Seismic Summary From Below '1Nn Sw= 1.0 SF= 0.75 ON,= 26.35 26.35 19.76 kips ONIcb_ 29.64 29.64 22.23 kips q)Npn= 115.01 115.01 86.26 kips (1)14sb= 288.91 288.91 216.68 kips 'ivNsbg = 288.91 288.91 216.68 kips ) Minimum ON,= 26.35 26.35 19.76 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 ONAticwab = 18.82 14.12 kips Ndos gn < ONAttovcabib 13.710 < 14.12 Therefore, Anchor Design OK Page 109 of 126 r. 1.��(((�� Client: * FF Project: FROEEIC I1 Pro].M: (ONSHITIHG g tz: ENGINEERS,INC ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations D.5.1 --Steel Strength for Anchor in Tension do(Anchor Diameter) = 1.000 inches n = 1 #of anchors nt= 8 Number of Threads per inch Ase= 0.61 in.'--(effective cross-sectional area of anchor) futa = 58.00 ksi - (tensile strength of anchor material (not the yield strength) not exceed 1.9f,,or 125 ksi) N„ = 35.13 ksi -(Eqn. D-3) , Anchor cp = 0.75 ../V =sa = nA5 J ita ONsa= 26.35 kips D.5>2 -Concrete Breakout Strength of Anchor in Tension st = 0 inches(see Fig. RD.5.2.1) S2= 0 inches (see Fig. RD.5.2.1) Am(for single anchor)= 1100 in.2 (see Figure RD.5.2.1) Ano(for group anchor) = NA in.2(see Figure RD.5.2.1) ANco (for single anchor)= 1296 in.2 (see Figure RD.5.2.1) ANm (for group anchor) = 1296 in.2(see Figure RD.5.2.1) gjec.N = 1 Eqn. 0-9 (Anchors not Eccentrically Loaded. 411= 1.0) gl_d,r1= 1.000 Eqn. D-10 & D-11 4)c,N= 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 k,= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 fc= 2500 psi 1.5-he= 18 he= 12 inches 0.7+0.3(crnin11.5he) = 1.000 ;lin = 18 in -distance to closest edge of concrete - 5---;,-,-,, 5 l :b ''�: I „ l Nb= 49.88 kips - (Eqn. D-7) N,, = 42.34 kips -(Eqn. D-4) A . N = 0.00 kips - (Eqn. D-5 Ncbg VC A 1.11 8r,.ti+ N Reinforcing Q= 0.70 f1. CoNces,= 29.64 kips NW Page 110 of 126 Client. [TrProject: r 1 ; FROELICH Proj.4: CONSULTING Date: By: ENGIIEERS ItiC . ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) 05.3 - Single Anchor Pullout- headed or embedded nut Use Plate Washer? V Plate Washer Width= 3 niches Nut diameter= 1.625 inches Nut or Plate Washer Bearing Area = 9.000 in2 Abrg = 8.22 in2-bearing area of embedded anchors head or nut 1 For an anchor located in an area of concrete where no cracking at service loads is anticipated, otherwise use 1.0 value(AC, 318-05 Section D.5 3,6) n= 1 #of anchors Np= 164.30 (kips) Eqn. D-15 'IV p =Abrg8 f C „ __......- Np,= 164.30 (kips) Eqn. D-14 Reinforcing (t) = 0.70 14Np0= 115.01 kips 054-Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where c3 < 0.4hen Anchor is not close to Edge of Concrete. Analysis below NOT Required. Ca2= 5 distance to perp edge of concrete from anchor 18 in -distance to closest edge of concrete Nstk= 412.73 (kips) Eqn. D-15 Factored Nsb= 412.73 Reinforcing (I)= 0.70 288.91 kips —N 160 c - 3.6 — al 11---- 1 brg "NI f C s 0 in -spacing of outer anchors in group Nsbg= 412.73 (kips) Eqn. D-16 I \ Reinforcing 4) = 0.70N = 1 1 -1- S i „ . ONsbg1,2 288$1 kips 3,g. ,, 6 ) soc a 1 Page 111 of 126 Title Block Line 1 Title: Job 4 You can changes this are: Dsgnr: using the'Settings"rent tem Project De and then using the'Pnnting& Project Notes Title Block"selection. Title$lock Une S p,5,&c:13 MA?4tfx, k.iCal F+g.t. 0flio'5til-Tfiwt � a; .,sdfs .F cid,riErstf iffi .C74:+ i+ ' 7 " CantileveredRetaining a1 i4_Rr,ALC.NC..1583-201f,Etd5i11O.O9,VecSt!tO.05' ticAt` f, �4idti-t1 �, -x,.,;�3 s�»;, „,?, ;� -14-'.�� a-if!.7,£. . pro: . (_a,« P :fROELICHCOflltJL"#INCaENGtt4t!`ERS Description: 4`-0*`Wali Criteria Soil Data Oafs tie its per ACI 318408,AC1530.90,IBC 2009, Retained Height = 4 00 ft Allow Soil Bearing = 2,500.0 psi CBC 2010,ASCE 7-05 Wall height above soii = 0 00 ft Equivalent Fluid Pressure Method Slope Behind Wet = 0.00 1 Heel Active Pressure = 35.0 psfrft Height of Soil over Toe = , 30 in Toe Active Pressure = 30 0 peri`; Water height over heel = 0,0 ft Passive Pressure = 330 0 pet Vertical component of active Soil Density,Heel = 110 00 p,cf Lateral soil pressure:;it'on5: Soil Density.Toe _ 3 0::::ut NOT USED for Solo Pressure. "'Ct( .^('.•^8ff ht`xn Ftw&:Cit - r^.500NOY.: USED for Sliding Resistance NOT USED for Overturning Resistance. Soilheight to ignore tor passive pres3Ure = 0 CO'n Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load r c Over j ate,a Load 20 0 plf _ Adjacent _ Su.�ap �YV:'t''-eel 50 0 psfi nd a ten,Y:,Gi1ng Load - 0.0 lbs Used ,b Resist Sliding&O erturning .He ght to Top - 4 03 ft co +ng ''tid"'i 0.00 ft Surcharge Over Toe _ 0.0 psf ,..Height to Bottom _ 0 00 ft Eccentricity = 0.00 in Used for Sliding&Overturrkirtg Wal to tg CL[1st0.00 ft Axial LoadSoil lied to Stem =octan g Type Line Load P Base:r .�1e?�airx4ri� 0.3 ft Axial Dead Loan = 500.0 be at Back of Wall Axial Live Load = 0,0 be Wird on Exposee Stem zr, 0.0 psf J.w y .J^r,_ a.:,. c Axial Load Eccent'c ty _ 3 0 n a 300 Desio Summary_ Stem Construction Top Stem Wall Stability Ratios Design Height Above Ftq ft= Si.Vri0 CO Ov efturming = 2.43 OK Wail Material Above lit' Concrete T h;cknEs3 in= 6 Sliding = 2.25 OK : O00il (Vertical Component OT'Seri Rebar Size = # 4 Total Bearing Load = 1,g46 lbs Reber Spacing in= 12.r.,;0 ...resultant ecc. = 8.22 in Rebar Placed at = Edge Soil Pressure T _ 1,515 pet O'K Design Data Soil Pressure i Heel = 0 psf OK TotalB+f lYa = a3.8 2 Total Force i Section lbs= 823.8 Allowable psf Moment ..Actual ft-I= 003 f0 Soii€Preisu;Less a :4 .e. ACI Factored a'0 Toe = 1.818 psf Moment__Allowable ft-i= 3,869 ACI Factored r@ Heel = 0 psf Shear,. Actual psi= 13.2 onear.....Aliowable psi= Footing Shear�Toe - 0 6 psi OK c , °'1 Footing Shear @ Heel 1!0,4 psi OK Wall Weight cst= 75 0 Allowable = 75.0 psi Rebar Depth '3' in= 4.25 Sliding Calcs (Vertical Co!ponent`JOT Used) La splice if above in= 12+C) Lap splice if below in.= 8 4 Lateral Sliding Force 597,0 lbs Hook embed into footing in= 8,40 less 1400,0 Passive Force = 371.3 lbs Concrete Data ......__ less 100%Friction Force = - 978.8 lbs Added Force Req - 0 0 Its OK Fc psi= 2;3-30'u .. for 1.5:1 Stability = 0.0 lbs OK y psi= e"v,r.;r..0 Load Factors Dead Load 1 200 Live Load 1.600 Earth,H 1.600 Wind,W 1,600 Seismic,E 1,000 Page 112 ot,126 a Title Block `iTl Line 1 ; <;€ You can changes this area r iect-as:~ using the*Settings'menu itern and then using the'Printing& Project,`raise Title Bieck'selection. 3 r z4.1., r3,,,, Title Block It d...__. . .. la:r"tttt ice`tt t Tt f1 th'a?.,s*S r it✓„ It: Y4 s}i „+i e ay a^4; 7 l'@fmr-Al eld cantilevered Retaining ail ,11.41s-t?932fltt� :Ad.st`.i4 ,yea tl.tr3l.3 • .t. � .• m CONSUL: NQ ENGINEERS Description: 4'10'Wall Footing Dimensions Strengths Footing Design Results TeeWidth 0 7"a 3t Tae Hee;Hee.Width _2.01_ Factored ored PrYssur e - 1.6' u f F. Total Footing Width - 2 75Mu Upwarti 462 ,.;t Footing Thick necs 2 30 t hu :Downward 6, d ,t- Mui Design - 392 88;'ft.r )r f Width _ 0 01 ;a Actual'1-Way Shear - 0 f` 9 27 psi Key Dept - 3 CO ri Allow 1 haj Shear 75 00 r7, 1)psi Key Distance!r`in Toe - 0.30 ft Toe t fs for ing = 4 7 @ IS 00 ln 2,600 p5, r H: sE ':a along - r#= eller 1,i in COc;I Key t e 1ao� ung N one Spe.�O Footing Concrete Density - !.�4 Min As is - 0 G018 :Airier Acceptable S17»&Spacings e :.:cu in Cover t Top 100Sa Totei redid, j` C S F. ilea' xY^:.c d'' :M `S*Fr Key: No,.ey refired Summar"of Overturning 8,Resisting Forces&Moments OVERTURNING-...- Force Distance Moment,,...RESISTING Force Distance Moment ft it•ib Item ::s ft i*-i Heel Active Pr s u is _. 437 5 t 67 292 Sat Otyer ems, _ 663 0 2t06 1.32.0 0 Surcharge over Heel -. 79.5 2.50 495,9 Sloped Spit Over ee} Surcharge-Over'Heel2 t2 158.0 Toe?active Pressure - Fooling Load r . Adjacent rarti Surcharge Over Toe - • Stem _ ��d;.i; 00500.0Adjacent Footing Axial Dead Load on St . . Added Lateral woad60 0 3:00 240 0 'Axial Live Load on Stern Soil Over r," Load Stem s;tr;ve Soil Surcharge Ove-.vim .;0 r 00 3006 Stem€v�1;;ty'i`'a; . Earth©Stern Transitions -nt` i Wg Total - x'97 ' O.T.M. = 1:168.0 Footing We'g1."3 nt - 412 s 567 2 Key Resisting(Overturning Ratio - 2.43 Vert.eComponent = Vertical Loads used for Soil Pass re 1`947,5 los po Total= 1,a4: 5 its R.M.= 2 837.2 A E ai iiv load n T ircluded in iota is a'1e.a.er u d fcr o`lerttirntng risiS2nes itiit tis.ncluded COfrz a;pressers ca!"cuiation Page 113 of 126 Title Stock Line 1 Title: ico g - You can changes this area Dsgnr: using the*Settings"menu item Project Desc.: and then using the*Printing& project Notes T,tiBlock5 irlle Block°selection. T iii . i3 WR ali, .'.O'fo —_ 1413-,P,1261 rogill t.T I id lilsfira'Pass otwititz3Apts-41.41{,4*-)44-4C4,,,,Iaii,Weroy.ac'id ' Cantilevered Retaining Wall EtERCALC,INC 1034-MI,8,..iitall.10,01,Vef,( 110,049, Li6 # K -:- w4300301. ..: -::::,::::•:ig,,,...:- .;,'.,!:'-..:z.tr;.f,„i.. ... .. .:;:z47:,:z.. .. .: ,:-.---;.:.. :,:, ,,: ... „,. .„:::, i a • a 141 w alETI at ... Description: 6`.-0 Wall Criteria Soli Data Calculations per ACI 315-08, ACI 530,08,IBC 2O9, Retained Height = 6 00 ft .Mow Soil Bearing = 2,500.0 psf 060 2010,ASCE 7-05 Wall height above soil = 0.00 ft, Equivalent Fiuid Pressure Method Slope Behind Wall ' 0.00 :1 Heel As1i-re Pressure. = 35.0 esfift Height of Soil over Toe -= 6.00 in Toe Active Pressure = 30 0 psfift. Water height over heel = 0 0 fs Passive Pressure = 333 0 psfift Venice'component of active Sou ilensity Heei = 110.00 pof Lateral soil pressure options: Sc!Density Toe . 0 co pct NOT iJSED for Scil Pressve. Pricton CoP'.f.otvir:FIT,&coo e 0 500 NOT USED for Slicing.Resistance. Soil neight to NOT USED for Overturning Resistance .gnore for piessive pressure = ., Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel . 50 0 psi' _ateral Lod .= 30 C pf Adjacent RsoCng Load . 00 Its Used To Resist Sliding&Overturning Height to Top = 6 00 ft Footing Widt,h ,..-. .0,00 ft Surcharge Over toe . 00 psf . Heignt10 3ettcfn = 0 00 ft Eccenincity = 300 in Used for Sliding ii Overturning Wall to Ftg CL Dist . 0.00 ft. .. _ . Axial Load Applied to Stem Footing Type Line Load ,._ Base Abcveaeiow Sci Axial Dead Load e 506 ci lbs at Back of.Weil . ar,it Axial Live Load = 0.°its Mod:21,Exposee Stern z 0 0 Pg Poisson's Riz. 3.36C Axial Load Eccentricity = 0.0 atio ir ' - Des iin Summary Stem Construction Top Stern __—,.... .. Stem 3K, Wall Stability Ratios Design Height Above Ftg ft= 0.00 Overturning . 2.37 OK Wail Material Above-Hr ...% Concrete Sliding - 1 78 Ohi: Thicionss in. 8 00 (Vertical Component NOT Usedl Rebar Size = g 5 Total Bearing Load = 3,357 les Rr.)..bar Spacing in= 12.00 ,,,resultant et-to. ?-- 8.81 it", Reba"-Placed a'. = Edge Design Data - - _ Soil Pressure e Toe = 1,757 pest OK FoiFE÷faiFe . Ci.377 Soil Pressure 0 Heal = 0 psf OK Totai Force ffi Section 'Os= 1.334 7 Allowable . .2 500 n,z-f Moment,. Aoituai 11-1= 3 313 2 Soil Pressure Less Than Allowable ACI Factored Toe 2,121 f v.fornent.,.,,Ailowable ft-i= 7.293 7 tg = ps ACI Factored @ Heel = 0 psf Shear . Actuat osi= 19 4 Footing Shear Sneer,_Allowable cc = 67 1 0 Toe .= 5.i psi OK Fooling Shear @ Heel = 21 .5 psi OK jliail*eight psf= 100 g Allowable = 75.0 psi Reber Depth 'din= 6.19 Ap sblioe if above n: = 12,00 Sliding Calks (Vertical Component NOT Used) Lap sf i Lateral Sliding Foroei _. 1148 9 be plice ibeicw nHci.r.embed into fooling in less 100%Passive Force = - 371 3 lb's C - . _..... .. less 100%Friction Force . - 1,.678.0 ioncrete Data bis ro psi ... .- 2,000.0 Added Force Fteld ii..- 0.0!Ps OK '-'y psi= 60,000.3 .. .for 1.5-1 Stability = 00 its OK . .. Load Factors Dead Load 1.230 Live Load 1,600 Earth,H 1.600 Wind;W 1.500 Seismic,E 1.000 Page ia3,4�gf 126 �itle Title Steck Lane 1 -� �,,. You can changes his area i�sg:Project Desc,', using the'Settings'menu iters and then using the'Nang& Project Notes Title dock'selection, <tJ;a r 1 i:'.1:4' .34,. � � .7'« � f. i ^'�.�� 4Si'S'Er� '�` �rLrsik'�sa� :£ Cantilevered Retaining Watt E � t.C.is ttt,Rul► .t,_ta v,=6.111008 uc.#:KW-061302304 i - ' : -.ti .'1 = „', it ' 4 s t`,g`:. _ ` i :.LFcertsee.1 FROELlCHCON SULTING.ENG VEERS Description: 6'Z'Wall . Footing Dimensions &Strengths Footing Design Results Toe Het Tee Width = 1.00`t. 2,121 0 ,^,sf Heei Width - s=.0_ c tr -..re Total Footing Width = 4 00 v1Deward 967 octing Thickness 12 iV� � er: _ 123 2,564 ft-lb ;u. DC57 = ail-4 2,3-64 ft-lb Key Width — }0t +C Si"-Waya Shear _ 5 07 21 53 osi ,Na Shear = i 5 C3 75.00 psi Key Depth - ,l 'i y, y1 � M ?' • 1 SC'it Key Distcartr from t r., f 'r, g x r 1 a reei i,� r s n, _ #6 16.00 in CoG Concrete �i '� {i t+ .t -rev n n y, = i rte Speed : Density = Min.As 5 ._ 3.0013 .-i.- ---_. u.,:,(,, ..SO:.-&s4...:ingS COler a Too 2 00 G: tiEE 3,03 Net jai < T rt r � +;w '? ?u.f €it;2 ac ..�'>.,11 {75 in.4.^a?1, 18 25 r '.iij ':a - t,e j A it key dadtloai Summar/of Overturning&Resisting For ers&Moments _...OVERrUR 4 NG ,.,.RESISTING..... Force Distance Moment Force Distance Moment'bS ft ft-ib . item ,�s t �.v3 4:383 3 7: 2 33 Sci Over Heel . 1 . 6 'Heel P.�ii`,rE G"B.�sSUr� = �� .,,, Surcharge overHee = 111.1 3 50 ,� 3 aread Soil Over;Be i Toe Active Pressure Surcharge Over Heel 11;.' i3u 330 Adjacent Footing Load SurchargedctOver Toe = Axial De,aa Load on Stern = 500.3 1 33 366 7 Adjacent FootingLoad = � Stem = Axial Live.Load or Added Lateral Load - "uv�.i; ., ��._ Load.1 Stern Above Soil = Sail Over Ice _ 05 Surcharge Over Toe " Stem Weights) 600 5 1,33 edX..)f Eann:r Stem Transitions = Total = 3 1 148 9 C7.T,)SPI. = . Footing oot g Weight = 630 0 2.30 ' _2r .3 Key Weight - r Resisting/Overturning Ratio 2,37 r,+r'' ;impniien' _ _ 3:= Jeical Loads used for Soii Pressure Total= 3,358 7 its R.M."- "380-v ',,a#lat livetoad OT included in of €iispiayee u .,usedfor i'ortunring ret ance,but is inducer:forsot'pressure calculation Page 115 of 126 Title Bloc*Line 1 Title: Job rt You can changes this area Osgnr using the"Settings`menu itern Project Oesc. and then using the'Printing& Project Notes Title Block'selection. Title Block Line 6 N Mit 13 MAP 101 I, _,PM - l t, x3c, . +¢a;G . ��,Cantilevered RetalniTg Wall �CaieRc t_C,WC fae.3-'01t,Build 6.it,ION.ve:e,l1.wr Lte_3's KW 06,0a23Q =. '''. '' ' '. "-' . ' �x,n ,., ''" “ ''', ' Licensee•FR: Description: 8'- Wal( ^ PROEM COtVSk{L"DiPlt�:lEtOtt�lIVEERS U' Criteria Soil Data Calculations per ACI 318.05. ACI 53048,IBC 2009, Retained Hei 9nt - 8.00:`t Allow Soil Bearing - 2„500.0 par” CBC 2010,ASCE 7-05 Wall height above soil = 0.00;t Equivalent Fluid Pressure Method Slope Behind Wail = 0.00:1 Heel A hive,Pressure = 35,0 psfi`t Height of Soil over Toe = 6.00 in Toe Active PPressurs - 30.0 psff'i' Water height over heel = 0.0 ft raas'ee:gesso e = 330.0 psfitt Vertical component of active Soil Density,Hee 110 00 pct. Lateral soil pressure options' NOT USED for Soil Pressure Density, rte? L CO rf NOT USED for Siding Resistance �r a rig So;, = 0.560 NOT USED for Overturning Resistance. i r=ig t ro iorore far passive r=wire = 0.00,n Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Sucher?Over Heel = .0.i0 osf d a Load = 40,0 plf Adjacent Footing Load - 0.0 be Used o Us Resit Sliding 4 Overturning ..Height to Teo = 8.00 ft Footing Width - u 0r;h Surcharge Over T= of for eight Bottom = 000 ft Eccentricity = 0.00 in usedSi r rt Wall to Fig CL Dist = 0,00 ft Axial Load Applied to Stara Footing Type Line Load 2 Base.Abov°J13a!ow Soil Axial Dead Load 11:Li its Wind Ex3t Back Cr't i - +. 0 ft Axial Live Lead 0,0 the Wnd on .;,ed Stern = 0.;psi P„Issor 7 R=ko _ 0.300 Axial Load Eccentricity = 0 0 in Design Sum ma Stem Construction Top Stern._... Shen OK Wall Stability Ratios Daaign Height Above Ftg ft. 000 Overturning - 2,55 OK Wail Material Above"hr - Concrete Sliding1.59 OK Thickness _ 8.00 (trrtrcal C:m _ .n, 5 parrenf�Jar.i.:egl (<e;,�-5'v # Total Bearing Load = 5,223 lbs Retro Spacing in= 6.00 —resultant ex. - 9.94 in Renar Placed at y- Edge Soil Design Data - .•_,. ......_.,.. Soil Pressure a'7 Ice = t 09 psf OK tiFB -fa?Fa = 0.361 Soil Pressure ill Heet = 31 psf OK Allow b e = 2.503 psr Total Force i Section bs- 2,309 4 a7i soil Pressure Less Than Allowable "f�rnentActua ft-1= 6,872.2 AOl Factored Tee 2.171 psf Mohnen" Ai wable fta= 14711.7 ACl Factored @,Heel 109 psi Shear.. ..Actual cs`= 33 7 Footing Shear @ To --• 13.6 psi OK Shear Ailcwable cis:= 67.1 Footing Shear @ Heel - psi si Ok Wail'y^,eight „st .E= 100. .. Allowable = 75.0 psi Rebar Deptfl'a ' in= 6.19 Sliding Caics (Vertical Component NOT Used) Lap splice if aoo e in 12.22 Lateral lidin Force Lap splice if bsiow in= 5.00 91,880.3 bs ;-?coif embed into foot!na In= 5.00 less 100%Passive Force = 71 ibs less 100%Friction Force = - 2,612.5:bbl Concrete Data . r _. Added Farce Real - n.0 lbs OK P y pal= 2,000,0P Y}• ..,.for 1.5:1 Stability 0.0 lbs Or: oil 80,000.0 Load Factors - Dead Load 1.200 Live Load 1 500 Earth,H 1.600 Wind.W 1 600 Seismic,E 1.000 Page 116 of t26 Title: ?GCI Title Bieck Line 1 Tle You can changes this area pram 7esc.: using the'Settings'menu item and then using the'Printing& Project Notes_ Title Block'selection. Pietet 13wtsz 2,3'1,ice''*'..__ Lif1B +_ r 1f;oxsift 1113 filAct Pao .six s1=a t«ts-taB+atr. ` is 'Cac cz:. act Cantilever Reteifl ig Wa • EIERCALC.the 3ii,a,.1ta,i►_ra.os.Vera.tIa Description a'-0'Wall Footing Dimensions&Strengths Footing Design Results lHee Er�vid Widthel t 1 P, ssur50 ft �.. 2 1 ; 1 zit 7 p,f Total Footing Width _) Me .:, d 2.231 0 ft-it Footing Thickness 1L tat;rt u # h d = 277 0 ft-lb + 3 or - 1 5 r -Ib y Width i 0 00 in + ? ?-Way Shear - ,.3.62 Jd 48 psi kpy Depth. - t AL ow 4-i ay Shear 75 ESC 75 00 psi Key Distance from toe 64 rf 1 16 01 iii �. "`t, r{j WEe fie = a goo—....iF, L r, -eel i (33y 4FrC .i`'� None eiI CU l Footing Concrete Density - t ;,!: J neo `Cie SiZea&Spacing: Mn' As a,,, ) Pu... Corer/4.), 3e^ ? r" Ton �.a,. -' Toe- Not° q d,Mu <`J Fr .� '7 () ) } ,;'I"l.n3t`1 `ride',. 44i-d) 11 CO in,#S d 17 2`,i, ir,i.�54 2 , (a. 33 J_ it i4;.t 1 Ker: Na key defined Summary of Overturning&.Resisting Forces& Moments Pressure ...OVERTURNING._ ..3# RTURIN ._ RESISTING,.... Force Distance Moment Distance ForceMoment nt Item cg . . ft I Heti Active r �slir � 1 417 1 _a 0 . S it 0,er Hael isl "83 11,244.4.4 i ige;�r3o4'd�. I Over Heel - T .2 i, ,. 4.3 Surcharge Actio:Pr E Heel - r .JE Heel - 1557 33 638.'3 C�'Active Pressure "' Sdct OverL£ ' �d1a 'nii Footing Load Adjacent FootingLoa _ axa1 Dead Lead on Stern - OCC 1 33 916' Added Lateral Load .ii.',v ,3 JP *axial Live Load on Stem - .,-. _ Soil Oyer Toe '75 Load i Stem .tone Soil - Sur_-harge Over The Ste igh is} .. •03 C Stern iia 1 83 1,466.1 a Earth 6 Stem Transitions - ?a,Ma g - 92E3 2.1 2268.3 Total - '.88;.' 0,T.1N. = t Darin 'tier ht Weight �5 K8j ResistingiOverturnirlg Ratio j t its ,e Component tt Vertical Loads used:o, SoilPressureTotal= 5.225 3 lbs RA. 6;535.4 'Ma)rive cad NO'incfuded intotal dis la j d,or used for overturning resistance,tui is Included for soil oress..ra ca-ulation Page 117 of 126 .. CLIENT: 6,76,2 SW--ic...,,-npt-c41 St .. '--.':& ' pc,etcnc,Ofcgon 97223 503-6244005 PROJECT: ,,.::„i...,. . '30'-•. ' • NUMBER: 745;•.;:ki .1;;iastlingli.'wi Or. 2O5 Benci On 97101 DATE: UT-383-1828 :ROELICH E fq ElINEERSI BY: R et , "AO ii a r ,.„...„.....,--, :... ( , 1,4...:,-; 1 '...4:4'61 ) p- :-, ,t7 ,„ r. 4, „4,, .,' 44,-7,, I , , I i ' i„...„._...„ ..__„ ,... , .„4_416e--- ''..4#44.it 1: , levitt ilt4 4 OltAse 1 , I 1 i ! 14. elt:Of if p ot $;ive 47, 701,1` , A ,..- 3 z Fr, 1 i 1 F.! I ( , Will qppl%, , 3'44 re.k0419.e- a 6* if 2,3 X Veorf ri z L.L. is-es f iio r;2. i-1 „ ) 3 afr ,s4034- , -- ----- -- c.", ittAr'i t e", -------- - . ---- , . . , i._ _ _ ..............,...i. ' Page 118 of 126 CLIENT: 1,^,;, t '*J"at 97221 SO-,62.4 'CL. PROJECT. ' NUMBER: -"t `" 745.irVM. WC-.hn,,,j.tr Ct".*2ar*i ` 1 -:',3-'--182':: FROELICH 13'i: E N G t N E E d $fie - It 0T1., ° p V "i �-�,. fsrAs 'a i �&c s4,,i a c t;Ve - 35;011 ,l5rvL701T /1� GK it, Y." ),( .- e„r,t- 8 9 ar -«« I L. irlore Of ..: p I_ ,...:., _______---- c , _ 3----,ir),,,,i 14 or'ii.-2- __ a- 4—, Froelich Engineers Page 11s� 1co 44 .. Engineer: Project ID: ^ Project Decor: FROELICH CNO.Ntc~=. Ile=clisenti)oesipiciectii14-403-1.BETWISCCA-1A0SCRE-LEC9 `i Cantilevered Retining Wall Description: Garage Ret Wall-No Seismic Criteria Soil Data - Calculations per ACI 318- nw 11, xo|� 1.mom12, J1 Retained Height = 11.50 ft • �bw��8eahn = 2.�0.0p� unoon��oosr10 Wall hejnt above soil = 0.00 ft Equivifiert Fluid Pressure Method Slope Behtnd Wall = 8.00.1 Heel Active Pressure = 35psMft Height of Soil over Toe = 12 00 in Toe Acve Pressure = 33.0psfiM Water height over heel = UOft Passive Pressure = 3300pobft Vertical component of active Soil Density,Heel = 110.00 poi ' Lnteraiooi|p�cnueuphono ' Soi|Danai|y Toe = 110OUp�i NOTU8EO�rG�|Psaxunu ' � Friction hooCoa���n�g&8ni| = g5O0 NOT USED�rOvarmr�ngRanis�nce. Gni�h . to ignore mrpassive pressure = 1208in Surcharge Loadoe�ra|LoadApplied to � Stem Adjacent Footing Lo ad SurchargeLateral Load = 0OcifAdjacent Footing Load = 0.0 lbs Used To Remst- "- -- = -Hv�h'to Top = 10 30 ft Footing = 0.00 ft 0.0 psi _Height to Bottom = 0.00 ft = 0.00 in d ng&OverturningWall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem Footing Type Line Load Axb|Dead Load = 500.0 lbs BoseAh««aO*�w��| = 0.0 ft Axial Live L d = 1,100.0 lbs VYindonExposed 3�m = D.Opsf a<�ach«[��8 Axial Load Eccentricity = 0.0 in Poisson's Ratio '4-- 11300___ _ . - _ Design Summary Stem Construction Top Stern 2nd - __ _ Stem OK SternOK Wall Stability Ratios = Da�nnH�ghtAbove Ftq h= 2.80 0.00 OverturninOverturning273 OK Wall Material Above'Ht" = Concrete Concrete D|/ding = 1.59 OK Thickness in= 88O 8UV Slat Rex�� V All Sliding Rebar Size = # � 5 # � 6 Total Bearing Load = 10,739 lbs Reber = 800 800 _resultant aoc. = 12.27in in Reber p�uedot = Edge Edge' Design Data Soil Pmosum�@Toe = 2.372pvfUK �/FB+� = 0.938/Fa = o«- Soil P�ssue��Heel = 313 p� DK To Allowable = �5OOp� �|Fonm��Sn��n lbs= 3.087.8 4,379,0 Soli Pressure Less Than Allowable- m � oma»��� �«r�«a| I= 10.242.2 17.686.8 ACI Factored @Toe = 2.944puf Moment- Allowable ft--!= 15.562.2 18.048.3 Ad Factored @ Heel =. 388paf Shear..-Actual psi= 40] 71.1 FooUnQShear(�Toe = 22,3 psi OK Shear Allowable poi= 822 82.2 FundngShear��Heel = 52.5 psi OK Wall Weight nsf= 100.0 100.0 Allowable = 82.2 psi Reber Depth 'd' in= 818 5,63 Sliding Calcs 0ahRees�All Sliding| LapsP|ima�abe� �= 14.06 24.05 L Lateral Sliding Force = 3,500.5 lbs belowin= 14 06 1O�04 |ero10O�Pouu|vnFo�e = . 733.3 lbs n»o^embed m�m»unS in= 14.06 1U�04 less 1O0%Fr|�|onFome = , 4,819.8 lbs �unnm�pData Added FumeReq� = U0 |buO� r» os�= 3,000.0 3,000.0 � ry Vsi= 60'OOUO GOO�0' .0 - 1 ....for = D.0 �n0K � Load Factors --- - - Dead Load 1200 Live Load 1.600 Earth,H 1,600 WinU.VV 1.600 Seismic,E 1.000 ^ ' . .. 0 Prosect l itle: Page 120 of 126 Froelich Engineers i. Engineer: Prosect ID: Prwect Descr: FROELICH F.l sH yr CT@Bs f ..: . F� t�Et�t;;�� WOFde-t:41.f:<5cs1L'�'tsgiPrtietts t.Ts;3-1€sE�aK.FtaC4.�, i�1.4C�cc #FCs Cantilevered ENERCALC,IVC 1483.2014,8ui d 514.8.16,Ver&14.8.16 Na � I gi az «� $ zi .,. a '.4 a�� �0 - ,< ,�. 0 �.�t1:8t15@L;'�;�..:a +EL IA+' .a. '�`' :it+.gutG Description: Garage Ret Wall•No Seismic Footing Dimensions &Strengths • Footing Design Results Toe Width - 2.50 ft Toe • Heel Heel Width 0.50 Factored Press re = 2,944 388 osf Total Footing Width - 8,00 Mu':t_ipwa rr - 8,367 0 ft-lb Mu':Downward - 1,163 0 ft-lb Footing Thickness i= 16.00 n ft-lb Design - /,v..20 4 17,687 Key Width - 0 00 in Actual',Atli/ay Sear = 22 31 52.45 psi Key Depth =. 0,00 in Allow 1-Way Shear = 82,16 82,16 psi Key Distance from Toe - L•00 ft Toe Reinforcing = #6 0 6,00 in +'c = 3:000 psi Fy = 60,000 psi Heel Reinforcing - #6 5 12.00 in Footing Concrete Density = 150.00 j cf Key Reinforcing = None Spec'c Min.As:0 = 0.0018 Other Acce "tabie Sizes&Spacings Cover'a�7 Top 2,00 ` Strn.= 3.00 in Toe +qtr 7 9.00 in,#5@ 14.00 in,46519.75 in,470 26.75 in.#65'35.25 in;49g 44 Heel: #4 6.25 in,#50 9.50 in.#60 13.50 in,#7@ 16.25 in,#85 24.00 in,#9L 30. Key: No key defined Summary of Overturning&Resisting Forces&Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item lbsft f`-Ib lbs ft ft-1b ........ __. Heel Active Pressure = 2,882.2 4.28 12,329.2 Soil Over Heel = 6,114.2 5.58 34,137.4 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure -81.7 0.78 -63 5 Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load - Axial Dead Load on Stem = 500.0 2.83 1,416.7 Added Lateral Load = 700,0 6.33 4,433 3 'Axial Live Load on Stem = 1,100.0 2.83 3:116.7 Load 0 Stem Above Soil = Sod Over Toe - 275.0 1.25 343.8 Surcharge Over Toe Stem Weight(s) - 1,150.0 2 83 3,258.3 Earth 0 Stem Transitions = Total - 3.500 5 O.T.M. - 16,699.0 Footing'lAteight - 1,600.0 4.00 6,400.0 ResistinglOverturning Ratio - 2.73 Key Weight -4- Vertical Vertical Loads used for Soil Pressure= 10,739.2 lbs Vert,Component = Total= 9,639.2 lbs R.M.= 45,556.2 Axial live load NOT included in total displayed,or used for overturning resistance,but is inciuded for soil pressure calculation. Froelich Engineers Pr i ^ .t Title: Page 123 of 126 11 .. Engineer. Protect ID: Project Descr: FROELICH E N D I N E E R 8 Cantilevered Retaining c '511 ti �-e.= :R 41+ s : = =114.'ra3 4.SEINtSC lSC P-L, C6 �• t t! � � ENERCALC INC.f033-20t4,atit 5.f4.0,18 Ver,6.14,8.{b • DescriptionottooNsuothigmmisegps- : Garage Ret Wai-W. Seismic Criteria Soil Data Calculations per ACI 318.11, ACI 530-11,IBC 2012, Retained Height = 11.50 ft Allow Soil Searinc = 3,3300 psf CBC 2013,ASCE 7-10 Wall height above soil - 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wail - 4.00:1 Heel Active Pressure - 35.0 psf-ft Height of Soil over Toe = 1200 in Toe Active Pressure = 30.0 psfift Water height over heel = 0.0 ft Passive Pressure = 330.0 psfrft Vertical component of active Soil Density,Heel = 11000 poi Lateral soil pressure options: S Density,Toe - 110.00 pot NOT USED for -1 e �' �n S� Pressur Friction Coeff btwn Ftg&Soil - 0.500 NOT USED for Sliding Resistance. NOT USEDfor Overturning Resistance. Soil height to ignore for passive pressure - 12 OD in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel 0.0 psf Lateral Load = 85.0 pif Used 1 o Resist Sliding u` t to Topft FootingAdjaceFdthng Load = 0.0 Ibs ft g&Overturning ..Height ,o,, _ 10,00 ft �oah�'3 Width = 0.00 ft Surcharge Over Toe = 0 0 psf ...Heaht to Bottom = 0.00 ft Eccentricity - 0.00 in Used for Sliding&Overturning Wail to Ftg CL Dist _ 0.00 ft Axial Load Applied to Stem Footing Type Line Load Axial Dead Load = 500.0 lbs Base AbovetBelow Soil Axial Live Load = 0.0 lbs Wind on Exposed Stern _ 0.0 psf tBack ofWall e. 0.0 ft Axial Load Eccentricity = 0,0 in Poisson's Rano - 0.300 Design Summary Stem Construction Top Stem 2nd Wall StabilityRatios rr 0< Stem OK Overturning = Design Height Above Ftg ft= 2.Ot) 0.00 • Oli eng g _ 2.58 OK Wall Material Above"Ht" - Concrete Concrete SlabSgResists1.52 OK Thickness in 8.00 8.00 All Sicirng Rebar Size g 5 # 6 Total Rearing Load = 9,639 lbs Rebar Spacing in= 6.00 6.00 ...resultant eco. = 13.26 in Rebar Placed at = Edge Edge Design Data Soil Pressure @ Toe = 2,203 psf OK ?O F3+fa/Fa = 0.704 0.973 Soil Pressure(e_i>Heel - 207 psf OK Allowable 3,330 G;f Total Force; A. ,,. t Froelich Engineers Project title; Page 124 of 126 En9ineer: Project ID: • .iiiiiiy, Project Des.: FROELICH Ftp'c,� s Doe P as14=T a 18E1 ti5CGA 1'r s4vrt 3 EC6 ";a Cants evere � �RRetaining ca ENEf ALC,INNEC.-11+983.2Ot4,BuUd:8..�11g4,,�8,116,Vee0.+6,14.8,16 I �i€t . .W +dtu64 i.,'= 'Z ? ��'..' ;,��°.'.. �Wa.-:; t. ..mss ' .... l . keensee „RPE IC O S.LT1NOE V EERS' Description: Garage Ret Wail-', Seismic. Footing Dimensions&Strengths Footing Design Results Toe Width = 2 5u ft Toe _He& _ Heel Width = 5.50 Factored Pressure = 2,644 248 pef Total Footing'Width = 8,00 Mu':Upward = 7,482 0 b Footing Thickness = 16.00 i:; Mu": Dow,`reward = 1,163 0 ft-lb P.1u Design = 6,320 18,437 ft-lb Key Widtti = G.i)U in Actual 1-Way Sher = 19.54 52.45 psi Key Depth = 0,U0 in A11ovv 1-Way Shear -- 32.16 82,16 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = 4 6 i©J 6.00 in Hee.'Re nforcin: ... 4 6 -J 12 00 in 1'c = 3,000 psi Fy = 60,000psi -+ Footing Concrete Density 150.00 pct Key Reinforcing = Note Specd Min.As`;ii - 0.0018 Other Acceptable Sizes•S Spacings Cover Top 2,00 a;8tm.- 3.60 in4 Ice: �= 9CO is .•f5g 14 00 n :+6 ; 19.75 in,#71L':2 756 in e8r 35.25 in 49@ Heel. #4ik.N 6.00.n #5r„i 9.25 in,ttt6'/i 3.00 in,#7(&17.50 in,#8t@ 23.90 in,49Qi.v,29. Key: No key defined Summary of Overturning&Resisting Forces& Moments .....OVERTURNING .,...RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-lblbs ft ft-lb Heel Active Pressure = 2,882.2 4.28 12:329 2 Soil Over Heel = 6,114.2 5 58 34,13/.4 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure = -81.7 0 78 -63.5 Surcharge Over Heel = Surcharge Over Toe = Adjacent Footing Load = Adjacent Footing Load = Axial Dead Load on Stem = 5010.0 2.63 1,416.7 Added Lateral Load = 850.0 6 33 5:383.3 'Axial Live Load on Stem = Load d)Stem Above Soil = Soil Over Toe e 275.0 1 25 343.8 Surcharge Over Toe = Stem Weight(s) _ 1.150_0 2.83 3:258.3 Earth 0 Stem Transitions = Total = 3;650.5 O.T.M. = 17.649.0 Footing Weight = 1,600.0 4.00 6,400.0 Resisting/Overturning Ratio = 2,58 Key Weight Vertical Loads used for Soil Pressure= 9;639.2 lbs Vert.Component Total= 9,639.2 lbs R.M.= 45,556.2 `Axial live load NOT included in total displayed or used for overturning resistance,but is included for soil pressure calculation: