Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
NISHKIAN DEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 ND31699 Templeton Elementary School Seismic Upgrades 9500 SW Murdock St. T—gr CE C0101' Ors Tigard, OR 97224 pg; (4 4 MAR 7 ni8 CI"5:v1-Y i: t'; 1.!'f,1! 117',13 STRUCTURAL CALCULATIONS .\9,ucTupt , PRO/211, 3/15/2018 I( ,er Rob Aman, PE, SE, LEED AP 4,1 15,385 40.-J00.v Project Manager OREGON IP 30 ',414 NSerena Gilles, PE Project Engineer EXPIRADON DA1E: 12-31-19 (471 DIGITAL SIGNATURE: 03-15-18 Edwin T. Dean, PE, SE Principal-In-Charge N I S H K I A N DEAN PROJECT:Templeton ES Upgrades NO: 31699 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 SHEET:_OF_ BY: SHG DATE:3/15/2018 TABLE OF CONTENTS ASCE 41-13 Calculations AC1-AC91 Nonstructural Upgrades NS1-NS5 N I S H K I A N DEAN PROJECT:Templeton ES Upgrades NO: 31699 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 SHEET: OF_ BY: SHG DATE:3/15/2018 Narrative Description Templeton Elementary School is a 1-story complex built in three major stages in 1966, 1979 and 2005.The original building consists of a mix of concrete shear walls,concrete floor slabs, plywood over wood roof framing and metal deck over steel joists.The 2005 addition was not evaluated as a part of this seismic upgrade project due to the year of construction. This existing building will undergo a voluntary seismic upgrade funded by the Oregon Seismic Rehabilitation Grant Program (SRGP).A Tier 2 ASCE 41-13 Report has been completed and calculations have been included in this package.This report identified insufficient wall anchorage as the primary structural deficiency. Nonstructural deficiencies include bracing and anchorage for sprinkler piping and mechanical equipment.All deficiencies have been addressed in this calculations package and corresponding permit drawings set. Design Criteria Summary A. Code 1. ASCE 41-13 Seismic Evaluation and Retrofit of Existing Buildings B. Loads and other criteria 1. Risk Category: Ill 2. Floor Live Load: Classrooms 50 psf, Lobbies and First Floor Corridors 100 psf 3. Seismic Design Criteria a.Seismic Design Category: D b.lmportance Factor: IE= 1.25 c.ASCE 7-10 Parameters: i. Design Spectral Response Acceleration for Short Period: SDs=0.715g ii. Design Spectral Response Acceleration for Period of 1 Second: SDS=0.443g d.ASCE 41-13 Parameters: i. Design Spectral Response Acceleration for Short Period: Sxs=0.536g ii. Design Spectral Response Acceleration for Period of 1 Second:Sm.=0.332g Material Properties A. STRUCTURAL STEEL 1. Wide Flange Shapes:ASTM 992 2. Plates and Other Rolled Shapes:ASTM A36 3. Pipe:ASTM A53 Gr. B 4. Fasteners a.High-Strength Bolts:ASTM A325N b.Standard Anchor Bolts:ASTM F1554,Gr.36 c.Wood Connection Bolts:ASTM A307 5. Welding a.Electrodes: E70xx b.Typical:ASTM A615,Gr. 60 NISHKIAN DEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 ND31699 Templeton Elementary School Seismic Upgrades 9500 SW Murdock St. Tigard, OR 97224 ASCE 41-13 CALCULATIONS Page AC1 Nishkian Dean Consulting and Structural Engineers Since 1919 Project: Templeton ES SRGP No: 31606 1022 SW Salmon St,Suite 300,Portland,OR 97213 Calculated by: CN Date: 9/26/16 Tel: (503)274-1843 Fax: (503)273-5696 Checked by: RAA Date: 9/26/16 ASCE 41-13 TIER 1 QUICK CHECK ANALYSIS BASE SHEAR For the Tier 1 analysis pseudo seismic force per SRGP requirements, the response spectral acceleration is the largest of the the value determined from BSE-1E accelerations and the value determined by 75% of the BSE-1N accelerations (equivalent to the accelerations used for design of new buildings per IBC 2012). BSE-1E BSE-1N (IBC 2012) Sxs.BSEJE:=0.457 Sxs.BSEIN:=0.715 0.75•SXS.BSEIN=0.536 Sx1.BSE1E:=0.259 Sx1.BSEW:=0.443 0.75•Sx1.BSE1N=0.332 Governs Modification factor: C=1.4 Building fundamental period: C,:=0.020 h,:=30 ft (tallest portion of building) 0=0.75 T:=Ct•hna=0.26s Response spectral acceleration: Sa:= 0.75•S)1.BSE1N =1.3 > 0.75•Sxs.BSEI tv=0.536 T • Sa:=0.75•SXS.BSEW=0.536 Base shear coefficient: CBs.QC:=C•Sa=0.75 Page AC4 Gp► Nishkian Dean Consulting and Structural Engineers Since 1919 Project: Templeton ES SRGP No: 31606 1022 SW Salmon St,Suite 300,Portland,OR 97213 Calculated by: CN Date: 9/26J16 Tel:(503)274-1843 Fax: (503)273-5696 Checked by: RAA Date: 9/26/16 ASCE 41-13 LINEAR STATIC PROCEDURE (LSP) ANALYSIS BASE SHEAR For the LSP pseudo seismic force, the response spectral acceleration is the same as that used for the Tier 1 analysis. Using the simplified method with a building period less than 0.3 s (appropriate for shorter areas of the building, and conservative) and a maximum m-factor between 2 and 6, the product of the modification factors is taken from Table 7-3. The value of the effective mass factor is taken from Table 7-4 based on a building no more than 2 stories. Modification factors: C1C2:=1.4 Effective mass factor: Cm:=1.0 Base shear coefficient: CBS.ISP:=C1C2•Cm•Sa=0.75 The base shear coefficient for LSP analysis is equivalent to that for the Tier 1 quick check analysis. IBC 2012 NEW BUILDING ANALYSIS BASE SHEAR - FOR REFERENCE The building's lateral system is a horizontal combination of reinforced concrete shear walls, precast shear walls, and wood shear walls so the governing response modification coefficient is the minimum of those for the three systems. The building is in Risk Category III. Response modification factor: R:=3.0 Importance factor: .4=1.25 Base shear coefficient: C Sxs.BSE1N Bs.rsc�= R =0.30 (1 0.30 =0.4 0.75 Page AC5 N I S N K I A DEAN Project Job Ref. CONSUtiING AND 511RKTURAL N ENGINEERS SINCE,!4, I9 Templeton ES Upgrades 31699 1022 SW Salmon St. Section Sheet no./rev. Suite 300 De ail 1/S3.01 con ection calculatons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/13/2018 11 DETAIL 1/S3.01 CONNECTION Cafeteria area Gridline 1 Noncompliant wall anchorage,ASCE 41-13 Tier 2 calcs 5.7.1.1 5.7.1.1 4 5.2.4 4 7.2 4 7.2.11.1 Out-of-Plane Wall Anchorage to Diaphragms F,, =0.4Sxsk„k,,xWp F,,,mm =0.2kaxWr ku =1.0+ 100 k,, _ 1+�zu 3 h„ Sxs=0.536; spectral response acceleration parameter,short periods Lf=52 ft; span of flexible diaphragm between vertical primary SFRS elements ka=1.0+Lf/100 ft=1.520; diaphragm flexibility factor kh=1.0; 1.0 for flexible diaphragms x=1.3; 1.3 for Life Safety Wp=150 pcf*9.5 in=119 psf; area weight of wall Fp=0.4*Sxs*k,*kh*x *Wp=50.3 psf; seismic force for anchorage Fp,min=0.2 *ka*x*Wp=46.9 psf; minimum force Fp=max(Fp, Fp,min)=50.3 psf; seismic force for anchorage,used for design htrib=17.5 ft/2=8.750 ft; wall height tributary to roof anchorage Sanchors=(32/12)ft; spacing of anchors Fanchors=Fp*htnb*Sanchors=1174 lbs; force at joists,see RISA output for force in anchors Page AC6 7 N 1St.K I T.A.N DEAN Project Job Ref. CONSUl7'MG SpL ENGIN{ERS SINCE 7979 Temoleton ES Uoerades 31699 1022 SW Salmon St. Section Sheet no./rev. Suite 300 De ail 1/S3.01 con ection calculat•ons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/13/2018 11 • 11 • :1, El 111 II 2 1/2• 2 112' SECTION A-A MP A35 WI{12)rIB X PL'114X4 1003 I. 1/?SPAX@32"OC 11n• f!"11i2' EA SEE (E)314"PLYWOOD 1 lir ` i'i 7 i` A41 2X8 BLKCa –.. 11 IL .44 \ [ • 4 N..T: (E)2X8 JCtST ib (2)112'THRtl BOLTS S A35 WI `ut1■• {E)HARD CEILING (12)BdX111T DEMO ASREOD AND @ 32"OC 47 REPLACE BACK TO 1 114'PL ;.-- 5116 V 1111-1 TITEN NO 518705 1l? A ANCHOR PL11/4X 5@ 3?OC ..( (E)CONC WALL _PYA 0 WALL ANCHORAGE DETAIL 11/2"=1'-0" 5/8"x 6.5"Titen HD minimum edge distance: 1.75"(per ESR-2713 report) Titen HD critical edge distance:4.5",use 5.0"from edge of concrete. Page AC7 • Project Job Ref. NISNKIAN DEAN CONSEKTMAG AND STRUCTURAL ENGINEERS SINCE 4919 Templeton ES Uotzrades 31699 1022 SW Salmon St. Section Sheet no./rev. Suite 300 De ail 1/S3.01 con ection calculatons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/13/2018 Connection to foist:thru bolt shear Y2"bolt through 2x(1.5"wood) D=0.5; bolt diameter,inches n=2; number of bolts Zpara=1050 Ib; %"bolt, NDS table 11G double shear,steel side plates CD=1.6; load duration factor,seismic Cg 3 Am=1.5 in *7.25 in=10.87 in2; area of main member,2x8 As=2*0.25 in*4.5 in=2.25 in2; area of side members,(2)steel plates ES=29e6 psi; elastic modulus of steel Em=1.6e6 psi; elastic modulus of wood REA=min((ES*As)/(Em*Am),(Em*Am)/(Es*As))=0.267; s=3 in; bolt spacing y=270000 lbs/in *(D^1.5)=95.5x103 lbs/in; load/slip modulus for wood-to-metal connections u=1+y*(s/2) * [1/(Em*Am)+1/(Es*As)]=1.010; m=u—'\/(u^2-1)=0.866; C - m;1-mN} 1+RF,l (10.3-1) n[(1+Rip"}(1rm)-1mm )� i-m Cg=[(m*(1-m^(2*n)))/[n*[(1+REA*m^n)*(1+m)-1+m^(2*n)]]]*[(1+REA)/(1-m)]=0.994; group action factor CA=1.0; geometry factor,all conditions met for 1.0 Z'=2*Zpara*CD*Cg*CA=3340 lbs; adjusted lateral design value for two bolts Fanchors/Z'=0.351; <1.0 OK Page AC8 a Al 5 1.174k 4 3 2 NI Nishkian Dean SK- 1 SHG 1.S3.01 plate deflection Mar 13, 2018 at 1:19 PM 31699.00 PL 1.25 x 5 1.S3.01 (S51)plate deflection 201... Page AC9 M Company : Nishkian Dean Mar 13,2018 II Designer : SHG 1:21 PM IR'S� er : 31699.00 Model NaJob bme : 1.S3.01 plate deflection Checked By. Joint Coordinates and Temperatures Label X[ft] Y[ft] Z[ft] Temp[F] Detach From... 1 N1 0 0 0 0 2 N2 0 .125 0 0 3 N3 0 .542 0 0 4 N4 0 1.375 0 0 5 N5 0 1.5 0 0 Joint Boundary Conditions Joint Label X[k/in] Y[k/in] Z[k/in] X Rot.[k-ft/rad] Y Rot.[k-ft/rad] Z Rot.[k-ft/rad] 1 N2 Reaction Reaction Reaction Reaction Reaction 2 N3 Reaction Reaction Reaction Reaction Reaction Member Primary Data Label I Joint J Joint K Joint Rotate(deq) Section/Shape Type Design List Material Design R... 1 M1 N1 N5 90 PL 1.25 x 5 Beam RECT A36 Gr.36 Typical Joint Loads and Enforced Displacements(BLC I :seismic) Joint Label L,D,M Direction Magnitude[(k,k-ft), (in,rad), (k's^2/ft... 1 N4 L X 1.174 Basic Load Cases BLC Description Category X Gravity Y Gravity Z Gravity Joint Point Distributed Area(Me... Surface(P... 1 seismic EL 1 Load Combinations Description Solve PDelta SRSS BLC Fac...BLC Fac..BLC Fac..BLCFac..BLCFac..BLCFac... BLC Fac...B...F ......... 1 IBC 16-1 Yes Y EL 1 max load in (1) anchor Joint Reactions LC Joint Label X[k] 1k1 Z[k] MX[k-ft] MY[k-ft] MZ[k-ft] 1 1 N2 2.345 0 0 0 0 0 2 1 N3 -3.519 A(1 0 0 0 0 0 3 1 Totals: -1.174 0 0 4 1 COG (ft): NC NC NC Joint Deflections LC Joint Label X[in] Y[in] Z[in] X Rotation [rad] Y Rotation [rad] Z Rotation[rad] 1 1 N1 0 0 0 0 0 4.788e-04 2 1 N2 0 0 0 0 0 4.788e-04 3 1 N3 0 0 0 0 0 -1.076e-03 4 1 N4 .032 0 0 0 0 -4.183e-03 RISA-3D Version 15.0.0 [H:\...\...\...\1.S3.01 calcs\1.S3.01 (S51)plate deflection 2017.11.30.r3d] Page AC10 , Company : Nishkian Dean Mar 13,2018 DesIIIRISA Job gner : SHG 1:21 kPM e Job Number : 31699.00 Checked By. Model Name : 1.S3.01 plate deflection Joint Deflections(Continued) LC Joint Label X[in] Y fin] Z fin] X Rotation [rad] Y Rotation [rad_Z Rotation[rad] 5 1 N5 .038 0 0 0 I 0 -4.183e-03 Member Section Deflections LC Member Label Sec x fin] y[in] z[in] x Rotate[rad] (n)L/y Ratio (n)L/z Ratio 1 1 M1 1 0 0 0 0 NC NC 2 2 0 0 0 0 NC NC 3 3 0 0 .005 0 NC 4745.597 4 4 0 0 .019 0 NC 967.054 5 5 0 0 .038 0 NC 483.663 RISA-3D Version 15.0.0 [H:\...\...\...\1.S3.01 calcs\1.S3.01 (S51)plate deflection 2017.11.30.r3d] Page f i SIMPSON Anchor DesignerTM Company: Nishkian Dean Date: 12/1/2017 Software Engineer: SHG Page: 3/4 Strong-TieVersion 2.5.6464.0 Project: Templeton ES Upgrades ® Address: Phone: E-mail: 3.Resulting Anchor Forces AnchorTension load, Shear load x, Shear load y, Shear load combined, Nua(Ib) V.(Ib) Vuay(Ib) 1�(Vuax)Z+(Vuay}2(lb) 1 3519.0 0.0 0.0 0.0 Sum 3519.0 0.0 0.0 0.0 Maximum concrete compression strain(%o):0.00 <Figure 3> Maximum concrete compression stress(psi):0 Resultant tension force(Ib):3519 Resultant compression force(Ib):0 Eccentricity of resultant tension forces in x-axis,e'rx(inch):0.00 Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 Y T<.:4-11181-- 4.Steel Strength of Anchor in Tension(Sec.D.5.1) Nee(Ib) 00.6(Ib) Use =1.0 for lower bound 30360 49-7836 973 values per ASCE 41-13 10.3.6.2 1.0 1303601 5.Concrete Breakout Strength of Anchor in Tension(Sec.D.5.2) Na=kc is cJf chefs 5(Eq.D-6) kc is fc(psi) hof(in) N (Ib) 17.0 1.00 2500 3.820 6346 0.750Nct,=0.75 (ANc/ANcn)Vied ,NYcNWcp,NNb(Sec. D.4.1 &Eq.D-3) ANc(in2) ANco(in2 Ca,min(in) ed,N �QN Y�cp,N Ni,(lb) 950.750Ncb(Ib) 122.97 131.33 5.00 0.962 1.00 1.000 6346 2786 X1,0 x4287! 6.Pullout Strength of Anchor in Tension(Sec.D.5.3) 0.75"n=0.75¢Yc,P2aNp(Pc/2,500)"(Sec.D.4.1, Eq.D-13&Code Report) 'I'c,P 2a Np(Ib) Pc(psi) n 0.750Npn(lb) 1.0 1.00 4727 2500 0.50 0_65 - „. 1.0 3545 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Page AC15 Company : Nishkian Dean Mar 13,2018 Des4 PM IIIRISA Job Numner : SHG 1Checks Job Number : 31699.00 Checked By. Model Name : 1.S3.01 plate deflection plate shape at top, PL 1.25 x 1.5 with 1/2 load to check deflection Member Primary Data Label I Joint J Joint K Joint Rotate(deg) Section/Shape Type Design List Material Design R... 1 M1 N1 N5 90 PL 1.25 x 1.5 beam RECT A36 Gr.36 Typical Joint Loads and Enforced Displacements(BLC 1 :seismic) Joint Label L,D,M Direction Magnitude[(k,k-ft), (in,rad), (k*s^2Jft... 1 N4 L X .587 Basic Load Cases BLC Description Category X Gravity Y Gravity Z Gravity Joint Point Distributed Area(Me... Surface(P... 1 seismic EL 1 Load Combinations Description Solve PDelta SRSS BLC Fac...BLC Fac..BLCFac..BLCFac..BLCFac..BLCFac... BLC Fac...B...F............... 1 IBC 16-1 Yes Y EL 1 Joint Deflections LC Joint Label X lin) Y[in] Z[in] X Rotation [rad] Y Rotation [rad] Z Rotation[rad] 1 1 N1 .001 0 0 0 0 7.98e-04 2 1 N2 0 0 0 0 0 7.98e-04 3 1 N3 0 0 0 0 0 -1.794e-03 4 1 N4 .053 0 0 0 0 -6.972e-03 5 1 N5 .063 0 0 0 0 -6.972e-03 Member Section Deflections LC Member Label Sec x lin] y[in] z[in] x Rotatefrad] (n)L/y Ratio (n)L/z Ratio 1 1 M1 1 0 0 .001 0 NC NC 2 2 0 0 -.002 0 NC 6300.086 3 3 0 0 .008 0 NC 2847.359 4 4 0 0 .032 0 NC 580.232 5 5 0 0 .063 0 NC 290.198 RISA-3D Version 15.0.0 [H:\...\...\...\1.S3.01 calcs\1.S3.01 (S51)split plate deflection 2017.11.30.r3 Page AC12 SIMPSON Anchor Designer TM Company: Nishkian Dean Date: 12/1/2017 SoftwareEngineer: SHG Page: 4/4 Strong-Tie Version r64640 Project: Templeton ES Upgrades ® 2.5.6464.0 Address: Phone: E-mail: 11.Results 11.Interaction of Tensile and Shear Forces(Sec.D.7)? No shear force Tension Factored Load,N.(Ib) Design Strength,0Na(Ib) Ratio Status Steel 3519 19734 30360 X1.8 0.12 Pass Concrete breakout 3519 270G 4287 1.2G Ti82 -Fail- Pass Pullout 3519 -2304 3545 ±53 0.99 -Fail(Governs) Pass 5/8"DIA TITEN HD,hnom=5"meets the selected design criteria for ASCE 41-13 loads. 12.Warnings -Per designer input,ductility requirements for tension have been determined to be satisfied—designer to verify. -Per designer input,ductility requirements for shear have been determined to be satisfied—designer to verify. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Page AC16 NISNKIAN DEAN Project Job Ref. CONSIKTING AND STRUCTURAL ENGINEERS SINCE 1919 Templeton ES U parades 31699 1022 SW Salmon St. Section Sheet no./rev. Suite 300 De ail 2/S3.01 con ection calculatons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/13/2018 DETAIL 2/S3.01 CONNECTION Wall north of cafeteria,Gridline A Noncompliant wall anchorage,ASCE 41-13 Tier 2 calcs 5.7.1.1 Sim to detail 1/53.01 5.7.1.1-*5.2.4-3 7.2-*7.2.11.1 Out-of-Plane Wall Anchorage to Diaphragms Fp =OAS xskukt,XWP Fp,min =0.2kaXWp ka =1.0+ 100 kh = 1+2`L` 3 h,, , Sxs=0.536; spectral response acceleration parameter,short periods Lt=91 ft; span of flexible diaphragm between vertical primary SFRS elements ka =1.0+If/100 ft=1.910; diaphragm flexibility factor kh=1.0; 1.0 for flexible diaphragms X=1.3; 1.3 for Life Safety Wp=150 pcf*8 in=100 psf; area weight of wall Fp=0.4*Sxs*ka*kh*x*Wp=53.2 psf; seismic force for anchorage Fp,min=0.2*ka*x *Wp=49.7 psf; minimum force Fp=max(Fp,Fp,min)=53.2 psf; seismic force for anchorage,used for design htrib=13.5 ft/2=6.750 ft; wall height tributary to roof anchorage Sanchors=(32/12)ft; spacing of anchors Fanchors=Fp*htrib*Sanchors=958 lbs; force at joists.This force is small than the force for detail 1/53.01,so it is acceptable to use the same anchors as detail 1/S3.01.Thru-bolt shear is also acceptable. Use 5/8"x 6.5"Titen HD anchors at 32"OC. Page AC17 1 ' Project Job Ref. .0 NISNKIAN DEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE/419 Templeton ES Upgrades 31699 Section Sheet no./rev. 1022 SW Salmon St. Suite 300 De ail 2/S3.01 con ection calculatons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/13/2018 SAW A35 W.I(12)Ne X 112"S'AX X32`LX; \ \(A) --Pt 114X4 1/2X0,8 1/2 (E))I PLYWOOD EA SIDE (E):9C BLKG ��\ \\ 12 _____-_2 - (E)2.)C8 OUTRIGGER\� — ---e',---3'I1 T fJ~ NONE AT SIM { ss. . �4 « r a k, ..------- / - I VI)2X12.01ST )LCONT PAST WALL ATSIM 2X12 BLSG / I (2)1/2"THRU BOLTS 2X8 MAT SmM ' ,�..1: BL (E)HARD CEILING /' REMOVE AS REOD AND REFLACE BACK TO 1 1/4"PL SIMPA3E W/ 1♦ 111", (12)3,j X.1112" ,FW CA 32"O2 E \ \ TITEN HO 5.8"XE 112' AN HOR \PL1114 X5©32'OZ SEE 4 f$7.81 SECTA-AFOP PL NOTCH AT SIM.SPF 1 f 53.81 RFCT A-A P()P PI NCNTI.H NN.,_-(E)CONC WALL WALL ANCHORAGE DETAIL ./ 1 112'=I'-o' Page AC18 F G () N I S N K I A N DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Templeton ES Unerades 31699 Section Sheet no./rev. 1022 SW Salmon St. Suite 300 De ail 4/53.01 con ection calculations Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/13/2018 DETAIL 4/S3.01 CONNECTION Gym storage north wall anchorage,north of Gridline A Noncompliant wall anchorage,ASCE 41-13 Tier 2 calcs 5.7.1.1 Sim to detail 1/S3.01 5.7.1.1-3 5.2.4-* 7.2-)7.2.11.1 Out-of-Plane Wall Anchorage to Diaphragms Fp =0.4Sxskukr,XWp Fp.min =0.2kuXWP ka =1.0+ 100 k,, =I 1+2 „ 3 h„ 1 Sxs=0.536; spectral response acceleration parameter,short periods Lf=28 ft; span of flexible diaphragm between vertical primary SFRS elements ka=1.0+Lf/100 ft=1.280; diaphragm flexibility factor kh=1.0; 1.0 for flexible diaphragms x=1.3; 1.3 for Life Safety Wp=150 pcf*6.5 in=81 psf; area weight of wall Fp=0.4*Sxs*ka*kh*x*Wp=29 psf; seismic force for anchorage Fp,min=0.2*k9*x *Wp=27 psf; minimum force Fp=max(Fp, Fp,min)=29 psf; seismic force for anchorage,used for design htrib=14 ft/2=7.000 ft; wall height tributary to roof anchorage Sanchors=(48/12)ft; spacing of anchors Fanchors=Fp*htrib*Sanchors=812 lbs; force at joists,see RISA output for force in anchors Page AC19 I 0 NISNKIAN DEAN Project Job Ref. CONSULTING ANO STRUCTURAL ENGINEERS SINCE 1419 Templeton ES Uo rades 31699 Section Sheet no./rev. 1022 SW Salmon St. Suite 300 De ail 4/S3.01 con ection calculatons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/13/2018 II I, ■ is II_MTI_ 11.m iiir ......, ........_ SlF A3$VA. 3,? 3 {i2F IPfi X 112'SPAR P1111X41.2-XD81?' Q 32'OC SECTION MA EA SIDE L_____-- 12 lei SrYWOOD 4�^ E' . ---A ZX SLAG 11Mj A (E)2X3 OUTRIGGER r Z4n1 I i 1 tiiiiik,.--_- ------ 1�)j, (E)2X19 JOIST 1 y ®...... !211.4'TAW BOLTS (DEMO AS REDD AND E)HARD MONSa111 ....I REPLACE SACK TOII UC PL T r' .,._4. 74IAI TITEN ND 112'X5' T ANCMCN PL 1 1?4 XE (E)CONC WALL SNP A35 IV 112)E6 X11(Te 32'OC A WALL ANCHORAGE DETAIL 1/2"x 5"Titen HD minimum edge distance: 1.75"(per ESR-2713 report) Titen HD critical edge distance:4.5",use 5.0"from edge of concrete. Thru-bolt shear:Since detail 1/53.01 bolt shear was adequate for a 2x8 joist,the same connection will also work for this connection which has a smaller load and(2)members(2x8 outrigger and 2x10 joist). Page AC20 N5 0.812 k N4 s N3 s N2 N1 Nishkian Dean SK- 1 SHG 4.S3.01 plate deflection Mar 13, 2018 at 2:47 PM 31699.00 PL 1.25 x 5 4.S3.01 split plate deflection 2018.... Page AC21 Company : Nishkian Dean Mar 13,2018 IIRISA Designer SHG 2:41 PM Job Number : 31699.00 Checked By: Model Name : 4.S3.01 plate deflection Joint Coordinates and Temperatures Label X ITU Y fft1 Z fftl Temp FF1 Detach From Dian... 1 N1 0 0 0 0 2 N2 0 .125 0 0 3 N3 0 .542 0 0 4 N4 0 1.375 0 0 5 N5 0 1.5 0 0 Joint Boundary Conditions Joint Label X[k/inl Y[k/in] Z[k/inl X Rot.[k-ft/radl Y Rot.fk-ft/radl Z Rot.fk-ft/radl 1 N2 Reaction Reaction Reaction Reaction Reaction 2 N3 Reaction Reaction Reaction Reaction Reaction Member Primary Data Label I Joint J Joint K Joint Rotate(dew Section/Shape Type Design List Material Design Rules 1 M1 N1 N5 90 PL 1.25 x 5 I Beam RECT A36 Gr.36 Typical Joint Loads and Enforced Displacements (BLC I :seismic) Joint Label L.D.M Direction Magnitude[(k,k-ft),jin.rad).(k*s^2/f.,. 1 N4 L X .812 Basic Load Cases BLC Description Category X Gravity Y Gravity Z Gravity Joint Point Distributed Area(Me... Surface(P... 1 seismic EL 1 Load Combinations Description Sol..PD...SR..BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact... 1 IBC 16-1 Yes Y EL 1 max load in (1) anchor Joint Reactions - LC Joint Label X jk] Y[k] Z[k] MX[k-ft] MY[k-ft] MZ[k-ft] 1 1 N2 1.622 0 0 0 0 0 2 1 N3 -2.434 0 0 0 0 0 3 1 Totals: -.812 0 0 4 1 COG (ft): NC NC NC Joint Deflections LC 1 1 Joint Label X[[iin] Y[in] Z lin] X Rotation[radj Y Rotation[rad] Z Rotation[rad] 0 0 0 0 3.312e-04 2 1 N2 0 0 0 0 0 3.312e-04 3 1 N3 0 0 0 0 0 -7.445e-04 4 1 _ N4 .022 0 0 0 0 -2.893e-03 5 1 N5 .026 0 0 0 0 -2.893e-03 RISA-3D Version 15.0.0 [H:\...\...1...\4.S3.01 calcs\RISA\4.S3.01 plate deflection 2018.03.13.r3d] Page AC22 1 Company : Nishkian Dean Mar 13,2018 Des'I RIS Job Nnerum : SHG Checked21 PM Job Number : 31699.00 By: Model Name : 4.S3.01 plate deflection Member Section Deflections LC Member Label Sec x[in] y[in] z[in] x Rotate[rad] (n)Uy Ratio (n)Liz Ratio 1 1 M1 1 0 0 0 0 NC NC 2 2 0 0 0 0 NC NC 3 3 0 0 .003 0 NC 6861.245 4 4 , 0 0 .013 0 NC 1398.179 5 5 0 0 .026 0 NC 699.286 RISA-3D Version 15.0.0 [H:\...\...\...\4.S3.01 calcs\RISA\4.S3.01 plate deflection 2018.03.13.r3d] Page AC23 Company : Nishkian Dean Mar 13,2018 'IRISJth gnerNum : SHG 2Che3 PM ke Number : 31699.00 Checked By. Model Name : 4.S3.01 plate deflection (plate shape at top, PL 1.25 x 1.5 with 1/2 load Member Primary Data `to check deflection Label I Joint J Joint K Joint Rotate(deg' Section/Shape Type Design Ust Material Design Rules 1 M1 N1 N5 90 PL 125x 1.5 Beam RECT A36 Gr.36 Typical Joint Loads and Enforced Displacements(BLC 1 :seismic) Joint Label L,D,M Direction Magnitude[(k,k-ft), (in,rad), (k*s^2/f... 1 N4 L X .406 Basic Load Cases BLC Description Category X Gravity Y Gravity Z Gravity Joint Point Distributed Area(Me... Surface(P... 1 seismic EL 1 Load Combinations Description Sd..PD..SR..BLC Fact..BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact..BLC Fact...BLC Fact... 1 IBC 16-1 Yes Y EL 1 Joint Deflections LC Joint Label X fn] Y fin] Z[in) X Rotation[rad[ Y Rotation [rad) Z Rotation[rad) 1 1 N1 0 0 0 0 0 5.519e-04 2 1 N2 0 0 0 0 0 5.519e-04 3 1 N3 0 0 0 0 0 -1.241e-03 4 1 N4 .036 0 0 0 0 -4.822e-03 5 1 N5 .044 0 0 0 0 -4.822e-03 Member Section Deflections LC Member Label Sec x fin] y[in[ z[in] x Rotate[rad] (n)L/y Ratio (n)L/z Ratio 1 1 M1 1 0 0 0 0 NC NC 2 , 2 0 0 -.001 0 NC 9108.76 3 3 0 0 .005 0 NC 4116.754 4 4 0 0 .022 0 NC 838.908 5 5 0 0 .044 0 NC 419.572 RISA-3D Version 15.0.0 [H:\...\...\...\4.S3.01 calcs\RISA\4.S3.01 split plate deflection 2018.03.13.r3lpage AC24 1 SIMPSON Anchor Designer TM Company: Nishkian Dean Date: 12/1/2017 Engineer: SHG Page: 3/4 Strong-Tie Software Project: Templeton ES Upgrades Version 2.4.6025.0 Address: Phone: E-mail: ..._.._.... .. 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, Nua(Ib) V.(lb) Vuay(Ib) *I(Vuax)2+(Vuay)2(Ib) 1 2434.0 0.0 0.0 0.0 Sum 2434.0 0.0 0.0 0.0 Maximum concrete compression strain(%o):0.00 <Figure 3> Maximum concrete compression stress(psi):0 Resultant tension force(Ib):2434 Resultant compression force(Ib):0 Eccentricity of resultant tension forces in x-axis,e'Nx(inch):0.00 Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 ____44,31iyi._ X 4.Steel Strength of Anchor in Tension(Sec.D.5.1) Nsa(Ib) d ON.(Ib) Use t6=1.0 for lower bound 20130 e.r 13085 values per ASCE 41-13 10.3.6.2 1.0 20130 5.Concrete Breakout Strength of Anchor in Tension(Sec.D.5.21 Nb=kcA,aAlPohoil 5(Eq.D-6) kc 2a r(psi) hat(in) Nb(lb) 17.0 1.00 2500 2.780 3940 0.750Ncb=0.750(ANc/ANco)Y'ec,NYo,NWcp,NNb(Sec.D.4.1 &Eq.D-3) ANc(in2) ANCO(in2 gjed,N S'c,N 'cp,N Nb(lb) 0 0.750Ncb(lb) 69.56 69.56 1.000 1.00 1.000 3940 0.C1 1921 129551 11.Results Interaction of Tensile and Shear Forces(Sec.D.71 No shear force) Tension Factored Load,Nua(lb) Design Strength,oNn(lb) Ratio Status Steel 2434 x-398& 20130 0.12 Pass Concrete breakout 2434 4924- 2955 4 0.82 —Fail(Caverns) Pass 1/2"DIA TITEN HD,hnom=3.75"meets the selected design criteria for ASCE 41-13 loads. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Page AC27 , SIMPSON Anchor Designer TM Company: Nishkian Dean Date: 12/1/2017 Software Engineer: SHG Page: 4/4 Strong-Tie Software Project: Templeton ES Upgrades Version 2.4.6025.0 Address: Phone: E-mail: 12.Warnings -Per designer input,ductility requirements for tension have been determined to be satisfied—designer to verify. -Per designer input,ductility requirements for shear have been determined to be satisfied—designer to verify. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simoson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Page AC28 ' Project Job Ref. 0 NISNKIAN DEAN CONSULTING AMD STRUCTURAL ENGINEERS SINCE 1919 Templeton ES Uo rade5 31699 Section Sheet no./rev. 1022 SW Salmon St. Suite 300 De ail 5/S3.01 con ection calculatons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/14/2018 DETAIL 5/S3.01 CONNECTION South Cafeteria wall,Gridline E Noncompliant wall anchorage,ASCE 41-13 Tier 2 calcs 5.7.1.1 5.7.1.1 - 5.2.4 7.2 4 7.2.11.1 Out-of-Plane Wall Anchorage to Diaphragms Fp =0.4Sxskuk,IXWp Fp,m,,, =0.2kuxW1, LI k„ =1.0+---' 100 k, =11+2z" 3 h„ 1 a Sxs=0.536; spectral response acceleration parameter,short periods Check connection load at glulams: Lf=80 ft; span of flexible diaphragm between vertical primary SFRS elements ka=1.0+Lf/100 ft=1.800; diaphragm flexibility factor kh=1.0; 1.0 for flexible diaphragms x=1.3; 1.3 for Life Safety Wp=150 pcf*8 in=100 psf; area weight of wall Fp=0.4*Sxs*ka* kh*x *Wp=50.2 psf; seismic force for anchorage Fp,min=0.2 *ka*x *Wp=46.8 psf; minimum force Fp=max(Fp,Fp,min)=50.2 psf; seismic force for anchorage,used for design htrlb=13.5 ft/2=6.750 ft; wall height tributary to roof anchorage sgiuiam=16 ft; spacing of glulams Fglulam=Fp* htrib*Sgluiam=5418 lbs; force at glulams baysregd=(Fgiulam/2)/420 lbs=6.5; bays of blocking required,USE 8 bays of 2x blocking Simpson A35s each side,attached with SPAX screws,420 lb capacity each AR=(16 ft/(baysregd*16 in))=1.860; subdiaphragm aspect ratio <3.0 per ASCE 41-13 7.2.11.1,OK Page AC29 + 0. NISNKIAN DEANProject Job Ref. CONSULTING AND STRUCTURALENGINEERS SINCE 1919 Templeton ES Upgrades 31699 Section Sheet no./rev. 1022 SW Salmon St. Suite 300 De ail 5/53.01 con ection calculatons 2 Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/14/2018 (2)a'r BOLTS 3•>s TMR 'OdNN \ 1.11111111 GI Q WELD 1111%II ht .11114111,11MIIIIIN IN IN -ft.-- ree 2X5.SEE U 83x1 e'w' PL.S11 XdXa V4'(2)STO HOLES we HSS 6X4 COPED 1X114. e IO R RO LT ACC MSSi OT ENO NCI.ES EA LONG Er0 SOAP A35 W. SECTDN A-A (12)PE X 1.2'SPAX (E)314'PLVVD (E)2X3 JOIST,VP c„ss P1.5A6.8CAt6 �� EANEtc SPA,ASS W` (12)&1X1112' PILASTER SEE SECTION AA (p GL 8£,A14 PL 1.1X4 1/2X C1-10 BETON)WALL s 1W? TYP P (6)SOS 1:4X2 112 SCRFWS NOTE:RELOCATE PIPING 1NTERPERPG WITH THIS CONN 10 W3/4"=ALL ANCHORAGE DETAIL 1'-0" %"plate to glulam: Fglulam=5418; CD=1.6; load duration factor,seismic Vcap=420 lbs; shear capacity of(1)11/4"x 2.5"Simpson SDS screw,steel side plate V'cap=CD*Vcap=672 lbs; Fglulam/V'cap=8.1; req'd number of screws,use(6)11/4"x 2.5"SDS screws each side,(12)total Page AC30 Loads to HSS chord Avg. conc wall height over 15'span: (18'+ 15.2')/2= 16.6' ASCE 7-10 loads (stricter than SCE 41-13) 12.11.2.1 Fp=0.4* SDS *ka* le*Wp SDS= 0.715 ka= 1 +52/100= 1.52 le = 1.25 Wp max= 150 pcf* (8/12 ft thk) * (16.6 ft/2 tall) =830 plf Fp =0.4* 0.715* 1.52 * 1.25 *830plf=451 plf Check ASCE 41-13 loads Tier 25.7.1.1 ->5.2.4->7.2->7.2.11.1 Fp=0.4*SXS* ka*kh*X*Wp SXS = 0.536 ka= 1.52 (same as ASCE 7-10 above) kh = 1.0 for flexible diaphragms X= 1.3 for Life Safety Wp=830 plf (same as ASCE 7-10 above) Fp= 0.4*0.536* 1.52 * 1.0 * 1.3*830plf=352plf Force-controlled per 7.2.11 7.5.2.2.2 k*QCL>QUF. k will be 1 for retrofit. Fp=352 plf<451 plf(ASCE 7-10),we choose to use ASCE 7-10 loads to be conservative. Page AC31 'NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Templeton ES Upgrades 31699.00 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 3® HSS perimeter beams with delf check 1 Portland,OR 97205 Calc.by Date Chk'd by Date App'd byDate SHG 3/15/2018 STEEL MEMBER ANALYSIS&DESIGN(AISC 360) In accordance with AISC360 14th Edition published 2010 using the LRFD method Tedds calculation version 4.2.00 ANALYSIS Tedds calculation version 1.0.18 Geometry Geometry(ft)-Steel(AISC)-HSS 6x4x5/16 z 1 4. ►X 15 2 1 Material-Steel(AISC) Density 490 Ibm/ft3 Youngs Modulus 29000 ksi Shear Modulus 11200 ksi Thermal Coefficient 0.000012°C-1 Section type-HSS 6x4x5/16 Area 5 in2 Major moment of inertia 25 in4 Shear area Ay 2 in2 Minor moment of inertia 13 in4 Shear area AZ 3 in2 Support conditions Support 1 Vertically Fixed Horizontally Fixed Rotationally Free Support 2 Vertically Fixed Horizontally Fixed Rotationally Free Spans Span 1 15 ft Loading Seismic-Loading(kips/ft) v � jaamaimilimimmisimm„ z • Load combination factors n Load combination to tai 1.2D+ 1.0L+0.2S+ 1.0E(Strength) 1.00 Member UDL loads Page AC32 'NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Templeton ES Upgrades 31699.00 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 HSS perimeter beams with delf check 3 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date SHG 3/15/2018 -x- HSS 6x4x0.3125(AISC 14th Edn(v14.1)) Section depth,d,6 in Section breadth,4,4 in Weight of section.Weight,19.1 lbf/ft Section thickness,t 0291 in Area of section,A,5.3 irk Radius of gyration about x-axis.c,2.17 in Radius of gyration about y-axis,c 1.58 in Elastic section modulus about x-axis,4,8.27 ins to Elastic section modulus about y-axis,� 6.58 in3 Plastic section modulus about x-axis,4,10.3 in3 Plastic section modulus about y-axis,;,7.75 of 0.2g"Second moment of area about x-axis,(,24.8 of Second moment of area about y-axis,1,13.2 of 4" Lateral restraint Both flanges have lateral restraint at supports only Consider Combination 1 -1.2D+1,0L+0.2S+1,0E(Strength) Classification of sections for local buckling-Section B4 Classification of flanges in flexure-Table B4.1b(case 17) Width to thickness ratio (bf-3 x t)/t=10.75 Limiting ratio for compact section Xpff= 1.12 x-\1[E/Fy]=28.12 Limiting ratio for non-compact section Xrrf= 1.40 x q[E/Fy]=35.15 Compact Classification of web in flexure-Table B4.1 b(case 19) Width to thickness ratio (d-3x t)/t=17.62 Limiting ratio for compact section Xpwf=2.42 x J[E/Fy]=60.76 Limiting ratio for non-compact section Arwf=5.70 x J[E/Fy]=143.12 Compact Section is compact in flexure Check design at start of span Design of members for shear-Chapter G Required shear strength Vr,x=3.4 kips Web area Aw=2x (d-3xt)xt=2.984in2 Web plate buckling coefficient kv=5 (d-3xt)/t<= 1.10xJ(kvxE/Fy) Web shear coefficient-eq G2-3 Cy=1.000 Nominal shear strength-eq G2-1 Vn,x=0.6 x Fy x AW x Cy=82.4 kips Design shear strength Vc,x= x Vn,x=74.1 kips Vr,x/Vc,x=0.046 PASS-Design shear strength exceeds required shear strength Check design 7ft 6in along span Design of members for flexure-Chapter F Required flexural strength Mr,x= 12.7 kips ft Page AC34 'NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Templeton ES Upgrades 31699.00 Nishkian Dean Section Sheet no./rev. 1022 SW Salmon St.Suite 300 HSS perimeter beams with delf check 4 Portland,OR 97205 Calc.by Date Chk'd by Date App'd by Date SHG 3/15/2018 Yielding-Section F7.1 Nominal flexural strength for yielding-eq F7-1 Mn,yld,x=Mp,x=Fy x Zx=39.5 kips_ft Design flexural strength-Fl Nominal flexural strength Mn,x=Mn,yld,x=39.5 kips_ft Design flexural strength Mc,x=4b x Mn,x=35.5 kips_ft Mr,x/Mc,x=0.357 PASS-Design flexural strength exceeds required flexural strength Check design 7ft 6in along span Design of members for x-x axis deflection Strength level forces used to check deflection,so L/240 used. Maximum deflection 6x=0.721 in Allowable deflection Sx,Albwable=Lm, 5,/240=0.75 in Sx/Sx,Albwable=0.961 PASS-Allowable deflection exceeds design deflection Page AC35 f NISHKIAN DE AN Project Job Ref. CONSULYWG Aryp STRUCTURAL ENGINEERS SINCE 7919 Templeton ES Uoerades 31699 1022 SW Salmon St. Section Sheet no./rev. Suite 300 Deail 7/S3.01 con ection calculat'ons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 1 3/14/2018 DETAIL 7/S3.01 CONNECTION North Cafeteria wall(Gridline C)and South Cafeteria wall(Gridline E) Noncompliant wall anchorage,ASCE 41-13 Tier 2 calcs 5.7.1.1 5.7.1.1-4 5.2.4 4 7.2 4 7.2.11.1 Out-of-Plane Wall Anchorage to Diaphragms F>=0.4S XSka hXWp Fp.min =0.2k„xW, k„ =1.0+ loo - � k1 =—(1+-=” 3 hN Sxs=0.536; spectral response acceleration parameter,short periods Lf=80 ft; span of flexible diaphragm between vertical primary SFRS elements ka=1.0+Lf/100 ft=1.800; diaphragm flexibility factor kh=1.0; 1.0 for flexible diaphragms x=1.3; 1.3 for Life Safety Wp=150 pcf*8 in=100 psf; area weight of wall Fp=0.4*Sxs*ka*kh*x *Wp=50.2 psf; seismic force for anchorage Fp,min=0.2* ka *x *Wp=46.8 psf; minimum force Fp=max(Fp, Fp,min)=50.2 psf; seismic force for anchorage,used for design htrib=13.5 ft/2=6.750 ft; wall height tributary to roof anchorage Sanchors=4 ft; spacing of anchors Fanchors=Fp*htrib*Sanchors=1355 lbs; force at anchors Page AC36 N I S M K I A N DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS SINCE I9I9 Templeton ES Upgrades 31699 1022 SW Salmon St. Section Sheet no./rev. Suite 300 De ail 7/S3.01 con ection calcula 'ons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/14/2018 2X6 CONT W/ 1/2"DIA STUDS Q 32"OC (E)3/4"PLYWOOD SIMP A35 W/(12) #6X1/2"SPAX @ (E)2X8 JOIST,TYP 32"OC - --1.-L-__ SIMP A35 W/ - '- (12)8dx1 12 _— �' r___.___7L17-.-__:;:-7-=-7:7---- .RiL, --- — \-------- ..-I- _ _ — — st HSS 6X4 FLAT Ira 7 (E)2X12 JOIST , 1111 (E)2X8 @a SIM 7i a' BENT PL 3/8(a}4'-0"OC MAX _ E I (2)TITEN HD 1/2"X 4" -- _ --- -' -- — (E) - (E)CONC WALL .. rn BEND ... --- LINE 1- 'to { 1 el ,..._ . . . i vo 1 1/2" 1 1/2" NOTE:RELOCATE PIPING INTERFERING WITH THIS CONN WALL ANCHORAGE DETAIL 3/4"= 11-0" '/:"x 4"Then HD minimum edge distance:1.75"(per ESR-2713 report) Titen HD critical edge distance:4.5",use 4.5"from edge of concrete. Page AC37 SIMPSON Anchor Designer TM Company: Nishkian Dean Date: 12/1/2017 Engineer: SHG Page: 3/4 StrongTie Software Project: Templeton ES Upgrades Version 2.5.6464.0 Address: Phone: E-mail: 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, N.(Ib) V.(Ib) Vuay(Ib) I(Vuax)2+(Vuay)2(Ib) 1 677.5 0.0 0.0 0.0 2 677.5 0.0 0.0 0.0 Sum 1355.0 0.0 0.0 0.0 Maximum concrete compression strain(%o):0.00 <Figure 3> Maximum concrete compression stress(psi):0 Resultant tension force(Ib): 1355 02 Resultant compression force(lb):0 Eccentricity of resultant tension forces in x-axis,e'Nx(inch):0.00 Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 Y ip, owX 01 4.Steel Strength of Anchor in Tension(Sec.D.5.1) Nsa(Ib) d M.(Ib) Use m=1.0 for lower bound 20130 0.65 13085 values per ASCE 41-13 10.3.6.2 1.0 20130 5.Concrete Breakout Strength of Anchor in Tension(Sec.D.5.21 Nb=koil..iI f'shed.5(Eq.D-6) kC Aa f c(psi) her(in) Nb(Ib) 17.0 1.00 2500 2.780 3940 0.75¢Ncbg=0.750(ANC/ANco)'Yec,N-.d,N f'c,N-cp,NNb(Sec.D.4.1 &Eq.D-4) ANC(in2) ANco(in2) Ca,min(in) TeC,N Wed,N 'YC,N Wcp,N Nb(Ib) 0 0.750NCbg(lb) 102.92 69.56 5.00 1.000 1.000 1.00 1.000 3940 -0765- 2842 1.0 4372 11.Results 11,Interaction of Tensile and Shear Forces(Sec.D.7}? Tension Factored Load,N.(Ib) Design Strength,0Nn(lb) Ratio Status Steel 678 13085 20130 -9795. 0.03 Pass Concrete breakout 1355 -3842- 4372 O4&0.31 Pass(Governs) 1/2"0 Titen HD,hnom:3.75"(95mm)meets the selected design criteria. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Page AC40 SIMPSON Anchor DesignerTM Company: Nishkian Dean Date: 12/1/2017 Software Engineer: SHG Page: 4/4 Strong-Tieare Version r64640 Project: Templeton ES Upgrades 2.5.6464.0 Address: Phone: E-mail: 12.Warnings -Per designer input,ductility requirements for tension have been determined to be satisfied—designer to verify. -Per designer input,ductility requirements for shear have been determined to be satisfied—designer to verify. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Page AC41 Project Job Ref. MISNKIAN DEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE i919 Templeton ES Upgrades 31699 Section Sheet no./rev. 1022 SW Salmon St. Suite 300 De ail 8/S3.01 con ection calculat'ons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/15/2018 DETAIL 8/S3.01 CONNECTION Tie across North Cafeteria wall(Gridline C) Lateral load from roof north of Gridline C wall Atrib=16 ft*23 ft=368 ft2; trib area north of wall to one connection at glulam Wroofing=3.5 psf; weight of built-up roofing Wpiwd=2.2 psf; weight of 3%"plwd wjoists=3.1 psf; weight of 2x12 joists at 16"OC Wmisc=1.5 psf; misc weight Wtotal=Wroofing+Wplwd+Wjoists+Wmisc=10.3 psf; total area weight Wdesign=ceiling(wtotal,1 psf)=11 psf; area weight used for design Wroof=Atrib*Wdesign=4048 lbs; weight used for design Cs,AscE41=0.75; see previous ASCE 41-13 calcs Froof=Cs,ASCE41*Wroof=3036 lbs; lateral force due to roof Lateral load from wall north of Gridline C wall(Gridline A wall) ASCE 41-13 5.7.1.1 3 5.2.4-) 7.2-7.2.11.1 Out-of-Plane Wall Anchorage to Diaphragms Fr =0.4SxskukhXWn Fpi =0.2kuxW,, kn =1.0+100 k},=1(1+ 3 h„ Sxs=0.536; spectral response acceleration parameter,short periods Lf=91 ft; span of flexible diaphragm between vertical primary SFRS elements ka=1.0+Lf/100 ft=1.910; diaphragm flexibility factor kn =1.0; 1.0 for flexible diaphragms x=1.3; 1.3 for Life Safety Wp=150 pcf*8 in=100 psf; area weight of wall Fp=0.4*Sxs*ka*kb*x *Wp=53.2 psf; seismic force for anchorage Fp,min=0.2 *ka*x *Wp=49.7 psf; minimum force Fp=max(Fp,Fp,min)=53.2 psf; seismic force for anchorage,used for design Page AC42 • NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS DEICE 1919 Templeton ES Uoerades 31699 Section Sheet no./rev. 1022 SW Salmon St. Suite 300 De ail 8/S3.01 con ection calcula 'ons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/15/2018 htrib=10 ft/2=5.000 ft; wall height tributary to roof anchorage Sanchors=16 ft; spacing of anchors Fwail=Fp*htrib*Sanchors=4259 lbs; lateral force due to wall load Ftotal=Froof+Fwall=7295 lbs; total lateral force Vcap=2 *3000 lbs* 1.53=9180 lbs; shear capacity of(2)HTT4 in 2x blocking,see next pages for 1.53 factor Ftotal/Vcap=0.795; <1 ,OK (2)3r4"BOLTS 7 e 6' N113<t6 ROUND DOWN GL O WELD , W � 2X6.SEE t t S3.01 36• "MIM"MIM; PL 5/16X4X6 W/(2)STD HOLES HSS 8X4 COPED MUNI FOR 10 l7 fCC ESS tg O HOLES EASENO PL 114" 1S" SLTHREADED ROD SECTION A-A (E)314"PLWD (T)2X8.JOIST,TYP CUT AS REOD .4ss.p12X12 g 16.BCyI TS r LT DIAx 9' - tr4*--1-4-;;:,41101 4111 THREADED ROD WELDED TO HSS rte IR 2X10 SIM A EA SIDE IM(2)A35 EA END SIMS HTT4 EA SIDE Wi 5.1" THREADED ROD - HSS 8X4 (E)GL BEAM i •. SEE SECTION A-A COUPLER {E}Cotte— - PILASTER �. . (E)CONC WALL BEYOND �tt• • {i NOTES: I. SEE 61$3.01 FOR INFO NOT SHOWN. 2. RELOCATE PIPING INTERFERING%ITN THIS CONN. 3. DEMO(E)HARD CEILING AS REDD AND REPLACE R WALL ANCHORAGE DETAIL 3/4'= l'-0" Page AC43 + N I S H K I A N DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENG1NEEN551NCE 1914 Templeton ES Uo¢rades 31699 1022 SW Salmon St. Section Sheet no./rev. Suite 300 De ail 8/53.01 con ection calculat'ons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/15/2018 Converting Shear Wall Hold Down Catalog Values from ASD to LRFD The procedure comes from the 1996 LRFD Manual for Engineered Wood Construction:Guideline for Pre- Engineered Metal Connectors(1996 LRFD). Conversion of ASD catalog design values to LRFD reference resistance values(Z): Z=K1 x(tabulated value) Selecting the format conversion factor(1996 LRFD 3.4): Load Cose Ratio of ASD Catalog LRFD Reference Resistance Z Design Values Ali Load Combinations 125% Except Those That 100% -_ 1.25 =(100%value)x 3.32 Contain Wind or Seismic (AF&PA/ASCE 16-95. 125% < 1 25 Equations 1.3-1 to 1.3-3) 100%9 Z=(100%value)x 2.88 Load Combinations That 13 _ 1.2 Z=(160%value)x(1�6)x3.32 Contain Wind or Seismic 160%and 133%not both greater of: (AF&PA/ASCE 16-95, listed or 1 Equations 1.3-4 to 1.3-6) 160% (133%value).(1.33)x2.88 133% ` 1.2 or (160%value)x(1?6)x2.88 The factored connector resistance(Z,)is calculated normally: Ze=A ipz•Z' ...where Z'is the adjusted connector resistance(Z modified by relevant C factors),A is the time effect factor,and QF,is the resistance factor for connections(normally 0.65). ASCE 41.13 C12.2.2.5.1 the above methodology.Per 12.2.2.5.1,all adjustment factors including the time effect factor shall be in accordance with the NDS,and 4,,shall be 1.0. Simpson straps and hold downs have ASD capacities listed at the 160%load level,thus are divided by 1.6 to bring them down to 100%.Since only 160%values are listed,the format conversion factor(KF)is 2.88. The time effect factor(A)is 1.0 for seismic load combinations per NDS 2012 Table N3.4::is 1.0 per ASCE 41-1312.2.2.5.1.Wet service factor(Cm)and temperature factor(CO are 1.0. Per ASCE 41-13 Table 12-3 footnote"e",connectors not listed are assumed to be force controlled, meaning that the lower-bound strength must be used,which per ASCE 41-1312.2.2.5 is obtained by multiplying the expected strength by 0.85. The adjusted connector strength is: (tabulated value) Z'=Z•Cm•CC= 1.6 '(1.0)•(1.0) The expected strength of the connector is: (tabulated value) ZCE=Z''K1'A•rhz= 1.6 '(2.88)'(1.0)•(1.0) The final acceptance criteria strength value becomes: (tabulated value) ZaC =(0.85)•2c, = 1.6 •(2.88)•(0.85)=153'(tabulated value) Page AC44 J , F■III.I.TI www.hilti.us Profis Anchor 2.7.2 Company: Page: 1 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/18/2018 E-Mail: Specifiers comments: epoxy anchor for 1/S3.02 1 Input data MILTI MILTI Anchor type and diameter: HIT-RE 500 V3+HAS B7 5/8 Effective embedment depth: het,act=5.000 in.(hef,i;mit=-in.) Material: ASTM A 193 Grade B7 Evaluation Service Report: ESR-3814 Issued I Valid: 1/1/20171 1/1/2019 Proof: Design method ACI 318-11/Chem Stand-off installation: eb=0.000 in.(no stand-off);t=0.500 in. Anchor plate: Ix x ly x t=4.000 in.x 4.000 in.x 0.500 in.;(Recommended plate thickness:not calculated Profile: no profile Base material: cracked concrete,2500,f5=2500 psi;h=8.000 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) Tension load:yes(D.3.3.4.3(d)) Shear load:yes(D.3.3.5.3(c)) Geometry[in.]&Loading[Ib,in.lb] Z Fp=0.4*0.536 * 1.52* 1.0* 1.3 * (8/12)*150 pcf=42.4 psf (17'-3.5')/2+ -(10'/2) = 11.75'tall wall trib F=42.4 psf* 11.75'=498 plf space anchors at 48" F=498plf*4ft= 1993lb HTT4 in 2x10 =3000 lb> 1993 Ib, OK 0 ca -' - y-- V _ .J • ; X Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC45 PROFIS Anchor(c)2003-2009 Hike AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 4 Iy1L�.T1 www.hilti.us Profis Anchor 2.7.2 Company: Page: 2 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: J Date: 1/18/2018 E-Mail: 2 Load case/Resulting anchor forces •y Load case:Design loads Anchor reactions[Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 0 0 0 max.concrete compressive strain: -[96a] ,x max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 1993[Ib] resulting compression force in(x/y)=(0.00010.000):0[lb] Use m=1.0 for lower bound values per ASCE 41-13 10.3.6.2 3 Tension load Load Nua[Ib] Capacity¢Nn[Ib] Utilization 13N=Nash',Nn Status Steel Strength* 1993 21187 28250 46- 0.07 OK Bond Strength** 1993 5729 11752 -35- 0.17 OK Sustained Tension Load Bond Strength* N/A N/A N/A N/A Concrete Breakout Strength** 1993 4633 9503 -44- 0.21 OK *anchor having the highest loading **anchor group(anchors in tension) 3.1 Steel Strength Nsa =ESR value refer to ICC-ES ESR-3814 4 Nsa a N. ACI 318-11 Table D.4.1.1 Variables AseN[in 2] foto[psi] 0.23 125000 Calculations Nsa[Ib] 28250 Results Nsa[Ib] 4 steel 4 Nsa[lb] Nua[lb] 28250 0.750 21187 1993 1.0 28250 Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC46 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilo AG,Schaan , I10111II.19rI www.hilti.us Profis Anchor 2.7.2 Company: Page: 3 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/18/2018 E-Mail: 3.2 Bond Strength Na =(AN o)W ed,Na N'cp,Na Nba ACI 318-11 Eq.(D-18) 4) Na 2 Nua ACI 318-11 Table D.4.1.1 ANa =see ACI 318-11,Part D.5.5.1,Fig.RD.5.5.1(b) ANaO =(2 CNa)2ACI 318-11 Eq.(D-20) CNa =10 da V S ug ACI 318-11 Eq.(D-21) 1100 1 ` Ni ec,Na= (1 + eN 1 5 1.0 ACI 318-11 Eq.(D-23) CNa/ W ed,Na=0.7+0.3(=m! )5 1.0 ACI 318-11 Eq.(D-25) CNa J W cp.Na=MAX(CZ ,CNCacl a)5 1.0 ACI 318-11 Eq.(D-27) Cac Nba =A a•t k,c•aN,seis'7C•da'het ACI 318-11 Eq.(D-22) Variables T k,c,uncr[psi] da[in.] het[in.] Ca,min[in.] C k,c[psi] 2210 0.625 5.000 1260 ec1.N[in.] ec2,N[in.] cao[in.] A a aN,seis 0.000 0.000 10.571 1.000 0.950 Calculations CNa[in.] AN.[in.2] ANao[in.2] W ed,Na 8.819 311.09 311.09 1.000 W ec1,Na W ec2,Na w cp,Na Nba[Ib] 1.000 1.000 1.000 11752 Results Na[lb] at bond 4)seismic 4)nonductile 4) Na[lb] Nua[lb] 11752 0.650 0.750 1.000 5729 1993 1.0 11.01 11752 3.3 Concrete Breakout Strength Nob =(ANco)NJ ed,N W c,N w cp,N Nb ACI 318-11 Eq.(D-3) 4) Na,>_Nua ACI 318-11 Table D.4.1.1 ANC see ACI 318-11,Part D.5.2.1,Fig.RD.5.2.1(b) ANco =9 het ACI 318-11 Eq.(D-5) 1 w ec,N = 1 +3 2 eN <_1.0 ACI 318-11 Eq.(D-8) het W ed,N=0.7+0.3(1.5c.;minhet)5 1.0 ACI 318-11 Eq.(D-10) W cp.N =MAX(c—min 1.5hef)c 1.0 ACI 318-11 Eq.(D-12) Cac Cac Nb =kc X a d hef5 ACI 318-11 Eq.(D-6) Variables hef[in.] ect,N[in.] ec2,N[in.] ca,min[in.] W c,N 5.000 0.000 0.000 00 1.000 Cac[in.] kc A.0 fa[Psi] 10.571 17 1.000 2500 Calculations Am[in.2] ANco[in.2] W ect,N W ec2,N kV ed,N W cp,N Nb[Ib] 225.00 225.00 1.000 1.000 1.000 1.000 9503 Results Nth[Ib] 4)concrete 0 seismic 4,nonductile 4) Nth[Ib] Nua[Ib] 9503 4:660- 0.750 1.000 -4633- 1993 5-.-0- 1.0 9503 Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC47 PROFIS Anchor(c)2003.2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hitti AG,Schaan I�IIi..T1 www.hilti.us Profis Anchor 2.7.2 Company: Page: 4 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/18/2018 E-Mail: 4 Shear load Load Vua[lb] Capacity$Vn[Ib] Utilization fv=Vua/4 Vn Status Steel Strength* N/A N/A N/A N/A Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength(Bond Strength controls)* N/A N/A N/A N/A Concrete edge failure in direction** N/A N/A N/A N/A *anchor having the highest loading **anchor group(relevant anchors) 5 Warnings • The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations(ETAG 001/Annex C,EOTA TR029,etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor.Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used.The CD factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D, E or F is given in ACI 318-11 Appendix D,Part D.3.3.4.3(a)that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,the connection design(tension)shall satisfy the provisions of Part 0.3.3.4.3(b),Part D.3.3.4.3(c),or Part D.3.3.4.3(d).The connection design(shear)shall satisfy the provisions of Part D.3.3.5.3(a),Part D.3.3.5.3(b),or Part D.3.3.5.3(c). • Part D.3.3.4.3(b)/part D.3.3.5.3(a)require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.Part D.3.3.4.3(c)/part D.3.3.5.3(b) waive the ductility requirements and require the anchors to be designed for the maximum tension/shear that can be transmitted to the anchors by a non-yielding attachment.Part D.3.3.4.3(d)/part D.3.3.5.3(c)waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension/shear obtained from design load combinations that include E,with E increased by (00- • Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors.Reference ACI 318-11, Part D.9.1 Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC48 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan t 1■11111.iiiT1 www.hilti.us Profis Anchor 2.7.2 Company: Page: 5 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/18/2018 E-Mail: 6 Installation data Anchor plate,steel:- Anchor type and diameter:HIT-RE 500 V3+HAS B7 5/8 Profile:no profile Installation torque:720.000 in.lb Hole diameter in the fixture:df=0.688 in. Hole diameter in the base material:0.750 in. Plate thickness(input):0.500 in. Hole depth in the base material:5.000 in. Recommended plate thickness:not calculated Minimum thickness of the base material:6.500 in. Drilling method:Hammer drilled Cleaning:Compressed air cleaning of the drilled hole according to instructions for use is required 6.1 Recommended accessories Drilling Cleaning Setting • Suitable Rotary Hammer • Compressed air with required • Dispenser including cassette and mixer • Properly sized drill bit accessories to blow from the bottom of • Torque wrench the hole • Proper diameter wire brush y 2.000 2.000 • o o q o N N • • .x 00 0 0 N CV 2.000 2.000 • • Coordinates Anchor in. Anchor x y c.x c+: c.. 1 0.000 0.000 - - - - Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC49 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9484 Schaan Hilti is a registered Trademark of Hilti AG.Schrum FII`TI www.hilti.us Profis Anchor 2.7.2 Company: Page: 6 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 1/18/2018 E-Mail: 7 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you.Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC50 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilo is a registered Trademark of Hilti AG,Schaan D■■11`TI www.hilti.us Profis Anchor 2.7.2 Company: Page: 1 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 3/14/2018 E-Mail: Specifier's comments: epoxy anchor for 2/S3.02 1 Input data �ILTI MILT1 Anchor type and diameter: HIT-RE 500 V3+HAS B7 5/8 Effective embedment depth: h p Baa=4.000 in.(hef,fimit=-in.) Material: ASTM A 193 Grade B7 Evaluation Service Report: ESR-3814 Issued I Valid: 1/1/2017 11/1/2019 Proof: Design method ACI 318-11/Chem Stand-off installation: —=0.000 in.(no stand-off);t=0.500 in. Anchor plate: ix x 1,x t=8.000 in.x 10.000 in.x 0.500 in.;(Recommended plate thickness:not calculated Profile: no profile Base material: cracked concrete,2500,fc'=2500 psi;h=6.500 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) Tension load:yes(D.3.3.4.3(d)) Shear load:yes(D.3.3.5.3(c)) Geometry[in.]&Loading[Ib,in.lb] Fp= 0.4 *0.536 1.60 ` 1.0 1.3 a (6.5112)*150 pcf= 36.2 psf checkFpmin =0.2* 1.6* 1.3 * (6.5112)*150 pcf=33.8 psf,does not control (31'-2')/2+2' = 16.5'tall wall trib F=36.2 psf* 16.5' =597 plf itspace anchors at 48" -*� F= 597 plf*4 ft=2389 lb 00 0 4.5 0,5 , X Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC51 PROFIS Anchor(o)2003-2009 Hilti AG,FL-9494 Schaan HIS is a registered Trademark of Hilti AG,Schaan 11■1111111T1 www.hilti.us Profis Anchor 2/.2 Company: Page: 2 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 3/14/2018 E-Mail: 2 Load case/Resulting anchor forces o y Load case:Design loads Anchor reactions[Ib] O 2 Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 1195 0 0 0 2 1195 0 0 0 ° Dx max.concrete compressive strain: -[%a] Tension max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 2389[Ib] resulting compression force in(x/y)=(0.000/0.000):0[Ib] O 1 Use t =1.0 for lower bound values per ASCE 41-13 10.3.6.2 3 Tension load Load Nua[Ib] Capacity 4 N5[Ib] Utilization DN=N„a/}Nn Status Steel Strength* 1195 21187 28250 —6— 0.04 OK Bond Strength** 2389 5752 11800 -42- 0.20 OK Sustained Tension Load Bond Strength* N/A N/A N/A N/A Concrete Breakout Strength** 2389 45G0 9350 -5-3- 0.26 OK *anchor having the highest loading **anchor group(anchors in tension) 3.1 Steel Strength Nsa =ESR value refer to ICC-ES ESR-3814 Nsa>_Nua ACI 318-11 Table D.4.1.1 Variables Ase.N[in.2] fur,.[psi] 0.23 125000 Calculations Nsa[Ib] 28250 Results Nsa[lb] 4)steel 4) Nsa[lb] Nua[lb] 28250 0.750 21187 1195 1.0 28250) Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC52 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG.Schwan 11111`T' www.hilti.us Profis Anchor 2.7.2 Company: Page: 3 Specifier: Project: Address: Sub-Project I Pos.No.: Phone 1 Fax: I Date: 3/14/2018 E-Mail: 3.2 Bond Strength Nag =(^^ANaa0)W ec1,Na W ec2,Na W ed,Na W cp,Na Nba ACI 318-11 Eq.(D-19) ^ 4) Nag >Nua ACI 318-11 Table D.4.1.1 AN. =see ACI 318-11,Part D.5.5.1,Fig.RD.5.5.1(b) ANaO =(2 CNa)2 ACI 318-11 Eq.(D-20) CNa =10 d81100 ACI 318-11 Eq.(D-21) 1 W ec,Na= ( ii ) <_1.0 ACI 318-11 Eq.(D-23) cr. W ed,Na=0.7+0.3(CCNa Jama)5 1.0 ACI 318-11 Eq.(D-25) W cpNa=MAx(crin,duaCacl 5 1.0 ACI 318-11 Eq.(D-27) t Cac Nba =A,a'T k,c.aN,seis'7C'da'hef ACI 318-11 Eq.(D-22) Variables T k.c,uncr[PSI] de[in.] her[in.] ca,min[in.] t kc[psi] 2210 0.625 4.000 1260 ec1.N[in.] ec2.N[in.] cab[in.] a,a aN,seis 0.000 0.000 8.016 1.000 0.950 Calculations CNa[in.] ANa[in.2] ANao[in Z1 W ed.Na 8.819 390.46 311.09 1.000 W ec1,Na W ec2,Na W cp,Na Nba[Ib] 1.000 1.000 1.000 9401 Results Nag[Ib] 4)bond 4)seismic 4)conductile ( Nag[lb] Nua[lb] 11800 0.650 0.750 1.000 57.12 2389 1.0 1.0 11800 3.3 Concrete Breakout Strength Ncbg =(ANco)W ec,N W ed,N W c,N W cp,N Nb ACI 318-11 Eq.(D-4) 4, Ncbg z Nua ACI 318-11 Table D.4.1.1 AN. see ACI 318-11,Part D.5.2.1,Fig.RD.5.2.1(b) ANS =9 h ACI 318-11 Eq.(D-5) 1 W ec,N - \1 +3 2 eN <_1.0 ACI 318-11 Eq.(D-8) h� yt ed,N =0.7+0.3(1.5Ca,minh )c 1.0 ACI 318-11 Eq.(D-10) e1 W cp,N =MAX( ac ' Cac Ca,m!n 1.5hef)c 1.0 ACI 318-11 Eq.(D-12) Nb =kb X a'he,5 ACI 318-11 Eq.(D-6) Variables he[in.] ec1,N[in.] ears)[in.] Gamin[in.] W b,N 4.000 0.000 0.000 1.000 cab[in.] kc X, fc[Psi] 8.016 17 1.000 2500 Calculations ANc[in.2] ANcO[in.] W ecl.N W ec2,N W ed.N W cp,N Nb[lb] 198.00 144.00 1.000 1.000 1.000 1.000 6800 Results Ncbg[lb] 4)concrete 4)seismic 4)nonductile 4, Nog[Ib] Nua[Ib] 9350 0.650 0.750 1.000 4510 2389 1.0 1.0 9350 Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC53 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 141116.111r1 I www.hilti.us Profis Anchor 2.7.2 Company: Page: 4 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 3/14/2018 E-Mail: 4 Shear load Load V15[Ib] Capacity Vn[Ib] Utilization 13v=Vua/$Vn Status Steel Strength* N/A N/A N/A N/A Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength(Bond Strength controls)* N/A N/A N/A N/A Concrete edge failure in direction** N/A N/A N/A N/A *anchor having the highest loading **anchor group(relevant anchors) 5 Warnings • The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations(ETAG 001/Annex C,EOTA TR029,etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor.Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used.The cp factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D, E or F is given in ACI 318-11 Appendix D,Part D.3.3.4.3(a)that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,the connection design(tension)shall satisfy the provisions of Part D.3.3.4.3(b),Part D.3.3.4.3(c),or Part D.3.3.4.3(d).The connection design(shear)shall satisfy the provisions of Part D.3.3.5.3(a),Part D.3.3.5.3(b),or Part D.3.3.5.3(c). • Part D.3.3.4.3(b)/part D.3.3.5.3(a)require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.Part D.3.3.4.3(c)/part D.3.3.5.3(b) waive the ductility requirements and require the anchors to be designed for the maximum tension/shear that can be transmitted to the anchors by a non-yielding attachment.Part D.3.3.4.3(d)/part D.3.3.5.3(c)waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension/shear obtained from design load combinations that include E,with E increased by coo. • Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors.Reference ACI 318-11, Part D.9.1 Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC54 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan FIN is a registered Trademark of Hilti AG,Schaan 1=1111`T!! www.hiiti.us Profis Anchor 2.7.2 Company: Page: 5 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: Date: 3/14/2018 E-Mail: 6 Installation data Anchor plate,steel:- Anchor type and diameter:HIT-RE 500 V3+HAS B7 5/8 Profile:no profile Installation torque:720.000 in.lb Hole diameter in the fixture:df=0.688 in. Hole diameter in the base material:0.750 in. Plate thickness(input):0.500 in. Hole depth in the base material:4.000 in. Recommended plate thickness:not calculated Minimum thickness of the base material:5.500 in. Drilling method:Hammer drilled Cleaning:Compressed air cleaning of the drilled hole according to instructions for use is required 6.1 Recommended accessories Drilling Cleaning Setting • Suitable Rotary Hammer • Compressed air with required • Dispenser including cassette and mixer • Properly sized drill bit accessories to blow from the bottom of • Torque wrench the hole • Proper diameter wire brush y 4.000 4.000 • • 0 N O �\ O 2 • ui 8 • bx 0 1 - O0 O O 4.000 4.000 • Coordinates Anchor in. Anchor x c y 1 0.000 -2.250 - - - - 2 0.000 2.250 - - - - Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC55 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hitti is a registered Trademark of Hilti AG,Schaan I■4IILIT www.hilti.us Profis Anchor 2/.2 Company: Page: 6 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: ( Date: 3/14/2018 E-Mail: 7 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you.Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC56 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schwan Hilti is a registered Trademark of Hilo AG,Schaan NISNKIAN DEAN Project Job Ref. CONSULTING AND STRuC1UMt ENGINEERS SINCE 7919 Templeton ES Uoerades 31699 1022 SW Salmon St. Section Sheet no./rev. Suite 300 De ail 3/53.02 con ection calculat ons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/14/2018 DETAIL 3/S3.02 CONNECTION Gym North wall (Gridline A)and Gym South wall(Gridline D) Noncompliant wall anchorage,ASCE 41-13 Tier 2 calcs 5.7.1.1 5.7.1.1 4 5.2.4 4 7.2 4 7.2.11.1 Out-of-Plane Wall Anchorage to Diaphragms Fp =0.4Sxsk„kf1X Wp, Fj,.min =0.2k„xW,, k„ =1.0+ 100 kh = 1 1+2—`„ 3 h„ Sxs=0.536; spectral response acceleration parameter,short periods Lf=81 ft; span of flexible diaphragm between vertical primary SFRS elements ka=1.0+Lf/100 ft=1.810; diaphragm flexibility factor kh=1.0; 1.0 for flexible diaphragms x=1.3; 1.3 for Life Safety Wp=150 pcf*6.5 in=81 psf; area weight of wall Fp=0.4*Sxs*ka*kh*x *Wp=41 psf; seismic force for anchorage Fp,min=0.2*ka*x *Wp=38.2 psf; minimum force Fp=max(Fp,Fp,min)=41 psf; seismic force for anchorage,used for design htrib=(31 ft—2 ft)/2+2 ft=16.500 ft; wall height tributary to roof anchorage sanchors=6.75 ft; spacing of anchors Fanchors=Fp*htrib*sanchors=4565 lbs; force at anchors Page AC57 • Project Job Ref. NISHKIAN DEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 Templeton ES ULD2rades 31699 Section Sheet no./rev. 1022 SW Salmon St. Suite 300 De ail 3/53.02 con ection calculatons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/14/2018 g. 6° SECTION A-A `E)L3X3 CON.- :El ON'E)W2 METAL DECK \ —.\ ` rti A ,\\ ^`rT A V 3116 V '-12 ~,�� (E:6 T CONC V4 A_L 3ENT PL E116X2K6 NI(2)5.03"CIA EPDXY .ANCI4DRS,4"EMBED £ 0'-9"00 MAX BTWN JOIST BIRDERS ;3 PER 27-0'WOE CONC TII T PAW! N\ WALL ANCHORAGE DETAIL 3 2/4 Page AC58 I�III..TI www.hiltl.us Profis Anchor 2.7.2 Company: Page: 4 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: Date: 3/14/2018 E-Mail: 4 Shear load Load V e[Ib] Capacity$Vn[Ib] Utilization fv=Vua/¢Vn Status Steel Strength* N/A N/A N/A N/A Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength(Bond Strength controls)* N/A N/A N/A N/A Concrete edge failure in direction** N/A N/A N/A N/A *anchor having the highest loading **anchor group(relevant anchors) 5 Warnings • The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations(ETAG 001/Annex C,EOTA TR029,etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor.Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used.The CD factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D, E or F is given in ACI 318-11 Appendix D,Part D.3.3.4.3(a)that requires the goveming design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,the connection design(tension)shall satisfy the provisions of Part D.3.3.4.3(b),Part 113.3.4.3(c),or Part D.3.3.4.3(d).The connection design(shear)shall satisfy the provisions of Part D.3.3.5.3(a),Part D.3.3.5.3(b),or Part D.3.3.5.3(c). • Part D.3.3.4.3(b)/part D.3.3.5.3(a)require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.Part D.3.3.4.3(c)/part D.3.3.5.3(b) waive the ductility requirements and require the anchors to be designed for the maximum tension/shear that can be transmitted to the anchors by a non-yielding attachment.Part D.3.3.4.3(d)/part D.3.3.5.3(c)waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension/shear obtained from design load combinations that include E,with E increased by coo. • Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors.Reference ACI 318-11, Part D.9.1 Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC62 PROFIS Anchor(c)2003-2009 Hiiti AG,FL-9494 Schaan Hilti is a registered Trademark of Hi!ti AG,Schaan 1104111.711111 www.nilti.us Profis Anchor 2.7.2 Company: Page: 1 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: Date: 3/14/2018 E-Mail: Specifier's comments: epoxy anchor for 3/S3.02 1 Input data •IL.TI IF11L.T1 IMSSMINI Anchor type and diameter: HIT-RE 500 V3+HAS B7 5/8 Effective embedment depth: h45C}=4.000 in.(hof limn=-in.) Material: ASTM A 193 Grade B7 Evaluation Service Report: ESR-3814 Issued I Valid: 1/1/2017 1 1/1/2019 Proof: Design method ACI 318-11/Chem Stand-off installation: eb=0.000 in.(no stand-off);t=0.312 in. Anchor plate: Ix x ly x t=8.000 in.x 30.000 in.x 0.312 in.;(Recommended plate thickness:not calculated Profile: no profile Base material: cracked concrete,2500,fc'=2500 psi;h=6.500 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) Tension load:yes(D.3.3.4.3(d)) Shear load:yes(D.3.3.5.3(c)) Geometry[in.]&Loading[Ib,in.lb] Z 0 o Y } ' s _ � • yy Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC59 PROFIS Anchor(c)2003-2009 Hilh AG,FL-9494 Schaan Hilti is a registered Trademark of HIM AG,Schoen 1. 11`TI www.hiltLus Profis Anchor 2.7.2 Company: Page: 2 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 3/14/2018 E-Mail: 2 Load case/Resulting anchor forces A y Load case:Design loads 02 Anchor reactions[Ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 2283 0 0 0 2 2283 0 0 0 Tension x max.concrete compressive strain: -[%o) max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 4565[lb] resulting compression force in(x/y)=(0.000/0.000):0[Ib] Use D=1.0 for lower bound 01 values per ASCE 41-13 10.3.6.2 3 Tension load Load Naa[Ib] Capacity f Nn[ib] Utilization DN=N„a/}Nn Status Steel Strength* 2283 21187 28250 0.08 OK Bond Strength** 4565 01CG 18802 -5e. 0.24 OK Sustained Tension Load Bond Strength* N/A N/A N/A N/A Concrete Breakout Strength** 4565 —663e 1136001 —69 0.34 OK *anchor having the highest loading **anchor group(anchors in tension) 3.1 Steel Strength N. =ESR value refer to ICC-ES ESR-3814 N.z Nua ACI 318-11 Table D.4.1.1 Variables Aae,N[in.2] Tata[psi] 0.23 125000 Calculations N.[Ib] 28250 Results Nsa[lb] steel 4t N.[lb] Nua[lb] 28250 0.750 21187 2283 1.0 28250 Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC60 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan III II LET I www.hilti.us Profis Anchor 2.7.2 Company: Page: 3 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: i Date: 3/14/2018 E-Mail: 3.2 Bond Strength Nag =( o)14/eel,Na W ec2,Na W ed,Na W cp,Na Nba ACI 318-11 Eq.(D-19) 4) Nag a Nua ACI 318-11 Table D.4.1.1 ANa =see ACI 318-11,Part D.5.5.1,Fig.RD.5.5.1(b) ANa0 =(2 CNa)2 ACI 318-11 Eq.(D-20) CNa =10 dat uncr ACI 318-11 E D 21 1100 q•( ) 1 W ec,Na= (1 e)5 1.0 ACI 318-11 Eq,(D-23) CNa ii ed,Na=0.7+0.3(CCN2.n/11/ 5 1.0 ACI 318-11 Eq.(0-25) W cp,Na=MAX(cC!t,cNCaca)5 1.0 ACI 318-11 Eq.(D-27) ac Nba =X a't kc'aN,seis'7c'da-chef AC!318-11 Eq.(D-22) Variables t k,c,uncr(psi] da[in.] he[in.] came[in.] t k,c[psi] 2210 0.625 4.000 00 1260 ec1,N[in.] ec2,N[in.] ca.[in.] X a aN,seia 0.000 0.000 8.016 1.000 0.950 Calculations CNa[in.] ANa[in.2] ANau[in.2] w ed,Na 8.819 622.19 311.09 1.000 W ec1,Na W ec2,Na W cp,Na Nba[lb] 1.000 1.000 1.000 9401 Results Nag[lb] 4)bond 4)seismic 4)nonductile 4) Nag[lb] Nua[Ib] 18802 0.650 0.750 1.000 4565 1.0 1.0 18802 3.3 Concrete Breakout Strength Ncbg =(NZ)W ec,N W ed,N W c,N W cp,N Nb ACI 318-11 Eq.(D-4) 4, Na,g 2 Nua ACI 318-11 Table D.4.1.1 ANc see ACI 318-11,Part D.5.2.1,Fig.RD.5.2.1(b) ANcO =9 het ACI 318-11 Eq.(D-5) 1 W ec,N = 1 )<_1.0 AC!318-11 Eq.(D-8) 3 he W ed,N =0.7+0.3(1.5hCa,mietn)5 1.0 ACI 318-11 Eq.(D-10) W cp,N =MAX(Ca mm' c1.5het)5 1.0 ACI 318-11 Eq.(D-12) � ac Nb =kc X a'chef ACI 318-11 Eq.(D-6) Variables haf[in.] ec1,N[in.] ec2,N[in.] ca,min[in.] W c,N 4.000 0.000 0.000 00 1.000 ca.[in.] kc A,a fc[Psi] 8.016 17 1.000 2500 Calculations AN,[in.2] ANoo[in.2] W ed,N W cp,N Nb[Ib] W ec1,N W ec2,N 288.00 144.00 1.000 1.000 1.000 1.000 6800 Results Nabs[lb] 4)concrete 4)seismic 4)nonductile 4) Ncb9[Ib] Nua[lb] 13600 0.650 0.750 1.000 —•6836- 4565 1.01 1.0 13600 Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC61 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schwan Hilti is a registered Trademark of Hilti AG,Schwan • MILT www.hilti.us Profis Anchor 2.7.2 Company: Page: 5 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 3/14/2018 E-Mail: 6 Installation data Anchor plate,steel:- Anchor type and diameter:HIT-RE 500 V3+HAS B7 5/8 Profile:no profile Installation torque:720.000 in.lb Hole diameter in the fixture:df=0.688 in. Hole diameter in the base material:0.750 in. Plate thickness(input):0.312 in. Hole depth in the base material:4.000 in. Recommended plate thickness:not calculated Minimum thickness of the base material:5.500 in. Drilling method:Hammer drilled Cleaning:Compressed air cleaning of the drilled hole according to instructions for use is required 6.1 Recommended accessories Drilling Cleaning Setting • Suitable Rotary Hammer • Compressed air with required • Dispenser including cassette and mixer • Properly sized drill bit accessories to blow from the bottom of • Torque wrench the hole • Proper diameter wire brush ♦y 4.000 4.000 • 0 0 co 02 . tri 0 0 • x 0 0 0 U, 01 • 0 0 to • • 4.000 4.000 • • Coordinates Anchor in. Anchor x y c-x cx c.y ct, 1 0.000 -9.000 - - - - 2 0.000 9.000 - - - - Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC63 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan I■.11I11.TI www.hilti.us Profis Anchor 2.7.2 Company: Specifier: Page: 6 Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 3/14/2018 E-Mail: 7 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you.Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC64 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hitti is a registered Trademark of Hilti AG,Schaan N I S N K I A N D E A N Project Job Ref. CONSULTING AND STROCTURAi ENGINEERS SINCE 1919 31699 Templeton ES Lk:wades 1022 SW Salmon St. Section Sheet no./rev. Suite 300 De ail 5/S3.02 con ection calculatons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/14/2018 DETAIL 5/S3.02 CONNECTION Gridline 7 Cafeteria wall Noncompliant wall anchorage,ASCE 41-13 Tier 2 calcs 5.7.1.1 5.7.1.1 4 5.2.4 4 7.2 4 7.2.11.1 Out-of-Plane Wall Anchorage to Diaphragms F, =0.4SxskakhX Wp F.min =O.2kaXWp ka =1.0+ 100 =1 1+ 2Za 3 h,1 Sxs=0.536; spectral response acceleration parameter,short periods Lf=23 ft; span of flexible diaphragm between vertical primary SFRS elements ka=1.0+Lf/100 ft=1.230; diaphragm flexibility factor kh=1.0; 1.0 for flexible diaphragms x=1.3; 1.3 for Life Safety Wp=150 pcf*8 in=100 psf; area weight of wall Fp=0.4*Sxs*ka* kh*x *Wp=34.3 psf; seismic force for anchorage Fp,min=0.2* ka*x *Wp=32 psf; minimum force Fp=max(Fp, Fp,min)=34.3 psf; seismic force for anchorage,used for design htrib=(10 ft+13.5 ft)/2=11.750 ft; wall height tributary to roof anchorage Sanchors=4 ft; spacing of anchors Fanchors=Fp* htrib*Sanchors=1611 lbs; force at joists,see RISA output for force in anchors Page AC65 Project Job Ref. 0 NISNKIAN DEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE 3919 Templeton ES Upgrades 31699 Section Sheet no./rev. 1022 SW Salmon St. Suite 300 De ail 5/S3.02 con ection calculat ons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/14/2018 i 111 z 131= SECTION M1 SNP A351M'{12}98 X trr SPAX 42 3.T OC IX12 \\\ (E)ur PLYWOOD WO. PL 1t4 X 4 V22 X 8 EA `1I " , [ - stg,: \II 'o'gp, -. 12)1,!2 ac tt BOLTS (5)2%12 JOIST.TYP. ruvto ceruNc DEM1tO AS REDDAfO inREPLACE BACK T'D 11.'9•PL SNIPSON A35 IN EACH JOIST BAY T ........, S'16 V 4] 7I7EN IND 53X51,2 A aBLQooND IN 8 BAYS ANCNICR (4 BAYS SItr SIIAPMS IN 42 ) {A2lSaXM t 1.2' PNX74t44'OC f�33322 {)°CNC WALL (2}SIMPSON H2ATYP WALL ANCHORAGE DETAIL 1 1t2..= 1%0" O " /2"x 6.5"Titen HD minimum edge distance:1.75"(per ESR-2713 report) Titen HD critical edge distance:4.5",use 5"from edge of concrete. Subdiaphragm Max subdiaphragm aspect ratio=3:1 per ASCE 41-13 7.2.11.1. d=Lt/3=7.667 ft; sjoists=16 in; d/sjoiste=5.750; Therefore use 6 bays of blocking Page AC66 Al • 5 N5 1.611 k 1.611k N4 3 N3 Z N2 N1 Nishkian Dean SK- 1 SHG 5.S3.02 plate deflection Mar 14, 2018 at 4:16 PM 31699.00 PL 1.25 x 5 5.S3.02 plate deflection 2018.03.1... Page AC67 Company : Nishkian Dean Mar 14,2018 IIIRISA Designer SHG C 4:16 PM Checked By: ModelJobNNamember 5313090.200p Clate deflection Joint Coordinates and Temperatures Label X[ft] YOjft] ZI] Te 0[F] Detach From... 1 N1 2 N2 0 .125 0 0 3 N3 0 .542 0 0 4 N4 0 1.375 0 0 5 N5 0 1.5 0 0 Joint Boundary Conditions Joint Label X[kiln] Y[k/in] Z jk/in] X Rot.[k-ft/radl Y Rot.[k-ft/rad] Z Rot.[k-ft/rad] _ 1 N2 Reaction Reaction Reaction Reaction Reaction 2 N3 Reaction Reaction Reaction Reaction Reaction Member Primary Data Label I Joint J Joint K Joint Rotate(deg) Section/Shape Type Design List Material Design R... 1 M1 N1 N5 90 PL 1.25 x 5 Beam RECT A36 Gr.36 Typical Joint Loads and Enforced Displacements (BLC 1 :seismic) Joint Label L.D.M Direction Magnitude[(k.k-ft).(in.rad).(k's^2/ft.... 1 N4 L X t611 Basic Load Cases BLC Description Category X Gravity Y Gravity Z Gravity Joint Point Distributed Area(Me... Surface(P,.. 1 seismic EL 1 Load Combinations Description Solve PDelta SRS BLC Fac..BLC Fac..BLC Fac..BLCFac.. Fac.. LCFao.,. BLC ac..B...F.._..,.. ...... 1 IBC 16-1 Yes Y I L EL 1 max load in (1) anchor Joint Reactions LC Joint Label X[k] Y[k] Z jk] MX[k-ft] MY[k-ft] MZ[k-ft] 1 1 N2 3.218 0 0 0 0 0 2 1 N3 -4.829 0 0 0 0 0 3 1 Totals: -1.611 0 0 4 1 COG (ft): NC NC NC Joint Deflections LC Joint -b-I X pro Y finl Z firil X Rotation[radY Rotation fradt Z '• .tion fradl 1 / 1 / 1 6.57e-04 1 / / 1 1 • 1 .043 / 1 1 1 / .052 1 1 1 1 -5.74e-03 RISA-3D Version 15.0.0 [H:1...\...\...\5.S3.02 calcs\RISA\5.S3.02 plate deflection 2018.03.14.r3d] Page AC68 Company : Nishkian Dean Mar 14,2018 I I R ISA Designer : SHG C 4:16 PM Checked Job Number 31699.00 Checked By: Model Name 5.S3.02 plate deflection Member Section Deflections LC Member Label Sec x[in] y[in] z[in] x Rotate[rad] (n)Uy Ratio (n)Liz Ratio 1 1 M1 1 0 0 0 0 NC NC 2 2 0 0 -.001 0 NC 7651.873 3 3 0 0 .006 0 NC 3458.306 4 4 0 0 .027 0 NC 704.731 5 5 0 0 .052 0 NC 352.464 RISA-3D Version 15.0.0 [H:\...\...\...\5.S3.02 calcs\RISA\5.S3.02 plate deflection 2018.03.14.r3d] Page AC69 Company : Nishkian Dean Mar 14,2016 Des'I RISA Job Nnerum : SHG Checked47 PM Job Number : 31699.00 By. Model Name : 5.S3.02 plate deflection plate shape at top, PL 1.25 x 1.5 with 1/2 load to check deflection Member Primary Data Label I Joint J Joint K Joint Rotate(deg) Section/Shape Type Design List Material Design R... 1 M1 N1 N5 90 PL 1.25 x 1.5 Beam RECT A36 Gr.36 Typical , Joint Loads and Enforced Displacements(BLC 1 :seismic) Joint Label L,D,M Direction Magnitude[(k,k-ft), (in,rad), (k*s^2/ft... 1 N4 L X .806 Basic Load Cases BLC Description Category X Gravity Y Gravity Z Gravity Joint Point Distributed Area(Me... Surface(P... 1 seismic EL 1 Load Combinations Description Solve PDelta SRSS BLC Fac...BLC Fac..BLCFac..BLCFac..BLCFac..BLCFac... BLC Fac...B...F 1 IBC 16-1 Yes Y EL 1 Joint Deflections LC Joint Label X[in] Y[in] Z[in] X Rotation [rad] Y Rotation [rad] Z Rotation[rad] 1 1 N1 .002 0 0 0 0 1.096e-03 2 1 N2 0 0 0 0 0 1.096e-03 3 1 N3 0 0 0 0 0 -2.463e-03 4 1 N4 .072 0 0 0 0 -9.573e-03 5 1 N5 .087 0 0 0 0 -9.573e-03 Member Section Deflections LC Member Label Sec x[in] y[in] z[in] x Rotate[rad] (n)L/y Ratio (n)L/z Ratio 1 1 M1 1 0 0 .002 0 NC NC 2 2 0 0 -.002 0 NC 4588.283 3 3 0 0 .01 0 NC 2073.7 4 4 0 0 .044 0 NC 422.577 5 5 0 0 .087 0 NC 211.348 RISA-3D Version 15.0.0 [H:\...\...\...\5.S3.02 calcs\RISA\5.S.02 split plate deflection 2018.03.14.r3d:Page AC70 SIMPSON Anchor DesignerTM Company: Nishkian Dean Date: 2/5/2018 Engineer: SHG Page: 3/4 StrongTie Software Project: Templeton ES Upgrades Version 2.4.6025.0 Address: Phone: E-mail: 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, N.(Ib) V.(Ib) Vuay(Ib) 11(Vuax)2+(Vuay)2(Ib) 1 2414.5 0.0 0.0 0.0 2 2414.5 0.0 0.0 0.0 Sum 4829.0 0.0 0.0 0.0 Maximum concrete compression strain(%o):0.00 <Figure 3> Maximum concrete compression stress(psi):0 Resultant tension force(lb):4829 Resultant compression force(Ib):0 ^y Eccentricity of resultant tension forces in x-axis,e'Nx(inch):0.00 � Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 X l 4.Steel Strength of Anchor in Tension(Sec.D.5.1) Nsa(Ib) 0 ONse(Ib) Use t6=1.0 for lower bound 30360 0.05 10734 values per ASCE 41-13 10.3.6.2 1.0 30360 5.Concrete Breakout Strength of Anchor in Tension(Sec.D.5.2) Nb=kclaJfcher1`'(Eq.D-6) kc A,a Po(psi) het(in) Nb(Ib) 17.0 1.00 2500 3.820 6346 0.750Ncb9=0.750(ANc/ANc o)'I'ec,NY'ed,N°Yc,N'Pcp,NNb(Sec.D.4.1 &Eq.D-4) ANc(in2) ANco(in2) Wec,N Y'ed,N `Yc,N Fcp,N Nb(Ib) 0 0.750Ncba(Ib) 155.16 131.33 1.000 0.962 1.00 1.000 6346 0.tX 3515 1.0 6346j 6.Pullout Strength of Anchor in Tension(Sec.D.5.3) 0.750Npn=0.750'Yc,pAaNp(fc/2,500)"(Sec.D.4.1,Eq.D-13&Code Report) 'Yc,p 2 a Np(Ib) f c(psi) n f5 0.750Npn(Ib) 1.0 1.00 4727 2500 0.50 :A%r -2304- 1.0 3545 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Page AC73 SIMPSON TM Company: Nishkian Dean Date: 2/5/2018 Anchor Designer Engineer: SHG Page: 4/4 Strong-Tie Software Project: Templeton ES Upgrades Version 2.4.6025.0 Address: � I Phone: E-mail: 11.Results Interaction of Tensile and Shear Forces(Sec.D.7) CNo shear force Tension Factored Load,N„8(Ib) Design Strength,(N„(Ib) Ratio Status Steel 2415 -48734- 30360 -012 0.08 Pass Concrete breakout 4829 3545- 6346 -t37 10.76 -Fail-(Governs) Pas J Pullout 2415 2394 3545 +95- 0.68 -FeWlEass 5/8"DIA TITEN HD,hnom=5"meets the selected design criteria for ASCE 41-13 loads. 12.Warnings -Per designer input,ductility requirements for tension have been determined to be satisfied—designer to verify. -Per designer input,ductility requirements for shear have been determined to be satisfied—designer to verify. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Page AC74 • NISNKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL "G/"EE�SINCE 1919 Templeton ES Uoerades 31699 Section Sheet no./rev. 1022 SW Salmon St. Suite 300 Detal 5/53.02 SIM c nnection calcu ations Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/15/2018 DETAIL 5/S3.02 SIM CONNECTION Gridlines 8 and 9 Gym Storage walls Noncompliant wall anchorage,ASCE 41-13 Tier 2 calcs 5.7.1.1 5.7.1.1-4 5.2.4 4 7.2-3 7.2.11.1 Out-of-Plane Wall Anchorage to Diaphragms F,,=0.4Sxsk„khX WP Fr,m;n =0.2kaXWp ka =1.0+ 100 2za k,, =—111+— 3 h„ 1 Sxs=0.536; spectral response acceleration parameter,short periods Lf=21 ft; span of flexible diaphragm between vertical primary SFRS elements ka=1.0+14/100 ft=1.210; diaphragm flexibility factor kh=1.0; 1.0 for flexible diaphragms x=1.3; 1.3 for Life Safety Wp=150 pcf*6.5 in=81 psf; area weight of wall Fp=0.4*Sxs*ka* kh*x*Wp=27.4 psf; seismic force for anchorage Fp,min=0.2 * ka*x *Wp=25.6 psf; minimum force Fp=max(Fp, Fp,min)=27.4 psf; seismic force for anchorage,used for design htrib=(14 ft+19 ft)/2=16.500 ft; wall height tributary to roof anchorage Sanchors=3 ft; spacing of anchors Fanchors=Fp*htrib*Sanchors=1356 lbs; force at joists,see RISA output for force in anchors Page AC75 • 0 N I S N K I A N DEAN Project Job Ref. CONSULTING ANO STRUCTURAL ENGINEERS SINCE/419 Templeton ES Upgrades 31699 Section Sheet no./rev. 1022 SW Salmon St. Suite 300 Detai 5/S3.02 SIM c nnection calcu'ations Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/15/2018 If I „2 1119 SECMX1 A•A SNP XIS MY(12)de X V2"SPAX g 32"CC (E)NV PLYWOOD 2%12 SLIM PL 170 X4 LR X BEA xi 3;I 1 - � L str.l \j _1 (2)tt2'DIRIJ BOLTS (Ej 21n2 JOIST.TYP. ir (t7 CEILING rr CEMO AS REODAPDhTo11ta'pLSlA9>9QN A3°DtEACN JOISTBAY^r,Amioliiiik ..___.._ St,fiI 11TBN to 55X610 Aij IXBLOOgNO IN SBAYS SWA3S W PICX'ANCHOR 0 SIM (t BAYS Q$S4) -\\ 622.10)(61'LT PL 1 IN X70 48'0C SPACING Q S9.1,.btf•CC (2)SMIPSCN NCA TYP I (E)CONC L 0 WALL ANCHORAGE DETAIL 11n..z 1._o.. %2"x 6"Titen HD minimum edge distance: 1.75"(per ESR-2713 report) Titen HD critical edge distance:4.5",use 5"from edge of concrete. Subdiaphragm Max subdiaphragm aspect ratio=3:1 per ASCE 41-13 7.2.11.1. d=Lf/3=7.000 ft; sjoists=24 in; d/sjo,sts=3.500; Therefore use 4 bays of blocking Page AC76 N5 1.356 k N4 N3 N2 N1 Nishkian Dean SK- 1 SHG 5.S3.02 SIM plate deflection Mar 15, 2018 at 8:06 AM 31699.00 PL 1.25 x 7 5.S3.02 plate deflection 2018.03.1... Page AC77 Company : Nishkian Dean Mar 15,2018 AM IDesignerI RISJobNumber : SHG C8he7 ke : 31699.00 Checked By. Model Name : 5.S3.02 SIM plate deflection Joint Coordinates and Temperatures Label X[rt] Y[ft] Z[ft] Temp[F] Detach From Diap... 1 N1 0 0 0 0 2 N2 0 .125 0 0 3 N3 0 .542 0 0 4 N4 0 1.375 0 0 5 N5 0 1.5 0 0 Joint Boundary Conditions Joint Label X[k/in] Y[k/in] 21k/in] X Rot.[k-ft/rad] Y Rot.[k-ft/rad] Z Rot.fk-ft/rad] 1 N2 Reaction Reaction Reaction Reaction Reaction 2 N3 Reaction Reaction Reaction Reaction Reaction Member Primary Data Label I Joint J Joint K Joint Rotate(deg) Section/Shape Type Design List Material Design Rules 1 M1 N1 N5 90 PL 1.25 x 7 Beam RECT A36 Gr.36 Typical Joint Loads and Enforced Displacements(BLC 1 :seismic) Joint Label L,D,M Direction Magnitude[(k,k-ft), (in,rad), (k*s^2/f... 1 N4 L X 1.356 Basic Load Cases BLC Description Category X Gravity Y Gravity Z Gravity Joint Point Distributed Area(Me... Surface(P... 1 seismic EL 1 Load Combinations Description So..PD..SR..BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact... 1 IBC 16-1 Yes Y EL 1 Joint Reactions max load in (1) anchor LC Joint Label X lk] Y[k] Z[k] MX[k-ft] MY[k-ft] MZ[k-ft] 1 1 N2 2.709 0 0 0 0 0 2 1 N3 -4.065 0 0 0 0 0 3 1 Totals: -1.356 0 0 4 1 COG (ft): NC NC NC Joint Deflections LC Joint Label X[in] Y fin] Z[in] X Rotation [rad] Y Rotation [rad] Z Rotation[rad] 1 1 N1 0 0 0 0 0 3.95e-04 2 , 1 N2 0 0 0 0 0 3.95e-04 3 , 1 N3 0 0 0 0 0 -8.88e-04 4 1 N4 .026 0 0 0 0 -3.451e-03 RISA-3D Version 15.0.0 [H:\...\...\...\5.S3.02 SIM calcs\RISA\5.S3.02 plate deflection 2018.03.14.r3iPage AC78 IChecCompany : Nishkian Dean Mar 15,2018 Designer : SI-IG IIRISA Model Name : 5.S3.02 SIM plate deflection 9.00 8:07 M keke Checked By. Joint Deflections(Continue°) LC Joint Label X fn] Y[nl Z[in] X Rotation [rad] Y Rotation [rad] Z Rotation[rad] 5 1 N5 .031 0 0 0 0 -3.451e-03 Member Section Deflections LC Member Label Sec x(in] y[in] z[in] x Rotate[rad] (n)L/y Ratio (n)L/z Ratio 1 1 M1 1 0 0 0 0 NC NC 2 2 0 0 0 0 NC NC 3 3 0 0 .004 0 NC 5752.112 4 4 0 0 .016 0 NC 1172.16 5 5 0 0 .031 0 NC 586.245 RISA-3D Version 15.0.0 [H:\...\...\...\5.S3.02 SIM calcs\RISA\5.S3.02 plate deflection 2018.03.14.r3ipage AC79 Company : Nishkian Dean Mar 15,2018 IRIS Designer SHG Checks d By. 7 AM IiA Job Number : 31699.00 Checked Model Name 5.S3 D2 SIM plate deflection plate shape at top, PL 1.25 x 1.5 with 1/2 load to check deflection Member Primary Data Label I Joint J Joint K Joint Rotate(deg) Section/Shape Type Design List Material Design Rules 1 M1 N1 N5 90 PL 125x 1.5 Beam RECT A36 Gr.36 Typical Joint Loads and Enforced Displacements(BLC I :seismic) Joint Label L,D,M Direction Magnitude[(k,k-ft),(in,rad), (k*s^2/f... 1 N4 L X .678 Basic Load Cases BLC Description Category X Gravity Y Gravity Z Gravity Joint Point Distributed Area(Me... Surface(P... 1 seismic EL 1 Load Combinations Description Sd..PD..SR..BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact...BLC Fact... 1 IBC 16-1 Yes Y EL 1 Joint Deflections LC Joint Label X lin] Y[n] Z fin] X Rotation (rad] Y Rotation [rad] Z Rotation[rad] 1 1 N1 .001 0 0 0 0 9.217e-04 2 1 N2 0 0 0 0 0 9.217e-04 3 1 N3 0 0 0 0 0 -2.072e-03 4 1 N4 .061 0 0 0 0 -8.052e-03 5 1 N5 .073 0 0 0 0 -8.052e-03 Member Section Deflections LC Member Label Sec x[n] y fin] z fin] x Rotatefradl (n)L/y Ratio (n)L/z Ratio 1 1 M1 1 0 0 .001 0 NC NC 2 2 0 0 -.002 0 NC 5454.508 3 3 0 0 .009 0 NC 2465.195 4 4 0 0 .037 0 NC 502.355 5 5 0 0 .073 0 NC 251.248 RISA-3D Version 15.0.0 [H:\...\...\...\...\RISA\5.53.02 split plate deflection 2018.03.14.r3d] Page AC80 SIMPSON Anchor Designer TM Company: Nishkian Dean Date: 2/5/2018 Engineer: SHG Page: 3/4 Strong-Tie Software o Version 2.4.6025.0 Project: Templeton ES Upgrades ® Address: Phone: E-mail: 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, Nua(Ib) V.(Ib) Vuay(Ib) 1I(Vuax)2+(Vuay)2(lb) 1 2032.5 0.0 0.0 0.0 2 2032.5 0.0 0.0 0.0 Sum 4065.0 0.0 0.0 0.0 Maximum concrete compression strain(%o):0.00 <Figure 3> Maximum concrete compression stress(psi):0 Resultant tension force(Ib):4065 Resultant compression force(Ib):0 Eccentricity of resultant tension forces in x-axis,e'Nx(inch):0.00 Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 Y X l 4.Steel Strength of Anchor in Tension(Sec.D.5.1) Nse(Ib) 0 gNsa(Ib) Use P=1.0 for lower bound 20130 0.015 13085 values per ASCE 41-13 1.0 20130 10.3.6.2 5.Concrete Breakout Strength of Anchor in Tension(Sec.D.5.2) Nb=kcAalif chef s(Eq.D-6) kc Act f'c(psi) her(in) Nb(Ib) 17.0 1.00 2500 2.990 4395 0.750Ncbg=0.750(ANc/ANco)Y%c,N-ed,N-,N-ca,NNe(Sec.D.4.1 &Eq.D-4) ANC(in2) ANco(in2) Vec,N Wed,N Wc,N Y'cp,N Nb(Ib) 0 0.750Ncbg(Ib) 107.37 80.46 1.000 1.000 1.00 1.000 4395 0.05 -285-9- 1.0 4395 11.Results Interaction of Tensile and Shear Forces(Sec.D.7) No shear force Tension Factored Load,Nua(Ib) Design Strength,IaNn(Ib) Ratio Status Steel 2033 13085 20130 -9:1-61910J Pass Concrete breakout 4065 -2869 4395 4:42 0.92 -Fail-(6everws) Pass 1/2"DIA TITEN HD,hnom=4"meets the selected design criteria for ASCE 41-13 loads. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Page AC83 FIIL.TI www.hilti.us Profis Anchor 2.7.2 Company: Specifier: Page: 3 Project Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 3/15/2018 E-Mail: 3.2 Bond Strength (ANa Na =(Aria0)W ed,Na W cp,Na Nba ACI 318-11 Eq.(D-18) 4, Ne 'Nua ACI 318-11 Table D.4.1.1 ANa =see ACI 318-11,Part D.5.5.1,Fig.RD.5.5.1(b) ANaO =(2 CNa)2 ACI 318-11 Eq.(D-20) CNa =10 da1100 ACI 318-11 Eq.(D-21) 1 W ec,Na= ( iN) <_1.0 ACI 318-11 Eq.(D-23) CNa V ed,Na=0.7+0.3Ca—min 5 1.0 CNa ) ACI 318-11 Eq.(D-25) W cp.Na=MAX(Ca—min'CNa)5 1.0 cac ca / ACI 318-11 Eq.(D-27) Nth =X a.t h,e'aN,seis.7<.da.hef ACI 318-11 Eq.(D-22) Variables T k,c,uncr[psi] da[in.] her[in.] Ca,min[in.] t k,c[psi] 2210 0.625 5.000 1260 ec,,N[in.] ecz,N[in.] cac[in.] 7v a aN,seis 0.000 0.000 10.571 1.000 0.950 Calculations CNa[in.] ANa[in.2] ANao[in-2] W ed,Na 8.819 311.09 311.09 1.000 W ec1,Na W ec2,Na W cp,Na Nba[ib] 1.000 1.000 1.000 11752 Results Na[Ib] 41 bond (I)seismic 4'nonductiie 4, Na[lb] Nua[lb] 11752 0.050 0.750 1.000 5729 1558 1.0 11.01 11752 3.3 Concrete Breakout Strength Nth =(ANC)W ed,N W c,N W cp,N Nb ACI 318-11 Eq.(D-3) 4, Nth>_Nua ACI 318-11 Table D.4.1.1 ANa see ACI 318-11,Part D.5.2.1,Fig.RD.5.2.1(b) ANco =9 hef ACI 318-11 Eq.(D-5) 1 W ec,N — 1 22 eN)5 1.0 ACI 318-11 Eq.(D-8) 3 ho W ed,N =0.7+0.3( n) <_1.0 ACI 318-11 Eq.(D-10) W cp,N =MAX( ' . 1-5hCaef)5 1.0 ACI 318-11 Eq.(D-12) C Nb =kc X a hefs ACI 318-11 Eq.(D-6) Variables het[in.] ec1,N[in.] ears,[in-] cam*,[in.] Ni c,N 5.000 0.000 0.000 1.000 Cac[in.] kc X a fc[psi] 10.571 17 1.000 2500 Calculations ANC[in.2] ANco[in 2] W ecl,N W ec2,N W ed,N W cp,N Nb[lb] 225.00 225.00 1.000 1.000 1.000 1.000 9503 Results Nth[Ib] 4'concrete 4,seismic 4)nonductile 4, Nth[Ib] Nua[Ib] 9503 0.010 0.750 1.000 4033 1558 11.0] 11.01 9503 Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC87 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan HIM is a registered Trademark of Hilti AG,Schaan SIMPSON Anchor Designer TM Company: Nishkian Dean Date: 2/5/2018 SoftEngineer: SHG Page: 4/4 Strong-Tie Version arson2.4.6025.060250 Project: Templeton ES Upgrades . . Address: Phone: E-mail: 12.Warnings -Per designer input,ductility requirements for tension have been determined to be satisfied—designer to verify. -Per designer input,ductility requirements for shear have been determined to be satisfied—designer to verify. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com Page AC84 11•111I..T1 www.hllti.us Profis Anchor 2.7.2 Company: Page: Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 3/15/2018 E-Mail: Specifier's comments: epoxy anchor for 61S3.02 1 Input data 41LT1 1M1LT1 Anchor type and diameter: HIT-RE 500 V3+HAS B7 5/8 Effective embedment depth: he},abt=5.000 in.(h in.) ef,limit=- Material: ASTM A 193 Grade B7 Evaluation Service Report: ESR-3814 Issued I Valid: 1/1/201711/1/2019 Proof: Design method ACI 318-11/Chem Stand-off installation: eb=0.000 in.(no stand-off);t=0.500 in. Anchor plate: Ix x ly x t=4.000 in.x 4.000 in.x 0.500 in.;(Recommended plate thickness:not calculated Profile: no profile Base material: cracked concrete,2500,fb'=2500 psi;h=8.000 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,installation condition:Dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement none or<No.4 bar Seismic loads(cat.C,D,E,or F) Tension load:yes(D.3.3.4.3(d)) Shear load:yes(D.3.3.5.3(c)) Fp=0.4*0.536 * 1.27* 1.0" 1.3* (8/12)*150 Geometry[in.]&Loading[ib,in.lb] pcf=35.4 psf Z (11')/2=5.5'tall wall trib F=35.4 psf*5.5'= 195 plf space anchors at 24" F= 195pIf"4ft=779lb double this load since adjacent conc wall cannot be directly anchored to. F= 1558 lb. °o HTT4 in 2x10 blkg =3000 Ib> 1558 Ib, OK o CO • -440 ir,i3igiik-W • • X Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC85 PROFIS Anchor(c)2003-2009 Hilo AG,FL-9494 Schwan Hilti is a registered Trademark of Hilti AG,Schaan J r r 11■■11`TI www.nuti.us Profis Anchor 2.7.2 Company: Page: 2 Specifier: Project Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 3/15/2018 E-Mail: 2 Load case/Resulting anchor forces A y Load case:Design loads Anchor reactions[ib] Tension force:(+Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 1558 0 0 0 max.concrete compressive strain: -[%a] ►x max.concrete compressive stress: -[psi] resulting tension force in(x/y)=(0.000/0.000): 1558[Ib] resulting compression force in(x/y)=(0.000/0.000):0[Ib] Use 1:1=1.0 for lower bound values per ASCE 41-13 110.3.6.2 3 Tension load Load Nna[ib] Capacity b Nn Pb] Utilization I N=Nua/}Nn Status Steel Strength* 1558 21107 28250 —8' 0.06 OK Bond Strength** 1558 —5729 11752 —28 0.13 OK Sustained Tension Load Bond Strength* N/A N/A N/A N/A Concrete Breakout Strength** 1558 4C3a 9503 -34 0.16 OK *anchor having the highest loading **anchor group(anchors in tension) 3.1 Steel Strength Nm =ESR value refer to ICC-ES ESR-3814 4' N,,>_N5a ACI 318-11 Table D.4.1.1 Variables Ase,N[in 2] fut.[psi] 0.23 125000 Calculations Nas[Ib] 28250 Results Nsa[Ib] 4)steel 4' Nsa[Ib] Nna[Ib] 28250 0.7J0 21187 1558 11.01 28250 Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC86 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Sc haan Hilti is a registered Trademark of Hilti AG,Schaal) FIILi.T1 www.hilti.us Profis Anchor 2.7.2 Company: Page: 4 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 3/15/2018 E-Mail: 4 Shear load Load Vua[Ib] Capacity 0 Vn[Ib] Utilization(iv=V„a4 V. Status Steel Strength* N/A N/A N/A N/A Steel failure(with lever arm)* N/A N/A N/A N/A Pryout Strength(Bond Strength controls)* N/A N/A N/A N/A Concrete edge failure in direction** N/A N/A N/A N/A *anchor having the highest loading **anchor group(relevant anchors) 5 Warnings • The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations(ETAG 001/Annex C,EOTA TR029,etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered-the anchor plate is assumed to be sufficiently stiff,in order not to be deformed when subjected to the design loading.PROFIS Anchor calculates the minimum required anchor plate thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above.The proof if the rigid base plate assumption is valid is not carried out by PROFIS Anchor.Input data and results must be checked for agreement with the existing conditions and for plausibility! • Condition A applies when supplementary reinforcement is used.The 4)factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength.Refer to your local standard. • Design Strengths of adhesive anchor systems are influenced by the cleaning method.Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C,D, E or F is given in ACI 318-11 Appendix D,Part D.3.3.4.3(a)that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure.If this is NOT the case,the connection design(tension)shall satisfy the provisions of Part D.3.3.4.3(b),Part D.3.3.4.3(c),or Part D.3.3.4.3(d).The connection design(shear)shall satisfy the provisions of Part D.3.3.5.3(a),Part D.3.3.5.3(b),or Part D.3.3.5.3(c). • Part D.3.3.4.3(b)/part D.3.3.5.3(a)require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength.Part D.3.3.4.3(c)/part D.3.3.5.3(b) waive the ductility requirements and require the anchors to be designed for the maximum tension/shear that can be transmitted to the anchors by a non-yielding attachment.Part D.3.3.4.3(d)/part D.3.3.5.3(c)waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension/shear obtained from design load combinations that include E,with E increased by too. • Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors.Reference ACI 318-11, Part D.9.1 Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC88 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan ' f 1■■111`TI www.hiiti.usCompany: Page: Profis5 Anchor 2.7.2 Specifier: Project: Address: Sub-Project I Pos.No.: Phone I Fax: I Date: 3/15/2018 E-Mail: 6 Installation data Anchor plate,steel:- Anchor type and diameter:HIT-RE 500 V3+HAS B7 5/8 Profile:no profile Installation torque:720.000 in.lb Hole diameter in the fixture:df=0.688 in. Hole diameter in the base material:0.750 in. Plate thickness(input):0.500 in. Hole depth in the base material:5.000 in. Recommended plate thickness:not calculated Minimum thickness of the base material:6.500 in. Drilling method:Hammer drilled Cleaning:Compressed air cleaning of the drilled hole according to instructions for use is required 6.1 Recommended accessories Drilling Cleaning Setting • Suitable Rotary Hammer • Compressed air with required • Dispenser including cassette and mixer • Properly sized drill bit accessories to blow from the bottom of • Torque wrench the hole • Proper diameter wire brush A 2.000 2.000 o 0 o o 0 N 1 �x o o o 0 0 o N N • a Page AC89 • 2.000 2.000 • Coordinates Anchor in. Anchor x y 1 0.000 0.000 - - - - Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilo AG,FL-9494 Schaan Hllti is a registered Trademark of Hilts AG,Schaan I�III..TI www.hilti.us Company: Profis Anchor 2.7.2 Specifier: Page: g Address: Project: I Fax: Sub-Project I Pos.No.: Phone P Date: 3/15/2018 E-Mail: 7 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you.Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for agreement with the existing conditions and for plausibility! Page AC90 PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilo is a registered Trademark of Hilti AG,Schaan N / SNKIAN DEAN Project lob Ref. CONSUtT1N4 AND Si9UC rUpµENGINEERS SINCE 1919 Temoleton ES Unerades 31699 1022 SW Salmon St. Section Sheet no./rev. Suite 300De ail 7/S3.02 con ection calculat"ons Calc.by Date Chk'd by Date App'd by Date Portland,OR 97205 SHG 3/15/2018 DETAIL 7/S3.02 CONNECTION Platform at music room,between gridlines 6 and 7 Provide strapping to connect joists across(E)12x18 beam Fwail=498 plf; wall anchorage force from detial 1/53.02 Fjol5t=(16 in) *(Fwali)=664 lbs; force in joist CD=1.6; load duration factor,seismic Vcapi=CD*280 lbs=448 lbs; capacity of(1)SDS'A x 3"screw in wood side plate Vcap3=3 *Vcap1=1344 lbs; capacity of(3)screws F1015t/Vcap3=0.494; <1.0,OK,add screws to(E)2x4 to act as strap.2x4 OK for tension load by inspection (E)FLOORING 4_, (3)SDS 1/4X3 SCREWS EA SIDE OF(E)2X4 TIO(E)PLATFORM S IL , I 11 i _ t x . I '` f, j (E)2X10 JOISTS (E)CEILING TO BE I I r f \t ! (E)2X4,4'-0R LONG REMOVED AND I , REPLACED,SEE PLAN ,, ±2,4 I/2"TYP (E)12X18 (7 TENSION TIE DETAIL 7 3/4" = 1'-0" Page AC91 NISHKIAN DEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 ND31699 Templeton Elementary School Seismic Upgrades 9500 SW Murdock St. Tigard, OR 97224 NONSTRUCTURAL UPGRADES Page NS1 N I S H K I A N DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Templeton ES Upgrades 31699 1022 SW Salmon St.Suite 300 Section Sheet no./rev. Portland,OR 97205 CMU wall bracing 1 Calc.by Date Chk'd by Date App'd by Date SHG 3/1/2018 CMU WALL BRACING ASCE 41-13 13.6.2.3.1.1 Heavy Partitions using Life Safety Nonstructural Performance Level Nonstructural heavy partitions shall be capable of resisting out-of-plane forces computed in accordnace with 13.4.3 using a component importance factor, 1p,of 1.0. 13.4.3 Force Analysis:General Equations 13.4.3.1 Horizontal Seismic Forces Horizontal seismic forces on nonstructural components shall be determined in accordance with Eq. (13-1)or(13-5). 0.4a,,SxsW,, 1+2x Fn= R (13-1) Ir F,,calculated in accordance with Eq.(13-1)shall be based on the stiffness of the component and the ductility of its bracing and anchorage,but it need not exceed the default value of F,,calcu- lated in accordance with Eq.(13-2)and shall not be less than F,, computed in accordance with Eq.(13-3). F,,(maximum)=l.6S.xsIpW,, (13-2) F,,(minimum)=0.3S,i,IpWr (13-3) ap= 1.0; component amplification factor from Table 13-2:interior nonstruct plain masonry wall Sxs=0.536; spectral response acceleration parameter Wp=81 psf; 8"CMU wall,assume fully grouted x=h= 13.5 ft; max height of wall Rp= 1.5; component response modification factor from Table 13-2: int.nonstruc. plain CMU wall Ip= 1.0; per 13.6.2.3.1.1 Fp=[0.4*ap*Sxs*Wp*(1 +(2*x)/h)]/(Rp/Ip)=34.7 psf; component seismic force s= 16 in; spacing of new steel studs w=Fp*s=46.3 plf; distributed load to one steel stud Page NS2 N I S H K I A N DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Templeton ES Upgrades 31699 1022 SW Salmon St.Suite 300 Section Sheet no./rev. Portland,OR 97205 CMU wall bracing 2 Calc.by Date Chk'd by Date App'd by Date SHG 3/1/2018 i 1. [AISI SfDOF12` design values from SCAFCO 2007 NASPEC[AISI 8100j catalog updated to AISI S100-12 Project: Templeton ES Upgrades-CMU wall bracing Date: 2/28/2018 Model: '� ._.., _ _, _F.. w_ x .ins kf.<<n.. =.. ..... ....- z nlf Ld ... -,H.1b� V,. .. 463w ,m . � ,.., . . ri._ . � .r . . ibU/It in R1 R2 13,50 ft Section: 400S250-54 Single C Stud (X-X Axis) Fy= 33.0 ksi Maxo= 1075.4 Ft-Lb Moment of Inertia,I= 1,512 in^4 Va= 2603.5 lb Loads have not been modified for strength checks Loads have not been modified for deflection calculations Flexural and Deflection Check Mmax Mmax/ Mpos Bracing Ma(Brc) Mpos/ Deflection Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma Brc ( ) (in) Ratio Center Span 1054.8 0.981 1054.8 48 1075.4 0.981 0.776 L/209 Mal ='12.9 ink '0.981<;' defl due to service Distortional Buckling Check = 1075 ft_lb load 0.7'0.776"_ K-phi Lm Brac Ma-d Mmax! 0.543"=L+'298 Span lb-inlin (in) Ft-Lb Ma-d 0.910 Center Span 0.00 162.0 1159.4 0.910 _. 4---________Mad= 13.91 in_kl Combined Bending and Web Crippling = 1159 ft lb Reaction or Load Brng Pa Pn Mmax Intr. Stiffen Pt Load P(Ib) (in) (ib) (Ib) (Ft-Lb) Value Req'd? R1 312.5 1.00 414.6 725.5 0.0 0.39 No R2 312.5 1,00 414.6 725.5 0.0 0.39 No Combined Bending and Shear Reaction or Vmax Mmax Va Intr. Intr. Pt.Load (lb) (Ft-Lb) Factor VNa MIMa Unstiffen Stiffen R1 312.5 0,0 1.00 0,12 0.00 0.01 NA R2 312.5 0.0 1.00 0.12 0.00 0,01 NA Using 4)= 1.0 per ASCE 41-13 12.3.2.3.2. Therefore, use 400S250-54 33ksi steel studs O.16"OC to support existing CMU wall for out-of-plane loads. Page NS3 M , NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERSTempleton ES Upgrades 31699 Section Sheet no./rev.ev.SW Salmon St.Suite 300 Portland,OR 97205 CMU wall bracing 3 Calc.by Date Chk'd by Date App'd by Date SHG 3/1/2018 HELIFIX ANCHORS 10mm DryFix anchor with 1"embed in Lightweight CMU face shell(worst case):550 lb ultimate tensile capacity(see below). Determine Test Load: Fp,aiiow=0.7*Fp=24.3 psf; 0.7*E allowable area load Fallow=Fp,allow*s*32in=86 lbs; allowable force on one anchor, studs at spacing s,32"vert anch spacing SF=2.5; safety factor for load testing per OSSC 1710 T=Fallow*SF=216 Ib; required test loading PERFORMANCE CHARACTERISTICS Effective Minimum Ultimate Ultimate Material Tension/Compression Tension/Compression Embed(inches) P (lbs)8mm (lbs) 10mm Mortar Joint(1500 psi) 3" 616 780 Solid Brick(9000 psi) 35/8.. 700__ 750 Cavity Brick 35/8. 1280 1390 Normal Weight C.M.U. 1„ 801 -_ 907 Light Weight C.M.U. 2.. 550 550 Concrete(3500 psi) 1 I/+ 1200 1300 — — Wood Kiln Dried Stud � — ---- 2x4 3" 517 N/R 2 x 6 3" 520 N/R Metal Stud 16 Gauge 310 NJR Granite 11/s" 620 650 Travertine N' 590 800 Limestone 3" 600 620 3/i6"Steel 3/16' 520 - _ N/R r Note:Each construction project is unique and the appropriate use of this product is the responsibility of the engineers,architects,and other professionals who are familiar with the specific requirements of the project.This data reflects field results and is provided as a guideline for the designer.Site testing is encouraged for the verification of load carrying capacity.(N/R=not recommended) Page NS4 ' N I S H K I A N DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Templeton ES Upgrades 31699 Section Sheet no./rev. 1022 SW Salmon St.Suite 300 Portland,OR 97205 CMU wall bracing 4 Calc.by Date Chk'd by Date App'd by Date SHG 3/1/2018 STEEL STUD TOP CONN DETAILING Reference details 6/S3.03 and 7/S3.03. Vmax=0.7*(w*h)/2=219 lbs; max shear at top conn reduced to ASD load for comparison(0.7E) Fp,ASD=0.7*Fp=24.3 psf; seismic force, reduced to ASD load for comparison(0.7E) Co= 1.6; load duration factor for seismic Vailow=2*CD*250 lbs=800 lbs; (2)SDS'/x 2%screws, in 54 mil side plate(16 GA) Vailow>Vmax,OK Verify slotted track is adequate: 1111ktip i. 1 I ► ► ' 0 ► Number. - Originally Issued: 02/01/2014 Revised:02/26/2018 Valid Through: 02/28/2019 I TABLE 1A-SLOTTED TRACK AND SEISMIC DRIFT TRACK ALLOWABLE LOADS AND WALL HEIGHTS MAXIMUM WALL HEIGHTS(ft) Product Stud Spacing on Center(in) Allowable Thickness u l 16 1 24 1 12 1 16 i u 1 u I fel 1 24 j u )I f-1 ( 24 Lateral Uniform Lateral Load Load(lbs) 5psf 10psf l mpsf J 40 POI D20 14.8 11.1 - - - 37 30EQD 22.0 16.5 11.0 11.0 8.3 - - - S5 33E05 36.0 27.0 18.0 18.0 13.5 9.0 9.0 - - - - 90 33m3 42.4 318 21.2 21.2 15.9 10.6 10.6 - - - - - 106 43E05 69.2 51.9 34.6 34.6 26.0 17.3 17.3 13.0 8.7 - 173 43m3 76.4 57.3 38,2 38.2 28.7 19.1 19.1 14,3 9,6 9.6 - - 191 154mi1 j 1516 113.7 75.8 75.8 56.9 37.9 37.9 l 28.4 I 19.0 19.0 14.2 9.5 379 68m11 231.6 173.7 115.8 115.8 86.9 57.9 57.9 43.4 29.0 29.0 21.8 14.5 568 97m4 502.8 377.2 251.4 2514 188.6 125.7 125.7 94.3 62.9 62.9 47.3 31.4 1257 USE LINEAR INTERPOLATION FOR 24.3 PSF->ALLOWABLE WALL HEIGHT OF 25.3 FT'ACTUAL MAX WALL HEIGHT 13.5 FT,OK STEEL STUD BOTTOM CONN DETAILING Reference detail 5/S3.03. Vmax=Fp*(h/2)*24 in=469 lbs; max shear at bottom conn,anchors spaced at 24" (I)V= 1.0*2855 lbs=2855 lbs; Titen HD 3/8"x 3"screw anchor, = 1.0 per ASCE 41-13 9.3.2.4 4V>>Vmax,OK Page NS5