Loading...
Specifications (8) q II STRUCTURAL CALCULATIONS FOR I RIVER TERRACE EAST 1 22 PLEX BUILDING (WEST HILLS DEVELOPMENT, INC.) I6 I S.C9UCT(j/:?xi Z A\N- GIN c�(S>O , I cy� 54 �� r 4Wire" v�d EGG CS - 4 w�i'25�1g V-. 111 EXPIRE s: 2ZSIL 1 I JANUARY 9,2017 JOB NUMBER: 16-T100 I { ,f OFFICE COPY iFROELICH ,,; t,//) G,,,2 - 61 (/m ) r, ENGINEERSgz c,let 2 s 1 /)tl/ ::mac/ 2-- I * * * LIMITATIONS * * * NED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT, WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND/OR I LIABILITY IS ASSUMED BY,OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS. A Main Office I 6969 SW Hampton St. A Central Oregon Portland,Oregon 97223 503-624-7005 745 NW Mt.Washington Dr.#205 Bend,Oregon 97701 www.froelicn-enaineers.com 541-383-1828 I 1 4 Page 1 of 118 FROELICH ENGINEERS4 Scope pe of Work ' Client: West Hills Development Project: River Terrace East 1 Project Number: 16-T100 Date: December 15, 2016 By: YSP Scope of Work: Froelich Consulting Engineers, Inc. (FCE) has provided full structural lateral andravit desi of the project per the 2012 International Building Code (IBC). g y gn Froelich Consulting Engineers, Inc. has provided details only to the areas pertaining to our design. Froelich Consulting Engineers, Inc. did not design or review the details for the entire project. Prosect Description: This new three-story multi-family apartment building wood sheathed wood framed wall structure is constructed with gang-nailed wood roof trusses, wood framed floors, with slab on grade main floor. Conventional foundations (concrete continuous footings and stem walls and spread footings) are used for building support. 1 I i 1 I r9 Main Office FROELICH ENGINEERS A Central Oregon 6969 SW Hampton St. 745 NW Mt.Washington Dr.#205 Portland, Oregon 97223 503-624-7005 Bend,Oregon 97701 www.froelich-eng inee rs.cam 541-383-1828 I Page 2 of 118 Client: West Hills Development Project: River Terrace East 4 Proj.M: 16-T100 Date: 12/15/2016 By: YSP FROELICH I ENGINEERS, Project Design Criteria Project Description I New three-story mulii•Ganity apartment buildings Gang-nailed wood roof trusses. Wood Framed Floor. I.ighl-frampl wood sheathed wood wails. Slab on Grade IConventional Foundations Project Location I Pordand,OR 45 54P N 122.84°W Average Elevation=350 tt(approximate) I General Building Department: Building Official: Phone Number: I Building Code(s): 2012 International Building Code(IBC) 2014 Oregon Structural Specialty Code(OSSC) ASCE7-10 I Roof Live Load: Ground Snow Load= 15 psf(Snow Load Analysis for Oregon 2007) Minimum Roof Snow Load= 25 psf (SnowLoad Analysis for Oregon 2007) Snow Importance Factor(Is)= L00 Deflection Criteria= 11240 Floor Live Loads: I I Residential Live Load=( 41) psf (IBC Table i 607 1)) Corridor Live Load=It I0U psf (IRC Table 1607.1 Wind Load: 111 Basic(3-Second Gust)Wind Speed= 120 mph(OSSC Figure 1609) Exposure= B Wind Importance Factor(Iw)= 1.00 ISeismic Load: Occupancy Category-- II (IBC Table 16045) Seismic Importattce Factor(1E)= 1.00 I Site Class= 0 • Mapped Spectral Acceleration Values(Ss)= 0,985 g Spectral Acceleration Values(Si)- 0.36 g Design Spectral Response Parameter (S05)= 0.726 g I Design Spectral Response Parameter(Sol)= 0,403 g Seismic Design Category= D Response Modification Coefficient(R)— 6 5 Light-framed walls sheathed with wood panels Shear Walls(Bearing Wall System) Soils Data: Allowable Bearing Pressure— 2500 psf• Exterior Footing Depth= 18 inches* I I Page 3 of 118 Client: West Hills Development Project; River Terrace East 4 Proj,k: 16-T100 Date: 12/15/2016 By: YSP FROELICH eigiatNEErtsi Dead Load Calculations Roof Dead Load I Top Chord of Truss Component Weights Actual(psi) Comments Framing 4 Roof Trusses 111 Roof . Roofingsheathing(Asphalt Shingles) 32 5/8"shth Misc. 1 Total= 10.0 pal Bottom Chord of Truss Component Weights `Actual(pat) Comments Mechanical 1.5 Ceiling 2.8 (1)5/8"gvp Batt Insulation 1.5 Sprinklers 1 Misc. 1.2 Total . 8.0 psi 4psf added for Seismic Base Shear Total Roof Dead Load= 18.0 psf Calc. IFloor Dead Load Component Weights Actual(psf) Comments Framing 3Joist Framing 1 Sheathing 3 ry 7/8"shth Floor Covering I I 1.25"Floor Topping(Gyperete 105 lbs/ft3) Mechanical 1 Ceiling 5.6 (2)5/8"gyp Flooring 1 I Sprinklers 1 Misc L4 Total 27.0 psf 8psf added for Seismic Base Shear Calc. I Corridor Floor Dead Load Component Weights Actual(psi) Comments Framing 2 Joist Framing Sheathing 3 7/8"shth I Floor Covering 13 1.5"Floor Topping(Concrete 150 lbs/ft3) Mechanical 1 Ceiling 5.6 (2)5/8"g p Flooring 0 Sprinklers1 Misc, 1.4 Total-a 27,0 psf • Exterior Wall Dead Load I Component Weights Actual(psi) Comments Framing 1.5 Sheathing 1.5 1/2"shth Interior Gyp Finish 2.8 5/8"gyp Insulation 1.5 Siding 2,3 Fiber Cement Siding .i. ,Misc. 0.4 Total- l0 'psi I Interior Wall/Partition Wall Dead Load Component Weights Actual(pat) Comments Framing 1.7 2x6 A 16"o.c. Interior Gyp Finish 5.6 5/8"gyp each side Insulation 0,5 Fiberglass Batt Insulation as occurs Misc. 0.2 t Total" Ti psf I I Page 4of118 Client: West Hills Development Project: River Terrace East Proj.8: 16-Ti00 Date: 4/8/2014 111111 8Y YSP FROELICH ENGINEERS' Flat Roof Snow Load Calculation: Based on the following Codes: 2010 OSSC ASCE 7-05 Snow Load Analysis for Oregon 3rd ed. December 2007 Maximum Elevation: 450 ft Ground Snow Load(Pg)= 15 psf Determined from Snow Load Analaysis for Oregon(3rd cd.December 2007) Terrian Category= B(Partial Exposed) per ASCE 7-05 Table 7-2 Snow Exposure Factor(Ca)= 1.0 per ASCF 7-05 Table 7-2 Thermal Factor(CO= 1.0 per ASCE 7-05 Table 7-3 Importance Factor(i)= 1.0 per ASCE 7-05 Table 7-4 Fiat Roof Snow Load(pr)= 10.5 psf Pf=0.7*Cfi*Ct*I*Pg Where pg 5 20 psf(pr Min)= 15 Where p9>20 psf(p1 Min)= 10.5 Use(pr)= 15 psf Use(pf)= 25 psf per 2010 OSSC 1608.1 I I I I I I I I I I I rIlD N‘N141.219.1 .4oaar f keld -Z? 0 to a) o) as a l� .,_ . = =I7 g�iismommemJ- .___w .- ear,' d :..::,:::.1!!!1:1 I II.! jams ,.,,,, 11 MIlli--- .! . ..Ai , •.. .... ... ... ,.,....:,.. . ..• . ...• . ..... _. ...,Lam,___ _. _ , . _ NE J 17 IIIACIF6,.,-/Mg i Ink i''': _ _ it.._,......' i.,:::: tr isiiimminiiiiiiimilmi 'we Ilir 411 i i)mi ilrilliLR I L .. ii AA -...-- ..- --..; :: WNW — 1 '--11 ,...:.:Atik.:::•.-.....--...:.,_ 4 NIL - : ..... .• . .. ___,..J___„, , .,,,,,i .:,: :7: _,: _ Ai ..,::::::. iiiii.. .•...! .. , ,. .„,...:,„ ....,::1: , .:.,....:::: . .: ..,,..A110:1111111111 .:::...,.......:,:. Fa- -.4 r . h--- --iiiiiiigill I . .... _ . . _.:Iiiiiiiiiiiif_ . -11 MI ,___ ININNIMINIIIMI I1 (r...) i ri' I la; r'F,31) iv� I — 6969 SW Hampton St. Portland,Oregon 97223 C�IItN I: 503-624-7005 PROJECT: Page 6 of 118 111 745 NW Mt.Washington Or,#205 NUMBER: Bend Oregon 97703 541-383-1828 FROE_LICH = - - DATE: I ENGINEERS3 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 ,,,-vi-roeiict, ,- 720-560-2269 BY: li ea.:,.4-- Ae4 AA-1,4Jc.. DE5 i Gti rJ Rood DEAD togD s Ig Psr gooF S.vaW 604os2.5 P.sl' F U 56 ,3a e_ ,rpt t,,J,4" .,e>f ss RoaF CA,LeDER. Tu : (( rOde. REAGT+Ctv O ty) 1 `'%Gl1i ' r �. > Ii I. RA -, DL s 1/0o* II' -51.... .0 2050 RG2./ : A,•k; sr23 —O LR (5 ) 01$ ) ,- 90 PLF 11 PL F I, , A ' t. L : 1200*' em..= 150r)* IR G4 3, • pe l z.'_~J` 4i . DL,L ) ( ls ) =3 f� 52_s(i') ( 25) s 5© �L`°' [�C..r tux" _. _ _ i,_ DL c32-0,c� 23�} 2,W .. 4 u __ IDL -4 (it )(13 yrzo0 p‘...,4 1 }.._ ) r 2;5 Ir,-r._ ,,;;.2 CLIENT: 6969 SW Hampton St. Portland,Oregon 97223 503-624-7005 PROJECT: Page 7 of 118 I A 745 NW reg(Wnashingto 97703n tDr.#205 NUMBER: Bend,O 541-383-1828 FRO_ E_L_ICH DATE: E N a 1 N E E R S 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 www;frozudl-erk;ners.caxn 720-560-2269 BY: re-F DLr 5L r 3Z 1.,..).2.1.,..).2. � (tc�� � Pij 1 �'�i i1 � . z,,,„x t�L c Faco4•,. RC, Z) ISL 0)(2.5) r Z50P6F DLs 134:Do SLeiboo I II Roo F Ham. IF N i / ,., 1 ' pAry r 3 -0 1 SL rot/)tLs) s° a 7-5PLer Ifp(F-e-4 Gcte..oe ie- Tzus.s 2:-°-.. ii LDS , ( i°f) ( 3r) � 1'1, t L , 12oa SI- r 01) (31) (ZS) s 15 o I UJt I DL , Ot5(IT s Zoo PLP 3,1_s• j i jZ } x2 5 PC-F 0 i 1 I 1 1 COMPANY PROJECT Page 8 of 118 I. r l 1 Woo d i/Vf r k s® Aug.31.2016 0929 RH1 nwb SOFTWARE FOR W000 DESIGN I Design Check Calculation Sheet Wood Works Sizer 10.42 Loads: Load Type Distribution Pat- Location MI Magnitude Unit tern Start End Start End I LoaaT Load2 Dead partial UDL 0.09 3.21 200.0 200.0 plf Snow Partial UDL 0.00 3.21 275.0 275.0 plf Load3 Dead Point 2.06 1.206 lbs Loa d9 Snow Faint 2.06 1500 lbs Self-ae.L5h1L Dead. Full PD1 fj,9 Ali Maximum Reactions(lbs),Bearing Capacities(Ws)and Bearing Lengths(in): f 3•-1.9• fi II I I llnfactored: Dead 715 920 1116 1926 Factored:Total 1535 Dearing: 2199 Capacity Beam 1635 Support 161.1 2544 Mal/Res 2017 Beam 1-00 Support 0.90 9.90 Load comb 42 9.90 02 Length 0.75 1. 6 II Hirt q'd 0.75 1.16 Co 1.00 1,00 Cb mi 1.00 CS support 1.11 1.11 Fop sup 029 1.11 525 I Lumber-soft,D.Fir-L,No.2,4x8(3-1/2"x7-114") Supports:All-Timber-son Beam,D.Fir--L No.2 Total length:3'.1,9';volume=0.6 cu.R.: Lateral support lop=at supports,bottom=at Supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: Criterion Analysts Va1ue Oealpan Pulse Unat Analyynin/Desaga Shear iv 231 fv7 6 207- ps, iv/frv' . 0.6.3 nend.ing(+) fb., 931 Pb' • 1339 psi ES/FS' 0.70 Dead Defi'n 0,01 . <L/999 Live Def1'n 0,01 . <L/999 0.10 = 1/360 in 0.11 Total.Dell's 0.02 • <1,2999 0.15 = L1240 in 0.15 IAdditional Data: FAC1ORS: E/E(pst)CD CM Ct. CL CF Cfu Cr Cfrt Ci Cn LC4 Fv' 100 1..15 1.00 1.00 1.00 1-00 1.00 2 05'0 900 1.15 1.00 1.00 0.995 1.300 1.00 1.00 1.00 1.00 - 2 Fop' 625 - 1.00 1.00 - - - - 1.0(1 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.90 1.00 - 2 I lean' 0.58 million 1.00 1.00 - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS: Shear 1 LC 42 =D+S, V 2521, V design = 2209 lbs 8ending(+): LC 42 = 0+3, M= 2379 lbs-ft Deflection: LC 42 =DI'S (live; LC 42 = D+S {total) D=dead L=live S snow W-wind 1-impact Lr=roof Live Le=concent.cated E=_arthquake A11 Lt's are listed in the Analysis output. I Load combinations: ASCE 7-10 / IBC 2012 p• CALCULATIONS: Deflection: EI = 176e06 lb-int"Live" deflection = Deflection from all non-dead Loads (live, wind, s Total Deflection = 1.50)Dead Load Deflection) + Live Load Deflections Lateral stability (41: La = 3'-0.94^ Le- 6'-9.19" RS= 00.71 I Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4,4.1. I I I I COMPANY PROJECT Page 9 of 118 I 11 1 Wood\A/orks Aug,31,201609:29 RHZ.wwb SOFTWARE ECM WOOD t)E5tGN IIDesign Check Calculation Sheet Woodworks Sizer 10.42 Loads: Load Type Distribution oat- Location ,ft) Magnitude Unit rad lead SCazL !.cd 5t,_t >Lcd t+.1l OIIL t'Z Load! Snow Fall 231 275.0 p21 0pl0-waig.^.t.. :.,1_ r ^ 275.0 p12 5.0 1flf Maximum Reactions fibs),Bearing Capacities(lbs)and Bearing Lengths(in): ..f &A,3" I Unr ecared, I is .r• coats 624 snow ear Facto rod: 625 Total la"D 949 Hearing: Cap,, 1ty 1470 Beam 147-0 Support 1527 Anal/Des 1470 Beam 1.00 1627 Support 0.90 Load comb 42 1.00 Length 0.67 0.90 Min reg'd 0,67 42 lb 1n L.00 0.67 Cb m 1.00 0.67 Cb support 1,10 1.00 Fop sup 025 1.00 1-11 025 Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7-114") Supports:All-Timber-soft Beam,D.Fir-L No 2 Total length;6'-1.3';volume=1.1 cul.; Lateral support:tope at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection utg NDs 2012: 5Aearcazerian ,Analysis Value leargn Value r last Analyysis/Cosign v' 03 rb.. a 207 is; fv/±`o' = .63 Dead D +; Pb = 003 ' x :333 psi =b/^b' = 1 0.65 Dead efi'n 0.04 499 X Live Dail':t 0.05 - L/999 1.21 e 1,/3:0 Total De£i'n 0.10= 1/731 0.30= „/240 0.233 1n 0.33 Additional Data: FACTORS: F/Elpsi 0.1 C00 It Cl C- 1.00 c0 Co L2p iv' 07 1.00 1.00 ..00 1.00 1.00 eb'S 900 1.1 00 1.00 0.491 1.300 00 .00 1.00 1.00 2 Fop' 625 ] 1.00 1.00 0' miction 1.00 1.00 - - - 1.00 1.00 - 2 oto' 0.54 million 1.09 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS, Shear : LC 42 = 0-5, V= 1457, l design = 1152 Ls De09,e09!+1: LC 02 - D 5 N .7.' lbs-ft ara Deflection: LC 'r2 S rel IC 112 = D'S to D-dead L=live S=snow W -Sts =imp _ f live lS" All LCs are listed in the Analysis ou«Ρput� - `ed °=earrhqua ke Loadcombinations: ASCE 7-10 2 131 2012 CALCULATIONS: "Live" deft .. 9 0 b o ..ems i iv ,l "Live" ion: E Deflection non-dead _cads ,.ve, wind, snow..} Total Deflection 1. 0:Des Load De Load Deflection. Lateral stability :,u . 61-0.64" '-8.19" 9.6 = 9.11 Design Notes: 1.WoedWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NOS Design Supplement. I 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. I I I I I ' El Main Office CLIENT: 6969 SW Hampton St. Portland,Oregon 97223PA CLIENT: 503-624-7005 PROJECT: I C Oregonhington Dr.#205 Page 10 of 118 745 NWC�nlrai Mt.Was ' Bend,Oregon 97703 NUMBER: 541-383-1828 FIR O E L I C H ❑ Denver Office DATE: �'"E 12303 Airport Way,Suite 200 ENGINER 5 3 Broomfield,Colorado 80021 www.froclich-ein ngeea.coni 720-560-2269 BY: W i Ataoc HD/ ,C04' ...7„. 1:›81- To.o PL APs _ yF,A vE !, hie� x$ , t 2 't-�- Ne_xi— Pcke3 e_. Pa H Y\(3 —I.- 9 Lo - C.-,r. A-1 Cr ) i tt I,. use `0 Tc AJA l I Page 11 of 118 II 4 Client: Project: IProject#: .4. Date: By: FROELICH ENGINEERS ! I WIND FORCE CALCULATION-C&C Walls ASCE 7-10 SECTION 30.6,30,7(Third Frintine) Design Wind Loads on Components and Cladding-Walls IBasic Wind Speeds Input 3 Second Gust Vas= 120 mph IExposure Category= B Wind Directionality Factor Ka= 0.85 Table 26.6-1 (page I94) IMean Height of Roof,h= 40 ft Topographic Effects Input Hill Height H= 0 ft Table 26.8-1 (page 196) Length of 1/2 hill height Lh= 1000 ft Table 26.8-1 (page 196) Dist.From Crest to Bldg. x= 100 ft Table 26.8-1 (page 196) I Height Above Local Grade z= 15 ft Table 26.8-1 (page 196) Horizontal Attenuation Factor m= 1.5 Table 26.8-1 (page 196) Height Attenuation Factor g= 3 Table 26.8-1 (page 196) IShape Factor Kl/(H/Lh)= 1.3 Table 26.8-1 (page 196) Output-Topographic Multipliers K1 = 0.00 K2= 0.93 11 K3= 0.96 Topographic Factor Kzt= 1.00 ITerrain Exposure Constants nominal height of boundary zg= 1200 Table 26.9-1 (page 199) 3-s gust exponent a= 7.00 Table 26.9-1 (page 199) I I I I I I Page 12 of 118 Pressure Coefficients Input IVelocity Pressure Exposure Coefficients Kh (see below) Table 30.3-1 (page 259) Height(ft) Kh qh(psf) Velocity 1 15 0.70 22.0 Pressure 20 0.70 22.0 Output qZ 25 0.70 22.0 I 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 I 60 0.85 26.8 70 0.89 28.0 80 I 0.93 29.1 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 h= 40 0.76 23.8 qh External Pressure Coefficients (CCi)-Use Figure 30.4-1 for h<60 ft,30.6-1 for h>60 ft I GCp;=+1- 0.18 Table 26.11-1 (page 201) Pressure Coefficients on Exterior Surfaces of Walls Zone GCp Zone 4(+) 0.90 Figure 30.4-1 for h<=60(page 277) Zone 5 (+) 0.90 Figure 30.6-I for h>60(page 290) I Zone 4(-) -0.90 Zone 5 (-) -1.80 ICalculate Wind Pressure, p,per Equation 30.4-1 or 30.6-1,using qb Exterior Face of Surface Zone • ,s I Zone 4 + 25.74 with Positive Internal Pressure Zone 5 + 25.74 with Positive Internal Pressure Zone 4 - -25.74 with Negative Internal Pressure I Zone 5 -47.19 with Negative Internal Pressure 1 , I I I I I rilt COMPANY PROJECT Page 13 of 118III WoodWorks® SOFTWARE MR woos orsu;w Dec.13,2016 09:39 Beam1 Design Check Calculation Sheet Wood Works Sizer 10.42 Loads: . I Load ist ILoadlTyp Linde �llullULf - D +. -iotern Location End t� StaMagnitude End�plfUnit I I Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): ' III i, Unfactored: g' : '• Dead Wind 327 I Factored: 327 Total 196 Bearing: 156 Capacity Beam 2266 Support 2266 2266 111 Anal/Des 2266 Beam 0.09 Support 0.09 0.09 Load comb 02 U.#2 Length 0.50* #2 Min req'd 0.50+ - 0.50. Cb 1.00 0.50• 111 Cb min 1.00 1.00 Cb support 1.00 1.00 Fcp sup 625 1,00 'Minktwm bearing length setting used:112"for end supports 625 i Lumber-soft,D.Fir-L,No.2,4x8(3-1/2"x7-114") Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:9'-1,0';volume=1,6 cu.ft.; Lateral support:top=at supports,bottom=at supports;Oblique angle:90.0 deg; I Analysis vs.Allowable Stress and Deflection„slog NDS 2012 Criterion Analysis Value Design Value Unit x-x v Aral�+s is/➢esign Shear 0 Fv' = 288 kips tv/Fv' = 0.00 y-y fv = 11 Fe' = 288 psi fv/Fv' = 0.04 Bending(+) x-x fb = 0 Fb' = 1831 kip-ft fb/ib' = 0,00 I y-y fb = 356 Fb' = 1966 7-It fb/Fb' = 0,19 0.35 Dead Defi'n negligible Live Defl'n 0.16 = L/692 0.45 L/240 Total Defl'n 0,15 = L/592 0.45 B L/240 in 0.35 Additional Data: I FACTORS: F/E(psi)CD CM Ct C_ CF riu Cr Cfrt Ci. Cr, LC# Fey' 180 1.60 1.00 1.00 1.00 1.00 Shy' 900 1.60 1.00 1.00 1.000 1.300 1.05 1.00 1.00 I.00 2 ftp' 625 - 1.00 1.00 - - - - 1.00 1.00 2 - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 CRITICAL LOAD COMBINATIONS • : ' Shear : LC 02 = .6D+.6W, V = 195, V design = 182 lbs Bending(+): LC 02 .6D+•6W, M = 441 lbs-ft Deflection: LC #2 = .6D+.6W (live) LC #2 = .6D+.6W (total) D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 1 290 2012 CALCULATIONS: Deflection: El = 178e06 lb-int Ely = 41.4e06 lb-1n2 "Live" deflection = Deflection from allnon-dead loads (live, wind, snow_.) Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. Lateral stability (+): Lu = 9'-0.50" Le = 16'-7.63" RB = 3.65 Design Notes: 1 Woodworks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4.1. I I • I US H N IIIIII N MR MN MN 1111111 an MN OM UN N MI NMI O' e US `YAI IYHI (Y[J) (Y.,..) 3036 I i I I I - = -� _ L III, 1,. iii , +/I , _____,. :_...., ..„,„, ,,,53 Mb I -1 [ 1 ;_:__ :,:,::::„,::: ____ : Illini I I & I -F _.. PE 1111110111.1 - I I mow let _ -,-„,-,___ , _____.__ .11111111111111 � I. � I �? 1 NEN 1 - <24 I r= 2 .7!‘4'1111, I I.t I, ;WO rY() (YE) ' YG; YHY \Y.i a) CO CD J 0 2 1 PLex _ 3'4°f' Faikimoti G co I 6969 SW Hampton St. ¼ i_11_1 NI I. Portland.Oregon 97223 , .:' 144 503-624-7005 PROJECT: Page 15 of 118 I .----,. f-er.tral Gregor. 7-45 NW Mt.Washington Dr#205 , ..!.:., NUMBER: Bend,Oregon 97703 541-383-1828 I FROELICH EEERSX 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 DATE: NGIN ....AcwAT0elich-engincers..:onl 720-560-2269 BY: — - i "3* iCe-t>ccde /4:42,4 0 ......... --------... Cilere 0640 4c),IC) s 27-P.' F' 1 fr-cole &tie 604 0 czeesooe 4-i LI6 I IFe-ctDc>/e. Z 0 s.,s.r.s : I / - f:).41k ski s i 2. -0 I SPAN Ar Is._ IS P A IV r I „SPA A-) r s'f- -. I "Slz'AN" b -c ( p eej?... ) I I I 1 i I i 1 I a- FORTE MEMBER REPORT 3rd Floor,Span 12=0" P SSED 1 piece(s) 11 7/8" TSI® 110 @ 24" OC Page 16 of 11 Overall Length: 12' 7" I I ,, X J AR locations are measured from the outside face of left support(or left cantilever end).AtI dimensions are horizontal. Design Results Adair 0 lassoo Allowed Result LDF Load:combination(Pattern) t System:Floor Member Reaction(lbs) 829 @ 2 1/2" 1041(2.25") Passed(80%) 1.00 1.0 D+1.0 L(Ail Spans) Member Type:Joist I Shear(lbs) 804 @ 3 1/2" 1560 Passed(52%) 1.00 1.0 D+1.0 L(Ail Spans) Building Use:Residential 'Moment(Ft-lbs) 2479 @ 6'3 1/2" 3160 Passed(78%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 Live Load Defl.(In) 0.133 @ 6'3 1/2" 0.304 Passed(L/999+) 1.0 0+1.0 L(All Spans) Design Methodology:ASD `Total Load Deft(in) 0.223 @ 6'3 1/2" 0.608 Passed(1/654) — 1.0 D+1.0 L(Ail Spans) I T3-Pro""Rating 58 45 Passed -- •Deflection criteria:LL(1/480)and TL(1/240). •Bracing(Lu):All compression edges(top and bottom)must be braced at 3'1 1/2"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. I •A structural analysis of the deck has not been performed. • Deflection analysis is based on composite action with a single layer of 7/8",1"Panel(32"Span Rating)that is glued and nailed down. •Additional considerations for the TJ-Pro""Rating include:1/2"Gypsum ceiling. i / Bearing Len9tis leads to Supports(lbs) Supports Tobi Available Required DeadTatar Accessories 1-Stud wall-SPF 3,50" 2.25" 1.75" 340 503 843 1 114"Rim Board 2-Stud wall-SPF 3.50" 2.25"__ _ 1.75" 340 503 843 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. r I PaidF7ooruve Loads ssx:00on(Ode) Spacing 0(0.90) MOM' comaoentp 1 I-Uniform(PSF) 0 to 12'7" 24" 27.0 40.0 dential-living ,Areas Weyerhaeuser Notes I :Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. '(www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of Has software Is not intended to circumvent the need for a design professional as determined by the authority having JunsdictIon.The designer of record,bulkier or framer is responsible to II assure that this calculation is compatible with the overall project Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable 'fore,y standards.Weyerhaeuser Engineered Lumber Products have been evaluated try ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodtrywy.tom/services/s_CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator I I I 1 Forte Software Operator Job Notes 8/24/2016 9:00:10 AM Yashar Sa ref Pour Forte v5.1. Design Engine:V6.5.1 1 Froelich Engineers (503)924-6311 JOiSfS.41e 1 111 F R i MEMBER REPORT 3rd Floor,Span 15=0" SSE 1 piece(s) 11 7/8" TJI® 210 @1 24" OC Page 17 of 118 I Overall Length: 15'7" I I A 0 0 2 IAll locations are measured from the outside face of left support(or left cantilever end).Ali dimensions are horizontal. Design Results Actual @ Location Allowed Result LD6 Load:Combination(Pattern) I System:Floor Member Reaction(lbs) 1030 @ 2 1/2" 1134(2.25") Passed(91%) 1.00 1.0 D+1.0 L(All Spans) Member Type:Joist I Shear(its) 1005 @ 3 1/2" 1655 Passed(61%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft lbs) 3853 @ 7'9 1/2" 3795 Passed(102%) 1.00 1.0 D+1.0 L(Ali Spans) Building code:IBC 2012 Live Load Defl.(in) 0.265 @ 7'9 1/2" 0379 Passed(L/686) -- 1.013+1.0 L(All Spans) " Design Methodology:ASD Total Load Defl.(in) 0.444 @ 7'9 1/2" 0.758 Passed(1/410) -- 1.0 D+1.0 L(All Spans) I T3-Pro'"Rating SO 45 Passed •Deflection criteria:IL(I./480)and Ti 01240)5. •Bracing(W):M compression edges(top and bottom)must be braced at 3'3'o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. I -A structural analysis of the deck has not been performed. •Deflection analysis is based on composite action with a single layer of 7/8",1"Panel(32"Span Rating)that is glued and nailed down. •Additional considerations for the T3-Pro"'Rating include:1/2"Gypsum ceiling. ��g length ---- — Loads to Supports(lbs) s 111 i Supports I Tont Avertable Required Deadthie Talar Aoceslaoetes 1-Stud wall-SPF 1 3.50" 2.25" 1.85" 421 623 1044 1 1/4"Rim Board I 2-Stud wall-SPF 3.50" 2.25" 1.85" 421 623 1044 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Deed Floor Live I Loads L otatkgn(Side) Spacing (0 90) (1A0) Co ngnronts I 1-Uniform(PSF) 0 to 15'7" 24" 27.0 40.0 Residential-Living Areas Weyerhaeuser Notes \fit .:"4.51, ST,—' I Weyerhaeuser warrants that the siring of ifs products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.corn)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to :assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable I forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by/CC ES under technical reports ESR-1153 and ESR-1387 and/or tetd in accordance with applicable ASTM standards. for current code evaluation reports refer to http://www.woodbywy.com/services/ssodeReportsaspac. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator I . I I 1 I Forte Software Operator Job Notes 8/24/2016 9:00:19 Al Yashar Samaf Pour Forte v5.1, Design Engine:V6.5.1 j Froelich Engineers Joists. I (503)924-6311 wl e 0 Ft 7 t MEMBER REPORT 3rd Floor,Span 18.6" PASSEL I1 piece(s) 117/8" TUI®360 @ 19.2" OC Page 18 of 118 Overall Length: 19' 1" I I .r 13 8' i' l Li I Alt locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual®Location Allowed Result EDF toad:combination(Pattern) ( System:Floor Member Reaction(Lbs) 1012 @ 2 1/2" 1202(2.25") Passed(84%) 1.00 1.0 0+1.0 L(Ail Spans) TypeMember I Shear Lbs :Joist (lbs) 992 @ 3 1i2" 1705 Passed(58%) 1.00 1.0 D+1.0 L(Ail Spans) Building Use:Residential Moment(Ft-Lbs) 4664 @ 9'6 1/2" 6180 Passed(76%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 Live Load Defl.(in) 0.382 @ 9'6 1/2" 0.467 Passed(1/586) -- 1.0 D+1.0 L(All Spans) Design Methodology Total Load DeFl.(in) ASD 0.640 @ 9'6 1/2" 0.933 Passed(1/350)T] — 1.0 D+1.0 L(All Spans) -Pro'"Rating 48 45 Passed •Deflection criteria:LL(t/480)and TL(1/240). — _ •Bracing(Lu):All compression edges(top and bottom)must be braced at 3'9 1/2"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. A structural analysis of the deck has not been performed. •Deflection analysis is based on composite action with a single layer of 7/8",1"Panel(32"Span Rating)that is glued and nailed down. •Additional considerations for the T}Pro" Rating include:1/2"Gypsum ceiling. A Bearing�4h toads to Supports(las) SL1PpO Total Available floor Required Dead Total Aramicr s 1-Stud wall-SPF 3.50 2.25" 1.75" 412 611 1023 1 1/4"Rim Board I 2-Stud wall-SPF 3.50" 2.25" 1.75" 412 611 1023 11/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Bead Haar five I tacatiorr(side) spaarrg (o 90 (l.00) Comments l Residential-Uniform(PSF) 0 to 19'1" 19.2" 27.0 40.0 esidential-Living Areas Weyerhaeuser Notes .4„' I Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. ' Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to I assure that this calculation Is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to trite://www.woodbyvry.room/services/s_CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator I I I I IForte Software Operator Notes 8/24/2016 9:00:25 P Yashar Sacral Pour Forte v5.1,Design Engine:V6.5." Froelich Engineers Joists., (503)9246311 iC �ffr O R T E MEMBER REPORT 3rd Floor, Span 5.-O"(Corridor Joists) PASSEL 1 piece(s) 2 x 6 Douglas Fir-Larch No. 2 @ 16" OC Page 19 of 118 Overall Length. 5'7" I t I x I� G IAll locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual 0 Location Allowed Rh cult LDF Load:combination Member Reaction(Itis) 455 @ 2 1/2" 1434(2.25") Passed "� Membe: yperpe:Joist I Shear(lbs) (32°10) — 1.0 D+1.0 L(All Spans) Member Ty ( 346 @ 9" 990 Passed(35%) 1.00 1.00+1.0 L(All Spans) Building Use:Residential Moment(Ft lbs) 565 @ 2'9 1/2" 848 Passed(67%) 1.00 1.0 0+1.0 L(All Spans) Building Code:IBC 2012 Live Load Defl.(in) 0.064 @ 2'9 1/2" 0.129 Passed(1/965) — 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load befl.(in) 0.082 @ 2'9 1/2" 0.258 Passed(1/760) — 1.0 D+1.0 L(AU Spans) D-Pro."1 Rating N/A N/A •Deflection criteria:U.(L/480)and TL(1/240). •Bracing(Lu):All compression edges(top and bottom)must be braced at 5'4 1/2"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. •A 15%increase in the moment capacity has been added to account for ic,. UUve member usage. •Applicable calculations are based on NDS. •No composite action between deck and joist was considered in analysis. Bearing Langer Loads to Supports(Use) 1 Supports Trial Available Required Dead Floor Total { 1-Stud wall-SPFLitre 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board 2-Stud wall-SPF 3.50" 2.25" 1.50" 101 372 473 1 1/4"Rim Board , •Rim Board is assumed to carry ail loads applied directly above it,bypassing the member being designed. LoadsDead Floor lure I Location( ) Spacing (0.90) 040) -Comments 1-Uniform{PSF) 0 to 5'7" 16" 27.0 100.0 .Residential-Living Areas 'Weyerhaeuser Notes T;.. Weyerhaeuser warrants that the siring of its products will be in accordance with Weyerhaeuser `yv" r,-r= nil*,a.: product aeuser criteriarau and published design values. 'Weyerhaeuser egxessly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www-waoitbywy.corn)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeRectortsasPx- The product application,input design loads,dimensions and support information have been provided by Fort Software Operator I I I I I Forte Software Operator Job Notes II 8/24/2016 9:00:31 Al Yashar Froelich Engineers rraf dour Forte v5.1,Design Engine:V6.5.1 Froelich (503)924-6311 1 /Ofst5.41 I ani F 0 R T E MEMBER REPORT 3rd Floor, Span 6=0"(Deck Joists) Page 20 of p, sSED I1 piece(s) 2 x 6 Hem-Fir No. 2@ 16" OC Overall Length 6' 7" I I4' 6' I I_i Ail locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual D Location Allowed Result LDP Load:Combination(Pattern) j System:Floor Member Reaction(lbs) 285 @ 2 1/2" 1367(2.25") Passed(21%) -- 1.0 D+1.0 L(All Spans) Member Type:Joist Shear(Has) 227 @ 9" 825 Passed(28%) 1.00 1.0 D+1.0 L(All Spans) Building Use:Residential Moment(Ft-lbs) 425 @ 3'3 1/2" 801 Passed(53%) 1.00 1.0 D+1.0 L(All Spans) Building Code:IBC 2012 Live Load Deft.(in) 0.064 @ 3'3 1/2" 0.154 Passed(1/999+) — 1.0 D+1.0 1(All Spans) i Design Methodology:ASD Total Load Defl.(in) 0.108 @ 3'3 1/2" 0.308 Passed(L/688) — 1.0 D+1.0 L(All Spans) II TJ-Pror"Rating N/A N/A • Deflection criteria:LL(1/480)and TL(1/240). •Bracing(Lu):All compression edges(top and bottom)must be braced at 6'4 1/2"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. i •A 15%increase in the moment capacity has been added to account for repetitive member usage. •Applicable calculations are based on NDS. •No composite action between deck and joist was considered in analysis. SeMtrit Length Roads to Supports(lbs) 1 **PERU Available Required Dead Floor a 'I total I $u 1-Stud wall-SPF 3.50" 2.25" 1.50" 119 176 29s 11/4"Rim Board! I 2-Stud wall-SPF _ 3.50" 2.25" 1.50" 119 176 295 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. Dead Floor Live I 'Loads Location(Side) Speck* (0.91) (1.DD) Comments I 1-Uniform(PSF) 0 to 6'7" 16" 27.0 44,0 Residential-living . Areas Weyerhaeuser Notes es ��7i.,,s: f•�.4;Sr-r1Y Ji4`F:AiI'�.i�� Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design valu . II Weyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.com)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to I .assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forenby standards.Weyerhaeuser Engineered Lumber Product have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx- The product application,input design loads,dimensions and support information have been provided by Forte Software Operator I I • I I IlForte Software Operator Job Notes 8/24/2016 9:00:37 AM Yashar Sarraf Pour Forte v5.1,Design Engine:V6.5.1.1 Froelich Engineers t5oists.4te n'�i old-i; 11 r • I - Mo.,-C:,r7ice 6969 SW Hampton St, Portland,Oregon 97223 CLIENT: 503-624-7005 PROJECT: Page 21 of 118 I tA , j--- Cenrol Creg(...e- f; 745 NW Mt.Washington Dr.#205 Bend,Oregon 97703 541-383-1828 NUMBER: FROELICH LT e'l'er C-nce S4 II 12303 Airport Way,Suite 200 EN G 1 NEER Broomfield,Colorado 80021 DATE: 720-560-2269 BY: ........_____ ,,S iC1.4002. iFWAM.S' , ______ ...............w...--,--M.01....0 0SFS 1 I - SP AN r 9 - 0 L Ls (151) (go ) Jr 6o® PCP. I ii .3 F 8 2./: SPA'kJ r 6 1._0`•• DLso7 )(2.7 ) s LOD P4-1 I LLA 0 cej(c-io ) , 7-20 Pz-F I 3Fes3,,, : i .. SPAN x12—0 I DL. ( Is ) (Z7) r.2.2_o PLF i )(40) s 32_0 PLF I 3F a Lit: ISPAN T 5— 0 1=1F L 1„s (3) 0 co) s. 300 fL sp,,,Als 13-0 DL s (3°)(2x- Is% et-F I 7-) (*NJ LL A ( /)) ( c ) c 4Z® I I I I COMPANY PROJECT Paye 22 of 118 I ;I %%Oo d\I4/ c r k sAug.31,201609-42 3P81.web SOFTWARE FOR WOOD 11ENGIV Design Check Calculation Sheet woodworks Sizer 1042 Loads: Load Type Distribution Pat- Location (ft] Magnitude Unit tern Starr End 1tactSod Loadl bead full VD/ Stan pi! Load2 Live Full DOL 600.0 p1f Self-weight Dead Full UDL 9.6 pit Maximum Reactions(lbs),Bearing Capacities(Ibs)and Bearing Lengths(In): t f tintaccowd: 9'-2..1• Lead 1960 Live 2805 )965 Vectored: 2805 Total 4765 Searing: 9765 Capacity BeamS1713 P/0et ,)73 ?755 Anal/De. .003 Beam 4765 Support 0.94 1.00 La ad tae¢b q2 U. 2 Length 2.09 02 Min reg'd 2.09 Cl, 1.00 2,09 our. 1.00 2.09 Cb support 2.11 1.11 Pap atop 625 1.00 1.11 _ 625 Gfulam-Unbal.,West Species,24F-1.8E WS,3-1/2"x11.7/8" III8 lamtnatian,•3-117'mvtilress wide. Supports:All-Timber-soft Beam,D.Fir-L Not Total length:9•-42-;volume= 2,7 cu,ft,; Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: Criterion Analysis 'lnlue benign- Value link AealymYmtOea ig 371621 (v" 123 t"v `t 65 psi tvW3v' w '0j.49 Bentlingiai fb 1565 Fb' 2400 psi fbl o' 0.65 Uead Lefi•n 0.00 *•<i1999 Live Defl'n 0.11 a<L/999 0.31 = L/360 in 0.36 Total. Def1'n 0.22 " L/403 0.95= L/240 on 0.49 I Additional Data: FACTORS: F/Elpsi)CD CM Ct :.fu Cr t Notes Cr, Cvr LC! Fv' 265 1.00 1.00 1.00 1,10 2 Fb'+ 2400 1.00 1.5± 1.00 1.000 1.000 100 1.00 1.00 - C2 Fop' 650 - 1.00 1.00 - _ .10 - 1.8 million 1.05 1.90 - Or, _ - 2 Eminy• 0.85 million 1.00 1.00 - - - 1f,G - - 2 I CRITICAL LOAD COMBINATIONS- Shear : LC 02 = D'.-L, V_ 4677, V design = 3579 lbs Sending(+): LC 02 = D+L, M= 10727 lbs-ft Deflection: LC 422 = D+L (1.1ve) LI 47 = 84-1 ;tot.1; D=dead L=live S=Snow 14=wind I=impar'_ aI live Lc-Concentrated E_ All LC's are listed in the Analysis outputea-- - .« Load combinations: ASCE 7-13 / IBC 2012 Deflection: BI = 879806 ib-int "Live" deflection= Deflection from all non-dead loads ( , snow.J Total Deflection= 1.50)Dead Load Deflection) + Live Load Deflection. Design Notes: I 1.Woodworks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NOS Design Supplement. 2.Please verify that the default deflection Omits are appropriate for your antiunion. 3.Gluiam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4.GLULAM:bxd=actual breadth x actual depth. 5.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3 6.GLULAM:bearing length based on smaller of Fcp(tenslon),Fcp(comp'n). I I • I I I IIICOMPANY PROJECT Page 23 of 118 di %'OO d\fIi rks Aug.31,201609:42 3F82.wwb SOFT W4RF FOR WOOD DESICN 1 Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: Load Type Distribution Pat- Location (ft) Magnitude Unit tete Start End Start Furl Loedi bead E5.11 UDE 490.0 Of Live Full ODL 720 0 p11 Self-u+_.igot dead Full lJlili 9.6 pkf Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): I 1 V �'`�" Onfettored, 6'•1.7' Dead 1518 - 2262 1565 Live retire 2241 Total 3825 tiCa acct 3829 Capacity Beam 3829 Support 4016 3629 Anal/Des 4070 Beam 0.90 Support 0.94 1.00 Load Como 92 D 92 Len9ti: 1.68 !92 Min req'd 1.68 66 Cb 1,00 1.00 Cb coin 1.00 1.00 Cb support 1.1I 1.00 lop sop 025 i-it 625 Glutarn-Unbal.,West Species,24F-1.SE WS,3.112"x11-7$8" 8 laminations,3-112'maximum width, Supports:All-Timber-soft Beam,D,Fir-L No.2 Total length.8'-3.4';volume= 1-6 reit:Lateral support:tape full,bollom=at supports; Analysis vs.Allowable Stress and Deflection wine Nos 2012: Criterion Malys ie Value Design value Unit AnalyYeeaiboalgn Shea T- _ 90 1v 254 psi i'v/mv' . 3.33 Dead p(F1'n ;,02 <L1999 Bending(*) 1'b = 836 ib' .2400 pal fbl 16' " 0.35 l Live Dell',, 0.03 = 411999 1.20 3. L/360 0,13 Rotel Detl'x 0.05 41'999 0.3i. 1/240 in 0.17 Additional Data: FACTORS: FItlpsi:CD CM Ct CL CV Cfu Cr Cfrt Notes leo' 265 1.00 1.00 1.00 _ 4 1.00 1.20 .- 2 III Fv. 2b'r 2900 1.00 1.00 1.00 1.000 1.000 1.00 1.40 1.00 i.0(i 2r c 651 1.00 1.00 1.00 1.8 million 1,00 1.00 1.00 2 Faint'' 0.85 million 1.00 1.00 - - - - 1,00 - - 2 CRITICAL LOAD COMBINATIONS: Shear : LC 62 = Del, V= 3744, V design _ 2452 1.52 1 21+1.Deflect(+): LC 2 -= D.1., 4 S148 lbs-ft Deflection: LC 62 =21+1. (live) LC 62 =D+L (total) D=dead L=live 5=snot,R=wind 1=impact Lr=roc( live Lc=coocen,-_'ed a=a_r_^quake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012 CALCULATIONS: Deflection: EI = 879e06 ib-ln2 • Live" deflection= Deflection from all non-dead loads live, .+ind, sn o,.... - Total Deflection- 1.50(0ead Load Deflection; . ve oad Deflectioc. Design Notes: 1 WoodWorks analysis and design are in accordance with the ICC imemational Building Code(18C 2012),the National Design Specification(NOS 2012),and NOS Design Supplement 2 Please verify that the default deflection limits are appropriate for your application. 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 III 4.GLULAM:bad=actual breadth x actual depth. 5.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3, 6.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). I • 1 1 I COMPANY PROJECT Page 24 of 118 I Wood\/\f' r e' Aug.S 31,2018 08,47 3F133 wwb SOFTWARE FOR WOOD DESIGN IDesign Check Calculation Sheet WoddWorkastzer 1042 Loads: IIILoad Type Distribution Location eeaticn Iftl Magnitude Unit .�.i Load! Dead ;.Tit L'V:. 220.0 Load2 Live F` cern 5taft End Start End l' PDL 320.0 PLO Self-weight bend _1 021 9.46 pir off Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 1 1 1Z-3" } t 1 J�j Unfactored: t2.7.S' Dead 140: Live Factored:: 1405 Total 3365 1959 Searing: 559 Capacity 3765 Beam 3365 Support 3582 3365 R r Pes 3582 Beam i.UO Support 0.94 1.94 Load comb d2 Lenge 1,40 00 0.94 Min req'd 1.45 40 42 1.48 cb 1.00 1.98 Cb min 1.00 1.00 i1.00 Cb support 1-11 Fcp sup 625 1.11 625 Glulam-Unbal.,West Species,24F-1.8E WS,3-112"x11-718" 8 laminations,3112"maximum width, i Supports:Aft-Timber--soft Beam,D.Fir-L No 2 Total length:12-3.0";volume= 3.5 Coit.; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection,,sing NOS 2012: Ceskeflon Analysis Value DeE gn Value 0n.t Analyala/noslgn Shear fv= `psi fulFV' = 0.38 III Sending)+i fo = 147.3 Dead Defl'n 0.13 _ t1/990 Sb' = 543c perLive lb/Eb' +� 0.61 Def1'n ',.1S 1/022 0,40 L/360 9.44 Total bc2l'e 0.31 L/396 q.6". = 1(240 _, 0.61 Additional Data: 111 FACTORS:F265(n5 1CM1.3 Cc CL -..- C- - CL01 Notes C 1002 L2I! 365 1.00 00 1.00 1.e1 1.00 1.00 2 95•+ 2400 1.00 1.00 1.00 i.300 .0000 1.00 1.00 1.00 1.00 2 Fop' 650 1.00 1.00 j,GO E' 1-8 million 1.00 1.00 = - - Ominy' 0.05 million .00 .00 - - .00 - 2 l.00 2 CRITICAL LOAD COMBINATIONS; Shear : LC 42 m all,. V= 3331, V design= 2754 lbs 111 Deflect o : LC 42 = 0 1, M 1009' lbs-ft _ V Deflection: LC 42 = 0,4 Clive LC 42 (total; 0-dead L=lrve S=snow 6-wind I=impac =roof Lc=concentrated F.-earthquake All Le's are listed in the A..nalysis to Load combinations, ASCE 1-10 1 IBC 2012 CALCULATIONS: 1 Deflection: gr = 879:06 1b-in2 "Live"deflection = Defieot.ion from all non-dead loads f1 wind, ano .) Total Deflection >1.50 iDea0 Load Deflection e oad'Ve, u. Deflection- Design Notes: 1 WoodWorks analyse and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specilcabon(NDS 2012),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 1 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190,1-2007 4.GLULAM:bxd=actual breadth x actual depth. 5,Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 1 I I 111 1 #00114COMPANY PROJECT Page 25 of 118 g 1 I WoodWorks® Aug.31,201809:40 39-04,wwb ISO fTWARE FOR WOOD deSIGN Design Check Calculation Sheet WoodWorits Sizer 10.42 Loads: I Load Type Distribution Pot- Location 10ti Magnitude Unix Load1 Dead tern Start Srd 3t zt and Fedi roll DOL 21.0 plf Leed full 1100 121.0 p10 Self-weight Dead 'uil IiDL 9.6 _plt Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): I t 5.7. f I I Unfactored: Dead 230 5',5' Live 305 Factored: 230 Total 535 305 Bearing: Capacity Beam 7;37 535 Support 1211 Anal/Des 1137 Beam 0.47 1211 Support 0.44 0.44 Load comb 42 0.47 Length 0.50• I Min e4'd 0.50' 42 Cb 1.00 0.50- CO min 1.00 0.500 Cb support 1.11 .11 Pop625glh 1.00 'M lmutp bearnp IatBetting used;Ur far end 809179431.11 621 1 Glulam-Unbat.,West Species,24F-1.SE WS,3-112"x11-718" 8 laminations,3-112'maximum width, Supports:All-Timber-soft Beam,DFir-L No.2 Total length:5'-10';volume= 1,5 cog: Lateral support:tap=full,bottom=at supports; 1 Analysis vs.Allowable Stress and Deflection usanp Nos 2012: Czltasion Aralyers Value Design Yxlue Unit Analysis/Design Shear f . 11 a - 265 psi eendi.ngr+Z fb . 98 Pb' 2400 . rb's .D., ' Dead Defl'n 0.00 . <L/999 p'' =b�/Fb' = O.Ort Live Defl'n 0.00 . eL/999 0.17 = L/360 in I1.01Total Defl'n 0.00. <L1999 0.25 Ll2.40 n 02 Additional Data: FACTORS: F/E(psi;CD CII 1t CL CV CfuCf-t Noes Cn-Cor L ' 205 1.00 1.00 1.00 - - 1.00 1.. OD'. 2400 1.00 1.00 1.00 .100 1.000 1.00 ).10 1.00 00 •"" 2R 1200 - 2 Fop' 650 1.00 1.00 -- I1.00E' 1,8 million 4.00 1.00 - _ , s 1.2 - 2 Eminy' 0.85 million 1.00 1.00 i DO 2 CRITICAL LOAD COMBINATIONS: Shear : LC 42 = D+L, V= 531, V design _ lbs Bendingi+): LC 42 = D+L, 2f= 569 lbs-ft Deflection: LC 42 = Del. '(live; LC 92 = D+L total) i D=dead L=live S-snow it=wind 1=impact. Lr=roof live Lc=r_oncer,trated 1=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 22012 CALCULATIONS: - Deflection: 879266 1O-.in2 "Live"deflection = Deflection from all no:-dead loads "lve, wind, _ Total Deflection = 1.50;Dead Load Deflection; + Live LoadDefection. 1 Design Notes: 1.WoadWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application, 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4,GLULAM:bad=actual breadth*actual depth. 5 Glutam Beams shag be laterally supported according to the provisions BINDS Clause 3.13. 6,GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). I 1 COMPANY PROJECT Page 215 of 118 I i WoodWorks SOFTWARE FOR WOOD DssrGH Sep.9,2016 11:00 3FB5.wwb IDesign Check Calculation Sheet WoodWorks Sizer 10.42 Loads: J Load Type Distribution Eat- Location -t Magnitude Unit Full UDL Loadl tern Start End Start End Dead Load2 Live 81.7 ;;1_ Self-weight Dead Enit UDL 120 0 pt ,Fuli UDL 9.4 oIf I Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 1 13-1.6" y 1 Dr;facto redo 131,6" I Dead 593 Live 788 Factored: 593 Total. 1381 741 Bearing: Capacity 1388 Beani 1381 Support19:1 1381 Anal/Des Beam 1.00 1911 Support .72 Load comb ^082 1.00 U./7 Length 0.79 42 Mtr. req'd 0.79 0.79 Cb 1.00 0.79 Cb min 1,30 Cb support .11 1,00 ] 1.00 Fcp suo 579 1.11 625 III Lumber-soft,D.Fir-L,No.2,4x1213-1/2"x11-114") Supports:All-Timber-soft Beam,D.Fir-L Not Total length:13-1.6';volume=3.6 cu.ft.; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NOS 2012: Criterion Analysis Value Design Value Unit Analysis/Desi Shear fv = 45 L'v' 0. 144 )T Bending(+7 fb = 730 r psi b/pb' _ 0.92 I - u c .= 9z Ps= ibl=C' = 0.92 Dead Defi`n 0.09 = <L/999 Live Defi'n 0.12 <L/989 .44 .1360 .2g Total ❑cl1'n 0.27L1590 .65 ;240 in 0_41 Additional Data: FACTORS: FIE(psi;CD C?! Ct CL _ "_'z Cr Cfbt Ci- -, Fv' 180 1.00 1.00 Cr, Fb'* r. a. 900 1.00 1.0 i 1.700 .00 3.00 1.00 Fop' 625 1.00 1.00 - ,- .00 0 0_ 2 E' 1.4 million 1.00 .00 - - - - .00 .91 1. 0 1.00 - Emi.r,' 0.58 million 1.00 -.00 - 2 0 CRITICAL LOAD COMBINATIONS' 3' I Shear : LC 42 = a+L, V = 1374, v .eign = 0 Lbs Bending(*): LC 62 - D L, M - 4449lbs-ft Deflection: LC 922 = D1_1 _ie: LC U2 D+L ;total; D=-,dead L=live S=snow W=wind I=impact Lr=roof - All L __.,. Lc=concantratea „==_a:thyua�ce are listed in the Analysis cutout:' combinations:combinations: ASCE 7-10 / IBC 2012 CALCULATIONS: Deflection: EI = 664e06 1b-0n2 • "Live deflection - Deflection from all non-dead loads , ve wind, Total Deflection - 1.50 - eLoad Load L flection: Liv .,_.. snow...; ec.�cr.. I Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement, 2 Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1 I I ,-1 ,,loi•-•Croce CLIENT: : 7 6969 SW Hampton St. 7.,": 5P0o3,6rtla2n4d7,000re5gon 97223 PROJECT: Page 27 of 118 : I - I .,- --, - ;- ' -, AI .,, — 745 NW Mt.Washington Dr.#205 Bend,Oregon 97703 541-383-1828 ' • NUMBER' IFROELICH 1-, E--- -.?'" ENCHNEERst 12303 Airport Way,Suite 200 DATE: Broomfield,Colorado 80021 720-560-2269 BY: 1_ R 1::$ Ft:Do/a. Hoi2 • I / • I PAAJ," ai - ....0 DLr ( t5 ) (2.4 ) Jr 4--10S PL-F ILL . ( i '9) (4o) s 600 Pe-g I I I I I I I I I ; I • 11: I COMPANY PROJECT f agc 28 of 118 111 i Wood VVo rks® Aug. 37,2018 09.43 3FH7.ww0 SOFTWARE FOR WOOD DESIGN 1 Design Check Calculation Sheet Woodworks Sizer 1042 Loads: Load Type Distribution Pat- Location (fti Magnitude. Unit III Loadl Deac Lace >tar: Eod Start End Load2Foil SQL 405.0 pit Live Fuil. SOL 600.0 Self-weight Dead Full UDL �pif 6.0 elf 11! Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Bearing Lengths(in): I f 1 ill 1 11 IIIJnfactored: Dead 641 936 3Y Live cat tc red: 641 Total 1577 977 Bearing: Capacity 157III 7 Hearn 157' Support 1746 Anal/Des ].57'7 Boom 1.03 1746 Support 0,90 Load comb 07 1.00 42 Length 0.72 0.90 II Min teq'd 000 72 40 CO 0.72 Cb min 1.00 0.72 CO support 1.11 1.11 Eco sup 625 1.00 1.11 625 III Lumber-soft,D.Fir-L,No.2,4x8(3-1/2"x7-1/4") Supports:All-Timber-soft Beam.D.Fir-L No.2 Total length:3'-1.4';volume=0.5 cu.It.; Lateral support:top=et supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using NDS 2012: III Shear Anel+yya is Yalve a?nai _ ..nlue trait 11nuSyysfsODedkg n Shear f'� 54 Clr1n- Loo psi £vtfv' d,30 Beanding;+; 463 Ft,' psi fb/eb' . 0.40 Dead Defl'n 0.00 -<L/999l Live Def1'n 0.01 - <L/999 0.10 = L/360 in Total Defl.'n 0.01 -<L/099 0.15 = L/240 lc 0.09 0-09 III Additional Data: - FACTORS: FIE',ps..i CD CO '.t CF C.0Clot Ci Cr, LCH '60 1,05 1.00 ,.70 Crr .00 1.00 1.00 2 Fb'' 900 1.00 1.00 1.00 Fop' 625 - - 2 l - 1.001.00 1.00 1.00 -.o0 1.00 - - - 1.00 1.00 - E' 1.6 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - _ - - 1.00 1.07 2 CRITICAL LOAD COMBINATIONS: Sheat -, LC 42 = D+L, . 154 y u V design = 165 Bending(+): LC 42 - D+L, M = 1183 l's-ft Deflect-ion: LC 42 =D+L (live; LC 42 =D+L total; D=dead L-iive-S=snow r-wind 1=lmoact Lr-roof live Ln concentrated E=earthquake Ail LC's are listed in the Analysis output Load combinations: ASCE 7-10 / 13C 2012 III CALCULATIONS:01 - no, Ueflertian: 178e06 1>-i-,Z "Live" deflection _ Deflection c -dead loads :live, wind, snow..) Total Deflection = .;SO(Dead Load Deflection: a Load'Deflection. Lateral stability i+I: Sc = 3'-0.75Le = 6'-3.03" 93 - 6.65 Design Notes: It.Woodworks analysis and design are in accordance with the ICC international Building Code(IBC 2012),the National Design Specification(NDS 2012),and NOS Design Supplement 2 Please verify that the default deflection limits are appropriate for your application. 3 Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4.4,7 I I CO 73 QN d z N N c as d PA) iHx4 1 _ 1. ! i is ::._ .. ii IA, l II 1 a , 'I .7. _._ --- --- _ill — . ��� _ ._ „„L... . - HI i 1_1II1IiII__ UR1i�LImo _ .. ..._..e__.._._. mu En frill 1 I lilt .4., ,, i .: , , :, ,, , • , . __,„ uill ;i . � . I�-._ _ _ � . t _ 1__.__ � �J 3 1,d 'lMa13Dill{( fftiatililijIginf i ` i' all all IIIII all Ma lla IIIII Illa IIIII allallall all 11111 all all all Nal all I6969 SW Hampton St. iCLIENT: Portland.Oregon 97223 Page 30 of 118 411141 503-624-7005 PROJECT: ,.. E_--, gor 745 NW Mt.Washington Dr.#205 NUMBER: Bend,Oregon 97703 541-383-1828 IFROELICH :-. Der,.er'::rfic4:- EN GINEERS4 12303 Airport Way,Suite 200 DATE: Broomfield,Colorado 80021 ...:..troelich-engIll t:ers,oni 720-560-2269 BY: ,......._ .,. ....._. ........______. 1 2."") F2.0,zia FeAmiAtc,,, ; I See I 3 ° re-coie Ara-A AA.tni GI C)EsiC,‘Ai I I I I I I I I I I I, 1 i ,, , . co Java heg bliii —se R zy I z ,-- co a) 0) co JI 0 iii.0 I-A @.0 \, ( . I 1 i 1 , , F• 1 3-- 14 _......1.-- - 411_1-- .a 1 - -------L ---.2.-------------- ----CL---143,1-—--Li° .. .....-...„ 1 --- --- _-A ,..... _____-:-.:„.-„-;_- _—___:::.= -• , .• , ........11, I t 1, i.......... j I I '111IL------,7---.:------ - , I : fl ---_,- II I -,,___ Ili , e 7 i i 1 I 1 •r--1: , ...:,... _7: I) 1 , 7.7"---.....',..' -_....... ,..- -'_, -,----..:1 I, I , I I .1. 1 . i I 1 1-• -1. ' I I, 1 e 1 e i. i e . . I i 1 Milli i I-1 1 , II 1 1 1 1 1 ,. 1 1 1 I 1 . , 1 1 t .1. 1 : t-1 1. : , t -1 1-•;;;,:a I IL I 1 l 1 1 . i -,.i. t..1. ‘. . • ... ) .t . - • . . 1 j, . . , 1.-I I 1.1111Ilinil ,.,i I 111" 7:Jell 'LI . 1111=111= IZVI 9 Ce 1 IN 1 • 41 .V4 31 „,_. _ • , .. .., ,.,...___ . _... _ .. .............i .........,...._ ......, ..... :, i , : : . 111117772' -,' ie,J, .. :. •H : , 1 . • : i . . ,... ._. . II if • i --,,, . • t._..____ ___J- :-1-fillita 411.11ial , ' "Al ' 14‘ , E --!;-..---7-1 . 4 ••••• L._ * IIIIIIMEW1; - .._..- c El re; qt1P1111001/•!--.----- ------,....;‘' ia • E•1..Y?i.I:, 4'W i'::t';'''ii:riF4- 1-i.:::;• , I , 0' ‘ i 1 Cade _ . 1 ! . .,,!,,,) (y.A) MI IMIN MN NM MR MN Mit MN MS- MN MI NM =I NM MN NM NM MI MN I L-1, Mai r 0 f''Ce 6969 SW Hampton St. CLIENT: • Portland,Oregon 97223 503-624-7005 PROJECT: Page 32 of 118 i -- ' al I 74NW M;1.4earshington Dr.#205 ;)-, 41 Bend,Oregon 97703 541-383-1828 NUMBER: I FROELICH ii-_-, f-1 De ,4er Office DATE: III ENGINEERS; 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 ,wwrroeilth enirpieer,com. 720-560-2269 BY: 111 1 T ickooR FRAMIAJCpr,t VIIMM.I0..........:...........,••••••••••••••••••••••••••••11.111101TP.M.I......0.0.....,*NOMN........ II IC 4.0 ei 12". Deiib Z.4)A l' ..c. 27 PsF I, P4-00e, live e-ct,AD ki4e-e.... D640 1.040 r I2 PSF I1 c--0 2 I Doe. Live 4.040 .c. loc) PF 1 D c_I.e- I1 sT Fe.4)0R .3c -rs: I - iN \ / IF31/t (A) Or (..) s E u , : (Ai —.,--i---- i bLs al.P5F I Li.... . z-io P5F IF (re-0m (.."J ALL. Ae,ov 6) DL s(toiA, FL)tV.45`) ka4) tete:)k.12-) -t(15)(.2.4),(1°)(12)x 1k7o PLF I 1 1. I, I I i I ":== 6969 SW Hampton St. CLIENT: Portland,Oregon 97223 503-624-7005 PROJECT: Page 33 of 118 745 NW Mt.Washington Dr.#205 NUMBER: Bend,Oregon 97703 541-383-1828 I FROELICH_ DATE: EN G I N E E R S 112303 Airport Way,Suite 200 Broomfield,Colorado 80021 a ww troe i,h engineer,_<, 720-560-2269 BY: ST FLS 86A Aks IF e, t • / • e DC4 lV s I S PADLs(45(M) =7.2 PZF 5 L ' ( ss)s 200 Pt-F 1 I • f'AN r •$'_6- , i bLt (N,)(1?)t t2-c"T<<-1 )trz)tt2.o-r(�)( it12..d t(.<d')t it) s 570 PLF I` t_i-s( )04 jt eco s-(4 o t'uz: I 111, ,, I tF83r: ISPAN s 22- -0 DL.r 1101(t )(2.7-) 1- I2-0t 0S ) 2-7) 112,.o I 1 -►o.k. F. tnr-: -, )(z- ) Jr I,390 PL F 0 .2.5, 1 5 x667.. use 757LL r r . R N.j*-147.4:-.Ar I4- 40054'tcA" III 6969 SW Hampton St. CLIENT: Portland,Oregon 97223 503-624-7005 PROJECT: li- _ Page 34 of 118 745 NW Mt Washington Dr.#205 NUMBER: Bend,Oregon 97703 541-383-1828 I FROELICH( lE,,� :., DATE: E NG I N E E R S = 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 w,,....hoe6,11-enginet.r.;a»;[ 720-560-2269 BY: i - i SPAN sty t o Sce' /F83/: i bLS i39o4t ii LL 5- !tut# I s IF B5 JPAAJ x I DL.t 12.0 , (13'5 (Z7)? 1Z® -r( I3)(Zf) tI2o 1- (z') (27) , \\2-os='LF LLQJ3' ° ° t 3 2 (oto) s tt20 PLF / 1FB6/: SPAN: '$ -o L.,,,,.. IC)Ls (1(4} (is) t 110 I,C.i-i/)(z-7)1. 1z t(t45(1 i� �t c (4-6( z."7.) s 950 P1.F IS m/ o ' It CA- r4 I L (245 ( ZS) r —S50 P" I �PAAi r r2'_6 ELS '; - P'LF Z seft I, P(1,5 LootOse\IG% iF y1: f'a4A,1 s i2_1_,I IlDLs (2.5(11r)4 JZOI- (615(-?-7-1t1Z0-1-(tot) MT) T1 (6')(2-7 ) S 190 PL-F (")( o1) I. _ . _ Pt,>a I I-1 t`4o.o Or;�s CLIENT: 6969 SW Hampton St. Portland,Oregon 97223 503-624-7005 PROJECT: ,t-- , .7, CarP-3,Oregrir I Page 35 of 118 -..i;:,.ii 745 NW Mt.Washington Dr.#205 NUMBER: Bend,Oregon 97703 541-383-1828 I FROELICH J Dene,omce DATE: E N G i iV E E R 5 3 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 ••+..,t,Fr:)eiich-ent.ineer;_nm 720-560-2269 BY: li 11 SPAN x /2-r O 4 DL: (1- )(t$ ) : 12. 6 12.e- I SLr. (7)(2_51-2_5)s- 35o PF I I I i 1F31a • / SPANr )1- O LAJ 1: I DI-s (� )(tv ) 7 12-01 (2.i) (z7)-ti 2-0 -rCZ<)(Z7 ItIzo -t- (Z<) (z -4. ) . 560 PLF I LL' (k)(il) ( qo) s 2. o Pc.F 51—r (2.1)( 4.5 ) s. 5o Pc.F IFl : I • COMPANY PROJECT Pagc 3G of 118 1 WoodWorkse Aug.31,2016 11:01 1FBT.wwp SOFI1V.iRFfOA WOOD DESIGN Design Check Calculation Sheet Wood Works Sizer 70.42 Loads: Load Type Distribution Fac- Lacs to un 4t7 haftnitudn Unit Load( Dead ern L= Entl Start :rsd Ful_' VCL Laad2 72.0 Snow Full 'JDL 111JJJ i' `:CCF u_ !:t D+ad a:_ 201 200.0 orf Fb 7.7 pit Maximum Reactionsl (lbs),Searing Capacities(lbs)and Bearing Lengths(in): i I 8'-7' t I III nnDead red: 1 Dead 292 Snow 608 Factored: 242 Total 351 Searing: 604 Capacity 111 Beam 1093 Big. Support 1211 Anal/Des 1091 Seam 0.70 Support 0.70 1211 IIILoad comb R2 0.72 Length 0.501 Min req'd 0.50= 0.70 Cb 1.00 $2 Cb min 1.00 0.50' support 1.11 C .24 Cb�Q up 625 1.00 'MMrmumpe ag supper 1.00 g ta1.25 ttl used:12'for cad 1.11 Ell Lumber-soft,0-Fir-L,No.2,4x10(3-112"x9-1/4=) Supports:All-Timber-soft Beam,DFir-L No.2 Total length:6'-1.0•;volume=1,4 cu.6.; Lateral support;lop=full,bottom=at supports; I Analysis vs.Allowable Stress and Deflection using NOS 2012: Cr iter: Analysis Value Des: n Ya1ue Unit 5bear ry= 24 Fe II 20' Arsa`.[alai0v:iqn no.01ng1.i fb = 307 =y'.v 1242 psi •fv/ ' 0.25 Dead Defl'n 0.01 -51/994 Fs: rb/?c' _ Live Defl'n 0.02 = <1/999 0.20 = L/360 Total. Oefl'n. 0,03= 41,2394 ^ l399 .. in O.DS.30 = /29 r1 in 0.09 Additional Data: FACTORS: F/E(psi;CO CM Ct _ _ Fe' 190 1.15 1.00 1.00 ••• ••-' L.0_ _ C0 L2R Fb'e 900 1.15 1.00 1.00 1.000 1.2011 14 1-00 1.09 1.00. 1.002 625 - 1.00 1.01 - .. - - 0 _ 20 2 I n 1.6 million 1.00 1.00 - _ 17� - Ervin' 0.58 ;pillion 1.00 3.00 1.20 y.1.30 } 2 CRITICAL LOAD COMBINATIONS: Shear : LC 42 =DSS, V= 345, V design- 623 _bs Bending;-;: LC 02 = D+S, y = 1274 lbs-ft Defection: LC 62 = 0+S (live; LC #2 = D.S (total: I D=deade lilve Svsnov H=saaod Tlive L=impact Lr-roof =too1 E All Le's nce:,t ra ted =earr'xrt3a%e are lis ad in the Analysis output Load nations: ASCE 7-10 / IBC 2012 o CALCULATIONS: Deflection: ET = 3`54e06 ib-io2 "Live" deflection = Deflection f- allnon-dead loads _ Total Deflection - 1.50(Deed Load Deflection: Live Load Deflection.III ow Design Notes: _^' ^ 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. 2.Please vent),that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NOS Clause 4,4.7. 4 I • I I I I �� COMPANY PROJECT Page 37 of 118 11 I %VOodV\forks® Au9.31,201611:02 1FB2wwb SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Loads• Woodworks sizer 10.42 Load Load( Type Distribution. ?at- Location ifc Magnitude Unit .arradead Cern 'tart End 8 .1 End _ UDL Lcatl2 Snow ii.18.61 '5810.0 500.0 pit Lpad3 Partial OIL 0.111 8.61 100.0 100.0 plf Partial UOL 0.11 8.61 4a0.0 400.0 Self-weight Dead Sall 30L plf 11.4 plf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): II f 8-85' f I III Unfactoced: Lead 2519 at Live 504:1 Snow 425 2514 Factored: Total 4554 2096 IIea ring: 425 japaci cy beam G5j4 4554 I Support 4677 is 1.1 nes 9554 Beam 1,0p 4677 Support 1.97 Load ca 42 Length 1.27 1.00 0.97 mania Han reg'd 0.27 92 Cb min 4.25 1.00 i 0.27 lb support .07 1.27 One a:* 625 1.00 4.00 T.07 624. III Glulam-Unbal.,West Species,24F-1.8E WS,5-112"x9" 6 laminations,5-112 maximum width, Supports:All-Timber-soft Beam,D Fir-L No.2 Total length:8'8.5;volume= 3.0 cu ft.: Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress and Deflection using Nos 2012: Oct-carton Matyst3 Value Deaden Value Unit A-1r1 ala t.x_'st shear v_ 114 Pv' - 265 yy Qa Bending(+; 01 '_603 psi 00.01' " 7i:43 Dead De fl'n 0.12 = Lt051 Ft s30. psi fb n' . 0.67 Live Def1'n 0.11 = <1/990 0.00 = L/360 in Total nett'n 0.2E - L305 0.43 < 1j240. In 0-34 1.005 111 Additional Data: FACTORS: Ft„psiiCD CM CO CL 265 .� y0+d .59 Cfrt Notes 01.00 .[.0 Fh'= 2400 1.00 .50 _ -CV Cr. T .O0 1.00 2 .00 0.302 1.0001.00 1.00 P= 650 - .00 .00 • 1.00 _..� - 7 Eye .6 millloo 1.00 1.00 Eminy' 0.85 minion 1.00 1.00 - _ _ 1'�0 - 2 CRITICAL LOAD COMBINATIONS: ^ - 2 Shear LC 82 e 04L, 4- 4534, V design = 3750 Lbs • Bending;+i: LC 92 a 101, 0= 991:5 len 111 Deflection: LC 82 e LC 92 - D+ Dedead fettive S-snow k dLop p-re f live L<000r,entroted 8-earthquake A1'- LC'o re Listed in the Analysis output : C 7 1512012 CALCULATIONS: combinations: OCins0N5 Deflection: lb-Los "Live" deflection e{ t < rom all non-dead (live, wind, snow,,;Total Deflection 1.50'Dead LoadDeflection) loads d -- con,Lateral tshi_ity (4.: _ _ -7.25" e y '-3.3i" BIi = '.05 Design Notes: 1.WOodWorks analysis and design are in accordance with the ICC international Building Code(IBC 2012),the National Design Specification(NOS 2012),and NOS Design Supplement. 2 Please verify that the defeat deflection limits are appropriate for your application. 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190.1-2007 4.GLULAM:bod a actual breadth x actual depth, 5.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3,3. 6..GLULAM:bearing length based an smaller of Fcp(tension),Fcp(comp'n), I • 1 1 I COMPANY PROJECT Page 38 of 118 Ifl Woodworks® Aug•31,2018 Y1:Q4 1F83,wwb SOFTWARE FOR WOOD OFSIG4 Design Check Calculation Sheet Loads: WoodWorks Sizer 10.42 Load 1Tyoe DtittibUtlen Par= Location ( ltaryr.:audc JnYc 'oath Revd _ , tern Starr End 90.4 End Load2 rat UDL Live Ful! v'CL 396.9 �pkC 114=-- ptf Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): It 23'-1.9' Il Ifi j'+1 bntoetoted: Dead •16094 Live 13199 Factored: total 29293 10094 Bearing: 11199 Capacity Beam. 30465 29293 I Support 25293 Anal/Des Beam .,.,96 30465 Beam Support ,.-0 29293 Load nand42 0.961.O Length ,94 Min riga 6.44-* 04 Cb 1.00 k) Ch min „p 6`.94 lb support 1.00 6.1.00 1.00 .. 111/ rep sop 625 1.O0 ""MR dnuni bearing length governed by the required width of the supporting member t.cu 02.5 Gluiam-Unbal.,West Species,24F-1.8E WS,6.314"x28-112" III 19 laminations.6-3/4'maximum width, Supports:All-Timber-soft Beam,D.Fir-L No 2 Total length:23'11$';volume a 309 cu-B, Lateral support:tope full,bottom=full; Analysis vs.Allowable Stress and Deflection using NDS 2072: ni ezion Aeaiy Vallee Desi'-r. -_ Seer _ n .vT ss An- tt -0e B namgi4; 2.i. .� 2 psi 7 rev' -9.64 Dad 0e`_1'n 0.35 L/165 T -2106 psi /Fe = +.00 Live Dell',, 0.29 e 2(952 0.75 = t,360 total SatfI e -3.50 L14-ii, 1.13 _ _t242 _n 9 in 4 .71 Additional Data: FACTORS, -r^f ,CD CH Ct CV ` " ._ Cc-Cyr FDP 2631.00 1.00 1.00 90.'1' 24O9 1.02 1.51 1.30 0 Fop' 650 -- 1.00 1.00 ., @Bo �.-G _.'n _ 0 - E:niny' 0.05 million 1.00 1.00 _ _ _ _ _ 2 CRITICAL LOAD COMBINATIONS: - - ' - 111/ Shear : LI 02 = 0+ 0 20562, V des ign 21 Ids 0ending rs): ) 62 = D 9 les-ft Deflection __- Deflectien: LC R2 = D=L _ ,torall Deeead L-live 5-snow 4=wind 1=impact _ AliLC's ace Listed the A.'taiysys output- jive .....,__.,,..__,.e.. ear_ ate Load combinations: ASCE / 190 20'2' - �io� CALCULATIONS Defrect.on: 61 03430e08 1C 2 "Live^ deflection Deflection fromall tdee e - Dwind, snow Deflection - ,.50,Dead Land Deflec ;o., Ly„ bead e._e__ior. Design Notes: I 12.Please verify.WaodWorks analysis and design are in accordance with the ICC international Building Code(IBC 2012),the National Design Specification(NOS 2012).and NDS Supplement. Desi9 n 3:Glulam de nhat values are For materials conforming to ANSI 11f gthe deult denion limits are cor 7-2010 and manufactured in accordance with ANSI A190 1- 4.GLULAM:tout actual breadth z actual depth. 2007 5.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3 B.GLULAM:bearing length based on smaller of Fcp(lension),Fcp(oomp'n). 1111 I I • 1 I . is uT COMPANY PROJECTrROP39ofH Woodworks® 111 Aug.31,201811:05 1FB4:wwb SOFTWARE FOR WOOD DESIGN I . Design Check Calculation Sheet Wood Works Sizer 10.42 Loads: LoadDistribution Pa'_- location (ft) Magnitude Unit till UbterStartLOadl Dead =aaa.-- had Star90.6 Dad 10ad2 Live frail UDL 1390.0 pit 1140.0 IplF Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): • t23'-3.2' t I fbi Dead 17557 73fe'Untaetozedt Live 14400 Factored: 17557 Tonal 31957 14400 Bearing: , Capacity 31957 Sp33235 Support 3 Anal/Des 33235 seam Support 0.35 30.36 1.00 Load comb, 02 0.36 Length 7.56 1.00 Min reg'd 7.50' 'S Cb i..00 7.69 Cb min 1.00 7-50•• nb support 1.00 1.00 .op sup 925.. .1.00 1.00 "Minimum bear�tly tedpla governed by the iavutred wMih of the$upporonp member 62:a I Glulam-Unbar.,West Species,24F-1.3E WS.6-314"x31-112- 21 laminations,6-3/4'maximum width, Supports:All-Timber-soft Beam,D,Fir-L NO2 Total length:25'-3,2 volume=373 wit.: Lateral support:top=full,bottom=full: Analysis vs.Allowable Stress and Deflection using NDS 2012: C,-fcarac Ana'vo.s lye Design `.a.ue Out P.alysi sl Des_30 Shear {. 117 ZoOo 1 Sendia pen bi?v' . 11.53 4'--f 31.2L/0 _ =2096 ns� fbl=h' G-99 Dead Defi'n 0.36 . L/a_,_ V Live Defl'n 0.30 . L/990 0.02 . L/361 Total Def1'n 0.54.. L/350 1.23 . L/240 iss 1.59 -,1 t CL `-r 1.59 Additional Data: FACTORS: F!£;psi1.0 CM - CV Cry ' 265 1.00 1.00 1.00 - _ - Cr Cfrt dotes C1.03 LCA E'b'+ 7.4510 , - 1.00 1..00 1.,00 2 Fop' 650 `_00 1.90 1.00 1.000 1.969 1.O0 LOC 1.900 1.00 - i.00 1.00 -. - - - 1.00 E' 1.5 million 1.00 1.00 - - - - 00 - - i EminRITZ y 0DCOMllion 1.00 -1,00 - 1.oD - -- 2 CRITICAL LOAD COMBINATIONS: 2 Shear LC #2 = O+1, ,, 31159, `.design 23719 lis Bendzngr+;: L 02 = D.•L, v a 191665 lbs-ft Deflection: LC 12 - D.1. _ ie LC 42 = D+L oodead L=1i 0,0now JI-..wind-I=oepact Lc-zoof A11 LC's are listed in the _ live concar:t aLed E. �akc - 1 Analysis output ea.c- e Load combinations: ASCD i-10 i3C 201e CALCULATIONS: Deflection: Si = 31644e06 lo-in2 "Live" deflection=Deflection from all non-dead loads (live, wind, snoo.l Total Deflection = ..501Dead LoadD_f-ec'_ior.l + Live Load Deflection. Design Notes: 1 WoodWorks analysts and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. 2 Please verify that the default deflection limits are appropriate for your application. 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190,1-2007 4.GLULAM:bxd=actual breadth x actual depth. 5.Glulam Beams shall be laterally supported according la the provisions of NOS Clause 3.3,3, 8.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). III I I - I • I COMPANY 'PROJECT Page 40 of 118 It 1 [ 1 'Woodworks® Aug 31,2016 11:05 1F1353wb SOtM.44E H}p WOOD OES100 _ Design Check Calculation Sheet Wood Works Sizer 10.42 Loads: Load Dead Distribution tat- Location ;ft; Magnitude Snit Loedi Gead IVernl Start End Start End +( Imad2 all ODL I 120.0 pl-s i Live Ful? UDI, 1120.0 t� 1+ &el..-wa:qnt ➢cad Full UDL p_. 9,6 pit Maximum Reactions(lbs),Bearing Capacities(fbs)and Bearing Lengths(in): I I 7-1" 1 I I><- Unfactoted: 8,-9.5' Dead 3999 Live 3967 I Factored: T 3999 Total 7966 3967 Factored:Searing: Capacity 7966 Seam 7966 Support 2461 Anal/Des 7966 84 Beam 0.34 o.ni Support 1.00 Load comb d2 1.00 Length 3.50 0.94 Yin reg'd 3.50 0 3.00 Cb 1.00 CO min 1.00 1.510 Cb support 1.11 1.00 Fop sue 625 1.00 1012 '25 Glulam-Unbal.,West Species,24F-1.8E WS,3.112"x11-7/8" 8 laminations,3-1/2-maximum width, Supports:At-T,mber•soft Beam,D,Fir-L No 2 Total length:T-1,0';volume= 2,0 cu.0,; Lateral support:top=ful,bottom=at supporta; Analysis vs.Allowable Stress and Deflection ueinp nos 2812: C elceo.op ,AhAi aln value Deafgn value. u,2.0 Aual siif 3eurgo Shea: + = 184 r5.' = 266 psi _vr?v' _ '.1.69 Bending:.: fb = 1692 Fb' = 2400 psit"FS 0.70 I Dead Defi'R 0.06 =<L/999 S i' Live Defl'n 0.06=<1/999 0.23 = l/300 0.27 total Defi'n 0.15 = 2/521 0.33 1/240 In • 0,45 Additional Data: FACCOSS, F/t'psi)C0 CMCt CV u = C t 40aes £v' 265 1.00 1.00 1..00 L - - - 39 0 1.30 119aCyr 2 F3 ' 2400 L'00 1.00 1.90 ..000 :.00C 1.00 _-J0 1.37 .-00 = 2 £Cp' 250 1.00 2.30 1..30 .,.8 million 1.00 1.00 2.20 2 Eminy' 0.05 million 1.00 00 - 1.00 2 CRITICAL LOAD COMBINATIONS: Shear 9 LC 92 a 2+1,, V = 7539, V design = 5095 lbs inending(/, LC 42 = 1,1, 0= 129<2 lbs-ft III DeflectionLC 92 = 1+1 :lave; `=co.= =_n__ „_ LC 42 = D+L '=oval; O=dead L=1/ve S=snow.'Wawind L=i.:npacc Lr=caof live i e,crac=d E #51 LC's ace listed in the Analysis output Load combinations: ASCE 7-10 / 1-7 2312 CALCULATIONS: Deflection: MI = 079e26 lb-in2 "Live"deflection = Deflection from all non-dead leads :live, wind, ono...Total. DeflectLoe = 1.50!0eaa Load Deflection: +Live Load Deflection. Design Notes: I.Wood Works analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NOB Design Supplement, 2 Please verify that the default deflection limits am appropriate for your application. 3 Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A100.1-2007 i 4.GLULAM:bad=actual breadth x adoal depth_Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3.3 3. 8.GLULAM:bearing lerglh based on smelter of Fcp(lension),Fcp(comp'n). I I I 1 COMPANY PROJECT Page 41 of 118 1 di %Vood\/VorkS® Aug,31,2018 11:08 1F136.wwb SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Woodworks Sizer 10,42 Loads: Load Type Distribution Pat- ocation jft) Ha tude dnit ani Loatll Cerl o3Lart Pnd ata rL Fnd Dead Lull UbL 9x6 0 Loa32 Live Full 001, 2020.0 0.0 Plt Load) Snow Fut.; UDL elf Self-weighc Dead Fdll 102 315.0 _p7! i Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in) e•4r f •I Unfettered: 8 Dead 4047 Live 4279 4279 snow 1463 4044 racot.,i : 1450 Tot:l. !7357 Bearing) : 63s Capacity Oenrn 0357 Support 0 Anal/Des 6357 Beam 1.X) 8503 S I adort comb 0.43 1.00 Load 9I 0.97 Length 2.34 #4 Min eq'd 2.34 2,34 C 1.90 CO min 1.00 2.34 support 1.01 1.00 Fp sop '015 1.00 CO 1.07 625 Gtulam-Unbal.,West Species,24F-1.11E WS,5-112":11-718" 8 laminations,5-1/2'maximum width, Supports:All-Timber-soil Beam,D.Fir-L No 2 Total length:8'-4.7*:volume= 3.8 cu.8.; Lateral support tope full,bottom-at supports; Analysts vs.Allowable Stress and Deflection nuns NOS 2012: Ctiterlun Analysis Value Deexgn. Value Unit AnalystatDes:gn Shear ire 137 Fe. = 255 pas rv/ v' - 0.52 iiendingi+l Fh - 1547 00' - 2400 psi fb/Fb' = 9.64 111 Lind Defl'n 0.07 = <1/999 u 2" _ - 7,21 Live Def:'n 0,09 = <L/099 L.`360 in 3.29 'Total. Deil'n 0.16 - I/540 0.42 = 1/240 in 0.44 Additional Data: FACTORS: F/Elpsi,CD Cl) Cl CL C. I-. Cr t Metes Fv' 265 1.00 1.00 1.00 - .. � 1,00 1.00 1,00r 22 Fop' 2400 1.00 1.00 1.00 1.000 1.200 i-OG 1.00 l 1.00 1-00 - 2 Fop' 6050 1.00 1.00 00 E 1.9 million 1.00 1.00 1 00 3 Hmi.ny' 0.93 million 100 1.00 1.00 CRITICAL LOAD COMBINATIONS: ' Shear : LC 42 = D+' V= 4134. '2 sign = 5971 ,,,y Jendin„r): LC 42 = O+L, 16663 lbs-ft Deflection: LC 43 = D+.15)2.61 !total .-o live u�cc,._en =ea LC #3 = D+.15(2+3) -ail D=dead L=liva osnow 3i--wind L=impact Lr= tratec E 10Sgco'se All IC's are listed in the Analysis outputo Load combinations: ,ASCE 7-17 / 131 2012 4 CALCULATIONS: ' Deflection: EI = 1381e66 15-1n2 Live"deflection = Deflection from ill non-dead loads ;: wind, snow...: Total Deflection = 1.50)Dead Load Deflection) i Live Le +11552ion. Design Notes: I.WoodWorks analysis and design are in accordance with the ICC Interntatiional Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application, 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190 1-2007 4 GLULAM:bad=actual breadth x actual depth. 5.Gtulam Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3. 6.GLULAM:bearing length based on smaller of Fcp(lension),Fcp(comp'n). I I I I PargA 42 of 118 I �% COMPANY PROJECT 1 I 1 %Voo d Wo r k s® Aug.31,2016 11.06 1FBT.wwb SOFTWARE FOR WOOD DETtrs Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: Load Type 6Lsttliaetien Pao- .,cation i4ti Magnitude Unle Loar11 Dead Live terd Starr =rid Start End Load2 '_5::1 t:DL 1122 t Full UDL Self-weight Teed Fell IPL i 122.8 g ( 22.8 PLflt Maximum Reactions(Ws),Bearing Capacities(lbs)and Bearing Lengths(in): j t 13•-2.4' t I 13 Iln£.3 mored: Dead 53`0 121t Live 7390 d: 7536 Total 1452'0 '!370 a Dealing:: ' 4926 ill Capacity 14925 111 aeac 325 S-.rpport Anal/Des 14926 deam1.00 15331 Support 0.97 Load comb 62 x.02 Length 4.10 0,97 Min recl'd 3.10 19 Cb 1.00 4.08 Cb m ;,.n8 4.18 Cb support 1.01 1.00 Fob sup 02D 1.20 1.67 625 11 Glulam-Unbal-,West Species,24F-1.8E WS,5-1/2"x18" 12 Laminations,5-10 maximum width, Supports:All-Timber-soft Beam,D.Fir-L No.2 Total length:13'-2.4';volume= LI cult; Lateral support:top=full,bottom=at supports; 111 Analysis vs.Allowable Stress and Deflection using NOS 2012: Zsltert.or. A.ia Laia Value Dasign ';aloe Unit Ana:•sla/Desalts Sieg: 03 , 265 ps' fe/rv'.+ ' aendingtr: tb = 1397 Fb' =2403 psi £b/o' a. 0.73 Dead Defl'n 0.15 = :L/999 Live Defl'r. 9.04 _:1.1999 0.43 - L/064 ;n 0.33 IITotal Defl'e 0.35= L/426 0,44 - L/143 in .,.95 Additional Data: FACTORS: e/trpan,CU f CV c Notes Co Fr' 265 1..00 1.00 ._70 1.00 2 =o'+ 2400 1.00 34 1.206 1 .,., 01 1.30 L2: Fop' 650 - 1. 3. 'J .33 - - - E' /..8 million 1.00 -2.30 _ ..:-. l''' . - 2 Eminy' 0.8r million 1-00 LOC .3u 2 CRITICAL LOAD COMBINATIONS: Shear : LC a2 = D"L, V 14536, 9 175 aendirg(r;: LC 52 =041, M = 456442 h_ _ Deflection: LC 82 _ - -..s __ 11. 62. - !total D=dead L=live S=snow W=wind 1=1mpar- 10=:ocf Live II/ Ali LC's are listed in the Analysis autput L-...r._...___a,. ea__ ,, _<� Load combinations: ASCE 2-10 / 09C 20:2 CALCULATIONS: Deflection: 91 4811046 lc-int "Live" deflection f e '.o from,11 non dead loads :and, sno.,.; Total Deflect/or. = 1.50;4ead Loa,. Deflection; - .._.e .._ad .,e:_ectic^.. I Design Notes: 1 WdodWorks analysis and design are in accordance with the ICC international Building Code(IBC 2012),the National Design Specification(NOS 2012),and NDS Design Supplement 2,Please verify that the default defection limits are appropriate for your application. 3 Slalom design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190,1.2007 4,GLULAM:bxd=actual breadth x actual depth. 5 Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3 3 6.GLULAM:bearing length based on smaller of Fcp(lension),Fcp(comp'n), I I I • 1 COMPANY PROJECT Page 43 of 118 i %VOOd\fVc)r ft\ Aug 31,20tH 11:03 1Fe6.1%wb SOFTWARE FOR woad Des+ex Design Check Calculation Sheet Weodmorks Sizer 10 42 Loads: Load Type Distribution Fat- Loca.io -'t t-: n 510nitude n.t Snow I.oadl bead tern cta__. =n�1 98.7 ?,7d Load2 P.tii 283 89b,'1 L0ad3 Live Fulll 003 720,0 Self-weight 9500 Full DOL 50 0 Flt :'nil UM 19.0 pl- p1f I Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 1 1Y-11.9' f I 411 :rnfAC.Ored: Y. Dead 5903 1299 • Live 4678 -41'Snow 325 5903 4878 FiCto:ed: Total 19581 321 ISea ag, wBao.l.y 19581 Beam 10381 Support 10858 Anal/Dos 10581 Beam 1.00 10858 Support 0.97 Load comb 02 ;-02 I Length 2.96 a Nin rig2..96 0.97 Cb 1.00 q2 Cb min 1.00 1.00 2.96 Cb support 1-07 1.00 1.00 m.p Cup 625_ 1.07 025 i Clulam-Unbal.,West Species,24F-1.8E WS,5-1/2"x15". 1D laminations,5.1/2 maximum width, Supports:All-Timber-soft Beam,D.Fir-L No 2 Total length:12-119';volume= 7.4 cu,ft.; Lateral support:lop=full,bottom=at supports; Analysis vs.Allowable Stress and Deflection„sing NDS 2012: Criterion Analysis V0.ae Desiga. v.1.. unit Ansi x,y/Oda:gn Shear fv- 140 F!' - 255 ¢v/r'.' _. Rending(*) Pb = 1925 96 = 0400 psi 2.59 fb/Fh' - 9.90 Dead Defl'n 0.19 = L/786 - Live Defl'a 0.15 = 1/995 0.42 " 1/309 in Total Defi'n 0.44 = L/344 an C.6a.e 3/240 0.36 0. 0 Additional Data: FACTORS: F/E)psi1 CD C94 Co CL N .. 285 1.00 Cfn Cr ..r_t Notes C - L2 Pb'. 1.00 1.00 - - 1.00 1 1.30 2 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 _cp, 650 - 1.00 1.00 - - 1.03 - 2 II c 1.0 million 1.09 1.00 _ - _ - L 00 - ` Ervin y' 0.85 million 1.09 1.00 1 ,3Y CRITICAL LOAD COMBINATIONS; Sheat : LC 82 = D+;., V= 10382, '1 design= 0endingttl, LC 92 =Did, M= 33000 lbs-ft �t.o -ns Deflection: LC 82 = D+L tlivei LC 92 = D<L 60001) Dedead L=live Sounow n _-sind =imparLr=roof live Lc=cont ntratvd F=aer se 1.l LC's are listed .: the Analysis cutout ro;3"' Load combinations: ASCE 7-10 ' 178C 2012 CALCULATIONS: Deflection: IiI = 2784401_b-int "Live" deflection= Deflection from ali non-dead beade 's Total Deflection. = 1.50iSead Load Deflection) -Live LoadDeflections -oma Design Notes: I.WoodWorks analysis and design am in accordance with the ICC International Building Code(IBC 2012),the National Design Specification MDS 2012),and NOS Design Supplement_ 2.Please verify that the default deflection limits are appropriate for your application, 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190,1-2007 4.GLULAM;bad=actual breadth x actual depth. S.Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3-3.3. B.GLULAM:bearing length based on smaller of Fcp(lension),Fcp(comp'n), I i I I Page 14 of 118 COMPANY PROJECT 111 4 40 Iii 1/11100dWorks' Aug_31,2016 11:09 1F139,vnab I .1;OFTWARE FOR WOOD DESIGN Design Check Calculation Sheet WoodWorks Sizer 1042 Loads: 11 Load Ty Loadl Load2 pe ibeadl Snow Se1T-weighS 0,md Distribution Pat- Location [PC) Magnitude Unit Full 001, 124. Fat Pull 0114, Ever, l',.4.xt End .5;4cre Frid 7', 310.0 1'LI Fell 1.101 0.5 pi! Maximum Reactions(lbs),Bearing Capacities(Ws)and Bearing Lengths(in): / t 17-2.6" t I f Ir.tx Uoiactor=d: Dead 521 421 Snow 2)33 2131 Factored, Tot.) 494iing: Capacity 2955 295? &ism 2959 2/5/ 39pp:int 3153 3150 Anal/Des Seam 1.00 1.00 Support 0./4 0.94 Load comb 02 42 I Laneig 1.30 1.30 Min req1u 1.30 1.30 Cl 1.00 1.40 Cb min 1.00 1.00 Ct. support 1.11 1.11 Too silo 025 Giulem-Unbal„West Species,24F-1.8E WS,3-112-x10-1/2" 52,5 7 laminations,3-1/2'maximum width, Supports:AO-Timber-soft Beam,D.Fir-L.No.2 Total length:1232,9",volume= 3,1 cu.ft,; Lateral support:lop=fun.bottom=at supports; Analysis vs.Allowable Stress and Deflection using ADS 20121 emtecf_on Anal,444 Wane Design value ant c Annlvelsthwei sin sneaf So - 101 Tv. 44 341 psi 1‘4.,714v4 = 0.33 Bending:55 Pb= 1652 Dead DeElln 1.11 =eL/999 Ft' =2764 psi Live 0efi'n 0.20 = 1/521 0.40 = 1/300 in 0.59 Total Della 0.44 - L/330 0.51 = Ln/240 i5534,'91b1 - 0.60 0.53 Additional Data: FACTORS: F/Elpsi,CD nM Ci: Cl, CV Cf. Cs Ct.,. Notes Ce-Cor 144 IIICv' 0' 255 1.15 1.00 1.00 - '- 1.30 1.00 1.00 2 Eg'4 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1,10 .001 - fop' 1.30 650 - 1.00 1.90 - 1.9 million 0.05 1.00 - - 1-00 2 Dminy1 1.03 million 1.00 1.00 - - . - - - - - - - 1.30 - 2 2 CRITICAL LOAD COMBINATIONS Shear : LC 42 -04S, V= 2933, V desiln- 2483 les Beading[4):I LC 42 = 3,-S.. m= per9 lbs-ft Deflection: LC 42 = 3-10S :live) LC 42 . D4.5 P1,010]. 71dead 1.,..live 3-snow Wawind 7...impact 7r=roof live Loa-concentrated 5.earchpwass All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / SOC 2012 CALCULATIONS: Deflection: ET = 608e0E 10nin2 "Live. deflection. DefleCtion from all nonwdesd loads 1live, wind, snos, T 1 otal Deflection = /.30:Dead Load Deflection, 4 Love Load Deflection, Design Notes: 1 woodworks analysis and design are in accordance with the ICC Intemaflonal Building Code(IBC 2012),the National Design Specification(8105 2012),and NOS Design Supplement. 2 Please verify that the defauft deflection limits are appropriate for your application. 3.Gtutam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI A190,1-2007 4.GLULAM:bad=actual breadth x actual depth, S Glulam Beams shall be laterally supported according to the provisions of NOS Clause 33,3 6,GLULAM:bearing length based on smaller of Fcp(tension),Fcp(compM). I . I I I I �� \/Vo '/('� COMPANY PROJECT rage 45 of 118 ood ■ {\✓® Aug,24,2016 14:47 1 FB10.wwb SOFTWARE FOR WOOD OFS1G.V Design Check Calculation Sheet WoodWorks Sizer 10.x2 Loads: Load Type Distribution Par- Location [ft] Magnitude Unit FaiLoad' tern StartEnd Start End Load2 Live Ful.,. v?L 240.:0 vpTF 'oad3 Snow Full UDL 240.0 pIt Se Li-relight load all UDL00.01 Alt UDL 17.1 Pit Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): 1 14'-3.3" i I • Unfactored, 74'=5.6- ar_od 41:7 Live 171} Snow 357 4111 Dead 1713 Tata: 5430 3 0 gearing: Capacity Se30 Beam .5SSo Support 06:38 0030 Anal/Des Beam 1.00 Support 9,_T 1508 load comb 1.00 Length 1.63 0,=3 Min reg'd 1.63 42 42 ..b 1.00 1.63 Cb min 1.00 .63 Cb support 1.07 1.07 fop sup 623 1.00 1.0', 605 Glulam-Unbai.,West Species,24F-1.8E WS,S-112"x13-112" 9 laminations,s-172"maximum width, Supports Alt-Timber-son Beam,D.Fir-L No 2 Total length:14'-3.3';volume= 7.4 Cu.ft.: Lateral support:tope full,bottom=at supports; Analysis vs.Allowable Stress and Deflection,styli'Nos 2012: tr iterfon Analysis valve DesiValue Unit Anai-a.istriessn _ Shear d 4'7 Fr - 240 paf wi f",' trending(+) 1465 06' = 2400 psi «�,/Fb' - 0,61 bead De£1'n 0.26 1./554 Live Def1'n 0.11 "uL/999 0.47 = +360 in 0.23 Total 3eOL'n 0.49 * 1/316 0.11 = 1./200 " 0.69 Additional Data: = FACTORS. P/E(psi;CD CM Ct CL C✓ `:t Meccs CA.Cyr 104 ZE5 ..30 1.00 1.30 r_ 05-a 2900 1.00 1.00 1.00 1.000 1.0001.00 1.00. 1.00 Fop' `050 - 1.00 1.00 - - '. E. 1.e million 1.00 1.00 - - - - 1.00 - - 2 Eminy 0.95 million 1.00 1.00 .. .- 2 I CRITICAL LOAD COMBINATIONS: - 1.10 - - 2 Shear i LC 42 = D.L, t= 5715, V design os Aend g u; LC 52 - 31-5, M = 2051 16,-r. Deal _tionr LC 42 m D.1. LC 92 D>L 1000,11 D=dead L=live Sosnaw aswiod I-impact Li-roof 'lire Lc=concentrated £ tr.3uake Al]. LC', arelisted inthe Analysis output -ea.. Load combinations) ASC:: 7-10 / I9C 2012 _ lett CALCULATIONS: Deflection £T = 2030.06 1b-1n2 from"Live" deflection - Deflection all von-dead loads "' - ''total Deflection _ 1,501Dead Coad Deflection) r ,,,4eLoadCe w o.+ Deflection.-on. Design Notes: I 1 WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NOS 2012).and NOS Design Suppemern. 2.Please verify that the default deflection limits are appropriate for your application. 3 Glulam design values are for materials conforming to ANSI 117-2010 and manufactured In accordance with ANSI A190,1-2007 4 GLULAM:bad=actual breadth x actual depth. 5 Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3. 6 GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). I I I I Page 46 of 118 I COMPANY PROJECT fit Woodworks® Mao 24,2.1614,49 'Fell vmb I POFTWARE FOE WOOD LIES1C1,1 Design Check Calculation Sheet WoodWerks SE 1042 Loads: „..- I :....,*11 ,...:.12 7....,,,, 7 .. ZW.T.1,.-ers,ir: ':;:s; "''.''.:f'1-:: -,;:;:.' i:r1 .;,?:;:;:.'",.3 , ,' .. 44 A.4. a.: 3,25. t I I I I ..ii 1g- 11 3.:,ta7.,•m..., !I; '1..i .G: 7,...,. ivin-r. Beer 9..ne-...,. ,..,., 77.t I .... • ..f, :..4 .....:4 :.... Giulam-Unbal.,West Species,24F-1.SE WS,3-1/2i11-7:s' .... 11 1 s.esermi 3-tr2-maximum aid., Svpporls All-Tonbet-sort Dom,0 Fir.l.Not Total leNota.7-2,S..volume e 0 9 eu It, I Analyst*vs.Allowable Stress and Deflection.6.,',mu*: ,:r.tirt..,,t. ,..,..18, ei..... 7.10., 41., Ultra support top=at bottom.a nowt. '- I Additional Data: E' -,:-,,, ,....!:-..,_._:,.• ...., '.,' - - , „ - . i CRITIC:AL LOAD COMBINAT[ONS CALCULATIONS IDesign Notes: 1 WoonniValla anatesks and clew are on acenloance entn 3t CC In.,,dernol Bulking CRN sec 2012),the Nationai 0.01 5tteeinteatim(NOS 2012)and ODE Oman Suppbnent 2 Plane verify that the tieneut deficoim writs Pm A4RMARN Is YRY.Mnocation 3 Gain dear.11103 NV Is maim*.tanirrting WANE)117-2010 and amontaayed In=Mit.v411,455)0190 1-2307 I 4.GLUIAM,lad e ecluet SEWS x aut.*dee" 5 Guam Barns shell be Mani,snpperted aecaRrip to Re pommons of NOS Game 333 6 GLUOJet bowing itingth taped on...Ow of Ceptlenage.Feurcerrern) I I I I6969 SW Hampton St. CLIENT: Portland,Oregon 97223 ,-ie is% 503-624-7005 PROJECT: Page 47 of 118 I4 , .,-, __ '',,, 745 NW Mt Washington Dr.#205 NUMBER: Bend,Oregon 97703 541-383-1828 FROELICH I: De —c-i- DATE: EGINEERS§ I N12303 Airport Way Suite 200 Broomfield,Colorado 80021 ,,, Frod,o, engmrs. orti 720-560-2269 BY: I ._ _ ... _ ..F- ... -- -- i 11.T i Ftcooe.. )14D/fe,„ S • II „, / u IAi -r (7) LLs ( 1 t71. 3, ) (LIO )Ir (7 To 1%F. I1 it-12/: LA...) I : I l'' 'L s(I"1 j( 1 i) -t I z.o -,r(t-1S(1_7)1. izo., (-41)(z (.6-) .?...7) , ir450 PLF I. r r r r a` I I 0-4 ) c a s) ,Q 3 5c Pcf z,'..0 11.--40 iot, I• I i F 4 3 - JFA-12.) I b L, 10s© ec r I eL ,,- az...0 I I ili' I COMPANY PROJECT r`1'9C *o 118 I 000111111 1 I I %%Ood Wo r k s® Aug.24,2016 14:57 1FH1.wwb SOFTWARE FOR WOOD DESIGN IDesign Check Calculation Sheet Woodworks Sizer 10.42 Loads: Load Type Distribution Pat- Location Ifti Magnitude Unit Loadl Dead e==1 5f3LL Erd 'Start End. Full DM 020.0 plf Load2 Live Full U01 600.0 plf Self-weight Dead full UDL 6.0 plf Maximum Reactions(Ibs),Bearing Capacities(lbs)and Bearing Lengths(in): i 1 • 3•-2.2- I I I In to Stared: Dead Live 1314 1062 319 1082 -aored.Total 2396 Bearing: 2396 Capacity Beam 2396 Soppo_t 2653 Anal/Des 2356 Beam 1.00 2653 support 0.90 0.00 Load comb 92 0.90 Length 1.10 13 Min req'tl 1.10 L.10 Cb 1.00 1.00 Ca min 1.00 Cb support 1.11 1.00 Fop sue 625 1.00 1.11 625 • i Lumber-soft,D.Fir-L,No.2,4x8(3-1/2"57-1/4") Supports:All-Timber-soft Beam,OFir-L No.2 Total length:3'-2.2':volume=0.6 waft.; Lateral support:top=at supports,bottom=at supports: Analysis vs.Allowable Stress and Deflection„sing NDS 2012, Criterion Aea3.yyebe Vniue Deaiga- Value Unit Anal•sinlDesLgr. Shear iv= '90 -v- - 5g0 psi .VIFv' :,44 Bending(*) Db 704 1165 psi tb/Fb' . o.eo Dead Dell'n 0.01 <1/999 Live Dell's 0,01 = <L/999 0-10 - L/260 in 0.0a Total DefL'n 0.02=<L/999 0.15 = 1/240 in 9.14 I Additional Data: t FACTORS: F/iCM,psi)CD Ct CL Fv' 160 1.00 1.00 1.00 CF Cfu Cr Ci Cn LC, - - - 1.00 LOU 0.00 Fb'+ 900 1.00 1.00 1.00 0.996 1.300 1.00 1.00 1.00 1.00 2 Pap' 625 - 1.00 1.00 - - - - 1.00 1.00 -- - E' 1.6 million 1.00 1.00 - - - - 1.00 1,00 - 2 Ends' 0,58 mullion 1.00 0.00 - - - 1.00 1.00 - I CRITICAL LOAD COMBINATIONS: 2 Shear : LC 02 = D+L, V= 2329, V design= 1349 lbs Bending(+): LC 92 = D+L, M= 1799 lbs-ft Deflection: LC 92 = D.C. (live) LC 02 = D+L Motel) D-dead L-live S=snow N=wind I=impa::t Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 201211/ 0 CALCULATIONS: Deflection: EI - 178e06 lb-int "Live" deflection =Deflection from all non-dead loads ?live, wind, snow..) Total Deflection = 1-50(Dead Load Deflection) + Live Load Deflection. Lateral stability 1+): Lu = 3'-1.13" Le= 6'-4.44•' 123= 6.73 Design Notes: 1 WoodWerks analysis and design are in accordance with the ICC International Building Cade(IBC 2012),the National Design Specification(NDS 2012).and NOS Design Supplement, 2.Please verify that the default deflection limits am appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4..1 I I I Page 49 of 118 COMPANY PROMO' I 1 01°.I I WoodWorks® Aug,2u,20t515:01 InavAttl SOFTWARE FOR W000 DESIGN IDesign Check Calculation Sheet wwwwwasav raw Loads: -..-rr -,---• 14,-1_--,:....'•',„"r„.: „,,,....;;;''.".„;.,.,., z:r1::.•f:',i(L,,,:: I 1 TL". . (32 . --:" ., i'. ' 1.1.: 7.,/27 _.Y., .,,f '','''...,. ;...•2 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(In): I # 7.44. t *1 I .7><1 1>-<- .,... 1.3t,-.... ..,,,../ I ,..-, .... . ..I, Milani-UAW.,Wont Species,24F-1.SE WS,S-1/2"x7-1/2" S isteiretees.5-14F;raceme melt litemple Al.llirtereort iliere 0 Fla NO2 Tem woe.3,44..velem,.I 0 ee it: I Analysis vs.Allowable Stress and Deflection ft*,NOS 2012. :( ('- IT ./(4L...... ::::::... ft,-...i,•..f.,:,',.v:.::„. Z•til ::‘,.:..". .. 1 • '..112 WWI epPet,ieP•mleppies Wee.V roaem I Additional Data: ,---,-r.r: ,----.7,, r-, - .-:-. -. 7 7.1. :', If, . , ."-:,,• '" - 7 — • "' - 11 CRITICAL LOAD COMPLATIONS ,t• - ,.. ,;-. . . ICALCULATIONS Design Notes: 1 Woottionis mewl*ea dirge.ur accord:nor vuth IR ICC InttATAgall gualong Code LBC 2014 guL NuLenai Dawn 20.0100:st(NOS 20L4 and MPS Dew,Suraemurt 7 Pleggi T.*Rug gxrdokulteluegrgen RM.rag upppocries tor post apptagtgo, ' 3 Oitimememiseeliewerek.mode*opiketes to ANSI 111,3010 awl mweecturml es sweitercemei ANSIAISO I•MW 4 OLULAM.eid•mem beretix seem wee 5 0"."9,......4.01.06.04 045.0006.00f19 to MB 0000:019 0 1005 Cs.33 3 0 GLUIWA Weep MAW Lame on MAW 0 FC00/1120n).F00,) I I I , I I Page 50 of 11 R COMPANY PROJECT 111 WoodVVorks® Aug_24,201814:57 1FH3.wwb SOFTWARE FOR w000 DESMIN Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: I Load Type Distribution Fat- Location (ft) Magnitude Unit Loadl Dead tern start Bed Start End Load2 Fall UbL 1050.0 Load3 Snow Fu11 UDL 1220.0 kyr SFull UD350.0 pit elf-weiohc Dead Full 01, - 6^!' p2t I Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): I 3'-3.4- t I I III :Fn Dead ed: 7 i.-�-\. Dead 1734 3%47' Love 2004 575 1734 Factored: 2004 Total 3732 575 ` Heatin Capacity 3'30 Beam 3739 Support. 4139 Anal/Des 3';3y Beam 1.00 9100 Support 0.90 1.00 :Load Coda) „2 0.90 lead o Length 1.'/L 90 Min teq'd 1.1182 Cb 1.001.71 1.00 Cb min 1.00 IL support /.11 1.00 1.11 Pap sup 125 1.00 625 Lumber-soft,D.Fir-L,No.2,4x8(3-112"x7-114") Supports:All-Timber-soft Beam,O.Fla No.2 Total length:3'-5.4';volume=0.6 cull; Lateral support:top=at supports,bottom=at supports; I Analysis vs.Allowable Stress and Deflection wingNDS 2012: sCearoaio1 Anelysra Value Design Value Unit RnelyyfD iaRsi n Bending(+1 fa)=1121 - 100 pal iv/Fv' _ 5.67 3 Fl _.`oH yes ib/Fa)' = 0.94 Dead Defl'n 0.51_<1�<1/99.9Live Def1'n 0.02 51./999 0.10 = 1;360 in 0.1.4 Total Defl'n a.D3..<„/949 C-io = L./240 In 0.92 AdditionalData: . ?ACTORS: _rTleonCD CM Ct Cl, CF Cfu Cri'.rt C'. 180 1,00 1.00 1.00 - C Cr L2 Fb'r 980 - - 1.00 1.00 1.00 2 1.00 1.00 1.00 0.930 1.300 1.00 1.00 1.00 1.00 2 F' 1.6 - 1.00 1.00 - - - - 1.00 0.00 - E' 1.6 million :.00 1.00 1.00 1.00 III loin 0.58 million 1.00 1.00 2 CRITICAL LOAD COMBINATIONS:Shear 1.00 1.00 2 Hending3rl. LC 52 -BAG, M 2810 lbs-ft = 2039 fns Deflection: LC 42 = DLL (live) LC 02 - Oft (total] D=dead L=1a.ve 5.-snow w_wind I-Ampact output live Lc=conoentrated E=earthquake Al) LC's are listed in the Analysis Load combinations: ASCE 7-10 / IHC 2512n� CALCULATIONS: Deflection: EI 178e06 lb-in2 "Live" deflection= Deflection from all non-dead loads (live, wind, snow...) Total Deflection = 1.50(Dead Load Deflection) +'Live Load Deflection. Lateral stability tri: Lu= 3'-1.69" Le = 6'-3.69" 58= 6.78 Design Notes: 1.WoOdWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. 2 Please verify that the default deneotion limits are appropriate for your application. 3,Sawn lumber bending members sha0 be laterally supported according to the provisions of NOS Clause 4.4.1 I I I I '4 ❑Main Office CLIENT 6969 SW Hampton St. Portland,Oregon 97223 PAGE j 503-624-7005 PROJECT: 7 ❑ ritrai Orr.: r -,d. Page 51 of 118 =:: 745 NW Mt_Washington Dr.#205 Bend,Oregon 97703 NUMBER: 541-383-1828 R ❑ 4� }�_{>ff�f DATE: ENG INEOELICRHERSI l2303 Way,Suite 200 i<w'w,froelich-engineers.com Broomfield,Colorado 80021 7zos60 2269 BY: '14-o.:Y tl z.�,,z K. : • C )LsLo PS t�4,-- St,-; er - arc. FFoor: 1...4s- /00 P&P r SPA AJ s V - 0 mlopc: '59i-e.. Ls (2. (2o) - `-t o PL-F 2-Lc (z) (b c ) c Zoo Pc, 54- Y •A-r - - 2'14 Fir: DL.,- qo vGcPE: „4LC..s Zoo PC..' L0,4;v 3o;is : DL.1- 2o PsF Le_s too Ps1 BEA AA AT LAAI Dlnl(n SpA r foro bLr (3°)(om) s60PC-F ?,.-1.- r C.33 0 co) s 300 Pc-F. Pt.(Air LoAt:3 e_ 3 >i .9_ 9 - c(= e (I ) qtr 1:2:t1-r 2 oc)* L.L. s co t r , 0 po►ry T Co A 0 e. 2.5°r 5 ' 7.5 C F1 {.2) S °r;v5 r:.v T:),L oolt LL /60o+ I • COMPANY PROJECT Page +J2 of 118 i 1 %%' o d\/'f()rks® Sep.13,2010 15.06 Stair Stringer-3rd Fbor,wwb SOFTWARE FOR Woe°DESIGN 1 Design Check Calculation Sheet WoodWorks Slur 10.42 Loads: Load Type Distribution 'rat- cation ,ft Magnitude Unit I Loadf tern Location Ends Start End Cove Yatl BBL 501 �4e 00.0 Flt Load2 Live Full UDL self-weight Dead200.0 Pit Full UDL 5 9 010 • Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): •I • 1a-0.2' I . I tintactored: 8'-0S' Dead 223 Live 309 I. 223 Factored: Tonal 3t 008 Bearing. £'diets 761 1031 Capacity Beam 171-_ 761 1ISupport 1523 Anal/tits ?11 Beam0.60 1520 Support D.6B Load comb so 0.60 0.'09 Length 0.50• 0.50.Min req'd 0.50` 42 Cb 1.00 I CSD nun 1.00 0.500 support 1.09 1.00 Fop sup 625 1.00 'Minimum Deanna length seeing used:112'(or end supports 1.08 III Lumber n-ply,D.fir-L,No.2,2x6,3-ply(4-112"x5-1/2") Supports:All-Timber-soft Beam,D-Fir-L Not Total length:10,0Z;volume=17 cult.;Pilch:6112; Lateral support:tope full,bottom=at supports;Repetitive factor.applied where pemutted(refer to online help); Analysis vs.Allowable Stress and Deflection using NOS 2013: ' Criterion Analysis Value Denson- Value Unit Anelyg5iatsealp, .26 Shear £v= 07 1.e. 190 psi Bending(+} 0b= 109:. 06' - 1345 psin ?vdiv' . Dead Defl'n 0,09 = <1/9990 0.3. Live Def1'n 0.27 = 1/425 0.32 = L/360 i Total Defl'n 0.38 -- 1/30: 0 0 .48.• 1/240 on 3.6_800 AdditionalData: cC FACTORS: F/E(pail CD CH Ct C., 00' 180 1,00 1.00 1,00 Ca Cn LC4 Fb'r 900 1.04 Cr, Cr `.00 1.00 1.00 1.00 1,00 1.000 1.301 1.00 1.15 1.00 Fop' 625 1,00 .00 - _ .01 1.6 million 1.00 1.00 _ _ 1.00 00 - 2 CRITICAL LOAD COMBINATIONS: 1.cc ,00 2 Shear : LC 82 =pay, :' = 854, V'design = 768 lbs Deflect(o): LC 2 =D+2„ N i 2062 lbs-ft _- Deflection: LC 42 =DIE, (live} LC 82 =D+L (total( D=dead L=jive 5 now Rewind In-impact act L All LCs are listed in the AnalysisP .o live L�concantra tad E=tareh;ua Y,e Load combinations: ASCE 1-10 / /BC 2012 2puty CALCULATIONS: 111 Deflection: E/ = 33.3e06 lb--in2/p_y y eJ .ow ' "Live" deflection = Deflection from all non-dead loads and, Total Deflection_ 1.5010ead Load Deflection( e toad Deflection. Bearing: Allowable bearing at an angle F''meta; calculated f each s as per NDS 3.10.3 e support • Design Notes: 1,WoodWarks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. 2.Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. each4.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that ply equally top-loaded.Where beams are side-loaded,special fastening details may be required. 5.SLOPED BEAMS:level bearing is required for all sloped beam, I III I • COMPANY PROJECT I � I %%o ® _ 'age o • od Wo rkS Sep 13.2016 IS 11 Seer Stenger-2nd rlaarw.vb SOFTY/AAF FOR W000 CES/Gy I Design Check Calculation Sheet Loads: Weetieetissae 1042 X1111111111111 yn �� Maximum Reactions(!ba),Bearing Capacities(Ibs)and Bearing Lengths(in): I ig-er • I .t. 8.06* f6./S .� F,. • .=I . ,:l ., . .. „... ^Were. MY09wsnwepQm4tpua»IiAnatdrn ~eat Lumber nply,D.Fir-L,No.2,2x6.3-ply(41!2 5-112") Swp rex Al.T"Oxbn.044 seen..O Feet Net TOW WO, ar~et 4 3,4;1411.-Pie*M$MM.,WPM*MO.4 WU..aysePe,.hRRweurebeer OOdl/nre Per dhd(Nv to armhue+l' • ysis vs.Allowable Stress and Deflection Neese NO62012: INStesapsomiliMlermalleSSMOmmemilIMISMBISIMISmaill inn= zt I 1111 Additional Data: CRITICAL LOAO COMOSN tb CALCULATIONS IDesign Notes 3 PioRetew ns/erify that the*Nei Meath,y .. gCade:16C 2iHZ/.the N+4nOlOnip SDKircaUw+(NDS 20721.and NOS i7�jt 5upp.een 3.argue epmygx�embee am belarns:NOS l oz aeon:Ong to the ttormal 11.0..tyP rote extenemM4.4.ed/L Cu melt*22 ar24ryat tame end Iv the 601 blpp,aeaoy�yyw Mhe-a{w,s nt ethilleorettetthetrnernber tteee S. P pgue011e� p�beiret.When ��b'�dM1, Aneten0delet mei th_no ketone.�mewl;femme 1p�`'hPf Y�O++nVeb eel aky06ty4ntML the dapb�3Ml the I req itl terse lived Own* I I I • I 111 I COMPANY PROJECT Page 54 of 118 fir Wood\Norks SOFFWAREPON WOOD DESIGN Sep.13,2016 15:12 Landing Joists.wwb III _ Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: Load Type Distribution Pat- Location lift) Magnitude Unit Dead tern Start Sod Load). FUil Area Start End Load2 Live Full Area 70.00(16.0'1 nsf Self-weight, Dead Full 001 100-00(16.0") psf 2.6 plf 111 Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): f -6.1.1" t I • I Unfactored: Dead 89 g•"'UUUS" Live 406 Factored: 89 I Bearing: .195 406 earing; Capacity 495 Joist, 995 Support 119 Anal/Des 495 Joist 1.00 .00 I Support Load comb 3.80 62 1.00 Length 0.53 0-.83 Min req'd 5.53 542 3 Cb 1.00 0.00 Cb min 1.00III 0.00 Cb support 1.25 1.00 Frau sup 625 1.05 1.25 625 Lumber-soft,D.Fir-L,No.2,2x8(1-112"x7-114") Supports:All-Timber-soft Beam,D.Fir-L No.2 Floor joist spaced at 16.0"dc;Total length:6-1 1';volume=0.5 cuff.; Lateral support:top=full,bottom=at supports;Repetitive factor applied where permitted(refer to online help); Analysis vs.Allowable Stress and Deflection using NDS 2012: Criterion Anal sis Value DesignV Shear ry _ 54 Ps' 180ve psUni[ Analysis/Design Deed irg(+) Pb - 678si tb/Pb' +* 0.30 n Dead De fl'n 0.01 <L1999 Pb'� 1242 psi fb;Fb' . 0.55 Live Deti'n 0.05 <L/999 0.20 a :,;'36D Total Defl'n 0.07 - ro 0.26 GLl999 0.30 m L1240 in 0.23 I Additional Data: FACTORS: F/Eipsi)CD CM Ct CL CF Cf;: Cr Cfrt Fv' 180 1.00 1.00 1.00 - - Ci Co LCk 1101)- 900 1.00 1.00 1.00 1.000 1.201 1.00 1.15 1.00 1.00 1.00 2 Fop' 625 - 1.00 1.00 - - - 2 E' 1.6 million 1.00 1.00 - 1.00 1.00 - Emin' 0.58 million 1.00 1.00 - - - 1.00 1.00 2 CRfTICAL LOAD COMBINATIONS: '•00 1.00 2 Shear : LC ,2 = D+L, V = 491, design _ 390 Pending(+): LC 62 = 111-1, M = 742 lbs-ft� lbs Deflection: LC 42 D+L (live) LC 42 = 0:L (total) ID=cieati L=-.live S=snow W-wind S=impact Lr=roof live Lc=concentra Led S=earthquake All LC's are listed in the Analysis output Load combinations: ASCE 7-10 / IBC 2012 • CALCULATIONS: Deflection: FI = 76.2e06 lb-int "Live" deflection = Deflection from all non-dead loads (live, wind, snow_) I Total Deflection = 1.50(Dead Load Deflection: ) Live. Load Deflection. Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement 2.Please verify that the default deflection limits are appropriate for your application. 3,Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. I • I I COMPANY pso,ge, Page 55 of 118 I Illit WO o d Wo r k s® Seth 13,20101515 84msn m t Liming mkt SOf'WAR f WN WOOD(*SIGN ILoads: Design Check Calculation Sheet Woxeecee Sew 10 tit t,el 7',se 1.o.-tr...., Ott- ,ths:.• "-, lito.,..1. '..)- ...e.o., L.431 4,4. ''.'-, fr,:. •• , 1:? I .1) ,,,so I L..• 4..e 1..y. 1...• . ), :re .re 1os .ss ....I, I ..,,, it p„: Maximum Reactions(Ibs),Bearing Capacities(Ibs)and Seating Lengths(in) t 10-57 t I I .L1•to--.., i2 11 I _ I•: •'- -' ill .. Milers-lineal.,West Species,24F-1.11E WS,3-1/2"el1-701- 8 lenenabons.3.10 theoinuen watt I Analysis vs.Allowable Stress and Deflection.0.94011 ma: Som.:AN-rafter-soh 15...0 Fir-L No 2 Tate ithder 10-52"eluthe•30 co it La. ron es.AS,wt.,.iie _Jr 1/...,..• .s, 3:9.7,1)N-.1,7,....: i'‘1., 4,• :14 ',"- I 7,1-1,;:t:.`. •-;,-1.•• .•3•46 -1_• :...r2.V. , -n,.',ft,If ro_r• ...tver 4.,.." •4.....••4`....•sLls.,:' „ ..,."..3 Additional Data: 1..t.=......47 ,t,,,i.t..i ,-. .., . '..'- ..1.,.,,t9 6 7`•,•.••...,, • I 4' C-RMCAL LOAD C031131.D0NS: 1. • I . CALCULATtONS, I Design Notes: 1 WoodWonot analysis and dee.)se in te.....et.the ICC Inbenathroal 51).1A5Code OBC 2012)the Nabresal Dmart Speafieation(NOD 2012),arel NOS Derege Supou,...al 2 Plane verify the the dela.denerbon loft ath effedPnete Ise)11.8034•440. 1 GAdate*den rakomare the enenediecarlonniv WAN%117-2010.1 manufneto.In acansarne v.ANSI A190 1-2007 4 GtULAM mrd=emus brake,cased depth 5 Gluten Beams shall be Mo torocrod deroidinq to the proa Nos Co 333 8 GLULAM:boring Imp based on whaler of hopderson).Fro(Aoneln) I I I I I I ' :_im,,,,_ ,,, = CLIENT: 6969 SW Hampton St. _ (]AGE j Portland,Oregon 97223 503-624-7005 ,� C PRoJECT: Page 56 of 118 745 NW Mt.Washington Dr#205ta Bend NUMBER:Oregon 97703 C! -- 1 10 0 541-383-1828 I F1OELICH 1 ')- 3 DATE: 110 i a.01 ENGINEERS * 12303 Airport Way,Suite 200 Broomfield,Colorado 80021 WU Vs.ctroch c11-enbinrir,com 720-560-2269 BY: y,T=::. vF;�.v06 0 AR-A 6 G D�"5tCxA/ • N q AicRere ; 66PsF,. Y,l2.__S5oPSF Al 00,D .�1a'.A.c t.;?A/a : S ko F'S F s-�- 6 0 's 1= %I F 0 R T E MEMBER REPORT Basement, Garage Joists PASSED 1 piece(s)117/8"TJI®360 @ 12"OC Page 57 of 118 Overall Length: 11' 7" I T 1 rr I t.____.........................., 1 I t 4` 11' 0 1 Q IAll locations are measured from the outside face of left support(or left cantilever end).All dimensions are horizontal. Design Results Actual•i Location Allowed Result LDF Member Reaction(lbs) 789 @ 2 1/2" 1202(2.25") Passed(66%) 1.00 Load: D+ol 0 L(All Spans) ) Member Type:Joist hr I Shear(lbs) 789 @ 3 1/2" 1705 Passed(46%) 1.00 1.0 D+1.0 L(All Spans) Passed(68%) 1.00 1.0 D+1.0 L(All Spans) Building Use Residential Moment(Ft lbs) 4176 @ 5'6" 6180 Building Code:IBC 2012 Live Load DeFl.(in) 0.220 @ 5'6" 0.279 Passed(1.1608) -- 1.0 D+1.0 L(All Spans) Design Methodology:ASD Total Load DeFl.(in) 0.220 @ 5'6" 0.558 Passed(L/608) 1.0 D+1.0 L(All Spans) I T3-ProT"Rating 6.8 _ 50 Passed 4: -_ •Deflection criteria:LL(1/480)and TL(1./240). •Bracing(Lu):All compression edges(top and bottom)must be braced at 4'1/8"o/c unless detailed otherwise.Proper attachment and positioning of lateral bracing is required to achieve member stability. II .A structural analysis of the deck has not been performed. •Deflection analysis is based on composite action with a single layer of 1 1/8"Weyerhaeuser Edge Gold""Panel(48"Span Rating)that is glued and nailed down. •Additional considerations for the TJ-Pro"•Rating include:bridging or blocking at max.8'o.c.. 1 Bearing�� Loads Supports(lbs) Supports Total Available Required Dead Fbpr Live Toial Accessories 1-Stud wall-SPF 3.50" 2.25" 1.75" - 789 789 1 IJ4"Rim Board I 2-Stud wall-SPF 3.50" 2.25" 1.75" - 711711 1 1/4"Rim Board •Rim Board is assumed to carry all loads applied directly above it,bypassing the member being designed. „^ LoadsI Dead Floor live Location(Side) Sparing (0.90) (1.00) Comments 1-Uniform(PSF) 0 12" 60.0 _ Residential-Living 2-Point(Ib) S'6" Areas N/A 1500 II .Web stiffeners required at location S'6"due to loads. Weyerhaeuser Notes Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. SUSTAINABLE FORESTRr iw7lAnvE IWeyerhaeuser expressly disclaims any other warranties related to the software.Refer to current Weyerhaeuser literature for installation details. (www.woodbywy.corn)Accessories(Rim Board,Blocking Panels and Squash Blocks)are not designed by this software.Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction.The designer of record,builder or framer is responsible to assure that this calculation is compatible with the overall project.Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards.Weyerhaeuser Engineered Lumber Products have been evaluated by ICC ES under technical reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports refer to http://www.woodbywy.com/services/s_CodeReports.aspx. The product application,input design loads,dimensions and support information have been provided by Forte Software Operator I I I Forte Software Operator Notes 12/19/2016 6:58:46 AM 'rasher Sarraf Pour Forte v5.1,Design Engine:V6.5.1.1 Froelich Engineers (503)924-6311 ysarraf@froelich-engineers cornJoists.4te Page 1 of 1 I COMPANY PROJECT Page 58 of 118 t wood Wo r k s Dec.19,2016 07:01 Basement Beam.wwb SOFTWARE FOR WOOD DESIGN • Design Check Calculation Sheet Woodworks Sizer 10.42 Loads: Load Type Distribution Pat- Locatron (ft) M gnitude Unit L dl tread Seen Start F.nd Starn Ted I EU11 VOL 690.0 L I3 Live Point pTf Self-Weight Deed 2.00 3000 lbs ¢i 1.1 MIL ./.? pif Maximum Reactions(lbs),Bearing Capacities(lbs)and Bearing Lengths(in): I 1 t I •i Unfac coved: Dead 1530 111 Live 1530 Factored: 1321 'Co l:al 2904 1420 Beating: Capacity 2742 Seam 2004 Support 321's renal/Des 22742 Cram 1.00 31)00 Suppor 6.'10 load comb 32. 1.00 0.90 Length 1.33 Main req'd 1.33 02 CD 1.00 1,25 lb m 1,00 1.25 Cb support 1.11 7.116 .t'co sup 625 1.00 1.11 625 Lumber-soft,D.Fir-L,No.2,4x10(3-112"x9-1/41 Supports All-Timber-soft Beam.D.Fir-L No.2 Total length'4'-2.6';volume=0.9 cu.ft.; Lateral support;lop=at supports,bottom=at supports: Analysis vs.Allowable Stress and Deflection using Nos 2012: Criterion Analysis Value Design Value Unit Anal s:.s/Des.ian Shear t 105 Fv 180 y 1 Bending(*) fb = 1050 Dead Defl'n 0.01 =<7./099 tb` = 1073 ps1 /pv' e 1.00 psi fo Live Detl'n 0.02 - GL/949 0.14 L/300 in Total 4ef1'n. 0.94 GL/449 0,21. = L%240 .1n lbl.b' - it.99 0.15 0.18 Additional Data: FACr'DRS: Ill;Ipsi1CD CM Cl CL CF Cfc Cr Cfrt. Cr. - ev' 180 1.00 1.00 1,00 Co0 L2C Fb'S 9203.00 3.00 1.00 2 1,00 1.00 1.00 0.993 1.200 1.00 1.00 1.00 1.0i) 2 ECP' 625 1.00 .00 ..00 1,U0 E' 1.6 million 1.011 7..00 - - - 1.01) 1,00 Emis' 0.50 million 1.00 1,00 - - - - 1.00 1.002 CRITICAL LOAD COMBINATIONS: _ Shear : LC 32 = 1:+L, V= 2809, V design - 2351 lbs I Bendingif): LC 42 = D+L, M= 4392 lbs-ft Deflection: LC 112 - D+L (live) LC 02 = OIL (total) D=dead L-:live 5-snow W-wind 1-impact Lr-roof live Lmcconcentrated E=earthquake All CC's are listed in the Analysis output Load combinations: ASCE 7-Il / IBC 2012 CALCULATIONS' Deflection: LI - 369006 lb-in2n u a Live" deflection = Deflection f all non-dead loads {live, wind, snow..) Total Deflection = 1.50)Dead Load Deflection) 1 Live Load Defiection.n Lateral st:.ability (+)) Lu= 4'-1.31" Le .. 0'-5.56" RB-= 8.76 Design Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. I 2 Please verify that the default deflection limits are appropriate for your application. 3.Sawn lumber bending members shall be laterally supposed according to the provisions of NDS Clause 4.4.1. I I I I ❑ Main Office CLIENT: 6969 SW Hampton St. Portland,Oregon 97223 PAGE , 4 503-624-7005 PROJECT: Page 59 of 118 ❑ Central Oregc 745 NW Mt.Washington Dr.#205 NUMBER: Bend,Oregon 97703 541-383-1828 DATE:❑Den'ier°Mee12303 Airport y, Suite 200 Broomfield,Colorado 80021 wwtiv.traelich-engineers.corri 720-560-2269 BY: IIII 111 11111 I i 1 I I 0 1 6969 SW Hampton St, PAGE Portland,Oregon 97223 503-624-7005 PROJECT: ❑ Central Oregon Page 60 of 118 1 it 745 NW Mt.Washington Dr,#205 NUMBER: Bend,Oregon 97701 541-383-1828 FROELICH ElDerverCroce DATE: IllENS1IsikERSI 12303 Airport Way.Suite 200 Broomfield.Colorado 80021 wsr.froelith-engineers.com 720-560-2269 BY: f-v LC_ H-!Fl a per Cot.um AI 0 Ai k/A u I WIAlr' C.-.oAD Vs 122_ "tom'^ kZs p , 17. sz2. 67 k 1� S- 0.<g az. 13. Fac{o.- i (,_O A Lo AJ r✓A C K Co L u rkA. s i L � U & (2,) A3Se EAJn of cotoAAAI 1111 1!" 111 II fit COMPANY PROJECTI WoodWorks® Page 61 of 118 SOFTWARE FOR WOOD DEVON 11 July 23,2014 05:07 Cotumnl Design Check Calculation Sheet Sizer 2004a IILOADS (lbs,psf,or plf) r Load Type Distribution Magnitude Location (ft] Pat- Loads Start End Start End tern Wind Full UDL 48_0 No I MAXIMUM REACTIONS (lbs): II Io CDead 27' Live I 648 (((I Total 648 646 643 Glulam-Balanced,West Species, 24F-1.8E WS, 5-112x7-1/2" I Self Weight of 9.5 plf d in loads; Pinned base; Loadface=width(b);Ke x Lb: 1.00 x 0.00=0.00[ft]; Ke xautomatically 1.1 00x 27.00=2700[ft]; Lateral support:top=Lb,bottom=Lb;Load combinations: ICC-IBC; IAnalysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis value _Design Value Analysis/Design Shear fv = 24 Ev' = 384 fv/Fv` = 0.06 Bending; .) fb = 1018 Fb' 3840 fb/Fb' - 0.27 Axial to = 6 Co' 399 (circ' 0.02 Axial Bearing o Fc` = 1440 fc/Fc'' -_ 0.00 Combined (axia- compression * s'-de load bending) tq.3.9-3 = 0.27 Live Defl'n 1.65 -- L/196 1.80 = L/180 0.92 Total Defl'n 1.65 = L11966 1.80 = L/180 0.32 I ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CV Ofu Cr Cfrt Notes LC# Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 2 Cv' 240 1.60 1.00 1.00 1.00 1.00 2 Cc' 1600 0.90 1.00 1.00 0.270 1.00 Fc Comb 16Q0 1.60 - - - 1 0.159 - - - - - 2 E' 1.8 million 1.00 1.00 I Fc* 1600 0.40 1.00 1.00 - - - - 1.00 - '1 2 Bending(i-) : LC# 2 = .5C+W, M = 4374 lbs-ft Shear : LC# 2 = .6D+Td, V = 548, V design = 649 lbs Deflection: LC# 2 = .SD+W EI= 348e35 lb-int I/ Total Deflection = 1.00(Dead Load Deflection; + Live Load Deflection. Axial : LC# 1 = D only, P = 256 lbs Combined : LC% 2 = .6D+W; (1 - fc/F,cE) = 0.98 (D=dead L=live S=snow W=wind I=impactconstruction CLd=concentrated) (All LC's are listed in the Analysis output)^^ DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3. GLULAM:bxd=actual breadth x actual depth. I I I I I � ii 1 WoodWorks Page 62 of 118 COMPANY PROJECT SOFTWARE FOR WOOD DESIGN I June 16, 2003 10:53 (2)2x6 Cripple Stud.wwc IDesign Check Calculation Sheet WoodWorks Sizer 10.42 I Loads: Load Type Distribution Pat- Locationft [ ] Magnitude Unit tern Start End Start End Loadl Dead Axial (Ecc. = 0.00") 4000 lbs I Load2 Snow Self-weight Dead Axial Axial (Ecc. = 0.00") 7000 lbs 35 lbs 2 Lateral Reactions (lbs): 9' 1. I w m i g 0' 9' Lumber n-ply, D.Fir-L, Stud, 2x6, 2-ply(3"x5-1/2") Support: Non-wood I Total length: 9'; volume= 1.0 cu.ft.; Pinned base; Load face=width(b); Built-up fastener: nails; Ke x Lb: 1.0 x 0.0=0.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ft]; IAnalysis vs. Allowable Stress and Deflection using NDS 2012 : Criterion Anal sis Value Design Value Unit Analysis/Design Axial fc = 669 Fc' = 710 psi fc/Fc' = 0. 94 I/ Axial Bearing fc - 669 Fc* = 977 psi fc/Fc* = 0.68 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# II Fc' 850 1.15 1.00 1.00 0.726 1.000 - - 1.00 1.00 2 Fc* 850 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 CRITICAL LOAD COMBINATIONS: I Axial : LC #2 = D+S, P = 11035 lbs Kf = 1.00 D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICBO-UBC IDesign Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the I National Design Specification (NDS 2012), and NOS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. I I I I Page C3 of 110 I COMPANY PROJECT "ii WoodWorks SOFTWARE FOR WOOD OFSICN II June 16, 2003 10:52 (1)2x6 Cripple Stud.wwc IDesign Check Calculation Sheet Wood Works Sizer 10.42 11 Loads: Load Type _ Distribution Pat- Location [ft] Magnitude Unit Loadl tern Start End Start End Dead Axial (Ecc. = 0.00") 2000 Load2 Snow Axial lbs Self-weight Dead Axial (Ecc. = 0.00") 3500 lbs 18 lbs Lateral Reactions (lbs): 1 m p -i m o m 0' II 13 9' I Lumber n-ply, D.Fir-L, Stud, 2x6, 1-ply (1-1/2"x5-1/2") Support: Non-wood Total length: 9'; volume= 0.5 cu.ft.; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0 =0.0[ft]; Ke x Ld: 1.0 x 9.0 =9.0 [ft]; IAnalysis vs. Allowable Stress and Deflection using NDS 2012 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 669 Fc' = 710 psi fc/Fc' = I Axial Bearing fc = 669 Fc* = 977 = 0. 94 psi fc/Fc* 0. 68 Additional Data: I/ FACTORS: F/E(psi) CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 850 1.15 1.00 1.00 0.726 1.000 Fc* 850 1 .15 1.00 1.00 - 1.0001.00 1.00 2 CRITICAL LOAD COMBINATIONS: - - 1.00 1.00 2 II Axial : LC #2 = D+S, P = 5518 lbs D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICBO-UBC IDesign Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012), the 1 National Design Specification (NDS 2012), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 3. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. I I •11 I COMPANY PROJECT II Page G4 of 118 - fit WoodWorks® SOH]WARE FOR WOOD 0kSIGN I June 16, 2003 10:53 4x6 Cripple Stud.wwc 1 Design Check Calculation Sheet WoodWorks Sizer 10.42 Loads: 11 Load Type Distribution Pat- Location (ft] Magnitude Unit tern Start End , Start End Loadl Dead Axial (Ecc. = 0.00") 7000 lbs I Load2 Snow Axial (Ecc. = 0.00") 10000 lbs Self-weight Dead Axial 41 lbs ILateral Reactions (lbs): 1' 9' 1' W C p o 0' p 9, I Lumber Post, D.Fir-L, No.2, 4x6 (3-1/2"x5-1/2") Support: Non-wood Total length: 9'; volume= 1.2 cult.;Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0= 0.0[ft]; Ke x Ld: 1.0 x 9.0= 9.0[ft]; IAnalysis vs. Allowable Stress and Deflection using NDS 2012 : Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 885 Fc' = 976 psi fc/Fc' = 0.91 IAxial Bearing fc = 885 Fc* = 1708 _ psi fc/Fc* = 0.52 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# II Fc' 1350 1.15 1.00 1.00 0.572 1.100 1.00 1.00 2 Fc* 1350 1.15 1.00 1. 00 - 1.100 - - 1.00 1.00 2 CRITICAL LOAD COMBINATIONS: It Axial : LC #2 = D+S, P = 17041 lbs D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICBO-UBC Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the 1 National Design Specification (NDS 2012), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. I Pagc 65 of 118 I � ill WoodWorks® COMPANY PROJECT .SOFTWARE FOR WOOD OFStGN I Nov. 18, 2016 16:39 4x8 Cripple Stud.wwc IDesign Check Calculation Sheet WoodWorks Sizer 10.42 Loads: J. Load Type Distribution Pat- Location [ft] Magnitude g Unit II Loadl Dead Axial tern Start End Start End Self-weight Dead Axial (Ecc. = 0.00 } 11400 lbs 54 lbs Lateral Reactions (lbs): 1 f 9' v il m o v 0' a I9 Lumber Post, D.Fir-L, No.2, 4x8 (3-1/2"x7-1/4") Support: Non wood illTotal length: 9'; volume= 1.6 cu.ft.; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0=9.0 [ft]; Ke x Ld: 1.0 x 0.0=0.0[ft]; a Analysis vs. Allowable Stress and Deflection using NDS 2012 : ii Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 451 Fc' = 451psi , Axial Bearing fc = 451 Fc* = 1276 psi 035 11 fc/Fc* - 0. Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# I Fc' Fc* 1350 0. 90 1.00 1.00 0.354 1.050 - - 1.00 1.00 1 1350 0.90 1.00 1.00 1.050 - - 1.00 1.00 1 CRITICAL LOAD COMBINATIONS: Axial : LC #1 = D only, P = 11454 lbs If D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICBO-UBC IDesign Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code (IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. 11 II I I Pagc 66 of 118 II COMPANY PROJECT lit WoodWorks 11 SOFIW.4Rf FOR WOOD DESIGN June 16, 2003 11:02 6x6 Cripple Stud.wwc IDesign Check Calculation Sheet WoodWorks Sizer 10.42 IILoads: Load Type Distribution Pat- Location [ft] Magnitude Unit Loadl _tern Start End Start End Dead Axial (Ecc. = 0.00") 9000 II lbs Load2 Snow Axial (Ecc. = 0.00") 14000 lbs Lateral Reactions (lbs): II t 9' co and II N 0 0' 9' 11 Timber-soft, D.Fir-L, No.1, 6x6 "5-1/2"x5-1/ ( 2 ) Support: Non-wood I Total length: 9'; volume= 1.9 cu.ft.; Post and timber; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0=0.0[ftj; Ke x Ld: 1.0 x 9.0= 9.0 [ft]; Analysis vs. Allowable Stress and Deflection using NDS 2012 : 11 Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 760 Fc' - 823 psi fc/Fc' - Axial Bearing fc = 760 Fc* = 11500.92 psi fc/Fc* = 0.66 Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# 11 Fc' 1000COMBINATIONS:1.15 1.00 1.00 0.715 1.000 - - 1.00 1.00 2 Fc* CRITICAL LOAD 1000 1.15 1.00 1.00 1.000 1.00 1.00 2 Axial : LC #2 = D+S, P = 23000 lbs II D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICBO-UBC Design Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. I2. Please verify that the default deflection limits are appropriate for your application. 1 I 1 I I COMPANY Pdge 67 of 118 PROJECT ill WoodWorks® SOFTWARE FOR WOOD DESIGN I Nov. 18, 2016 16:41 6x8 Cripple Stud.wwc IDesign Check Calculation Sheet WoodWorks Sizer 10.42 Loads: Load I Type Distribution Pat- Locationft l- 1 Magnitude Unit Loadl tern Start End Start End Dead Axial _(Ecc. = 0.00") 32000 I lbs Lateral Reactions (lbs): I f 9' y I m -4 m o 0' A ID I 9' ITimber-soft, D.Fir-L, No.1, 6x8 (5-1/2"x7-1/4") Support: Non-wood Total length: 9';volume=2.5 cu.ft.; Post and timber; II Pinned base; Load face=width(b); Ke x Lb: 1.0 x 0.0= 0.0[ft]; Ke x Ld: 1.0 x 9.0= 9.0[ft]; Analysis vs. Allowable Stress and Deflection using NDS 2012 : II Criterion Analysis Value Design Value Unit Analysis/Design Axial fc = 803 Fc' = 804 Axial Bearing fc = 803 Fc* = 900 psi fc/Fc' = 1.00 *Column requires a bearing plate at top as per NDS 31 fc/Fc* = 0.89* 3.10.1.3II Additional Data: FACTORS: F/E(psi)CD CM Ct CL/CP CF Cfu frt 11 Fc' 1000 0. 90 1.00 1.00 0.893 1.000 - Cr- 1.00 Ci LC# Fc* 1000 0.90 1 .00 1.001.00 1 CRITICAL LOAD COMBINATIONS: 1.000 - 1.00- 1.00 1.00 1 Axial : LC #1 = D only, P = 32000 lbs I D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICBG-UBC IDesign Notes: 1. WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012), the National Design Specification (NDS 2012), and NDS Design Supplement. 2. Please verify that the default deflection limits are appropriate for your application. I I I I COMPANY PROJECT Page 68 of 118 ifl Woodworks® SOFrWAAE FOR WOOD DESIGN I Feb. 10, 2011 17:00 5 1-8x6 glu-lam.wwc Design Check Calculation Sheet I WoodWorks Sizer 10.42 Loads: Load Type Distribution Pat- Location [ft] Magnitude Unit I tern Start End Start End Loadl Dead Axial (Ecc. = 0.00") 25000 lbs Self-weight Dead Axial 80 lbs ILateral Reactions (lbs): f 9, 1 I W � o v I9' Glulam-Balanced,West Species, 24F-1.8E WS, 5-118"x7-112" I 5 laminations,5-1/8"maximum width, Support: Non-wood Total length:9';volume= 2.4 cu.ft.; Pinned base; Load face=width(b); Ke x Lb: 1.0 x 9.0=9.0[ft]; Ke x Ld: 1.0 x 9.0=9.0[ftj; Analysis vs. Allowable Stress and Deflection using NDS 2012 : Criterion Analysis Value Design Value Unit Analysis/Design I Axial fc = 652 Fc' = 1140 psi fc/Fc' = 0.57 Axial Bearing fc = 652 Fc* = 1440 psi fc/Fc* = 0.45 _ Additional Data: I FACTORS: F/E(psi)CD CM Ct CL/CP CV Cfu Cr Cfrt Notes LC# Fc' 1600 0.90 1.00 1.00 0.792 - 1.00 - 1 Fc* 1600 0.90 1.00 1.00 - - - - 1.00 - 1 CRITICAL LOAD COMBINATIONS: I Axial : LC #1 = D only, P = 25080 lbs D=dead L=live S=snow W=wind I=impact Lr=roof live Lc=concentrated E=earthquake All LC's are listed in the Analysis output Load combinations: ICC-IBC IDesign Notes: 1.WoodWorks analysis and design are in accordance with the ICC International Building Code(IBC 2012),the National Design Specification(NDS 2012),and NDS Design Supplement. I 2. Please verify that the default deflection limits are appropriate for your application. 3.Glulam design values are for materials conforming to ANSI 117-2010 and manufactured in accordance with ANSI Al 90.1-2007 4. GLULAM: bxd=actual breadth x actual depth. a I I 111/18/2016 Post Capacities I Simpson Strong-Tie Post Allowable Compression Loads for Douglas-Fir-Larch p Lumbar Perp to Compression Capacity Parallel to Grain,Pc(100) Compression Capacity Paratl i filkWal§R8c tt►I0j 8 Framing Size Grade Grain, Nominal Top Plate Height(f1.) Pcl 8 9 10 11 12 8 SIMPSON pPlate Height(1t.) j !2 3260 3170 r — - 10 11 { 5470 5285 •1 a3� 485 Strong-Tile '''1 510 t 1S' , ._.... "' -__vilib_. �.._..66 6340 0 4215• _3515 5 J... '1'112',.., �! tr i. 43 .....41,1„2„..,,' ♦ ft(; edf,iI .aa. �� - J 1`` 1 ' 3530 3020 ` .41vt.«.ccs#� 7655 I �!35 1f1s -�,,;�� � � a�35 9845 I r r r, t �'d0 1'90 C - 446 12 12030 r 9312u '• S2i �`�k•r ' C5 j Sal; j 3 3c 1 I 4x8 12 15860 a•r t 1 n J , .0 6423 ,112211`71 S35 8 5_ 5 1 { „57140 3.5 4x10 02 20235 •r.r 3 1 835 ., an .1„`16035 , 2. 12' '280 2x6 1 12 5155 r r�., 11 �+� , y23n 794.0 :'6935 5w? iK r • r :f^7740��R 535. .1575 • 12 8595 } 13235;, 1 f5150 1 :� !2 !0315 4•<-. � � r ..i-14.2895'&-..110895' �?} 6-Ineh - `158$5 13675 .74-2080Z1 � :"...'..12060 154 '`': Wall • #2 12030 s. : 1 'i."i 161:85 ; 41060 c - mak, E30i5 '..;F941454,7. 3-2x6 12 15470 r ',z23,52.5-;!..= r: r � ;,'%f.i-�. '�1523.139957-4.: 18075-. .!5705 ;33050 6x6 i ,R1 18905 23500 19415 _ ' r ,i-:-,T67"i f 6x6 [ #1 ',',32045:.', 42555 . ss ;i 25780 • r . ' r ,.,;26475 23:390 46715 r' 16420 2652C-, See footnotes 111 +Post Allowable Compression Loads for Southern Pine I _lumber _ Perp to Compression Capacity Parallel to Grain,Pc(100) Compression Capacity Parallel to Grain,Pc(160) FramingNominal TopPlate Height 1t. I Size Grade Grain, g ( ) Nominal Top Plate Height(tt.) I ' Pc_ 8 1 9 ) 10 11 '19 10 2x4 !2 2965 I 1212 3x4 42 4945 ar - { 2057.8 _, l 11,; 2-2x4 i 12 i 5935 i i 2� 1 5 2050._ d inch 4x4 2 1 6920 5;32 I i . .5 i 2-' } -r r' 3165 • { Wall 3-2x4 !2 8900 3..: , 58'6 ! ,a� { i;.:..--;;: �� t' �7_ 44 #2 10875 I ;. 1990 i 12 14335 3 { } i z 4x 4x8 12 18290 :3452 _ _ . F 4 yv s . _... ,23,,,...1 —, ' + , I ,. ,:„ y _ ji 2x6 !2 4660 .,8195. .` 77190. "6230 ,5385 . 6r ;: 7 2< I ,11 3x6 #2 7770 -,13855:.,./....,..11,1;0 _ 1 fi8,65 955 - 4930; .. �.10385 ;8975 v 7 � 65 0: 137253 : 1 f 4 � '; I 6lnch 2-2x6 !2 93259820'_ �� �14375. � .12465 107175 111 4x6 #2 10875 • 198Ft} 16470 13755 1}590 Wall ..19120 ."16775 .'. :14540 1.256 ' . 3115. .19215 :16145 -113520 6x66 11 13912 85 21435: ::202705 18695 • 15150". >_ 29715.; . w 247f�3 20630 1738 _. 14795 ''} 64 #1 23305 :29315 .. :::`97640 : .:156$0`' , ;23540 - 21345 -30025,'` 26820 . .w23595 x 20610: _17975 ':¢ "40$40: 36575 .._'32180 = 4'1.8105 ,2 ...2451x,” See footnotes Post Allowable Compression Loads for Spruce-Pine-Fir Lumbar Perp to Compression Capacity Parallel to Grain,Pc � Framing --- (100) Compression Capacity Parallel to Grain,Pc(160) Size Grade Grain, Nominal Top Plate Height(it.) Nominal Top Plate Height(tt.) Pc 1 2x4 E i1td2 - 2230 8 9 10 S 11 l 12 8 9 10 1 11 I 12 i .2775 X5.0.,,� 1850 , 1540 I 1305 2930.. ; •.2340. 1905 i 1575 " 1325 11 3x4 L #1/12 13720 46255 .3745 `4 3080 f 2570 s 2170 p 4-inch 2-2x4 11/02 4465 885 3175 , 2530 __ _ 2655 -.t 5 4495 _' 3695 3085 t 2605 5865 a? 4675'" 3805 ( 3155 t �2 55 Wall 4x4 I fun �5205 16470 ;7-1245 4310 1 3595 1 3040 ---'.,--6840..: -.,::_::..54-55'7: i 3-2x4 l $1/02 I 6695 k8320' 36745 .`` 5545! 4625 I 3910 .",43795'f'-', 5 5710 3680 3980 ' _ 4-2x4 1 #1/12 I 8925 11095r-7.,';74990;„:",•� 7395 ) 6165 5215 :11730x, .;9355' 7515 6310 i 5310 2x6 #1/12-4 3505 77455.-,i'''",1,685'..s ,6!X15 --,;5255'•;.,,i4575 6770 .1:5725 3x6 11/12 5845 � ,�"` �;« '�5"' 48� :''I 6 inch 't2 05 .11475 10060 '8760 ,.'.:7:625'.:::',:_ ":.160 ,A3425','.;:11230.,... 9545-7-77111g71�0 Wali 2-2x6 #1/12 7015 it5485 , 13770 12070 10515 9150 ;19200 16110' .13540 ]1450 : 9770 . 3-2x6 #1/12 10520 `x"'2`30' ""J".20850',: -1811,9, ;•15770 -18730..' '2/3795 a "24'1 5 "20305 17130 ;'':'14630.: ;R 4-24 #1412 1402570.2 27545 . ,z414.57.•,- 21025 '-',f-".:18305 °-38395 :' 32225 ' % 7075 '12 ", 19545.. li See footnotes I I 11/18/2016 Post Capacities I Simpson Strong-Tie Post Allowable Compression Loads for Hem-Fir Lumber Perp to Compression Capacity Parallel to Grain,PC100 Page 70 of 118 FramingI j ( ) Com.ression Capacity Parallel to Grain,Pc(160) Size ! Grade Grain, Nominal Top Plate Height(ft.) SIMPSON P Plate Height(ft.) Pc 1 8 9 10 11 12 8 ! 2x4 #2 2125 -xa"s 2115 a 1730 1435 1210 x „.4t 10 11 12 - 3x4 j #2 3545 '�uta --� St�'DIIg Tie 1770 1465 1230 3525—' 2880 2395 2020 -�' a „ i 4-Irsch 7�x,� .___�f2._—-- 4255 -,. - .� .i >E »� _1 - vs+ �rancttiF�drE�s ' 4230 3460 2875 2425 ..,+ Wall 4x4 12 4960 ;tet'-"1:i # " 3540 292541 2460 4935 4035 3355 2830 f ; Search-5 - ' �►, Ct�� 6380 4125 3415 2870� �1 8 s* 6340 5185 4310 3635 yr,vvr 4-2x4 Jt.__ f2 8505 ,:ti-k � 5305 4390 3690 _ a 1 8455 6915 5750 4850 s: iatf ; 2x6 1 #2 - 3340 it ,s i° ¢� 84 .1590 - JiV'sa - 7075 5855 4920 6 Inch 3x6 1 #2 5570 ;413250 e -1470�s' 84 t a Wall 1- 2-2x6 $2 6685 'X1.5900 . 1378 J M X09 a ri y2t0 -;' if-., . s a s � r 4. --;, ' ' 3-2x6 1 12 10025 i 23855:,, ;20645 i17715 ”''7,A519514 ':4`.a,'= t°44 s1 ,,*2., 326' ' 4/. t , 4-2x6 #2 13365 3;1805 ,,,-'27132ST 7236207_. t20260' 47'455 235 , 309 '7,7"t261._1" I?,:. :x` .632 See footnotes II Post Tension Load Tables 1 Post Tension Loads for Douglas-Fir-Larch ILumber Allowable Tension Framing Pt, (160) I Size Grade Boll Diameter(in.) 0 iii Ye Ila 1 2x4 #2 7245 6080 5820 5305 5045 I3x4 #2 12075 10135 9705 8840 8410 2-2x4 #2 14490 12160 11645 10610 10090 I4-1nch 4x4 #2 16905 14190 13585 12375 11775 Wall 3-2x4 #2 21735 18240 17465 15915 15135 4x6 #2 23025 19325 18500 16855 16035 I I 4x8 #2 28015 23510 22510 20510 19510 j 4x10 #2 32765 27500 26330 23990 22815 I 2x6 #2 9865 8860 8635 8185 7960 3x6 #2 16445 14765 14390 13640 13270 I6-Irish 2-2x6 #2 19735 17715 17265 16370 15920 4x5 #2 23025 20670 20145 19100 18575 Wall 3-2x6 #2 29600 26575 25900 24555 23885 111 6x6 #1 32670 29330 28585 27100 26360 6x8 #1 44550 39995 38980 36955 35945 , fSee footnotes I I I III11/18/2016 Post Capacities I Simpson Strong-Tie Post Tension Loads for Southern Pine il Allowable Tension Page 71 of 118 Lumber SIMPSON Framing Pt, (160) Size Grade Bolt Diameter(in.) Strong-Tie 1 'e 7,4 1 ihttos://www.stronotie.comi) Search : ro2i4e cont 5 0 4760 4555 4150 3950 I3x4 #2 9450 7930 7595 6920 6580 2-2x4 #2 11340 9520 9115 8305 7900 II4-Inch 4x4 #2 13230 11105 10630 9685 9215 Wall 3-2x4 - #2 17010 14275 13670 12455 11845 _ 4x6 #2 18480 15510 14850 13530 12870 4x8 #2 22330 18740 - 1794.5- — _163-50- --1555 4x10 #2 24605 20650 1 19770 18015 17135 I 2x6 #2 7920 7110 6930 6570 6390 3x6 #2 13200 11850 11550 10950 10650 2-2x6 #2 15840 14220 13860 13140 12780 I6w-Inchall 4x6 #2 18480 16590 16170 15330 14910 3-2x6 #2 23760 21330 20790 19710 19170 I6x6 #1 43560 39105 38115 36135 35145 6x8 #1 59400 53325 51975 49275 47925 111 See footnotes Post Tension Loads for Spruce-Pine-Fir ILumber Allowable Tension Framing Pt,(160) 11 Size Grade Bolt Diameter(in.) 0 1/2 % % 1 2x4 #11#2 5670 4760 4555 4150 3950 1 I 3x4 #1/#2 9450 7930 ; 7595 6920 6580 4-Inch 2-2x4 #1/#2 113409520 9115 j 8305 7900 1 Wall 4x4 #11#2 13230 - 11105 10630 9685 . 9215 3-2x4 #1/#2 17010 14275 13670 12455 11845 - 4-2x4 #1/#2 22680 19035 18225 i 16605 15795 1 2x6 #1/#2 7720 6930 6755 6405 6230 I 3x6 #1/#2 12870 11555 11260 10675 10385 6-Inch 2-2x6 #11#2 15445 13865 13515 12810 12460 Wall 3-2x6 #11#2 23165 20795 20270 19215 18690 4-2x6 #1/#2 28315 25420 24775 23490 22845 See footnotes I I 1 Page 72 of 118 I Client: West Hills Development Project: River Terrace East Proj.it: 16-T100 Date: 11/18/2016 By: YSP IFROE_ LICH ENr31NEERSr I Cont. Spread Footing Design At Building Ext. Wail (II to joist) Loadina Criteria Foundation Results Roof DL(psf) 18 Dead Load(plf) 832 Roof SL(psf) 25 Fig Dead Load(pit) 435 I Floor DL(psf) 27 Live Load(pit} 320 Floor LL(psf) 40 Snow Load(plf) 300 Wail DL(psf) 10 IBC Eq.16-9(plf) 1587 Concrete Wt.(pct) 145 IBC Eq.18-10(plf) 1567 IBC Eq.16-11(pit) 1732 Tributary Areas Total bearing(psf) 868+ Roof Tr16(It) 12 Allowable brg(psf) 2588 Floor Crib(ft) 8 Footing OK Wall height(ft) 40 I Stemwall ht.(ft) Stemwall width(in.) 1.5 Stud Walt Loadings Results 8 Dead Load(pit) 832 Footing width(in.) 24 Live Load(plf) 320 Footing depth(in.) 12 Snow Load(Of) 300 1 Cont. Spread Footing Design At Building Ext. Wall (I_to joist) Loading Criteria Foundation Results Roof DL(psf) 1$ Dead Load(pIt) 1057 Roof SL Cost) 25 Ftg Dead Load(off) 435 Floor DL(psf) 27 Live Load(plf) 840 Floor LL(psi) 40 Snow Load(plf) 125 Wall DL(psf) 10 IBC Eq.16-9(pit) 2332 Concrete Wt.(pct) 145 IBC Eq.16-10(p11) 1617 IBC Eq.16-11(plf) 2216 Tributary Areas Total bearing(psi) 1166 I Roof Trib(ft) 5 Allowable brg(psi) 2500 Floor trib(ft} 21 Footing OK Wall height(ft) 40 Stemwall ht.(ft) 1.5 Stud Wall Loadings Results Stemwall width(in.) a Dead Load(pit) I 1057 I/ Footing width(in.) 24 Live Load(plf} 840 Footing depth(in.) 12 Snow Load(plf) 125 Cont. Spread Footing Design At Int. Brg Wall - 1st Floor Loading Criteria 'Foundation Results Roof DL(psf) 18 Dead Load(pit) 1651 i Roof SL(psf) 25 Ftg Dead Load(p11) 290 Floor DL(psi) 27 Live Load(pit) 1800 Floor LL(psf) 40 Snow Load(pit) 50 Wall DL(psf) 10 IBC Eq.16-9(plf) 3741 Concrete Wt,(pcf) 145 IBC Eq.16-10(pit) 199i IBC Eq.16-11(plf) 3329 Tributary Areas Total bearing(psi) 3871 roof Tn'b(ft) 2 Allowable brg(psf) 2500 Floor Mb(ft) 45 II Waif height(ft) 40 Footing OK Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) a Dead Load(plf) 1651 Footing width(in.) 24 Live Load(pit) 1800 I Footing depth(in.) 12� Snow Load(plf) I 50 1 I IPage 73 of 118 Cont. Spread Footing Design At Int. Brg Wall -2nd Floor I Loading CriteriaRqof ,. Foundation Results DL ) 18 Dead Load(pit) 1146 Roof SL(pal) 25 Ftg Dead Load(pif) 298 Floor DL(psf) 27 Live Load(pif) 1200 Floor LL(psf) 40 Snow Load(pif) 50. I Wall DL(psf) 10 IBC Eq.16-9(pif) 2636 Concrete WI (pcI) 145 IBC Eq.16-10(plf) 1486 IBC Eq.16-11(pit) 2374 Tributary Areas Total bearing(psf) 1318 I Roof Trib(ft) 2 Allowable brg(psf) 2500 Floor trio(ft) 30 Footing OK Wall height(ft) 30 . Stemwall ht.(ft) 0 Stud Well Loadings Results I Stemwall width(in.) 11 g6' Footing width(in.) 24 Live Load(pit) 1200 Fooling 0 Dead Load(p11) ng depth(in.) 12 Snow Load(pif) 50 I I I I I I I I I I I I I I Page 74 of 118 I Cont. Spread Footing Design At Party Wall I Loading Criteria Foundation Results Roof DL(psi) 18 Dead Load(Of) 1516 Roof SL(psf) 25 Ftg Dead Load(plf) 290 I Floor DL(psf) 27 Live Load(plf) 1600 Floor LL(psf) 40 Snow Load(plf) 50 Wall DL(psf) 10 IBC Eq.16-9(p11) 3408 Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 1856 IBC Eq.16-11(pit) 3044 I Tributary Areas Total bearing(Pat) 1703 Roof nib(ft) 2 Allowable brg(psi) Y500 Floor trib(ft) 40 Footing OK Wall height(ft) 40 I Stemwall ht.(ft) 0 Stud Wall Loadings Results Stemwall width(in.) 0 Dead Load(pit) 1518 Footing width(in.) 24 live Load(plf) 1600 Footing depth(in.) 12 Snow Load(plf) I 50 I Cont. Spread FootingDesign g At Corridor Wall Loading Criteria Foundation Results Roof DL(psi) 18 Dead Load(pit) 1345 I Roof SL(psf) 25 Ftg Dead Load(pif) 290; Floor DL(psi) 55 Live Load(pit) 900 Floor LL(psf) 100 Snow Load(pf) 625 Wall DL(psi) 10 IBC Eq.16-9(p11) 2536 I Concrete Wt.(pcf) 145 IBC Eq.16-10(plf) 2260 Tri IBC Eq.16-11(plf) 2779 Roofb'Tnb(ft} �` 25 AlTlowable brg l g(psi) 1389 Roofr fib(ft) (psi) 2500 I Wall height(ft) 40 Footing OK Stemwall ht.(ft) 0 $tud Walltoadir Results Stemwall width(in.) 8 Dead Load(plf) 1345 Footing width(in.) 24 Live Load(plf) 900 IFooting depth(in.) 12 Snow Load(p11) 825 I I I I I I I MN 1111111 NM IR M' MID M IS S MI MI al MR M UM M I O I FROELICH CONSULTING ENGINEERS INC., Client: Project: Project#: By: Footings Footing Size Maximum Allowable i I Required I Required Dimensions I Used Dimensions Footing Bearing Load(Prot) gO1t°w Area (ft)W I L(ft) W(ft) I L(ft) I D(in) Weight Pressure 18 x cont x10 I 3500 2500 1.40 1.18 1.18 1.5 1 10 188 2458 24"x cont x 10" 14000 2500 5.60 2.37 2.37 2 3 10 750 2458 36"x cont x 10" 27000 2500 10.80 3.29 3.29 3 4 10 1500 2375 2'-6"x 2'-6"x 10" 15500 2500 6.20 2.49 2.49 2.5 2.667 10 833 2450 3'-0"x 3'-0"x 12" 21000 2500 8.40 2.90 2.90 3 3 12 1350 2483 3'-6"x 3'-6"x 12" 27000 2500 10.80 3.29 3.29 3.5 3.333 12 1750 2465 4'-0"x 4'-0"x 12" 37000 2500 14.80 3.85 3.85 4 4 12 2400 2463 4'-6"x 4'-6"x 12" 52000 2500 20.80 4.56 4.56 4.5 5 12 3375 2461 Required Area: =(Ptot/gauow)o5 Bearing Pressure =(Pt"t+Wttg)/(W*L) _(Pt"t+Wttg)/(W*L*3.1415/4) -0 0 CO CD V c O --i /.l W ION MI MN M I ail UM I MI NM 11111111 I M MI N MN S 1111111 NIB Client: Project: Proj.#: Date: By: FROELICH ENGINEER 9 A ASCE 7-05 Earthquake Load Cs Factor Importance Factor(Seismic) I = 1.0 Basic Seismic Force Resisting System Light Framed Wood Shear Wall R= 6.5 Design Spectral Response Acceleration Seismic Design Coefficient Development Latitude Longitude SDS SD1 Category Cs 1 45.559 1 -122.853 I 0.726 1 0.403 1 D I 0.1117 - Information in table was obtained from USGS website - Conservatively design all structures in all developments for the Cs design value specified below Controlling Cs Value: 0.1117 Use Cs =an for Design in all Developments I Equations: Cs= Sos*l/R J Response Coefficient j -v Co m a) 0 -t co I IPage 77 of 118 411111 Client: Project: River Terrace Project#: 16-T100 4. Date: 11/18/2016 IBy: YSP FROELICH ENGINEERS d WIND FORCE CALCULATION-MWFRS Side-Side Event I ASCE 7-10 SECTION 27-2 METHOD 2-ANALYTICAL PROCEDURE IBasic Wind Speeds Input 3 Second Gust V3s= 120 mph IWind Directionality Factor Kd= 0.85 Table 26.6-1 Wind Importance Factor IW= 1.00 Wind Exposure Category= B IBuilding Parameters Horizontal Dimension of Bldg B= 54 ft Measured Normal to wind direction I Horizontal Dimension of Bldg L= Mean Roof Height h= 146 ft 40 ft Measured Parallel to wind direction Highest Roof Level h„= 40 ft IApproximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 Output-Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid ITopographic Effects Input Hill Height H= 0 ft Figure 26.8-1 I Length of 1/2 hill height Lh= 1 ft Figure 26.8-1 Dist. From Crest to Bldg.x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 I Horizontal Attenuation Factor m= 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor KI/(H/Lh)= 1 Figure 26.8-1 1 Output-Topographic Multipliers K1 = 0.00 K2= 1.00 K3= 1.00 I Topographic Factor Kn= 1.00 I I I I Page 78 of 118 I Gust Effects Input I Integral Length Scale Factory = 320 ft Table 26.9-1 Integral Length Scale nominal height of boundary zg= 1200 Table 26.9-1 I3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 2b.9-1 Power Law Exponent E = 0.33 Table 26.9-1 Minimum Height zroin= 30 ft Table 26.9-1 Integral Length Scale of Turbulence LZ= 310 ft I Output-Background Response Factor Q= 0.88 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= Q.85 IPressure Coefficients Input Length to Width Ratio LIB= 2.70 Height to Length Ratio h!L= 0.27 I Roof Pitch= 9 : 12 = 36.87 deg Velocity Pressure Exposure Coefficients Kb (see below) Table 27.3-1 IExternal Pressure Coefficients Cp (see below) Figure 27.4-1 Direction Cp Height(ft) Kb qZ(psi) Velocity IWindward 0.8 15 0.57 18.0 Pressure Leeward -0.27 20 0.62 19.6 Output qZ Roof Windward 0.40 25 0.67 20.8 I Roof Leeward -0.6 30 0.70 22.0 40 0.76 23.8 50 0.81 25.4 I60 0.85 26.8 70 0.89 28.0 80 0.93 29.1 I 90 0.96 30.0 100 0.99 31.0 120 1.04 32.6 Ih= _ 40 0.76 23.8 9r, hparapet- 0 0.57 18.0 qh I I I I I I Page 79 of 118 I Design Wind Pressures p (psf}-GCp;=(-) 16 psf(8psf for roof)min per 27.1.5 IInternal Pressure Coefficient GCp;= -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW IHeight 15 16.6 -1.2 17.8 ft 20 17.6 -1.2 18.8 25 18.5 -1.2 19.7 I 30 19.3 -1.2 20.5 40 20.6 -1.2 21.8 50 21.6 -1.2 22.8 I 60 22.6 -1.2 23.8 70 23.4 -1.2 24.6 80 24.1 -1.2 25.3 I 90 24.8 -1.2 -1.2 26.0 100 25.4 26.6 120 26.6 -1.2 27.8 40 20.6 -1.2 7.5 -4.7 21.8 12.20 I Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 I Design Wind Pressures p (psf)-GCp;=(+) 16 psf(8psf for roof)min per 27.1.5 I Internal Pressure Coefficient GCp, = 0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 8.0 -9.8 17.8 I ft 20 9.1 -9.8 18.8 25 9.9 -9.8 19.7 30 10.7 -9.8 20.5 I 40 12.0 -9.8 21.8 50 13.0 -9.8 22.8 60 14.0 -9.8 23.8 I 70 14.8 -9.8 24.6 80 15.5 -9.8 25.3 90 16.2 -9.8 26.0 I100 16.8 -9.8 26.6 120 18.0 -9.8 27.8 40 12.0 -9.8 2.3 -9.9 21.8 12.20 I Parapet 0 27.0 -18.0 45.0 Design Load Case 1 Controls -By Inspection Parapet Loading per ASCE7-10 27.4.5 I I Design Wind Pressures(ASD) p (psf)-GC/4=(-) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp;= -0.18 Figure 26.11-1 Wall Roof I Horizontal Effects Horiz. Direction- I Windward ( Leeward I Roof WW j Roof LW (WW+LWj RWW+RLW I I I Page 80 of 118 I Height 15 9.9 -0.7 10.7 I ft 20 10.6 -0.7 -0.7 11.3 25 11.1 11.8 30 11.6 -0.7 12.3 40 12.3 -0.7 13.1 1 50 13.0 -0.7 13.7 60 13.5 -0.7 14.3 70 14.0 -0.7 14.7 80 14.5 -0.7 15.2 90 14.9 -0.7 15.6 100 15.3 -0.7 16.0 I 120 15.9 -0.7 16.7 40 12.3 -0.7 4.5 -2.8 13.1 7.32 Parapet 0 16.2 -10.8 27.0 I Design Load Case 1 Controls- By Inspection Parapet Loading per ASCE7-10 27.4.5 IDesi!n Wind Pressures(ASD) p (psf)-CCI. (+) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp;= 0.18 Figure 26.11-1 Wall Roof IHorizontal Effects Horiz. Direction - Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.8 -5.9 10.7 Ift 20 5.4 -5.9 11.3 25 6.0 -5.9 11.8 30 6.4 -5.9 12.3 I 40 7.2 -5.9 13.1 50 7.8 -5.9 13.7 60 8.4 -5.9 14.3 I 70 8.9 -5.9 14.7 80 9.3 -5.9 15.2 90 9.7 -5.9 15.6 I 100 10.1 -5.9 16.0 120 10.8 -5.9 16.7 40 7.2 -5.9 1.4 -5.9 13.1 7.32 I Parapet 0 16.2 -10.8 27.0 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 I I I 1 I I Page 81 of 118 I Client: I Project: River Terrace Project#: 16-T100 it Date: 11/16/2016 IBy: YSP FROELICH ENGINEERS 3 WIND FORCE CALCULATION-MWFRS Front-Back Event I ASCE 7-10 SECTION 27-2 METHOD 2-ANALYTICAL PROCEDURE IBasic Wind Speeds Input 3 Second Gust Vas= 122 mph IWind Directionality Factor Kd= 0.85 Table 26.6-1 Wind Importance Factor Ix,= 1.00 Wind Exposure Category= B IBuilding Parameters Horizontal Dimension of Bldg B = 146 ft Measured Normal to wind direction I Horizontal Dimension of Bldg L= 54 ft Measured Parallel to wind direction Mean Roof Height h= 40 ft Highest Roof Level h„= 40 ft IApproximate Fundamental Period Ta= 0.32 sec Eq. 12.8-7 Output-Fundamental Frequency f= 3.1 Hz> 1 Hz Therefore Rigid ITopographic Effects Input Hill Height H= 0 ft Figure 26.8-1 • I Length of 1/2 hill height Lh= 1 ft Figure 26.8-1 Dist. From Crest to BIdg.x= 0 ft Figure 26.8-1 Height Above Local Grade z= 0 ft Figure 26.8-1 I Horizontal Attenuation Factor m= 1 Figure 26.8-1 Height Attenuation Factor g= 1 Figure 26.8-1 Shape Factor K1/(H/Lh)= 1 Figure 26.8-1 IOutput-Topographic Multipliers K1 = 0.00 K2= 1.00 K3 = 1.00 I Topographic Factor K = 1.00 I I I I Page 82 of 118 I Gust Effects Input ' Integral Length Scale Factory = 320 ft Table 26.9-1 Integral Length Scale nominal height of boundary zg= 1200 Table 26.9-1 I 3-s gust exponent a= 7.00 Table 26.9-1 Turbulence Intensity Factor c= 0.30 Table 26.9-1 Power Law Exponent E = 0.33 Table 26.9-1 Minimum Height zm;,,= 30 ft Table 26.9-1 Integral Length Scale of Turbulence LZ= 310 ft ' Output-Background Response Factor Q= 0.83 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.82 IPressure Coefficients Input Length to Width Ratio LIB = 0.37 I Height to Length Ratio la= 0.74 Roof Pitch= 10 : 12 = 39.81 deg Velocity Pressure Exposure Coefficients Kb (see below) Table 27.3-1 IExternal Pressure Coefficients Cp (see below) Figure 27.4-1 Direction Cp Height(ft) Kb q2(psf) Velocity IWindward 0.8 15 0.57 18.6 Pressure Leeward -0.50 20 0.62 20.2 Output qz Roof Windward -0.20 25 0.67 21.5 I Roof Leeward -0.6 30 0.70 22.7 40 0.76 24.6 50 0.81 26.3 I 60 0.85 27.7 70 0.89 28.9 80 0.93 30.0 I 90 0.96 31.1 100 0.99 32.0 120 1.04 33.7 Ih= 40 0.76 24.6 qn hnr_ 0 0.57 18.6 qh I I I I I 1 Page 83 of 118 1 Design Wind Pressures to (psf)-GCp;=(-) 16 psf(8psf for roof)min per 27.1.5 IInternal Pressure Coefficient GCp;= -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW IHeight 15 16.7 -5.7 22.4 ft 20 17.8 -5.7 23.5 25 18.6 -5.7 24.3 I 30 19.4 -5.7 25.1 40 20.7 -5.7 26.4 50 21.7 -5.7 27.5 I 60 22.7 -5.7 28.4 70 23.5 -5.7 29.2 80 24.2 -5.7 29.9 I 90 24.9 -5.7 30.6 100 25.5 -5.7 31.2 120 26.7 -5.7 32.4 40 20.7 -5.7 0.2 -5.0 26.4 8.00 Parapet 0 27.9 -18.6 46.5 Design Load Case I Controls-By Inspection IParapet Loading per ASCE7-10 27.4.5 Design Wind Pressures p (psf)-GCi,;=(+) 16 psf(8psf for roof)min per 27.1.5 Internal Pressure Coefficient GCp;= 0.18 Figure 26.11-1 Wall Roof I Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 7.8 -14.6 22.4 I ft 20 8.9 -14.6 23.5 25 9.8 -14.6 24.3 I 30 10.5 -14.6 25.1 40 11.8 -14.6 26.4 50 12.9 -14.6 27.5 60 13.8 -14.6 28.4 I 70 14.6 -14.6 29.2 80 15.4 -14.6 29.9 90 16.0 -14.6 30.6 I100 16.7 -14.6 31.2 120 17.8 -14.6 32.4 40 11.8 -14.6 -5.4 -10.6 26.4 8.00 I Parapet 0 27.9 -18.6 46.5 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 I 1 Design Wind Pressures(ASD) p (psf)-GCr;=(-1 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp;= -0.18 Figure 26.11-1 Wall Roof Horizontal Effects Horiz. Direction- ( Windward ( Leeward ( Roof WW 1 Roof LW (WW+LWj RWW+RLW I I ' Page 84 of 118 Height 15 10.0 -3.4 13.4 I ft 20 10.7 -3.4 -3.4 14.1 25 11.2 14.6 30 11.6 -3.4 15.1 40 12.4 -3.4 15.8 I 50 13.0 -3.4 16.5 60 13.6 -3.4 17.0 70 14.1 -3.4 17.5 I 80 14.5 -3.4 18.0 90 14.9 -3.4 18.4 100 15.3 -3.4 18.7 I120 16.0 -3.4 19.4 40 12.4 -3.4 0.1 -3.0 15.8 4.80 Parapet 0 16.8 -11.2 27.9 I Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 IDesign Wind Pressures(ASD) p (nsf)-GCp;=(+) 16 psf(8psf for roof)min per 27.1.5 0.6W per 2.4.1 Internal Pressure Coefficient GCp,= 0.18 Figure 26.11-1 Wali Roof on-I Horizontal Effects Horiz. DirectiWindward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 4.7 -8.7 13.4 I ft 20 5.3 -8.7 14.1 25 5.9 -8.7 14.6 30 6.3 -8.7 15.1 I 40 7.1 -8.7 15.8 50 7.7 -8.7 16.5 60 8.3 -8.7 17.0 I 70 8.8 -8.7 17.5 80 9.2 -8.7 18.0 90 9.6 -8.7 18.4 I 100 10.0 -8.7 -8.7 18.7 120 10.7 19.4 40 7.1 -8.7 -3.3 -6.4 15.8 4.80 I Parapet 0 16.8 -11.2 27.9 Design Load Case 1 Controls-By Inspection Parapet Loading per ASCE7-10 27.4.5 I I I I I Page 85 of 118 I Client: Arbor Project: River Terrace-22 Plex I 4 Project#: 16-1100 Date: Nov-16 ay: YSP FROELICH I ENGINEERS' Lateral Design - Wood Walls Shear Walls 1 SEISMIC: Site Classification: D IIOccupancy Category: II Occupancy Importance Factor I I= I 1.0 I System Over-strength Factor. Light Frame Walls with Shear Panels I W= 1 3.0 Response Modifiaction Coefficient: Light Frame Walls with Shear Panels I R= 1 6.5 IMCE Short Period Pectal Response accel.: Ss= 1.088 MCE 1-second period spectral response accel.: S1 = 0.590 I 5%damped short period spectral response accel.: Sos= 0.726 5%damped 1-second period spectral response accel.: Sol = 0.500 Seismic Design Category(ASCE Table 11.6-1 & 11.6-2): D ISeimic Response Coefficient(ASCE 7-05) EQ 12.8-2 Cs=Sos/(R/1) 1 Cs= 0.112 Controls Eq 12.8-3(max)-in addition to sections 12.8.2, 12.8.2.1, Table 12.8-1 I Cs=So1/(T(Rll)) Ta=Cthnx Ta= 0.365 Ct= 0.02 C„= 1.4 from table 12.8-1 ' h„= 48 T= 0.511 per12.8.2 x= 0.75 Cs= 0.211 I Eq 12.8-5(min) Cs=0.01 Cs= 0.010 I Eq 12.8-5(min) Cs=0.044Sos1 Cs= 0.032 ICs= 0.112 Allowable Stress Design: 0.7E Il Cs= 0.078 I I ' Page 86 of 118 Seismic Dead Loads Note: Dead Load includes 10psf for interior walls/partitions ILevel diaph area Dead Load Int.Wall Trib Walt int. Waif Ext.Waft [ (ft2) � Ext.WallMech (psf) I L(ft) I height(ft)I Wt(psi) Wt(psf) I L(ft) I Units(Ibs) I Roof 8791 18 600 5 1 10 6 400 4th Floor 7975 600 10 10 12 400 3rd Floor 7975 27 600 10 10 12 400 2n1 Floor - 27 5220 27 300 10 10 12 360 I Seismic Base Shear(Working stress Design) Total V=Cs(DL) I V= 82956 lbs Vertical Dfstribuftion I Level I Weight I Height I Wt*Ht I `�"t�"iraai f V ,Vi=(Wt(Ht)/Total)*V Roof 200238 40 8009520 0.304 82956 25247 =Vrf 4`"Floor 323325 30 9699750 0.369 82956 30575 =Vath I 3`d Floor 323325 20 6466500 0.246 82956 20383 =V3rd 2 'Floor 214140 10 2141400 0.081 82956 6750 =V2nd Total= 26317170 1.000 I Ve= 25247 lbs Vath= 30575 lbs (Allowable Stress Design Loads) V3rd= 20383 lbs I _ V2nd= 6750 lbs Diaphragm Loads 82956 Level 1 wpx(lbs) J V;(ibs) I F V(tbs)} Zw;(lbs) I Fp„=((ZV)I(psi)).wpxII . Roof 200238 25247 25247 200238 25247 =Fri 4'"Floor 323325 30575 55823 523563 34473 =F4t, 3`d Floor 323325 20383 229345 846888 87559 =F3rd I 2""Floor I 214140 j 6750 229345 1061028 46287 ``F 2nd Min Diaphragm Loads SDs= 0.726 Fpmin=0.2*Sps*Wpx*l*0.7 Level 1Fpmm I Roof 20352 Vrt= 25247 lbs 4m Floor 32863 oath= 34473 lbs 3f1 Floor 32863 2`"'Floor 21765 V''d= 87559 lbs I V2nd= 46287 lbs (Allowable Stress Design Loads) Page 87 of 118 ' Total DL (bs) 200238 ' 323325 323325 214140 ' 1061028 1 1 I 1 I I Client: Arbor Project: River Terrace-22 Plex Page 88 of 118 .14% Project#: 16-1100 Date: 42693 111 By: YSP I FROELICH ENGINEERS ! SEISMIC LOAD Story Distribution: Areas: I Roof: 25247 lbs Roof: 7975 sq ft 4th: 30575 lbs 4th: 7975 sq ft 3rd: 20383 lbs 3rd: 7975 sq ft 2nd: 6750 lbs ' 2nd: 5220 sq ft I WIND LOAD Story Distribution: Level (Windward (Leeward ( Total Front-Back Event Roof: 109 36 145 4th: 114 38 152 Redundancy Factor,p 3rd: 107 36 142 2nd: 100 33 133 Side-Side Event Event Per ASCE7-10, p= 1.0 because of large amount of shearwalls and Roof: 110 37 146 because no wall takes more than 33%of the story shear. I 4th: 96 32 128 3rd: 88 29 117 2nd: 81 27 108 IFront/Back Event SEISMIC WIND Trib Area I Load Trib WidthWindward Leeward Combined? Load Design Load Load Typ LEVEL I GRID (sq ft) I (lbs) (ft) J (lbs) I (lbs) ] (YIN) I (lbs) (lbs) I Roof YA 1113 3524 21 2284 761 Y 3045 YB-D 2475 7835 45 4894 1631 Y 3524 S 6525 470 YE-F 1486 4704 27 2936 979 Y 3915 4704 S YF-E 1486 4704 27 2936 979 Y 3915 4704 S YH 2090 6617 38 4133 1378 , Y 5510 6617 S YJ 990 3134 18 1958 653 Y 2610 3134 S 4th YA 1113 4267 21 2394 7 8 Y 3192 4267 s YB-D 2475 9489 45 5130 1710 Y 6840 9489 S I YE-F 1486 5697 27 3078 1026 Y 4104 5697 S YF-E 1486 5697 27 3078 1026 Y 4104 5697 S YH 2090 8013 38 4332 1444 Y 5776 8013 S IYJ 990 3796 18 2052 684 Y 2736 3796 S 3rd YA 1113 2845 21 2237 746 Y 2982 2982 S YB-D 2475 6326 45 4793 1598 Y 6390 6390 S YE-F 1486 3798 27 2876 959 Y 3834 3834 S YF-E 1486 3798 27 2876 959 Y 3834 3834 S YH 2090 5342 38 4047 1349 Y 5396 5396 S I YJ 990 2530 18 1917 639 Y 2556 2556 S 2nd YA 1113 1439 21 2095 698 Y 2793 1439 S YB-D 2475 3200 45 4489 1496 Y 5985 3200 S YE-F 1486 1922 27 2693 898 Y 3591 1922 S YF-E 1486 1922 27 2693 898 Y 3591 1922 S YH 2090 2703 38 3791 1264 Y 5054 2703 S YJ 990 1280 18 1796 599 Y 2394 1280 S I I I I I I I I 1 1 I Pane h9 of 118 I I Side/Side Event I SEISMIC WIND Trib Area Load Trib Width Windward Leeward Combined? Load Design Load Load Typ LEVEL ( GRID % (Ibs) % (55') I (Ibs) I (Ibs) I (YIN) I (Ibs) Ibs ) Roof 31 I 18 4545 18 1084 361 Y 1445 4545 S I 32 32 8079 32 1927 642 Y 2570 8079 S 33 32 8079 32 1927 642 Y 2570 8079 S 34 18 4545 18 1084 361 Y 1445 4545 S I4th 31 I 18 5504 18 950 317 - Y1267 5504 32 32 9784 32 1690 563 Y 2253 9784 S 33 32 9784 32 1690 563 Y 2253 9784 S I 34 18 5504 18 950 317 Y 1267 5504 S 3rd 31 18 3669 18 869 290 Y 1158 3669 S I 32 32 6523 32 1544 515 Y 2059 6523 S 33 32 6523 32 1544 515 Y 2059 6523 S 34 18 3669 18 869 290 Y 1158 3669 S I2nd I 31 18 12115 18 802 267 Y 1069 1215 S 32 32 2160 32 1426 475 Y 1901 2160 S 33 32 2160 32 1426 475 Y 1901 2160 S 34 18 1215 18 802 267 Y 1069 1215 S I 1 I 1 I I I I I 11111 UN 'En 11111 11111 NEI 11111 IMO 11111 NM 1111 MN' all NM MN NM 11111 1111 11111 Client: Arbor 4 Project: River Terrace-22 Plex =(r%r-r I-r _t,,) L., L-=Length of vtdn ich+al wall Project#: 16-T100 Lt=Total(togth of wall along gridiinc Date: 19-Nov L4.,t.ea gilt or moment atm in wall(tt itTemtr than wall length) By: YSP arta Wail Height flrx to roof L x4=Height of wallftr3-flr4 .tt3:-(V(J(litf-41-Id-1C- )-V-1(Jµ-Ji?-J_'-2)-V?K3-h3-1)-P2(lt'_))x . F R O E L I C H 0.Hctght of wall flt_-fb l L, Ir,=Height of wall al-Hs? E N G I N E E R S t Vrf-Horizontal ftme at gridtiac from roof V4=Horizontal foncorgredlincfrom 4°tit Mu.[Vtl(hi)-V-I 00-V 3(hi)-F 2(bn)jx Shear Walls & Holdowns 4.:3 Horionral force ar grid/int from 3eS fir Lt Roof to 4th Floor 12"Horizontal four at gridline arum:"tlr r=-Uait shirr n wall 1Viud 'Mr=0,6[(Rtrbb r.RoofDL),-(WfriG xWa11DL 1--(Ftrib x FlootDL)j L, Roof DL: 18 psf Ms y Ovcnornng 111001,11 tchev upper wall 1 smaeked abuoc lower%,.all .S�isnric :.Ib =(0.G-,1-1-.Ss Rmib 0 ItooIDLi L_ Floor DL: 27 psf Nin=O erruyning moment wizen upper wall is • )1( -.K ib xffADL),(En-lb xFloorDL) -- Wall DL: 10 psf not stacked or docs not fust Raib,R'trib,F Crib=Roof.wall.and floor ifs/-..II, Its-- f, Stud Spacing: 16 inches oc tributary arra,vscd for calculating dead toad "" 1 - ----------- La L Mr=Resisting mono-at duo to dead load To==Tonsiau if walls not stackedIt, S•2 Tr=Tension if walls Mad:Ci.------.._i(RnthsRoofliL.1--(Myth sfld/IDL)-(Ftril, FIoolDL )] S=$tad!Racing 1'' 1' CsbCoraptrassonatends,ifwallsstacked Sewruce ,Cs Q--s --2it--0.I450:)[(Rndh<RoofDL)-(1Jnzb tVatIDL)-(Fait,xsF1oorDL 11 L< 12 Wall L Lt La h,r Vrf v Mu Rtrfb Wttib Evil) Mr Cs Tu Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (Ib) (pif) (lb•ft) (ft) (ft) (ft) (Ibit) (lbs) (Ib) Nailing Event Front/Back Event 'VA - 23.5 23.5 23.5 9 3524 150 31712 8 9 0 32201 1521 -21 — 6112 S YB-D 24 50 24 9 - 7835 157 33849 8 9 0 33585 1582 11 --- 6/12 S YE-F 10 35 10 9 4704 134 12097 8 9 0 5831 1382 627 — 6/12 S 25 - 35 25 9 4704 134 30243 8 9 0 36443 1382 -248 — 6/12 S YH 13 38 13 9 6617 174 20372 8 9 0 9854 1739 809 — 6/12 S YJ 24 24 24 9 3134 131 28207 8 9 0 33585 1347 -224 r — 6/12 S Side/Side Event - 31 3 35 3 9 4545 195 3506 12 9 0 _ 686 - 1393 940 MST37 6/12 S 3.5 35 3.5 9 4545 167 4090 12 9 0 934 1393 902 MST37 6/12 S 4 35 4 9 4545 146 4674 12 9 0 1220 1393 864 MST37 6/12 S 32 14 100 14 9 8079 81 10180 12 9 0 14945 952 -340 6/12 S 33 14 100 14 9 8079 81 10180 12 9 0 14945 952 -340 — 6/12 S _ 34 3 35 3 9 4545 195 3506 12 9 0 686 1393 940 MST37 6/12 S 3.5 35 3.5 9 4545 167 4090 12 9 0 934 1393 902 M8137 6/12 S 4 35 4 9 4545 146 4674 12 9 0 1220 1393 864 MST37 6/12 S Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 240 350 450 700 900 .psf Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 co 335 490 630 980 1260 psf m co 0 0 1 co IIIIII — 111111 1111111 111111 MS MN Inn 1111111 M1111 MN MN 'SP Mil IMP Mill Ell NM all 4 Client: Project: Arbor River ., I..Total toovn of o,111 Am g ndlino ' 11101 Project#: R:1 Tin ._-. ._L.1,...rla arr.-S=63 arra S AS211 tA f -• Ilk Date: Iffscreatc dun,all loaddl) ##### n{o W li Hoitht l'En..to zoo f L By: yspL.:i ititrizoi::ta"iiii ES:, FROELICH Vri.Amman{tk2C,31 f;Wt.-I:on:Ind.,t V4---linti/ono I force a:pull nIc non:At tl: V?,Honzonaal knor an godlon,livni Al'th E N G I N E E R 5 t V'a lionoonul no,al othIlIne non"-rill ,• Shear Walls & Holdowns H ':: .,!• .n 01'.';,:' In,//X_ i 1;,; n"„Di 1-,,,,j,,},,o,Di )1_"... atatal above lowot,Nall Sth.0,ortounnt moment,bon um', all ts 4th Floor to 3rd aFloor t.:smacked oa&act tb.rt edag itnib WVin Nib.ft nc.21-al:,and'float ' Roof DL: 18 psf niknanr,oak cal On:Aka:la:tag ticod bud M.:v--Rosining ATAVUICA,A clue n,load toad Floor DL: 27 psf T.-Tension If avails not ornoi.cd TA--allonson if,alls stad,d i: - Wall DL: 10 psf 5,5turl taiwas$ . ,li, 5' 2 ts,,C4mptetlim:15 onds tt',ails n5,1,1 Stud Spacing: 16 inches cc f_ Wall I Lt La hff h4 Vrf V4 v Ms MU Rsib Wtrib Ftrib Mr Cs Tu Ts Comments Holdowns Shearwall Controlling Grid (ft) _ (ft) (ft) (ft) (ft) (lbs) (lbs) .... (plf) (Iblt) (ibit) , (ft) (ft) (ft) (Iblt) (lbs) (lbs) (lbs) Nailing Event Front/Back Event VA 24 23.5 23.5 9 9 3524 4267 332 105351 70116 8 18 12 89171 4959 -811 689 -- 4/12 S YB-D 24 50 24 9 9 7835 9489 346 112451 74841 8 18 12 93006 5161 -757 810 — 4/12 S .. YE-F 10 35 10 9 9 4704 5697 297 40188 26747 8 18 12 16147 4495 1060 2404 MST37 4/12 S 25 35 25 9 9 4704 5697 297 100470 66867 8 18 12 100918 4495 -1362 -18 — 4/12 S YH 13 38 13 9 9 6617 8013 385 67679 45043 8 18 12 27288 5682 1366 3107 MST60 3/12 S YJ 24 24 24 9 9 3134 3796 289 93709 62367 8 18 12 93006 4380 -1277 29 — 4/12 S Side/Side Event 31 3 35 3 9 9 4545 5504 431 11647 7751 12 18 4 1130 4252 2207 3505 MST60 3/12 S 3.5 35 3.5 9 9 4545 5504 369 13588 9043 12 18 4 1538 4252 2144 3443 MST60 3/12 S 4 35 4 - 9 9 4545 5504 323 15529 10335 12 18 4 2009 4252 2081 3380 MST60 4/12 S 32 14 100 14 9 9 8079 9784 179 33818 22508 12 18 4 24615 2786 -151 657 — 6/12 S 33 14 100 14 9 9 8079 9784 179 33818 22508 12 18 4 24615 2786 -151 657 —. 6/12 S 34 3 35 3 9 9 4545 5504 431 11647 7751 12 18 4 1130 4252 2207 3505 MST60 3/12 S 3.5 35 3.5 9 9 4545 5504 369 13588 9043 12 18 4 1538 4252 2144 3443 MST60 3/12 S 4 35 4 9 9 4545 5504 323 15529 10335 12 18 4 2009 4252 2081 3380 MST60 4/12 S _ — Seismic 6/12 4/12 3/12 (2)4/12 (2)3/12 240 350 450 700 900 psf Wind 6/12 4/12 3/12 (2)4/12 (2)3/12 335 490 630 980 1260 psf 'V CO 0 CO 0 --, CO r ' ! MINI MI 11111111 MIIIIF NMI KM NMI IIIIIII INN NM Ella NE SIN NMI NE NIB PIM MINN Ian Client: Arbor Project: River Terrace-22 Rext=(Of-1'4-1'a-1.21 Lr J' Length of indti;uh:nl,}alt 41111Project#: 16-T100 Li-Total leu3th of hall almg Lm lliste Date' ##### La-t-Wrath of%moment ann in,tall iif _ dtffaettt dun wall lencsh: au a>-- By: YSP bpi=Wall Height t tins to roof , !t4-Haiuhtoi al!flr fins .1/s=[Vr((hr/-.Is4-h3-112-3)-1'404-h3-hS-, )-I'3(lt+-lil-1)-1'3(!11))'-'- F R(�E L I G H 43-Height o al!tis tlr> L, ¢:-Hefabt of wall ft! t.r: ENGINEER Si %1-1.Han ontal tone,at a:idiine from roof 1-4 Horizontal torte ar a-id➢itle&MI4 fir 11�r=ln l( .,.i a;% i-i ;r:: i. ,il::,j. t: Shear Walls & Holdowns :Hraf o nal t<xoe at,ridlme iron 'ilt 1, V1=Hor:.osiial force at vruiline it sn.'lb , 3`d Floor To 2nd Floor i'-Unit+hearmrtat! ii :Aft -O.u[(R•r,b •Roa(01 1-(it4rtb i s luiU ,)-tfftits L Float 1}L Ott-Ov?rtursuna mama:sfien upper wall is -, stacked above Iowear••ati y`r Roof DL: 18 psf Sun 6 e ursine mrnnent when upper,.an is snrrC ,1fr'v(0 6- l4S j[(Roll,-Rogtl7L)—i117)rlr.11 Wall IA.1 (to b*Fto,rDl 1[ - Floor DL: 27 psf not ata,kedor does:ccs e.ist Wall DL: 10 psf Rrtib tttnb Rub!.Roof.Scull,anal flaw 1tw-it' •v_-.t/r tn'tour.•area wad fes=Ica:J tnsa tkc4 lout """""'•- i s a Stud Spacing: 16 inches oc =« Mr�Rtutaa3 moment care to dead load Its='Ton e>o :nils not stacked •ird:c 11 n - (6n-d:.'lao//iL)--(l i'rrib n c(1U1, (1111b•Floo+DI.lI Is L Tencdm itf all,stacked / 'i- L S*Stud spoons Ifs ,i Ca=Conpress_ns at ends.sf walls stacked Scam,: -C' - r,i-014S.c1[(Rrrsu-Po,'UL I ,JWirth,tra.:DL )-(F1rdy•F.cortn. 11 Wall L Lt La h,i h4 h3 V,( V4 V3 v Ms Mu Rtrib Wtnb Fhlb Mr Cs Tu s Ts Comments Holdowns Shearwall Controlling Grid (ft) (ft) (ft) (ft) (ft) (ft) (Ibs) (Ibs) (Ibs) (plf) (Ib•ft) (Ib'ft) (ft) (ft) (ft) (Ib'ft) (Ibs) (Ibs) (lbs) Nailing Event Front/Back Event YA 23.5 23.5 23.5 9 9 9 3524 4267 2982 458 210096 96954 8 29 24 148894 9735 -2210 2604 Shth(2)Sides HTT5 4/12 S YB-D 24 50 24 9 9 9 7835 9489 6390 474 223212_102446 8 27 24 152426 10080 r-2083 2949 Shth(2)Sides HTT5 4/12 'S YE-F 10 35 10 9 9 9 4704 5697 3834 407 , 79765-36606 8 27 24 26463 8757 1014 5330 (2)MST60 3(12 S 25 35 25 9 9 9 4704 5697 3834 407 199414 91514 8 27 24 165393 8757 -2955 1361 HTT5 3/12 S YH 13 38 13 9 9 9 .6617' 8013', 5396 527 134340 61657 8 27 24 44722 11114 1303 6894 Shth(2)Sides (2)MST60 4/12 S YJ 24 24 24 9 9 9 3134 3796 2556 395 186010 85371 8 27 24 152426 8530 -2794 1399 MST37 3/12 S Side/Side Event 31 3 35 - 3 9 9 9 4545 5504 3669 588 23090 10582 12 27 8 1574 8212 3002 7172 Shth(2)Sides (2)MST60 4/12 S 3.5 35 3.5 9 9 9 4545 5504 3669 504 26938 12345 12 27 8 2143 8212 2915 7084 Shth(2)Sides (2)MST60 4/12 S 4 35 4 9 9 9 4545 5504 3669 441 30786 14109 12 27 8 2799 8212 2828 6997 (2)MST60 3/12 S 32 14 100 14 9 9 9 8079 97846523 , 244 67046 30726 12 27 8 34285 5305 -254 2340 MST37 4/12 S 33 14 100 14 9 9 9 8079 9784 6523 244 67046 30726 12 27 8 34285 5305 -254 2340 MST37 4/12 S 34 3 35 3 9 9 9 4545 5504 3669 588 23090 10582 12 27 8 1574 8212 3002 7172 Shth(2)Sides HDQ8 4/12 S 3.5 35 3.5 9 9 9 4545 5504 3669 504 26938 12345 12 27 8 2143 8212 2915 7084 Shth(2)Sides HDQ8 4/12 S 4 35 4 9 9 9 4545 5504 3669 441 30786 14109 12 27 8, 2799 8212 2828 6997 HDQ8 3/12 S -O 0) co CD CO IV 0 —.. J OD WIN MN 11111111 NM INN —' NM IIIII NI OMNI MIN NON MI Nil INK NW MN MN — Client: Arbor Project: River TeettiatflatiliK;4,„ ., ''MC Project#: 16-Ti 00 1111r Date: 19-Novr'"..'K,''''','''7-'2.'k,',"f By: YSP FROELICH1.::'!..,..r:: ::::';:t'::';',7 '.. ENGINEERSS Shear Walls & Holdowns 2"d Floor To Foundation ...144 444,4444.644 No 444444 '%4 7•out o,I.:a art A.swa 1.•7,4,,via•e.:-.tswka. Roof DL: 18 psf r.i.,;.........1..a.ati. Floor DL: 27 psf Wall DL: 6 psf Stud Spacing: 16 inches cc Wall 1 L { Lt I La [ hr, 1 h, 1 h3 1 h2 1 Vri I V4 I V3 1 V2 I v I Ms I Mu I Rtrlb I Wtrtbl Ftrib I Mr I Cs I Tu I Ts I Comments Holdowns I Shearwali Controlling Grid (ft) (ft) (ft) (ft) (ft) (8) on (lbs) fibs) (lbs) OOM ( Os) 1P10 IVft) 1 (8) ((t) (ft) I (1bit) I (Ib) I (Ibs) I OW I I Nailing Event Front/Back Event VA 12 12 11.5 9 9 9 9 0 0 0 1439 120 12953 12953 8 36 36 47795 2105 4030 -3030 — 6112 S YB-D 24 24 23.5 9 9 9 9 5171 6263 4217 3200 785 492234,169667 8 36 36 191179 21924 -915 12811 Shth(2)Sides HDQ14 3/12 S - YE-F 0 23 0 S 23 23 22.5 9 9 9 9 1689 2045 1376 1922 306 168614 63286 8 36 36 175579 8472 -4991 -310 HDQ8 4/12 S YH 2323 22.5 9 9 9 9 2438 2952 1988 2703 438 242775 90723 8 36 36 175579 11768 -3771 2986 XR HTT5 3/12 S „ — - - — - YJ 24 24 23.5, 9 9 9 9 3134 3796 2566 1280 449 292388 96893 8 36 36 191179 13420 -4012 4307 HTT5 3/12 S Side/Side Event _ 32 8 100 7.5 , 9 9 9 9 8079 9784_ 6523 2160 265 59376, 19113 12 36_ 12 12056 8472 941 6309 HDC28 J 4/12 S 33 8 100 7.5 9 9 9 9 8079 9784 6523 2160 265 59376 19113 12 36 12 12058 8472 941 6309 HDQ8 I 4/12 S 34 2 35 : 1.5 9 9 9 6 4545 5504 3669 1200 839 21291 5114 12 33 12 736 14736 2919 13704 Shth(2)Sides HHDQ11 1 4/12 S 3.5 35 3 9 9 9 7 4545 5504 3669 1200 426 38752 10442 12 34 12 2271 13464 2724 12160 10 35 9.5 9 9 9 9 4545 5504 3669 1200 426 119243 38368 12 36 12 18838 13107 2055 10569 HHDQ11 3/12 S HHDQ11 3/12 S 0) (0 (D CO CO 0 -.). -.... CO I Page 94 of 118 I I in. (see Fig I Client: Project: Proj.#: I Date: By: FROELICH E N 6 1 N�E R S f I li: 44 ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) IAnchor description: 518"ASTM A36 Threaded Rod for Simpson HTT16/HTT22 I HTT4/HTT5 1 Number of Anchors si = 0 0.625 Inch Diameter sZ = 0 RD.5.2.1) I 8 Inch Embed 2500 psi Concrete Footing NDesign= 5.250 (kips)Allowable Design Tension D.3-General Requirements (ACt 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF = 0.75 0.75 N Reinforcing tD = 0.70 D.4-General Requirements for Anchor Strength (ACt 318-02 Section 0.4.4) Strength reduction factor t for anchors using load combinations from ACI 318-05 section 9 2 Will anchor be governed by brittle steel failure? N Anchor W= Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? I IIf rebar is present around anchor: 0.75 Otherwise, 0 70 Summary tANn Wind Win Seismic Summary From Below QNn Sw= 1.0 SF= 0.75 ON,= 9.83 9.83 7.37 kips 19.01 14.26 kips cANcb= 19.01 cl)Non = 121.71 121.71 91.28 kips �Nsb= 198.14 198.14 198.14 148.60 kips 148.60 kips cPNsbfl= 198.14 III Minimum Q Nn= 9.83 J 9.83 7.37 kips Wind Converting To Allowable Stress Design Conversion Factor 1.4 1.4 �NA7towabta 7.02 5.27 kips Ndosign t Seismic �NAllowable 5.250 c 5.27 Therefore, Anchor Design Oto I I Page 95 of 118 I I Client: Project: 4 Proj.#: I Date: By: FROELICH EM G I N E E R S SI ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) ITension Design Calculations ID.5.1 -Steel Strength for Anchor in Tension d (Anchor Diameter) = 0.625 inches n = 1 #of anchors nt' 11 Number of Threads per inch A = 0.23 in.2- (effective cross-sectional area of anchor) futa = 58.00 ksi- (tensile strength of anchor material(not the yield strength) not I exceed 1.9fy or 125 ksi) Nsa= 13.11 ksi-(Eqn_ D-3) I Anchor = 0,7g (1,14„= 9.83 kips Y sa fAse✓ utu D.5.2-Concrete Breakout Strength of Anchor in Tension I s, = 0 inchessee Fig_ R0.5.2.1 ( g ) S2 = 0 inches(see Fig. RD.5.2.1) A,(for single anchor) = 576 in.2(see Figure RD.5.2.1) Anc (for group anchor) = 782 in.2(see Figure RD.5.2.1) I Ary z(for single anchor) = ANCo(for group anchor)= 576 in.2(see Figure RD.5.2.1) 576 in.2 (see Figure RD_5.2.1) we ,N= I Eqn. 0-9(Anchors not Eccentrically Loaded, 4', = 1.0) I 4 ed,N= 1.000 Eqn. D-10&0-11 4'�.N= 1 (1.25 for cast anchors. 1.4 for post-installed) Section D.5.2.6 k, = 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 If C= 2500 psi 1.5"her= 12 he= 8 inches 0.7+0.3(Cmi�I1.5het) = 1.000 Cmin= 12 in-distance to closest edge of concrete fr = ke V f'c h i ' l I Nb = 27.15 kips -(Eqn. D-7) Noc= 27.15 kips -(Eqn. 0.4) I Nibs= 0.00 kips-(Eqn. D-5) AT � cbg = 4Vc Reinforcing cp = 0.70 ivco .N.b.= 19.01 kips I I I Page 96 of 118 I I Clieat: Project: Proj.#: i Date: By. FROELICH ENGINEERS S I i ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) 05.3-Single Anchor Pullout- headed or embedded nut IUse Plate Washer? Y Plate Washer Width = 3 inches Nut diameter= 0.985 inches 1 Nut or Plate Washer Bearing Area= 9.000 int Abrg = 8.693 in2-bearing area of embedded anchors head or nut Itijc,P = I For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value (ACI 318-05 Section D.5.3.6) In= 1 #of anchors Np= 173.87 (kips)Eqn. D-15 Jp — 8fc I Npn` Reinforcing = 173.87 (kips) Eqn. D-14 Npr =NPw 0.70 c P ON" = 121.71 kips D5.4-Anchor side-faced blowout-Headed Anchor ' (Required only if anchor is near an edge where ca, <0.4hef. IAnchor is not close to Edge of Concrete. Analysis below NOT Required, Cat= 5 distance to perp edge of concrete from anchor jai = 12 in -distance to closest edge of concrete Nsb = 283.05 (kips) Eqn. D-15 Factored Nsb= 100.25 IReinforcing 0= 0.70 VAbrg,ONsb- 19814 kips Nsh ' 160 Cal . f'C5= 0 in -spacing of outer anchors in group iNsbs = 283.05 (kips)Eqn. D-16 1 Reinforcing 0= 0.70 s N = 1 + 1y ONsbs= 198.14 kips skg ,b 6c,ii , I I I Page 97 of 118 r- p Client: 1 Rff``����1117(,E Project: UE.IK� Proj.�: I i . 1, CONSULTING By:ENGNEERS,INC II ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) IAnchor description: 718"ASTM A36 Threaded Rod for Simpson HDQ8 1 Number of Anchors s, = 0 in. (see Fig 0.875 Inch Diameter s2 = 0 RD.5 2 1) I 8 Inch Embed 2500 psi Concrete Footing Noesign = 8.238 (kips)Allowable Design Tension Si D.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y Sr,= 0.75 D.4 -General Requirements for Anchor Strength (ACI 318-02 Section 0.4.4) Strength reduction factor 4 for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor = 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing 4)= 0.70 I If rebar is present around anchor: 0.75 Otherwise, 0 70 Summary I �Nn Wind �Nrt Seismic Summary From Below QNn Sw= 1.0 SF=0.75 ON,= 20.09 20.09 15.06 kips �Nct= 25.87 25.87 19.40 kips I 4)Npn = 117.59 117.59 88.19 kips �Nse= 227.21 227.21 170.41 kips �Nsbg= 227.21 227.21 170.41 kips IMinimum 4)Nn= j 20.09 f 20.09 f 15.06 kips Converting To Allowable Stress Design I Wind Seismic Conversion Factor 1 4 1 q ONAuowabia= 14.35 10.76 kips Ndesign < ONAncwrbie 9.230 < 10.76 Therefore, Anchor Design OK I I Page 98 of 118 I I ■ �-� ta Client: ��jj��[[��!(({{,� Project: LILLI�'� Proj.#: I CONStI[T1NG Date: ENGINEERS INC I ACI 318-05 - Appendix DTension Failures Cont. (Page 2 of 3) iTension Design Calculations I1.5.1 -Steel Strength for Anchor in Tension tit,(Anchor Diameter) = 0.875 inches I n = 1 9 #of anchors nt= Number of Threads per inch Ase= 0.46 in.2-(effective cross-sectional area of anchor) I f.-te = 58.00 ksi-(tensile strength of anchor material (not the yield strength) not exceed 1.9f5 or 125 ksi) Nsa= 26.78 ksi- (Eqn. D-3) I Anchor +17 = 0.75INSa {� mNsa= 20M9 kips ---= fAse✓ uta I1.5.2-Concrete Breakout Strength of Anchor in Tension s, = 0 inches (see Fig. RD.5.2.1) I s2' 0 inches (see Fig. RD.5.2.1) A„(for single anchor) = 784 in.2(see Figure RD.5.2.1) Anc (for group anchor)= NA in.2(see Figure RD.5.2.1) IAN,, (for single anchor) = 576 in.2(see Figure RD.5.2.1) AN„ (for group anchor)= 576 in.2(see Figure RD.5.2.1) 4Jec.N = 1 Eqn. D-9 (Anchors not Eccentrically Loaded, 4J, = 1.0) I Wed,N = 1.000 Eqn_ D-10 &0-11 41c,N= 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 kc= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 I Fc= 2500 psi 1.5*hef= 12 hef= B inches 0.7+0.3(Cmin/1.5hef) = 1.050 I linin = 14 in -distance to closest edge of concrete �. _ k /f c h , Nb= 27 15 kips- (Eqn. 0-7) 1/ Kea = 36.96 kips-(Eqn. D-4) I r AN, Ncbg = 0.00 kips-(Eqn. D-5) 1r cbg = V ec,NVed,NY'cp,NN.b Reinforcing = 0.70 ANco WNcb9= 25.87 kips I I I Page 99 of 118 I I ■ (; Client: I.� � Project: FROELICH Proj.il: I CONSULTINGBata: EP GI ERS NC I I ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) ID5.3 -Single Anchor Pullout-headed or embedded nut Use Plate Washer? Y Plate Washer Width= 3 inches I Nut diameter= 1.438 inches Nut or Plate Washer Bearing Area = 9.000 in2 IAbrg= 8.399 in -bearing area of embedded anchors head or nut ��.p = 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value (ACI 318-05 ISection D.5.3,6) n = 1 #of anchors I Nip = 167.98 (kips) Eqn.. D-15 NI, ' rg8 f J Nps= 167.98 (kips) Eqn. D-14 INS =1Vn ` F! Reinforcing 4?= 0.70 Ir Np„= 11759 kips D5.4-Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where ca, <0.4her, i Anchor is not close to EdgeConcrete,of Co c ete. Anaiysis below NOT Required. Ca2 = 14 distance to perp edge of concrete from anchor 111 dal = 14 in -distance to closest edge of concrete Nab' 324.59 (kips) Eqn. D-15 Factored Nes = 162.29 I Reinforcing = 0,70 _ tANsa= 22721 kips I N sb = 160 c al Vil brg jf.C Is= d in-spacing of outer anchors in group N - 324.59 (kips) Eqn. D-16 / Reinforcing Q) = 0.70 S r I oNatie= 227.21 kips 1' ;bg = 1 + �'� sb \ 6ca1 I I Page 100 of 118 ■ (' Client: IORK(ftii., , Project:R 1 1 Proj.N: I CONSULTING byte: ENCIEERSINC II ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) I Anchor description: 1"ASTM A36 Threaded Rod for Simpson HhDQ11 1 HHDQ14 I HD14A/HDU11 1H01114 1 Number of Anchors si = 0 in. (see Fig I 1.000 Inch Diameter sz = 0 RD.5.2,1) 12 inch Embed 2500 psi Concrete Footing Noesign = 13.710 (kips)Allowable Design Tension I D.3-General Requirements (ACI 318-02 Section 0.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 I0.4 -General Requirements for Anchor Strength (ACI 318-02 Section 0.4.4) Strength reduction factor Qa for anchors using load combinations from ACI 318-05 section 9.2 I Will anchor be governed by brittle steel failure? N Anchor cp = 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing 0= 0.70 I If rebar is present around anchor: 0.75 Otherwise, 0.70 ISummary 41)Nn wind ONn Seismic' I Summary From Below ON, Sw= 1.0 SF=0.75 4)N,,= 26.35 26.35 19.76 kips I cDNcb= cDNvn= 29.64 29.64 22.23 kips 115.01 115.01 86.26 kips ctNab= 288.91 288.91 216.68 kips I CDNsb4= 288.91 288.91 216.66 kips Minimum ON,= 26.35 26.35 19.76 skips I Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 IION,tiiawat+ee= 18.82 14.12 kips Ndsaign < ONAltarrabis 13.710 < 14.12 I Therefore, Anchor Design OK I I Page 101 of 118 I Ia r� Client: FRj�[�y��(iti��,li Project: OE1iC'H Proj.#: I CO SUtTh4G Byte: ENGFEERS INC I ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) ITension Design Calculations ID.5.1 -Steel Strength for Anchor in Tension da(Anchor Diameter)= 1.000 inches In = 1 #of anchors nt= 8 Number of Threads per inch Ase= 0.61 in.2-(effective cross-sectional area of anchor) I fut.= 58.08 ksi- (tensile strength of anchor material (not the yield strength) not exceed 1.9f,or 125 ksi) Ns,= 35.13 ksi-(Eqn. D-3) I Anchor (D = 0.75 DNS.= 26.35 kips Ns a — nAse J zrta ID.5.2 -Concrete Breakout Strength of Anchor in Tension s1 = 0 inches(see Fig. RD.5.2.1) Is2= 0 inches (see Fig. RD.5.2.1)A„�(for single anchor)= 1100 in.2(see Figure RD.5.2,1) A„(for group anchor)= NA in.2(see Figure RD.5.2.1) 1 ANS(for single anchor) = 1296 in.2 (see Figure RD.5.2.1) ANCA(for group anchor) = 1296 in.2(see Figure RD.5.2.1) 1 4j_c,N 1. Eqn. D-9 (Anchors not Eccentrically Loaded 4)1 = 1.0) 4)ed,N= 1.000 Eqn. D-10 & D-11 Wc.N= 1 (1.25 for cast anchors, 1.4 for post-installed) Section 0.5.2.6 I k,= 24 2500 (24 for cast anchors, 17 for post-installed) Section 0.5.2.2 Pc= psi 1.5"he= 18 her= 12 inches 0.7+0.3(crt,e/1.5hgf) = 1.000 I c«,= 18 in -distance to closest edge of concreteb = k c / ,C h 3 s b= 49.88 kips-(Eqn. 0-7) Ai Nom,= 42.34 kips-(Eqn. D-4) Apie I Ncag= 0.00 kips - (Eqn. D-5) chg = �ec,r4` ed,h' cp,ti�Vb Reinforcing cp = 0.70 Nca ONcbg = 29.64 kips I I I Page 102 of 118 I I . �r� Client: ��t, Project: �� � ,� Proj.#: I (ONSENG By ENGIEERS,INC I I ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) 05.3 -Single Anchor Pullout-headed or embedded nut I Use Plate Washer? Y Plate Washer Width= 3 inches I Nut diameter= 1.625 inches Nut or Plate Washer Bearing Area = 9.000 in2 I Abrg = 6.22 in -bearing area of embedded anchors head or nut 4.1.7..F.= 1 For an anchor located in an area of concrete where no cracking at service loads is anticipated, otherwise use 1.0 value(ACI 318-05 Section D.5.3.6) 1 n - I # f anchors *of Na = 164.30 (kips) Eqn. D-15 Nr _"4rg8f C Np, = 164.30 (kps) Eqn. D-14 NPn l ti`ry>f' Reinforcing to = 0.70 Q►Npn= 115.01 kips ID5.4-Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where ca; <0.4hefl 1 Anchor is not close to Edge of Concrete. Analysis below NOT Required. cat= 5 distance to perp edge of concrete from anchor Ica, = 18 in -distance to closest edge of concrete Nsh= 412.73 (kips) Eqn. D-15 Factored Nsb= 412.73 I Reinforcing Q= 0,70 4)N,b= 288.91 kips N s6 = 160 C„i (A bYe, . f'C i+ s ' 0 in-spacing of outer anchors in group NSA= 412.73 (kips) Eqn. D-16 ( r Reinforcing G>= 0.70 S tANsbg = 288.91 kips ,bgN = 1 + b C N sb \ a! i 1 • I I Title Block Line 1 Title: P103 of 118 I You can changes this area Dsgnr: using the'Settings"menu item Project Desc.: and then using the'Printing& Project Notes I Title Block'selection. 11Ue Nock one s Printed: w,a,, �, Cantilevered Rgtainitt Wall t t' "' "� " - _ ENERCALC.INC.19612011,t3, 811.1° ,, WWI, I , Lic. #: .W-Q6002304 Licensee :FROELICH CONSULTING ENGINEERS I Description: 4'-0'Wall Criteria Soil Data Calculations per ACt 318-08,Act 530.08,IBC 2009, Retained Height - 4.00 ft Allow Soil Bearing = 2,500.0 psf CBC 2010,ASCE 7-05 Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00 1 Heel Active Pressure = 35.0 pet/ft Height of Soil over Toe = 6.00 in Toe Active Pressure = 30 0 pee I Water height over heel = 0.0 ft Passive Pressure 330 0 psftft Vertical component of active Soil Density,Heel = 110 00 pcf Lateral soil pressure options: Soil Density, Toe = 0 00 pcf NOT USED for Soil Pressure- Friction Coe otwn Ftg 5 Soil = 0 500 I NOT USED for Sliding Resistance. = NOT USED for Overturning Resistance. Soil neight.to ignore for pas;tve pressure0 00 in Surcharge Loads Lateral Load Applied lied to_ Stam Adjacent Footing Load I Surcharge Over Heel = 50 0 psf Latera;Load _ 20.0 OfRd;acenk Footing Load 0.0 lbs Used Too Resist Sliding&Overturning Height to Top 4.00 t Footing Width 0.00 ft Surcharge Over Toe = 0.0 psf Height to Bottom = 0.00 ft Eccentricity - 0.00 in Used far Sliding u Overturning.._-__- - Wall to Ftg CL Dist - 0.00 ft I Axial Load Applied to Stem Axial Dead LoadFooting Type - Line Load = Base AboverBeicw Soil 0.0 ft 500,0 lbs psf at Back of Wall Axial Live Load 0.0 lbs Wind on Exposed Stem = 0.3 Axial Load Eccentricity = 0.0 in Poisson's Ratio = 0300 I Design Summa Stern Construction Top Stem _ _ _ Stem 3K Wall Stability Ratios Design Height Above Ftg ft= 0 00 Overturning = 2.43 OK Wall Material Above'Hr = Concrete Sliding = 2.25 OK Thickness in= 6 00 (Vertical Component NOT Used) Rebar Size = # 4 Total Bearing Load = 1,948 lbs Rebar Spacing in= 12.00 ...resultant ecc. = 6.22 in Rebar Placed at = Edge Design Data Soil Pressure Toe 1,315 psf OK fbIFB--fa/Fa = 0.270 Sal Pressure Heel 0 psf OK Total Force @ Section lbs= 623.8 Allowable = 2,500 psf Moment ..Actual ft-i= 9 Soil Pressure Less Than Allowable 60-0 II ACI Factored @ Toe = 1,818 psf Moment. .-.Allowable ft-I= 3,559.5 ACi Factored @ Heel 0 psf Shear....Actual psi= 13.2 Footing Shear @ Toe = 0 6 psi OK Shear-.._.Ailawabie psi= 671 Footing Shear @ Heel = 10.4 psi OK Wall lNe!gnt psf= 75 0 I Allowable = 75.0 psi Rebar Depth 'a' in= 4.25 Sliding Caics (Vertical Component NOT Used) Lap splice if above in= 12.00 Lateral Sliding Force = 597.0 lbs Lap splice if below in= 8.40 less 100%Passive Force = • 371.3 lbs Hoak embed into footing in= 8.40 less 100%Friction Force 9713.8 lbs Concrete Data ---_. . . _ _.._..__. _- Added Force Req'd 0.0 lbs OK Pc Rei= 2,000.0 Far 1.5 1 Stability 0.0 lbs OK fRsr 60,000.0 Load Factors I Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1,600 ISeismic,E 1.000 1 I I Title Block Line 1 Title: Job ft I You can changes this area Dsgnr: Page 104 of 118 using the'Settings'menu item Project Dese.: and then using the'Printing& Project Notes Title Block'selection. I Title Block Line 6 ?rilllea Ia:wa terx LEON Cantilevered Retaining Wall R P:t2d11lobsti.Tt73tAtbcePass Ceeksi%Apls• ' &ERMA INC.19113.2011.13041L1141.litalt14109 -Li c.#: KW-06002304 Licensee :FROELtCH CONSULTING ENGINEERS I Description: —Cr Wall _. __ Foaling Dimensions e3 Strengths Footing_ Design Results Toe Width = 0.75 ft Toe Hee! Heel Width2.00 Factored Pressure = 1,818 0 psf Total Footing Width = = 2.75 Mu'.Upward = 462 0 ft-lb Footing Thickness = 12.00 in Mu':Downward = 69 887 ft-lb Mu: Design = 392 887 ft-lb Key Width - 0.00 in I Key Depth _ 0 rn Actual 1-Way Shear D 63 10 37 psi Key Distance from Toe 0.00 ft Allow 1-Way Shear = 75.00 75 00 psi Toe Reinforcing = #7@ 16 00 in fc = 2.500_psi Fy = 60.000 ps, Heei Reinforcing = 0 6 @ 16 00 in Footing Concrete Density = 150,00 pcf Key Reinforcing = None Speed I Min.As% Corer @Tap = 00018 2.00 @ 8tm.= 3.00 in Other Acceptable Sizes&Spacings Toe: Not req'd,Mu<S'Fr Heef: Not req'd,Mu<S•Fr Key No key defined Summary of Overturning&Resisting Forces&Moments .....OVERTURNING .....RESISTING.:... I - Force Distance Moment Force Distance Moment itemlbs ft ft- ft ib lbs ft-lb Heel Active Pressure - 437.5 1 67 729.2 Soil Over Heel = 680 0 2.00 1,320.0 Surcharge over Heel = 79.5 2.50 198.9 Sloped Soil Over Heel = I Toe Active PressureSurcharge Over Heel _ 75 0 2.00 150.0 Surcharge Over Toe Adjacent Footing Load Adjacent Footing Load = Axial Dead"Woad on Stern = 500.0 100 500.0 Added Lateral Load = 80 0 3.00 240 0 •Axial Live Load on Stern = I Load @ Stem Above Soil = Soil Over Toe _ 0.38 Surcharge Over Toe Stern Weights, - 300.0 100 300.0 Earth @ Stern Transitions = I Total = 597-0 -O.T.M. = 1.168 0 Feting Weight 412.5 1 567 2 ResistinglOverturning Ratio 2 43 Key We gni Vertical Loads used for Soil Pressure- 1,947.5 lbs Ver.Component = Total= 1.947,5 lbs R.M.= 2,837.2 'Axial live load NOT included in total displayedor used for overturning resistance,but is included for soil re calculation. . 1 I I I I I I I Title Block Line f Title: PAt 105 of 118 You can changes this area Dsgnr: using the'Settings'menu item Project Desc.: and then using the'Printing& TiOe Block`selection, Project Notes I Title Stock Line 6 , ?Tiled.,z uaa aaa s:SCPrk Cantilevered Retainilja. Wali ►ltt Si73tMaorPass E?aetctid�Ayta= F� +ItG "�<:� 1.8rii�.lf,iQ0�,1(�it.tQ48 Lic.it:KW-06002304 Licensee :FROELICH CONSULTING ENGINEERS I Description': 5'-O Watt Criteria SO4(Data Calculations per AC!31818, AC!530.08,IBC 2009, Retained Height = 6.00 ft Allow Soil Bearing = 2,500.0 psf CBC 2010,ASCE 7.05 I Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 6.00 in Toe Active Pressure = 30 0 psffft I Water height over heel = 0 0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density.Heel = t 10.00 pcf Lateral soil pressure options: Soil DensityToe NOT USED for Soil Pressure_ = 0 00 pct NOT USED for Sliding Resistance. Friction Coef*bhxn Ftg&Soil = 0 500 NOT USED for Overturning Resistance. Soil Height to ignore - forpassive pressure 0.00 n Surcharge Loads Lateral Load Applied to Stern Adjacent Footing Load Surcharrgge Over Heel = 50.0 psf Lateral Load = 30 0 pit Adjacent Footing Load 0.0 lbs Used To mist Sliding&Overturning Height to Top 6,00 ft Footing Width 0.00 ft Surcharge Over Toe 0.0 psf Height to Bottom = 0.00 ft Eccentricity = 0.00 in. Used for Sliding&Overturning _ _ - Wall to Ftg CL Dist = 0.00 ft I Axial Load Applied to Stem Footing Type - Line Load axial Dead Load 500 0 lbs Base AbaveiBelaw Soil Axial Live Load = 0.0 lbs Wind o?Exposed Stem = 0.0 psf at Back of Wail O.0 ft Axial Load Eccentricity = 0.0 in Poisson's Ratio = 0 300 DesignSummar� _ . _T Stern Construction Top Stem Wall StabilityRatios '�0 30 Overturning = Design Height Above Ftg ft= O.i0 g 2.37 OK Wall Material Above'Ht" = Concrete Sliding = 1 78 OK Thickness in= 8.00 (Vertical Component NOT Used) Rebar Size - # 5 Total Bearing Load 3,357 lbs Rebar Spacing in= 12.00 resultant eco. = 8.81 in Rebar Placed at = Edge Soil Pressure Toe = f,7o7 psf OK Design Data - _ .__�____ Soil Pressure Heel = 0 psf OK TotalfloiFB+tales = o4 7 Allowable = 2,500 psf Total Force @Section lbs= 1,334 7 Soil Pressure Less Than Allowable Moment...Actua! ft-I= 3.013 2 ACI Factored @ Toe _ 2,121 psf Moment._Allowable ft-I= 7,993,7 ACI Factored @ Heel 0 psf Shear...,Actual psi= 19 4 Footing Shear @ Toe = 5.1 psi OK. Shear,.,Allowable psi= 671 Fooling Shear @ Heel = 21.5 psi OK Wall Weight psf= 100.0 Allowable = }5.0 psi Rebar Depth 'd' in= 6.19 Sliding Cake (Vertical Component NOT Used) Lap splice if above in= 12.00 Lateral Sliding Force _ 1.148.9 lbs Lap splice if below rn= "0.00 less 100%Passive Force = • 371.3 lbs Hook embed into footing in= 6.00 less 100%Friction Force = 1,a"78.4 lbs Concrete Data ___ Added Force Req'd = 0,0 lbs OK Pe psi= 2,000.0 for 1.5 1 Stability = 0.0 lbs OK Fy psi= 60,000.0 Load Factors Dead Load 1,200 Live Load 1.600 Earth,H 1.600 li, I I Wind,W 1 600 ISeismic,E 1.000 I I ITitle Block Line 1 Title: Job# You can changes this area Dsgnr, Page 106 of 118 I using the'Settings'menu item Project Desc.: and then using the'Printing& Title Block selection, Project Notes Tete Biotic Lille 6 P iteea•13 4dR 7013 !.50x'1! I Can#llevert d Ret iliirl Wall F otijo6>s sil141r3WeerPassDeeivi aApts•igeR . Lic. : KW-06002304 Description ecm&itmotti ttto.os Description: 6.41*Wal Licensee : FROELICH CONSULTING ENGINEERS Footing Dimensions&Strengths Footing Design Results _.Toe Width - 1.00 ft Toe Hest I Heel Width = 3.00 Factored Pressure = 2,121 0 psf Total Footing Width = 4 00 Mu' Upward = 967 0 ft-lb Footing Thickness = 1200 in Mu'•Downward - 123 2,864 ftIb Key Width = 0 in Mu: Design = 844 2,864 ft-lb I Key Depth = 0 00 inActual 1-Way Shear 5A7 21.53 psi Key Distance from Toe0.40 ft Allow 1-Way Shear = 75.00 75.00 psi Toe Reinforcing = ft 7 @ 16.00 in Pc = 2,500_pssi F y = 80,000 psi Heel Reinforcing = 4 6 @ 18.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Speed I Min.As !o = 0.0018 Cover @ Top 2.00 @ 3tm.= 3.04 in Other acceptable Sizes&Spacings Toe: Not req'd,Attu<S'Fr Heel: 1 t 75 in,#5@ 18.25 in,#8@ 25.75 ir:.#7@ 35 25 in,#81a 46.25 in,#9@ 4 Key- No-key defined Summary of Overturning&Resisting Forces&Moments _._OVERTURNING RESISTING Force Distance Moment Force Distance Moment I ltem = lbs ft ft-lb = lbs ft ft-it; Heel Active Pressure857.5 2.33 2,00G a Soil Over Heel = 1 540.0 2.83 4,363 3 Surcharge over Heel = 111.4 3.50 389.8 Sloped Soil Over Heel = Toe Active Pressure = Surcharge Over Heel = 118.7 2.83 330 6 I Surcharge Over Toe Adjacent Footing Load Adjacent Footing Load = xial Dead Load on Stem = 500.0 1.33 586 7 Added Lateral Load = 180.0 4.00 7200.0 `Axial Live Load on Stem = 1 Load @ Stem Above Soil = Soil Over Tae = 0.50 Surcharge Over Toe Stem Weight{s} - 600.0 1.33 800.0 Total _.._ 1Li48 9 O.T.M. = 3.11-0 6 Earth @ Stem Transitions = Footing Weight = 600.0 2.00 1,200.0 I Resisting/Overturning Ratio = 2.37 Key WeightVertical Loads used for Soil Pressure= 3,356.7 lbs Vert.Component - Total= 3,358 7 lbs R.M.= 7,360.0 *Axkat ilve load NOT included in total displayed,or used for overturning resistance,but is included for soil pressure calculation. I I I I I • I I Title Block Line f Title: I You can changes this area ❑sgnr Pa� 07 of 118 using the'Settings"menu item Project Desc.: and then using the'Printing& Title Block"selection. Project Notes: I Title Block Line 6 a„ }3MAR 1)311 :saaM Cantilevered Retaifin± Wall Rix t>ma1t114tn(AieorPass cxswets•vnll EttERCACC•tt 1968�811.8i�d6ltlttA>B;Var&.it.fQp9 Lic.#:KW-06002304 I Description: 8'-0'Watt Licensee :FROELICH CONSULTING ENGINEERS - Criteria Soil Data Calculations per ACt 318.08, AC1530-08,IBC 2009, Retained Height = 8.00 ft Allow Soil Bearing = 2,500.0 psi CBC 2010,ASCE 7-03 I Wall height above soil _ 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall 0.00:1 Heel Active Pressure = 35.0 psfft Height of Soil over Toe = 6.00 in Toe Active Pressure = 30.0 psfrft Water height over heel = 0.0 ft Passive Pressure = 330.0 psfift Vertical component of active Lateral soil pressure options' Soli Density,Heel 110.00 poi NOT USED for Soil Pressure Soil Density,Toe 0 00 pcf NOT USED for Sliding Resistance Fiction Coeff oiwn Ftg&Soil 0,500 I NOT USED for Overturning Resistance, Soil refight to ignore for passive pressure 0.00 in Surcharge Loads Lateral Load_Applied to Stem Adjacent Footing Load Surcharge Over Heel = 50.0 psf Lateral Load - 40-0 pl` Adjacent Footing Load = 0.0 lbs I Used To Resist Slung&Overturning ing Height to Top = 8.00 ft Footing Width - 0.00 ft Surcharge Over Toe 0.0 psf ..Height to Bottom0.00 ft Eccentricity Used far Sttd &Overturning Y = 0.00 in Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stern Footing Type Line Load Axial Dead Load _ 500.0 lbs Base Back ci Wail Soil = r Axial Live Load = 0.0 lbs Wind on Exposed Stem = 0.0 f at of Wail �.0 ft Axial Load Eccentricity = 0.0 in Poisson's Ratio 4.300 Deslgrt Surnma y _ Stem Construction Top stern - _ _ . _ Watt Stability Ratios s OK _ Overturning = Design Heign Above Ftq ft= 0.00 Overturning = 2.55 OOK Wall Material Above"Hi' = Concrete Sliding I (Vertical Component;VOT Used) Thickness in_ 8.00 Rebar Size 4 Total Bearing Load 5,225 lbs Rebar Spacing n= 6.00 5 resultant eco. = 9.94 in Rebar Placed at = Edge Soil Pressure Toe = 1,809 psf OK Design Data I Soil Pressure Heel = 91 psf OK rb1FB+farFa = 0.l87 Alfoessu = 2,500 psf Total Force @ Section lbs= 2,309.8 Soil pressure Less Than Allowable i+doment.,.Actual ft--I= 6,972.2 ACI Factored art Toe 2,171 psf Moment....Allowable ft-I= 14,711.7 ACI Factored Heel = 109 psf Shear Actual psi= 33.7 Footing Shear Toe 13.5 psi OK Shear..,..Ailcwab?e psi= 57.1 Footing Shear @Heet = 38.5 psi OK hall /eight psf= 100.0 Allowable = 75.0 psi Rebar Depth 'd' in= 6.19 11 Sliding Dales (Vertical Component NOT Used) Lap splice if above in= 12.22 Lateral Sliding Farce 1,880.7 lbs Lap splice if below in= 6.00 less 100%Passive Force = • 371.3 lbs Hook embed into foot.ng in= '.00 less 100%Friction Force = 2,612.8 lbs Concrete Data - ___-.. Added Force Req'd = 0.0 lbs OK t'a psi.-- 2,000.0 ....for 1.5:1 Stability 0.0 lbs OK FY psi= 60,000.0 Load Factors - Dead Load 1.200 I Live Load 1.600 Earth,H 1.500 Wind.W 1.600 Seismic,E 1.000 I I I Title Block Line 1 Title: Page#108 of 118 11 You can changes this area Dsgnr: using the'Settings'menu item Project Desc.: and then using the'Printing& I Title Block"selection. - Project Notes T rock Lined as tsrwa � ,:soa+e C rev lwBd Re a�ni>r�� Wel.' lane:t+ ttllbeitt. t%r�Pasrtagkst, - ., - . .: 1 Lic.#: KW-0600230-t i HC�1tC INC,1fis3mlt,= 11-iQ 91 11.10.09 Description: 8'-0'Watt Licensee:FROELICH CONSULTING ENGINEERS Footing Dimensions&Strengths Footing Design Results I Toe Width 1 50 ft -- -- 3oe fleet Heel Width 45 _ Factored Pressure 2,171 109 psi Total Footing Width = 5.500 Mu'-Upward = 2,231 0 ft-lb Fooling Thickness = 12.00 in Mu' Downward = 277 0 ft-lb 111 Key Width 0.00 in Mu: Design _ 1,954 5;972 ft-lb Key Depth 0.00 in Actual 1 Way Shear 13.62 38.48 psi Key Distance From Toe = 0 00 ft Allow 1-Way Shear - 75,00 75 00 psi Tae Reinforcing = #7 @ 16.00 in to = 2,5000psi Fy = 60,000 psi Heel Reinforcing = *6 a,16.00 in I Footing Concrete Density _ 1;0.00 pcf Key Reinforcing = None Speed Min.As% = •0_0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Bin)= 3.00 in Toe: Not rerfd,Mu<S"Fr Heel: #4@ 1100 in,#5@ 17.25 it #6@ 24 25 in,#7@ 33.00 in.48@ 43 50 in,#9@ 4 I Key: No key defined Summary of Overturning&Resisting Forces& Moments OVERTURNIp RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-lb , lbs ft ft-lb Heel Active Pressure = 1:417.5 3 00 4,252.5 Soil Over Heel = 2 933.3 3.83 11,244.4 ISurcharge over Heel = 143.2 4.50 644.3 Sloped Soil Over Heel Toe Active Pressure Surcharge Over Heel 166 7 3.83 638.9 Surcharge Over Toe Adjacent Footing Load Adjacent Footing Load = Axial Dead Load on Stem = 500.0 1.83 916 7 Added Lateral Load = 320.0 500 1:600.0 *Axial Live Load on Stern = I Load @ Stern Above Soil = Soil Over Toe0.75 Surcharge Over Toe - Stem Weights) = 800.0 1.83 1,466.7 Total = 1.880:7 O.T.M. = 8,496.6 Earth @ Stern Transitions Footing Weight = 825.0 2.75 2,268.8 Resisting/Overturning Ratio = 2.55 Key Weight = Vertical Loads used for Soil Pressure= ,5,225.0 lbs Vert.Component I Total= 5,225.0 lbs R.M.= 16,535.4 'Axial five load NC.' included in total displayed,or used for overturning resistance,but is included for soil pressure calculation. I I I I I I I Page 109 of 118 I . . , ,J;rr•-T6-, 6969 IW Hampton st CLIENT Porttand,Oregon 97223 . 1111 503-624-7005A. PROJECT: -... • NUMBER: 745 NW Mt Washington Dr.*205 Bend Oregon 97701 541-383-1828 DATE: IROELICH NGINEERSI BY: I Ret rA/to _ /1 42 r 14 ra,7e tz-4e.40 I — I -11: I . --1-----f f , .-- 4*,,.....t ,. I _______ _..... (4._:: 3,alt„.1 p I le-V matc 1-1,.. - ,cX,E I ir at .. 1 9 ac --PC ' 3 ceso/oz Fr it-triri• a' CD,5- - ..-:-... 5-04/P AC 111 A , 1 - II 4?Ppl y SA rc.44119„e_ as 49,3 Je VAtli" I4 itori= 11 Di., coorif 1 R7rs f x03 . I Se s f or I 2. I 10*- . ..• 1 2 04E)/4 x 0 3 a „pips-J- A 4.r'it I ...........................• . cf--- , ... 7c,f, 1 I , . I IINIIIIIIIIII I I Page 110 of 118 6969 SW Hampton,St CLIENT Porttond.Oregon 97223 411111 5036247005PROJECT: 44 a ,, . ,:.„(,...y,,.. NUMBER: 745 NW Mt Washington Dr'205 Bend.Oregon 97701 ifR O E L I C H 5414834828 DATE: amNt'a1NEERst BY: I Re I- bass it o'fsnrr sJr+ 5Ite.20 I Gam v2 — w / a t DL= 5a�t1 1 No L S4.4 ratel 1111 t $o;/ et a Afire = .35-0 11 II -1 1111 pol,s+rk 3.Lortf bL.= '76°p yt -F1,-- _ p0C Q /D c 8P. t, ,3 x 25 )r) = 55 psL `4 I. ' Eta . 5,c41:: : 51/35 I W.ef/ I I D L= 5 ?v1 n I . i Id I 104/ x 0.3 .r. o)7,' f Aorii '" f t0 I ! (, I I I I 4 Froelich Engineers Project Title: Engineer: Pat liQ of 118 IProject Descr: FROELICH .EN U7MtEP Prrr d a)ALG 04 , Cantilevered Retaining Wall no= ^vl 14 10 cok lwrsa -i- o EERCALC,lNO.19 a14 Bu .&14.8.10,r/8P814;$.t8 Lie.# KW-06002304 Licensee:FROELICH CONSULTING ENGINEERS Description: Garage Ret Wail-No Seismic 1 Criteria Soil Data Calculations per ACI 318-11, ACI 530-11,IBC 2012, Retained Height = 11.50 ft Allow Soil Bearing = 2,500.0 psf CBC 2013,ASCE 7-10 I Wall height above soil - 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall 0.00:1 Heel Active Pressure = 35.0 psf/ft Height of Soil over Toe = 12.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0 0 ft Passive Pressure = 330.0 psf/ft I Vertical component of active Soil Density,Heel = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 110.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance. I NOT USED for Overturning Resistance, Soil height to ignore for passive pressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load I Surcha a Over Heel = 0.0 psf Lateral Load = 70.0 plf rrqq - p = Adjacent Footing Load = 0.0 lbs Used 7o Resist Sliding&Overturning Height to Top 10.00 ft Footing Width 0.00 ft Surcharge Over Toe 0.0 psf Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft I Axial Load Applied to Stem Footing Type _ Line Load Axial Dead Load 500.0 lbs Base AbavelBelow Soil 0.0 ft Axial Live Load = 1,100.0 lbs Wind on Exposed Stem = 0.0 psf at Back of Wall Axial Load Eccentricity = 0.0 in Poisson's Ratio = 0.300 I u Design Stem Construction Top Stem 2nd Stern OK Stern OK Wall Stability Ratios Design Height Above Ftg ft= 2.00 0.00 Overturning = 2.73 OK Wall Material Above"Ht" = Concrete Concrete I Sliding = 1.59 OK Thickness in= 8.00 8.00 Slab Resists All Sliding r Rebar Size # 5 # 6 Total Bearing Load = 10,739 lbs Rebar Spacing in= 6.00 6.00 ...resultant ecc. = 12.27 in Rebar Placed at = Edge Edge I Design Data Soil Pressure @ Toe = 2,372 psf OK fb/FB+fa/Fa 0.65e 0.938 Soil Pressure @ Heel = 313 psf OK Total Force @ Section lbs= 3,087.0 4,379.0 Allowable = 2,500 psf Moment....Actuai ft-I= 10 242.2 17,686.8 Soil Pressure Less Than Allowable ACI Factored @ Toe _ 2,944 psf Moment.....Allowabfe ft 1= 15,562.2 18,848.3 I ACI Factored @ Heel 388 psf Shear Actual psi= 46.1 71.1 Footing Shear @ Toe = 22.3 psi OK Shear Allowable psi= 82.2 82.2 Footing Shear @ Heel = 52.5 psi OK Wall Weight psf= 100.0 100.0 I Allowable = 82.2 psi Rebar Depth 'd' in= 6.19 5.63 Sliding Calcs Slab Resists All Sliding8i Lap splice if above in= 14.06 24.05 Lateral Sliding Force = 3,500.5 lbs Lap splice if below in= 14.06 10.64 less 100%Passive Force = • 733.3 lbs Hook embed into footing in= 14.06 10.64 less 100%Friction Force = - 4,819.8 lbsI Concrete Data Added Force Req'd = 0.0 lbs OK f`' Psi= 3,000.0 3,000.0 ....for 1.5:1 Stability = 0.0 lbs OK Fy psi= 60,000.0 60,000.0 I Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 I Wind,W 1.600 Seismic,E 1.000 I I IFroelich Engineers Project Title: Engineer: Paa iqoffabf 118 Project Descr: FROELICH CNAItiCtRsf -_ _ a ____.._..._ _._____ .. _ _ _--- Primed 20 AUG`'8 I. 8.47AM I Cantilevered veret� Retain in Fie=ciUsers1poyerctielsit4-TR-18E7WIWA-11/ -41. ■ ENERCALC.INC,100-2014, Cd:8,14.8.1 6,VerL14.0:16 Lic.#: KW-06002304 Licensee : FROELICH CONSULTING ENGINEERS Description: Garage Ret Wall-No Seismic Footing Dimensions&Strengths ; Footing Design Results Toe Width = 2.50 ft Toe Heel Heel Width = 5..5Q Factored Pressure = 2,944 388 psf I Total Footing Width = 8.00 Mu':Upward = 8,367 0 ft-lb Footing Thickness = 16.00 in Mu':Downward = 1,163 0 ft-lb KeyWidth Mu: Design - 7,204 17,687 ft-lb = 0.00 in Actual 1-WayShear = 22.31 52.45 psi I Key Depth = 0.00 in Allow 1-Way hear = 82.16 82.16 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #6 @ 6.00 in fc = 3,000fisi Fy = 60,000 psi Heel Reinforcing = #6 @ 12.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Speed I Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ 8tm.= 3.00 in Toe: #4@ 9.00 in,#5@ 14.00 in,#6@ 19.75 in,#7@ 26.75 in,#8@ 35.25 in,#9@ 44 Heel: #4@ 6.25 in,#5@ 9.50 in,#6@ 13.50 in,#7@ 18.25 in,#8@ 24.00 in,#9@ 30. Key: No key defined I Summary of Overturning&Resisting Forces&Moments OVERTURNING ....RESISTING Force Distance Moment Force Distance Moment I Item lbs ft ft-lb lbs ft ft-lb Heel Active Pressure = 2,882.2 4.28 12,329.2 Soil Over Heel = 6,114.2 5.58 34,137.4 Surcharge over Heel = Sloped Soil Over Heel = IToe Active Pressure _ -81.7 0.78 -63.5 Surcharge Over Heel Surcharge Over Toe Adjacent Footing Load Adjacent Footing Load = Axial Dead Load on Stem = ' 500.0 2.83 1,416.7 IAdded Lateral Load = 700.0 6.33 4,433.3 "Axial Live Load on Stem = 1,100.0 2.83 3,116.7 Load @ Stern Above Soil = Soil Over Toe = 275.0 1.25 343.8 Surcharge Over Toe = Stem Weight(s) = 1,150.0 2.83 3,258.3 _ Earth @ Stem Transitions =I Total3,500.5 O.T.M. 16,699.0 Footing Weight = 1,600.0 4.00 6,400.0 Resisting/Overturning Ratio = 2.73 Key Weight = Vertical Loads used for Soil Pressure= 10,739.2 lbs Veit Component = I Total= 9,639.2 lbs R.M.= 45,556.2 •Axial live load NOT included in total displayed,or used for overturning resistance,but is included for soil pressure calculation. I I I I I I I Page 113 of 118 I I I 8.in Conc w/#5 @ 6.in ofc I . it 1 3t4 s ' I ,ii , j' 4I • ♦, 11'-6" 11'-6" I •i •i! I (' 1 `I 8.in Conc w!#6 @ 6.in a/c ' 41,4 114ys"a� 2 1!2" 2,-0r xt::,,,-4tr, gingRestraint V V l'-4* #6@fi.in _ A I @Toe Designer select I d #6@12 hariz.reinf.;•* 2-6 is-,e 5'-6" PP- @ Heel s EV-0" 1 I I I Page 114 of 118 i 1 i DL=500., LL= 1100.#, Ecc=O.in 1V 1 1 i 1 70.ps ling Restraint er Pp=733.33# 3500.5# 312.75psf 2372.psf 1 I Froelich Engineers Project Title: Engineer: Pr Project Descr: Page li o of 118 FROELICH ENpINEERSt _ ___.. _..______._._. __ PflMe°.29 AUG 29 4 9.StAA.i e> I X r+ R tr Ill �l -Wit=Cws vr> ► n4 -111PMsca PS Lic. #: KW-06002304 CALC,II C 19$3"014 ttuid�l' 81$V8r•.14$16 Licensee : FROELICH CONSULTING ENGINEERS Description: Garage Ret Wall-WI Seismic Criteria Soil Data Calculations per ACI 318-11, ACI 530-11,IBC 2012, Retained Height = 11.50 ft Allow Soil Bearing = 3,330.0 psf CBC 2013,ASCE 7-10 Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Slope Behind Wall = 0.00:1 Heel Active Pressure 35.0 psftft Height of Soil over Toe - 12.00 in Toe Active Pressure = 30.0 psf/ft Water height over heel = 0,0 ft Passive Pressure = 330.0 psf/ft Vertical component of active Soil Density,Heel • = 110.00 pcf Lateral soil pressure options: Soil Density,Toe = 110.00 pcf NOT USED for Soil Pressure. Friction Coeff btwn Ftg&Soil = 0.500 NOT USED for Sliding Resistance, I NOT USED for Overturning Resistance. Soil height to ignore S for passive pressure = 12.00 in Surcharge Loads Lateral Load Applied to Stem Adjacent Footing Load Surcharge Over Heel 0.0 psf Lateral Load = 85.0 plf Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top 10.00 ft Footing Width 0.00 ft Surcharge Over Toe 0.0 psf ...Height to Bottom 0.00 ft Eccentricity - 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stern Footing Type Line Load 1 Axial Dead Load = 500.0 lbs Base Above/Below Soil - - at Back of Wall 0.0 ft Axial Live Load = 0.0 lbs Wind on Exposed Stem = 0.0 psf Axial Load Eccentricity = 0.0 in Poisson's Ratio = 0.300 I Design Summary Stem Construction Top Stem 2nd Wall StabilityStem OK Stem OK Overturning Ratios = 2.58 OK Design Height Above Ftg ft= 2.00 0.00 Wall Material Above"Hi' = Concrete Concrete Sliding = 1.52 OK Thickness in= 8.00 8.00 Slab Resists All Sliding! Rebar Size # 5 # 6 Total Bearing Load = 9,639 lbs Rebar Spacing in= 6.00 6.00 ...resultant ecc, = 13.26 in Rebar Placed at = Edge Edge Soi!Pressure @Toe = 2,203 psf OK Design Data ____.-_ __ Soil Pressure @ Hee! = 207 psf OK �lFB+fa/Fa 0.704 s.s�e Allowable = 3,330 psf Total Force @ Section lbs= 3,207.0 4,529.0 Soil Pressure Less Than Allowable Moment....Actual ft-I= 10,722.2 18,436.8 I ACI Factored @ Toe 2,644 psf = Moment Allowable ft.-1=, 15,222.0 18,848.3 ACI Factored @ Heel -248 psf Shear.....Actual psi= 48.7 74.7 Footing Shear @ Toe = 19.5 psi OK Shear Allowable psi= 75.0 82.2 Footing Shear @ Heel = 52.5 psi OK Wall Weight psf= 100.0 100.0 Allowable = 62.2 psi Rebar Depth 'd' in= 6.19 5.63 Sliding Calcs Slab Resists All Sliding! Lap splice if above in= 16.48 25.07 Lateral Sliding Force = 3,650.5 lbs Lap splice if below in= 16.48 4.03 less 100%Passive Force = 733.3 lbs Hook embed into footing in= 16.48 4.03 less 100%Friction Force = - 4.819.8 IllsConcrete Data Added Force Req'd = 0.0 lbs OK fc psi= 2,500.0 3,000.0 ....for 1.5:1 Stability = 0.0 lbs OK Fy psi= 60,000.0 60,000.0 Load Factors Dead Load 1.200 Live Load 1.600 Earth,H 1.600 I Wind,W 1.600 Seismic,E 1.000 I I I Froelich Engineers Project Title: Engineer: Proect ID: Aq Proect Descr: Page 1116 of 118 I FROELICH ENGIN EENHI --_- - Pnr a 20 AUG 2014,3:Sdd11 Cantilevered R*taming Walt -,, a� sVs+attsc1a i Lic. #. KW-06002304 M ' 'i 1991-?014,81414634.840 0-14.85 Licensee: FROELICH CONSULTING ENGINEERS Description: Garage Ret Wall-WI Seismic IIFooting Dimensions&Strengths Footing Design Results Toe Width = 2.50 ft Toe Heel Heel Width = 5.50 Factored Pressure = 2,644 248 psf I Total Footing Width = 8,00 Mu':Upward 7,482 0 ft-lb Footing Thickness 16.00 in Mu':Downward 1,163 0 ftIb Key Width -= 0.00 in Mu: Design = 6,320 18,437 ft-lb Key Depth = 0.00 in Actual 1-Way Shear = 19.54 52.45 psi I Key Distance from Toe = 0 00 ft Allow 1-Way Shear = 82.16 82.16 psi Toe Reinforcing = #6 @ 6.00 in Pc = 3,000 psi Fy = 60,000 psi Heel Reinforcing = #6 @ 12.00 in Footing Concrete Density = 150.00 pd Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: #4@ 9.00 in,#5@ 14.00 in,#6@ 19.75 in,#7@ 26.75 in,#8@ 35.25 in,#9@ 44 Heel: #4@ 6.00 in,#5@ 9.25 in,#6@ 13.00 in,#7@ 17.50 in,#B@ 23.00 in,#9@ 29. Key: No key defined ISummary of Overturning&Resisting Forces&Moments OVERTURNING RESISTING I Force Distance Moment Force Distance Moment Item lbs ft ft-lb lbs ft ft-lb Heel Active Pressure = 2,882.2 4.28 12,329.2 Soil Over Heel = 6,114.2 5.58 34,137,4 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure _ -81.7 0.78 -63.5 Surcharge Over Heel Surcharge Over Toe Adjacent Footing Load Adjacent Footing Load = Axial Dead Load on Stem = 500.0 2.83 1,416.7 Added Lateral Load = 850"0 6.33 5,383.3 *Axial Live Load on Stem = I Load @ Stem Above Soil = Soil Over Toe _ 275.0 1.25 343.8 Surcharge Over Toe Stem Weight(s) = 1,150.0 2.83 3,258.3 Total = 3,650.5 O.T.M. = 17.649 0 Earth @ Stem Transitions = Footing Weight 1,600.0 4.00 6,400.0 Resisting/Overturning Ratio 2.58 Key Weight Vertical Loads used for Soil Pressure= 9,639.2 lbs Vert,Component = I Total= 9,639.2 lbs R.M.= 45,556.2 Axial live load NOT included in total displayed,or used for overturning resistance,but is included for soil pressure calculation, I I I I I Page 117 of 118 I 1 I8.in Conc w/#5 @ 6.in o/c „... „.„ ;;;er*Fv/.:" .4 07 ,-, ,,,-.= .,-•• •,m---, —, , .. ____ _, 4 -: ,,•.„,,..:,-.:.31;;;,,,... ....:•/„.*, _-,:Na..,,,,,-- - 4 4 I sH I i 1 , toi I I 1 1 11 •,! I t i •,, •' I 1; • ; 9'-6" • I 11'-6" II *I ;1 I it 1 el , I i o' I 8.in Conc w/#6 @ 6.in o/c —44 I , Z-0" I 1'O", 2 112" •..4/, ,,--,,,,,47-ro s:49:4 2" aiding Restraint •, A I IlL ----------"I-• I 1%4" #6@6.in I @Toe Designer select -6 I #812120 hart.mint-4 2 5'-6 ' @ Heel ••,...• " O.- I I I 1 I Page 118 of 118 I I I IDL=500., LL=0.#, Ecc=O,in I I I I i I 1 1 85.ps I I ing Restraint Pp=733.33# psf II 2203.3psf I I I