Loading...
Report FEB 5 2018 COPY e , BLgL[Jlt _ ~a STRUCTURAL CALCULATIONS for Voluntary Seismic Strengthening Oregon Business Park 1 - Bldg 3 16300-16330 SW 72nd Avenue Tigard, Oregon for Pacific Realty Associates, LP 15350 SW Sequoia Parkway, Sutie 300 Portland, Oregon 97224 by MHP, Inc. Structural Engineers Long Beach, California P OF G1tUZ* 7 4SPE January 3, 2018 s " MHP JN: 17-0192-00 ao, . v 1 c ` rN D 0 EXPIRATION DATE: 12-31-18 AM STRUCTURAL ENGINEERS CALCULATION SHEET MI la = 8,ECe Voluntary Seismic Strengthening r -_ Jan-18 JOB NO 17-0192 STRUCTURAL ENGENEE S Oregon Business Park 1 - Bldg 3 CALCULATION SHEET ;AMU-,r Voluntary Seismic Strengthening 9 9 DATE Jan-18 rg Na 17-0192 Sr±2 t.(.;U p.ni. €.r _:Nr:xs Oregon Business Park 9 - Bldg 3 By Scope of Work This project is a voluntary seismic strengthening of the wall anchorage systems to reduce the potential for structural damage in an earthquake.The retrofit wall anchorage systems are designed to meet the Basic Performance Objective of Existing Buildings(BPOE)per the requirements of ASCE 41-13 Seismic Evaluation and Retrofit of Existing Buildings. The BPOE is defined as a Life Safety performance level during a BSE-1E seismic event[the BSE-1E is defined as an earthquake hazard with a probability of exceedance of 20 percent in a 50-year exposure period—alternately defined as having an average return period of 225-years]and a a Collapse prevention performance level during a BSE-2E seismic event[the BSE-2E is defined as an earthquake hazard with a probability of exceedance of 5 percent in a 50- year exposure period—alternately defined as having an average return period of 975-years] 1(3/2018 Design Maps Summary Report ri. Design Maps Summary Report User-Specified Input Building Code Reference Document ASCE 41-13 Retrofit Standard, BSE-1E (whu.il ufiiizes USGS hazard data avarlaile in 2008) Site Coordinates 45.40306°N, 122.74696°W Site Soil Classification Site Class D - "Stiff Soil" Beaverton : , • 1 0i - : Tgaric ,g Lake Oswego 9 ' .¢ ;,; She: 6, r Sherwood3i r_,___,,,,,,_.„7,,,......,,„ ,,,,,....tt .T -:g __ „ir Oregon City k ¢whprn ” N USGS-Provided Output Ss,zo/sa 0.291 g SXS,BSE-1E 0.456 g S1,x0150 0.109 g SX1,BSE-1E 0.259 g .io, zon St.:et:..ern V :cc S,e....d-r1 Although this ir.forr-mati rr is a product of the U.S Go oc=La, Sig--vie , •<e crovrcie no i a -ant,• expresser:of Irrrpi.ed, as to the accuracy of the date coriterr-ed t_:regi, rrss tool€s not .substitute for technical sue e-t-mat`_er knc'v.iedge. https://earthquake.usgs.gov/cnl/designmaps/us/summary.php?temp!ate=minimal&latitude=45.403056&longitude=-122.746955&siteclass=3&riskcate9... 1/1 1/3/2018 Design Maps Summary Report is.USGS Design Maps Summary Report User-Specified Input Building Code Reference Document ASCE 41-13 Retrofit Standard, BSE-2E USGS hazard data available in 2008) Site Coordinates 45.40306°N, /22.74696°W _ Site Soil Classification Site Class D_ Beaverton 10 Ti garcti,. Lake Osiivego 99 - . .1a tin Sherwood OregonCj *1: . 441 - brci USGS-Provided Output Ss,510 0.703 g Sxs,.135E-2E 0.870 g 0.306 g Sx1,BSE-2E 0.548 g Ve' Lt.: J-11 Althougi'i this n' ,r is a iptiodLict nt toe ti,S. Czeoingical pr:Ivide i.o eiicnii-esseri irnol.ed, tis tsie accuracy of the data cants-.=led thete —h,s tool is rot si,ost for kite.vviriagei https://earthquake.usgs.gov/cn1/designmapslusIsummary.php?temptate=minimal&latitutie=45.403056&longitude.-122.746955&siteclass=38,riskcateg... 1/1 CALCULATION SHEET ml a Oregon Business Park 1-Bldg 3 Jan-13 .06 N0: 17-0192 ST,WC?VEAL f`,(iiiNF EkL Wall Anchorage N-S 2.1 Wall Anchorage N-S Basic Performance Objective of Existing Buildings(BPOE)perASCE41-13 dwall= 5.5 in wwa;i= 150 pcf hv,e= 12 ft Wo= 825 plf n4, 0 ft Lf= 139.5 ft (Minimum Diaphragm Length) k,=1+Lf/100= 2.395 (ASCE 41-13,Eq.7-11) use ka= 2 (k,max=2) Fo,roof Za= 24 ft (Height of Anchorage) kh=1/3(1+2*(za/h,.))= 1 (ASCE 41-13,Eq.7-12) BSE-11E hazard level(Life Safety) Sxs= 0.46 g (See Attached USGS Report) X= 1.30 (ASCE 41-13,Tbl 7-2) h„= 24 ft Fp=0.4 SGS kakh X Wp= 395 plf (ASCE 41-13,Eq.7-9) F0,n,;,,=0.2 k3 X Wp= 429 plf (ASCE 41-13,Eq.7-10) BSE-2E hazard level(Collapse Prevention) Sxs= 0.87 g (See Attached USGS Report) X= 1.00 (ASCE 41-13,Tbl 7-2) Fp=0.4 Sos kakh X Wp= 574 pif (ASCE 41-13,Eq.7-9) Fa min=0.2 ka X Wp= 330 plf (ASCE 41-13,Eq.7-10) Fp max= 574 plf J= 2 (ASCE 41-13,Section 7.5.2.1.2) C1C21 (ASCE 41-13,Tbl 7-3) Anchor spacing(s)= 8 ft Our=(Fpmax*S)/C1C21= 2297 Ibf (ASCE 41-13,Eq.7-35) Holdown (Member t): HCu2-SD52.5(_"? Number of Holdowns: Kf= 1.40 (Strength Conversion Factor-ESR-2330) FHoldown= 2 x 3075 Ibf= 6150 lbf (Simpson Strong Tie) Qa=FhoIdown*Kf = 8610 Ibf Qa > QUO O.K. (ASCE 41-13,Eq. 7-37) DCR= 0.27 (Demand Capactiy Ratio) Uses HDU2-5052.5 EA Side at 8 ft O.C. Anchor Embedment: .1= 1 QUF=(Fp max*s)/C,C2 3= 4594 Ibf .= 1 (Ultimate Strength) Anchor Diameter= 5/8 in Steel Strength(Nsa)= 16385 lbf (Profis) Min Embedment= 4 in (Profis) Bond Strength(Nag)= 10128 lbf <---Governs (Profis) Breakout Strength(Ncbg)= 10271 lbf (Profis) Q . > Quo O.K. Use: 5/8"Dia.with HIT-RE 500 V3 Epoxy J DCR= 0.45 Min Embedment 4" (See attached Profis Calcuattion for Threaded Rod in Concrete) • 1111.1111116.111r1111 www.hiltl.us Profis Anchor 2.7.3 Cornpnny: Specifier. Page: 1 Address: Project: Phone t Fax Sub-Project I Pos.No.: 0ei Mail Date: 1/3/2018 ' Specifler's comments: 1 Input data w Anchor type and diameter: HIT-RE 500 V3+HAS 5/8 Effective embedment depth: h ..».„r< etl.n aol=4.000 in.(hamu =-in.) ,,-..,'..,a Material: 5.8 Evaluation Service Report: ESR-3814 Issued I Valid: 1/1/201711/1/2019 Proof: Design method ACI 318-14/Chem Stand-off installation: eb=0.000 in.(no stand-off);t=0.500 in. Anchor plate: lx x ly x t=4.000 in.x 10.000 in.x 0.500 in.;(Recommended plate thickness:not calculated Profile: no profile Base material: cracked concrete,2500,f0'=2500 psi;h=5.500 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition 8,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Geometry[in.]&Loading[lb,In.lb] tlZ 'if t tl 1 , tl h 5 k a . , X44: 4, i� d • a \X Input data and resu,ts must be checkea or egree-nent with the extsbng oondiilons and forpiaustbl tty+ PROFIS Anchor(c)2063-2009 H Ili AG,Ft.-9494 Schoen Hi 0 is a registered s rademark of Hilt AG,Sc'aan www-hllti.us Pyrofis Anchor 2.7.3 Company: ,..: Specifier, Page: 2 Address: Project: Phone I Fax: Sub-Project I Pos.No.: Date: E-Mail: 1!3!2018 2 Load case/Resulting anchor forces Load case:Design loads Anchor reactions[Ib] 2 Tension force:(+Tension,-Compression) i Anchor Tension force Shear force Shear force x Shear force y 1 2297 0 O_.._ ,--. 0 2 2297 0 - max.concrete compressive strain: -[%o] Tension "x max.concrete compressive stress: -(psi] resulting tension force inx! ( y)=(0.40010.400): 4594 Pb] resulting compression force in(x/y)=(0.000/0.000):0[Ib] 3 Tension load Load N,., Capacity+N,[lb] Utilization AN=N„0/4 Nn Status Steel Strength* 2297 10650 _ 22 ... OK Bond Strength"' 4594 6583 70 OK Sustained Tension Load Bond Strength' N/A N/A N/A N/A Concrete Breakout Strength"* 4594 6676 69 OK *anchor having the highest loading '"anchor group(anchors in tension) 3.1 Steel Strength N6,, =ESR value refer to ICC-ES ESR-3814 4) Nsa'-Nue ACI 318-14 Table 17.3.1.1 Variables ._A ax in 0.23 72500 Calculations Nsa[lb] 16385 Results Nsa 85 t aeaai,_.. ,_.._ ti) [lb] ....... Nva Ib 4 10650 [ ] 16385[lb] 63 .. jj 2297 JA0 Input data and results must be checked for agreement with the existingd " PROFIS Anci or c} legislated Trademark a ar of Hit.Av i2Q33 ZOCiB Kilt Au �L-949-0 Schwa:: Ndti is a ragislered of Hi.:AG,Schwan 3 www.hiiti.us Profis Anchor 2.7.3 Company: Pate: 3 Specifier: Project: Address: Phone! Fax: Sub-Project I Pos.No.: ? E-Mail: Date: 1/3/2018 %^ 3.2 Bond Strength ed, Na ACI 3'8-14 Eq. 17.4.5,1.b) Nay \((Ataaa)W,:cava W„cz.NaV n;°41 Wkst`1b° 41) Nag 'N°a AC!3'8-14 Tabie 17.3.1.1 Ara° =see AC!318-14,Section 17.4.5.1,Fig.R 17.4.5.1(b) • Ahab =(2 cNay.2 ACI 318-14 Eq.(17.4.5.1c) um., = 10 d,Nit airt d0 ACI 318-14 Eq.(17.4.5.1d) ( 1 W„.Na= 1 + e <_1.0 ACI 318-14 Eq.(17.4.5.3) o Pia W od,Na=0.7+0.3 (•24'11)<1.0 ACI 318-14 Eq.(17.4.5.4b) Craa cb,Na=MAX E W a_ta'n,'c.-14-2)5 1.0 ��& AGI 318-14 Eq.(17.4,5.5b) Nue =/,a" t-kc'n "da•hof ACI 318-14 Eq.(17.4.5.2) Variables ._.. T k c•nor[psi] do fin.] [Psi] . _.. __,._ ..,.._.. 'er[in.) c°mi Hn l T k Psa 221 0 0.625 "" 4.000 ..6 000.,.. Y` 12660 [in.] 0.000 _ 0.000 8.731 ...._ 1.000 . Calculations F cNa fin. A�aa[il2] ANa2[in 21 W ad.Na 8.819 352.14 _.......,_. 311.09 _ 0.904 .,, W Ubi,NC W ec2 Na ;r ep h a Nba[Ibj_.-. 1.000 1.000 �.... 1.000 9896 �u-- Results Nag[lb] ,0 o„ .....,..-.. IP Nag[I5) Nua[Ib] ...... 10128 1 ,dt "6583 ......... ... ....4594 r.,:. + GI,o 3.3 Concrete Breakout Strength Nog =( )tir ec,N W ee,N Ili o.0 W tu,N Nb ACI 318-14 Eq.(17.4.2.1b) iV Nth,>_N0 AC!318-14 Table 17.3.1.1 AN, see ACI 318-14,Section 17.4.2.1,Fig,R 17.4.2,1(6) ANco =9 hat ACt 318-14 Eq.(17.4.2.1c) 1 2 e AC!318-14 Eq. Woc,N = 1 +3hN)S1A (17.4.2.4) er W ed,N =0.7+0.3 (C 5 1,0 �- €) AC!318-14 Eq.(17.4.2.5b) yr op.N =MAX( !t44h 1 hot)_s'a 1.0 ACt 318-14 Eq.(17,4.2.7b) C„.., ae Nb =ke i.° {c h i5 ACI 318-14 Eq.(17.4.2.2a) Variables __... he,[in.) ect 4[in] ... e22N int a.rnin 1 [ 0to 4.000- 0.000 0000 6.000., ..1000 cee[in.) k X a ff[psi) ., .._..w 8.731 17 1.000 2500 Calculations AN‘[an 21 ANw fin I "tial ba„ aV' u �1r a ti tV aNb 1141217.50 144.00 - 1.000 1.000 1.000 1.0011... 0800._ Results �7 No,[Ia1.- •„o„otdiu ill, NCb9 Llb3 Nua[ib] Lgati .,.1594_„„............:. ros (, U pug data and results must be checked For agreement with the ex sEl.ny eonrnttans and for plausibility! PROFS Anchor(c)2003.2009'bib AG,FL-9494 Schwan hdd ks a teg:siereo Trademark of HIM AG,Schwan CALCULATION SHEET mia „",:,,, Oregon Business Park 1-Bldg 3 m,,: Jan-18 17-0192 srRoc-Uazt eNcir-aexi Wal;Anchorage E-W sr: e-: 2.5 Wall Anchorage E-W Basic Performance Objective of Existing Buildings(BPOE)per ASCE41-13 d.,,,,3!= 5.5 in ww,5= 150 pcf A hvib= 12 ft Wp= 825 pif )r= 0 ft Lr= 516.25 ft (Minimum Diaphragm Length) k,=1+L1/100= 6.1625 "—" "" (ASCE 41-13,Eq.7-11) use k,= 2 (k,max=2) `,,,o., z,= 24 ft (Height of Anchorage) kh=1/3(1+2*(z,/hn))= 1 (ASCE 41-13,Eq.7-12) BSE-1E hazard level(Life Safetyy) 5,,= 0.46 g (See Attached USGS Report) X= 1.30 (ASCE 41-13,Tbi 7-2) hn= 24 ft Fp=0.4 Sos k,k5 X Wp= 395 pIf (ASCE 41-13,Eq.7-9) Fp,min=0.2 k;X VJp= 429 plf (ASCE 41-13,Eq.7-10) BSE-2E hazard level(Collapse Prevention 5,,= 0.87 g (See Attached USGS Report) X= 1.00 (ASCE 41-13,Tb)7-2) F5=0.4 Sos k,k5 X VV,= 574 pIf (ASCE 41-13,Eq.7-9) F5,m5n=0.2 k,X Wp= 330 pIf (ASCE 41-13,Eq.7-10) Fpr„,= 574 plf A J= 2 (ASCE 41-13,Section 7.5.2.1.2) C1C2= 1 (ASCE 41-13,Tb)7-3) Anchor spacing(s)= 6 ft QUF=(Fp rr.,*S)/C1C2 J= 1723 Ibf (ASCE 41-13,Eq.7-35) Holdown (Member t): HDUS-5D52.5(3") Number of Holdowns: 1 Kf= 1.40 (Strength Conversion Factor-IAPMO ER-0130) FHoldown= 1 x 5645 Ibf= 5645 lbf (Simpson Strong Tie) Qct=Fho down*K;= 7903 lbf Ctct > QuF O.K. (ASCE 41-13,Eq. 7-37) [ DCR= 0.22 (Demand Capactiy Ratio) (Use: HDU5-5052.5 at 6 ft O.C. Anchor Embedment: J= 1 Our=(F5,,,,*s)/C1C2 J= 3445.2 Ibf ¢)= 1 (Ultimate Strength) Anchor Diameter= 5/8 in Steel Strength(Nsa)= 16385 Ibf (Profit) Min Embedment= 4 in (Profit) Bond Strength(Nag)= 7517 lbf (Profit) Breakout Strength(Ncbg)= 6800 lbf <---Qcl (Profit) Oct. > QuF O.K. Use: 5/8"Dia.with HIT-RE 500 V3 Epoxy DCR= 0.51 Min Embedment 4” (See attached Profit Calcuaition for Threaded Rod in Concrete) 11111111111.111111111 Profis Anchor 2.7.3 Company Page. Specifier. Project Adc.fress Sub-Project 1 Pos Phone 1 Fax, Date' 1/3/2018 Specifier's comments: 1 Input data impoi-0.0fari Anchor type and diameter: HIT-RE 500 V3+HAS 5/8 • Elective embedment depth: hc,f,„ct=4.000 in.(h.r., ;t=-in,) Materia:: 5.8 Evaluation Service Report: ESR-3814 Issued I Valid: 1/1/2017 I 1/1/2019 Proof: Design method ACI 318-14/Chem Stand-off installation: -(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,2500,f0 =2500 psi;h=5.500 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition 8,shear:condition B;no supplemental splitting reinforcement present edge reinforcement;none or<No,4 bar Geometry[in.]&Loading[ib,in.lb] 0 04) ,Y- zo .rne WO I a , X : pu dots end resultsmust be checicad for agreement with the aksting 015 and for DISE181t3tiliy, PnROFISAncho r(c)2003-2000 Hili AG,FL-0494 Schwan Hitt is s rewaterec 1,acarnark of AG,Schaen • www.niltl.us Profis Anchor 2.7.3 Company: Page 2 Specifier: Project. Address: Sub-Project I Pos.No: Date: Phone I Fax: 1/3/2018 E-Mail: I 2 Load case/Resulting anchor forces Load case:Design loads Anchor reactions[lb] Tension force:(i Tension,-Compression) Anchor Tension force Shear force Shear force x Shear force y 1 3445 0 0 ...._..... 0 max.concrete compressive strain: -[�oaj max.concrete compressive stress: -[Psi] resulting tension force in(x/y)=(0.000/0.000): 0[lb] resulting compression force in(x/y)=(0.00010.000):0[Ibj 3 Tension load Load N„a fib] Capacity+N„,[113] Utilization p Nual4 Nn Status Steel Strength *... 3445 .. ._....... 10650 —33_ _ OK Bond Strength*" 3445 4886 71 OK Sustained Tension Load Bond Strength* N/A N/A N/A N/A Concrete Breakout Strength** 3445 4420 78 OK "anchor having the highest loading **anchor group(anchors in tension) 3.1 Steel Strength Nsa =ESR value refer to ICC-ES ESR-3814 ih Nsa z Nue ACI 318-14 Table 17.3.1.1 Variables As9 y[inz] f [psi) 0.23` 72500 Calculations Ns8['bj 16385 Results Nss[lb] N„,fib) N..d[lbj input data and results must be checked for agreement wit-e the existing condit ors and for plausib Icy m � PROFIS Anchor I c 12003-2003 Hi=t%AG.FL-9494 Schaa.=. H 10 is a registered Trademark of AG,.Scheer www.hilti.us Profis Anchor 2.7.3 Company: Page: 3 Specifier: Project: Address: Sub-Project I Pos. No.: Phone I Fax: ( Date: 1/3/2018 E-Mail: 3.2 Bond Strength Axt Na =(-At)W ea,Na V Nacp: N,, ACI 318-14 Eq.(17.4.5.1a) Na '-Noa ACI 318-14 Table 17.3.1.1 ANa =see ACI 318-14,Secton 17.4.5.1,Fia.R 17.4.5.1(b) ANao =(2 c5,)2 ACI 318-14 Eq.(17.4.5.1c) cm, =10 darg1f��"" AC!318-14 Eq.(17.4.5.1d) 1'900 // ec.Na= ■ 1 + r€)<1.0 ACI 318-14 Eq.(17.4.5.3) ` cNa JJJ 'V ed,Na=0.7+0.3 (5‘72-1`)_<1.0 ACI 318-14 Eq. (17.4.5.4b) COM W ep,N,=MAX(-'.mim c8al 5-1.0 'r•�e, cac ACI 318-14 Eq.(17.4.5.5b) Nba =I.a'a,,'n 'd,'h,, ACI 318-14 Eq.(17.4.5,2) Variables t k C ncr[psi] da[in] her Dn.] ea rn r i� T k a f)S] 2210 _ ..:_...._ 0.625 4.000 260x....., e,,N[in] ea,N[in l cac[In.] ),a 0.000 0.000 8..,731 1,000 Calculations t ......._.;.:.. cNa[in.] Apia lir 2] ANao[in 2] 'Etpd Na 8.819 26'1.37 311.09 0.904 W ac2,Na W.cp;Nana t`b] 1,000 1.000 1.000 9896 Results Nttilb] 11,004 .:: fib)N ,,[Ib] 0 4886 34475 - 3.3 Concrete Breakout Strength Nth = etl,N c,N V cp.N a(Aram)iJ 'V t N: AC!318-14 Eq.(17.4.2,1a) I 4, Ncb a Nua ACI 318-14 Table 17.3.1.1 ANc see ACI 318-14,Section 17.4.2.1,Fig.R 17.4.2.1(b) ANco =9 her ACI 318-14 Eq.(17.4.2.1c) W ec,N = 1 2 etxi <1.0 ACE 318-14 Eq.(17.4.2.4) 3 h t Gi W ed,N =0.7+0,3 1,5hef)5 1.0 ACE 318-14 Eq.(17.4.2,5b) W cp,N =MAX(E CQ'r`1 !: t)�1.0 ACI 318-14 Eq.(17.4.2.7b) � ne iac Nb =k,X a �itc her' ACE 318-14 Eq.(17.4.2.2a) Variables her(in.] er,N[in.) e2 Nlin] cawT,,[in] e N 4.000 0.000 0.000 6.000 _..-.� 1,000 ac [in.] Is, h afc[psi] 8.731 17 1.000 .-_ 2500 -... Calculations ANo 2 2 N[in A cnItn ] y'_�? sez u .,_ „.._ iV ea ti V c 3 A[Ib]...__.._......... 144.00 144.00 1.000 1.000 1.000 1.000..... 6800 Results Nth[lb]. 4•,rnrr,te. Ncb[Ib] N,,, bi....... r04420 3445 iftJ Input data and results must be necked for agreement w.ih hs existing co ddions and(or ptausib li y' PROFIS Anchor(c)2003-2M,9 Hill AG,IL-9454 Sc^Bar, Hi,:s a registered Trademark o.Hilh AG,Schaan CALCULATION SHEET miOregon Business Park 1-Bldg 3 ,ATE Jan-18 17-0192 rlapnu brac;lr+E.(A[ N-S Subdiaphragm Analysis 3.1 N-S Subdiaphragm Analysis F„,„= 574 plf J= 2 (ASCE 41-13,Section 7.5.2.1.2) C1C2= (ASCE 41-13,Tbl 7-3) Continuity Tie Spacing(s)= 24 ft Subdiaphragm Depth(d)= 24.58 ft Aspect Ratio(s/d)= 0.976 OK (2.5 max) C2uF=(Fa,,,,x*s/2)/dC1C2 J= 140 plf (ASCE 41-13,Eq.7-35) Existing Plwyood Thickness and Nailing Pattern(Boundary&Cont.Edges/Other Edges/Field): _=/32"Ply w/8d @ 6/6/12(2u) Nominal Unit Shear Capacity(v)= 540 plf (NDS Table 4.2A) Cd= 1 (Duration Factor) 4L=v/Cd= 540 plf Use 24.58 ft tong x 24 ft wide subdiaphragm Qct > QuF O.K. DCR= 0.26 Continuity Tie Fp max= 574 plf J= 2 C1C2= 1 Continuity Tie Spacing(s)= 24 ft (effective spacing) Qur=(Fp m,x*s)/C1C2 J= 6890 Ibf Continuity Tie Force Holdown (Member t): HDU5-SDS2.5(3") Number of Holdowns: 2 Nf= 1.40 (Strength Conversion Factor-ESR-2330) FHaldown= 2 x 5645 Ibf= 11290 Ibf (Simpson Strong Tie) Oa=Fholdown*K1= 15806 Ibf Qcc > QuF O.K. (ASCE 41-13,Eq. 7-37) DCR=0.436 'Use: HDU5-SDS2.5 EA Side J ` o ( o,-t - 0 ,C° ::UCULATION SHEET Mi ',UM,' Oregon Business Park 1-Bldg 3 Dr.?E: Jan-18 17-0192 STRUCTUAM. ENGINE E A$ E-W Subdiaphragm Analysis BY: S',rr- 3.2 E-W Subdiaphragm Analysis Fo max= 574 plf J= 2 (ASCE 41-13,Section 7.5.2.1.2) C1C2= 1 (ASCE 41-13,Tbl 7-3) Continuity Tie Spacing(s)= 25 ft Subdiaphragm Depth(d)= 11.5 ft Aspect Ratio(s/d)= 2.174 OK (2.5 max) QuF=(Fa„, *s/2)/dCiC2.1= 312 plf (ASCE 41-13,Eq.7-35) Existing Plwyood Thickness and Nailing Pattern(Boundary&Cont.Edges/Other Edges/Field): 15/32'Ply w/8d @ 6/6/12(2x) Nominal Unit Shear Capacity(v)= 540 Of (NDS Table 4.2A) Cd= 1 (Duration Factor) Clct=v/Cd= 540 plf 'Use: 11.5 ft long, x 25 ft wide subdiaphragm I Qa > QuF O.K. DCR= 0.578 Continuity Tie Fiamax= 574 plf J= 2 C1C2= 1 Continuity Tie Spacing(s)= 25 ft (effective spacing) QUF=(Fp ma.`s)/C1C2 J= 7178 lbf Continuity Tie Force Holdown (Member t): HDUS-SDS2.5(3") Number of Holdowns: 2 Kf= 1.40 (Strength Conversion Factor-ESR-2330) FHoldown= 2 x 5645 lbf= 11290 lbf (Simpson Strong Tie) Qct=Fholdown*Kt = 15806 lbf Qct > QUF O.K. (ASCE 41-13,Eq. 7-37) DCR=0.454 Fuse: HDUS SDS2.5 EA Side \ (f =tz._ simtscpti .„) 1›,42.-, i. - 1 . . . Mi a CALCULATION SHEET Oregon Business Park 1-Bldg 3 on-a; Jan-18 g3oNe: 17-0192 STRUCTL.RA,ENGINEERS Pilaster Anchorage E.. 4.1 Pilaster Anchorage Basic Performance Objective of Existing Buildings(BPOE)per ASCE41-13 dwa€€= 5,5 in Aa±€a:ger= 1.6666667 ft2 = 150 pcf • hp€€aster= 21.5 ft /kWh= 160 ft2 Wr,s€aster= 2687.5 Ibf 1 Wp(Wwall+Wpilaster)= 13688 lbf i Lr= 516.25 ft (Minimum Diaphragm Length) ka=1+Lr/100= 6.1625 (ASCE 41-13,Eq.7-11) use k,= 2 (ka max=2) Wall Elevation i LA,,„) za=hn= 24 ft (Height of Anchorage) kh=1/3(1+2*(za/h,))= 1 (ASCE 41-13,Eq.7-12) BSE-1E hazard level(Life Safety) Sar= 0.46 g (See Attached USGS Report) 16 X= 1.30 (ASCE 41-13,Tbl 7-2) -4 I. Fp=0.4 Sos kakh X Wp= 6548 Ibf (ASCE 41-13,Eq.7-9) Fp,mi„=0.2 ka X Wp= 711E Ihf (ASCE 41-13,Eq.7-10) 10 ELI r, BSE-2E hazard level(Collapse Prevention)' a` Sar= 0.87 g (See Attached USGS Report) 5.5 Ir X= 1.00 (ASCE 41-13,Tbl 7-2) Fp=0.4 Sos kakh X Wa= 9527 ibf (ASCE 41-13,Eq.7-9) Plan View(Pilaster}, Fp,mi„=0.2 ka X Wp= 5475 Ibf (ASCE 41-13,Eq.7-10) Fr,max= 9527 lbf J= 1 (ASCE 41-13,Section 7.5.2.1.2) C2C2= 1 (ASCE 41-13,Tbl 7-3) QUF=(Fp max)/C1C2 J= 9527 Ibf (ASCE 41-13,Eq.7-35) act- '''''''' (3"- c> .bias-;;)(Vy')( cak))(2.-) = 5?,,,,i iL (f / c - " 0.2`f ( 3 1 #1 2I7 oc... 4. 2,2,. (f.sly-, ,,,,k-icit-ri- c6),)v5-sior-i :,-2L612.- — i()°1 173(.1 ij ' 1) s . D - ' 21, fc 'Z''-'°'' CALCULATION SHEET mi a Crego-•.Busiress Pari 1-Bdg 3 c..: Jan-18 ," 17-0192 „ ,,TUP 1 "r.r,Mels; Pilaster Anchorage r, <o-[t- 4.2 Pilaster,TUP.1i,,, so : A,.• -1 Basic Performance Objective of Existing Buildings(BPOE)nen ASCE41-13 1:°3;r Check Thru Bolt to Existing Walk f t e-5:,,,, Ci r= 9527 ibf A,=tirnl'i'1.5170);',2 x 1,5kaC Check Concrete Breakout Strength (ACI 318 Sec.17.4.2.1) 1 c.9<1 5h, het= 5.5 in (embedement depth=wakI thickness) fc= 2500 psi (existing concrete strength) 6h J 1bsY k,= 17 (ACI 318 Sec.17.4.2.2a) -. >- - 1 ,..”--_... .r,1Nt .. 9 i .,= 1 (ACI 318 Sec.17.2.6) 1 h,, i Nb=1(,),,A\f c)*(he.''5)= 10964 lbf (ACI 318 Sec.17.4.2.2a) t£ ANcO 9*hef2= 272.25 Int 1.:>t:, I z if of Bolts/Conn= 1. - 1 tt of Connections(n)= 2 AN,_(ca1+e.+I,5h,,,-)(2 x ;.Sher) Beam Width= 6.75 in2 is sr,...‹1.5h,,a-a::si<3h.. Holdown CL= 1.25 in s1= NA Cal mm= 6 in (minimum side edge distance) Cat min= 8,25 in (minimum top edge distance) ANc= 235.13 int T„,,,. 1.00 (ACI 318 Sec.17.4.2.4) l.sn„ IN 5ra, Tea.N= 0.92 (ACI 318 Sec.17.4.2.5a,b) 1 9',,N= 1.00 (AC!318 Sec.17.4.2.6) Pi ; 4'cp.N= 1.00 (ACI 318 Sec.17.4.2.7a,b) fs,. ma Nrbg=(ANr./ANco)`Irec.NT ed,Ngic,Y'11rp.NN5= 8694 lbf sa: r=fiir a.,r3+.;.% s t Ciel per anchor=Orbs= 8694.1 lbf per anchor ( Ci Ckci per connection,.bNt55*n= 17388 Ibf per connection Oft ft < Our O.K. g -w++, y 1-.4'. OCR= 0.55 ( , i it,"-h,, •.5h„ s t shy, 1..... ran A,„,, ;2x1„Sha,)r(2x 1.51„) F;h„: