Report FEB 5 2018
COPY e ,
BLgL[Jlt _ ~a
STRUCTURAL CALCULATIONS
for
Voluntary Seismic Strengthening
Oregon Business Park 1 - Bldg 3
16300-16330 SW 72nd Avenue
Tigard, Oregon
for
Pacific Realty Associates, LP
15350 SW Sequoia Parkway, Sutie 300
Portland, Oregon 97224
by
MHP, Inc.
Structural Engineers
Long Beach, California P OF
G1tUZ* 7
4SPE
January 3, 2018 s "
MHP JN: 17-0192-00 ao, . v
1 c
` rN D 0
EXPIRATION DATE: 12-31-18
AM
STRUCTURAL ENGINEERS
CALCULATION SHEET
MI la = 8,ECe Voluntary Seismic Strengthening r -_ Jan-18 JOB NO 17-0192
STRUCTURAL ENGENEE S Oregon Business Park 1 - Bldg 3
CALCULATION SHEET
;AMU-,r Voluntary Seismic Strengthening 9 9 DATE Jan-18 rg Na 17-0192
Sr±2 t.(.;U p.ni. €.r _:Nr:xs Oregon Business Park 9 - Bldg 3 By
Scope of Work
This project is a voluntary seismic strengthening of the wall anchorage systems to reduce the potential for structural
damage in an earthquake.The retrofit wall anchorage systems are designed to meet the Basic Performance Objective
of Existing Buildings(BPOE)per the requirements of ASCE 41-13 Seismic Evaluation and Retrofit of Existing Buildings.
The BPOE is defined as a Life Safety performance level during a BSE-1E seismic event[the BSE-1E is defined as an
earthquake hazard with a probability of exceedance of 20 percent in a 50-year exposure period—alternately defined
as having an average return period of 225-years]and a a Collapse prevention performance level during a BSE-2E
seismic event[the BSE-2E is defined as an earthquake hazard with a probability of exceedance of 5 percent in a 50-
year exposure period—alternately defined as having an average return period of 975-years]
1(3/2018 Design Maps Summary Report ri.
Design Maps Summary Report
User-Specified Input
Building Code Reference Document ASCE 41-13 Retrofit Standard, BSE-1E
(whu.il ufiiizes USGS hazard data avarlaile in 2008)
Site Coordinates 45.40306°N, 122.74696°W
Site Soil Classification Site Class D - "Stiff Soil"
Beaverton : ,
• 1
0i - :
Tgaric ,g
Lake Oswego
9 '
.¢ ;,;
She: 6, r
Sherwood3i r_,___,,,,,,_.„7,,,......,,„ ,,,,,....tt
.T
-:g __ „ir Oregon City
k
¢whprn ”
N
USGS-Provided Output
Ss,zo/sa 0.291 g SXS,BSE-1E 0.456 g
S1,x0150 0.109 g SX1,BSE-1E 0.259 g
.io, zon St.:et:..ern V :cc S,e....d-r1
Although this ir.forr-mati rr is a product of the U.S Go oc=La, Sig--vie , •<e crovrcie no i a -ant,• expresser:of Irrrpi.ed, as to the
accuracy of the date coriterr-ed t_:regi, rrss tool€s not .substitute for technical sue e-t-mat`_er knc'v.iedge.
https://earthquake.usgs.gov/cnl/designmaps/us/summary.php?temp!ate=minimal&latitude=45.403056&longitude=-122.746955&siteclass=3&riskcate9... 1/1
1/3/2018
Design Maps Summary Report
is.USGS Design Maps Summary Report
User-Specified Input
Building Code Reference Document ASCE 41-13 Retrofit Standard, BSE-2E
USGS hazard data available in 2008)
Site Coordinates 45.40306°N, /22.74696°W
_ Site Soil Classification Site Class D_
Beaverton
10
Ti garcti,.
Lake Osiivego
99 -
. .1a tin
Sherwood
OregonCj
*1:
. 441
- brci
USGS-Provided Output
Ss,510 0.703 g Sxs,.135E-2E 0.870 g
0.306 g Sx1,BSE-2E 0.548 g
Ve' Lt.: J-11
Althougi'i this
n' ,r is a iptiodLict nt toe ti,S. Czeoingical pr:Ivide i.o eiicnii-esseri irnol.ed, tis tsie
accuracy of the data cants-.=led thete —h,s tool is rot si,ost for kite.vviriagei
https://earthquake.usgs.gov/cn1/designmapslusIsummary.php?temptate=minimal&latitutie=45.403056&longitude.-122.746955&siteclass=38,riskcateg... 1/1
CALCULATION SHEET
ml a Oregon Business Park 1-Bldg 3 Jan-13 .06 N0: 17-0192
ST,WC?VEAL f`,(iiiNF EkL
Wall Anchorage N-S 2.1
Wall Anchorage N-S
Basic Performance Objective of Existing Buildings(BPOE)perASCE41-13
dwall= 5.5 in
wwa;i= 150 pcf
hv,e= 12 ft
Wo= 825 plf
n4, 0 ft
Lf= 139.5 ft
(Minimum Diaphragm Length)
k,=1+Lf/100= 2.395 (ASCE 41-13,Eq.7-11)
use ka= 2 (k,max=2)
Fo,roof
Za= 24 ft
(Height of Anchorage)
kh=1/3(1+2*(za/h,.))= 1 (ASCE 41-13,Eq.7-12)
BSE-11E hazard level(Life Safety)
Sxs= 0.46 g (See Attached USGS Report)
X= 1.30 (ASCE 41-13,Tbl 7-2) h„= 24 ft
Fp=0.4 SGS kakh X Wp= 395 plf (ASCE 41-13,Eq.7-9)
F0,n,;,,=0.2 k3 X Wp= 429 plf (ASCE 41-13,Eq.7-10)
BSE-2E hazard level(Collapse Prevention)
Sxs= 0.87 g (See Attached USGS Report)
X= 1.00 (ASCE 41-13,Tbl 7-2)
Fp=0.4 Sos kakh X Wp= 574 pif (ASCE 41-13,Eq.7-9)
Fa min=0.2 ka X Wp= 330 plf (ASCE 41-13,Eq.7-10)
Fp max= 574 plf
J= 2 (ASCE 41-13,Section 7.5.2.1.2)
C1C21 (ASCE 41-13,Tbl 7-3)
Anchor spacing(s)= 8 ft
Our=(Fpmax*S)/C1C21= 2297 Ibf (ASCE 41-13,Eq.7-35)
Holdown (Member t): HCu2-SD52.5(_"?
Number of Holdowns:
Kf= 1.40 (Strength Conversion Factor-ESR-2330)
FHoldown= 2 x 3075 Ibf= 6150 lbf (Simpson Strong Tie)
Qa=FhoIdown*Kf = 8610 Ibf Qa > QUO O.K. (ASCE 41-13,Eq. 7-37)
DCR= 0.27 (Demand Capactiy Ratio)
Uses HDU2-5052.5 EA Side at 8 ft O.C.
Anchor Embedment:
.1= 1
QUF=(Fp max*s)/C,C2 3= 4594 Ibf .= 1 (Ultimate Strength)
Anchor Diameter= 5/8 in Steel Strength(Nsa)= 16385 lbf
(Profis)
Min Embedment= 4 in (Profis) Bond Strength(Nag)= 10128 lbf <---Governs (Profis)
Breakout Strength(Ncbg)= 10271 lbf (Profis)
Q . > Quo O.K.
Use: 5/8"Dia.with HIT-RE 500 V3 Epoxy J DCR= 0.45
Min Embedment 4" (See attached Profis Calcuattion for Threaded Rod in Concrete)
•
1111.1111116.111r1111
www.hiltl.us
Profis Anchor 2.7.3
Cornpnny:
Specifier. Page: 1
Address: Project:
Phone t Fax Sub-Project I Pos.No.: 0ei
Mail Date: 1/3/2018 '
Specifler's comments:
1 Input data
w
Anchor type and diameter: HIT-RE 500 V3+HAS 5/8
Effective embedment depth: h
..».„r<
etl.n
aol=4.000 in.(hamu
=-in.) ,,-..,'..,a
Material: 5.8
Evaluation Service Report: ESR-3814
Issued I Valid: 1/1/201711/1/2019
Proof: Design method ACI 318-14/Chem
Stand-off installation: eb=0.000 in.(no stand-off);t=0.500 in.
Anchor plate: lx x ly x t=4.000 in.x 10.000 in.x 0.500 in.;(Recommended plate thickness:not calculated
Profile: no profile
Base material: cracked concrete,2500,f0'=2500 psi;h=5.500 in.,Temp.short/long:32/32°F
Installation: hammer drilled hole,Installation condition:Dry
Reinforcement: tension:condition 8,shear:condition B;no supplemental splitting reinforcement present
edge reinforcement:none or<No.4 bar
Geometry[in.]&Loading[lb,In.lb]
tlZ
'if
t
tl
1 ,
tl h
5
k
a .
, X44:
4, i� d
• a
\X
Input data and resu,ts must be checkea or egree-nent with the extsbng oondiilons and forpiaustbl tty+
PROFIS Anchor(c)2063-2009 H Ili AG,Ft.-9494 Schoen Hi 0 is a registered s rademark of Hilt AG,Sc'aan
www-hllti.us Pyrofis Anchor 2.7.3
Company:
,..:
Specifier, Page: 2
Address: Project:
Phone I Fax: Sub-Project I Pos.No.:
Date:
E-Mail: 1!3!2018
2 Load case/Resulting anchor forces
Load case:Design loads
Anchor reactions[Ib] 2
Tension force:(+Tension,-Compression)
i
Anchor Tension force Shear force Shear force x Shear force y
1 2297 0 O_.._ ,--. 0
2 2297 0 -
max.concrete compressive strain: -[%o] Tension "x
max.concrete compressive stress: -(psi]
resulting tension force inx!
( y)=(0.40010.400): 4594 Pb]
resulting compression force in(x/y)=(0.000/0.000):0[Ib]
3 Tension load
Load N,., Capacity+N,[lb] Utilization AN=N„0/4 Nn Status
Steel Strength* 2297
10650 _
22 ...
OK
Bond Strength"' 4594 6583 70
OK
Sustained Tension Load Bond Strength' N/A N/A N/A
N/A
Concrete Breakout Strength"* 4594 6676 69
OK
*anchor having the highest loading '"anchor group(anchors in tension)
3.1 Steel Strength
N6,, =ESR value refer to ICC-ES ESR-3814
4) Nsa'-Nue ACI 318-14 Table 17.3.1.1
Variables
._A ax in
0.23 72500
Calculations
Nsa[lb]
16385
Results
Nsa
85 t aeaai,_.. ,_.._ ti) [lb] ....... Nva Ib
4 10650 [ ]
16385[lb]
63 ..
jj 2297
JA0
Input data and results must be checked for agreement with the existingd "
PROFIS Anci or c} legislated
Trademark a ar of Hit.Av
i2Q33 ZOCiB Kilt Au �L-949-0 Schwa:: Ndti is a ragislered of Hi.:AG,Schwan
3
www.hiiti.us Profis Anchor 2.7.3
Company: Pate: 3
Specifier: Project:
Address:
Phone! Fax: Sub-Project I Pos.No.: ?
E-Mail: Date: 1/3/2018 %^
3.2 Bond Strength
ed,
Na
ACI 3'8-14 Eq. 17.4.5,1.b)
Nay \((Ataaa)W,:cava W„cz.NaV n;°41 Wkst`1b°
41) Nag 'N°a AC!3'8-14 Tabie 17.3.1.1
Ara° =see AC!318-14,Section 17.4.5.1,Fig.R 17.4.5.1(b) •
Ahab =(2 cNay.2 ACI 318-14 Eq.(17.4.5.1c)
um., = 10 d,Nit airt
d0 ACI 318-14 Eq.(17.4.5.1d)
( 1
W„.Na= 1 + e <_1.0 ACI 318-14 Eq.(17.4.5.3)
o
Pia
W od,Na=0.7+0.3 (•24'11)<1.0 ACI 318-14 Eq.(17.4.5.4b)
Craa
cb,Na=MAX E
W a_ta'n,'c.-14-2)5 1.0
��& AGI 318-14 Eq.(17.4,5.5b)
Nue =/,a" t-kc'n "da•hof ACI 318-14 Eq.(17.4.5.2)
Variables
._.. T k c•nor[psi] do fin.] [Psi]
. _.. __,._ ..,.._.. 'er[in.) c°mi Hn l T k Psa
221 0 0.625 "" 4.000 ..6 000.,..
Y` 12660
[in.]
0.000 _ 0.000 8.731 ...._ 1.000 .
Calculations F
cNa fin. A�aa[il2] ANa2[in 21 W ad.Na
8.819 352.14 _.......,_. 311.09 _ 0.904
.,,
W Ubi,NC W ec2 Na ;r ep h a Nba[Ibj_.-.
1.000 1.000 �.... 1.000 9896 �u--
Results
Nag[lb] ,0 o„ .....,..-.. IP Nag[I5) Nua[Ib]
...... 10128 1 ,dt
"6583 ......... ... ....4594 r.,:.
+ GI,o
3.3 Concrete Breakout Strength
Nog =( )tir ec,N W ee,N Ili o.0 W tu,N Nb ACI 318-14 Eq.(17.4.2.1b)
iV Nth,>_N0 AC!318-14 Table 17.3.1.1
AN, see ACI 318-14,Section 17.4.2.1,Fig,R 17.4.2,1(6)
ANco =9 hat ACt 318-14 Eq.(17.4.2.1c)
1
2 e AC!318-14 Eq.
Woc,N = 1 +3hN)S1A (17.4.2.4)
er
W ed,N =0.7+0.3 (C 5 1,0
�- €) AC!318-14 Eq.(17.4.2.5b)
yr op.N =MAX( !t44h 1 hot)_s'a 1.0 ACt 318-14 Eq.(17,4.2.7b)
C„.., ae
Nb =ke i.° {c h i5 ACI 318-14 Eq.(17.4.2.2a)
Variables
__...
he,[in.) ect 4[in] ... e22N int a.rnin 1
[ 0to
4.000- 0.000 0000 6.000., ..1000
cee[in.) k X a ff[psi) ., .._..w
8.731 17 1.000 2500
Calculations
AN‘[an 21 ANw fin I "tial ba„ aV' u �1r a ti tV aNb 1141217.50 144.00 - 1.000 1.000 1.000 1.0011... 0800._
Results �7
No,[Ia1.- •„o„otdiu ill, NCb9 Llb3 Nua[ib]
Lgati .,.1594_„„............:.
ros
(, U
pug data and results must be checked For agreement with the ex sEl.ny eonrnttans and for plausibility!
PROFS Anchor(c)2003.2009'bib AG,FL-9494 Schwan hdd ks a teg:siereo Trademark of HIM AG,Schwan
CALCULATION SHEET
mia „",:,,, Oregon Business Park 1-Bldg 3 m,,: Jan-18 17-0192
srRoc-Uazt eNcir-aexi Wal;Anchorage E-W sr:
e-: 2.5
Wall Anchorage E-W
Basic Performance Objective of Existing Buildings(BPOE)per ASCE41-13
d.,,,,3!= 5.5 in
ww,5= 150 pcf A
hvib= 12 ft
Wp= 825 pif )r= 0 ft
Lr= 516.25 ft (Minimum Diaphragm Length)
k,=1+L1/100= 6.1625 "—" ""
(ASCE 41-13,Eq.7-11)
use k,= 2 (k,max=2) `,,,o.,
z,= 24 ft (Height of Anchorage)
kh=1/3(1+2*(z,/hn))= 1 (ASCE 41-13,Eq.7-12)
BSE-1E hazard level(Life Safetyy)
5,,= 0.46 g (See Attached USGS Report)
X= 1.30 (ASCE 41-13,Tbi 7-2) hn= 24 ft
Fp=0.4 Sos k,k5 X Wp= 395 pIf (ASCE 41-13,Eq.7-9)
Fp,min=0.2 k;X VJp= 429 plf (ASCE 41-13,Eq.7-10)
BSE-2E hazard level(Collapse Prevention
5,,= 0.87 g (See Attached USGS Report)
X= 1.00 (ASCE 41-13,Tb)7-2)
F5=0.4 Sos k,k5 X VV,= 574 pIf (ASCE 41-13,Eq.7-9)
F5,m5n=0.2 k,X Wp= 330 pIf (ASCE 41-13,Eq.7-10)
Fpr„,= 574 plf
A
J= 2 (ASCE 41-13,Section 7.5.2.1.2)
C1C2= 1 (ASCE 41-13,Tb)7-3)
Anchor spacing(s)= 6 ft
QUF=(Fp rr.,*S)/C1C2 J= 1723 Ibf (ASCE 41-13,Eq.7-35)
Holdown (Member t): HDUS-5D52.5(3")
Number of Holdowns: 1
Kf= 1.40 (Strength Conversion Factor-IAPMO ER-0130)
FHoldown= 1 x 5645 Ibf= 5645 lbf (Simpson Strong Tie)
Qct=Fho down*K;= 7903 lbf Ctct > QuF O.K. (ASCE 41-13,Eq. 7-37)
[ DCR= 0.22 (Demand Capactiy Ratio)
(Use: HDU5-5052.5 at 6 ft O.C.
Anchor Embedment:
J= 1
Our=(F5,,,,*s)/C1C2 J= 3445.2 Ibf ¢)= 1 (Ultimate Strength)
Anchor Diameter= 5/8 in Steel Strength(Nsa)= 16385 Ibf (Profit)
Min Embedment= 4 in (Profit) Bond Strength(Nag)= 7517 lbf (Profit)
Breakout Strength(Ncbg)= 6800 lbf <---Qcl (Profit)
Oct. > QuF O.K.
Use: 5/8"Dia.with HIT-RE 500 V3 Epoxy DCR= 0.51
Min Embedment 4” (See attached Profit Calcuaition for Threaded Rod in Concrete)
11111111111.111111111
Profis Anchor 2.7.3
Company Page.
Specifier. Project
Adc.fress Sub-Project 1 Pos
Phone 1 Fax, Date' 1/3/2018
Specifier's comments:
1 Input data
impoi-0.0fari
Anchor type and diameter: HIT-RE 500 V3+HAS 5/8 •
Elective embedment depth: hc,f,„ct=4.000 in.(h.r., ;t=-in,)
Materia:: 5.8
Evaluation Service Report: ESR-3814
Issued I Valid: 1/1/2017 I 1/1/2019
Proof: Design method ACI 318-14/Chem
Stand-off installation: -(Recommended plate thickness:not calculated)
Profile: no profile
Base material: cracked concrete,2500,f0 =2500 psi;h=5.500 in.,Temp.short/long:32/32°F
Installation: hammer drilled hole,Installation condition:Dry
Reinforcement: tension:condition 8,shear:condition B;no supplemental splitting reinforcement present
edge reinforcement;none or<No,4 bar
Geometry[in.]&Loading[ib,in.lb]
0
04)
,Y-
zo
.rne
WO I
a
, X
: pu
dots end resultsmust be checicad for agreement with the aksting 015 and for DISE181t3tiliy,
PnROFISAncho
r(c)2003-2000 Hili AG,FL-0494 Schwan Hitt is s rewaterec 1,acarnark of AG,Schaen
•
www.niltl.us Profis Anchor 2.7.3
Company:
Page
2
Specifier: Project.
Address: Sub-Project I Pos.No:
Date:
Phone I Fax: 1/3/2018
E-Mail: I
2 Load case/Resulting anchor forces
Load case:Design loads
Anchor reactions[lb]
Tension force:(i Tension,-Compression)
Anchor Tension force Shear force Shear force x Shear force y
1 3445 0 0
...._.....
0
max.concrete compressive strain: -[�oaj
max.concrete compressive stress: -[Psi]
resulting tension force in(x/y)=(0.000/0.000): 0[lb]
resulting compression force in(x/y)=(0.00010.000):0[Ibj
3 Tension load
Load N„a fib] Capacity+N„,[113] Utilization p Nual4 Nn Status
Steel Strength *... 3445 .. ._.......
10650 —33_ _ OK
Bond Strength*" 3445 4886 71 OK
Sustained Tension Load Bond Strength* N/A N/A N/A N/A
Concrete Breakout Strength** 3445 4420 78 OK
"anchor having the highest loading **anchor group(anchors in tension)
3.1 Steel Strength
Nsa =ESR value refer to ICC-ES ESR-3814
ih Nsa z Nue ACI 318-14 Table 17.3.1.1
Variables
As9 y[inz] f [psi)
0.23` 72500
Calculations
Ns8['bj
16385
Results
Nss[lb] N„,fib) N..d[lbj
input data and results must be checked for agreement wit-e the existing condit ors and for plausib Icy m �
PROFIS Anchor I c 12003-2003 Hi=t%AG.FL-9494 Schaa.=. H 10 is a registered Trademark of AG,.Scheer
www.hilti.us Profis Anchor 2.7.3
Company: Page: 3
Specifier: Project:
Address: Sub-Project I Pos. No.:
Phone I Fax: ( Date: 1/3/2018
E-Mail:
3.2 Bond Strength
Axt
Na =(-At)W ea,Na V Nacp: N,, ACI 318-14 Eq.(17.4.5.1a)
Na '-Noa ACI 318-14 Table 17.3.1.1
ANa =see ACI 318-14,Secton 17.4.5.1,Fia.R 17.4.5.1(b)
ANao =(2 c5,)2 ACI 318-14 Eq.(17.4.5.1c)
cm, =10 darg1f��"" AC!318-14 Eq.(17.4.5.1d)
1'900
//
ec.Na= ■ 1 + r€)<1.0 ACI 318-14 Eq.(17.4.5.3)
` cNa JJJ
'V ed,Na=0.7+0.3 (5‘72-1`)_<1.0 ACI 318-14 Eq. (17.4.5.4b)
COM
W ep,N,=MAX(-'.mim c8al 5-1.0
'r•�e, cac ACI 318-14 Eq.(17.4.5.5b)
Nba =I.a'a,,'n 'd,'h,, ACI 318-14 Eq.(17.4.5,2)
Variables
t k C ncr[psi] da[in] her Dn.] ea rn r i� T k a f)S]
2210 _ ..:_...._ 0.625 4.000 260x.....,
e,,N[in] ea,N[in l cac[In.] ),a
0.000
0.000 8..,731
1,000
Calculations t
......._.;.:.. cNa[in.] Apia lir 2] ANao[in 2] 'Etpd Na
8.819 26'1.37 311.09 0.904
W ac2,Na W.cp;Nana t`b]
1,000 1.000 1.000 9896
Results
Nttilb] 11,004 .:: fib)N ,,[Ib]
0 4886 34475 -
3.3 Concrete Breakout Strength
Nth = etl,N c,N V cp.N a(Aram)iJ 'V t N: AC!318-14 Eq.(17.4.2,1a)
I
4, Ncb a Nua ACI 318-14 Table 17.3.1.1
ANc see ACI 318-14,Section 17.4.2.1,Fig.R 17.4.2.1(b)
ANco =9 her ACI 318-14 Eq.(17.4.2.1c)
W ec,N = 1 2 etxi <1.0 ACE 318-14 Eq.(17.4.2.4)
3 h t
Gi
W ed,N =0.7+0,3 1,5hef)5 1.0 ACE 318-14 Eq.(17.4.2,5b)
W cp,N =MAX(E CQ'r`1 !: t)�1.0 ACI 318-14 Eq.(17.4.2.7b)
� ne iac
Nb =k,X a �itc her' ACE 318-14 Eq.(17.4.2.2a)
Variables
her(in.] er,N[in.) e2 Nlin] cawT,,[in] e N
4.000
0.000 0.000 6.000 _..-.� 1,000
ac
[in.] Is, h afc[psi]
8.731 17
1.000 .-_ 2500 -...
Calculations
ANo 2 2 N[in A cnItn ] y'_�? sez u .,_ „.._ iV ea ti V c 3 A[Ib]...__.._.........
144.00 144.00 1.000 1.000 1.000 1.000..... 6800
Results
Nth[lb]. 4•,rnrr,te. Ncb[Ib] N,,, bi.......
r04420 3445
iftJ
Input data and results must be necked for agreement w.ih hs existing co ddions and(or ptausib li y'
PROFIS Anchor(c)2003-2M,9 Hill AG,IL-9454 Sc^Bar, Hi,:s a registered Trademark o.Hilh AG,Schaan
CALCULATION SHEET
miOregon Business Park 1-Bldg 3 ,ATE Jan-18 17-0192
rlapnu brac;lr+E.(A[ N-S Subdiaphragm Analysis 3.1
N-S Subdiaphragm Analysis
F„,„= 574 plf
J= 2 (ASCE 41-13,Section 7.5.2.1.2)
C1C2= (ASCE 41-13,Tbl 7-3)
Continuity Tie Spacing(s)= 24 ft
Subdiaphragm Depth(d)= 24.58 ft
Aspect Ratio(s/d)= 0.976 OK (2.5 max)
C2uF=(Fa,,,,x*s/2)/dC1C2 J= 140 plf (ASCE 41-13,Eq.7-35)
Existing Plwyood Thickness and Nailing Pattern(Boundary&Cont.Edges/Other Edges/Field): _=/32"Ply w/8d @ 6/6/12(2u)
Nominal Unit Shear Capacity(v)= 540 plf (NDS Table 4.2A)
Cd= 1 (Duration Factor)
4L=v/Cd= 540 plf
Use 24.58 ft tong x 24 ft wide subdiaphragm
Qct > QuF O.K.
DCR= 0.26
Continuity Tie
Fp max= 574 plf
J= 2
C1C2= 1
Continuity Tie Spacing(s)= 24 ft (effective spacing)
Qur=(Fp m,x*s)/C1C2 J= 6890 Ibf Continuity Tie Force
Holdown (Member t): HDU5-SDS2.5(3")
Number of Holdowns: 2
Nf= 1.40 (Strength Conversion Factor-ESR-2330)
FHaldown= 2 x 5645 Ibf= 11290 Ibf (Simpson Strong Tie)
Oa=Fholdown*K1= 15806 Ibf Qcc > QuF O.K. (ASCE 41-13,Eq. 7-37)
DCR=0.436
'Use: HDU5-SDS2.5 EA Side J
` o ( o,-t - 0 ,C°
::UCULATION SHEET
Mi ',UM,' Oregon Business Park 1-Bldg 3 Dr.?E: Jan-18 17-0192
STRUCTUAM. ENGINE E A$ E-W Subdiaphragm Analysis BY: S',rr- 3.2
E-W Subdiaphragm Analysis
Fo max= 574 plf
J= 2 (ASCE 41-13,Section 7.5.2.1.2)
C1C2= 1 (ASCE 41-13,Tbl 7-3)
Continuity Tie Spacing(s)= 25 ft
Subdiaphragm Depth(d)= 11.5 ft
Aspect Ratio(s/d)= 2.174 OK (2.5 max)
QuF=(Fa„, *s/2)/dCiC2.1= 312 plf (ASCE 41-13,Eq.7-35)
Existing Plwyood Thickness and Nailing Pattern(Boundary&Cont.Edges/Other Edges/Field): 15/32'Ply w/8d @ 6/6/12(2x)
Nominal Unit Shear Capacity(v)= 540 Of (NDS Table 4.2A)
Cd= 1 (Duration Factor)
Clct=v/Cd= 540 plf
'Use: 11.5 ft long, x 25 ft wide subdiaphragm I
Qa > QuF O.K.
DCR= 0.578
Continuity Tie
Fiamax= 574 plf
J= 2
C1C2= 1
Continuity Tie Spacing(s)= 25 ft (effective spacing)
QUF=(Fp ma.`s)/C1C2 J= 7178 lbf Continuity Tie Force
Holdown (Member t): HDUS-SDS2.5(3")
Number of Holdowns: 2
Kf= 1.40 (Strength Conversion Factor-ESR-2330)
FHoldown= 2 x 5645 lbf= 11290 lbf (Simpson Strong Tie)
Qct=Fholdown*Kt = 15806 lbf Qct > QUF O.K. (ASCE 41-13,Eq. 7-37)
DCR=0.454
Fuse: HDUS SDS2.5 EA Side
\ (f =tz._ simtscpti .„) 1›,42.-, i. -
1
. . .
Mi a CALCULATION SHEET
Oregon Business Park 1-Bldg 3 on-a; Jan-18 g3oNe: 17-0192
STRUCTL.RA,ENGINEERS Pilaster Anchorage E.. 4.1
Pilaster Anchorage
Basic Performance Objective of Existing Buildings(BPOE)per ASCE41-13
dwa€€= 5,5 in Aa±€a:ger= 1.6666667 ft2
= 150 pcf •
hp€€aster= 21.5 ft
/kWh= 160 ft2 Wr,s€aster= 2687.5 Ibf 1
Wp(Wwall+Wpilaster)= 13688 lbf i
Lr= 516.25 ft (Minimum Diaphragm Length)
ka=1+Lr/100= 6.1625 (ASCE 41-13,Eq.7-11)
use k,= 2 (ka max=2) Wall Elevation i LA,,„)
za=hn= 24 ft (Height of Anchorage)
kh=1/3(1+2*(za/h,))= 1 (ASCE 41-13,Eq.7-12)
BSE-1E hazard level(Life Safety)
Sar= 0.46 g (See Attached USGS Report) 16
X= 1.30 (ASCE 41-13,Tbl 7-2) -4 I.
Fp=0.4 Sos kakh X Wp= 6548 Ibf (ASCE 41-13,Eq.7-9)
Fp,mi„=0.2 ka X Wp= 711E Ihf (ASCE 41-13,Eq.7-10) 10
ELI
r,
BSE-2E hazard level(Collapse Prevention)'
a`
Sar= 0.87 g (See Attached USGS Report) 5.5
Ir
X= 1.00 (ASCE 41-13,Tbl 7-2)
Fp=0.4 Sos kakh X Wa= 9527 ibf (ASCE 41-13,Eq.7-9) Plan View(Pilaster},
Fp,mi„=0.2 ka X Wp= 5475 Ibf (ASCE 41-13,Eq.7-10)
Fr,max= 9527 lbf
J= 1 (ASCE 41-13,Section 7.5.2.1.2)
C2C2= 1 (ASCE 41-13,Tbl 7-3)
QUF=(Fp max)/C1C2 J= 9527 Ibf (ASCE 41-13,Eq.7-35)
act- '''''''' (3"- c> .bias-;;)(Vy')( cak))(2.-) = 5?,,,,i iL
(f / c - " 0.2`f
( 3 1 #1
2I7 oc...
4. 2,2,. (f.sly-, ,,,,k-icit-ri- c6),)v5-sior-i :,-2L612.- — i()°1 173(.1 ij ' 1)
s .
D - ' 21, fc 'Z''-'°''
CALCULATION SHEET
mi a
Crego-•.Busiress Pari 1-Bdg 3 c..: Jan-18 ," 17-0192
„ ,,TUP 1 "r.r,Mels; Pilaster Anchorage r,
<o-[t- 4.2
Pilaster,TUP.1i,,, so : A,.•
-1
Basic Performance Objective of Existing Buildings(BPOE)nen ASCE41-13
1:°3;r
Check Thru Bolt to Existing Walk f t
e-5:,,,,
Ci r= 9527 ibf
A,=tirnl'i'1.5170);',2 x 1,5kaC
Check Concrete Breakout Strength (ACI 318 Sec.17.4.2.1) 1 c.9<1 5h,
het= 5.5 in (embedement depth=wakI thickness)
fc= 2500 psi (existing concrete strength) 6h J
1bsY
k,= 17 (ACI 318 Sec.17.4.2.2a) -. >- - 1 ,..”--_... .r,1Nt
..
9 i
.,= 1 (ACI 318 Sec.17.2.6) 1 h,, i
Nb=1(,),,A\f c)*(he.''5)= 10964 lbf (ACI 318 Sec.17.4.2.2a)
t£
ANcO 9*hef2= 272.25 Int 1.:>t:, I z
if of Bolts/Conn= 1. -
1
tt of Connections(n)= 2 AN,_(ca1+e.+I,5h,,,-)(2 x ;.Sher)
Beam Width= 6.75 in2 is sr,...‹1.5h,,a-a::si<3h..
Holdown CL= 1.25 in
s1= NA
Cal mm= 6 in (minimum side edge distance)
Cat min= 8,25 in (minimum top edge distance)
ANc= 235.13 int
T„,,,. 1.00 (ACI 318 Sec.17.4.2.4) l.sn„ IN
5ra,
Tea.N= 0.92 (ACI 318 Sec.17.4.2.5a,b) 1
9',,N= 1.00 (AC!318 Sec.17.4.2.6) Pi ;
4'cp.N= 1.00 (ACI 318 Sec.17.4.2.7a,b) fs,.
ma
Nrbg=(ANr./ANco)`Irec.NT ed,Ngic,Y'11rp.NN5= 8694 lbf sa: r=fiir a.,r3+.;.% s
t
Ciel per anchor=Orbs= 8694.1 lbf per anchor (
Ci
Ckci per connection,.bNt55*n= 17388 Ibf per connection
Oft ft < Our O.K. g -w++, y 1-.4'.
OCR= 0.55 ( , i
it,"-h,,
•.5h„ s t shy, 1.....
ran
A,„,, ;2x1„Sha,)r(2x 1.51„) F;h„: