Loading...
Permit (233) RECrs:IVED NOV 2 8 2017 aTY OF TIGAFO BUILDING DIVISPN Supplemental Structural Calculations For: Storquest Self Storage Foundation Revisions - Basement Removal 12740 SW Pacific Highway Tigard, OR 97223 REVISION -soFzot City of Tigard A „Ati Aps, e Plans Date t cipit-ritAtt K.;41tir1;1,' OFFICE COPY 31728.2., 45P4tgriON:410`. \ 11-9-17 Prepared for: Magellan Architects Job #: 02257-2015-03 Date: November 9, 2017 SEATTLE 2124 Third Aye,Suite 100,Seattle.WA 98121 0 206,443.6212 $,sr(J7pai.:...a amoutenum TACOMA 934 Broadway,Suite 100,Tacoma,WA 98402 0 253284 9470 13EF-1$ t SOlS3Cl ON'Z233NION3 ivarupnws YONd 3ibd ID3rOdcl _ - c) -.4:5 X4'4'4' h 1/14:'c5 S-21 - -t-t r„► v"4 ')��1 "c*. 1-6„ = ( ) 5 'HH 4x,52 ( f =c95 1 / a/ 7 -" "' .,.b f �/'` ,7 e-^.I 1 1-'ef ea i+11 -7,ica�--�;�i 1-P , r CO: k tr-v, tit 3 Z/ c�Zr,I r- - • (. -+ ®42.5-e/ S-4-(4.7 7.e) cls D m 3 w Vb" 54. �.0-j (4° /- 2 (s• r 1 s3 � �j Z Z) D m r'-'fc+ .j,e-v c.7 - -4. czt m � s r-�a —4 kl r e. :< m c. ti m 4-% f S-31-"1 7y -115 14/ 4210-417 7 "'yaw t0,5 I^+*f-t Z 2 - h+E 3- *"4*''i�r /� 7777"4'4.•'4 k=W'✓t C� t�-�5 v G� C"�PV 1-.j.-c- "2/411 D c t.•4301 �/ �?. -f1 S 7S x' i '7' r=;/ ^� td : ►" fir-tet '^''Q41,.7_2-41 424-fd'a 0 0 PO NJ 004. amu, n Crk 'L Z -` h !. ✓+-0.41"i -g r"..?,T �� b pi/ :Io N��1.4ir Lv t-) ` ... 8 tJ Swenson Say Faget Title Storquest Tigard Page: 1 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 9 NOV 2017 Seattle,WA 98121 Description.... Foundation Wall-4'Grade Change This Wall in File:H:\Users\randerson\_Projects\Magellan\Storquest Self Storage\Calcs\storquest wall RetainPro(c)1987-2016, Build 11.16.11.12 License:KW-06052576 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To:SWENSON SAY FAGET Criteria Soil Data I ,m °>^ Allow Soil Bearing = 2,500.0 psf Retained Height = 4.00 ft WallEquivalent Fluid Pressure Method height above soil = 0.00 ft Active Heel Pressure = 35.0 psf/ft Slope Behind Wall = 0.00 = Height of Soil over Toe = 0.00 in Passive Pressure = 250.0 psf/ft Water height over heel = 0.0 ft Soil Density,Heel = 125.00 pcf Soil Density,Toe = 0.00 pcf FootingllSoil Friction = 0.350 Soil height to ignore 0 0 for passive pressure = 12.00 in rf„ a . • Surcharge Loads 0 Lateral Load Applied to Stem ` LAdjacent Footing Load ' Surcharge Over Heel = 0.0 psf Lateral Load = 0.0#/ft Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Load Type = Wind(W) Axial Load Applied to Stem (Service Level) Footing Type Line Load Base Above/Below Soil = 0.0 ft Axial Dead Load = 1,466.0 lbs Wind on Exposed Stem = 0.0 psf at Back of Wall Axial Live Load = 1,250.0 lbs (Service Level) Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in Earth Pressure Seismic Load I Method : Uniform Uniform Seismic Force = 35.000 Multiplier Used = 7.000 Total Seismic Force = 175.000 (Multiplier used on soil density) rDesign Summary II L Stem Construction r Bottom Stem OK Wall Stability Ratios Design Height Above Ftc ft= 0.00 Overturning = 3.44 OK Wall Material Above"Ht" = Concrete Slab Resists All Sliding! Design Method = LRFD Thickness = 8.00 Total Bearing Load = 3,797 lbs Rebar Size = # 5 ...resultant ecc. = 0.74 in Rebar Spacing = 12.00 Soil Pressure @ Toe = 1,889 psf OK Rebar laced at = Center D Soil Pressure @ Heel = 1,371 psf OK Design Data 2,500 psffb/FB+fa/Fa 0.170 Allowable = Total Force @ Section Soil Pressure Less Than Allowable ACI Factored @ Toe = 2,644 psf Service Level lbs= ACI Factored @ Heel = 1,919 psf Strength Level lbs= 588.0 Footing Shear @ Toe = 6.9 psi OK Moment....Actual Service Level ft-#= Footing Shear @ Heel = 7.2 psi OK Strength Level ft-#= 877.3 Allowable = 75.0 psi Sliding Calcs Moment Allowable = 5,154.8 Lateral Sliding Force = 560.0 lbs Service Level psi= Strength Level psi= 12.3 Shear Allowable psi= 82.2 Anet(Masonry) in2= Rebar Depth 'd' in= 4.00 Masonry Data fm psi= Fs psi= Solid Grouting = Vertical component of active lateral soil pressure IS Modular Ratio'n' = NOT considered in the calculation of soil bearing Wall Weight psf= 100.0 Load Factors Short Term Factor = Building Code IBC 2015,ACI Equiv.Solid Thick. = Dead Load 1.200 Masonry Block Type = Medium Weight Live Load 1.600 Masonry Design Method = ASD Earth, H 1.600 Concrete Data Wind,W 1.000 fc psi= 3,000.0 Seismic,E 1.000 Fy psi= 60,000.0 Swenson Say Faget Title Storquest Tigard Page: 2 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 9 NOV 2017 Seattle,WA 98121 Description.... Foundation Wall-4'Grade Change This Wall in File:H:\Users\randerson\_Projects\Magellan\Storquest Self Storage\Calcs\storquest wall RetainPro(c)1987-2016, Build 11.16.11.12 License:KW-06052576 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To:SWENSON SAY FAGET Concrete Stem Rebar Area Details Bottom Stem Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0.053 in2/ft (4/3)*As: 0.0706 in2/ft Min Stem T&S Reinf Area 0.768 in2 200bd/fy:200(12)(4)/60000: 0.16 int/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12)(8): 0.1728 in2/ft Horizontal Reinforcing Options: One layer of: Two layers of: Required Area: 0.1728 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area: 0.31 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area: 0.6503 in2/ft #6©27.50 in #6@ 55.00 in Footing Dimensions &Strengths I [ Footing Design Results Toe Width = 1.00 ft Toe Heel Heel Width = 1.33 Factored Pressure = 2,644 1,919 psf Total Footing Width = 2.33 Mu':Upward = 1,270 437 ft-# Footing Thickness = 12.00 in Mu': Downward = 90 172 ft-# Mu: Design = 1,180 -266ft-# Key Width = 0.00 in Actual 1-Way Shear = 6.92 7.23 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #5 @ 12.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #5 @ 12.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: Not req'd:Mu<phi*5*lambda*sgrt(fc)*Sm Heel:Not req'd:Mu<phi*5*lambda*sgrt(fc)*Sm Key: No key defined Min footing T&S reinf Area 0.60 in2 Min footing T&S reinf Area per foot 0.26 in2 r t If one layer of horizontal bars: If two layers of horizontal bars: #4@ 9.26 in #4@ 18.52 in #5© 14.35 in #5@ 28.70 in #6@ 20.37 in #6@ 40.74 in Summary of Overturning & Resisting Forces& Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-# lbs ft ft-# Heel Active Pressure = 437.5 1.67 729.2 Soil Over Heel = 331.7 2.00 662.8 Surcharge over Heel = Sloped Soil Over Heel = Surcharge Over Toe = Surcharge Over Heel = Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load = Axial Dead Load on Stem= 1,466.0 1.33 1,954.7 Load @ Stem Above Soil = *Axial Live Load on Stem = 1,250.0 1.33 1,666.7 Seismic Earth Load = 122.5 2.50 306.3 Soil Over Toe = = Surcharge Over Toe = Total 560.0 O.T.M. 1,035.4 Stem Weight(s) = 400.0 1.33 533.3 Earth©Stem Transitions= = = Footing Weight = 349.5 1.17 407.2 Resisting/Overturning Ratio = 3.44 Key Weight = Vertical Loads used for Soil Pressure= 3,797.2 lbs Vert.Component = Total= 2,547.2 lbs R.M.= 3,557.9 If seismic is included,the OTM and sliding ratios *Axial live load NOT included in total displayed,or used for overturning be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201 resistance,but is included for soil pressure calculation. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance. Swenson Say Faget Title Storquest Tigard Page: 3 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 9 NOV 2017 Seattle,WA 98121 Description.... Foundation Wall-4'Grade Change This Wall in File:H:\Users\randerson\ Projects\Magellan\Storquest Self Storage\Calcs\storquest wall RetainPro(c)1987-2016, Build 11.16.11.12 License:KW-06052576 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To:SWENSON SAY FAGET LTilt Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall(approximate only) 0.090 in 1h4 above calculation is not valid if.the he&soil bearinc..laressure exceeds that of pit toe, because the wall would then tend to rotate into the retained soil. Swenson Say Faget Title Storquest Tigard Page: 1 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 9 NOV 2017 Seattle,WA 98121 Description.... Foundation Wall-6'Grade Change This Wall in File:H:\Users\randerson\_Projects\Magellan\Storquest Self Storage\Calcs\storquest wall RetainPro(c)1987-2016, Build 11.16.11.12 License:KW-06052576 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To:SWENSON SAY FAGET Criteria ' Soil Data Imo~ Retained Height = 6.00 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Method Active Heel Pressure = 35.0 psf/ft Slope Behind Wall = 0.00 = Height of Soil over Toe = 0.00 in Passive Pressure = 250.0 psf/ft Water height over heel = 0.0 ft Soil Density,Heel = 125.00 pcf Soil Density,Toe = 0.00 pcf FootingllSoil Friction = 0.350 Soil height to ignore for passive pressure = 12.00 in •-..-p:, Surcharge Loads 11 Lateral Load Applied to Stem I Adjacent Footing Load I Surcharge Over Heel = 0.0 psf Lateral Load = 0.0#/ft Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Load Type = Wind(W) Axial Load Applied to Stem I (Service Level) Footing Type Line Load Base Above/Below Soil = 0.0 ft Axial Dead Load = 1,466.0 lbs Wind on Exposed Stem = 0.0 psf at Back of Wall Axial Live Load = 1,250.0 lbs (Service Level) Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in L Earth Pressure Seismic Load 1 Method : Uniform Uniform Seismic Force = 49.000 Multiplier Used = 7.000 Total Seismic Force = 343.000 (Multiplier used on soil density) Design Summary I L Stem Construction 0 Bottom Stem OK Wall Stability Ratios Design Height Above Ftc ft= 0.00 Overturning = 1.98 OK Wall Material Above"Ht" = Concrete Slab Resists All Sliding ! Design Method = LRFD Thickness = 8.00 Total Bearing Load = 4,238 lbs Rebar Size = # 5 ...resultant ecc. = 2.59 in Rebar Spacing = 12.00 Soil Pressure @Toe = 2,183 psf OK Rebar Placed at = Center Design Data Soil Pressure @ Heel = 812 psf OK 2,500 fb/FB+fa/Fa 0.562 Allowable = psf Total Force @ Section Soil Pressure Less Than Allowable Service Level lbs= ACI Factored @ Toe = 3,056 psf ACI Factored @ Heel = 1,137 psf Strength Level lbs= 1,302.0 Footing Shear @ Toe = 20.2 psi OK Moment....Actual Service Level ft-#= Footing Shear @ Heel = 1.6 psi OK Strength Level ft-#= 2,898.0 Allowable = 75.0 psi Sliding Calcs Moment Allowable = 5,154.8 Lateral Sliding Force = 1,097.6 lbs Service Level psi= Strength Level psi= 27.1 Shear Allowable psi= 82.2 Anet(Masonry) in2= Rebar Depth 'd' in= 4.00 Masonry Data fm psi= Fs psi= Solid Grouting = Vertical component of active lateral soil pressure IS Modular Ratio'n' = NOT considered in the calculation of soil bearing Wall Weight psf= 100.0 Load Factors Short Term Factor = Building Code IBC 2015,ACI Equiv.Solid Thick. = Dead Load 1.200 Masonry Block Type = Medium Weight Live Load 1.600 Masonry Design Method = ASD Earth,H 1.600 Concrete Data Wind,W 1.000 fc psi= 3,000.0 Seismic,E 1.000 Fy psi= 60,000.0 Swenson Say Faget Title Storquest Tigard Page: 2 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 9 NOV 2017 Seattle,WA 98121 Description.... Foundation Wall-6'Grade Change This Wall in File: H:\Users\randerson\ Projects\Magellan\Storquest Self Storage\Calcs\storquest wall RetainPro(c)1987-2016, Build 11.16.11.12 License:KW-06052576 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To:SWENSON SAY FAGET 1 Concrete Stem Rebar Area Details Bottom Stem Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0.1749 in2/ft (4/3)*As: 0.2333 in2/ft Min Stem T&S Reinf Area 1.152 in2 200bd/fy:200(12)(4)/60000: 0.16 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12)(8): 0.1728 in2/ft Horizontal Reinforcing Options: One layer of: Two layers of: Required Area: 0.1749 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area: 0.31 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area: 0.6503 in2/ft #6@ 27.50 in #6@ 55.00 in Footing Dimensions &Strengths I L Footing Design Results ' Toe Width = 1.50 ft Toe Heel Heel Width = 1.33 Factored Pressure = 3,056 1,137 psf Total Footing Width = 2.83 Mu': Upward = 3,057 283 ft-# Footing Thickness = 12.00 in Mu':Downward = 203 238 ft-# Mu: Design = 2,854 -45 ft-# Key Width = 0.00 in Actual 1-Way Shear = 20.24 1.64 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #5 @ 12.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #5 @ 12.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: #4@ 9.26 in,#5@ 14.35 in,#6@ 20.37 in,#7@ 27.78 in,#8@ 36.57 in,#9@ 46 Heel: Not req'd:Mu<phi"5"lambda"sgrt(fc)"Sm Key: No key defined Min footing T&S reinf Area 0.73 in2 Min footing T&S reinf Area per foot 0.26 in2 /ft If one layer of horizontal bars: If two layers of horizontal bars: #4@ 9.26 in #4@ 18.52 in #5@ 14.35 in #5@ 28.70 in #6@ 20.37 in #6@ 40.74 in _Summary of Overturning & Resisting Forces& Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-# lbs ft ft-# Heel Active Pressure = 857.5 2.33 2,000.8 Soil Over Heel = 497.5 2.50 1,242.9 Surcharge over Heel = Sloped Soil Over Heel = Surcharge Over Toe = Surcharge Over Heel = Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load = Axial Dead Load on Stem= 1,466.0 1.83 2,687.7 Load @ Stem Above Soil = *Axial Live Load on Stem = 1,250.0 1.83 2,291.7 Seismic Earth Load = 240.1 3.50 840.4 Soil Over Toe = = Surcharge Over Toe = Total 1,097.6 O.T.M. 2 841.2 Stem Weight(s) = 600.0 1.83 1,100.0 Earth @ Stem Transitions= = = Footing Weight = 424.5 1.42 600.7 Resisting/Overturning Ratio = 1.98 Key Weight = Vertical Loads used for Soil Pressure= 4,238.0 lbs Vert.Component = Total= 2,988.0 lbs R.M.= 5,631.3 If seismic is included,the OTM and sliding ratios "Axial live load NOT included in total displayed,or used for overturning be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201 resistance,but is included for soil pressure calculation. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance. Swenson Say Faget Title Storquest Tigard Page: 3 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 9 NOV 2017 Seattle,WA 98121 Description.... Foundation Wall-6'Grade Change This Wall in File:H:\Users\randerson\ Projects\Magellan\Storquest Self Storage\Calcs\storquest wall RetainPro(c)1987-2016, Build 11.16.11.12 License:Kw-06052576 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To:SWENSON SAY FAGET Tilt ' Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall(approximate only) 0.129 in The above calculation is not valid if the heel soil bearinapressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil. Swenson Say Faget Title Storquest TigardPage: 1 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 9 NOV 2017 Seattle,WA 98121 Description.... Foundation Wall-6'Grade Change Gridline 22 This Wall in File:H:\Users\randerson\_Projects\Magellan\Storquest Self Storage\Calcs\storquest wall RetainPro(c)1987-2016, Build 11.16.11.12 License:KW-06052576 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To:SWENSON SAY FAGET , Criteria ' Soil Data ! ��. Retained Height = 6.00 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil = 0.00 ft Equivalent Fluid Pressure Active Heel Pressure Method 35.0 psf/ft Slope Behind Wall = 0.00 = Height of Soil over Toe = 0.00 in Passive Pressure = 250.0 psf/ft Water height over heel = 0.0 ft Soil Density, Heel = 125.00 pcf l Soil Density,Toe = 0.00 pcf FootingliSoil Friction = 0.350 Soil height to ignore for passive pressure = 12.00 in L Surcharge Loads Lateral Load Applied to Stem 0 Adjacent Footing Load Surcharge Over Heel = 0.0 psf Lateral Load = 0.0#/ft Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning ...Height to Top = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning = 0.00 ft 1 Load Type = Wind(W) Axial Load Applied to Stem ' (Service Level) Footing Type Line Load Base Above/Below Soil = 0.0 ft Axial Dead Load = 1,466.0 lbs Wind on Exposed Stem = 0.0 psf at Back of Wall Axial Live Load = 1,250.0 lbs (Service Level) Poisson's Ratio = 0.300 Axial Load Eccentricity = 0.0 in L Earth Pressure Seismic Load 0 Method :Uniform Uniform Seismic Force = 49.000 Multiplier Used = 7.000 Total Seismic Force = 343.000 (Multiplier used on soil density) Design Summary 1 Stem Construction 1 Bottom Stem OK Wall Stability Ratios Design Height Above Ft( ft= 0.00 Overturning = 1.60 OK Wall Material Above"Ht" = Concrete Slab Resists All Sliding ! Design Method = LRFD Thickness = 8.00 Total Bearing Load = 3,670 lbs Rebar Size = # 5 ...resultant ecc. = 0.25 in Rebar Spacing = 12.00 Soil Pressure Toe = 1,650 sf OK Rebar Placed at = Center @ p Design Data Soil Pressure @ Heel = 1,486 psf OK fb/FB+fa/Fa = 0.562 Allowable = 2,500 psf Total Force @ Section Soil Pressure Less Than Allowable Service Level lbs= ACI Factored @ Toe = 2,310 psf ACI Factored @ Heel = 2,080 psf. Strength Level lbs= 1,302.0 al Footing Shear @ Toe = 19.6 psi OK Mom v ce.Level Footing Shear @ Heel = 0.0 psi OK Service Level ft-#= Strength Level ft#= 2,898.0 Allowable = 75.0 psi Sliding Calcs Moment Allowable = 5,154.8 Lateral Sliding Force = 1,097.6 lbs Service Level psi= Strength Level psi= 27.1 Shear Allowable psi= 82.2 Anet(Masonry) in2= Rebar Depth 'd' in= 4.00 Masonry Data fm psi= Fs psi= Solid Grouting = Vertical component of active lateral soil pressure IS Modular Ratio'n' = NOT considered in the calculation of soil bearing Wall Weight psf= 100.0 Load Factors Short Term Factor = Building Code IBC 2015,ACI Equiv.Solid Thick. = Dead Load 1.200 Masonry Block Type = Medium Weight Live Load 1.600 Masonry Design Method = ASD Earth, H 1.600 Concrete Data Wind,W 1.000 ft psi= 3,000.0 Seismic, E 1.000 Fy psi 60,000.0 Swenson Say Faget Title Storquest Tigard Page: 2 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 9 NOV 2017 Seattle,WA 98121 Description.... Foundation Wall-6'Grade Change Gridline 22 This Wall in File: H:\Users\randerson\ Projects\Magellan\Storquest Self Storage\Calcs\storquest wall RetainPro(c)1987-2016, Build 11.16.11.12 License:KW-06052576 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To:SWENSON SAY FAGET Concrete Stem Rebar Area Details Bottom Stem Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0.1749 in2/ft (4/3)*As: 0.2333 in2/ft Min Stem T&S Reinf Area 1.152 in2 200bd/fy:200(12)(4)/60000: 0.16 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12)(8): 0.1728 in2/ft Horizontal Reinforcing Options: One layer of: Two layers of: Required Area: 0.1749 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area: 0.31 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area: 0.6503 in2/ft #6@ 27.50 in #6@ 55.00 in Footing Dimensions &Strengths r Footing Design Results ' Toe Width = 1.67 ft Toe Heel Heel Width = 0.67 _ Factored Pressure = 2,310 2,080 psf Total Footing Width = 2.34 Mu': Upward = 3,145 0 ft-# Footing Thickness = 12.00 in Mu':Downward = 251 0 ft-# Mu: Design = 2,894 -0 ft-# Key Width = 0.00 in Actual 1-Way Shear = 19.64 0.03 psi Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #5 @ 12.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = #5 @ 12.00 in Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ Btm.= 3.00 in Toe: #4@ 9.26 in,#5@ 14.35 in,#6@ 20.37 in,#7@ 27.78 in,#8@ 36.57 in,#9@ 46 Heel: Not req'd:Mu<phi*5*lambda*sgrt(fc)*Sm Key: No key defined Min footing T&S reinf Area 0.61 in2 Min footing T&S reinf Area per foot 0.26 in2 ift If one layer of horizontal bars: If two layers of horizontal bars: #4@ 9.26 in #4@ 18.52 in #5@ 14.35 in #5©28.70 in #6@ 20.37 in #6@ 40.74 in Summary of Overturning & Resisting Forces& Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-# lbs ft ft-# Heel Active Pressure = 857.5 2.33 2,000.8 Soil Over Heel = 2.5 2.34 5.8 Surcharge over Heel = Sloped Soil Over Heel = Surcharge Over Toe = Surcharge Over Heel = Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load = Axial Dead Load on Stem= 1,466.0 2.00 2,936.9 Load @ Stem Above Soil= *Axial Live Load on Stem = 1,250.0 2.00 2,504.2 Seismic Earth Load = 240.1 3.50 840.4 Soil Over Toe = = Surcharge Over Toe = Total 1,097.6 O.T.M. 2,841.2 Stem Weight(s) = 600.0 2.00 1,202.0 Earth @ Stem Transitions= = = Footing Weight = 351.0 1.17 410.7 Resisting/Overturning Ratio = 1.60 Key Weight = Vertical Loads used for Soil Pressure= 3,669.5 lbs Vert.Component = Total= 2,419.5 lbs R.M.= 4,555.4 If seismic is included,the OTM and sliding ratios *Axial live load NOT included in total displayed, or used for overturning be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201 resistance,but is included for soil pressure calculation. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance. Swenson Say Faget Title Storquest Tigard Page: 3 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 9 NOV 2017 Seattle,WA 98121 Description.... Foundation Wall-6'Grade Change Gridline 22 This Wall in File: H:\Users\randerson\ Projects\Magellan\Storquest Self Storage\Calcs\storquest wall RetainPro(c)1987-2016, Build 11.16.11.12 License:KW-06052576 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To:SWENSON SAY FAGET L Tilt 1 Horizontal Deflection at Top of Wall due to settlement of soil (Deflection due to wall bending not considered) Soil Spring Reaction Modulus 250.0 pci Horizontal Defl @ Top of Wall(approximate only) 0.118 in The above calculation is not valid if the heel soil bearing ressu€reexceeds that of the toe,. because the wall would then tend to rotate into the retained soil. FLOOR LOADS: FDL := 48•PSF LDL:= 5•PSF RDL:= 4•PSF STORQUEST STORAGE TIGARD,OR.97223 FLL := 125•PSF LLL:= 62.5•PSF RLL:= 30•PSF 11/7/17 RN NOTE:THREE STORY BUILDING.NOT ALL LOAD LOCATIONS CALLED OUT SIMILAR FRAMING HAS SAME LOADING NOTE:DEAD LOAD OF CONCRETE AND MASONRY WALLS NOT INCLUDED IN LOADS: STUD LOAD WITH FULL ROOF LOAD @30"o/c: TW:= 30•IN L:= 10-FT DL:= TW L•(RDL+ 2-FDL) DL= 2500 LB LL := TW L•(2FLL) LL = 6250 LB SL:= TW-L•RLL SL= 750 LB DBL.STUD LOAD W/FULL ROOF LOAD& 1/2 LOCKERS: TWA:= 15.1N TW:= 30•IN DL:= L•[TW(RDL+ 2-FDL) + TWL•LDL] DL= 2562.5 LB 2 LL := L•[TW.(2FLL) + TWA•LLL] LL= 7031.25 LB SL:= TW L•RLL SL= 750 LB DBL.STUD LOAD W/FULL ROOF LOAD&LOCKERS: TW:= 30 IN DL:= TW L•(RDL+ 2•FDL+ LDL) DL= 2625 LB 3 LL:= TWL•(2•FLL+ LLL) LL= 7812.5 LB SL:= TW L.RLL SL= 750 LB DBL.STUD LOAD 10 FT W/FULL ROOF LOAD&LOCKERS AT CORR.: TW:= 3.75•FT L:= 10•FT DL:= TW L•(RDL+ 2.FDL+ LDL) DL= 3937.5 LB 4 LL:= TW L.(2.FLL+ LLL) LL= 11718.75 LB SL:= TWL.RLL SL= 1125 LB ENDWALL LOAD FLOOR AND ROOF LOAD @l2"o/c: TW:= 5•FT L:= 1-FT DL:= TW(RDL+ 2.FDL) DL= 500•PLF LL:= TW(2FLL) LL= 1250•PLF 5 SL:= TW RLL SL= 150.PLF ENDWALL LOAD FLOOR AND ROOF LOAD @ 12"o/c: TW:= 10-FT L:= 1•FT DL:= TW(RDL+ 2.FDL) DL= 1000•PLF LL:= TW(2FLL) LL = 2500•PLF 6 SL:= TW RLL SL= 300•PLF SECOND FLOOR POST LOAD AT OFFICE,40 FT LENGTH TW:= 10.FT L:= 40•FT 2 DL:= TW•L•(RDL + FDL) DL= 10400 LB 11 LL:= TW•L•(FLL) LL=25000 LB SL:= TW•L•RLL SL=6000 LB SECOND FLOOR POST LOAD AT OFFICE,37 FT LENGTH TW:= 10•FT L:= 37•FT 2 DL:= TW•L•(RDL + FDL) DL= 9620 LB 12 LL:= TW•L•(FLL) LL=23125 LB SL:= TW•L•RLL SL = 5550 LB SECOND FLOOR POST LOAD AT OFFICE,TRIANGULAR TRIB: TW:= 9•FT L:= 12.7•FT 2 2 DL1 := TW•L•(RDL + FDL) DL1 = 1485.9 LB LL1 := TW•L•(FLL) LL1 = 3571.875 LB 13 SL1 := TW•L•RLL SL1 = 857.25 LB SECOND FLOOR POST LOAD AT OFFICE,27 FT LENGTH TW:= 10.FT L:= 27-•FT 2 DL1 := TW•L•(RDL + FDL) DL1 = 7020 LB LL1 := TW•L•(FLL) LL1 = 16875 LB 14 SL1 := TW•L•RLL SL1 =4050 LB SECOND FLOOR POST LOAD AT OFFICE,27 FT LENGTH TW:= 10•FT L:= 27•FT 2 DL1 := TW•L•(RDL + FDL) DL1 = 7020 LB LLI := TW•L•(FLL) LL1 = 16875 LB SL1 := TW•L•RLL SL1 =4050 LB 13.75 POST LOAD NEAR OFFICE,FIRST FLOOR: TW:= 10 FT L:= FT 2 DL2:= TW•L•(RDL + 2-FDL) DL2 =6875 LB LL2:= TW•L•(2•FLL) LL2= 17187.5 LB SL2:= TW•L•RLL SL2 =2062.5 LB DLT:= DL1 + DL2 DLT= 13895 LB LLT:= LL1 + LL2 LLT=34062.5 LB 15 SLT:= SL1 + SL2 SLT=6112.5 LB 13.75 POST LOAD NEAR OFFICE,FIRST FLOOR, 13.75 FT LENGTH: TW:= 10 FT •L:_ FT 2 DL:= TW•L•(RDL + 2.FDL) DL=6875 LB LL:= TW•L•(2•FLL) LL= 17187.5 LB 16 SL := TW•L•RLL SL =2062.5 LB 7 SECOND FLOOR POST LOAD AT OFFICE,7 FTLENGTH: TW:= 5 FT L:= 2•FT DL:= TW-L•(RDL+ FDL) DL= 910 LB LL:= TW•L•(FLL) LL=2187.5 LB 17 SL:= TW•L•RLL SL = 525 LB 10.25 SECOND FLOOR POST LOAD AT OFFICE, 10.25 FT LENGTH: TW:= 5•FT L:= •FT 2 DL1 := TW•L•(RDL + FDL) DL1 = 1332.5 LB LL1 := TW•L•(FLL) LL1 = 3203.125 LB SL1 := TW•L•RLL SL1 = 768.75 LB SECOND FLOOR POST LOAD AT OFFICE,7 FT LENGTH: TW:= 5.FT L:_ •FT 2 DL2:= TW•L•(RDL + FDL) DL2 = 910 LB LL2:= TW•L•(FLL) LL2=2187.5 LB SL2:= TW•L•RLL SL2= 525 LB DLT:= DL1 + DL2 DLT =2242.5 LB LLT:= LL1 + LL2 LLT=5390.625 LB 18 SLT:= SLI + SL2 SLT= 1293.75 LB SECOND FLOOR POST LOAD AT OFFICE, 10.25 FT LENGTH: 10.25 TW:= 5.FT L:= -FT 2 DL1 := TW•L•(RDL + FDL) DL1 = 1332.5 LB LL1 := TW•L•(FLL) LL1 = 3203.125 LB SL1 := TW•L•RLL SL1 = 768.75 LB POST LOAD NEAR OFFICE,FIRST FLOOR,5 FT LENGTH TW:= 5•FT L:= 5•FT 2 DL2:= TW•L•(RDL + 2•FDL) DL2 = 1250 LB LL2:= TW•L-(2•FLL) LL2 = 3125 LB SL2:= TW•L•RLL SL2= 375 LB DLT:= DL1 + DL2 DLT=2582.5 LB LLT:= LL1 + LL2 LLT=6328.125 LB 19 SLT:= SL1 + SL2 SLT= 1143.75 LB POST LOAD NEAR OFFICE,FIRST FLOOR,5 FT LENGTH TW:= 5-FT L:= 5•FT 2 DL:= TW-L•(RDL + 2.FDL) DL= 1250 LB LL:= TW•L•(2•FLL) LL=3125 LB 20 SL:= TW•L•RLL SL = 375 LB POST LOAD NEAR ELEVATOR FIRST FLOOR, 7 FT LENGTH: TW:= 10 FT L:_ •FT 2 DL:= TW•L•(RDL + 2•FDL) DL=3500 LB LL:= TW•L•(2•FLL) LL= 8750 LB 21 SL:= TW-L•RLL SL= 1050 LB 5 30 POST LOAD NEAR NORTH ENTRANCE FIRST FLOOR,3 0 FT LENGTH: TW:= 2-FT L:= 2•FT DL:= TW-L•(RDL+ 2.FDL) DL= 3750 LB LL:= TW•L•(2•FLL) LL= 9375 LB 22 SL:= TW•L•RLL SL = 1125 LB Tubesteel LOAD: Beam 23 Load DLg1 := 4167LB LLg1 := 9931 LB SLB1 1192LB Total Load @23 TDL:= DLB1 TDL=4167 LB TLL:= LLg1 23 TLL= 9931 LB TSL:= SLB1 TSL = 1192 LB Tubesteel LOAD: Beam 24 Load DLg1 := 8972 LB LLg1 := 21944LB SLB := 2633LB Total Load @24 TDL:= DLg1 TDL= 8972 LB TLL:= LLg1 TLL=21944 LB 24 TSL:= SLBI TSL =2633 LB 20.5 POST LOAD NEAR ELEVATOR FIRST FLOOR, 20.5 FT LENGTH: TW:= 10 FT L:= 2 FT DL:= TW•L•(RDL+ 2•FDL) DL= 10250 LB LL:= TW•L•(2.FLL) LL=25625 LB 25 SL:= TW•L•RLL SL= 3075 LB 30 POST LOAD EAST SIDE NEAR ELEVATOR FIRST FLOOR,30 FT LENGTH: TW:= 10 FT L:= 2•FT DL:= TW•L•(RDL+ 2•FDL) DL= 15000 LB LL:= TW•L•(2•FLL) LL= 37500 LB 26 SL:= TW•L•RLL SL =4500 LB Tubesteel LOAD: Beam 27 Load DLg1 := 20200LB LLB,' := 50000LB Sum := 6000LB Total Load @27 TDL:= DLgI TDL=20200 LB TLL:= LLgt TLL= 50000 LB 27 TSL:= Sum TSL =6000 LB Tubesteel LOAD: Beam 28 Load DLg1 := 34175LB LLg1 := 75000LB := 9000LB Total Load @28 TDL:= DLg1 TDL= 34175 LB TLL:= LLg1 TLL= 75000 LB 28 TSL:= Sum TSL= 9000 LB POST LOAD NEAR ELEVATOR,FIRST FLOOR, 10 FT LENGTH: TW:= 5.FT L:= 10•FT 2 DL1 := TW•L•(RDL + 2-FDL) DL1 =2500 LB LL1 := TW•L•(2•FLL) LL1 =6250 LB SL1 := TW•L•RLL SL1 = 750 LB SECOND FLOOR POST LOAD NEAR ELEVATOR, 10 FT LENGTH: TW:= 5-FT L:= 100 FT 2 DL2:= TW•L•(RDL + FDL) DL2 = 1300 LB LL2:= TW•L•(FLL) LL2= 3125 LB SL2:= TW•L•RLL SL2 = 750 LB POST LOAD NEAR ELEVATOR,FIRST FLOOR, 5 FT LENGTH: TW:= 5 FT L:= 5 FT 2 DL3:= TW•L•(FDL+ LDL) DL3 =662.5 LB LL3:= TW•L•(FLL+ LLL) LL3=2343.75 LB SL3:= TW•L•0 SL3=0 DLT:= DL1 + DL2 + DL3 DLT=4462.5 LB LLT:= LL1 + LL2+ LL3 LLT= 11718.75 LB 29 SLT:= SL1 + SL2 + SL3 SLT= 1500 LB Tubesteel LOAD: POST LOAD NEAR ELEVATOR,FIRST FLOOR, 5 FT LENGTH: TW:= 5 FT L:= 5•FT 2 DL:= TW•L•(FDL+ LDL) DL=662.5 LB LL:= TW•L•(FLL+ LLL) LL=2343.75 LB SL := TW•L•0 SL= 0 Beam 30 Load DLg1 := 12139LB LLBI := 28903LB SLB1 3374LB Total Load @30 TDL:= DL+ DLg1 TDL= 12801.5 LB TLL:= LL+ LLB1 TLL= 31246.75 LB 30 TSL:= SL + SLg1 TSL= 3374 LB Tubesteel LOAD: POST LOAD NEAR ELEVATOR,FIRST FLOOR, 5 FT LENGTH: TW:= 5 FT L:= 5 FT 2 DL:= TW•L•(FDL+ LDL) DL=662.5 LB LL:= TW•L•(FLL + LLL) LL=2343.75 LB SL:= TW•L•0 SL =0 Beam 31 Load DLgi := 10514LB LLB1 := 24997LB SLB1 2812LB Total Load @31 TDL:= DL+ DLgi TDL= 11176.5 LB TLL:= LL+ LLgi TLL=27340.75 LB 31 TSL:= SL + SLgi TSL =2812 LB POST LOAD NEAR ELEVATOR,FIRST FLOOR, 10 FT LENGTH: TW:= 5.FT L:= 0 FT 2 DL1 := TW•L•(RDL + 2.FDL+ LDL) DLi =2625 LB LL1 := TW•L•(2•FLL+ LLL) LL1 = 7812.5 LB SL1 := TW•L•RLL SLi = 750 LB POST LOAD NEAR ELEVATOR,FIRST FLOOR, 5 FT LENGTH: TW:= 5•FT L:= 5 FT 2 DL3:= TW•L•(FDL+ LDL) DL3=662.5 LB LL3:= TW•L•(FLL+ LLL) LL3=2343.75 LB SL3:= TW-L•0 SL3 = 0 POST LOAD ROTATED DECK,SECOND FLOOR, 5 FT LENGTH: TW 10 FT L:= 10•FT 2 DL4:= TW•L•(FDL) DL4=2400 LB LL4:= TW•L•(FLL) LL4=6250 LB SL4:= TW•L•RLL SL4= 1500 LB Beam 50 Load DL31 := 2562LB LLB1 := 5894LB SLgi := 1415LB DLT:= DL1 + DLgi + DL3 + DL4 DLT= 8249.5 LB LLT:= LL1 + LLB1 + LL3+ LL4 LLT =22300.25 LB 32 SLT:= SL1 + SLg1 + SL3+ SL3 SLT=2165 LB POST LOAD EAST SIDE FIRST FLOOR, 10 FT LENGTH: TWL:= 1.5 FT TW:= 10 FT L:= 10 FT DL:= L•[TW•(RDL + 2•FDL) + TWL•LDL] DL= 10075 LB LL:= L•[TW•(2•FLL) + TWL•LLLI LL=25937.5 LB 33 SL:= TW•L•RLL SL = 3000 LB POST LOAD EAST SIDE FIRST FLOOR,5 FT LENGTH: TWL:= 1.5 FT TW:= 10 FT L:= 10 FT 2 DL:= L•[TW•(RDL + 2.FDL) + TWL•LDL] DL= 5037.5 LB LL:= L•[TW•(2•FLL) + TWL•LLLI LL= 12968.75 LB 34 SL:= TW•L•RLL SL = 1500 LB 10 POST LOAD EAST SIDE FIRST FLOOR, 10 FT LENGTH: TW:= 2•FT L:= 10 FT DL:= L•[TW•(RDL + 2•FDL) + TWL•LDL] DL=5075 LB LL:= L•[TW•(2•FLL) + TWL•LLL] LL= 13437.5 LB 35 SL:= TW•L•RLL SL = 1500 LB 10 POST LOAD EAST SIDE FIRST FLOOR, 10 FT LENGTH: TW:= 2•FT L:= 10 FT DL2:= TW•L•(RDL + 2.FDL) DL2 = 5000 LB LL2:= TW•L•(2•FLL) LL2 = 12500 LB 36 SL2:= TW•L•RLL SL2= 1500 LB 10 10 POST LOAD EAST SIDE FIRST FLOOR,5 FT LENGTH: TW:= 2•FT L:= 2 FT DL2:= TW•L•(RDL + 2.FDL) DL2 =2500 LB LL2:= TW•L•(2.FLL) LL2=6250 LB 37 SL2:= TW•L•RLL SL2 = 750 LB POST LOAD EAST SIDE FIRST FLOOR, 10 FT LENGTH: TW:= 10 FT L:= 10 FT DL2:= TW•L•(RDL + 2.FDL) DL2 = 10000 LB LL2:= TW•L•(2.FLL) LL2 =25000 LB 38 SL2:= TW•L•RLL SL2= 3000 LB POST LOAD EAST SIDE FIRST FLOOR,5 FT LENGTH: TW:= 10 FT L:= 10•FT 2 DL2:= TW•L•(RDL + 2.FDL) DL2 = 5000 LB LL2:= TW•L•(2•FLL) LL2= 12500 LB 39 SL2:= TW•L•RLL SL2= 1500 LB Tubesteel LOAD: Beam 40 Load DLg1 := 1496LB LLg1 := 3125LB SLg1 := 1800LB WLB1 —922 LB Total Load @40 TDL:= DLB1 TDL= 1496 LB TLL:= LLB1 TLL= 3125 LB TSL:= SLB1 40 TSL = 1800 LB TWL:= WLB1 TWL=—922 LB Tubesteel LOAD: Beam 41 Load DLg1 := 1604LB LLg1 := 3125LB SLg1 := 2700LB WLB1 —1712LB Total Load @41 TDL:= DLg1 TDL= 1604 LB TLL:= LLg1 TLL= 3125 LB TSL:= SLB1 41 TSL=2700 LB TWL:= WLB1 TWL=—1712 LB KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 FAX 951-301-4096 _ Printed;7 NOV 2017,2.26PM C, 0,a Beal> ri File=ZaSharedvoyUOBS10R TIGARD STOREQUEST STORAGE\STORQUEST TIGARD.ec6 ENERCALC,INC.1983-2017,Build:10.17.8.28,Ver:10.17.8.28 tic..#:KW 06006193 Licensee:KIWI II CONSTRUCTION Description: C Channel Connector Near North Entrance(Revised 11/7/17) CODE REFERENCES -:...:._ - -- ------ Calculations per AISC 360-10, IBC 2015,ASCE 7-10 Load Combination Set: IBC 2015 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(1Lat2559u 1753751 x -" C15x33.9 F Span=11.50 ft Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load(s)for Span Number 1 Point Load: D=2.50, L=6.250, S=0.750 k A 3.583 ft,(2.5'trib) Point Load: D=10.250, L=25.625, S=3.075 k a,,3.583 ft,(20.5'Beam from elevator) DESIGN SUMMARY Design OK = Maximum BendingStress Ratio0.872: 1 Maximum Shear Stress Ratio= 0.287 : 1 Section used for this span C15x33.9 Section used for this span C15x33.9 Ma:Applied 110.506 k-ft Va:Applied 30.916 k Mn/Omega:Allowable 126.747 k-ft Vn/Omega:Allowable 107.784 k !i Load Combination +D+L+H Load Combination +D+1.-+H Location of maximum on span 3.581ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.158 in Ratio= 873>=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.223 in Ratio= 620>=240. I Max Upward Total Deflection 0.000 in Ratio= 0 <240.0 Overall Maximum Deflections Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L+H 1 0.2227 5.224 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 30.916 14.099 Overall MINimum 2.633 1.192 +D+H 8.972 4.167 +D+L+H 30.916 14.099 +D+Lr+H 8.972 4.167 +D+S+H 11.606 5.359 +D+0.750Lr+0.750L+H 25.430 11.616 +D+0.750L+0.750S+H 27.405 12.510 +D+0.60W+H 8.972 4.167 +D+0.70E+H 8.972 4.167 +0+0.750Lr+0.7501+0.450W+H 25.430 11.616 +D+0.750L+0.750S+0.450W+H 27.405 12,510 +D+0.750L+0.750S+0.5250E+H 27.405 12.510 +0.60D+0.60W+0.60H 5.383 2.500 +0.60D+0.70E+0.60H 5.383 2.500 D Only 8.972 4.167 Lr Only L Only 221.944 9.931 S Only 2.633 1.192 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 FAX 951-301-4096 Printed:7 NOV 2017, 2:41PM Steel Seam File=Z:lSharedVoyIJOBS10R\TIGARDSTOREQUEST STORAGEISTORQUESTTIGARD.ec6 ENERCALC,INC.1983-2017,Build:10.17,8,28,Ver:10.17.8.28 Lie.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: CHANNEL AT EAST SIDE NEAR ELEVATOR 11'-3"(Revised 11/7117) CODE REFERENCES Calculations per AISC 360-10, IBC 2015,ASCE 7-10 Load Combination Set: IBC 2015 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending dli > 54a > t )u0.r 53) cn ) C15x33.9 ,44 Span=11.330 ft Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load(s)for Span Number 1 Point Load: 0=15.0, L=37.50, S=4.50 k aa,0.6670 ft.(30'Beam 26) Point Load: D=15.0, L=37.50, S=4.50 k a,10.667 ft(30'Beam 26) Point Load: 0=5.0, L=12.50, S=1.50 k(a.0.6670 ft,(10'beam) Point Load: 0=5.0, L=12.50, S=1,50 k A 10.670 ft,(10'beam) DESIGN SUMMARY ties_i•n OK Maximum Bending Stress Ratio = 0.371 : 1 Maximum Shear Stress Ratio= 0.651 : 1 Section used for this span C15x33.9 Section used for this span C15x33.9 Ma:Applied 47.080 k-ft Va:Applied 70.221 k Mn/Omega:Allowable 126.747 k-ft Vn/Omega:Allowable 107.784 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 4.791 ft Location of maximum on span 11.330 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.101 in Ratio= 1,346>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.143 in Ratio= 953>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections Load Combination Span Max 'Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L+H 1 0.1427 5.665 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 70.163 70.221 Overall MINimum 5.997 6.003 +D+H 20.184 20.200 +D+L+H 70.163 70.221 +D+Lr+H 20.184 20.200 +D+S+H 26.181 26.203 +D+0.750Lr+0.750L+H 57.668 57.716 +0+0.750L+0,7505+H 62.166 62.218 +D+0.60W+H 20.184 20.200 +D+0.70E+H 20.184 20.200 +D+0.750Lr+0.750L+0.450W+H 57.668 57.716 +D+0.750L+0.750S+0.450W+H 62.166 62.218 +D+0.750L+0.750S+0.5250E+H 62.166 62.218 +0.60D+0.60W+0.60H 12.110 12.120 +0.60D+0.70E+0.60H 12.110 .. 12.120 D Only 20.184 20.200 Lr Only '2,gyp KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 FAX 951-301-4096 Printed:7 NOV 2017,2;41 PM Steel Beam File=Z:1Shared roytJOBS1OR1TIGARD STOREQUEST STORAGEISTORQUEST TIGARD.ec6 ENERCALC,INC.1983-2017,Build:1017.8.28,Ver:10.17.8.28 Ito.#»KW-06006193 Licensee:KIWI II CONSTRUCTION Description: CHANNEL AT EAST SIDE NEAR ELEVATOR 11-3"(Revised 11,7/17) Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 L Only 49.979 50.021 S Only 5.997 6.003 W Only E Only H Only KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 FAX 951-301-4096 Printed:7 NOV 2017,2:46PM Steel Bear11 File=Z:lShared1oy\J0BS10RITIGARDSTOREQUEST STORAGESTORQUESTTIGARD.ec6 ENERCALG,INC.1983 2017,Build:10,17.8.28,Ver:10.17.8.28 Lit.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: EAST CONNECTOR 50'BEAM(Revised 11/7/17) CODE REFERENCES Calculations per AISC 360-10,IBC 2015,ASCE 7-10 Load Combination Set: IBC 2015 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 0(15)L(3 .5)S(4.5) 0(15)L(3X.5)3(4.5) D(15)1(37 5)S(4..5) 0(15)1(37.5)8(4.5) I '�^. PW''':; '' F A' O .711,` SVT SW �s 5 -:e1We .;R ^r MST; .F any-TF- Alk W40x167 Span=50.0 ft I. Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load(s)for Span Number 1 Point Load: D=15.0, L=37,50, S=4.50 k a 10,0 ft.(30'Beam) Point Load: D=15,0, L=37.50, S=4.50 k A 20.0 ft,(30'Beam) Point Load: D=15.0, L=37.50, S=4.50 k Si 30.0 ft,(30'Beam) Point Load: D=15.0, L=37,50, S=4.50 k A 40.0 ft,(30'Beam) DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.941 : 1 Maximum Shear Stress Ratio= 0.218 1 Section used for this span W40x167 Section used for this span W40x167 Ma:Applied 1,627.188 k-ft Va:Applied 109.175 k Mn/Omega:Allowable 1,729.042 k-ft Vn/Omega:Allowable 501.80 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 25.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span 4 1 Maximum Deflection Max Downward Transient Deflection 1.523 in Ratio= 393>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 2.203 in Ratio= 272 >=240. Max Upward Total Deflection 0.000 in Ratio= 0 <240.0 Overall Maximum Deflections Load Combination Span Max,"-"Defl Location in Span Load Combination Max."+"Dell Location in Span +D+L+H 1 2.2035 25.143 0.0000 0,000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 109.175 109.175 Overall MINimum 9.000 9.000 +D+H 34.175 34.175 +D+L+H 109.175 109.175 +D+Lr+H 34.175 34.175 +D+S+H 43.175 43.175 +D+0.750Lr+0.750L+H 90.425 90.425 +D+0.750L+0.750S+H 97.175 97.175 +D+0.60W+H 34,175 34.175 +D+0.70E+H 34.175 34.175 +D+0.750Lr+0.750L+0.450W+H 90.425 90.425 +3+0.750L+0.750S+0.450W+H 97.175 97.175 +D+0.750L+0.750S+0.5250E+H 97.175 97.175 +0.60D+0.60W+0.60H 20.505 20.505 +0.60D+0.70E+0.60H 20.505 20.505 D Only 34.175 34.175 Lr Only 9 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 FAX 951-301-4096 Printed:7 NOV 2017,246P Steel Beern File=Z:1Sharedlroy\JOBS1OR1TIGARD STOREQUEST STORAGEISTORQUEST TIGARD.ec6 ENERCALC,INC 1983-2017.Build:10.17.8.28,Ver:10.17.8.28 Uc.#;KW-06006193 Licensee:KIWI II CONSTRUCTION Description: EAST CONNECTOR 50'BEAM(Revised 11/7117) Vertical ReactionsSupport notation:Far left is#1 Values in KIPS _---- ---= _.__:_ ..._,..- -- ------------------- Load Combination Support 1 Support 2 L Only 75.000 75.000 S Only 9.000 9.000 W Only E Only H Only KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 FAX 951-301-4096 _ _ Printed:7 NOV 2017,2:59PM Steel Beam File=Z:ISharedtroy\JOBS\OR\TIGARD STOREQUEST STORAGE\STORQUEST TIGARD ec6 ENERCALC,INC.1983-2017,Build.10.17.8.28,Ver:10.17.8.28 Lic f#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 20'BEAM AT EAST SIDE NEAR ELEVATOR(Revised 1117/17) CODE REFERENCES Calculations per AISC 360-10, IBC 2015,ASCE 7-10 Load Combination Set: IBC 2015 ................... . Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending r3( 3ll1k'. ') t3.," ) 0(3.032)L(7.025)S(1.685) 0(5)11(12,5)S(1 5) D(0.24)v L(0.825t 4 D(0.5)L(1.25)S(0.15) ° ., v D(0.24)_(0.8255) 8 p y $ Y' ..3 £F • .' ro., o e 5 >.M, tee•.`3 ?t, A, a > { W18x46 Span=20.0 ft Applied Loads __ _ Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load for Span Number 1 Uniform Load: 0=0.0480, L=0.1250 ksf,Extent=10.0->>20.0 ft, Tributary Width=5.0 fL(floor deck) Point Load: D=5.0, L=12.50, S=1.50 k A 5.0 ft,(10'beam) Point Load: 0=5.0, L=12.50, S=1.50 k A 15.0 ft,(10'beam) Point Load: D=2.60, L=6.250, S=0.750 k 0 5.0 ft,(2nd floor 10'beam) Uniform Load: 0=0.10, L=0.250, S=0.030 ksf,Extent=5.0-->>10.0 ft, Tributary Width=5.0 ft,(2 floor&roof) Uniform Load: D=0.0480, L=0.1250 ksf,Extent=0.0->>5.0 ft, Tributary Width=5.0 ft,(floor deck) Point Load: D=3.032, L=7.025, S=1.686 k na,10.0 ft,(2nd floor 16'beam) DESIGN SUMMARY Design OK Maximum BendingStress Ratio LL= .,._: .. 0.981: 1 Maximum Shear Stress Ratio= 0.315 : 1 Section used for this span W18x46 Section used for this span W18x46 Ma:Applied 222.054 k-ft Va:Applied 41.042 k Mn/Omega:Allowable 226.297 k-ft Vn/Omega:Allowable 130.320 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 10.000ft Location of maximum on span Q.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 l Maximum Deflection Max Downward Transient Deflection 0.548 in Ratio= 437>=360 Max Upward Transient Deflection 0.000 in Ratio= 0 <360 Max Downward Total Deflection 0.778 in Ratio= 308>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L+H 1 0.7785 9.886 0.0000 0,000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 41.042 35.510 Overall MINimum 3.374 2.812 +D+H 12.139 10.514 +D+L+H 41.042 35.510 +D+Lr+H 12.139 10.514 +D+S+H 15.513 13.325 +D+0.750Lr+0.750L41 33.816 29.261 +D+0.750L+0.750S+H 36.347 31.370 +D+0.60W+H 12.139 10.514 +D+0.70E+H 12.139 10.514 +D+0.750Lr+0.750L+0.450W+H 33.816 29.261 +D-r0.750L+0.7505+0,450W+H 36.347 31.370 +D+0.750L+0.750S+0.5250E+H 36.347 31,370 +0.60D+0.60W+0.60H 7.283 6.308 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 FAX 951-301-4096 Printed:7 NOV 2017,2:59PM Steel Beail"It File=Z:\Sharedlroy\OBS\ORITIGARDSTOREQUESTI STORAGEISTORQUESTTIGARD.ec6 ENERCALG,INC.1983-2017,Build:10.17.8.28,Ver:10.17.8.28 Lie.#;KW-06006193: Licensee:KIWI II CONSTRUCTION Description: 20'BEAM AT EAST SIDE NEAR ELEVATOR(Revised 1117117) Vertical Reactions Support notation;Far left is#1 Values in KIPS Load Combination Support 1 Support 2 -+0.60D+0.70E+0.60H 7.283 6.308 D Only 12.139 10.514 Lr Only L Only 28.903 24.997 S Only 3.374 2.812 W Only E Only HOnly KIWI II CONSTRUCTION Project Title: I 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 FAX 951-301-4096 Printed:7 NOV 2017.326P Steer Beam File=.Z9Shared1roy\JOBSiORITIGARD STOREQUEST STORAGEISTOROUEST TIGARD.ec6 ENERCALC,INC.1983-2017,Build:10.17.8.28,Ver.10.17 8.28 Lic.';/t:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: Second Floor North Office Canopy&Floor Deck Conn.(Revised 1117/17) CODE REFERENCES Calculations per AISC 360-10, IBC 2015,ASCE 7-10 Load Combination Set: IBC 2015 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 0(0:18)8(1.5)W(-1.517) D(0.18)8(1.5)W(-1.317) 0(0.26)L(0.625)S(0.15) e o 1 I % .�.4 .. 3 J , k.\fey <F W12x14 Span=10.0 ft 1 Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D=0.0520, L=0.1250, S=0.030 ksf, Tributary Width=5.0 ft,(Floor&roof) Point Load: D=0.180, S=1.50, W=-1.317 k(a),4.0 ft,(Canopy Load(L=6',TA=51) Point Load: 0=0.180, S=1.50, W=-1.317 k A 9.0 ft,(Canopy Load(L=6',TA=5')) DESIGN SUMMARY Desi.n OK Maximum Bending Stress Ratio = 0.323: 1 Maximum Shear Stress Ratio= 0.140 : 1 Section used for this span W12x14 Section used for this span W12x14 Ma:Applied 14.043 k-ft Va:Applied 5.973 k Mn/Omega:Allowable 43.413 k-ft Vn/Omega:Allowable 42.754 k Load Combination +D+0.750L+0.750S+H Load Combination +D+0.750L+0,750S+H Location of maximum on span 4.543ft Location of maximum on span 10.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.055 in Ratio= 2,182>=360 Max Upward Transient Deflection -0.023 in Ratio= 5,219>=360 Max Downward Total Deflection 0.098 in Ratio= 1224>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+0.750L+0.750S+0.5250E+H 1 0.0980 5.000 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 5.190 5.973 Overall MINimum 0.344 -0.065 +D+H 1.496 1.604 +D+L+H 4.621 4.729 +D+Lr+H 1,496 1.604 +D+S+H 3.296 4.304 +D+0.750Lr+0.750L+H 3.840 3.948 +D+0.750L+0.7505+H 5.190 5.973 +D+0.60W+H 0.943 0.577 +D+0.70E+H 1.496 1.604 +D+0.750Lr+0.750L+0.450W+H 3.425 3.177 +D+0.750L+0.750S+0.450W+H 4.775 5.202 +D+0.750L+0.750S+0.5250E+H 5.190 5.973 +0.60D+0.60W+0.60H 0.344 -0.065 +0.60D+0.70E+0.60H 0.898 0.962 D Only 1.496 1.604 Lr Only L Only ! 3.125 3.125 I S Only 1.800 2.700 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 FAX 951-301-4096 Printed:7 NOV 2017,326PM Steel Beam File=Z:\Sharedlroy\JOBSOORITIGARDSTOREQUESTSTORAGE ISTORQUESTTIGARD,ec6 ENERCALC,INC.1983-2017,Build;10.17,8.28,Vert a17,8,28 Lic.;` :KW-06006193,' Licensee:KIWI IE CONSTRUCTION> Description: Second Floor North Office Canopy&Floor Deck Conn.(Revised 11/7/17) Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 W Only -0.922 -1.712 E Only H Only KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 FAX 951-301-4096 Punted:7 NOV 2017, 157P Steel Beam File=Z:1Sharedkoy\JOBStOR1TIGARD STOREQUEST STORAGEISTORQUEST TIGARD.ec6 ENERCALC,INC.1983-2017,Build:10.17,8.28,Vec10.17.8.28 Lic.#:KW-06006193 Licensee:KIWI Il CONSTRUCTION Description: 2nd Floor Beam Near Elevator 15'•8"(Revised 11/7/17) CODE REFERENCES Calculations per AISC 360-10, IBC 2015,ASCE 7-10 Load Combination Set: IBC 2015 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 1:x(1.3)L(3 125)S(0.75) e v D(0.26)L(0.625)S(0.15)o o 0 e 4' . ,� t. ` ft zW,"-5r" C is ' r'.'A ' .,V ase rcn t 'ia'#, o u -,y r� r.�" s x F; � s7 �sl 1. W12x14 Adk Span= 15.670 ft F d Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D=0.0520, L=0.1250, S=0.030 ksf, Tributary Width=5.0 ft,(1 floor&roof) Point Load: D=1.30, L=3.125, S=0.750 k(?a 5,0 ft,(one floor&roof) DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.916: 1 Maximum Shear Stress Ratio= 0.235:1 Section used for this span W12x14 Section used for this span W12x14 Ma:Applied 39.765 k-ft Va:Applied 10.057 k Mn/Omega:Allowable 43.413 k-ft Vn/Omega:Allowable 42.754 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 6.268ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.471 in Ratio= 398>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.676 in Ratio= 278 >=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections Load Combination Span Max ""Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L+H 1 0.6758 7.656 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS , Load Combination Support 1 Support 2 Overall MAXimum 10.057 8.456 Overall MINimum 1.686 1.415 +D+H 3.032 2.562 +0+L+H 10.057 8.456 +D+Lr+H 3.032 2.562 +D+S+H 4.718 3.976 +D+0.750Lr+0.750L+1-1 8.301 6.982 +D+0.750L+0.750S+H 9.565 8.043 +D+0.60W+H 3.032 2.562 +D+0.70E+H 3.032 2.562 +D+0.750Lr+0.750L+0.450W+H 8.301 6.982 +D+0.750L+0.750S+0.450W+H 9.565 8.043 +D+0.750L+0.750S+0.5250E+H 9.565 8.043 +0.60D+0.60W+0.60H 1.819 1.537 +0.60D+0.70E+0.60H 1.819 1.537 D Only 3.032 2.562 Lr Only L Only 7.025 5.894 S Only 1.686 1.415 W Only me i 3i-0' __..._f— 2Y-cr .. 5 4° 4'-8° 1V-0° ,d-0' 10-d td-0' 5'-4' 4- � ,d-0 — id-0' ' id-0° id-0° id-0a' id-0° ID'-0' td-0' 10'-7_— g'_y0°^ —_7D=0 a, III , ti a I ; ' &I MI= � ''' ?fir,,, >:- ? ;i 7.� ,;.->:" , 't i',.�..1,-t-ss`' 'I t�t' . °:-. s .„,w w -. ' :„"F” . -z,,,,,-, �a , '• ..-, ��. - - , a _ , Iiiii -- , 1 ., _ lomat .. Iasi iiii IIIE MEE 1 1 1101 .„ $ I fi far " ,� •r 7 ,4.....—,,..-,„-,....,-„,:,„--.....,,,,. , , t s � a ..;; �:T„. ; ;,� �w .,4, hMr "x" rm'ysfhk ' � 'w. Nxx'."la: �;"'"g '� ,.¢'"" • x,r,a : .. -: I. yd m' y srxa :?c �, �a::. ...;L ,na t: ',. k:- ^8._: '� `"F'a. w A;.° ,,, ��.x:>� •b:�' W>3 .a< ,z;„�--' "r�`", ':..,1;-,-;<sem« '"• ?":: :5 -011.„.... —> h3, v '" All , 0. M11111111111111§ ii �b �� F b 'r NM �� 1111113111111111•1111 i : e.. '..,,,,3h r •� Ss : �..F��B...,4 a •srx `'Imilimiin 3'. b �� >i.�tt .r•A� '" , s".'.:°.x:; ". ;w� .< �"�ca.... _•e�.'y'��,G,...,_�>..;,a�x.,.r<:�..r`„ .:.:� r4.zm� ,"`�,.<ic•V"` zr `,sa ...a jr 3°� ....... �, g7B Me z n.,. "•' 'si• ar r, rs 'r .�.. s .5„•ac-a,. , A '^� i MI 10 , F a © btu mos { ° wt2,u h a k I II � � • D At_ , , -.., !Eiji! , u' 3 Arl 3 £''' b ' :y a -' .7 - `�#i i ?� - r.,,,. ,- �, ^- yt'�. � E `s ,."--„„ .•'_'..-_, ' '"-.s-<_ < ' w26sa "it W1x14 ( :. .d�,� y;, ""'i , `�^�` .-•� "'u`" ,e 'x`' :•i '' `': .,r".:f :—, '� c , -• 'b ,1 F-- _._ . _ .__ ., .__ ...... �...c�-z•;*s� .......fit p?c.,:, rx..ranks 'tis, 'z :ta.... ,,. .w;.,. t g•..3, r� E ..,a , s':y��r�'�,..� _.., Sw ..••a` -�r�,:-;,k-....c.'v ;� x, ' ,� ... > � , sxa�e�•r�,%'�r�"".�.�, I , zr "x" r s . "Dilii "" :z - r,., --;_», zc '- -r"`'II_,.".''*" .a .;.5s 3'^..-.r..."";, ��,i' Y3:.-,�,,,. „`,� %... ,. '' a` „sem .e� '33'� 6.�...., ..�.• Wr, ," 11 y..:. a It .- .:" z ... . -:: ::' ate, ,.a"" a TME ei "„_">" 9 ... + . v. w" 3 Vi ._ : H b \wrest;mi:2�n,.,.,.,.3,,,:..���.".F..c�3•�"S� .�3ve�V£..{.��.aw.v. z`'. `s € �,C x �i,,,. �x•.r,..�Y�yF..�"`.. ..",w (,.:- •, .•u�ifill9,11111:6_ 30::::: r`-• 'iamaMici ^�\ ... AJi:I Mill Mil , _ F�yY�'�''.� eea4� '":`'-°�� C , a- �x '`i�,:.,.�.""`, r•M". :r^. •:..•.,. ,wxz�a* f t r"^`ciz�,z` �t A'� "'.^^•iAki>H�F•`c,Y'a�' "u" Z.. 3� `-'�-*. ,y ?u 4I :tom g ::,,, Fi ,irzu,,,,,.... :.,:07:,mr-'���.a3."2 r - 9ctsru w20 ' __ ___ '' k i 1 I. ;0_,=':.15tit''' : #4.t 8 ' a = z J 1.2. od a�' ISI46.a 6i.4' 7. td-0" id-G ffi-C' 7C-0' ie-cr td-0' ,0'--0 15-0' " , 3 f Li so FD- bi F. ._wtate Is:'� _ f'.�2f14.5 __.-_ _.__..._ ._ # ...._ ____ _. D--- r im, ' ' i 4 '111:74.°I-4: ' P. i i ! , vagd i { m i 45-O / a 210.-W 31t-0 d, 0° ,r zr a 61 �,2 6 es.) 6 (5 V1 6 �9 1r0 1 92 13 14 15 96 17 18 19 20 21 a ® olst. LEVEL FRAMING ,e., 0."A I C—.1/4•3+4..a 4. An r \ y / \ \ 9 Y (� 10 210.-0. 12 13 14 15 16 17 B 190 21 22 Krwil/ ++ y �- 1' ' -r ONSTRUCTION IN '��"V� 700'-0" — _... _.._-- y 17-0'_4 re..•...tn. Phew a y 19'-10• „5'-7 5-a'� la-o• 195-0 y IO-0- 10-0- 10-0- 1, IO'-0' 10'0' 10'-0' 7V-o' y 17-0' 10-0' j, la,d . I0-0' {rl /00'0 02-0'._j, 10,-2' 9'-10' �. an: ` 4 ~ Uri Rj4!jknnom m�nC ' a r TI ® I 6 ........a .. ----,�---- --- II -(12) Kiwi II Notes: 2016-07-02-Drafting Started-M73 12 I ---T : ^'- �. .- -Y- -,- -, ` ��; b' 2016-06.19-Revfew Set-CHH r �(l�\J' _ I I : ,0 bre Z. _ per 2016 1-01-PLAN CHE2016-08-25-For CK-ART .......� f.. �- ... ..._.. —J '....... ..._. _ _. .. .... , _.____' _. 1_G \ i� \\ 2016-12-08-PLAN.CHECK-ART®. 'f' II 1 I Iof C • -, \` (',_F'. [ e :1 2017.0141-Revised unit mia per pp t . 1 . . . . . . . . . . . . . . . . . . . . . 1' 3017-07JO.PLAN CHECK.ARTLZ� Y' 1 , , F 2017-09-22 8 5 Removal DG , asemen emova 1 • f — v b L L J s4,...` �; r I _ � � O O {1-1- ..., j.._. �� T �., .. -4 r -��ca' _ __T_"-4 _ -I h 7 Pff: h�- REF: NL- J V b_ v zz • i ��I{' b� tf (`+ 1 ... =-1111 } b11 I I I 1 § u vrr,/ f I rill b r-- --'7 �ry -T-----: , r -- ,� .- -•__, I b REFi -0 : - REF:DETAIL- ' 1----i---1 I sIl I I I I 1I ti 4'' I t „ I ell I \ H i (,\ ; , 1 ■ I K b 1 ral. hrg 2016-08-25-For Submittal-CH 0- : 1.--- REF':ttTAl G 1t`a II ti J__.-... j....._ I. ... 1. -Q �\ ••18" .� �\ ARCHITECT INFO. r M _ ! I • 4 1 i ICa O O c 1 I 1 �'� REF:DETAIL- REF:OETNL- &..._..i - i - - -.L -- J. _..L,------ ._.,.._ _...:. ...... ..._ _... .... _....._.. -.._ __.ZJ ZJ I! e , Q- _ _ r-- {off 1 i • •--J5"" b GENERAL CONTRACTOR INFO: b . I °°` _ . 44-141211.1 r„ PT b Uf L t! I i, L -�- 1 -� I. �P aI ai ; OWNER INFO: C} 3I • 1 iA0- ,1 ... . . I 1 1 __ 5 _� I _. . .i, . PROJECTINFO:a.: , T STORQUEST STORAGE /V-9' ,� ttl-o' y t0-o' y 15 C /r//././ 12740 S.W PACIFIC AVE. 27-0• t 45-0' y - 105'-Vy1Y-r y 22'-6" yno•o• TIGARD,OR..97223 V b2f � b7 66 a 10 11 12 13 14 1 16 17 18 19 20 21 22N eotR ,�•/�/.�. BUILDING BUILDING V - 2nd. LEVEL HEAVY STEEL LAYOUT ,�`'a /```' 2nd,LEVEL HEAVY STEEL LAYOUT SCALE=3/32"=1'-O" SITE INDEX: ,, SHEET NUMBER KS4a l KIWI II CONSTRUCTION 11/20/17 28177 KELLER ROAD MURRIETA,CA92563R r (877)465-4942 , (951)301-8975 6 (951)301-4096 FAX �. 13 411 CC ATTN:ART LEON NOV 2 B )17 STRUCTURAL CALCULATIONS FOR .�4� Q1` � b STORQUEST IL`r N; BUiLDIG DiViJlvPd 12740 S.W. PACIFIC AVE. WNW Tigard, OR 97223 BOW ASO 8' DESIGN LOADS(PER"2012"IBC,2014 OSSC): GROUND SNOW LOAD,.. GL:= 20•PSF H:= 35•FT ROOF LIVE LOAD LL := 20.PSF FLOOR LIVE LOAD FLL := 125•PSF ROOF DEAD LOAD......... DL:= 4•PSF FLOOR DEAD LOAD FDL := 48,PSF WIND LOADING @ 120 MPH,EXPOSURE B FROM (ASCE7-10) 0.6 FACTOR FOR ASD HORIZONTAL(TRANSVERSE) HT:= 17.6•PSF Hr= 17.6•PSF VERTICAL(ROOF UPLIFT) Vu:= —13•PSF Vu = —13•PSF SEISMIC LOADING I := 1.0 Ss:= .97 MAX.GROUND MOTION S1 := .42 MAX.GROUND MOTIONRE v- 1 Fa:= .94 SITE COEFFICIENT SITE CLASS E Fv:= 2.4 SITE COEFFICIENT SMS:= Fa•Ss SMs= 0.912 SM1 := Fv•S1 SM1 = 1.008 2 2 SOS= 3•SMs Sas= 0.608 Sal = 3•SM1 Git P• Tigar d R:= 5.0 RESPONSE MODIFICATION COEFF.(ASCE7-10 TABLE 12.2 A • fr fed Flaw" SPECIAL REINFORCED MASONRY SHEARWALLS B ;� I , rla�0 � T SEISMIC DESIGN CATEGORYD SEISMIC FACTOR FOR BUILDING OFFICE COPY SOS Cs:= R CS= 0.122 (ASCE7-10 12.8-2) Csmin:= .044•Sas.l Csmin = 0.027 (ASCE7-10 12.8-5) SOILS FOUNDATION AND MASONRY DESIGN BY OTHERS, SEISMIC PARAMETER PER GEOTECHNICAL REPORTBY GEODESIGN,INC.PROJECT: WILLIAMWG-1-01 DATED 5/19/16. 1 ASCE 7-IO TIGARD MAIN WIND FORCE RESISTING SYSTEM: ENCLOSED CATEGORY II EXPOSURE 13 V:= 120 MPH h:= 35•FT WALLS Kd := .85 TABLE 26.6-1 Kzt:= 1.0 SECTION 26.8.2 Kh:= .73 TABLE 27.3-1 Kz:= Kh GCpi:_ -.18 PER FIGURE 26.11-1 G:= .85 SECTION 26.9.4 Cpw:= .8 WINDWARD Cp FIGURE 27.4-1 WALLS Cpl:= -.5 LEEWARD Cp FIGURE 27.4-1 WALLS Cp:= Cpw-Cpl Cp= 1.3 qz:= .00256 Kz•Kzt•Kd V2 qz =22.874 EQ.27.3-1 p gz•PSF•(G.Cp-GCpi) p=29.393•PSF EQ 27.4-1 p..6 = 17.636•PSF ROOF FIGURE 27.4-1 ROOF Cpl := .9 ATEDGE Cp2 := .5 NEXT AREA IN Cp3:= .3 AT INTERIOR AREA p1 := gz•PSF•(G•Cp1 --GCpi) p1 =21.616•PSF p1..6= 12.97PSF p2:= gz•PSF•(G•Cp2 -GCpi) p2= 13.839.PSF p3:= gz•PSF•(G•Cp3 - GCpi) p3= 9.95-PSF PARAPETS SECTION 27.4.5 WINDWARD Pp:= l.5.p Pp =44.09.PSF Pp•.6 =26.454•PSF LEEWARD Pn := -1.0.p Pn =-29.393•PSF OVERHANGS: SECTION 27.4.4 Cpoh:= .8 pOH := p1 + gz•PSF•(G•Cpoh) pOH =37.17.PSF 2 COMPONENTS AND CLADDING: CHAPTER 30 PART 1,SECTION 30.4 WALLS FIGURE 30.4-1 NOTE VALUES MAY BE REDUCED 10% WHEN SLOPE IS LESS THAN 10 DEGREES ADJ := .9 GCpc:= -1.4•ADJ GCpc=-1.26 AT CORNERS GCpint:_ -1.1•ADJ GCpint=-0.99 AT INTERIOR REGIONS pc := gz•PSF•(GCpc+ GCpi) pc =-32.939•PSF pint:= gz•PSF•(GCpint+ GCpi) pint =-26.763•PSF ROOF FIGURE 30.4-2A 10 SF GCper:_ -2.8 AT CORNERS GCper:= -1.8 AT EAVES GCpintr:= -1.0 AT INTERIOR per:= qz•PSF•(GCper+ GCpi) per=-68.165•PSF per:= gz•PSF•(GCper+ GCpi) per=-45.291.PSF pintr:= gz•PSF•(GCpintr+ GCpi) pintr= -26.991•PSF ROOF FIGURE 30.4-2A 50 SF GCper:= -1.6 AT CORNERS GCper:_ -1.3 ATEAVES GCpintr:= -.95 AT INTERIOR per5:= qz•PSF•(GCper+ GCpi) per5=-40.716•PSF per5 := gz•PSF•(GCper+ GCpi) per5 =-33.854•PSF pintr5:= qz•PSF•(GCpintr+ GCpi;pintr5=--25.848•PSF ROOF FIGURE 30.4-2A 100 SF GCper:= -1.1 AT CORNERS GCper:= -1.1 AT EAVES GCpintr:= -.9 AT INTERIOR per:= qz.PSF•(GCper+ GCpi) per=-29.279•PSF per:= gz•PSF•(GCper+ GCpi) per=-29.279•PSF pintr:= qz•PSF•(GCpintr+ GCpi) pintr=-24.704•PSF 3 PARAPETS: SECTION 30.9 TEAR AWAY FROM ROOF TABLE 30.4-2A P1 := 28.PSF P2:= 28,PSF VALUES FOR 10 SF GCper:= -2.8 AI'CORNERS GCper:= -1.8 AT EAVES per:= gz•PSE(GCper+ GCpi) per=-68.165•PSF per:= gz•PSF•(GCper+ GCpi) per=-45.291•PSF p1 := pint+ pint p1 =-53.525•PSF PUSH INTO ROOF P5:= 28•PSF P7 := 64.4.PSF GCper:_ -2.8 AT CORNERS GCper:= -1.8 AI'EAVES p1 := pint+ per p1 =-72.053•PSF OVERHANGS: CORNERS Pohc:= 1.15•per5 Pohc =-46.823•PSF Pohc•.6 =-28.094•PSF Psc:= pc Psc=-32.939•PSF Psc•.6=-19.763•PSF EAVES Poh per5 Poh =-33.854•PSF Poh•.6=-20.312-PSF Pse:= pint Pse=-26.763.PSF Pse•.6 =-16.058•PSF 4 STRUCTURAL CALCULATIONS FOR 5 FT X 10 FT GRID DESIGN LOADS: LL:= 20•PSF DL:= 4.PSF WIND LOADING @ 120 MPH,EXPOSURE B >.:= .6 VERTICAL(ROOF UPLIFT) Vu:= -25.8•PSF•X Vu=-15.48•PSF Pu := Vu MATERIAL SPECIFICATIONS: STEEL -Fy-50 KSI BOLTS -A-307 QUALITY SCREWS-#12 TEK(UNLESS NOTED OTHERWISE) ROOF DECK DESIGN: USE 24 GAGE ULTRA-DEK PER MANUFACTURER'S TABLE SEE ATTACHED PURLIN DESIGN: L:= 10•FT ROOF DECK TO SPAN 5'BETWEEN PURLINS THEREFORE... W:= 5.FT•(DL+ LL) + 2.PLF W= 122•PLF L2 Mr:= W•--- Mr= 1220•FT•LB 10 Wu:= 5•FT•(-Pu-2.PSF) -2•PLF Wu=65.4•PLF L2 Mu:= Wu•— Mu =654•FT•LS 10 USE'Z' 4" X 2 112" X 16 Gk PURLINS Sx:= .71•CI d:= 4.IN ly:= 1.08•IN4 fb:= Mr fb=20619.718•PSI < Fb=30000PSI OK Sx 5 Cb:= 1.0 K:= .65 USING CONTINUITY Cb7r•irr•E•d•ly Fe:= 2 Fe=47316.359.PSI 03.1.2.1-15 Fy:= 50•KSI L2•K•Sx•2 2.78•Fy= 139000•PSI .56•Fy=28000.PSI THEREFORE Fbup:= Fe Fbup=47316.359.PSI 03.1.2.1-4 PER AISI DESIGN MANUAL Fbu := if(Fbup<Fy,Fbup•.6,Fy•.6) fbu := —Mu fbu = 11053.521.PSI < Fbu=28389.815.PSI Sx DESIGN CONTINUITY SPLICE: Mr= 1220•FT•LB USE 3#12 TEKS 18"APART Ma:= 619•LB•3.1.5•FT Ma =2785.5.FT.LB Mr = 0.438 OK Ma POST DESIGN: P:= W•10•FT P = 1220•LB USE 'C' 4" X 2.5" X 16 GA. UP TO 14 FT TALL SEE ATTACHED POST TO PURLIN CONNECTION DESIGN: P = 1220.LB USE(3)#12 TEKS Pa:= 619.3•LB Pa = 1857•LB P = 0.657 OK Pa POST TO BASE AT CONCRETE SLAB Pup:= (Wu)•10•FT Pup=654•LB USE(3)#12 TEKS AT BASE PLATE TO POST AND (2) 114"4)x 1.625" EMBED. TITEN HD AT BASE ANGLE TO SLAB Pupa:= 1200..6•LB WITH SPECIAL INSPECTION Pupa = 720•LB PER ICC ESR 2713 ATTACHED OK 6 6 SIMPSON Anchor DesignerT"" Company: KIWI II CONSTRUCTION Date: 12/7/2016 Engineer: ART LEON Page: 1/4 st , a�e: Software rongProject: w. a Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION.COM 1.Project information Customer company: Project description: Customer contact name: Location: Customer e-mail: Fastening description: Comment: 2.Input Data&Anchor Parameters General Base Material Design method:ACI 318-11 Concrete:Normal-weight Units: Imperial units Concrete thickness,h(inch):4.50 State:Cracked Anchor Information: Compressive strength,f.(psi):3000 Anchor type:Concrete screw 11).y: 1.0 Material:Carbon Steel Reinforcement condition:B tension,B shear Diameter(inch):0.250 Supplemental reinforcement:Not applicable Nominal Embedment depth(inch):1.625 Reinforcement provided at corners:No Effective Embedment depth,her(inch):1.190 Do not evaluate concrete breakout in tension:No Code report:ICC-ES ESR-2713 Do not evaluate concrete breakout in shear:No Anchor category:1 Ignore Edo requirement:Not applicable Anchor ductility:No Build-up grout pad:No hmin(inch):3.25 c.e(inch):3.00 Base Plate C, (inch): 1.50 Length x Width x Thickness(inch):4.00 x 4.00 x 0.06 Smin(inch):1.50 Load and Geometry Load factor source:ACI 318 Section 9.2 Load combination: not set Seismic design:Yes Anchors subjected to sustained tension:Not applicable Z Ductility section for tension:D.3.3.4.2 not applicable Ductility section for shear:D.3.3.5.2 not applicable Oo factor:not set Apply entire shear load at front row:No 1900 lb Anchors only resisting wind and/or seismic loads: No <Figure 1> Cf)I • ft lb A 8 0 lb Y 0 lb �� 0 ft-lb X • Oft-lb l Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com 7 SIMPSON Anchor DeSigl1@t TM Company: KIWIARTLEON I!CONSTRUCTION Date: 12/7/2016 Engineer: Page: 214 'O " �c Software Project: Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951 301 8975 E-mail:• ART@KIWICONSTRUCTION.COM <Figure 2> .T 1 � _ Jr: £ llJy lulu {f III rl�lf r 4 yy s di, n - r Recommended Anchor Anchor Name:Titen HD®-114"o Titen HD,hnom:1.625"(41mm) Code Report:ICC-ES ESR-2713 f 4 f� � f �' '�.Y ��v L�.F�` �✓ti•+^ • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strom-Tie Company Inc. 5956 W Las Positas Boulevard Pleasanton,CA 94588 Phone;925.560.9000 Fax 925,847.3871 wwwstrongtie.com 8 SIMPSON Anchor Designer TM Company: KIWI II CONSTRUCTION Date: 12/7/2016 Engineer: ART LEON Page: 3/4 Ro xe Software Project: Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART©KIWICONSTRUCTION.COM 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, No (lb) Vuax(Ib) Vuay(lb) \i(Vuax)2+(Vuay)2(Ib) 1 450.0 0.0 0.0 0.0 2 450.0 0.0 0.0 0.0 Sum 900.0 0.0 0.0 0,0 Maximum concrete compression strain(alas):0.00 <Figure 3> Maximum concrete compression stress(psi):0 Resultant tension force(Ib):900 Resultant compression force(Ib):0 Eccentricity of resultant tension forces in x-axis,e'Ns(inch):0.00 Eccentricity of resultant tension forces in y-axis,e`Ny(inch):0.00 �i' 0 2 X 4.Steel Strength of Anchor in Tension(Sec.D.5.1) N.(lb) ¢ ¢Naa(lb) 5195 0.65 3377 5.Concrete Breakout Strength of Anchor in Tension(Sec.115,21 Nb=k AaJfchar'5(Eq.D-6) it. :la f'e(psi) her(in) Nb(lb) 17.0 1.00 3000 1.190 1209 0.75¢Ncbg=0.75¢(ANo/ANco)LYec,N'f'ed,ArSuoiYcp,NNb(Sec.D.4.1 &Eq.D-4) AI*(in2) ANco(in2) '/ec,N %ed,N 'qc,N 'fcp,N Nb(lb) ¢ 0.75¢Ncbg(Ib) 19.88 12.74 1.000 1.000 1.00 1.000 1209 0.65 919 6.Pullout Strength of Anchor in Tension(Sec.0.5.31 0.750Np,,=0.75¢1Pc,PApNp(f'c/2,500)"(Sec.D.4.1, Eq.D-13&Code Report) KP Aa Np(lb) fo(psi) n ¢ 0.750Npn(Ib) 1.0 1.00 1104 3000 0.50 0.65 590 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com 9 SlMPSON Anchor Designer TM Company: KIWI II CONSTRUCTION Date: 12/7/2016 Software Engineer: ART LEON Page: 4/4 ok O Lie, Project: z Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION.COM 11.Results interaction of Tensile and Shear Forces(Sec.D.7) Tension Factored Load,N.(Ib) Design Strength,0N„(Ib) Ratio Status Steel 450 3377 0.13 Pass Concrete breakout 900 919 0.98 Pass(Governs) Pullout 450 590 0.76 Pass 114"0 Titen HD,hnom:1.625"(41mm)meets the selected design criteria. 12.Warnings -Per designer input,the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination.Therefore the ductility requirements of D.3.3.4.3 for tension need not be satisfied—designer to verify. -Per designer input,the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination.Therefore the ductility requirements of D.3.3.5.3 for shear need not be satisfied--designer to verify. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W,Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com 10 SIMPSON Anchor DesignerTM Company: KIWI II CONSTRUCTION Date: 12/7/2016 Engineer: ART LEON Page: 1/4 Software Project: oT�e Version 2.4.6025.20 j Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART@KIWjCONSTRUCTION.COM I.Project information Customer company: Project description: Customer contact name: Location: Customer e-mail: Fastening description: Comment: 2.Input Data&Anchor Parameters General Base Material Design method:ACI 318-11 Concrete:Normal-weight Units: Imperial units Concrete thickness,h(inch):4.50 State:Cracked Anchor Information: Compressive strength,fc(psi):3000 Anchor type:Concrete screw 'P v:1.0 Material:Carbon Steel Reinforcement condition:B tension,B shear Diameter(inch):0.250 Supplemental reinforcement:Not applicable Nominal Embedment depth(inch): 1.625 Reinforcement provided at corners:No Effective Embedment depth,het(inch):1.190 Do not evaluate concrete breakout in tension:No Code report:ICC-ES ESR-2713 Do not evaluate concrete breakout in shear:No Anchor category:1 Ignore 6do requirement:Not applicable Anchor ductility:No Build-up grout pad: No hmin(inch):3.25 coo(inch):3.00 Base Plate C„ae(inch):1.50 Length x Width x Thickness(inch):4.00 x 4.00 x 0.06 Smin(Inch):1.50 Load and Geometry Load factor source:ACI 318 Section 9.2 Load combination:not set Seismic design:Yes Z Anchors subjected to sustained tension:Not applicable Ductility section for tension:D.3.3.4.2 not applicable Ductility section for shear:D.3.3.5.2 not applicable Qo factor:not set Apply entire shear load at front row:No 0 lb Anchors only resisting wind and/or seismic loads:No <Figure 1> Cf) Oftlb M M • � 1300 lb r ! y O Ib 0 ft-lb X 0 ft-lb z:;_.- Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com 11 Company: KIWI II CONSTRUCTION Date: 12/7/2016 SIMPSON Anchor DesignerT^^ Engineer: ART LEON Page: 2/4 Software Project: Strori `,` Version 2.4.6025.20 .. — ® Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION.COM <Figure 2> r f i' fr ';'.7, k , r - _ 14''' -P!', p iI y�v l„/ 9 x, I' f,„ 4 }141 L: ] ' `lp �fw ( �31 i`:. 1, 3! „„ i ] I , r..ti ^� n Recommended Anchor Anchor Name:Titen HD®-1/4"0 Titen HD,hnom:1.625"(41 mm) Code Report:ICC-ES ESR-2713 f �'... fir, t . ,, ..,..., ,,.r.;,fx., ,04, h'-'" , 2 �� S Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com 12 SIMPSON Anchor DesignerT"' Company: KIWI II CONSTRUCTION Date: 12/7/2016 Software Engineer: ART LEON Page: 3/4 St�u'Qnggrle, Project: Version 2,4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION,COM 3.ResultingAnchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, Nae(lb) Vuax(Ib) Vuay(Ib) d(Vuax)2+(Vuay)2(ib) 1 0.0 0.0 650.0 650.0 2 0.0 0.0 650.0 650.0 Sum 0.0 0.0 1300.0 1300.0 Maximum concrete compression strain(%o):0.00 <Figure 3> Maximum concrete compression stress(psi):0 Resultant tension force(Ib):0 Resultant compression force(lb):0 Eccentricity of resultant tension forces in x-axis,e'Nx(inch):0.00 Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 11 Eccentricity of resultant shear forces in x-axis,e'vx(inch):0.00 Eccentricity of resultant shear forces in y-axis,e'vy(inch):0.00 K 8,Steel Strength of Anchor in Shear(Sec.0.6.1) Vsa(Ib) ¢igrout art 09m4Vsa(lb) 1695 1,0 0.60 1017 10.Concrete Pryout Strength of Anchor in Shear(Sec.D.6,31 onicpg=OlfcpAlcbg=glfep(ANN/ANco)Wec,N'Pedj i f Y s Jcp,NNb(Eq.D-41) kce Av.(in2) ANco(in2) 'ec,N Yed,N Tem Acp,N Nb(lb) 0 (Mpg(Ib) 1.0 19.88 12.74 1.000 1.000 1.000 1.000 1209 0.70 1320 11.Results Interaction of Tensile and Shear Forces(Sec.D.71 Shear Factored Load,Via(Ib) Design Strength,eV.(Ib) Ratio Status Steel 650 1017 0.64 Pass Pryout 1300 1320 0.98 Pass(Governs) 1/4"0 Titen HO,hnom:1.625"(41 mm)meets the selected design criteria. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie company Inc, 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com 13 Company: KIWI II CONSTRUCTION Date: 12/7/2016 SIMPSON Anchor DesignerTM Engineer: ART LEON Page: 4/4 „ 1nt . Software r4 Tier Project: Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION,COM 12.Warnings -Per designer input,the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination.Therefore the ductility requirements of D.3.3.4.3 for tension need not be satisfied—designer to verify. -Per designer input,the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination.Therefore the ductility requirements of D.3.3.5.3 for shear need not be satisfied—designer to verify. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax 925.847.3871 www,strongtie,com 14 SIMPSON Anchor DesignerTM Company: KIWI II CONSTRUCTION Date: 12/5/2016 Engineer: ART LEON Page: 1/4 6t +41 1 e- Software Project: Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION.COM 1.Proje t information Customer company: Project description: Customer contact name: Location: Customer e-mail: Fastening description: Comment: 2.Input Data&Anchor Parameters General Base Material Design method:ACI 318-11 Concrete:Normal-weight Units: Imperial units Concrete thickness,h(inch):4.50 Stale:Cracked Anchor Information: Compressive strength,Pe(psi):3000 Anchor type:Concrete screw W,v: 1.0 Material:Carbon Steel Reinforcement condition:B tension, B shear Diameter(inch):0.250 Supplemental reinforcement:Not applicable Nominal Embedment depth(inch):1.625 Reinforcement provided at corners:No Effective Embedment depth,her(inch):1.190 Do not evaluate concrete breakout in tension:No Code report:ICC-ES ESR-2713 Do not evaluate concrete breakout in shear:No Anchor category:1 Ignore 6do requirement:Not applicable Anchor ductility:No Build-up grout pad:No hmin(inch):3.25 c�(inch):3.00 Base Plate Cm;.(inch):1.50 Length x Width x Thickness(inch):4.00 x 4.00 x 0.06 S.:.(inch):1.50 Load and Geometry Load factor source:ACI 318 Section 9.2 Load combination:not set Seismic design:No • Anchors subjected to sustained tension:Not applicable Apply entire shear load at front row:No Anchors only resisting wind and/or seismic loads: No 1200 lb <Figure 1> ft-lb • �C 4 �'1 ` ✓ ..y , - . 4 0 lb rli :•,,tip` '" Y 0 lb 0 ft-lb 7 0 ft-lb d: Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax 925.847.3871 www.strongtie.com 15 SIMPSON Anchor Designer TM Company: KIWI II CONSTRUCTION Date: 12/5/2016 Engineer: ART LEON Page: 2/4 mating ie Software Project: Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION.COM <Figure 2> ( lrrit C r i ; { is € Recommended Anchor Anchor Name:Titen HD®-1/4'0 Titen HD,hnom:1.625'(41mm) Code Report:ICC-ES ESR-2713 cy.,4 L _ Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Srmpson Strong-11e Company Inc. 5956 W Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com 16 SIMPSON Anchor DesirinerTM Company: KIWI II CONSTRUCTION Date: 12/5/2016 Engineer: ART LEON Page: 3/4 Stiok�Tie Sof ware Project: Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION.COM 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, Ni,a(lb) V.(Ib) V.(lb) \l(Vue.)2+(Vuoy)2(fb) 1 600.0 0.0 0.0 0.0 2 600.0 0.0 0.0 0.0 Sum 1200.0 0.0 0.0 0.0 Maximum concrete compression strain(%e):0.00 <Figure 3> Maximum concrete compression stress(psi):0 Resultant tension force(Ib):1200 Resultant compression force(lb):0 Eccentricity of resultant tension forces in x-axis,e'N.(inch):0.00 Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 Y 0 2 X 4.Steel Strength of Anchor in Tension(Sec.D.5.11 Ns.(lb) to fiNba(lb) 5195 0.65 3377 5.Concrete Breakout Strength of Anchor in Tension(Sec.D.5.2) Na=kbde-Vfbher'S(Eq.0-6) ke Aa re(psi) het(in) Nb(lb) 17.0 1.00 3000 1.190 1209 6Ncbg=(/f(Awl ANA Pec,NTed,NPc,NPcp,NNb(Sec.D,4.1 &Eq.D-4) ANc(int) ANco(in2) 'Yeo,N Y'etl,N '1'c,N 'Pcy.N Nb(lb) O. 0A/bag(Ib) 19.88 12.74 1.000 1.000 1.00 1.000 1209 0.65 1226 6.Pullout Strength of Anchor in Tension(Sec.D.5.3) ONp"_0Kis.taNp(f0/2,500}"(Sec. D.4.1,Eq.D-13&Code Report) T",P 2. NP(lb) f'(psi) n 0 Op„(lb) 1.0 1.00 1104 3000 0.50 0.65 786 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847,3871 www.strongtie.com 17 SIMPSON Anchor DesignerTM Company: KIWI II CONSTRUCTION Date: 12/5/2016 Engineer: ART LEON Page: 414 Istrouovie Software Project: Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART©KIWICONSTRUCTION.COM 11.Results Interaction of Tensile and Shear Forces(Sec.D.7) Tension Factored Load,Nua(lb) Design Strength,eNr,(Ib) Ratio Status Steel 600 3377 0.18 Pass Concrete breakout 1200 1226 0.98 Pass(Governs) Pullout 600 786 0.76 Pass 1/4"O Titen HD,hnom:1.625"(41mm)meets the selected design criteria. 12.Warnings -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie,com 18 DESIGN LOADS: CS b . Ng— C t Amg., A ROOF LIVE LOAD: LL:= 20•PSF 4"RIGID INSULATION: RI := 1.55•.3333•PSF 6"V.B.INSULATION: VB:= .8•.5•PSF ROOF MEMBRANE: RM:= 1•PSF ROOF DEAD LOAD(20 GA): DL:= 2.04•PSF TOTAL DEAD LOAD: TD:= RI + VB RM + DL 2.043•PSF TD=6•PSF DESIGN ROOF DECK: USE 22 GA, B-DECK FOR 10 FT SPANS SEE MANUFACTURERS TABLE ATTACHED DESIGN TOP TRACK: w:= (TD+ LL)•10•FT w=259.996•PLF w•(5.33•FT)2 M:= 10 M =738.62•FT•LB Sxreq 30000.PSI Sxreq =0.295 CI USE 4.125" X 3" X 12 GA.TRACK TO SPAN UP TO 5'-4" BETWEEN STUDS sx:= .465•CI OK DESIGN POSTS AT ROOF LEVEL: P := w•5•FT P= 1299.981 LB USE'C'4"X2.5"X16 GAGE UP TO 11.5 FT TALL,B RACED AT MIDHEIGHT Pall:= 5215.LB SEE ATTACHED DESIGN FOR 10'BEAM SPAN AT LARGE DOORS: w:= 10•FT•(LL+TD) w=259.996•PLF M:= (10•FT)2•$ M = 3249.952•FT•LB Sxreq = 30000.PSI Sxreq= 1.3 Cl USE 'C' 8"X2.5"X16GA. Sx:= (1.694)•Cl Sx= 1.694.CI OK DESIGN CONNECTION: R:= u.).5.FT R= 1299.981 LB Vail:= 619•LB PER ICBG 2196 R -2.1 Vail USE(4)#12 TEKS AT EACH BEAM TO STUD CONNECTION DOUBLE EACH STUD AT BEAM LOCATIONS 19 B/ SECTIONAL PROPERTY DETERMINATION FOR SECTIONAL PROPERTY DETERMINATION FOR Ap=4•IN Ap=4.IN Bp=2.5•IN Bp =2.5•IN Cp= 0.773•IN Cp=0.773.1N t=0.059•IN t=0.059.1N R= 0.188.1N R=0.188-IN A= 0.586•SI Ad:= A.2 Ad= 1.1731N2 Ix= 1.559.1N4 Ixd;= Ix•2 Ixd= 3.1191N4 Sx= 0.78•CI Sxd:= Sx.2 Sxd= 1.559IN3 rx= 1.631•IN rx= 1.631•IN ly=0.532.1N4 Iyd:= (ly+A•xb2)•2 lyd=2.055 IN4 Sy=0.337•CIIyd Syd:= — Syd =0.8221N3 Bp ry =0.953.IN m = 1.383.IN _ Iyd ryd Ad ryd = 1.324 IN xb= 0.919.IN J =0.001.1N4 Jd =0.0011N4 Cw=2.244•I N6 Cwd =8.067 I N6 j =2.936•1N r0d:= V Ixd2+ lyd2 rOd =3.7351N4 x0=-2.302.1N r0 =2.978.1N Ma:= Sx•Fy•.6 Mad:= Sxd•Fy•.6 Ma= 1949.313•FT•LB Mad=3898.627-FT-LB 20 SINGLE POST DESIGN FIND ALLOWABLE AXIAL LOAD FOR”C" 'C' Ap=4•INX Bp=2.5.IN X 16 GA. AISI MANUAL Fy= 50000•PSI D:= Ap B := Bp d:= Cp Rx:= rx Ry:= ry RO:= r0 XO:= x0 ly:= 14.FT Ix:= 14•FT G:= 11300•KSl K:= 1.0 FIND ALLOWABLE STRESS FOR SECTION ir2.E Fel := Fel = 9363.642.PSI 2 K. ly Rv 2 vex:- vex=27437.708•PSI Ix 2 (K. Rx 1 7r2•E.Cw vt:= • G•J + vt= 5930.237-PSI A•R02 _ (K•ly)2 X02 (3:= 1 -- (3=0.402 R02 1 Fe2:= —• (vex+ vt) - (hex+ crt)2 -4•13•crex•6t 2•(3 Fe2= 5202.613•PSI Fel = 9363.642.PSI SECTION C4 Fe:= Fe2 Fn := Fe2 F Y Fn Fn:_ —.877•F 877•Fy 2 act Fn := .658�c •Fy Fn=895.406,PSI FIND EFFECTIVE AREA(Ae) 2 FLANGES: dL:_ (d-R-t) d=0.773.1N Fn:= if Xc < 1.5,.658X� •Fy, .877•Fy Xc Is:= dL3•t Is=0.001•IN4 En 4562.691.PSI 12 wf:= B -2•R-2•t wf= 2.007•IN d — =0.385 < 0.8 wf S:= 1.28 E B4.2 Fn S = 102.923 > --wf =34.017 > S•.328 =33.759 t 21 THEREFORE - f/ wf \\ _ r wf -3 wf 1 1 la:= if S < f, 115. S + 5 •t4,399• t -.328 .t4 n:= if S < t, 3 ' 2) t - L� )/ _ _� S/ - - l ( d =0.773IN k1 := [4.82-5.I '1JI.( —la t- .43 k1 =8865.899 TABLE B4.2 k2 := 3.57+ .43 k2 =4 k := if(k2 <k1 ,k2,k1) 2• 2 Fcr:= k• '� E •� � Fcr= 92165.502.PSI 12.(1 - .32) X:= Fn X=0.222 <.673 .22 Fcr 1 -— THEREFORE FLANGES ARE FULLY EFFECTIVE pf A pf= 0.05 Wf:= (wf•pf) WEB: ww:= D-2•R-2.t T2.E r t 2 Fcr:= k• 2 •I I Fcr= 30185.03•PSI 12•(1 - .3 ) `ww f X:= Fn X=0.389 <.673 X=0.389 < 673• 4,1 Fcr THEREFORE WEB FULLY EFFECTIVE .22 1 -- pw:= pw.= 1.117 Ww:= (ww•pw) LIPS: dL=0.526.1N 2 \z k := .43 Fcr:= k. i •E 2 •1-d- Fcr= 143970.944.PSI 12•(1 -.3 1 Fn <.673 X:= Fcr X=0.178 X=0,178 <.673 THEREFORE LIPS ARE FULLY EFFECTIVE Ae:= A Ae=0.586.SI A= 0.586 IN2 DETERMINATION OF Pa ly= 168 IN pn:= Ae•Fn Sic := 1.8 Pa:_ n Sic Pa = 1486 LB BRACED IN WEAK AXIS AT ly= 168IN 22 KIWI II CONSTRUCTION 28177 KELLER ROAD MURR1ETA,CA92563 (877)465-4942 (951)301-8975 (951)301-4096 FAX ATTN:ART LEON,ART@KIWICONSTRUCTION.COM JOB NAME: SIMPLE BEAM SPAN DESIGN LOADS: ROOF LIVE LOAD RLL := 20•PSF ROOF DEAD LOAD RDL := 4•PS F MATERIAL SPECIFICATIONS: STEEL -Fy=50 KSI BOLTS -A-307 QUALITY SCREWS-#12 TEKS MOMENT: L:= 10.FT w:= (RLL + RDL)•10•FT + 5-PLF w=245•PLF L2 m := w8M = 3062.5•FT•LB SECTION MODULUS REQUIRED: M Sxreq:= Sxreq = 1.2251N3 30•KS! MOMENT OF INERTIA REQUIRED: 5w L4 Ixreq:= Ixreq=2.803IN4 384.E•--- 180 USE 'C' 8"X2.5"X16 GAGE BEAM Sx:= 1.694.IN3 Sx= 1.694!N3 DESIGN CONNECTIONS: R= w•—L R= 1225 LB 2 USE MINIMUM(3)#12 TEKS AT EACH END Rail:= 619•LB•3 Rall= 1857 LB 23 c 0 e-t--- "ASCE710S.xle Program Version 1.1 SNOW LOADING ANALYSIS Per ASCE 7-10 Code for Buildings with Flat or Low Slope Roofs(<=5 deg.or 1 inift.) for Balanced Snow,Drift,and Rain-on-Snow Surcharge Loadings Job Name: STORQUEST TIGARD,OR Subject: EAVE PARAPETS,30 FT LONG Job No: Originator: ART LEON I Checker: Input Data: Building Risk Category= II Table 1.5-1,page 2 Ground Snow Load,pg= 20.00 est Figure 7-1,pages 34-35 and Table 7-1, page 30 Length of High Roof, Lu= 0.10 ft. Length of Roof Upwind of the Snow Drift Length of Low Roof, LL= 140.00 ft, Length of Roof Downwind of the Snow Drift . Dist,from Eave to Ridge,W= 140.66 ft Horizontal Distance from Eave to Ridge Type of Roof= MonosiOpe Type of Roof=Monoslope,Gable,or Hip Obstruction Height,ho= j:do ft. High Roof-Low Roof Elevations Roof Slope, S= 0.50 inift. S=Rise per foot of Run Exposure Factor,Ce= 1.00 Table 7-2, page 30 ... .. Thermal Factor,Ct= 1.00 Table 7-3,page 30 Results: Roof Angle,0= 2.3859 deg. 0=ATAN(S/12) Importance Factor,Is= 1.00 Table 1.5-2,page 5 ...... Snow Density, i = 16.60 pef y=0.13*pg+14<=30 (Eqn 7 7 1,page Flat Roof Snow Load,pt= 14.00 psf of=0.7*Ce*Ct*Is*pg (Eqn.7 . - .3-1,page293)3) *Min. Roof Snow Load,pm= id.tio psf pm=pg*Is for pg<=20, pm=20*Is far pg>20 Balanced Snow Load Ht..,hb= 0.84 ll- hb=pf(use)/y (Section 7.1,page 29) Clear Height,he= 6.16 ft. he=ho-hb>=0 (Section 7.1,page 29) Leeward Drift Height,hat.= 1;44 ft. hdL=0.43*Lu^1/3*(pg+10)"1/4-1.5, with Lu>=25* (Figure 7-9) Windward Drift Height hdw= 2.79 ft. hdw-,.-,0 75*(0.431.1A1/3*(pg+10)11/4-1.5), with LL>=25' Max.Drift Height,hd(max)= 2.79ft. hd(max)=maximum of:(ha. or hdw) ...,...... . Ratio,hc/hb= 7.30 If hc/hb>=0.2,then snow drifts are required to be applied g Drift Length,w= 11,18 ft. If hd(rnax)<=ho:W=4*hd(max), if ha(max)>he:w=4*hd(rnax)A2/he . ._ ,...... Design Drift Height,ha= 2:79 ft. If hd(max)<=he: hd=lid(max), if hd(max)>he: hd=he Drift Length,w(max)= 49.25 ft, w(max)<=8*he Drift Length,w(use)= 11.18 ft. w(use)=minimum of: w or W(max) Wt.of Drift at High End,Pa= 46,38 psf pd=hd*y (maximum value) Wt.of Drift at Law End,pde= V.bo psi pde=0,as Low Roof Length(LL)>=w(max) Rain-on-Snow Surch.,pre= &ad. psf pre r-5,0 psf when 0<pg<=20 and 0<W/50) (Sect.7.10) Balanced Snow Load,map= 19.00 psf pf(bat)=pf+prs **Total Snow Load,p(total)= ''''6.6-31- . pet Nieto=pf(bef)+pa ,1V6KlVkli*ti0.0416401: nOiii0i:'- 104i4***::etrideke10edjk:;.::,.:.:.. q00**100.*itit$06907C..:*....: Wind Lu=0.1' 1 4( )0 (Length of High Root) pc1=46.36 psf --r-- Surcharge Load hc=6.16' Due to Drifting hd- 2.79' -4, ho=7' .0,. v 4 v 4 x •Nr w Rain-on-Snow Surch. , y yy y 1 , hb ,p841 ..y . v y t.• , v v y v y-, Ao y w pfr-19 psf Balanced Snow Load — 4itisit‘4•6*pkv:Ipwvirwlarttc::,;.: , w(use)=11.1 ft (drift) 11=140' .::.•••./.)0ett not#6:4641ited with ''....'''':: :.:::... . ..,- ..„..,..,..,. .. ,..,,,,,,. (Length of Low Roof) ..... .. .,.. •.. ..:. ::„...,..„..„.......„......„,:,,,?:..:, y Conflouration of Snow Drift on Lower Roof .,. 1 of 1 11/1/2016 7:27 PM 24 "ASCE710S.xls"Program Version 1.1 SNOW LOADING ANALYSIS Per ASCE 7-10 Code for Buildings with Flat or Low Slope Roofs(<=5 deg. or 1 inift.) for Balanced Snow,Drift,and Rain-on-Snow Surcharge Loadings Job Name: STORQUEST TIGARD,OR Subject: GRID 22 Job No: Originator: ART LEON Checker: Input Data: Building Risk Category= II Table 1.5-1, page 2 .......................... Ground Snow Load, pg= 20.00 psf Figure 7-1,pages 34-35 and Table 7-1, page 30 Length of High Roof,Lu= 0.10 ft. Length of Roof Upwind of the Snow Drift Length of Low Roof, LL= 210.00 ft. Length of Roof Downwind of the Snow Drift .................................. . Dist.from Eave to Ridge,W= 210.00 ft. Horizontal Distance from Eave to Ridge Type of Roof= Monoslope Type of Roof=Monoslope, Gable,or Hip Obstruction Height,ho= 4.50 n. High Roof-Low Roof Elevations ......_........................ Roof Slope, S= 0.50 in./ft. S=Rise per foot of Run Exposure Factor,Ce= 1.00 Table 7-2,page 30 Thermal Factor,Ct= 1.00 Table 7-3,page 30 Results: Roof Angle, 0= 2.3859 deg. 0=ATAN(S/12) Importance Factor, Is= 1.00Table 1.5-2,page 5 .......................... Snow Density,y= 16.60 pcf y=0.13*pg+14<=30 (Eqn.7.7-1,page 33) Flat Roof Snow Load,pr= 14.00 psf pt=0.7*Ce*Ct*Is*pg (Eqn.7.3-1, page 29) *Min. Roof Snow Load,pm= 20.00 psf pm=pg*Is for pg<=20, pm=20*Is for pg>20 ...................... Balanced Snow Load Ht.,hb= 0.84 ft. hb=pf(use)/y (Section 7.1, page 29) ...... ..................... Clear Height,he= 3.66 ft. he=ho-hb>=0 (Section 7.1,page 29) Leeward Drift Height,hdL= 1.44 ft. hdL=0.43*Lu^1/3*(pg+10)^114-1.5, with Lu>=25' (Figure 7-9) Windward Drift Height, hdw= 3.36 ft. haw=0.75*(0.43*LL^1/3*(pg+10)^1/4-1.5), with LL>=25' .................._........... Max. Drift Height,hd(max)= 3.36 ft. hd(max)=maximum of: (hdL or hdw) Ratio, hc/hb= 4.34 If hc/hb>=0.2,then snow drifts are required to be applied Drift Length,w= 13.44 ft. If hd(max)<=hc:w=4*hd(max), if hd(max)>hc:w=4*hd(max)^2/hc Design Drift Height, hd= 3.36 ft. If hd(max) <= he: hd= hd(max), if hd(max)>he: hd=he ............................... Drift Length,w(max)= 29.25 ft. w(max)<=8*hc ......... .......... Drift Length,w(use)= 13.44 ft. W(use)=minimum of: w or w(max) Wt.of Drift at High End,pd= 55.80 psf pd=hd*y (maximum value) Wt.of Drift at Low End, pde= 0.00 psf pde=0,as Low Roof Length(LL)>=w(max) Rain-on-Snow Surch.,prs= 5.00 psf prs=5.0 psf when 0<pg<=20 and 0<W/50) (Sect. 7.10) Balanced Snow Load, pf(bal)= 19.00 psf pf(bal)=pf+prs **Total Snow Load,p(totai)= 74.80 psf p(total)=pf(bal)+pd *Note Minimum flatmofsnow load pm ....... tie used rn combination with snow drift.'. Wind Lu=0.1' (Length of High Roof) pd=55.8 psf Surcharge Load hc=3.66' Due to Drifting hd= 3.36' ho=4.5' v v v v v v v Rain-on-Snow Surch. *' v v v v v v v v v v v v v hb=v0.84' v v y v v pf=19 psf Balanced Snow Load - **Note Rain-onn snow surcharge < w(use)=13.44'(drift) need not be Combined with LL=210' snow drift<for total load (Length of Low Roof) Confiquration of Snow Drift on Lower Roof 1 of 1 11/1/2016 7:57 PM 25 KIWI II CONSTRUCTION 28177 KELLER ROAD MURR1ETA,CA 92563 (877)465-4942 (951)301-8975 (951)301-4096 FAX ATTN:ART LEON,ART@IWICONSTRUCTIONCOM STRUCTURAL CALCULATIONS FOR INTERPOLATING SNOW DRIFT INTERPOLATION 30 FT EAVE PARAPETS BAL:- 19 GRID A 5 FT AWAY X1 :-,-- 0 X2:= 1 t 18 DISTANCEFROM PARAPET X1X2 X3 = Y1 Y2 Y3 Y1 := 46.38 Y2 := 0 DRIFT LOAD X3:,,-- 5 Y3A:= [X3-X1 -(Y2-Y1) + Y1 X2-X1 Y3A=25.638 Y3A-5= 128.188 10 FT AWAY X3:= 10 ... -X3-Xi Y3A:= -(Y2-Y1) + Y1 X2 -X1 Y3A=4.895 INTERPOLATION 4.5 FT END PARAPETS BAL:= 19 GRID 22 5 FT AWAY X1 := 0 X2:---. 13A4 DISTANCE FROM PARAPET X1 X2 X3 Y I Y2 Y3 Y1 := 55.8 Y2:= 0 DRIFT LOAD 1 (0 X3:= 5 G 5fi4' e X3 Y3A:= -(Y2 -Y1) +Y1 43 f \ 0 X2-X1 Cike- 4,it 1„,b,i4g Y3A=35.041 Y3A-5= 175.205 10 FT AWAY 0,114 itf,042,--"‘ X3:= 10 4 _ _ Y3A:= X3 -(Y2-Y1) + Y1 X2-X1 .. Y3A= 14.282 26 Title: Job# Dsgnr: Date: 7.41PM, 1 NOV 16 Description: Scope: Rev: 580010 - User KW-0606193,Ver 5.80,1-Nov-2006 Multi-Span Steel Beam Page 1 401983-2006 ENERCALC Engineering Software tigard ecw:Calcuoris Description A 12A$hfV1- .... o./y -,.= , , ?oft,L. t r-45, (,..if„, 10, A i [ General Information Code Ref:AISC 9th ASD, 1997 UBC,2003 IBC,2003 NFPA 5000 Fy-Yield Stress 36.00 ksi Load Duration Factor 1.00 Spans Considered Continuous Over Supports Span Information • • • , , Description Span ft 10.00 10.00 10.00 Steel Section End Fixity inn-Pki Pin•plo Pin-Pin Unbraced Length ft 0.00 0.00 0.00 Loads Live Load Used This Span? Yes Yes Yes Dead Load k/ft 0.020 0.020 0.020 Live Load k/ft 0,095 0.095 0.095 Dead Load k/ft Live Load kilt 0.128 0.128 0.128 Start ft End ft 10.000 10.000 10.000 LROSUlte I Morax @ Cntr k-ftl 1.94 0.61 1.94 V:" @ X= ft 4.00 5.00 6.00 t t''' (1) ft O1' t @ Left End k-ft 0.00 -2.43 -2.43 1.66 -----0 IC- .11.,„ ,... ,.. 05 ti Max @ Right End k- -2.43 -2.43 0.00 _ ,._...- iiP 4..,'"'"-- ,4 ‘f. i k 1 soi ft.:Actual psi 0.0 0.0 0.0 )4 5;404. 5000.- Fb:Allowable psi 0.0 0.0 0.0 Bending OK Sending OK Bending OK 5)14: (, :0 fv:Actual psi 0.0 0.0 0.0 4 1 1.1 5e-- Fv:Allowable psi 0.0 0.0 0.0 To P ," ,: li Reactions& Deflections ----"- Shear @ Left k 0.97 1.21 1.46 Shear @ Right k 1.46 1.21 0.97 Reactions._ 0.08 0.22 0.22 DL i Left k 0.89 2.45 2.45 LI @ Left k 0.97 2.67 2.67 Total @.Left k 0.22 0.22 0.08 DL @Right k 2.45 2.45 0.89 LL @ Right k 2.67 2.67 0.97 Total @ Right k 0.000 0.000 0.000 Max.Deflection in 0.00 0.00 0.00 ft 0.0 0.0 0.0 Span/Deflection Ratio Query Values 14 Location ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Shear k 0.97 1.21 1.46 0.00 0.00 0.00 0.00 0.00 Moment k-ft 0.00 -2.43 -2.43 0.00 0.00 0.00 0.00 0.00 Max.Deflection in ##.#### ##.#### ##.#### 0.0000 0.0000 0.0000 0.0000 0.0000 27 Title: Job# Dsgnr: Date: 7:49PM, 1 NOV 16 Description: Scope: User KW-001606193,Ver 5 8 0,1-Nov-2006 Multi-Span Steel Beam Page 1 (01983-2006 ENERCALC Engineering Software tigard eow Calculations Description B-DECK SPANNING 5 FT, EAVE PARAPET ___. ..._ General Information Code Ref:AISC 9th ASD,1997 UBC,2003 IBC,2003 NEPA 5000 Fy-Yield Stress 36.00 ksi Load Duration Factor 1,00 Spans Considered Continuous Over Supports Span Information rnS Description Span ft 5.00 5.00 5.00 Steel Section End Fixity Pin-Pin Pin-Pin Pin-Pin Unbraced Length fti 0.00 0,00 0.00 . .. .. _ . Loads , Live Load Used This Span? Yes Yes Yes Dead Load k/ft 0.004 0.004 0.004 Live Load k/ft 0.019 0.019 0.019 Dead Load k/ft Live Load 1i/ft 0.046 0.046 0:046 Start ft End ft 5.000 5.000 5.000 Results Morax @ Cntr k-ft 0,14 0.04 0.14 t1' @ X---- ft 2.00 2.50 3.00 .., ,,__ 0 a e2 Max @ Left End k-ft 0.00 -0.17 -0.17 Vi iL,);-..,---m'-' 'a- * to l ft .,:. Max @ Right End k- -0.17 -0.17 0.00 ..r, fh:Actual psi 0.0 0.0 0.0 ,,-e'• ci: 1(.,. 9$ Fb:Allowable psi 0.0 0.0 0.0 * .II 15 43' irk:4 0'4. Bending OK Bending OK Bending OK6) .11.0- fv:Actual psi 0.0 0.0 0.0 1" " Fv:Allowable psi 0.0 0.0 0.0 '4., Reactions& Deflections *sr Shear @ Left k 0.14 0.17 0.21 Shear @ Right k 0,21 0,17 0.14 Reactions.., 0.01 0.02 0.02 DL @ Left k 0.13 0.36 0.36 LL @ Left k 0.14 0.38 0.38 Total @ Left k 0.02 0.02 0.01 DL @ Right k 0.36 0,36 0.13 LL @ Right k 0.38 0.38 0.14 Total @ Right k 0.000 0.000 0.000 Max.Deflection in 0,00 0.00 0.00 ft 0.0 0.0 0.0 Span/Deflection Ratio [Query Values Anar Location ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Shear k 0.14 0.17 0.21 0.00 0.00 0.00 0.00 0.00 Moment k-ft 0.00 -0,17 -0.17 0.00 0.00 0.00 0.00 0.00 Max,Deflection in 1#1.#### #i#.#### ##.#### 0.0000 0.0000 0,0000 0.0000 0.0000 28 I Title: Job# Dsgnr: Date: 8:05PM, 1 NOV 16 Description: Scope: trilD010--- ‘ User:KW.0606193,Ver 5.6,0,it-Nov-2006 Multi-Span Steel Beam Page 1 (c)1983-2006 ENERCALC Engineering Software tigardecw;Celculations Description 5 FT IN AT END PARAPET, GRID 22 General Information Code Ref:AISC 9th ASO,1997 UBC,2003 IBC,2003 NFPA 5000 ---v. ' Fy-Yield Stress 36.00 ksi Load Duration Factor 1:00 Spans Considered Continuous Over Supports Span Information MESSIZONCOMMISIEWEINEEKESSMEBOX Description Span ft 10.00 10.00 10.00 Steel Section End Fixity Pin-Pin Pin-Pin Pin-Pin Unbraced Length ft 0.00 0.00 0.00 _„, . ...... Loads Live.Load Used This Span? Yes Yes Yes Dead Load k/ft 0.020 0.020 0.020 Live Load k/ft 0.095 0.095 0.095 Dead Load k/ft Live Load k/ft 0.175 0.175 0.175 Start ft End ft 10.000 10.000 10.000 ........_... ..._,._ I Results Mmax @ Cntr k-ft 2.32 0.72 2.32 @ X= ft 4.00 5.00 6.00 CI Nr- "" Max @ Left End k-ft 0.00 -2.90 -2.90 - * i? 41 0 Vt.' \ ‘ (0 A 1 1 0 .... .t.....,,,,,,,..,...----"." 141 1 Max @ Right End k-ft -2.90 -2.90 0.00 Ai fi,, ''' le- %:Actual psi 0.0 0.0 0.0 514-r* 04' 54)6 Fb:Allowable psi 0.0 0.0 0.0 Bending OK Bending OK Bending OK fv:Actual psi 0.0 0.0 0.0 Fv:Allowable psi 0.0 0.0 0.0 ... [Reactions& Deflections ... Shear @ Left kl 1.16 1.45 1.74 Shear @ Right k 1.74 1.45 1.16 Reactions... 0.08 0.22 0.22 DL @ Left k 1.08 2.97 2.97 LL @ Left k 1.16 3.19 3.19 Total @ Left k 0.22 0.22 0.08 DL @ Right k 2.97 2.97 1.08 LL @ Right k 3.19 3.19 1.16 Total @ Right k 0.000 0.000 0.000 Max.Deflection In 0.00 0.00 0.00 @ X= ft 0.0 0.0 0.0 Span/Deflection Ratio Query Values _ lawingsammessunsumgram Location ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Shear k 1.16 1.45 1.74 0.00 0.00 0.00 0.00 0.00 Moment k-ft 0,00 .2.90 -2.90 0.00 0.00 0.00 0.00 0.00 Max.Deflection in *Alga i . ## 44 t.41#11# 0.0000 0.0000 0.0000 0.0000 0.0000 29 ) Title: Job# Dsgnr: Date: 8:26PM, 1 NOV 16 Description: Scope: 1 User.KW 06193,Ver 5 8 0,1-Nov-2006 Multi-Span Steel Beam Page 1 1 (01983-2006 ENERCALC Engineering Software tigard ecw Calculations Description ENDWALL PARAPET AT GRID 20 General Information Code Ref:AISC 9th ASD, 1997 UBC,2003113C,2003 NFPA 5000 Fy-Yield Stress 36.00 ksi Load Duration Factor 1.00 Spans Considered Continuous Over Supports Span Information Description Span ft 10.00 10.00 10.00 Steel Section End Fixity Pin-Pin Pin-Pin Pin-Pin Unbraced Length ft 0.00 0.00 0.00 Loads --I. Live Load Used This Span? Yes Yes Yes Dead Load k/ft 0.020 0.020 0.020 Live Load k/ft 0.095 0.095 0.095 DL a Left k/ft DL @ Right k/ft LL @ Left k/ft 0.175 0.072 LL a Right k/ft 0.072 Start ft End ft 10.000 3.440 - - Results Mmax a Cntr k-ft 2.10 0.06 a X.4-, ft 4.00 5.80 5.87 0 , Max @ Left End k-ft 0.00 -2.00 -0.97 0*-.. tA C PVt*Ir-°-4r Max a Right End k-ft -2.00 -0.97 0.00 fb:Actual psi 0.0 0.0 0.0 Fb:Allowable ' psi 0.0 0.0 0.0 i.e. Bending OK Bending OK Bending OK tA. Ar' Iv:Actual psi 0.0 0.0 0.0 li 6 CI p v:Allowable psi 0.0 0,0 0.0 it?,..., c...". ...... _ Reactions& Deflections Shear a Left k 1.08 0.79 0.67 Shear a Right k 1.31 0.49 0.48 Reactions... 0.08 012 0.22 DI_a Left k 1.00 1.87 0.94 LL a Left k 1.08 2.09 1.16 Total a Left k 0.22 0.22 0.08 DL a Right k 1,87 0.94 0.40 LI_a Right k 2.09 1.16 0.48 Total a Right k 0.000 0.000 0.000 Max.Deflection in 0.00 0.00 0.00 a X= ft 0.0 0.0 0.0 Span/Deflection Ratio Query Values J _ Location ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Shear k 1.08 0.79 0,67 0.00 0.00 0.00 0.00 0.00 Moment k-ft 0.00 -2.00 -0.97 0.00 0.00 0.00 0.00 0.00 Max,Deflection in 11#.#### #4.111141# ##.# 0.0000 0.0000 0.0000 0.0000 0.0000 30 '';t",,, _,,. ,-,„ f,,..)11 k-,:-7-.0 Ti1J1 e,ID OS.?, 1)E,;,1 II- t-tf;:-.3 HQ 7-(0, la __, „,,v - -,..,,,,,, , ...-- II/2” Deep Roof Deck ..., Primer Painted or Galvanized n PLB-36 Deck used with PunchLok II System HSB-36 Deck used with TSWs, BPs or Screws Dimensions . Y2" 2Y2" I, 611 1 r,. 1 3 I. t 1 1, 1 13/4" 36" / PLB-36 or HSB-36 HSB-36-SS HSB-30 NESTABLE \_Jid -----IiLf---- ---A_ Standard — Standard Interlocking Screw Fastened Overlapping Sidelap Sidelap Sidelap Available 30"Wide (Special Orders 9ck Weight and Section Properties Wht ld for Moment Allowable Reactions per ft of Width(lb)due to Web Crippling eig Deflection One Flange Loading Two Flange Loading Gage Galv Painted + — Single Multi End Bearing Interior Bearing End Bearing Interior Bearing Seff Sof Span Span Length Length Length Length (Psf) (Psf) (111.4/f0 (In.4ift) (in.3/ft) (in.3fft) 2" 3" 4" 3" 4" 2" 3" 4" 3.. 4" 22 1.9 1.8 0.177 0.192 0.176 0.188 935 1076 1163 1559 1671 962 1078 1150 1935 2084 20 2.3 2.2 0.219 0.231 0.230 0.237 1301 1492 1609 2190 2340 1413 1576 1675 2744 2947 18 2.9 2.8 0.302 0.306 0.314 0.331 2181 2484 2667 3714 3950 2551 2823 2987 4713 5038 16 3.5 3.4 0.381 0.381 0.399 0.410 3265 3699 3955 5607 5938 4018 4422 4660 7168 7631 Notes: 1. Section properties are based on Fy=50,000 psi. 2. Id is for deflection due to uniform loads. 3. Seff(±or-)is the effective section modulus. 4. Multiply tabulated deck values listed above by the following adjustment factors to obtain acoustical deck section properties: Id for Moment Allowable Reactions per ft of Width(lb) Deflection One Flange Loading Deck Type Single Multi Span Span +Sof —Sof End Bearing Interior Bearing B-Acoustical 0.98 0.98 0.97 0.97 1.00 0.76 5.Allowable(ASD)reactions are based on web crippling, per AISI 8100 Section C3.4,where 0,=1.70 for end bearing and 1.75 for interior bearing. Nominal reactions may be determined by multiplying the table values by 0w. LRFD reactions may be determined by multiplying nominal reactions by Dw=0.90 for end reactions and 0.85 for interior reactions. 6. Diaphragm values for HSB-30 Nestable are outside the scope of Verco's Evaluation Report. 26 P VR4 VERCO DECKING,INC. www.vercodeck.com Y 7111 erNOTES: Section properties and allowable are computed in accordance with AISI North American Specification,2007 edition x Lx Ix and I.are for deflection determination . ,),.T. Sa and Sy are for bending Material is either ASTM A653-06 Gr.55 or A1011-04 HSJ,AS Gr.55 C1-1 52 Fy=55 ksi Fu=70 ksi Y DIMENSIONAL PROPERTIES ALLOWABLESAXIS X-X AXIS Y-Y D x131 x 82 Thickness Weight Area Lip Positive Negative Va J Positive Negative Section Name (in) Gage (in) i Ma Ma x S Rx ly In Ry (lb/ft) (in) (in) (k-ft) (k ft) (kips) (n4) p��J (,� (in) Cn� Ani On) 8.0x3.5Z16 8.0 x 3.125 x 3.375 16 0.059 3.197 0.940 0.911 5,016 5.049 2.435 9.520 1.828 1.840 3.199 2.581 0.493 1.657 8.0x3.5Z14 8.0 x 3.125 x 3.375 14 0.070 3.793 1.116 0.930 6.412 6.394 4.078 11.378 2.336 2.330 3.194 3.076 0.575 1.661 8.0x3.5Z13 8.0 x 3.125 x3.375 13 0.085 4.606 1.355 0.956 7.987 7.999 7.330 13.758 2.910 2.915 3.187 3.759 0.703 1.666 w 8.0x3.5Z12 8.0 x 3.125 x 3.375 12 0.105 5.690 1.673 0.990 10.565 10.350 12.170 16.898 3.850 3.771 3.178 4.680 0.995 1.672 N 8.0x3.0Z16 8.0 x 2.625 x 2.875 16 0,059 2.997 0.881 0.911 4.985 5.041 2.435 8.690 1.816 1.837 3.140 1.725 0.418 1.399 8.0x3.0Z14 8.0 x 2.625 x 2.875 14 0.070 3.555 1.046 0.930 6.186 6.184 4.078 10,278 2.254 2.253 3.135 2.057 0.484 1.403 8.0x3.0Z13 8.0 x 2.625 x 2.875 13 0.085 4.317 1.270 0.956 7.992 7.713 7.330 12.426 2.912 2.810 3.1282.514 0.667 1.407 8.0x3.0Z12 8.0 x 2.625 x 2.875 12 0.105 5.333 1.568 0.990 10.301 10.350 12.170 15.261 3.753 3.771 3.119 r 3.133 0.922 1.413 8.0x2.5Z16 8.0 x 2.125 x 2.375 16 0.059 2.796 0.822 0.911 4.909 4.932 2.435 7.759 1.789 1.797 3.072 1.081 0.344 1.146 8.0 2.5Z14 8.0 x 2.125 x 2.375 14 0.070 3.317 0.976 0.930 6.103 6.006 4.078 9.177 2.224 2.189 3.067 1.289 0.432 1.150 8.0x2.5Z13 8.0 x 2.125 x 2.375 ' 13 0.085 4.028 1.185 0.956 7.480 7.479 7.330 11.095 2.725 2.725 3.060 1.577 0.546 1.154 8.0x2.5212 8.0 x 2.125 x 2,375 12 0.105 4.976 1.463 0.990 9.185 9.186 12.170 13.624 3.347 3.347 3.051 1.967 0B78 1.160 9.0x3.5Z16 9.0 x 3.125 x 3,375 16 0.059 3.398 0.999 0.911 5.630 5.659 2.148 12.625 2.051 2.062 3.555 2.581 0.494 1.607 9.0x3.5Z14 9.0 x 3.125 x 3.375 14 0.070 4.031 1.186 0.930 7.353 7.440 3.597 14.939 2.679 2,711 3.550 3.077 0.577 1.611 9.Ox3.5Z13 9,0 x 3.125 x 3.375 13 0.085 4.895 1.440 0.956 9.385 9.392 6.463 18.075 3.419 3.422 3.543 3.759 0,705 1.616 9.0x3.5Z12 9.0 x 3.125 x 3.375 12 0.105 6.047 1.778 0.990 12.376 12.127 12.170 22,217 4.509 4.419 3.535 4.680 0.996 1.622 Revision Date:September 23,2010 4 of 7 Cb \ WIDE FLANGE BEAM CONNECTION: 40 FT SPAN,20 FT TRIBUTARY, 10 FT WIDE P:= (DL+ LL+ FDL + FLL)•10•FT•20•FT P = 39400 LB MINIMUM WELD IS 24"OF 1/4"WELD BOTH SIDES OF PLATE Vall := 900 1LB•4.24•IN•2 Vall= 172800 LB >> P= 39400 LB OK IN DESIGN FOR 4"MAX ECCENTRICITY PER DETAIL 8/D4 PER TABLE 7-7 THE FACTOR IS F:= 11.1 SHEAR TO EACH BOLT IS = 3549.55 LB << Val l:= 12600•LB OK F ALL OTHER CONNECTIONS WILL BE DESIGNED IN SIMILAR FASHION AND WILL BE DETAILED IN HEAVY STEEL SHOP DRAWINGS AND WILL BE DEFERRED SUBMITTAL AS NOTED ON KS-1. • 33 *IF . .,.. ........... . ... ......... •:::" •••4.:iiiIii,.i: .„,..i.:41,11;Agi.. 7-36 DESIGN CONSIDERATIONS FOR 6itit. i...ii°4411('S'A.:.•-.:-A.131-88•.''..".• ••••-••-•".' ''''' '.:`.' '-."'' b:..:,., ..J:,:oi:i;l.g....g.,:.,:::.•:••....: : ...,.......... .....,..„„. ................ ...... -... ....,..... ..... . - Table 7-7 r,,,, -.. , ......, „„............., . Table 1-7 (cdittli ...:...:.:„......:.„:„:...:::::„,„.. . ,11•44,--... '.. . t ' ' -E • ' Coefficients d'for,Eccentilcally Loaded Boit Groti .11..gfetst.i.-........ff.. icien s C for coentnicall) 0. Atigle'.:i-,.'...0 .. .(:,,,,,..,,..mt,,,:.,.,::.... .----.------. soli,mv..,:s:.:,.:.:::.:.... Angle .--,1.5 .. 4,Ti.,..,.a,...,,,,,,,:.... ........... :„...:,,,. ,.:. . . ,,, -... ,. _,. ., •,. , ......, „,....,.,,,i,!,„,,:,:.:,,:.,.,.,:y..iii15.:-...„-.-ijii strength of a bolt group, vvhere Available strength of a bolt group, . . . '-: ' ,.„,. :•::. .. ,,, i,,,,,gi4,frik.4, ...- . where I? =•required force,Pa or • 4)Rn or Rntil,is determined with '''P =le‘10,ireri forOe;Ptior Pa,lops '• : -• ' , - ! : •-mg,':',. ••••:'iiiilitifir'ilaft),,is determined with =nominal strength per bolt,kips - __.n ,.;it,,.,.,l;:iiii!,,),-4,..,4::::.- . „ ••• rii-...,.. nominal strength pa ---1r.i.,:. ii'll74.., ,' .) ..., Rn.c.x ra . , e --. eccentricity of' irwit • Rn=Cx in - -....,0.••= eccentricityiof•Pwith respect' .....,_--w.-- - ....,;,,,,i,,,,•,:,-,,., :-:,:,,i1,),),:: ,.-..,,,,, - ,,,) • . , :...:;.i,:,,, -:,.ii:iiiiig. .):::.,.,.,,. or .. f,,•,. • to,coritrold of boltigi or -, 1 ..•. to'controld.of bolt grout) I , n- ----1) ---1----m-;',' iii?- ::Wiiiii '.'........!:.:...: -•• - )..,'(not tabulated,may be " :,,.i..ici,,..,..,,. ...,.,,,,,:itiii,m.r..,. ....., (notiabulated,ifiay • t• -4) ...,...,........1,,,„,,,v., ,..,,,..,-:,,r„i„;„,...:-.:,.;„.' .: ,., LRFD ASD , determined by geometry) ' " •....LL ...1:1.,.:iffi::..-.. .::irille.AfP. . , ASO ...- ' ' determined by geon - '-e•-=,horizontal component of a in ., . 93-, ----`6,1-"!1-101::. .!. :R.H" Klpa 'horizontal Convene' Pa .L1Pa ' 1 • ' ' . 14_3 1 ....'. ':'" ..... '''''.1 ''.''''''''''''',•.'• ''. .--VW,= ''''''"" s = boltspacitig••in. • C,bi.--•-7_"*-- s = boltspacing,in.':, .- - ' - "t - .----- •.•'..%,li,'::,- '.,,,..1 ic' '' rn . ' 4'61 in . C..-:-.."'coefficient tabulated belbw , -- --- i ..•,...' ....i..,!.1.2..ii .,:iii:11141‘..,i.,1:.:,!it::.:::!.: ae::-.: coefficient tabulator ... •'. -- -•Number of Bolts in 011 • •,. .: • Number of Bolts in One Vertical ROW,n !. ii,.r. .r.!:: ::iii:115..:.:.•:- • . ,........ . ........... .. ... .. • : ... ...'.•.':,...::::., .: .ii.r..•.i...i. tifill;:. s,in. -ex,in. . - , 1 "• 2 .' 3 11` ' 5 6 (1).. 8 9. ' 10- :111.•::„.':.,,Iti:::11',' .11111-iliiilla:::;.::,1:i : 1' . 2 ' 3 4 5 6 ' 1 -, 2 ,.. 0.84 2.54 • 4A8, 6.59'-=8/2.lc 108, .129 , .13.0 17.0 .10.0 .21,6:,::::tlf,:1... ,,,,;i,,t,,1,:ii!,', 5 ••••,, 087), ,254 447 6.54 863 :10.7 - 3 i'' 0.65 21.03 3.68 5.67 737 ,..9.91 12.1 i'14.2 : 16.3 18.3 .20.4•11.':;1i.•.(,:e.- .:::.1•'111111L,41..:.1...,•: 168- :2.04" 3.'71 563 ,769 , 9.80 0 54 161,- 305 4.86 ,6.84 0.93- 11,1 132 154 17.5 1941i...italk.',..::: .,:y.:11,,..14t..,4:,Z-. 155 '1.69. ,3.11 4.85' 1179 1 8.84 . -• - 6. 045 142 2.592: . 421 6.01 .„, 8.00:,10.1 'P12/ 14.4 115. ,I8.7.::':ilh''::::::.'":.1.•H.1111:1.hilliti.1.2. f., 9A7. ,1,44, .:256 4.21' '605 ! 7.94 '. 6'. 059 1.22, z 225- : 3.69 5.32 717 „ 9.16. 11.2 134 ,115,1 17.7 111...: !: ..115,..11111?..,..1„6.•• on . '125 .221 3,70 5.34 7.15 , . . (,! , • :7 0,35 1.08. 1.99 ,327. . 4.74 ,, 6.46 ,823 113 9.4 142 '16,1.':.....;S,'''', -E,,,Ei t .'''' 0.36-'„ ,110 i 204 329 479 , 6.46 8 ,- 0.11 0,96 •,- 1.78 2.91- ,4.27.„ 5,85 7.60 ..,9.50 112 132;. '15,?...H11.i.,. .... ..Alai fit,.,:. :0.3Z' '0.98 103. .296 4.32 . 5.87 • ' ' 9 -I 0.26: 0,0 .:. 150 255 3,87 ' 5.34 - 557 . 8.75 10.7 12.7 14,••Til 111',',,..".• .,,,H1111 il... ',,, .0.24 0,88 135 2,88 3,04 1 5,37 , 10. 0• .26 0.76-, 146 2.42 153 . .4.90 -.6.42 /10 „951 s-11..8' 13x,..0,,,.:.. . ..71 A A ....rInlP.::.'.:1' 5.27", 0.81 .1.51 2.45 3.61 3 12,, 122 066 - 1/4• 2,062 2.01 •,4.19 ' 551 '7.01 813 .114, 1122; !ti.,',•:::::::: •••:::iii!i,:..:i•,1,,,. iti ,'.. 023! '168 128 209 :328 ' 424 .-.! . , , •- • ' ' 10.,0:.,ea." •;• :iiii 14 0.19 157 1.08 . 170 .a62 3.66 . 4.82 6,15 711 9.19 ...:,,, .i.;:i•i ..: ,.mig:...„ 0.20' i 059 1.11 122 ;219 3.71 '•1 16 ; 0• .17 151, 0.95; 1.57 " .2.,32 '324 4.27 547 ,679 6.23 i 948,.!!..::'..: •::.:.qi!Inalifi: :.... .i.i ••.. • : . , . , _ La 017 . 0 52 0 98 1.61 2.30, , ;529 18 : 0.16 6.45 . 0.85 141 -207 290 3.83 4.92 611 74 5,:.,: :,. ..., .: •g't 9.!:..•: 0.16 0,47 0.88 •1.44 2.13 2.96 20 ' 014 0,41 0.77 '1.27 1.88 2.63 3.48 '4.47 5.55 6.76 1 4,1..!,ti,.v . .,.N-6!iiiiiii,,. !,_..i., ,,,A2 079 , 131 ;1.9, 2,68 24 • 112 0.34 - 015- 117 128''.‘, 221- 2.93 ' 3/7 -'4,69 ' 13;2, 6141111:':. ...,..,.,.':::::',1- - - Ir.403.. ..,..,...• 0.12 :025 .0.67 110 '112 =226 28 :'-' 0.• .i6 026 0.56 0,92 1.3q '1.00 '1 2.53 125 425 415 ' P:'...W: , -i '.:,, 1111.....Z...i:....1 - ' 0 115 ,••• • : . . „, 32 ', 019 • 026 '- 048 080 1.19 1.67.,,''21.9282 22.8886. 33-5187 488300 9.:,..,....i.!.:•:..:.: ... 010.::.1-.i1E !.,...',..'.',,...::. .1:.' :: .• . .. •". ' 36 -• 028 023 0..43. '1 0/2 , 106 ' 149 ... , , .. , • , , . : 4.. 1": '. : .H.'.:":',,f-,v.P,:'......,.. 0.09 .027 ,.0 50 u.8i .123 • 1.72 or.T.,•:. ... .": .,' 0.08 •,024 0A5 :0.74 110 153 C',in 494.• 853 Asa- 26.0 217 ,54.2 -„,722 ,931 117..1. . 143' • ,172-i .' . "'..E,';,::',f,:,,.''i:::- '";', , . ,) 4.,,..,, ..:i,•,.....: :-., ,„ ....:....0 87 f• -.03,320-r• 06,3575 ,67A924. 91.4,4 113 ., 2 ... 4 2 5.3 ' .. 9.51 11 5 13 5 '15 5 17 5 195 '2--4,......... ....-,.„:5,,•, r ,, 5 3 1,, 09.095 , 32.79 4,993 17.4087 9.17 11.2 13.3 ,-1 1-1 193 /1.34 l.... . .....)..-....4.5t...?..„,-,.. :0-8 - 2/6 .,:438 7.00 9-00- 11,1'. 53 3 .110,.., - ....i.,..:t,,.1.04,',..0,,y..:.„''.• 0.55,. .238 440 653 '8.6)5' 10.7. 4 • 0• .54 Z41-- 4.44 - 650 8.75 10.9 125 ' 15.0 175 191 2 ...-.- ..„:..., An,,,..,.*:.i,.. ... 5 . 0.45 210 '' 3.97 6.111 827 •••10.4, 12.5 ° 14,6 16.7 18.7 '..2(19511-.1.--: HiallielillitlIP..,•.••1!17. _ !2,07 •30•13 6.0* 11.,17 10.3 ‘, 8 4 204.•'.•.... - •-..:::,:,:,:,:,:,":,:*•:..m:',:-:.:.:.141 -1.83 356 ,556 767 9.80 1 059 ' 155 3.55 '5.621 : 7.77 , 913 121 , 142 16.3 1 . 7:,0::•....: . ...', ..'ii.,,, : : ' • . ' 4 . 151 18 0: 20t r....,. • ...:.':.:::iim::,',';, ....... 2.36. ':1.61 322 :5.12 719 • 920 7 ';', 0 35 164 ' 318 . 517 727 1A3 111 - 13/ . - • .<.. • . :......m . ...:..,.,.,.. . , . , . . & 0.31 147 287 4/5'. 6.79• "'812_,.11.1 ,. 13.3 15.4 17.5: 19q.'';.,11::,, . '...i.:11111111.,,.;11:::.: 9.32.' .,.1.47 ,252 ,4.73 ,5.72 8.81 171 101•,`.,:..• . -•:•,.:'.,•i:.,.,!,',',,,i,i,N:4!-..).. 029: '134 266 '437 •i.6 29 133 9 ' 929 134 2-61- 439 '634 '.943'496 '147 14.9 ' .4.7..' ',.:.:' .. ‘:!la, - :: . 10. , 0.26 122 2.39; ..4.06 .5,92..', 7.96 _10.1 12,2 14.4 16.5 11#L2.,<.::::' :T.::i1- 1 '.. .:027., '1/3 ,245 4.05 '.510 ,7.88 6 12 022, 104 204 3.52 520 7.10 9.12 -,112 13.4 155 •7$411,:::::::: .. .•:•,„:..F.,,..1.11.,••.1z,,;:.:.''. 923 '125-' '229' 353 521 7.06 14 . 0.19 050 1.77 3.09•. 4.61 . 6.36,,-• ,827 10,3 124 14-5 ,I.,:,.:•.1.'R,'". ' ....'„'.,•'.,:„•:::•7,.:.1,11,1111'4,1,.:,-..•.,. 20•., :0.'91• ,113 111 414 635 ' • ' 16 11.1< 0,80- , 127. . 215 -4.12 5/4 ,.722 „SA4 112 135 J!,;!.1 i..,:"•:. ' ..!:;.,.,!.21„1 TI!•ill!! ::.0.17 :0.81. -152 •.2.78 •417 5/5 18 0.15- 031 . 1.41. 248. 3/2. .521 187 868 10.6 126. 1,4,,iiijII.. : : .,:il..::,.g... .....e' •P:16-. 072 ,145 250 177 5.24 • , „ . d 13....::g,::,.:.,.. .''",...ii'il i,i.i..,,,i. .;,..... : . ''.. 20. • 0.14 : 0.64., 128;',225 358 4.77 .631. 102 9.85 11.0 ,‘,..,,I . - .: - ::: .$3.19 056, 1.32 2.28 3.45 , 4.80 • 24 0.12 054 1.01 1.90 .2.86 . 4.06 5.40 , 6.91 .155 103 .11u.---: i:ii:,:.iii:i.i.i-,!lc.,,,r1:. 112. •0:55 ..1,11 1.93 '253 4,10 , 28. 0.16. 046 0.93 114 2.47 , ,3.52 2 4/0 105 , 7.52 912 1.(,t41!••:..,.• :•J.E...:11.!.,..tjf111: :9.10 ' i 0A8 016 1.67 2.54 157 32. 0.00 0.41. 0.61 -144 2.18 3.11, 4.16 5.37 6.69 815 ..%,,, . . ., 1 ,,..,!.:4t':•• 059 ''.142 084 1-A7 2.24 116 ' 36' 108, 026. - 0.73 1.Z9. :1.04 2,70 372 4.01 6.02 7.34 ...`:5ii-,...- : :.,;...,::::::,!!!.Iiii.24'.1:...0.08 "027 ;0 75 122 '2.00 ' 2'.83 180279 , 337.:1,.:::- .::...:n.s...-',,,,, .: ' '• C in - 214 112 215. 471. 71A 103 138 226 .....:0, . • 4 ::;..v:: ....,:•4:1:,J...:;::.;.:.. AMERICAN 4NSTITUTE.OF STEEL AMERf CAN INSTITUTE OF STEM CC)NSTIZUCTION ........ .:.:..:.:,.,..:..:. . .. ::....:*.. (__, C v� N k I KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRiETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com PriMed:7 DEC 2016,1.52PM Steel,Beam File=C:1Users ALEON-1.KIW160CUME-IIENERCA-lltigard.ec6 ENERCALC,INC.1983-2016,Build:6.16.10.31,Vocal 6.10.31 tic.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 12 FT JACK,r CODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 0(11.726)L2.)L(27.5)5(2.2) Mn . .. Span=12A ft---- --- C16,33.9 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load{s}for Span Number 1 Point Load: D=11.726, Lr=2.20, L=27.50, S=2.20 k @ 4.0 ft DESIGN SUMMARY _ Design,OK Maximum Bending Stress Ratio = 0.828: 1 Maximum Shear Stress Ratio= 0.245 : 1 Section used for this span C15x33.9 Section used for this span C15x33.9 Ma:Applied 104.996 k-ft Va:Applied 26.354 k Mn/Omega:Allowable 126.747 k-ft VMOmega:Allowable 107.784 It Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 4.011 ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.162 in Ratio= 889>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.233 in Ratio= 619>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 --.._-._...----..._..._._.. __._-_.._...._._..-- Overall Maximum Deflections Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L+H 1 0.2326 5.486 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 26.354 13.279 Overall MINimum 1.467 0.733 +D+H 8.021 4.112 +D+L+H 26.354 13.279 +D+Lr+H 9.487 4.845 +D+S+H 9.487 4.845 +D+0.7501r+0.750L+H 22.871 11.537 +D+0.7501.+0.750S+H 22.871 11.537 +D+0.60W+H 8.021 4.112 +D+0.70E+H 8.021 4.112 +D+0.750Lr+0.750L+0.450W4l 22.871 11.537 +D+0.750L+0.750S+0.450W+4 22.871 11.537 +D+0.750L+0.750S+0.5250E+H 22.871 11.537 +0.600+0.80W+0.60H 4.812 2.467 +0.60D+0.70E+0.60H 4.812 2.467 D Only 8.021 4.112 Lr Only 1.467 0.733 L Only 18.333 9.167 S Only 1.467 0.733 W Only 35 Ce414` ' 1 W18X46TOCl5X33.9 P:_ (7.137 + 1.467+ 18.333)•1000.LB P =26937 LB V:= 2627•LB N:= V N= 10.254 THEREFORE USE 12 BOLT'S CHECK OTHER END P := (3.67+ .733+ 9.167)•1000•LB P = 13570 LB V:= 2627•LB N V N=5.166 THEREFORE USE 6 BOLTS 36 DESIGN FLOOR DECK: USE 18 GA.2W COMPOSITE DECK WITH43''CONCRETE FLOOR SEE MANUFACTURER'S TABLE ATTACHED )ESIGN TOP TRACK: w (FLL+ FDL) 10.FT w= 1730 PLF 2 w•(2.5-FT) M M= 1081.25•FT.LB 10 Sxreq:= Sxreq =0A33.C1 30000.PSI USE 4.125" X 3" X 12 GA.TRACK TO SPAN 2`-6" BETWEEN STUDS sx:= .465•CI OK DESIGN FOR 5'BEAM SPAN AT HALL: w 10-FT.(FDL FLO tA.). 1730,PLF co M:= (5.33.FT)2 M 6143.425-FT.LB 8 Sxreq Sxreq=2.457.C1 30000.PSI USE DOUBLE 'C' 6"X2.5"Xl6GA. sx:= (1,155-2+ .465).C1 Sx=2.775,01 OK DESIGN CONNECTION: R:= (J-2.667•FT R=4613.91-LB Vail:= 619.LB PER ICBO 2196 =7.454 Vail USE(4)#12 TEKS AT EACH BEAM TO STUD CONNECTION DOUBLE EACH STUD AT BEAM LOCATIONS DESIGN FOR 10'BEAM SPAN AT DOORS: w:= 10.FT.(FDL FLL) w= 1730•PLF M := (10.FT)2 M =21625-FT•LB 8 Sxreq:— Sxreq=8.65.01 30000•PSI USE DOUBLE 'C' 10"X2,5"Xl2GA. Sx (4.663-2).C1 Sx 9.326•CI OK DESIGN CONNECTION: R:= w.5•FT R=8650LB Vail 619.LB PER ICBO 2196 — = 13.974 Vali USE(8)#12 TEKS AT EACH BEAM TO STUD CONNECTION DOUBLE EACH STUD AT BEAM LOCATIONS NOTE AT CONTINUOUS BEAM SPAN TWICE AS MANY CONNECTORS WILL BE REQUIRED USE DOUBLE el"Xl 2 GAGE POSTS AT 10 FT SPAWSUPPORTS SECTIONAL PROPERTY DETERMINATION FOR 'U'4I/8X3X12GA. Ap =4.125•IN Bp=3•IN Cp= 0•IN t =0.105•IN R=0.094•IN A= 1.028•SI lx=3.015.1N4 Sx= 1.462.CI rx= 1.713.IN ly=0.982.IN4 Sy=0.465•Cl ry =0.978.IN m= 1.222•IN xb =0.888•IN J =3.778x 10 3•IN4 Cw=2.811•IN6 j =2.913.1N x0 =-2.11•IN r0 =2.888•IN 38 DESIGN STUDS(SUPPOR['ING'I'HIRD FLOOR): Pmax:= (LL•0+TD)•5•FT•10•FT+ (FDL+ FLL)•2.5•FT•10•FT LOAD COMBINATION 16-9 Pmax= 4525.LB Pmax:= (LL•.75+ TD)•5•FT•10•FT+ (FDL+ FLL•.75)•2.5.FT•10•FT LOAD COMBINATION 16-11 Pmax= 4493.75•LB USE4"X2.5"X16GA. STUD BRACED AT MIDHEIGHT Pall := 6603•LB Pmax ^ 0.681 OK Pall DESIGN STUDS(SUPPORTING SECOND FLOOR): Pmax:= (LL•0+ TD)•5•FT•10•FT+ (FDL+ FLL•.8)•2.5•FT•10•FT•2 LOAD COMBINATION 16-9 Pmax= 7600•LB LIVE LOAD REDUCTION PER IBC 1607.10.2 ITEM 1 Pmax2 := (LL•.75+ TD)•5•FT.10.FT+ (FDL + FLL•.75•.8).2.5.FT•10•FT•2 LOAD COMBINATION 16-11 Pmax2 = 7100.LB usE 6"X2.5"X16GA. STUD BRACED AT THIRDHEIGHTS AT 13 FT TALL Pmax BRACE AT QUARTER POINTS AT 16 FT TALL Pall := 8767•LB = 0.867 OK Pall Pa1116:= 8553.LB DESIGN FOR 5'BEAM SPAN AT HALLS: w:= 10.FT•(FDL+ FLL•.8).2 w= 2960.PLF LIVE LOAD REDUCTION PER IBC 1607.10.2 ITEM 1 • M := (5.33•FT)2. M = 10511.293•FT•LB Sxreq:= Sxreq = 4.205•CI 30000•PSI USE DOUBLE 'C' 8"X2.5"X14GA. Sx :_ (2.101.2 + .465).CI Sx =4.667•Cl OK DESIGN CONNECTION: 5.33 R:= w •FT R= 7888.4•LB 2 Vall:= 619.LB PER ICBG 2196 R = 12.744 Vall USE(8 012 TEKS AT EACH BEAM TO STUD CONNECTION DOUBLE EACH STUD AT BEAM LOCATIONS AT LOCKERS ADD STUDS AT 30"0/C TO SUPPORT ADDITIONAL LOAD OF 62.5 P SF LIVE LOAD AND 5 PSF DEAD LOAD WHERE STUDS ALREADY EXIST ADD SECOND STUD,OK BY COMPARISON TO PER CALCULATIONS ABOVE 39 SINGLE POST DESIGN FIND ALLOWABLE AXIAL LOAD FOR"C" 'C' Ap=4.1N X Bp =2.5•I N X 16 GA. AISI MANUAL Fy= 50000.PSI D:= Ap B:= Bp d:= Cp Rx rx Ry:= ry RO:= r0 X0:= x0 Iy:= 5.FT Ix:= 10•FT G:= 11300.1(81 K:= 1.0 FIND ALLOWABLE STRESS FOR SECTION 2• E Fel := Fel =73410.955•PSI l 2 C1( RV1 �2•E vex:= vex=53777.907•PSI r ,x 2 Rx 2 vt:= 1 • G•J + E Cw at=36380.114 PSI _A•R02 (K-1y)2 X02 0, 1 - (3 =0.402 R02 Fe2:= 1 ficrex+ vt) - (vex+ crt)2 -4•p•vex•vt] 2•(3 Fe2=24344.548•PSI Fel = 73410.955•PSI SECTION C4 Fe;= Fe2 Fn:= Fe2 Xc:=V Fy Xc = 1.433 <I.5 Fn .877 Fn:= •Fy �c2 Xc2 Fn:_ .658 •Fy Fn=21165.748.PSI FIND EFFECTIVE AREA(Ae) 2 .877 FLANGES: di.:_ (d-- R-t) d=0.773•IN Fn:= if Xc < 1.5,.658�c FY, Act •Fy Is:= dL3•t Is=0.001•IN4 Fn =21165.748.PSI 12 wf:= B -2•R-2•t wf=2.007.1N —wf =0.385 < 0.8 S:= 1.28.1—E .28• E B4.2 En S=47.786 > —wf =34.017 > S..328= 15.674 40 THEREFORE i wf •\l - -ice \ -3 wf la:= if S <wf, 115• t + 5 •t4,399. t -.328 .t4 n := if/S < ,�, 1 t 3 2 t ` Sl1 _ -ASi - - d=0.773IN k1 := v4.82 -5.� )1 (la)n + .43 k1 = 5.118wf TABLE B4.2 k2:= 3.57+ .43 J k2 =4 k:= if(k2 <k1 ,k2,k1) -rr2E t -N2 Fcr:= k. • Fcr= 92165,502•PSI 12•(1 - .32) wf Fn <.673 x:= X= 0.479 22 Fcr 1 ---- pf:_ pf= 1.129 THEREFORE FLANGES ARE FULLY EFFECTIVE Wf:= (wf•pf) WEB: ww:= D-2•R-2•t '72•E # 2 Fcr:= k• .I ) Fcr= 30185.03•PSI 12. 1 - .32) — X Fn X=0.837 <.673 Fcr r X=0.837 <.673 THEREFORE WEB FULLY EFFECTIVE .22 1 -- a pw:_ pw=0.88 Ww:= (ww.pw) LIPS: dL= 0.526.IN 2 k:_ .43 t ) Fcr:= k• 7[2•E - — Fcr= 143970.944•PSI 12. 1 - .32 X:=I Fn X=0.383 <.673 Fcr X=0.383 <.673 THEREFORE LIPS ARE FULLY EFFECTIVE Ae:= A-(1 -pw)•ww•t Ae=0.562•S! A= 0.586 IN2 DETERMINATION OF Pa ly=60 IN pn:= Ae•Fn S2c:= 1.8 Pa:= • n SZc Pa=6603 LB BRACED IN WEAK AXIS AT ly=60 IN 41 \ /Bp / SECTIONAL PROPERTY DETERMINATION FOR SECTIONAL PROPERTY DETERMINATION FOR Ap =6.IN Ap=6•IN Bp=2.5.IN Bp =2.5.IN Cp= 0.773•IN Cp= 0.773•1N t= 0.059.1N t=0.059•IN R=0.188•IN R=0.188.1N A=0.704•S1 Ad:= A•2 Ad= 1.4091N2 Ix= 3.971.1N4 Ixd:= Ix•2 Ixd= 7.9431N4 Sx= 1.324.CI Sxd:= Sx•2 Sxd=2.6481N3 • •x=2.375•IN rx=2.375•IN ly=0.615 IN4 Iyd:= (Iy+A•xb2)•2 Iyd=2.055IN4 Sy= 0.355•CI Syd:= Bd Syd=0.8221N3 ry= 0.935-IN p m= 1.247.INd:— Iyd ry Ad ryd= 1.2081N xb=0.765.IN J =0.001iN4 Jd= 0.002IN4 Cw=4.923 1N6 Cwd = 18.2311N6 j =3.513 IN rOd:= Ixd2+ lyd2 rOd = 8.204IN4 x0 —2.012.1N r0=3.25.1N Ma:= Sx•Fy•.6 Mad:= Sxd•Fy•.6 Ma =3309.382•FT•LB Mad=6618.764•FT•LB 42 SINGLE POST DESIGN FIND ALLOWABLE AXIAL LOAD FOR"C" 'C'Ap = 6.I N X Bp= 2.5.I N X16 GA. AISI MANUAL Fy=50000.PSI t7:= Ap B := Bp d:= Cp Rx:= rx Ry:= ry RO:= r0 X0:= x0 ly:= 5.FT lx:= 13,FT G:= 11300•KSI K:= 1.0 FIND ALLOWABLE STRESS FOR SECTION 2 •E Fel := Fel =70640.317•PSl (K. I 12 Rvl 2• E vex:= hex=67458.569.PSI Ix 2 / K Rx) 2 vt:= l •• G•J + BCW vt=54766.176•PSI _A•R02 (K•ly)2 - 2 1 - XO 3=0.617 R02 Fe2:= 3 •[(vex+ift) - (vex+ 0-t)2 -4•P•vex•vt] 2•P Fe2= 37213.032.PSI Fel = 70640.317.PSI SECTION C4 Fe:= Fe2 Fn:= Fe2 FY Xc:= Xc = 1.159 <1.5 Fn .877 Fn:= •Fy Xc2 Xc 2 En := .658 •Fy Fn =28492.826•PSI FIND EFFECTIVE AREA(Ae) 2 FLANGES: dL:_ (d-- R- t) d=0.773.IN Fn:= if Xc < 1.5,.658X0 •Fy, �c2•Fy ) Is:= dL3•t Is=0.001•IN4 Fn=28492.826 PSI 12 wf:= B -2•R-- 2•t wf=2.007.1N d — =0.385 < 0.8 wf S := 1.28• E B4.2 Fn wf S =41.186 > t- =34.017 > S..328= 13.509 43 THEREFORE j/ \\ - ill -3 I wf 1 11 la:= if S < wf, 115. t + 5 •t4,399• i -.328 .t4 n:- if S < t ,3' 2 t ,,` S 11 _ _� S J - - ( 1 d=0.773 IN k1 := d I1 4.82 -5.I I i + . TABLE k1 =3.603 J ` LE B4.2 k2 := 3.57+ .43 k2 =4 k := if(k2 <k1 ,k2,k1) 2E I, 2 Fcr:= k. . — Fcr=83027.713•PSI 12. 1 - .32) wf) Fn <.673 /---- :_ = 0.586 Fcr 1 - .22--- pf:- pf= 1.066 THEREFORE FLANGES ARE FULLY EFFECTIVE X Wf:= (wf•pf) WEB: ww:= D-2.R- 24 Tr21•E t2 Fcr:= k• • — Fcr= 11027.769.PSI 12.(1 - .32)I Fn X:_ X= 1.607 <.673 Fcr X= 1.607 <.673 THEREFORE WEB FULLY EFFECTIVE .22 1 -- X pw:_ pw=0.537 Ww:= (ww•pw) LIPS: dL=0.526.1N 2 2 k'- .43 Fcr:= k. n E 2 .1 -I Fcr= 143970.944•PSI 12. 1 - .3 dL X:= Fn X=0.445 <.673 Fcr X=0.445 <.673 THEREFORE LIPS ARE FULLY EFFECTIVE Ae:= A-(1 - pw)•ww•t Ae=0.554•SI A= 0.7041N2 DETERMINATION OF Pa ly=601N pn := Ae•Fn 52c := 1.8 Pa := n -- Sic Pa = 8767 LB BRACED IN WEAKAXIS AT ly=60 IN 44 SINGLE POST DESIGN FIND ALLOWABLE AXIAL LOAD FOR"C" 'C' Ap =6•INX Bp =2.5.INX 16 GA. AISI MANUAL Fy= 50000.PSI 0:= Ap B := Bp d:= Cp Rx:= rx Ry:= ry R0:= r0 X0:= x0 Iy:= 4•FT Ix:= 16•FT G:= 11300•KSI K:= 1.0 FIND ALLOWABLE STRESS FOR SECTION 7r2•E Fel := Fel = 110375.495•PSI 2 Rv� ir2•E oex:= hex=44533.196•PSI Ix 2 lK Rx) 1 ir2•E•Cw Qt:- • G J + Qt= 84873.769•PSI _A R02 (K•ly)2 — X02 R:= 1 --- p =0.617 R02 1 Fe2:= —• (Qex+ rt) -J(hex+ rrt)2 -4.6.6ex•QtJ 2•(3 Fe2 = 35067.511.PS1 Fel = 110375.495.PSI SECTION C4 Fe:= Fe2 Fn := Fe2 Fy Xc := � Fn Xc= 1.194 <1.5 .877 Fn:_ •Fy 2 Xc2 Fn:_ .658Xc •Fy Fn=27529.139•PSl FIND EFFECTIVE AREA(Ae) 2 FLANGES: dL:= (d -R- t) d= 0.773•IN Fn:= if Xc < 1.5,.658Xc •Fy, $72•Fy Xc Is:= dL3•t Is=0.001•IN4 Fn =27529.139•PSI 12 wf:= B -2-R-2•t wf=2.007•IN d —d = 0.385 < 0.8 wf S := 1.28. E B4.2 Fn wf S =41.901 > -- =34.017 > S..328= 13.744 45 THEREFORE - (( wf \\ 7 wf \ --3 wf 1 1 la := if S < wf, 115• t + 5 44,399. t - .328 .t4 n:= if S <t, 3, 2 t _ \AS _0 _AS1 (� )1• In d= 0.773IN k1 :_ [4.82-5•(w df IlI— •`ia I + .43 k1 =3.743 J TABLE B4.2 k2 := 3.57+ .43 k2 =4 k:= if(k2 < k1 ,k2,k1) ir2•Et `2 Fcr:= k• •� Fcr=86244.275.PSI 12. 1 - .32) wf I JJ) X:- Fn X=0.565 <.673 22 Fcr 1 -_..- _ a THEREFORE FLANGES ARE FULLY EFFECTIVE pf X Pf= 1.081 Wf:_ (wf•pf) WEB: ww:= D- 2.R-2.t ,r2•E t 2 Fcr:= k• •� ) Fcr= 11454.994•PSI j 12. 1 - .32) ww X:= Fn X= 1.55 <.673 Fcr X= 1.55 <.673 • THEREFORE WEB FULLY EFFECTIVE .22 1 -- a pw:_ pw= 0.554 Ww:= (ww•pw) LIPS: dL= 0.526-IN k:= .43 I.2•E r t 2 Fcr:= k• 2 •I dL) Fcr= 143970.944•PSI 12•(1 - .3 ) l X:= I Fn X=0.437 <.673 y Fcr X= 0.437 <.673 THEREFORE LIPS ARE FULLY EFFECTIVE Ae:= A- (1 -pw)•ww•t Ae=0.559•SI A=0.704IN2 DETERMINATION OF Pa ly=481 N pn:= Ae•Fn Stc:= 1.8 Pa:= n ftc Pa =8553 LB BRACED IN WEAK AXIS AT ly=481N 46 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer; Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art(a)kiwiconstruction.com Printed.7 DEC 2016,1 37PM Steel Beam File=C:UlsersW.EON-1.KlWlDOCUME-11ENERCA^•1ltigard.ec6 ENERCALC,INC.1983-2016,BuIId:8.16.10.31,Vec6.t6.10.31 Lic.#: KW-06006193 Licensee:KIWI ti CONSTRUCTION Description: 27 FT,r CODE REFERENCES Calculations per AISC 360-10,IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 010 54)Lrr0.2,11,L(1.25)S03 2) * * Span=27.0 ft W 18x40 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D=0.0540, Lr=0.020, L=0.1250, S=0.020 ksf, Tributary Width=10.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.853: 1 Maximum Shear Stress Ratio= 0.219 : 1 Section used for this span WI 8x40 Section used for this span W18x40 Ma:Applied 166.759k-ft Va:Applied 24.705 k Mn/Omega:Allowable 195.609 k-ft Vn/Omega:Allowable 112.770 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 13.500ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.846 in Ratio= 382>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 1.239 in Ratio= 262>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240,0 Overall Maximum Deflections Load Combination Span Max.""Deft Location in Span Load Combination Max."+"Deft Location in Span +D+L+H 1 1.2386 13.577 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 24.705 24.705 Overall MINimum 2.700 2.700 +D+H 7.830 7.830 +D+L+H 24.705 24.705 +D+Lr+H 10.530 10.530 +D+S+H 10.530 10.530 +D+0.7501r+0.750L+H 22.511 22.511 +D+0.750L+0.750S+H 22.511 22.511 +D+0,60W+H 7.830 7.830 +D+0.70E+H 7.830 7.830 +D+0.750Lr+0.750L+0.450W+H 22.511 22.511 +D+0.750L+0.7505+0.450W41 22.511 22.511 +D+0.750L+0.750S+0.5250E+H 22.511 22.511 +0,600+0.60W+0.601-1 4.698 4.698 +0.60D+0.70E+0.60H 4.698 4.698 D Only 7.830 7.830 Lr Only 2.700 2.700 L Only 16.875 16.875 S Only 2.700 2.700 W Only E Only 47 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Printed:7 DEC 2016, 1:36PM steel.Beard Fife=C:lUsers\ALEON-1.KlWD000ME-t1ENERCA-1160ard.ec6 ENERCALC,INC.1983-2016,Build:6.16.10.31,Ver:6.16.10.31 #: KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 40 FT,r CODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Nodulus: 29,000.0 ksi Bending Axis: Major Axis Bending + D(0.54)trro21i,L(I.25)6f02) Span=46011 2 W24x76 --,.,...,._....__ _._....,.._..---- ----_................_..----- --._........._...----- Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D=0.0540, Lr=0.020, L=0.1250, S=0.020 ksf, Tributary Width=10.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.748: 1 Maximum Shear Stress Ratio= 0.177 : 1 Section used for this span W24x76 Section used for this span W24x76 Ma:Applied 373.200 k-ft Va:Applied 37.320 k Mn I Omega:Allowable 499.002 k-ft Vn/Omega:Allowable 210.320 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 20.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 1.186 in Ratio= 404>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 1.773 in Ratio= 271 >=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections Load Combination Span Max.'"Deft Location in Span Load Combination Max."+"Defl Location in Span +D+L+H 1 1.7730 20.114 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 37.320 37.320 Overall MINimum 4.000 4.000 +D+H 12.320 12.320 +D+L+H 37.320 37.320 +D+Lr+H 16.320 16.320 +D+S+H 16.320 16.320 +D+0.750Lr+0.750L+H 34.070 34.070 +D+0.750L+0.7508+H 34.070 34.070 +D+0.60W+H 12.320 12.320 +D+0.70E+H 12.320 12.320 +D+0.750Lr+0.750L+0.456W4I 34.070 34.070 +D+0.750L+0.7505+0.450W41 34.070 34.070 +D+0.750L+0.750S+0.5250E+H 34.070 34.070 +0.60D+0.60W+0.60H 7.392 7.392 +0.60D+0.70E+0.60H 7.392 7.392 D Only 12.320 12.320 Lr Only 4.000 4.000 L Only 25.000 25.000 S Only 4.000 4.000 W Only E Only 48 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art(a,kiwiconstruction.com Printed:7 DEC 2018,1:39PM Steet Bealtl File=C:4UsersALEON-I.KMD0CUME-11ENERCA 111igaid.ec6 ENERCALC,INC.1983-2016,Build:6.16.10.31,Ver:6.16.10.31 Lic.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 15 FT,SUPPORTING ONE FLOOR AND ROOF,r CODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending i ❑)0.405)Lr(0.15)LE 9375)S(0.15) i Span=15.08 Mate Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D=0.0540, Lr=0.020, L=0.1250, S=0.020 ksf, Tributary Width=7.50 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.879: 1 Maximum Shear Stress Ratio= 0.238 : 1 Section used for this span W12x14 Section used for this span WI2x14 Ma:Applied 38.152 k-ft Va:Applied 10.174 k Mn/Omega:Allowable 43.413 k-ft Vn/Omega:Allowable 42.754 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 7.500ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.417 in Ratio= 431>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.604 in Ratio= 298 >=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections Load Combination Span Max."-"Dell Location in Span Load Combination Max."+"Defl Location in Span +D+L+H 1 0.6041 7.543 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 10.174 10.174 Overall MINimum 1.125 1.125 +D+H 3.143 3.143 +0+L+H 10.174 10.174 +D+Lr+H 4.268 4.268 +D+S+H 4.268 4.268 +D+0,750Lr+0.750L+H 9.260 9.260 +D+0.750L+0.750S+H 9.260 9.260 +D+0.60W+H 3.143 3.143 +0+0.70E+H 3.143 3.143 +D+0.750Lr+0.750L+0.450W+H 9.260 9.260 +D+0.750L+0.750S+0.450W+H 9.260 9.260 +D+0.750L+0.750S+0.5250E+44 9.260 9.260 +0.60D+0.60W+0.60H 1.886 1.886 +0.6013+0.70E+0.60H 1.886 1.886 D Only 3.143 3.143 Lr Only 1.125 1.125 L Only 7.031 7.031 S Only 1.125 1.125 W Only E Only 49 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Printed:7 DEC 2016, 1:41PM Steel Beat11 `. File=.C:lUsersIALEON'-1.KIWID000ME-1 ENERCA-11tigard.ec6 .i ENERCALC,'INC.1583.20t6,Build:6.16.10.31,Ver:6.16.10.31 Lic.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 22 FT,SUPPORTING TWO FLOORS AND ROOF,r CODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 �v Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(1.02}L<O.2 L(2.5)S(0.2) Span=22.0 ft W i 8x46 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D=0.1020, Lr=0.020, L=0.250, S=0.020 ksf, Tributary Width=10.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.953: 1 Maximum Shear Stress Ratio= 0.301 : 1 Section used for this span WI 8x46 Section used for this span WI8x46 Ma:Applied 215.743k-ft Va:Applied 39.226 k Mn/Omega:Allowable 226,297 k-ft Vn/Omega:Allowable 130.320 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 11.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.641 in Ratio= 411>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.914 in Ratio= 289>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections Load Combination Span Max."-"Dell Location in Span Load Combination Max."+"Dell Location in Span +D+L+H 1 0.9144 11.063 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 39.226 39.226 Overall MINimum 2.200 2.200 +D+H 11.726 11.726 +D+L+H 39.226 39.226 +D+Lr+H 13.926 13.926 +D+S+H 13.926 13.926 +D+0.750Lr+0.750L+H 34.001 34.001 +D+0.750L+0.750S+H 34.001 34.001 +D+0.60W+H 11.726 11.726 +D+0.70E+H 11.726 11.726 +D+0.750Lr+0.750L+0.450W+H 34.001 34.001 +D+0.750L+0.750S+0.450W+H 34.001 34.001 +D+0.750L+0.7505+0.5250 E+H 34.001 34.001 +0.60D+0.60W+0.60H 7.036 7.036 +0.60D+0.70E+0.60H 7.036 7.036 D Only 11.726 11.726 Lr Only 2.200 2.200 L Only 27.500 27.500 S Only 2.200 2.200 W Only E Only 50 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 arI@kiwiconstruction.com Printed:7 DEC 2016,2:51PM . .. File=CaUserslALEON-1.KIWIDOCUME-11ENERCA-111igard.ec6 Steel Be11Tl ENERCALC,INC.1983-2016,Buid:6,16.10.31,Ver:6.16.10,31 Lie.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 30 FT,rd CODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 00.02)Lrt0 )L(2)5(0.2) r .. ... .. Span=30.0 ft W24x68 Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D=0.1020, Lr=0.020, L=0.20, S=0.020 ksf, Tributary Width=10.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.787: 1 Maximum Shear Stress Ratio= 0.235 : 1 Section used for this span W24x68 Section used for this span W24x68 Ma:Applied 347.400 k-ft Va:Applied 46.320 k Mn/Omega:Allowable 441.617 k-ft Vn/Omega:Allowable 196.710 k Load Combination +D+L+N Load Combination +D+L+FI Location of maximum on span 15.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.690 in Ratio= 521>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 1.065 in Ratio= 338>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 ----- ---.,..... -----.._..------ ----....._..--- Overall Maximum Deflections Load Combination Span Max.s-"Dot Location in Span Load Combination Max."+"Dell Location in Span +D+L+H 1 1.0653 15.086 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 46.320 46.320 Overall MINimum 3.000 3.000 +D+H 16.320 16.320 +D+L+H 46.320 46.320 +D+Lr+H 19.320 19.320 +O+S+H 19.320 19.320 +0+0.750Lr+0.750L4l 41.070 41.070 +D+0.7501+0.750S+H 41.070 41.070 +D+0.60W+H 16.320 16.320 +D+0.70E+H 16.320 16.320 +D+0.750Lr40.750L+0.450W+H 41.070 41.070 +D+0.750L+0.750S+0.450W+H 41.070 41.070 +D+0.750L+0.750S+0.5250E+H 41.070 41.070 +0.600+0.60W+0.60H 9.792 9.792 +0.60D+0.70E+0.60H 9.792 9.792 D Only 16.320 16.320 Lr Only 3.000 3.000 L Only 30.000 30.000 S Only 3.000 3.000 W Only E Only 51 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Printed 7 DEC 2016,3:31PM Steel BeaITI Fife=C:lUseisALEON-1.K11MDOCUME-11ENERCA-1Uigard.ec6 ENERCALC, • INC.1983.2016,Bulld:6.16.10.31,Ver:6.16.10.31 #: KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 12 FT JACK,rd CODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 0(16.32)Lr3)1(30)S(3) D(16.32)Lr3)L(30)5(3) Span=13.0 M 015633.9 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load(s)for Span Number 1 Point Load: D=16.320, Lr=3.0, L=30.0, S=3.0 k @ 1.50 ft Point Load: D=16.320, Lr=3.0, L=30.0, S=3.0 k @ 11.50 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.554: 1 Maximum Shear Stress Ratio= 0.432 : 1 Section used for this span C15x33.9 Section used for this span C15x33.9 Ma:Applied 70.196 k-ft Va:Applied 46.540 k Mn I Omega:Allowable 126.747 k-ft Vn/Omega:Allowable 107.784 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 6.500ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.178 in Ratio= 878>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.277 in Ratio= 564>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections Load Combination Span Max.""Dell Location in Span Load Combination Max."+"Defl Location in Span +D+L+H 1 0.2765 6.537 0.0000 0.000 Vertical Reactions Support notation:Far lett is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 46.540 46.540 Overall MINimum 3.000 3.000 +D+H 16.540 16.540 +D+L+H 46.540 46.540 +D+Lr+H 19.540 19.540 +D+S+H 19.540 19.540 +D+0.750Lr+0.750L+H 41.290 41.290 +D+0.750L+0.750S+H 41.290 41.290 +D+0.60W+H 16.540 16.540 +D+0.70E+H 16.540 16.540 +D+0.750Lr+0.750L+0.450W+H 41.290 41.290 +D+0.750L+0.750S+0.450W+H 41.290 41.290 +0+0.750L+0.750S+0.5250E+H 41.290 41.290 +0.600+0.60W+0.60H 9.924 9.924 +0.60D+0.70E+0.60H 9.924 9.924 D Only 16.540 16.540 Lr Only 3.000 3.000 L Only 30.000 30.000 S Only 3.000 3.000 52 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRI ETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 artf kiwiconstruction.com Printed:7 DEC 2016, 1:54PM Steel Beam File=C:tUsersIALEON-i.KIWiDOCUME-1IENERCA--lttigard.ec6 ENERCALC,INC.1983-2016,Build:6.16.10.31,Ver:6.16.10.31 Lic.#: KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 50 FT JACK,r CODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 0(1.53)Lr10.3�L(3.75)5(0.3) ,. .. SpanW40x167 .. .: b 50.0R Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D=0.1020, Lr=0.020, L=0.250, S=0.020 ksf, Tributary Width=15.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.984: 1 Maximum Shear Stress Ratio= 0.271 : 1 Section used for this span W40x167 Section used for this span W40x167 Ma:Applied 1,702.188 k-ft Va:Applied 136.175 k Mn/Omega:Allowable 1,729.042 k-ft Vn/Omega:Allowable 501.80 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 25.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 1.571 in Ratio= 381>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 2.287 in Ratio= 262>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections Load Combination Span Max."-"Dell Location in Span Load Combination Max.n+Dell Location in Span +D+L+H 1 2,2874 25.143 0.0000 0.000 Vertical Reactions Support notation:Far lett is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 136.175 136.175 Overall MINimum 7.500 7.500 +D+H 42.425 42.425 +D+L+H 136.175 136.175 +D+Lr+H 49.925 49.925 +D+S+H 49.925 49.925 +D+0.750Lr+0.750L+H 118.363 118.363 +D+0.750L+0.750S+H 118.363 118.363 +D+0.60W+H 42.425 42.425 +D+0.70E+H 42.425 42.425 +D+0.750Lr+0.750L+0.450W+H 118.363 118.363 +D+0.750L+0.7505+0.450W+H 118.363 118.363 +D+0.750L+0.7508+0.5250E+11 118.363 118.363 +0.60D+0.60W+0.64H 25.455 25.455 +0.60D+0.70E+0.60H 25.455 25.455 0 Only 42.425 42.425 Lr Only 7.500 7.500 L Only 93.750 93.750 S Only 7.500 7.500 W Only E Only 53 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art a(�,kiwiconstruction.com Printed:7 DEC 2016,1.56PM Steel Beam ; File=C:lUsersIALEON-1.KIWtDOCUME'-.11ENERCA-1Vtigard,ec6 ENERCALC,INC,1983-2016,Build:6,16.10.31,Ver.6.16.10.31 Lic.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 10 FT,r CODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending Dli 021110.2}L(2)510 2) i w i i Span=10.00 C'�5 W12x14 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D=0.1020, Lr=0.020, L=0.20, S=0.020 ksf, Tributary Width=10.0 ft DESIGN SUMMARY Design OK • Maximum Bending Stress Ratio = 0.874: 1 Maximum Shear Stress Ratio= 0.355:1 3 Section used for this span W12x14 Section used for this span W12x14 Ma:Applied 37.925 k-ft Va:Applied 15.170 k Mn I Omega:Allowable 43.413 k-ft Vn/Omega:Allowable 42.754 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 5.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.176 in Ratio= 682>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.267 in Ratio= 450>=240, Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections Load Combination Span Max°-"Dell Location in Span Load Combination Max."+'Defl Location in Span +D+L+H 1 0.2669 5.029 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 15.170 15,170 Overall MINimum 1.000 1.000 +D+H 5.170 5.170 +D+L+H 15.170 15.170 +D+Lr+H 6.170 6.170 +D+S+H 6.170 6.170 +D+0.750Lr+0.750L41 13.420 13.420 +D+0.750L+0.750S+H 13.420 13.420 +D+0.60W+H 5.170 5.170 +D+0.70E+H 5.170 5.170 +D+0.750Lr+0.750L+0.450W+H 13.420 13.420 +0+0.750L+0.750S+0.450W+11 13.420 13.420 +0+0.7501+0.7508+0,5250E+11 13.420 13.420 +0.60D+0.60W+0.60H 3.102 3.102 +0.60D+0.70E+0.601-1 3.102 3.102 D Only 5.170 5.170 Lr Only 1.000 1.000 L Only 10.000 10.000 S Only 1.000 1.000 W Only E Only 54 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Pdnled.7DEC 2016,3:56PM Steel;B@alit. File=C:lUserslALEON-1.KIWIDOCUME-11ENERCA-1Vgard.ec6 ENERCALC,INC.1963-2016,Build:6.16.10.31,Ver:6.16.10.31 lac.#; KW-06006193 Licensee:KIWI It CONSTRUCTION Description: 12 FT JACK,interior,r CODE REFERENCES Calculations per AISC 360-10,IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 0(5.17)(nl)L(12.5)5(1) --- 0(5.17)Lrl)L(12.5)S(1) t � Spen=12 0 fl MC12x10.6 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load(s)for Span Number 1 Point Load: D=5.170, Lr=1.0, L=12.50, S=1.0 k @ 1.0 ft Point Load: D=5.170, Lr=1.0, L=12.50, S=1.0 k @ 11.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.617: 1 Maximum Shear Stress Ratio= 0.433 : 1 Section used for this span MCI2x10.6 Section used for this span MC12x10.6 Ma:Applied 17.861 k-ft Va:Applied 17.734 k Mn/Omega:Allowable 28.942 k-ft Vn/Omega:Allowable 40.958 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 6.000ft Location of maximum on span 12.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.241 in Ratio= 596>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.344 in Ratio= 418>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 --__.........--- Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L+4-1 1 - 0.3444 6.034 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 17.734 17.734 Overall MINimum 1.000 1.000 +D+H 5.234 5.234 +D+L+H 17.734 17.734 +D+Lr+H 6.234 6.234 +D+S+H 6.234 6.234 +D+0.750Lr+0.750L+H 15.359 15.359 +D+0,7501+0.750S+H 15.359 15.359 +D+0.60W+H 5.234 5.234 +D+0.70E+H 5.234 5.234 +D+0.750Lr+0.750L+0.450W+H 15.359 15.359 +D+0.750L+0.750S+0.450W+H 15.359 15.359 +0+0.7501.+0.7505+0.5250E+H 15.359 15.359 +0.60D+0.60W+0.60H 3.140 3.140 +0.600+0.70E+0.601-1 3.140 3.140 D Only 5.234 5.234 Lr Only 1.000 1.000 L Only 12.500 12.500 S Only 1.000 1.000 55 1 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID; MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 i art@kiwiconstruction.com Printed.7DEC zo16,l:azPM Steel Beat711 File=C:tUsersI,LEON-1.KIWIDOCUME--11ENERCA-111igard,ec6 ENERCALC,INC.19632016,Build:6.16.10.31,Ver:6,16.10.31 Lie.#:KW-06006193 Licensee KIWI II CONSTRUCTION Description: 30 FT,r CODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 0(0.25)Lr(6.05)L(0.625)5(0.05) * * * 4 car a .. ., span=30.0 R .. .. W16x36 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D=0.10, Lr=0.020, L=0.250, S=0.020 ksf, Tributary Width=2.50 ft DESIGN SUMMARY Design'OK Maximum Bending Stress Ratio = 0.642: 1 Maximum Shear Stress Ratio= 0.146 : 1 Section used for this span W16x36 Section used for this span W16x36 Ma:Applied 102.488 k-ft Va:Applied 13.665 k Mn!Omega:Allowable 159.681 k-ft Vn/Omega:Allowable 93.810 k Load Combination +D+L+H Load Combination +D+L+H 1 Location of maximum on span 15.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 1 Maximum Deflection Max Downward Transient Deflection 0.880 in Ratio= 408>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 1.284 in Ratio= 280>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections _ Load Combination Span Max."-"Del Location in Span Load Combination Max."+'Del Location in Span +D+L+H 1 1.2838 15.086 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 13.665 13.665 Overall MINimum 0.750 0.750 +D+H 4.290 4.290 +D+L+H 13.665 13.665 +D+Lr+H 5.040 5.040 +D+S+H 5.040 5.040 +D+0.750Lr+0.7501+H 11.884 11.884 +0+0.750L+0.750S+H 11.884 11.884 +D+0.60W+H 4.290 4.290 +D+0.70E+H 4.290 4.290 +D+0,750Lr+0.7501+0.450W+H 11.884 11.884 +D+0.750L+0.750S+0.450W4I 11.884 11.884 +D+0,750L+0.750S+0.5250E+H 11.884 11.884 +4.60D+0.60W+0.60H 2.574 2.574 +0.60D+0.70E+0.60H 2.574 2.574 D Only 4.290 4.290 Lr Only 0.750 0.750 L Only 9.375 9.375 S Only 0.750 0.750 W Only E Only 56 KIWI II CONSTRUCTION STRUCTURAL CALCULATIONS FOR LATERAL DESIGN LOADS: ROOF LIVE LOAD: LL:= 25•PSF ROOF DEAD LOAD: DL:= 6•PSF FLOOR LIVE LOAD: FLL:= 125•PSF FLOOR DEAD LOAD: FDL:= 48•PSF WIND LOADING: HORIZONTAL(TRANSVERSE) HT:= 17.6•PSF HT= 17.6•PSF PW= HT H3:= 10•FT H2:= 10•FT HI := 10•FT V:= .122 V= 0.122 h3 := H1 + H2 + H3 h2:= H1 + H2 h1 := H1 LATERAL DESIGN: TOTAL BUILDING HEIGHT IS h3 = 30•FT WIND Pw= 17.6•PSF ww3:= Pw H3 + Pw•5.FT•2.25.1 ww3= 286•PLF 2 ww2:= (H2)•Pw ww2= 176•PLF wwl := H1•Pw wwl = 176•PLF SEISMIC A3:= 31725•FT2 BUILDING IS W:= 140•FT WIDE A2:= 31725.FT2 TRIBUTARY WIDTH IS 10' Al := 31574•FT2 w3RD:= DL•W+ (10-+• 10)•PSF• 2 H3 2 • V 1.4 w3RD= 90.629•PLF V w2ND:= [[(FDL+ 125.PSF•.25)•W+ (10+ 10)•PSF.H2.2]• 1.4 4.32ND= 1001.707•PLF f. w1ST:=[[(FDL+ 125•PSF-.25)•W+ (84 + 84)•PSF•H1.2]• 4� wIST= 1259.65•PLF 57 REDISTRIBUTE (w3RD+ w2ND+ w1ST)•w3RD•h3 w3:_ w3RD•h3+ w2ND•h2+ LIST.h1 w3= 180.9.PLF (w3RD+ w2ND+ w1ST)•w2ND•h2 w2:_ w3RD•h3 + w2ND•h2+ w1ST•h1 w2= 1332.976 PLF (w3RD+ w2ND+ w1ST)•w1ST•h1 w1 w3RD•h3 + w2ND•h2+ w1ST.h1 w1 = 838.111,PLF SHEAR TO WALL AT 3RD FLOOR IS... L:= W— 35•FT OF SHEARWALL WIND L= 105•FT v3w:=[(ww3)••10••FT] L v3w= 27.238•PLF SEISMIC [(w3)•10•FT] v3s:=I L v3s= 17.229.PLF USE 26GA. METAL SHEARWALLS WITH (7) FASTENERS AT EACH PANEL SPANNING 5"-0"AND 0 SIDELAP FASTENERS vall=105 PLF CHECK OVERTURNING AT LOW EAVE,20 FT WALL Hsw:= 14•FT Lsw:= 20•FT Mot:= v3w•Hsw•Lsw Mot= 7626.667•FT.LB Mot UP:= — UP= 381.333 LB Lsw USE(2)1/4"TITEN HD ANCHORS Tall4s:= 900.LB•.7 Tall4s= 630 LB Tallow:= 1200.LB•.6 Tall4w= 720 LB DESIGN DRAG STRUT SPLICE WIND SEISMIC T:= v3w•10•FT T= 272.381 LB Ts:= v3s•10•FT•2.5 Ts= 430.714 LB N:= Ts N= 0.696 USE(2)#I2 SCREWS AT SPLICES 619.13 58 SHEAR TO WALL AT 2ND FLOOR IS... L:= W- 25-FT OF SHEARWAI,L WIND [(ww3+ ww2)A1o.FT1 v2w:= Il L JI v2w= 40.174•PLF SEISMIC [OA+ w2)•10.FT1 v2s:= L v2s= 131.641•PLF USE 26GA, METAL SHEARWALLS WITH (7) FASTENERS PER PANEL SPANNING 2`-6" AND 0 SIDELAP FASTENERS vall=249 PLF WIND [(ww3+ ww2)1 v2w:= W J v2w= 3.3.PSF SEISMIC [(w3+ w2)] v2s:- L W v2s= 10.813•PS F LAT3:= v2s•A2 LAT3= 343054.931 LB SEE RIGID ANALYSIS CHECK OVERTURNING AT LOW EAVE, 10 FT WALL Hsw:= 10•FT Lsw:= 10•FT Mot:= 255.PLF•Hsw•Lsw Mot= 25500•FT.LB Mr:= 10•FT•FDL•.6•Lsw2..5 Mot•- Mr UP:= Lsw UP= 1110LB Mr= 14400•FT•LB USE 1/2"THRUB OLT AND S/LTT20 HOLD DOWNS AF SIIEARWALL ENDS Tall := 1200.LB UNIT SHEAR AT 1ST FLOOR,GROSS MASS: SHEAR TO WALL AT 1ST FLOOR IS... WIND r(ww2+ ww3+ ww1)1 v2w:= !L W v2w= 4.557•PSF SEISMIC v2s:- W v2s= 16.8•PSF A:= 31574•FT2 LATERALAT SECOND FLOOR REVISED FOR REDUCED FLOOR AREA OVER DRIVE LAT2:= v2s•A LAT2= 530439.978 LB SEEM IACHEL)RIGID DIAPHRAGM ANALYSIS FOR THIS LEVEL SEE SSE ENGINEERING ANALYSIS FOR CMU WALL SHEARS SHEAR TRANSFER FROM DECK'10 WALLS,MAX IS WALL#11 vmax:= 3220.LB USE MINIMUM#4 BARS AT 8"0/C Vail 60000 PSI•.4•.1963•IN2 Vall=4711.2 LB >> vmax= 3220 LB SEE DETAIL 6 SHEET DI,TYPICAL MALL DECK TO CMU LOCATIONS 59 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Printed:7 DEC 2016,3:58PM File=.C:\UsersiALEON-1.KIWIDOCUME-11ENERCA-l\Iigard.ec6 Torsional Analysis of Rigid Diaphragm ENERCALc,INc.19832016,BiriId:6.16.10.31,Ver.6.16.10.31 Lie.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R General Information Calculations per IBC 2012,CBC 2013,ASCE 7-1 Applied Lateral Force 343.0 k Center of Shear Application: Additional Orthogonal Force k Distance from'X'datum point 103.40 ft Distance from"Y"datum point 92.0 ft Maximum Load Used for Analysis: 343.0 k Accidental Torsion values per ASCE 7-0512.8.4.2 Note: This load is the vector resolved from the above Ecc.as%of Maximum Dimension 5.00 % two entries and will be applied to the system of elements at angular increments. Maximum Dimensions: Along"X"Axis 210.0 ft Load Orientation Angular Increment 90,0 deg Along"Y"Axis 170.0 ft Load Location Angular Increment 15.0 deg Center of Rigidity Location (calculated)... "X"dist.from Datum 106.656 ft "Y"dist.from Datum 88.960 ft Accidental Eccentricity+1-from"X"Coord.of Load Application: 10.50 ft Accidental Eccentricity+1-from"V"Coord.of Load Application: 8.50 ft Wall Information Label: 1 X Wall C.G.Location 0 ft Wall Length 140 ft Y Wall C.G.Location 100 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.8491E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 2.0333E+001 in _ E-Shear 11800 Mpsi Label: 2 X Wall C.G.Location 100 ft Wall Length 200 ft Y Wall C.G.Location 170 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 2.6851E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+001 in E-Shear 11800 Mpsi Label: 3 X Wall C.G.Location 200 ft Wall Length 15 ft Wall Deflections(Stiffness)for 1,0 kip load: V Wall C.G.Location 162 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi Label: 4 X Wall C.G.Location 210 ft Wall Length 40 ft Y Wall C,G,Location 105 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 1.4496E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 7.1167E+001 in E-Shear 11800 Mpsi Label: 5 X Wall C.G.Location 110 ft Wall Length 125 ft Y Wall C.G.Location 30 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 4.3184E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 2.2773E+001 in E-Shear 11800 Mpsi Label: 6 X Wall C.G.Location 65 ft Wall Length 30 ft Y Wall C.G.Location 15 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member V Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in _ E-Shear 11800 Mpsi Label: 7 X Wall C.G.Location 40 ft Wall Length 40 ft Y Wall C.G.Location 0 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 1,4496E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 7.1167E+001 in E-Shear 11800 Mpsi Label: 8 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 40 ft Wall Height 10 ft i. Wall Deflections(Stiffness)for 1,0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E--Shear - 11800 Mpsi 60 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRI ETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Printed:7 DEC 2018,3:58PM Torsional Anal sis of Ri File=C:lUserslALEON-1.KIWIDOCUME-11ENERCA-1111gard.ec6 ly Id DiahraTl1 g.. p. ..g ENERCALC,INC.1983-2016,Build:6.16.10.31,Ver:6.16.10.31 Lie,#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R Wall Information Label: 9 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 50 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 10 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 60 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Watt Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 11 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 70 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 12 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 80 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wail Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 13 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 90 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 14 X Wall C.G.Location 10 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 100 ft Wall Height 10 ft Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 15 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 110 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 16 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 17 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 130 ft Wall Height 10 ft Wail Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 18 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 140 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 19 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall G.G.Location 150 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002in E-Shear 11800 Mpsi Label: 20 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 160 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi 61 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Printed:7DEC 2016,2.68PM Torsional Analysis of Rigid Diaphragm File=c:wserswLEON-1.KlW)OCuME-11 NERcA-nugara.ec6 ENERCALC,INC.1983-2016,Buifd:6.16.10.31,Ver:6.16.10.31 Lic.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R Wall Information Label: 21 X Wall C.G.Location - 30 ft Wall Length �._._ 70 ft _ Y Wall C.G.Location 55 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 7.8543E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 4.0667E+001 in E-Shear 11800 Mpsi Label: 22 X Wall C.G.Location 60 ft Wall Length 15 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi Label: 23 X Wall C.G.Location 70 ft Wall Length 15 ft Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi Label: 24 X Wall C.G.Location 80 ft Wall Length 15 ft Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi Label: 25 X Wall C.G.Location 90 ft Wall Length 15 ft Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi Label: 26 X Wall C.G.Location 100 ft Wall Length 15 ft Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi Label: 27 X Wall C.G.Location 110 ft Wall Length 15 ft Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wali Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi Label: 28 X Wall C.G.Location 120 ft Wall Length 15 ft Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi Label: 29 X Wall C.G.Location 130 ft Wall Length 15 ft Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E4002 in E-Shear 11800 Mpsi Label: 30 X Wall C.G.Location 140 ft Wall Length 15 ft Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in _ _ _ E-Shear 11800 Mpsi _ Label: 31 X Wall C.G.Location 150 ft Wall Lengthmw 15 ft Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in ___ _� __ E-Shear 11800 Mpsi Label: 32 X Wall C.G.Location 160 ft Wall Length 15 ft Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi _.___Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi 62 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRI ETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 artAkiwiconstruction.com Printed:7 DEC 2016.3:58PM File=C:1Users ALEON-1.KI MDOCUME-11ENERCA-1ltigard.ec6 Torsional Analysis of Rigid Diaphragm ENERCALC,INC.1963-2016,Build:6.16.10.31,Vet:6.16.10.31 Lic.#:KW-06006193 Licensee t KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R Wall Information Label: 33 X Wall C.G.Location 170 ft Wall Length 15 ft Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1,8978E+002 in E-Shear 11800 Mpsi___ Label: 34 X Wall C.G.Location 50 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 35 X Wall C.G.Location 60 ft Wail Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 36 X Wall C.G.Location 70 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 37 X Wall C.G.Location 80 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 38 X Wall C.G.Location 90 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 39 X Wall C.G.Location 100 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 40 X Wall C.G.Location 110 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 41 X Wall C.G.Location 120 ft Wall Length 30 ft Wall Deflections(Stiffness)for 1.0 kipload: Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 42 X Wall C.G.Location 130 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member V Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 43 X Wall C.G.Location 140 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 44 X Wall C.G.Location 170 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member V Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir_ 9.4890E+001 in E-Shear , 11800 Mpsi 63 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Panted:7 DEC2018,3.58PM Torsional Analysis of Rigid Diaphragm File=CLlserslALEON-1.KIWOOCUME-11,ENERCA'-1tigerd.ec6 ENERCALC,INC.1983-2016,Build:6.16.10.31,Ver:6.16.10.31 Lic.#: KW-06006193 Licensee: KIWI I II CONSTRUCTION Description: 2ND LEVEL WALLS,R Wall Information Label: 45 X Wall C.G.Location 70 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in _ - E-Shear 11800 Mpsi Label: 46 X Wall C.G.Location 80 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir _ 1.4233E+002 in E-Shear 11800 Mpsi Label: 47 X Wall C.G.Location 90 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 48 X Wall C.G.Location 100 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in _ E-Shear 11800 Mpsi Label: 49 X Wall C.G.Location 110 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 50 X Wall C.G.Location 120 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle COW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 51 X Wall C.G.Location 130 ft Wall Length 20 ft V Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 52 X Wall C.G.Location 140 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wail Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 53 X Wall C.G.Location 150 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 54 X Wall C.G.Location 160 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in _ E-Shear 11800 Mpsi Label: 55 X Wall C.G.Location 170 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in - E-Shear 11800 Mpsi __ Label: 56 X Wall C.G.Location 180 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi 64 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Printed.7DEC 2016,3:56PM Torsional Analysis ofRi id Diaphragm File=C:1UsecsALEON-1.KIWMDOCUME-11ENERCA-.11tigard.ec6 Rigid ENERCALC,INC.1983-2016,Build:B.16.10.31,Ver:6.16.10.31 Lic.#: KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R Wall Information Label: 57 X Wall C.G.Location 40 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 58 X Wall C.G.Location 50 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 59 X Wall C.G.Location 60 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 60 X Wall C.G.Location 70 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in _ E-Shear 11800 Mpsi Label: 61 X Wall C.O.Location 80 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 62 X Wall C.G.Location 90 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 63 X Wall C.G.Location 100 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 64 X Wall C.G.Location 110 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 65 X Wall C.G.Location 120 ft Wall Length 20 ft Wall Deflections Stiffness for 1.0 kipload: Y Wall C.G.Location 120 ft Wall Height 10 ft (Stiffness) Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member V Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 66 X Wall C.G.Location 130 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 67 X Wall C.G.Location 140 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 68 X Wall C.G.Location 150 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi 65 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Printed:7 DEC 2016,3:58PM Torsional Analysis of Rigid Diaphragm - File=C:luserwLE0N-1.KMAD000ME-1'ENERCA-1uigard.ec6 ENERCALC,INC.1983.2016,9uild:6.16.10.31,Ver:6.16.10.31 Lic.#:KW-06006193 Licensee:KIWI II CONSTRUCTION: Description: 2ND LEVEL WALLS,R Wall Information Label: 69 X Wall C.G.Location 160 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir___ 1.4233E+002 inE-Shear _ 11800 Mpsi Label: 70 X Wall C.G.Location 170 ft �Wall Length _ 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in ______ E-Shear 11800 Mpsi Label: 71 X Wall C.G.Location 180 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 72 X Wall C.G.Location 30 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 inE-Shear _ 11800 Mpsi Label: 73 X Wall C.G.Location 40 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wali Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 74 X Wall C.G.Location 50 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 75 X Wall C.G.Location 60 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E-1002 in E-Shear 11800 Mpsi Label: 76 X Wall C.G.Location 70 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along MemberY Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir ____ 1.4233E+002 in E-Shear 11800 Mpsi Label: 77 X Wall C.G.Location 80 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along MemberY Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 78 X Wall C.G.Location 90 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi _ Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 79 X Wall C.G.Location 100 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Defections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 80 X Wall C.G.Location 110 ft Wall Length 20 ft Wall Defections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi 66 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Pdaled:7 DEC 2016,358P Torsional Anal sis of Ri id Dia Kra Ill File=C:lUsers1ALEON-1.KIWIDOCUME-1lENERCA--111igard.ec6 Y p g ENERCALC,INC.1983-2016,Build:6.16.10.31,Ver:6i6.10.31 Lic.#:KW-06006193 Licensee:KIWI It CONSTRUCTION Description: 2ND LEVEL WALLS,R Wall Information Label: 81 X Wall C.G.Location 120 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in ._ E-Shear 11800 Mpsi Label: 82 X Wall C.G.Location 130 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in _ E-Shear 11800 Mpsi_._ Label: 83 X Wall C.G.Location 140 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 84 X Wall C.G.Location 150 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 85 X Wall C.G.Location 160 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1,0 kip load: Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 86 X Wall C.G.Location 170 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 87 X Wall C.G.Location 180 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 88 X Wall C.G.Location 75 ft Wall Length 50 ft Wall Deflections(Stiffness)for 1.0 kipload: Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 1.1276E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 5.6934E+001 in E-Shear 11800 Mpsi Label: 89 X Wall C.G.Location 130 ft Wall Length 40 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1,0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 1.4496E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 7.1167E+001 in E-Shear 11800 Mpsi Label: 90 X Wall C.G.Location 145 ft Wall Length 70 ft Y Wall C.G.Location 97 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member V Dir 7.8543E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 4.0667E+001 in E-Shear 11800 Mpsi Label: 91 X Wall C.G.Location 145 ft Wall Length 70 ft Y Wail C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 7.8543E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 4.0667E+001 in - E-Shear 11800 Mpsi Label: 92 X Wall C.G.Location 65 ft Wall Length 70 ft for 1.0 kipload: Y Wall C.G.Location 120 ft Wail Height 10 ft Wall Deflections (Stiffness) Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 7.8543E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 4.0667E+001 in E-Shear 11800 Mpsi 67 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 artl kiwiconsiruction.cam Printed:7 DEC 2016,368P File-C:kUsers\ALEON-1.KIWlDOCUME-1lENERCA-Uigard.ec6Torsional Analysis of Rigid Diaphragm ENERCALC,rNC.1983-2016,Build:6.16.10.31,Ver:6A6.10.31 Lic.#:KW-060061.93 Licensee: 'I l • 1 - i • Description: 2ND LEVEL WALLS,R Wall Information Label: 93 X Wall C.G.Location 65 ft Wall Length 70 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 145 ft Wall Height 10 ft p Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 7.8543E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 4.0667E+1)01 in E-Shear 11800 Mpsi Label: 94 X Wall C.G.Location 145 ft Wall Length 70 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 7.8543E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 4.0667E+001 in E-Shear 11800 Mpsi Label: 95 X Wall C.G.Location 10 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 30 ft Wall Height 10 ft Wall Angle CCW 0 deg Wall Thickness 7.625 in Along Member Y Dir 2,3315E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 5.7921 E-005 in E-Shear 450 Mpsi Label: 96 X Wall C.G.Location 20 ft Wall Length 6 ft Y Wall C.G.Location 23 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 7.625 in Along Member Y Dir 2.7417E-006 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 1.9307E-004 in E-Shear 450 Mpsi Label: 97 X Wall C.G.Location 50 ft Wall Length 10 ft Y Wall C.G.Location 105 ft Waft Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 1.1584E-004 in E-Shear 450 Mpsi Label: 98 X Wall C.G.Location 55 ft Wall Length 10 ft Wall Deflections(Stiffness)for 1.0 kipload Y Wall C.G.Location 100 ft Wall Height 10 ft : Wall Angle CCW 90 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 1.1584E-004 in E-Shear 450 Mpsi Label: 99 X Wall C.G.Location 50 ft Wall Length 10 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 1.1584E-004 in E-Shear _ 450 Mpsi Label: 100 X Wall C.G.Location 150 ft Wall Length 10 ft Y Wall C.G.Location 61 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1,0 kip load: Wall Angle CCW 90 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 1.1584E-004 in E-Shear 450 Mpsi Label: 101 X Wall C.G.Location 155 ft Wall Length 10 ft Y Wall C.G.Location 66 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 7.625 in Along Member V Dir 8,1603E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 1.1584E-004 in E-Shear 450 Mpsi Label: 102 X Wall C.G.Location 160 ft Wall Length 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 61 ft Wall Height 10 ft p Wall Angle CCW 90 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 1.1584E-004 in E-Shear 450 Mpsi Label: 103 X Wall C.G.Location 190 ft Wall Length 15 ft Y Wall C.G.Location 57 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 7.625 in Along Member V Dir 3.7131E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir _ 7.7228E-005 in E-SShear 450 Mpsi Label: 104 X Wall C.G.Location 195 ft Wall Length 10 fl Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 1.1584E-004 in E-Shear - 450 Mpsi 68 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Printed:7 DEC 2018,3:58PM Torsional Analysis of Rigid Diaphragm Elle=c:,usersaLEON-l.Kiw,00cuME-»E RCA-1Vi9atd.ec6 ENERCALC,INC.1983-2016,Build:6.16.10.31,Ver:6.16.10.31 Lic.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R Wall Information Label: 105 X Wall C.G.Location 195 ft Wall Length 10 ft Y Wall C.G.Location 45 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 1.1584E-004 in _ E-Shear 450 Mpsi ANAL YSIS SUMMARY Maximum shear forces applied to resisting elements.Eccentricity with respect to Center of Rotation Maximum Shear along Member Y Axis Maximum Shear along Member X Axis Resisting Element Load Angle X Ecc(ft) Y-Ecc(ft) Shear Force (k) Load Angle X-Ecc(ft) Y-Ecc(ft) Shear Force(k) 1 270 13.76 3.04 35.366 0 3.26 11.54 0.000 2 0 3.26 11.54 50.901 270 13.76 3.04 0.000 3 90 13.76 3.04 2.335 0 3.26 11.54 0.000 4 90 13.76 3.04 9.332 0 3.26 11.54 0.000 5 180 3.26 11.54 30.547 90 13.76 3.04 0.000 6 270 13.76 3.04 5.830 180 3.26 11.54 0.000 7 180 3.26 11.54 9.546 270 13.76 3.04 0.000 • 8 180 3.26 11.54 3.636 270 13.76 3.04 0.000 9 180 3.26 11.54 3.576 270 13.76 3.04 0.000 10 180 3.26 11.54 3.516 270 13.76 3.04 0.000 11 180 3.26 11.54 3.455 270 13.76 3.04 0.000 12 180 3.26 11.54 3.395 270 13.76 3.04 0.000 13 0 3.26 11.54 3.347 270 13.76 3.04 0.000 14 0 3.26 11.54 3.407 270 13.76 3.04 0.000 15 0 3.26 11.54 3.468 270 13.76 3.04 0.000 16 0 3.26 11.54 3.528 270 13.76 3.04 0.000 17 0 3.26 11.54 3.589 270 13.76 3.04 0.000 18 0 3.26 11.54 3.649 270 13.76 3.04 0.000 19 0 3.26 11.54 3.709 270 13.76 3.04 0.000 20 0 3.26 11.54 3.770 270 13,76 3.04 0.000 21 270 13.76 3.04 16.349 180 3.26 11.54 0.000 22 270 13.76 3.04 2.124 180 3.26 11.54 0.000 23 270 13.76 3.04 2.079 180 3.26 11.54 0.000 24 270 13.76 3.04 2.034 180 3.26 11.54 0.000 25 270 13.76 3.04 1.988 180 3.26 11.54 0.000 26 270 13.76 3.04 1.943 180 3.26 11.54 0.000 27 90 13.76 3.04 1.928 180 3.26 11.54 0.000 28 90 13.76 3.04 1.973 180 3.26 11.54 0.000 29 90 13.76 3.04 2.019 180 3.26 11,54 0.000 30 90 13.76 3.04 2.064 180 3.26 11.54 0.000 31 90 13.76 3.04 2.109 180 3.26 11.54 0.000 32 90 13.76 3.04 2.154 180 3.26 11.54 0.000 33 90 13.76 3.04 2.199 180 3.26 11.54 0.000 34 270 13.76 _ 3.04 6.018 180 3.26 11.54 0.000 35 270 13.76 3.04 5.892 180 3.26 11.54 0.000 36 270 13.76 3.04 5.767 180 3.26 11.54 0.000 37 270 13.76 3.04 5.641 180 3.26 11.54 0.000 38 270 13.76 3.04 5.516 180 3.26 11.54 0.000 39 270 13.76 3.04 5.390 180 3.26 11.54 0.000 40 90 13.76 3.04 5.349 180 3.26 11.54 0.000 69 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art u(�,kiwiconstruction.com Printed:7 DEC 2018,3 58P Torsional Anal Sis of Ri id Dia hra m Fie=C:\Users41LEON-1.KIwtDOCUME-11ENERCA-1ktigatd.ec6 y g p g ENERCALC,INC.1983-2016,6utd:6.16.10.31,Ver:6.16.10.31 lac.#: KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R ANALYSIS SUMMARY Maximum shear forces applied to resisting elements.Eccentricity with respect to Center of Rotation Maximum Shear along Member Y Axis Maximum Shear along Member X Axis Resisting Element Load Angle X-Ecc(ft) Y-Ecc(ft) Shear Force(k) Load Angle X-Ecc(ft) Y-Ecc(ft) Shear Force (k) 41 90 13.76 3,04 5.474 180 3.26 11.54 0.000 42 90 13.76 3.04 5.600 180 3.26 11.54 0.000 43 90 13.76 3.04 5.725 180 3.26 11.54 0.000 44 90 13.76 3.04 6.102 180 3.26 11.54 0.000 45 270 13.76 3.04 3.311 0 3.26 11.54 0.000 46 270 13.76 3.04 3.239 0 3.26 11.54 0.000 47 270 13.76 3.04 3.167 0 3.26 11.54 0.000 48 270 13.76 3.04 3.095 0 3.26 11.54 0.000 49 90 13.76 3.04 3.071 0 3.26 11.54 0.000 50 90 13.76 3.04 3.143 0 3.26 11.54 0.000 51 90 13.76 3.04 3.215 0 3.26 11.54 0.000 52 90 13.76 3.04 3.287 0 3.26 11.54 0.000 53 90 13.76 3.04 3.359 0 3.26 11.54 0.000 54 90 13.76 3.04 3.431 0 3.26 11.54 0.000 55 90 13.76 3.04 3.503 0 3.26 11.54 0.000 56 90 13.76 3.04 3.575 0 3.26 11.54 0.000 57 270 13.76 3.04 3.527 0 3.26 11.54 0.000 • 58 270 13.76 3.04 3.455 0 3.26 11,54 0.000 59 270 13.76 3.04 3.383 0 3,26 11.54 0.000 60 270 13.76 3.04 3.311 0 3.26 11.54 0.000 61 270 13.76 3.04 3.239 0 3.26 11.54 0.000 62 270 13.76 3.04 3.167 0 3.26 11.54 0.000 63 270 13.76 3.04 3.095 0 3.26 11.54 0.000 64 90 13.76 3.04 3.071 0 3.26 11.54 0.000 65 90 13.76 3.04 3.143 0 3,26 11.54 0.000 66 90 13.76 3.04 3.215 0 3.26 11.54 0.000 67 90 13.76 3.04 3.287 0 3.26 11.54 0.000 68 90 13.76 3.04 3.359 0 3.26 11.54 0.000 69 90 13.76 3.04 3.431 0 3.26 11.54 0.000 70 90 13.76 3.04 3.503 0 3.26 11.54 0.000 71 90 13.76 3.04 3.515 0 3.26 11.54 0.000 72 270 13.76 3.04 3.599 0 3.26 11.54 0.000 73 270 13.76 3.04 3.527 0 3.26 11.54 0.000 74 270 13.76 3.04 3.455 0 3.26 11.54 0.000 75 270 13.76 3.04 3.383 0 3.26 11.54 0.000 76 270 13.76 3.04 3.311 0 3.26 11.54 0.000 77 270 13.76 3.04 3.239 0 3.26 11.54 0.000 78 270 13.76 3.04 3.167 0 3.26 11.54 0.000 79 270 13.76 3.04 3.095 0 3.26 11.54 0.000 80 90 13.76 3.04 3.071 0 3.26 11.54 0.000 81 90 13.76 3.04 3.143 0 3.26 11.54 0.000 82 90 13.76 3.04 3.215 0 3.26 11.54 0.000 83 90 13.76 3.04 3.287 0 3.26 11.54 0.000 84 90 13.76 3.04 3.359 0 3.26 11.54 0.000 85 90 13.76 3.04 3.431 0 3.26 11.54 0.000 70 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 artta7,kiwiconstruction.com Printed:7 DEC 2016,3 58P FIS causetslAtEON-,.xlwtDOCUME-11ENERCA-1Iigard.ec6 Torsional Analysis of Rigid Diaphragm ENERCALC,INC.1983-2016,Build:6.16.10.31,Ver:6.16,10.31 Lie.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R ANALYSIS SUMMARY Maximum shear forces applied to resisting elements.Eccentricity with respect to Center of Rotation Maximum Shear along Member Y Axis Maximum Shear along Member X Axis Resisting Element Load Angle _X_Ecc(ft) Y-Ecc(ft) Shear Force (k) Load Angle _ X-Ecc(ft) Y-Ecc(ft) Shear Force (k) 86 90 13.76 3.04 3.503 0 3.26 11.54 0.000 87 90 13.76 3.04 3.575 0 3.26 11.54 0.000 88 180 3.26 11.54 11.029 270 13.76 3.04 0.000 89 180 3.26 11.54 8.579 90 13.76 3.04 0.000 90 0 3.26 11.54 15.397 90 13.76 3.04 0.000 91 0 3.26 11.54 16.028 90 13.76 3.04 0.000 92 0 3.26 11.54 16.028 270 13.76 3.04 0.000 93 0 3.26 11.54 16.715 270 13.76 3.04 0.000 94 0 3.26 11.54 16.715 90 13.76 3.04 0.000 95 180 3.26 11.54 56.578 270 13.76 3.04 0.231 96 270 13.76 3.04 4.777 180 3.26 11.54 0.069 97 0 3.26 11.54 15.031 270 13.76 3.04 0.106 98 270 13.76 3.04 14.949 0 3.26 11.54 0.105 99 0 3.26 11.54 14.767 270 13.76 3.04 0.106 100 90 13.76 3.04 14.687 180 3.26 11.54 0.108 101 180 3.26 11.54 15.214 90 13.76 3.04 0.105 102 90 13.76 3.04 15.002 180 3.26 11.54 0.108 103 90 13.76 3.04 35.047 180 3.26 11.54 0.163 104 180 3.26 11.54 15.240 90 13.76 3.04 0.113 105 180 3.26 11.54 15.769 90 13.76 3.04 0.113 Layout of Resisting Elements Legend: I I Defined Wall X Datum AO- Center of Rigidity 0Center of Mass Accidental eccentricity application boundary I 2 $ 727441'916177/817910442-14411-17 3 7 5718[9110[1[2 t3IL1516 1215194'01'1 I 5 9 1 4 9 3 451161 4 17 1 P 3 4 5 6 344878 90 1 9 482 4 110r 1 I 8• 105 95 1 5 96 x76 71 WALL WALL DIRECT UNIT 12/7/2016 WALL WALL DIRECT UNIT NUMBER LENGTH SHEAR SHEAR NUMBER LENGTH SHEAR SHEAR FT KIPS PLF FT KIPS PLF 1 140 35.36 253 45 20 3.31 166 2 200 50.9 255 - MA% M11- 46 20 3.23 162 3 15 2.33 155 47 20 3,16 158 4 40 9.33 233 48 20 3.09 155 5 125 30.54 244 49 20 3.07 154 6 30 5.83 194 50 20 3.14 157 7 40 9.54 239 51 20 3.21 161 8 20 3.63 182 52 20 3.28 164 9 20 3.57 179 53 20 3.35 168 10 20 3.51 176 54 20 3.43 172 11 20 3.45 173 55 20 3.5 175 12 20 3.39 170 56 20 3.57 179 13 20 3.34 167 57 20 3.52 176 14 20 3.4 170 58 20 3.45 173 15 20 3.46 173 59 20 3.38 169 16 20 3.52 176 60 20 3.31 166 17 20 3.58 179 61 20 3.23 162 18 20 3.64 182 62 20 3.16 158 19 20 3.7 185. 63 20 3.09 155 20 20 3.77 189 64 20 3.07 154 21 70 16.34 233 65 20 3.14 157 22 15 2.12 141 66 20 311 161 23 15 2.07 138 67 20 3.28 164 24 15 2.03 135 68 20 3.35 168 25 15 1.98 132 69 20 3.43 172 26 15 1.94 129 70 20 3.5 175 27 15 1.92 128 71 20 3.57 179 28 15 1.97 131 72 20 3.59 180 29 15 2.01 134 73 20 3.52 176 30 15 2.06 137 74 20 3.45 173 31 15 2.1 140 75 20 3.38 169 32 15 2.15 143 76 20 3.31 166 33 15 2.19 146 77 20 3.23 162 34 30 6.01 200 78 20 3.16 158 35 30 5.89 196 79 20 3.09 155 36 30 5.76 192 80 20 3.07 154 37 30 5.64 188 81 20 3.14 157 38 30 5.51 184 82 20 3.21 161 39 30 5.39 180 83 20 3.28 164 40 30 5.34 178 84 20 3.35 168 41 30 5.47 182 85 20 3A3 172 ( 42 30 5.6 187 86 20 3.5 175 43 30 5.72 191 87 20 3.57 179 44 30 6.1 203 88 50 11.02 220 72 WALL WALL DIRECT UNIT NUMBER LENGTH SHEAR SHEAR FT KIPS PLF 89 40 8.57 214 90 70 15.39 220 91 70 16.02 229 92 70 16.02 229 93 70 1671 239 94 70 16.71 239 95 20 56.57 2829 MAX CMU 96 6 4.77 795 97 10 15.03 1503 98 10 14.94 1494 99 10 14.76 1476 100 10 14.68 1468 101 10 15.21 1521 102 10 15 1500 103 15 35.04 2336 104 10 15,24 1524 105 10 15.76 1576 73 .0HEAR OF COMPOSITE DECK USING 2.5"CONCRETE COVER WITH SHEAR STEEL: fc:= 3000 vc:= 1,2'•PSI vc=65.727•PSI DIA:= .192.1N 6 GAGE WIRE Vmax:= vc+ 4,4•\•PSI Vmax =306.725•PSI 1926.3.1 rr•DIA2 Av:= Av= 0,029IN2 d := 2.5.IN s:= 6•IN 1911.52 fy:= 60000•PS1 4 Vs:= Av•fy Vs= I737.175•LB 1911.5.6.2 Vc:= s•d•vc Vc=985.901•LB := .85 1909,3.2.3 Vu:= 4.(Vs+ Vc) Vu =2314.614.LB < Vm:= Vmax•d•s Vm=4600.869•LB Va:= if(Vu<Vm,Vu,Vm) vu:= 3300•PLF•s•1.4 vu=2310 LB < Va=2314.614 LB THERFORE USE 6x6-616 W.W.M.AT SECOND FLOOR SLAB 74 Title: Job# Dsgnr: Date: 4:21 PM, 7 DEC 16 Description: Scope: Rev 580003 User KW0606193 Ver 5.8.0,1 Nov2006 Rigid Diaphragm Torsional Analysis Page 1 (c)1983-2006 ENERCALC Engineering Software tigard ecv Calculations Description revised, r General Information _-.,....•...._,..a �,..�_,.._. Y-Y Axis Shear 530.40 k Min.X Axis Ecc 5.00 % X Axis Center of Mass 103.25 ft X-X Axis Shear 530.40 k Min.Y Axis Ecc 5.00 % Y Axis Center of Mass 102.20 ft ...Shears are applied on each axis separately Max X Dimension 210.00 ft Max Y Dimension 180.00 ft Wall Data Label Thickness Length Height Wall Xcg Wall Ycg Wall Angle Wall End E in ft ft ft ft deg CCW Fixity 1 7.625 70.000 16.000 20.000 45.000 90.0 Fix-Pin 1,710.0 2 7.625 10.000 16.000 25.000 80.000 0.0 Fix-Pin 1,710.0 3 7.625 20.000 16.000 30.000 90.000 90.0 Fix-Pin 1,710.0 4 7.625 20.000 16.000 30.000 120.000 90.0 Fix-Pin 1,710.0 5 7.625 10.000 16.000 25.000 130.000 0.0 Fix-Pin 1,710.0 6 7.625 50.000 16.000 20.000 155.000 90.0 Fix-Pin 1,710.0 7 7,625 70.000 16,000 35.000 180.000 0.0 Fix-Pin 3,605.0 8 7.625 60.000 13.000 170.000 180.000 0.0 Fix-Pin 3,605.0 9 7.625 30.000 13.000 200.000 165.000 90.0 Fix-Pin 3,605.0 10 7.625 10.000 13.000 205.000 150.000 0.0 Fix-Pin 3,605.0 11 7.625 70.000 13.000 210.000 115.000 90.0 Fix-Pin 3,605.0 12 7.625 10.000 13.000 205.000 80.000 0.0 Fix-Pin 3,605.0 13 7.625 25.000 13.000 190.000 67.500 90.0 Fix-Pin 1,710.0 14 7.625 10.000 13.000 195.000 55.000 0.0 Fix-Pin 1,710.0 15 7.625 10.000 13.000 165.000 40.000 0.0 Fix-Pin 1,710.0 16 7.625 16.000 13.000 137.000 45.000 0.0 Fix-Pin 1,710.0 17 7.625 65.000 13.000 97.500 40.000 0.0 Fix-Pin 1,710.0 18 7.625 30.000 16.000 65.000 25.000 90.0 Fix-Pin 1,710.0 19 7.625 21.000 16.000 55.000 10.000 0.0 Fix-Pin 1,710.0 20 7.625 21.000 16.000 30.000 10.000 0.0 Fix-Pin 1,710.0 21 7.625 60.000 13.000 100.000 180.000 0.0 Fix-Fix 3,605.0 22 7.625 10.000 13.000 195.000 80.000 0.0 Fix-Pin 1,710.0 Calculated Wall Forces Load Location for Maximum Forces Direct Shears k Torsional Shears k Final Max. Label Wall Shear X ft Y Length Thick Length Thick k 1 -47.185 0.000 84.700 0.000 38.695 0.037 123.395 2 0.000 -54.916 -1.899 0.000 -0.808 -0.007 -2.708 3 -47.185 0.000 13.259 0.000 5.552 0.006 18.811 4 -47.185 0.000 13.259 0.000 5.552 0.003 18.811 5 0.000 -54.916 -1.899 0.000 -0.215 -0.007 -2.114 6 -47.185 0.000 56.520 0.000 25.821 -0.002 82.341 7 0.000 -36.916 -126.721 0.000 16.967 -0.063 -126.721 8 0.000 -36.916 -134.686 0.000 18.033 0.029 -134.686 9 -47.185 0.000 79.130 0.000 -18.104 -0.010 79.130 10 0.000 -36.916 -6.753 0.000 0.053 0.010 -6.753 11 -47.185 0.000 225.389 0.000 -60.153 0.047 225.389 f. 12 0.000 -54.916 -6.753 0.000 -2.873 0.015 -9.626 13 -47.185 0.000 28.501 0.000 -5.435 0.019 28.501 14 0.000 -54.916 -3.203 0.000 -1.863 0.006 -5.066 15 0.000 -54.916 -3.203 0.000 -2.163 0.003 -5.367 75 I Title: Job# Dsgnr: Date: 4:21 PM, 7 DEC 16 Description: Scope: Rev: 580003 User KW 0696193 Ver 5.8.0,1 Nov2006 Rigid Diaphragm Torsional Analysis Page 2 (c)1983 2006 ENERGALC Engineering Software 83.2 E- ung ( �gard ecw Calculations t Description revised, r 16 0.000 -54.916 -9.123 0.000 -5.877 -0.001 -15.000 17 0.000 -54.916 -69.898 0.000 -47.208 -0.031 -117.105 18 -47.185 0.000 27.375 0.000 7.814 0.019 35.189 19 0.000 -54.916 -10.354 0.000 -8.933 -0.011 -19.287 20 0.000 -54.916 -10.354 0.000 -8.933 -0.014 -19.287 21 0.000 -36.916 -141.745 0.000 18.978 -0.152 -141.745 22 0.000 -54.916 -3.203 0.000 -1.363 0.006 -4.556 Summary X Distance to Center of Rigidity 139.935 ft Controlling Eccentricities&Forces from Applied Y-Y Shear Y Distance to Center of Rigidity 148.116 ft Xcm+(Min%*MaxX)-X-cr = -26.185 ft Torsion= -13,888.76 k-ft Xcm-(Min%*MaxX)-X-cr = -47.185 ft Torsion= -25,027.16 k-ft X Accidental Eccentricity 10.500 ft Controlling Eccentricities&Forces from Applied X-X Shear Y Accidental Eccentricity 9.000 ft Ycm+(Min%*MaxY)-Y-cr = -36.916 ft Torsion= -19,580.42 k-ft Ycm-(Min%*MaxY)-Y-cr = -54.916 ft Torsion= -29,127.62 k-ft 76 WALL WALL DIRECT UNIT FIRST FLOOR NUMBER LENGTH SHEAR SHEAR 12/7/2016 FT KIPS PLF 1 70 123.395 1763 2 10 —2.708 —271 3 20 18.811 941 4 20 18.811 941 5 10 —2.114 —211 6 50 82.341 1647 7 70 —126.721 —1810 8 60 —134.686 —2245 9 30 79.13 2638 10 10 —6.753 —675 11 70 225.389 3220 12 10 —9.626 —963 13 25 28.501 1140 14 10 —5.066 —507 15 10 —5.367 —537 16 16 —15 —938 17 65 —117.105 —1802 18 30 35.189 1173 19 21 —19.287 —918 20 21 —19.287 —918 • Cs 21 60 —141.745 —2362 22 10 —4.566 -457 zl C.R.:(138.53,148.11) I Ia t+ 4- C.M.:(103.25,10220) 13 1L t t5 i1 — to 11 77 1 Title: Job# Dsgnr: Date: 8:49AM, 3 FEB 17 Description: . . Scope: ROW:stabs User:KW-0008198,Vet SIM 1-Nce,2406 Rigid Diaphragm Torsional Analysis Page 1 - 1 01953-2006 ENERCALC Engineering Software Vgeniecw.Cakulations i Description revised, r5 ye SIC).?C 1,,,t5tt („0,CgoZ. )4% IGeneral Information Y-Y Axis Shear 662.10 k Min,X Axis Ecc 5.00 % X Axis Center of Mass 103.25ft X-X Axis Shear 662.10k Min.Y Axis Eco 5.00 % Y Axis Center of Mass 102.20 ft ...Shears are applied on each axis separately Max X Dimension 210,00 ft Max Y.Dimension 180.00 ft Wall Data Label Thickness Length Height Wall Xcg Wall Ycg Wall Angle Wail End E in ft ft ft ft deg COW Fixity 1 7.825 70,000 11000 20.000 45.000 90.0 Fix-Pin 1,710,0 2 7.625 10.000 13.000 25.000 80.000 0.0 Fix-Pin 1,710.0 3 7.625 20.000 13,000 30.000 90.000 90.0 Fix-Pin 1,710.0 4 7.625 20,000 13.000 30.000 120.000 90.0 Fix-Pin 1,710.0 5 7.626 10.000 13.000 25.000 130.000 0.0 Fix-Pin 1,710.0 6 7.625 50.000 13.000 20.000 155.000 90.0 Fix-Pin 1,710.0 7 7,625 70.000 13.000 35.000 180.000 0.0 Fix-Pin 1,710.0 a 7.625 60.000 13.000 170.000 180.000 0.0 Fix-Pin 1,710.0 9 7.625 30,000 13.000 200.000 165,000 90.0 Fix-Pin 1,710.0 10 7.625 10.000 13.000 205.000 150,000 0.0 Fix-Pin 1,710.0 11 7.625 70.000 13,000 210.000 115.000 90.0 FIx-Pin 1,710,0 12 7.625 10,000 13.000 205.000 80.000 0.0 Fix-Pin 1,710.0 13 7.626 25.000 13.000 190.O00 67.500 90.0 Fix-Pin 1,710.0 14 7.625 10.000 13.000 195.000 55.000 0.0 Fix-Pin 1,710.0 15 7.625 10.000 13.000 165.000 40.000 0.0 Fix-Pin 1,710.0 16 7.625 16.000 13,000 137.000 45,000 0.0 Fix-Pin 1,710.0 17 7,625 65.000 13.000 97.500 40.000 0.0 Fix-Pin 1,710.0 I 18 7,625 30.000 13.000 65.000 25.000 90.0 Fix-Pin 1,710.0 19 7.625 21.000 13.000 55.000 10.000 0.0 Fix-Pin 1,710.0 20 7.625 21,000 13.000 30.000 10.000 0.0 Fix-Pin 1,710.0 1, 21 7.625 60,000 13,000 100.000 180.000 0.0 Fix-Fix 1,710.0 i 22 7.625 10.000 13.000 195.000 80.000 0,0 Fix-Pin 1,710.0 Calculated Wall Forces Load Location for Maximum Forces Direct Shears k Torsional Shears k Final Max. Label Wall Shear X ft Y Length Thick Length Thick k 1 1 -6.413 0,000 164.275 -0.000 6.395 0.011 170.6711 2 0.000 -32.919 -6.250 0,000 -0.807 -0.007 -7.058 3 -6,413 0.000 30.112 0.000 1.024 0.001 31.136 4 -6.413 0.000 30.112 0.000 1.024 0.000 31.136 5 0.000 -14.919 -6,250 0.000 0.031 -0.003 -6.250 6 -6,413 0.000 112.000 0,000 4.360 -0.003 116.360 F t 7 0,000 -14.919 -148.050 0.000 10.126 -0.020 -148.050 t 8 0.000 -14.919 -124,664 0.000 8.526 0.019 -124.664 9 14.587 0.000 57.674 0.000 6.505 0.005 64.179 10 0,000 -14.919 -6.250 0.000 0.189 0.005 -6.260 11 14.587 0.000 164.275 0.000 20.365 -0.003 184.641 12 0.000 -32.919 -6.250 0.000 -0.807 0.010 -7,068 ',. 13 14.687 0.000 43.794 0.000 4.449 -0.006 48.243 14 0.000 -32.919 -6.250 0.000 -1.245 0.009 -7.495 15 0.000 -32.919 -6250 0.000 -1.508 0,006 -7.768 78 i Title: Job# Dsgnr: Date: 8:49AM, 3 FEB 17 Description; • -_--_----Scope Rev: moos User:KW 0606193,Ver 9.8.0,1-Nov-2006 Page 2 -• (1983-200SENERCALC En ineerl Software Rigid Diaphragm Torsional Analysis (1 0 ng figard.ecst Calc0lafions Description revised, r5 ve 16 0.000 -32.919 -17.802 0.000 -4.045 0.006 -21.847 17 0.000 -32.919 -136.393 0.000 -32.899 -0.001 -169.292 18 -6,413 0.000 57.674 0.000 0.969 0.006 58.643 19 0.000 -32.919 -29.568 0.000 -9.616 -0.009 -39.184 20 0,000 -32.919 -29.568 0.000 -9,616 -0.014 -39.184 21 0.000 -14.919 -131.198 0.000 8.973 0.001 -131.198 22 0,000 -32.919 -6.250 0.000 -0.807 0.009 -7.058 Summary X Distance to Center of Rigidity 99.163 ft Controlling Eccentricities&Forces from Applied Y-Y Shear Y Distance to Center of Rigidity 126,119 ft Xcm+(Min%*MaxX)-X-cr = 14.587 ft Torsion= 9,657.92 k-ft Xcm-(Min%'MaxX)-X-cr = -6.413 ft Torsion= -4,246.18 k-ft X Accidental Eccentricity 10.500 ft Controlling Eccentricities&Forces from Applied X-X Shear Y Accidental Eccentricity 9.000 ft Ycm 4'(Min%*MaxY)-Y cr = -14.919 ft Torsion= -9,877.95 k-ft Ycm-(Min%'MaxY)-Y-cr = -32.919 ft Torsion= -21,795.75 k-ft I • 79 1 WALL WALL DIRECT UNIT FIRST FLOOR NUMBER LENGTH SHEAR SHEAR 2/3/2017 FT KIPS PLF 1 70 170.67 2438 2 10 -7.058 -706 3 20 31.136 1557 4 20 31.136 1557 5 10 -6.25 -625 6 50 116.36 2327 7 70 -148.05 -2115 8 60 124.664 2078 9 30 64.179 2139 10 10 -6.25 -625 11 70 184,641 2638 12 10 -7.058 -706 13 25 48.243 1930 14 10 -7.495 -750 15 10 -7.758 -776 16 16 -21.847 -1365 17 65 -169,292 -2604 18 30 58.643 1955 19 21 -39.184 -1866 20 21 -39.184 -1866 21 60 -131.198 -2187 22 10 -7.058 -706 80 SHEAR OF COMPOSITE DECK USING 2.5"CONCRETE COVER WITH SHEAR STEEL: fc:= 3000 vc:= 1.2•J•PSI vc= 65.727•PSI DIA:= .192-IN 6 GAGE WIRE Vmax:= vc 4.4•f•PSI Vmax = 306.725.PSI 1926.3.1 ir•DIA 2 Av:= Av= 0.029IN2 d:= 2.5. s:= 4.IN 1911.5.2 fy:= 60000 PSI 4 Vs:= Avfy Vs= 1737.175•LB 1911.5.6.2 Vc:= s d vc Vc= 657.267.LB := .85 1909.3.2.3 Vu:= cj)•(Vs+ Vc) Vu= 2035.276.LB < Vm:= Vmax•d•s Vm= 3067.246•LB vu:= 4300•PLF•s•I.4 vu= 2006.667 LB < Vu= 2035.276 LB OR Vm= 3067.246 LB THERFORE USE 4x4-616 W.W.M. in 2.5" concrete cover, 3000 psi MAX UNIT SHEAR PER ANALYSIS IS P:= 3571•PLF SHEAR TRANSFER AT BLOCK WALL TO COMPOSITE DECK V:= P 1.4 IS STRENGTH FACTOR, 1.25 IS PER 12.3.3.4 V.1.4.1.25 1N2 Avreq := Avreq = 0.204•— THEREFORE USE#4 AT 8" 0/C OR#5 AT 16" 0/C 60000•PSI•.85•.6 FT PER 11.6.4 OF AC! 318-11 2 2 3068 IN = 0.23 IN2 > Avreq= 0.204• IN 16 FT 12 FACTOR FOR 16" 0/C SPACING 81 KIWI II CONSTRUCTION sTRIJCTUR AI.CALCULATIONS FOR LATERAL( DESIGN LOADS: ROOF LIVE LOAD: LL:= 25-PSF ROOF DEAD LOAD: DL:= 6PSF FLOOR LIVE LOAD: FLL:= 125-PSF FLOOR DEAD LOAD: FDL:=48-PSF WIND LOADING: HORIZONTAL(TRANSVERSE) FIT:= 17.6 PSF HT-= 17.6-PSF Pw HT H3 10-FT H2:= 10-FT H1 := 10-FT V:= A22 V= 0.122 h3:= H1 + H2+ H3 h2 H1 + H2 hl H1 LATERAL DESIGN: TOTAL BUILDING HEIGHT IS h3= 30-FT WIND Pw= 17.6-PSF H3 ww3 Pw--+ Pw-5-FT-225-1 ww3= 286-PLF 2 ww2:= (H2) Pw ww2= 176-PLF wwl:= H1 Pw wwl = 176-PLF SEISMIC A3:= 25315.FT2 BUILDING IS W:= 210-FT WIDE A2:= 25315-FT2 TRIBUTARY WIDTH IS lotAl := 23985-FT2 V w3RD:= -W+ (10 + 10)-PSFH3- -2 .— ft 2 1.4 t.,13RD= 127.229-PLF w2ND: [= [(FDL+ 125-PSF-25)AN+(10+ 10)-PSF.H2-2] V w2ND 1485.132-PLF V wl ST:= [(FDL+ 125.PSF-.25)-W+ (84+84)•PSF.H1-21-- 1.4_ AST= 1743.075 PLF 82 REDISTRIBUTE (w3RD+ w2ND+ w1ST)•w3RD•h3 w3 w3RD•h3+ w2ND.h2+ w1ST•h1 w3=251.367.PLF (w3RD+ w2ND+ w1ST)•w2ND•h2 w2:= w3RD•h3 + w2ND•h2 + w1ST•h1 w2= 1956.13-PLF (w3RD+ w2ND+ w1ST)•w1ST•h1 w1 w3RD•h3 + w2ND•h2+ w1ST.h1 w1 = 1147.939•PLF SHEAR TO WALL AT 3RD FLOOR IS... L:= W•- 40•FT OF SHEARWALL WIND L= 170•FT C(ww3)•30•FT] v3w:=L v3w= 50.471.PLF SEISMIC [(w3)•30•FT] v3s:= L v3s= 44.359•PLF usE26GA. METAL SHEARWALLS WITH (7) FASTENERS AT EACH PANEL SPANNING 5'-0"AND 0 SIDELAP FASTENERS vall=105 PLF CHECK OVERTURNING AT LOW EAVE,20 FT WALL Hsw:= 14.FT Lsw:= 20.FT Mot:= v3w•Hsw•Lsw Mot= 14131.765•FT•LB Mot UP:_ — UP=706.588 LB Lsw USE S/L1720 HOLD DOWNS Tall:= 1200•LB DEAD:= (DL+ FDL)•.6.5•FT•10•FT DEAD= 1620 LB DESIGN DRAG STRUT SPLICE(PURLIN) WIND SEISMIC T:= v3w•10•FT T= 504.706 LB Ts;= v3s•10•FT•2.5 Ts= 1108.973 LB N:= Ts N= 1.792 USE(2)#12 SCREWS AT SPLICES,MIN. 619.LB 83 SEE RIGID ANALYSIS FOR 2ND FLOOR SI-IEARWALLS UNIT SHEAR AT 1ST FLOOR,SEE REGID ANALYSIS ATTACHED 84 f :' I I 1 1 6 Metal Roof and Wall Systems ENGINEERING ultra-dli® Ultra-Dek® PANEL 24" Coverage 24" 3" 4- SECTION PROPERTIES NEGATIVE BENDING POSITIVE BEND : PANEL Fy WEIGHT Ixe Sxe T Maxo Ixe 4 Sxe ‘1. ` lIaxo GAUGE (KSI) (PSF) (IN.4/FT.) (IN.3IFT.) (KIP-IN.) (INA/FT.), N.3,Fes (KIP-IN.) 26 50 1.02 0,1158 0.0835 2.4997 0.2202 >qS�o • ,,, 2.6987 24 50 1.23 0.1350 0.0951 2.84aI} • le,i't f { x`0 3.4524 22 50 1.56 0.1837 0.1332 3 98 t e`''"- ip 1.7Y' '04 4.5020 NOTES: -- -., 1. All calculations for the properties of Ultra-Delco panels are c3-;•:$ -d i 4"; i o dance with the 2001 edition of the North American Specification For Design Of Cold e(4:a St _ c lr�r .e • " 2. lxe is for deflection determination. ,., z 3. Sxe is for Bendin•,, '- 4. Maxo,} I abler Adiag ,165,e- .. 5. All va 'rte fo A k- i a foo:iii•`el wi. `� ' i The Engineering data contained herein is for the expressed use of customers and design professionals.Along with this data,it is recommended that the design professional have a copy of the most current version of the North American Specification for the Design of Cold-Formed Steel Structural Members published by the American Iron and Steel Institute to facilitate design.This Specification contains the design criteria for cold-formed steel components.Along with the Specification,the designer should ref- erence the most current building code applicable to the project jobsite in order to determine environmental loads. If further infor- mation or guidance regarding cold-formed design practices is desired, please contact the manufacturer. SUBJECT TO CHANGE WITHOUT NOTICE AUGUST 31,2005 visit www.mbci.com for current information 85 - I :SWI n Metal Roof and Wall Systems ultra-Ick® ENGINEERINGck® Ultra-Dek® PANEL 24" Coverage 'f' 24" "I' 1 \______,.. ..______„__Iil 3" - ALLOWABLE UNIFORM LOADS IN POUNDS PER SQUARE FOOT 26 Gauge(Fy=50 KSI) SPAN LOAD SPAN IN FEET, TYPE TYPE 2.5 3.0 3.54.0 T 4.5 5.0 k 6)5.5 - SINGLE LIVE LOAD 146.9 122.4 104.9 91.8 81.: f .*, 59.5 2-SPAN LIVE LOAD 146.9 122.4 104.9 91.8 81.6 55.1 _ t yep, 66.8 3-SPAN LIVE LOAD 146.9 122A 104.9 .8 �'-, - 4-SPAN LIVE LOAD 146.9 j 122.4 104.9 !ia AN CP Mt- '- 643 24 Gauge(Fy=50 KSI) - Y SPAN LOAD SP.,_€)2'FE r'' } TYPE TYPE 2.5 _ � a 4.5 5.0 5.5 SINGLE LIVE LOAD 204.0 I, . 170;a. ,v, !35.7 127.5 1133 92.1 76.1 2-SPAN JAE LOA e:' r f t). ; 145.7 118.7 93.8 75.9 62.8 t� 3-SPAN i ii' LO © 21`'0 1 ; L2-47,gq x� r 145.7 127.5 113.3 94.9 78.4 4-SPAN 4Avi-i!! _ 20 '0 s-: 170.0 145.7 127.5 109.4 88.6 73.2 2 u, 41,.. 50 ` I _ ,- ti N Lo",Orr-` SPAN IN FEET 2.5 3A 3.5 4.0 4.5 5.0 5.5 WO LIVE LOAD 296.9 247.5 212.1 185.6 148.2 120.1 99.2 2-SPAN LIVE LOAD 296.9 247.5 212.1 166.2 131.3 106.3 87.9 3-SPAN LIVE LOAD 296.9 247.5 212.1 185.6 164.1 132.9 109.9 4-SPAN LIVE LOAD 296.9 247.5 212.1 185.6 152.3 124.1 102.6 NOTES: 1. Allowable loads are based on uniform span lengths and Fy=50 ksi. 2. LIVE LOAD is limited by bending,shear,combined shear&bending. 3. Above loads consider a maximum deflection ratio of U180. 4. The weight of the panel has not been deducted from the allowable loads. 5. THE ABOVE LOADS ARE NOT FOR USE WHEN DESIGNING PANELS TO RESIST WIND UPLIFT. 6. Please contact manufacturer or manufacturer's website for most current allowable wind uplift loads. 7. The use of any accessories including but not limited to clips,fasteners,and support plates(eave,backup,rake,etc.)other than those provided by the manufacturer may damage panels,void all warranties and will void all engineering data. 8. This material is subject to change without notice. Please contact the manufacturer for most current data. The engineering data contained herein is for the expressed use of customers and design professionals.Along with this data,it is recommended that the design professional have a copy of the most current version of the North American Specification for the Design of Cold-Formed Steel Structural Members published by the American Iron and Steel Institute to facilitate design.This Specification contains the design criteria for cold formed steel components.Along with the Specification,the designer should reference the most current building code applicable to the project Jobsite in order to determine environmental loads.If fur- ther information or guidance regarding cold-formed design practices is desired.Please contact the manufacturer. AUGUST 31,2005 SUBJECT TO CHANGE WITHOUT NOTICE visit www.mbci.com for current information - 86 Page 15 of 174 IAPMO UES Evaluation Report No. 0217 Expires: 11/2015 Issued: 11/2011 TABLE 7-ALLOWABLE UNIFORM LOADS (psf) FOR VERCO STEEL DECK PANELS WITHOUT CONCRETE FILL1'2'3 eu LI a z ¢ SPAN(ft-in.) < Y W- 2'-0" 3'-0" 4'-0" 5',0" 5'-6" 6'-O" 6'-6" 7T_0' 7'-6" 8'4" 8'-8•' 9'_0. 9'4" 10'-0" 11'.0" 12'-0" () PLBTM-36&HSB®-36 and PLBTM&B FORMLOKTm Stress 300 300 220 141 116 98 83 72 63 55 49 43 39 35 29 24 22 1!360, +a 287 121,,•, ;62 47 36 28 , 23 18 15 13 't1 9 8 ' >6 4 '( ,1111 _,1,,111. L240 ++a +++ 182 93 70 54 42 34 28 23 19 16 14 12 9 7 _ 1/180, ii+ •#+r: o+, .:124.,.93 172. ;r56 .,..45 '37_. 30 x;25;x''21 8 e ,,.15, _12.. ,9_: Stress 300 300 288 184 152 128 109 94 82 72 64 57 51 46 38 32 20 elitgatfirOWEitinitriWt wpapatfiefigatiONOWlymottletOMMIUM 11240 +++ a++ 225 115 86 67 52 42 34 28 23 20 17 14 11 8 cipatfigis10041101$0111011WitIONIN$0•0111101aanitillatiliO Stress 300 300 300 251 208 174 149 128 112 98 87 78 70 63 52 44 N 18 ..11360 4+. N+ .207 c :106 '79 1 61 48 39 ' 31; "26 22 18 15 13 ' 10` 8 ;1 1111. . ,,. 11240 +++ ++a aa+ 159 119 92 72 58 47 39 32 27 23 20 15 11_, I,I789. ,•++,r•N: +i4., .212 :159 122 96,,_;77` '63..,. 52. "_43' ,.3..031`31:,. 6 _. 20ti,. .1.rJ,:.-;3 Stress 300 300 300 300 264 222 189 163 142 125 110 99 88 80 66 55 16 . .11360 1t+ ++4, 00111110,101111#11.,:49, . 4033. ..:.,27....,.23 19 Mi13 ,10 L/240 +++ +++ +++ 200 150 116 91 73 59 49 41 34 29 25 19 14 1441041114010timi4111016208104801244100111011WWWWWWWIROM Stress 300 300 235 150 124 104 89 77 67 59 52 46 42 38 31 26 22 ....1%360 t4+ ++4, ++4.,..•++1 `122 94 74, 59 ..a8:; .'40`..:33 <. 28 24,: 20.,.. 15 12'.I ,1111 ... L/240 +++ ++a a++ ++♦ +a+ a++ +++ N+ +++ a+♦ 49 42 35 30 23 18 iNOMmitoilIfgOettallia140100040404illialitinii414100010t40 Stress 300 300 296 190 157 132 112 97 84 74 66 59 53 47 39 33 20 11360 4f+ N+ •N •++ 146 143 ; 89 71 58 ,48 ''40" '33 28., 24j a18 14 1 w L/240 a++ aa+ +++ +++ ++a +++ ++a +a+ +++ 71 59 50 43 37 27 21 m 11180 ,.,4/+ 1i+; +44 . N+ 414... +4+ .::++4,,._+4+..+++ .'.++4 .,•+4 „+•+. . .44,;; ++41. 37._,.28- O Stress 300 300 300 265 219 184 157 135 118 103 92 82 73 66 55 46 ca 18 1•!360 +•+ +++_ •++ 258 194 149 117 94 76 53443863 32 -• ., ,. ..r24 n L/240 ♦++ +a+ +++ +++ +a+ +++ ++a +++ 115 94 79 66 56 48 36 28 fii12180 4, ,444 ..444., ++4 3}4 t 1+4..;ara+, t4, ifIC +++,,K+++ .!44 ,i.+.:, 64. X48 .37 a Stress 300 300 300 300 271 228 194 167 146 128 113 101 91 82 68 57 1611360 t++ i++ .++ .,s++ 24'1 186,E 146 117 95, 78< ';65 55 47... 40 :30 .23 L/240 aaa aa+ +a♦ +++ a++ +++ +++ +a+ 143 118 98 83 70 60 45 35 1111 11180,,, +4+ ++4;: +1+ ..:•++„ 1.+ +4+,,>+++. ••+ . 44+ ++111.~.+4+„ ,++f4 11.4+1,;; 80,... .60., ,46.,1 Stress 300 300 294 188 155 131 111 96 84 73 65 58 52 47 39 33 22 11360 i4• ++t 247 127 y 95, -73..::_58 . 46 38 31 ;26 22 '18 16, 12 . 5:-1 L/240 ♦++ +++ +++ +++ 143 110 86 69 56 46 39 33 28 24 18 14 1242002144.00101441144$04114#004110.50$181701agSgt4Akli8X1WW10411100 Stress 300 300 300 237 195 165 140 121 105 93 82 73 66 59 49 41 20 1/360. ++i +64 298 „152 1.15 .88,.` 69 , 56 45 37„ 31 26 t 22 19 14 11::1 L/240 +++ a++ ++a 229 172 132 104 83 68 56 47 39 33 29 21 17 L/180 +++ +4+: 44+ :4++ .?+4 4441. 139.,..111. X99: 74..,.62.. 52' gliPotlfolgtmie Stress 300 300 300 300 274 230 196 169 147... 129. 115 102 92 83 68 57 18 12360 4t+ N4. fi+ 202 ;152 117 92_ 74 60 49 41 35 2925 ' 19 ...15 ,1111... L/240 +++ +++ a++ +++ 228 175 138 110 90 74 62 52 44 38 28 22 11180 .46a .4+4.- 44+ . : 4i ,+at •++...;11 41..147., 120: 9g y_ :82_ ,..69 59,. 50:. .38 20 Stress 300 300 300 300 300 285 243 209 182 160 142 127 114 103 85 71 16 11360 4t,+ N+.,; +++ 251 189 145•,, 114 92 74, 61 . .,51 43 37 ',814 18 L/240 a+a +++ +++ +++ 283 218 172 137 112 92 77 65 55 47 35 27 1/180 !%+ ..+.: i+a ;++a +l 3+..::229 183 .149.: 123 ..,:102....86. 73 63 .4..7 ;.36, See Page 22 for footnotes. (continued) 87 T a NOTES: Section properties and allowable are computed in accordance t with AISI North American Specification,2007 edition = x x lx and ly are for deflection determination S,and Sy are for bending I� I� Material is either ASTM A653-06 Gr.55 or A1011-04 HSLAS Gr_55 CI-1 k B2 k Fy=55 ksi Fu=70ksi Y DIMENSIONAL PROPERTIES ALLOWABLES AXIS X-X AXIS Y-Y Positive Negative Positive Negative D x 31 x132 Thickness Weight Area Lip Va Ix Rx ly Sy. Ry Section Name (in) Gage (in) (Iblft) (in2) (in) Ma Ma OdPs) m S„ SX, i (k-ft) (k-ft) C `) (€n2) (€n3) (in) (i ') On') (in) 3.5x1.5Z16 3.5 x 1.5 x 1.5 16 0.059 1.592 0.468 0.911 1.321 1.321 3.659 0.876 0.481 0.481 1.367 0.444 0.197 0.974 3.5x1.5Z14 3.5 x 1.5 x 1.5 14 0.070 1.889 0.556 0.930 1.608 1.608 4310 1.029 0.586 0.586 1.361 0.530 0.246 0.977 co 3.5x1.5Z13 3.5 x 1.5 x 1.5 13 0.085 2.294 0.675 0.956 1.934 1.934 5.180 1.233 0.705 0.705 1.352 0.649 0.313 0.981 oa 3.5x1.5Z12 3.5 x1.5 x 1.5 12 0.105 2.834 0.833 0.990 2.347 2.347 6313 1.497 0.855 0.855 1.340 4 0.812 0.389 0.987 4.0x3.5Z16 4.0 x 3.125 x 3.375 16 0.059 2.395 0.704 0.911 2.110 2.105 3.842 2.003 0.769 0.767 1.687 2.580 0.483 1.914 4.0x3.5Z14 4.0 x 3.125 x 3.375 14 0.070 2.841 0.836 0.930 2.577 2.579 5.031 2.360 0539 0,940 1.681 3.075 0.564 1.918 4.0x3.5Z13 4.0 x 3.125 x 3.375 13 0.085 3.450 1.015 0.956 3.221 3241 6.057 2.838 1.174 1.181 1.672 3.756 0.692 1.924 4.0x3.5Z12 4.0 x 3.125 x 3.375 12 0.105 4.262 1.253 0.990 4,325 4240 7.396 3.460 1.576 1.545 1.662 4.677 0.990 1.932 4.0x3.0Z16 4.0 x 2.625 x 2.875 16 0.059 2.194 0.645 0.911 2.044 2.044 3.842 1.774 0.745 0.745 t658 1.724 0.415 1.635 4.0x3.0Z14 4.0 x 2.625 x 2.875 14 0.070 2.603 0.766 0.930 2.472 2.484 5.031 2.090 0.901 0.905 1.652 2.056 0.480 1.639 4.0x3,0213 4.0 x 2.625 x 2.875 13 0.085 3.161 0.930 0.956 3.224 3.115 8.057 2.512 1.175 1.135 1.644 2.513 0.668 1.644 4,0x3.0212 4.0 x 2.625 x 2.875 12 0.105 3.905 1.148 0.990 4.110 4.111 7.396 3.062 1.498 1.498 1.633 3.131 0.927 1.651 4,0x2.5216 4.0 x 2.125 x 2.375 16 0.059 1.994 0.686 0.911 1.943 1.956 3.842 1.5447 0.70805 0.71267 1.6231 1.0797 0.34437 1357 4.0x2.5Z14 4.0 x 2.125 x 2.375 14 0.070 2.365 0.696 0.930 2.414 2.401 5.031 1.819 0.879 0.875 1.617 1.288 0.434 1.361 4.0x2.5Z13 4.0 x 2.125 x 2.375 13 0.085 2.872 0.845 0.956 2.928 2,928 6.057 2,186 1.067 1.067 1.609 1.576 0.549 1.366 4.0x2.5Z12 4.0 x 2.125 x 2.375 12 4 0.105 3.548 1.043 0.990 3.567 3.568 7.396 2.663 1.300 1.300 1.598 1.965 0.682 1372 Revision Date:September 23,2010 1 of 7 Y e 1 NOTES: I - Section properties and allowable are computed in accordance with AISI North American Specification,2007 edition Ix and ly are for deflection determination xo x Se and Sy are for bending Material is either ASTM A653-06 Gr. 55 or A1011-04 HSLAS Gr. 55 CI-1 11____.'1 Fy=55ksi Fu=70 ksi Y • DIMENSIONAL PROPERTIES ALLOWABLES AXIS X-X AXIS Y-Y D x B Thickness Weight Area Lip Ma Va lx Sxe Rx Iy Sye Ry Section Name (in) Gage (in) (]b/ft) (in2) (in) (k-ft) (kips) (in4) (in3) (in) (in4) (in3) (in) co 4.032.0C16 4.0 x 2.0 16 0.059 1.793 0.527 0.773 1.808 3.842 1.331 0.659 1.588 • 0.314 0.239 0.772 4.0x2.0C14 4.0 x 2.0 14 0.070 2.127 0.626 0.800 2.147 5.031 1.564 0.782 1.581 0.371 0.290 0.770 4.0x2.0C13 4.0 x 2.0 13 0.085 2.583 0.760 0.836 2.574 6.057 1.876 0.938 1.571 0.449 0.358 0.768 4.0x2.0C12 4.0 x 2.0 12 0.105 3.191 0.938 0.885 3.125 7.396 2.276 1.139 1.558 0.550 0.445 0.766 4.0x2.5C16 4.0 x 2.5 16 0.059 1.994 0.586 0.773 1.847 3.842 1.560 0.673 1.631 0.533 0.329 0.953 4.0x2.5C14 4.0 x 2.5 14 0.070 2.365 0.696 0.800 2.278 5.031 1.835 0.830 1.624 0.630 0.399 0.952 4.0x2.5C13 4.0 x 2.5 13 0.085 2.872 0.845 0.836 2.962 6.057 2.201 1.079 1.614 0.763 0.495 0.950 4.0x2.5C12 4.0 x 2.5 12 0.105 3.548 1.043 0.885 3.672 7.396 2.676 1.338 1.601 0.938 0.617 0.948 5.0x2.5C16 5.0 x 2.5 16 0.059 2.194 0.645 0.773 2.480 3.842 2.604 0.904 2.009 0.578 0.332 0.946 5.0x2.5C14 5.0 x 2.5 14 0.070 2.603 0.766 0.800 3.050 5.409 3.069 1.111 2.002 0.684 0.403 0.945 5.0x2.5C13 5.0 x 2.5 13 0.085 3.161 0.930 0.836 3.964 7.810 3.693 1.445 1.993 0.829 0.502 0.944 5.0x2.5C12 5.0 x 2.5 12 0.105 3.905 1.148 0.885 4.946 9.561 4.505 1.802 1.981 1.020 0.635 0.942 6.0x2.5C16 6.0 x 2.5 16 0.059 2.395 0.704 0.773 3.170 3.319 3.971 1.155 2.375 0.616 0.334 0.935 6.0x2.5C14 6.0 x 2.5 14 0.070 2.841 0.836 0.800 3.889 5.409 4.687 1.417 2.368 0.729 0.406 0.934 6.0x2.5013 6.0 x 2.5 13 0.085 3.450 1.015 0.836 5.048 7.975 5.649 1.839 2.360 0.884 0.506 0.933 6.0x2.5012 6.0 x 2.5 12 0.105 4.262 1.253 0.885 6.321 11.727 6.909 2.303 2.348 1.088 0.642 0.932 Revision Date:September 23rd,2010 1 of 7 Y e NOTES: I I X Section properties and allowable are computed in accordance with AISI North American Specification,2007 edition x Q Ix and ly are for deflection determination Se and Sy are for bending Material is either ASTM A653-06 Gr. 55 or A1011-04 HSLAS Gr. 55 Cl-1 J Fy=55 ksi Eu=70 ksi Y DIMENSIONAL PROPERTIES ALLOWABLES AXIS X-X AXIS Y-Y D x B Thickness Weight ` Area Li I Section Name Gage p Ma Va x S,. RX ly Sye Ry (in) (in) (Ib/ft) (in2) (in) (k-ft) (kips) (in4) (in3) (in) (in4) (in3) (in) 7.0x3.0C16 7.0 x 3.0 16 0.059 2.796 0.822 0,773 4.088 2.809 6.401 1.489 2.790 1.004 0.437 1.105 0 7.0x3.0C14 7.0 x 3.0 14 0.070 3,317 0.976 0.800 4.995 4.707 7.562 Q 1.820 2.784 1.190 0.533 1.105 7.0x3.0C13 7.0 x 3.0 13 0.085 4.028 1.185 0.836 6.310 7.975 9.129 2.299 2.776 1.445 0.667 1.104 7.0x3.0C12 7.0 x 3.0 12 0.105 4.976 1.463 0.885 8.389 12.170 11.187 3.057 2.765 1.782 0.849 1.104 7.0x4.0C16 7.0 x 4.0 16 0.059 3.197 0.940 0.773 4.157 2.809 7.822 1.515 2.884 2.017 0.671 1.465 7.0x4.0C14 7.0 x 4.0 14 0.070 3.793 1.116 0.800 5.300 4.707 9.243 1.931 2.878 2.394 0.819 1.465 7.0x4.0C13 7.0 x 4.0 13 0.085 4.606 1.355 0.836 6.768 7.975 11.161 2.466 2.870 2.907 1.027 1.465 _ 7.0x4.0C12 7.0 x 4.0 12 0.105 5.690 1.673 0.885 9.005 11.603 13.683 3.281 2.860 3.591 1.319 1.465 8.0x2.5C16 8.0 x 2.5 16 0.059 2.796 0.822 0.773 4.649 2.435 7.791 1.694 3.078 0.675 0.336 0.906 8.0x2.5C14 8.0 x 2.5 14 0.070 3.317 0.976 0.800 5.766 4.078 9.210 2.101 3.072 0.800 0.409 0.906 8.0x2.5C13 8.0 x 2.5 13 0.085 4.028 1.185 0.836 7.452 7.330 11.126 2.715 3.065 0.970 0.512 0.905 8.0x2.5C12 8.0 x 2.5 12 0.105 4.976 1.463 0.885 9.365 12.170 13.649 3.412 3,054 1.196 0.650 0.904 8.0x3.0C16 8.0 x 3.0 16 0.059 2.997 0.881 0.773 4.732 2.435 8.721 1.724 3.146 1.048 0.438 1.090 8.0x3.0014 8.0 x 3.0 14 0.070 3.555 1.046 0.800 6.000 4.078 10.310 2.186 3.140 1.243 0.534 1.090 8.0x3.0C13 8.0 x 3.0 13 0.085 4.317 1.270 0.836 7.564 7.330 12.457 2.756 3.132 1.509 0.669 1.090 8.0x3.0C12 8.0 x 3.0 12 0.105 5.333 1.568 0.885 10.030 12.170 15.285 3.655 3.122 1.862 0.854 1.090 Revision Date:September 23rd,2010 3 of 7 Y e NOTES: 1 Section properties and allowable are computed in accordance with AISI North American Specification,2007 edition lx and ly are for deflection determination x .1 x SB and Sy are for bending Material is either ASTM A653-06 Gr. 55 or A1011-04 HSLAS Gr. 55 Cl-1 -'-J Fy=55 ksi Fu=70ksi Y DIMENSIONAL PROPERTIES ALLOWABLES AXIS X-X AXIS Y-Y Section Name 0 x B Gage Thickness Weight Area Lip Ma Va lx Sxe Rx ly Sye Ry (in) (in) (lb/ft) (in) (in) (k-ft) (kips) (in4) (in3) (in) (in4) (in) (in) 10.0x2.0016 10.0 x 2.0 16 0.059 2.997 0.881 0.773 5.459 1.922 11.798 1.989 3.659 0.419 0.245 0.690 m 10.0x2.0C14 10.0 x 2.0 14 0.070 3.555 1.046 0.800 6.789 3.218 13.958 2.474 3.654 0.497 0.298 0.689 10.0x2.0013 10.0 x 2.0 13 0.085 4.317 1.270 0.836 8.581 5.780 16.884 3.127 3.647 0.602 0.372 _ 0.689 10.0x2.0C12 10.0 x 2.0 12 0.105 5.333 1.568 0.885 11.029 10.941 20.745 4.019 3.637 0.741 0.471 0.687 10.0x2.5C16 10.0 x 2.5 16 0.059 3.197 0.940 0.773 5.740 1.922 13.256 2.091 3.755 0.719 0.337 0.875 10.0x2.5C14 10.0 x 2.5 14 0.070 3.793 1.116 0.800 7.650 3.218 15.684 2.788 3.750 0.853 0.411 0.874 10.0x2.5C13 10.0 x 2.5 13 0.085 4.606 1.355 0.836 10.172 5.780 18.973 3.706 3.742 1.035 0.514 0.874 10.0x2.5C12 10.0 x 2.5 12 0.105 5.690 1.673 0.885 12.798 10,941 23.316 4.663 3.733 1.277 0.655 0.874 10.0x3.0C16 10.0 x 3.0 16 0.059 3.398 0.999 0.773 5.871 1.922 14.713 2.139 3.837 1.120 0.439 1.059 10.0x3.0C14 10.0 x3.0 14 0.070 4.031 1.186 0.800 7.756 3.218 17.410 2.826 3.832 1.330 0.537 1.059 10.0x3.0C13 10.0 x 3.0 13 0.085 4.895 1.440 0.836 10.313 5.780 21.062 3.758 3.825 1.615 0.673 1.059 10.0x3.0C12 10.0 x 3.0 12 0.105 6.047 1.778 0.885 13.606 10.941 25.886 4.957 3.815 1.995 0.860 1.059 10.0x3.5C16 10.0 x 3.5 16 0.059 3.598 1.058 0.773 5.946 1.922 16.171 2.166 3.909 1.633 0.552 1.242 10.0x3.5C14 10.0 x 3.5 14 0.070 4.269 1.256 0.800 7.873 3.218 19.135 2.869 3.904 1.939 0.675 1.243 10.0x3.5C13 10.0 x 3.5 13 0.085 5.184 1.525 0.836 10.699 5.780 23.151 3.898 3.897 2.356 0.848 'L243 10.0x3.5C12 10.0 x 3.5 12 0.105 6.404 1.883 0.885 13.880 10.941 28.456 5.057 3.887 2.912 1.085 1.243 Revision Date: September 23rd,2010 5 of 7 E"— ICC EVALUATION \,- SERVICE -Most Wdely Accepted and Trusted ICC-ES Evaluation Report ESR-1385* Reissued February 1, 2014 This report is subject to renewal February 1, 2016. www.icc-es.orq I (800) 423-6587 I (562) 699-0543 A Subsidiary of the International Code Council® DIVISION:04 00 00—MASONRY diameters,while the Long Thread Kwik Bolt 3 has a thread Section:04 05 19.16—Masonry Anchors length greater than three bolt diameters. The tapered mandrel has an increasing diameter toward the anchor REPORT HOLDER: base, and is enclosed by a three-section wedge that freely moves around the mandrel. In the vertical direction, the HILT!,INC. wedge movement is restrained by the mandrel taper at the 5400 SOUTH 122ND EAST AVENUE bottom and by a collar at the top of the mandrel. When the TULSA,OKLAHOMA 74146 anchor nut is tightened, the wedge is forced against the (800)879-8000 wall of the predrilled hole to provide anchorage. www.us.hilti.com 3.2 Fully Grouted CMU Masonry: HiitiTechEnq(a tus.hilti.com Fully grouted CMU masonry must comply with Chapter 21 EVALUATION SUBJECT: of the IBC. The compressive strength of masonry must be at least 1,500 psi (10.3 MPa) at the time of anchor KWIK BOLT 3 MASONRY ANCHORS installation. The concrete masonry must be fully grouted, and constructed from the following materials: 1.0 EVALUATION SCOPE 3.2.1 Concrete Masonry Units (CMUs): Fully grouted Compliance with the following codes: concrete masonry walls must be constructed from E 2012,2009 and 2006 International Building Code®(IBC) minimum Type I, Grade N, lightweight, medium-weight or normal-weight concrete masonry units (CM Us) conforming • 2012, 2009 and 2006 International Residential Code® to ASTM C90 (IBC). The minimum allowable nominal size (IRC) of the CMU is 8 inches (203 mm) wide by 8 inches Property evaluated: (203 mm) high by 16 inches(406 mm)long. 3.2.2 Grout: The masonryunits must be fullygrouted Structural with grout complying with Section 2103.13 of the 2012 IBC, 2.0 USES Section 2103.12 of the 2009 and 2006 IBC, or Section The Kwik Bolt 3 (KB3) Masonry Anchor is used to resist R609.1.1 of the IRC, as applicable.Alternatively, the grout static, wind, and earthquake tension and shear loads in must have a minimum compressive strength, when tested uncracked, fully grouted concrete masonry unit (CMU) in accordance with ASTM C1019, equal to its specified construction. The anchor system is an alternative to cast- strength, but not less than 2,000 psi(13.8 MPa). in-place anchors described in Section 2.1.4 of TMS 402/ 3.2.3 Mortar: Mortar must be Type N, S or M, prepared ACI 530/ ASCE 5 as referenced in Section 2107 of the in accordance with Section 2103.9 of the 2012 IBC, IBC. The anchor systems may also be used where an Section 2103.8 of the 2009 and 2006 IBC, or Section R607 engineered design is submitted in accordance with Section of the IRC, as applicable. R301.1.3 of the IRC. 3.0 DESCRIPTION 4.0 DESIGN AND INSTALLATION 3.1 Kwik Bolt 3: 4.1 Design: The Kwik Bolt 3 expansion anchors consist of a stud, Minimum embedment depth, edge distance, and spacing wedge, nut, and washer. The stud is manufactured from requirements are set forth in Table 2. Allowable stress carbon material. The carbon steel Kwik Bolt 3 anchors design tension and shear loads are as noted in Tables 2 a 5 pm (0.0002 inch) zinc plating. The anchor is and 3.Allowable loads for Kwik Bolt 3 anchors subjected to havelustrated in Figure 1 of this report. combined shear and tension forces are determined by the ilfollowing equation: The wedges for the carbon steel anchors are made from (PiPt)513+ (V f)5/3 5.1 carbon steel, except for all 1/4-inch(6.4 mm) lengths, which have AISI 316 stainless steel wedges. All carbon steel where: components are zinc-plated. The stud consists of a high- Ps - Applied service tension load (fbf or N). strength rod threaded at one end. The standard Kwik Bolt 3 has a thread length equal to or less than three bolt Pt = Allowable service tension load(IV or N). *Revised March 2014 ICC-ES Evaluation Reports are not to he construed as representing aesthetics or any other attributes not.specifically addressed,nor are they to be construed as an endorsement�; of the subject of the report or a recommendation for its use.There is no warranty by ICC Evaluation Service,LLC,express or implied,as apt SI to any finding or other moiler in this report,or as to any product covered by the report.92 " . Copyright®2014 Page 1 of 4 ESR-1385 I Most Widely Accepted and Trusted Page 2 of 4 V5 = Applied service shear load(Ibf or N). 5.6 When using the basic load combinations in V, = Allowable service shear load(lbf or N). accordance with IBC Section 1605.3.1, allowable loads are not permitted to be increased for wind or 4.2 Installation Requirements: earthquake loading. When using the alternative basic Kwik Bolt 3 must be installed in holes drilled into the base load combinations in 2009 and 2006 IBC Section material using carbide-tipped masonry drill bits complying 1605.3.2 that include wind or seismic loads, the with ANSI B212.15-1994. The nominal drill bit diameter allowable shear and tension loads for anchors are must be equal to that of the anchor. The drilled hole must permitted to be increased by 331/3 percent. exceed the depth of anchor embedment by at least one Alternatively, the basic load combinations may be anchor diameter to permit over-driving of anchors and to reduced by a factor of 0.75 when using IBC Section provide a dust collection area. The anchor must be 1605,3.2. For the 2012 IBC, the allowable loads or hammered into the predrilled hole until at least six threads load combinations may not be adjusted. are below the fixture surface. The nut must be tightened 5.7 Where not otherwise prohibited in the applicable against the washer until the torque values specified in code, anchors are permitted for use with fire- Table 1 are attained. resistance-rated construction provided that at least 4.3 Special Inspection: one of the following conditions is fulfilled: Special inspection under the IBC and IRC must be • Anchors are used to resist wind or seismic forces provided in accordance with Sections 1704 and 1705 of only. the IBC. Under the IBC, additional requirements as set • Anchors that support fire-resistance-rated forth in Sections 1705 and 1706 must be observed, where construction or gravity load—bearing structural applicable. The code official must receive a report,from an elements are within a fire-resistance-rated approved special inspector, that includes the following envelope or a fire-resistance-rated membrane, details: are protected by approved fire-resistance-rated 1. Anchor description, including the anchor product name, materials, or have been evaluated for resistance to nominal anchor and bolt diameters, and anchor length. fire exposure in accordance with recognized 2. Hole description, including verification of drill bit standards. compliance with ANSI B212.15-1994. • Anchors are used to support nonstructural 3. Installation description, including verification of elements. masonry compressive strength and verification of 5.8 Use of carbon steel Kwik Bolt 3 anchors must be anchor installation and location (spacing and edge limited to dry, interior locations. distance) in accordance with Hilti's published installation instructions and this report. 5.9 Special inspection must be provided in accordance with Section 4.3 of this report. 5.0 CONDITIONS OF USE 5.10 Anchors are manufactured by Hilti, Inc., The Kwik Bolt 3 Masonry Anchors described in this report Feldkircherstrasse 100, Schaan, Liechtenstein; and are suitable alternatives to what is specified in, those Hilti Operaciones de Mexico S.A., Matamoros, codes listed in Section 1.0 of this report, subject to the Tamaulipas, Mexico, under a quality control program following conditions: with inspections conducted by ICC-ES. 5.1 Anchor sizes, dimensions, and installation must 6.0 EVIDENCE SUBMITTED comply with this report and Hilti's published installation instructions. Data in accordance with the ICC-ES Acceptance Criteria for Expansion Anchors in Masonry Elements (AC01), 5.2 Allowable tension and shear loads must be as noted approved May 2012 (editorially revised August 2013), in Tables 2 and 3 of this report. including seismic tests, reduced spacing tests and reduced 5.3 Calculations and details demonstrating compliance edge distance tests. with this report must be submitted to the code official 7.0 IDENTIFICATION for approval, 5.4 The use of anchors must be limited to installation in The anchors must be identified in the field by dimensional uncracked fully CMU masonry. Cracking characteristics and packaging. The packaging label occurs when ft grouted fr due to asonr loads or indicates the manufacturer's name(Hilti, Inc.)and address, the size and type of anchor, and the ICC-ES report number deformations. (ESR-1385). A length identification code letter is stamped 5.5 Design of Kwik Bolt 3 Masonry Anchors installed in on the threaded end of the bolt. The length identification fully grouted CMU masonry to resist dead, live, wind system is described in Table 4. and earthquake load applications must be in accordance with Section 4.1. 93 ESR-1385 I Most Widely Accepted and Trusted Page 3 of 4 TABLE 1—INSTALLATION SPECIFICATIONS1 SETTING DETAILS ANCHOR SIZE 1/4 inch 318 inch 1/2 inch 5/6 inch 3/4 inch Drill bit size=anchor diameter(inches) 1/4 318 1/2 s/8 3/4 Wedge clearance hole(inches) 5/16 '/,g 9116 11/16 73116 Anchor length(min./max.)(inches) 11/4 41/2 21/6 7 23/4 7 31/2 10 6 12 Thread length std./long thread length(inches) 3/4 3 7/8 55/6 11/4 43/4 11/2 7 11/2 6 Installation: Torque guide values Carbon steel: Min.Embedment 4 15 25 65 120 (ft-Ib)in Carbon steel:Std, Embedment 4 15 25 65 120 concrete masonry Min.base material thickness(inches) 3 inches or 1.5 x embedment depth,whichever is greater For SI:1 inch=25.4 mm,1 ft-lbf= 1.356 N-m. 'installation torques are applicable for all anchors installations unless noted otherwise in this report. TABLE 2—ALLOWABLE TENSION AND SHEAR VALUES FOR HILTI KWIK BOLT 3 CARBON STEEL ANCHORS INSTALLED IN THE FACE SHELLS OF FULLY GROUTED CMU MASONRY WALLS(in pounds)1'2'3.4 ANCHOR EMBEDMENT MINIMUM TENSION SHEAR DIAMETER DEPTH5 DISTANCE (inch) (inches) FROM EDGE OF WALL IgC/!RC IBC/IRC (inches) 4 121 304 11/8 12 121 304 1/4 4 432 342 2 12 432 342 4 257 589 15/8 12 273 751 3/8 4 626 764 21/2 12 626 1,054 4 502 664 21/4 12 533 1,171 1/2 4 724 840 31/2 12 724 1,853 4 651 710 23/4 12 692 1,732 5/8 4 994 743 4 12 1,035 2,123 4 829 627 31/4 12 829 2,508 3/4 4 1,316 657 43/8 12 1,368 2,627 For SI: 1 inch=25.4 mm,1 lb=4.45 N. 'Values valid for anchors installed in face shells of Type 1,Grade N,lightweight,medium-weight,or normal-weight concrete masonry units conforming to ASTM C90.The masonry units must be fully grouted with coarse grout conforming to 2012 IBC Section 2103.13,or 2009 and 2006 IBC Section 2103.12.Mortar must comply with 2012 IBC Section 2103.9,or 2009 and 2006 IBC Section 2103.8.Masonry compressive strength must be at least 1,500 psi at the time of anchor installation. 2Anchors must be installed a minimum of 1318 inches from any vertical mortar joint in accordance with Figure 2. 3Anchor locations are limited to one per masonry cell with a minimum spacing of 8 inches on center. 4Allowable loads or applied loads may be modified in accordance with Section 5.6 of this report for the 2009 and 2006 IBC,due to short-term wind or seismic loads. 5Embedment depth must be measured from the outside face of the concrete masonry unit. °For intermediate edge distances,allowable loads may be determined by linearly interpolating between the allowable loads at the two tabulated edge distances. 94 ESR-1385 I Most Widely Accepted and Trusted Page 4 of 4 TABLE 3—ALLOWABLE TENSION AND SHEAR VALUES FOR HILTI KWIK BOLT 3 CARBON STEEL ANCHORS INSTALLED IN TOP OF FULLY GROUTED CMU MASONRY WALLS(in pounds)12,3,4 ANCHOR EMBEDMENT TENSION SHEAR DIAMETER DEPTHS Perpendicular to Wall Parallel to Wall (inch) (inches) IBC/IRC IBC/IRC IBC/IRC 1/2 3 517 249 491 518 31/2 682 249 491 For SI: 1 inch=25.4 mm,1 lb=4.45 N. 'Values valid for anchors installed into top cells of Type 1,Grade N,lightweight,medium-weight,or normal-weight concrete masonry units conforming to ASTM C90.The masonry units must be fully grouted with coarse grout conforming to 2012 IBC Section 2103.13,or 2009 and 2006 IBC Section 2103.12.Mortar must comply with 2012 IBC Section 2103.9,or 2009 and 2006 1BC Section 2103.8. Masonry compressive strength must be at least 1,500 psi at the time of anchor installation. 2Anchors must be installed a minimum of 13/4 inches from edge of the block. 3Anchor locations must be limited to one per masonry cell with a minimum spacing of 8 inches on center. 'Allowable loads or applied loads may be modified in accordance with Section 5.6 of this report for the 2009 and 2006 IBC,due to short-term wind or seismic loads. 5Embedment depth is measured from the top edge of the concrete masonry unit. TABLE 4—LENGTH IDENTIFICATION CODES STAMP ON ANCHOR A B C D E F GH I JK LMNOPQRS TUVWX V Z Length of From 02 2 2'/2 3 31/2 4 41/2 5 5'/2 6 6'/2 7 71/2 8 8'/2 9 91/2 10 11 12 13 14 15 16 17 18 Anchor Up to but not , , , , , , (inches) including 2 2 h 3 31/2 4 4 Jz 5 5/2 6 612 7 71/2 8 812 9 9/2 10 11 12 i3 14 15 16 17 18 18 For SI:1 inch=25.4 mm. 11 1 j Nut Anchor Installation Is Restricted to Non-Shaded Areas r---n-.. Washer !S• /I� /+/ PI I/ ill AO, /i/ i.. ,�. i.. .1_ i.'as Thread Area `r lit/ Ilag G / 440' J - -- - -Anchor Body m TTriple menied Mortar Joint 1-3/8 Concrete Masonry Unit Mandrel S egedge 1-3i8' (Grouted) Area FIGURE 1—KWIK BOLT 3 FIGURE 2—ACCEPTANCE LOCATIONS(NON-SHADED AREAS)FOR HILTI KWIK BOLT 3 ANCHORS IN GROUT-FILLED CONCRETE MASONRY ANCHORS 95 E ICC EVALUATION SERVICE Most Widely Accepted and Trusted iCC-ES Evaluation Report ESR-1917* Reissued May 2015 This report is subject to renewal May 2017. www.icc-es.orq I (800)423-6587 I (562) 699-0543 A Subsidiary of the International Code Council® DIVISION: 03 00 00—CONCRETE The 3/8-inch-, 112-inch-, 5/8-inch- and %-inch diameter Section:03 16 00—Concrete Anchors (9.5 mm, 12.7 mm and 15.9 mm) carbon steel KB-TZ anchors may be installed in the soffit of cracked and DIVISION: 05 00 00—METALS uncracked normal-weight or sand-lightweight concrete over Section: 05 05 19—Post-Installed Concrete Anchors metal deck having a minimum specified compressive strength, t'c, of 3,000 psi (20.7 MPa) [minimum of 24 MPa REPORT HOLDER: is required under ADiBC Appendix L,Section 5.1.1]. HILTI, INC. The anchoring system complies with anchors as 5400 SOUTH 122ND EAST AVENUE described in Section 1909 of the 2012 IBC and Section TULSA,OKLAHOMA 74146 1912 of the 2009 and 2006 IBC. The anchoring system is (800)$79-8000 an alternative to cast-in-place anchors described in www.us.hitti.com Section1908 of the 2012 IBC and Section 1911 of the 2009 NiltiTechEngOus.hilti.com and 2006 IBC. The anchors may also be used where an engineered design is submitted in accordance with Section EVALUATION SUBJECT: R301.1.3 of the IRC. 3.0 DESCRIPTION HiLTI KWIK BOLT TZ CARBON AND STAINLESS STEEL 3.1 KB-TZ: ANCHORS IN CRACKED AND UNCRACKED CONCRETE KB-TZ anchors are torque-controlled, mechanical 1.0 EVALUATION SCOPE expansion anchors. KB-TZ anchors consist of a stud Compliance with the following codes: (anchor body), wedge (expansion elements), nut, and washer. The anchor (carbon steel version) is illustrated in ■ 2012,2009 and 2006 international Building Code®(IBC) Figure 1. The stud is manufactured from carbon steel or r• 2012, 2009 and 2006 International Residential Code® AISI Type 304 or Type 316 stainless steel materials. (IRC) Carbon steel KB-TZ anchors have a minimum 5 pm (0.0002 inch) zinc plating. The expansion elements for the • 2013 Abu Dhabi International Building Code(ADIBC)t carbon and stainless steel KB-TZ anchors are fabricated tThe ADIBC is based on the 2009 IBC.2009 IBC code sections referenced from Type 316 stainless steel. The hex nut for carbon steel in this report are the same sections in the ADIBC. conforms to ASTM A563-04, Grade A, and the hex nut for Property evaluated: stainless steel conforms to ASTM F594. Structural The anchor body is comprised of a high-strength rod threaded at one end and a tapered mandrel at the other 2.0 USES end. The tapered mandrel is enclosed by a three-section The Hilti Kwik Bolt TZ anchor (KB-TZ) is used to resist expansion element which freely moves around the static, wind, and seismic tension and shear loads in mandrel. The expansion element movement is restrained cracked and uncracked normal-weight concrete and sand- by the mandrel taper and by a collar. The anchor is installed in a predrilled hole with a hammer. When torque lightweight concrete having a specified compressive strength, fc, of 2,500 psi to 8,500 psi (17.2 MPa to is applied to the nut of the installed anchor, the mandrel is 58.6 MPa) [minimum of 24 MPa is required under ADIBC drawn into the expansion element, which is in turn Appendix L,Section 5.1.1]. expanded against the wall of the drilled hole. The 3/8-inch- and 1/2-inch-diameter (9.5 mm and 3.2 Concrete: 12.7 mm) carbon steel KB-TZ anchors may be installed in Normal-weight and sand-lightweight concrete must the topside of cracked and uncracked normal-weight or conform to Sections 1903 and 1905 of the IBC. sand-lightweight concrete-filled steel deck having a 3.3 Steel Deck Panels: minimum member thickness, hmin,deck, as noted in Table 6 of this report and a specified compressive strength, Pc, of Steel deck panels must be in accordance with the 3,000 psi to 8,500 psi(20.7 MPa to 58.6 MPa)[minimum of configuration in Figures 5A, 5B, 5C and 50 and have a 24 MPa is required under ADIBC Appendix L, Section minimum base steel thickness of 0.035 inch (0.899 mm). 5.1.1]. Steel must comply with ASTM A653/A653M SS Grade 33 *Corrected May 2015 ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed,nor are they to be construed == as an endorsement oldie subject oldie report or a recommendation for its use.There is no warranty by ICC Evaluation Service,LLC,express or implied,as h„„* ANSI to any finding or other mailer in this report,or as to any product covered by the repot'. n¢nwra Copyright 5 2015 96 Page 1 of 13 ESR-1917 I Most Widely Accepted and Trusted Page 2 of 13 and have a minimum yield strength of 33,000 psi + (228 MPa). Nn,f = Npc,.-j7` (N,MPa) 4.0 DESIGN AND INSTALLATION In regions where where analysis indicates no cracking in 4.1 Strength Design: accordance with ACE 318 D.5.3.6, the nominal pullout strength in tension may be calculated in accordance with 4.1.1 General: Design strength of anchors complying with the following equation: the 2012 IBC as well as Section R301.1.3 of the 2012 IRC, must be determined in accordance with ACI 318-11 NP,1 =Np,uncr� (lb, psi) (Eq-2) Appendix D and this report. z,soo Design strength of anchors complying with the 2009 IBC and Section R301.1.3 of the 2009 IRC must be determined f' N =N in accordance with ACI 318-08 Appendix D and this report. pri p,uncr z�2 (N,MPa) Design strength of anchors complying with the 2006Where values for Np c�or Np uncr are not provided in Table IBC and Section R301.1.3 of the 2006 IRC must be in 3 or Table 4, the pullout strength in tension need not be accordance with ACI 318-05 Appendix D and this report. evaluated. Design parameters provided in Tables 3, 4, 5 and 6 of The nominal pullout strength in cracked concrete of the this report are based on the 2012 IBC (ACI 318-11) unless carbon steel KB TZ installed in the soffit of sand- noted otherwise in Sections 4.1.1 through 4.1.12.The lightweight or normal-weight concrete on steel deck floor strength design of anchors must comply with ACI 318 and roof assemblies, as shown in Figures 5A and 5B, is D.4.1,except as required in ACl 318 D.3.3. given in Table 5. In accordance with ACI 318 D.5.3.2, the nominal pullout strength in cracked concrete must be Strength reduction factors, 0, as given in ACE 318-11 calculated in accordance with Eq-1, whereby the value of D.4.3 and noted in Tables 3 and 4 of this report, must be Np,deck,cr must be substituted for Np,cr and the value of used for load combinations calculated in accordance with 3,000 psi (20.7 MPa) must be substituted for the value of Section 1605.2 of the IBC and Section 9.2 of ACI 318. 2,500 psi (17.2 MPa) in the denominator. In regions where Strength reduction factors, $, as given in ACI 318-11 D.4.4 analysis indicates no cracking in accordance with ACI 318 must be used for load combinations calculated in 5.3.6, the nominal strength in uncracked concrete must be accordance with ACE 318 Appendix C. An example calculated according to Eq-2, whereby the value of calculation in accordance with the 2012 IBC is provided in Np,deck,uncr must be substituted for Np,ux,and the value of Figure 7. The value of Pc used in the calculations must be 3,000 psi (20.7 MPa) must be substituted for the value of limited to a maximum of 8,000 psi (55.2 MPa), in 2,500 psi (17.2 MPa) in the denominator. The use of accordance with ACI 318-11 D.3.7. stainless steel KB-TZ anchors installed in the soffit of 4.1.2 Requirements for Static Steel Strength in concrete on steel deck assemblies is beyond the scope of this report. Tension: The nominal static steel strength, Nsa, of a single anchor in tension must be calculated in accordance with 4.1.5 Requirements for Static Steel Strength in Shear: ACI 318 0.5.1.2. The resulting Nsa values are provided in The nominal steel strength in shear, Vse• of a single anchor Tables 3 and 4 of this report. Strength reduction factors in accordance with ACE 318 D.6.1.2 is given in Table 3 and corresponding to ductile steel elements may be used. Table 4 of this report and must be used in lieu of the values derived by calculation from ACI 318-11, Eq. D-29. 4.1.3 Requirements for Static Concrete Breakout The shear strength Vsa,deck of the carbon-steel KB-TZ as Strength in Tension: The nominal concrete breakout governed by steel failure of the KB-TZ installed in the soffit strength of a single anchor or group of anchors in tension, of sand-lightweight or normal-weight concrete on steel Nkb or Ncbg, respectively, must be calculated in accordance deck floor and roof assemblies, as shown in Figures 5A, with ACE 318 D.5.2, with modifications as described in this 5B and 5C, is given in Table 5. section. The basic concrete breakout strength in tension, 4.1.6 Requirements for Static Concrete Breakout Nb, must be calculated in accordance with ACI 318 Strength in Shear: The nominal concrete breakout 0.5.2.2, using the values of ho,and kcr as given in Tables strength of a single anchor or group of anchors in shear, 3, 4 and 6. The nominal concrete breakout strength in I/cb or Vag, respectively, must be calculated in accordance tension in regions where analysis indicates no cracking in with AC! 318 D.6.2, with modifications as described in this accordance with ACI 318 0.5.2.6 must be calculated with section.The basic concrete breakout strength, Vk,must be kuncr as given in Tables 3 and 4 and with CPgN= 1.0. calculated in accordance with ACI 318 D.6.2.2 based on For carbon steel KB-TZ anchors installed in the soffit of the values provided in Tables 3 and 4.The value of to used sand-lightweight or normal-weight concrete on steel deck in ACI 318 Eq. D-24 must be taken as no greater than the floor and roof assemblies, as shown in Figures 5A, 5B and lesser of he or 8da. 5C, calculation of the concrete breakout strength is not For carbon steel KB-TZ anchors installed in the soffit of required. sand-lightweight or normal-weight concrete on steel deck 4.1.4 Requirements for Static Pullout Strength in floor and roof assemblies, as shown in Figures 5A,5B and Tension: The nominal pullout strength of a single anchor 5C, calculation of the concrete breakout strength in shear in accordance with ACI 318 D.5.3.1 and D.5.3.2 in cracked is not required. and uncracked concrete, Np,cr and Np,uncr, respectively, is 4.1.7 Requirements for Static Concrete Pryout given in Tables 3 and 4. For all design cases tiic,p= 1.0. In Strength in Shear: The nominal concrete pryout strength accordance with ACI 318 D.5.3, the nominal pullout of a single anchor or group of anchors, Vcp or Vcpg, strength in cracked concrete may be calculated in respectively, must be calculated in accordance with ACI accordance with the following equation: 318 D.6.3, modified by using the value of kms, provided in Tables 3 and 4 of this report and the value of No or Nag as NP fc =NP c, 2 soo (lb,psi) (Eq-1) calculated in Section 4.1.3 of this report. 97 ESR-1917 I Most Widely Accepted and Trusted Page 3 of 13 For carbon steel KB-TZ anchors installed in the soffit of For carbon steel KB-TZ anchors installed in the soffit of sand-lightweight or normal-weight concrete over profile sand-lightweight or normal-weight concrete over profile steel deck floor and roof assemblies, as shown in Figures steel deck floor and roof assemblies, the anchors must be 5A, 5B, and 5C, calculation of the concrete pry-out installed in accordance with Figure 5A, 58 and 5C and strength in accordance with ACI 318 0.6.3 is not required. shall have an axial spacing along the flute equal to the 4.1.8 Requirements for Seismic Design: greater of 3hef or 1.5 times the flute width. 4.1.8.1 General: For load combinations including seismic, 4.1.11 Requirements for Critical Edge Distance: In the design must be performed in accordance with ACI 318 applications where c< cac and supplemental reinforcement D.3.3. For the 2012 IBC,Section 1905.1.9 shall be omitted. to control splitting of the concrete is not present, the Modifications to ACI 318 D.3.3 shall be applied under concrete breakout strength in tension for uncracked Section 1908.1.9 of the 2009 IBC, or Section 1908.1.16 of concrete, calculated in accordance with ACI 318 0.5.2, the 2006 IBC. The nominal steel strength and the nominal must be further multiplied by the factor Wcp,N as given by concrete breakout strength for anchors in tension, and the Eq-1 nominal concrete breakout strength and pryout strength for 111 = cpm (Eq-3) anchors in shear, must be calculated in accordance with , cae Eq3 ACI 318 D.5 and D.6, respectively, taking into account the whereby the factor tPcp,N need not be taken as less corresponding values given in Tables 3, 4 and 5 of this 1.5h01 r . For all report. The anchors may be installed in Seismic Design than cagother cases, wcpN = 1.0. In lieu of Categories A through F of the IBC. The anchors comply using ACI 318 0.8.6, values of cac must comply with with ACI 318 D.1 as ductile steel elements and must be Table 3 or Table 4 and values of cec,deck must comply with designed in accordance with ACI 318-11 D.3.3.4, D.3.3.5, Table 6. D.3.3.6 or 0.3.3.7, ACI 318-08 D.3.3.4, D.3.3.5 or D.3.3.6, or ACI 318-05 0.3.3.4 or D.3.3.5,as applicable. 4.1.12 Sand-lightweight Concrete: For ACI 318-11 and 4.1.8.2 Seismic Tension: The nominal steel strength 318-08, when anchors are used in sand-lightweight and nominal concrete breat strength for anchors in concrete, the modification factor Aa or A, respectively, for tension must be calculated in accordance with ACI 318 concrete breakout strength must be taken as 0.6 in lieu of D.5.1 and ACI 318 D.5.2, as described in Sections 4.1.2 ACl 318-11 D.3.6 (2012 IBC) or ACI 318-08 D.3.4 (2009 and 4.1.3 of this report. In accordance with ACI 318 IBC). In addition the pullout strength e. Np,uncr and Np,eq D.5.3.2, the appropriate pullout strength in tension for must be multiplied by 0.6, as applicable. seismic loads, Np,eq, described in Table 4 or Np,deck,cr For ACI 318-05, the values Nb, Np,cr,Np,uncr, Np,eq and Vb described in Table 5 must be used in lieu of Np, as determined in accordance with this report must be applicable. The value of Np,eq or Np,deckcr may be adjusted multiplied by 0,6,in lieu of ACI 318 D.3.4. by calculation for concrete strength in accordance with For carbon steel KB TZ anchors installed in the soffit of Eq-1 and Section 4.1.4 whereby the value of Np,deckcr must sand lightweight concrete-filled steel deck and floor and be substituted for Np,cr and the value of 3,000 psi roof assemblies, this reduction is not required. Values are (20.7 MPa) must be substituted for the value of 2,500 psi (17.2 MPa) in the denominator. If no values for Np,eq are presented in Table 5 and installation details are show in given in Table 3 or Table 4, the static design strength Figures 5A,5B and 5C. values govern. 4.2 Allowable Stress Design (ASD): 4.1.8.3 Seismic Shear: The nominal concrete breakout 4.2.1 General: Design values for use with allowable strength and pryout strength in shear must be calculated in stress design (working stress design) load combinations accordance with ACI 318 D.6.2 and D.6.3, as described in calculated in accordance with Section 1605.3 of the IBC, Sections 4.1.6 and 4.1,7 of this report. In accordance with must be established as follows: ACt 318 D.6.1.2, the appropriate value for nominal steel strength for seismic loads, Vse,eQ described in Table 3 and 7allowabre,Aso Table 4 or Vsa,deck described in Table 5 must be used in lieu of Vsa, as applicable. 4.1.9 Requirements for Interaction of Tensile and Vanowabre,Aso OV, Shear Forces: For anchors or groups of anchors that are subject to the effects of combined tension and shear where: forces, the design must be performed in accordance with ACI 318 D.7. Tallowaile,ASD = Allowable tension load (lbf or kN). 4.1.10 Requirements for Minimum Member Thickness, Veeowable,ASD = Allowable shear load(lbf or kN). Minimum Anchor Spacing and Minimum Edge Distance: In lieu of ACt 318 D.8.1 and D.8.3,values of Smin Nn = Lowest design strength of an anchor and cmin as given in Tables 3 and 4 of this report must be or anchor group in tension as used. In lieu of ACI 318 D.8.5, minimum member determined in accordance with ACI thicknesses hmen as given in Tables 3 and 4 of this report 318 D,4.1, and 2009 IBC Section must be used. Additional combinations for minimum edge 1908.1.9 or 2006 IBC Section distance, cmin, and spacing, Smjn, may be derived by linear 1908.1.16, as applicable(Ibf or N). interpolation between the given boundary values as �Vn = Lowest design strength of an anchor described in Figure 4. or anchor group in shear as For carbon steel KB-TZ anchors installed on the top of determined in accordance with ACt normal-weight or sand-lightweight concrete over profile 318 D.4.1, and 2009 IBC Section steel deck floor and roof assemblies, the anchor must be 1908.1.9 or 2006 IBC Section installed in accordance with Table 6 and Figure 5D. 1908.1.16, as applicable(lbf or N). 98 ESR-1917 I Most Widely Accepted and Trusted Page 4 of 13 a = Conversion factor calculated as a 5.1 Anchor sizes, dimensions, minimum embedment weighted average of the load factors depths and other installation parameters are as set for the controlling load combination. In forth in this report. addition, a must include all applicable 5.2 The anchors must be installed in accordance with the factors to account for nonductile manufacturer's published instructions and this report. failure modes and required over- In case of conflict,this report governs. strength. 5.3 Anchors must be limited to use in cracked and The requirements for member thickness, edge distance uncracked normal-weight concrete and sand- and spacing, described in this report, must apply. An lightweight concrete having a specified compressive example of allowable stress design values for illustrative strength, fc, of 2,500 psi to 8,500 psi (17.2 MPa to purposes in shown in Table 7. 58.6 MPa) [minimum of 24 MPa is required under 4.2.2 Interaction of Tensile and Shear Forces: The ADIBC Appendix L, Section 5.1.1], and cracked and interaction must be calculated and consistent with ACI 318 uncracked normal-weight or sand-lightweight concrete D.7 as follows: over metal deck having a minimum specified For shear loads 1/applied< 0.2Vailoweble,ASD. the full allowable compressive strength, fNc, of 3,000 psi (20.7 MPa) load in tension must be permitted. [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. For tension loads 7-applied< 0.2Taiiowabie,ASD,the full allowable load in shear must be permitted. 5.4 The values of fo used for calculation purposes must not exceed 8,000 psi(55.1 MPa). For all other cases: 5.5 Strength design values must be established in Tapplied 4. Vapplied <1.2 (Eq-4) accordance with Section 4.1 of this report. Tallowabie,ASD Vallowabie,ASD 5.6 Allowable design values are established in 4.3 Installation: accordance with Section 4.2. Installation parameters are provided in Tables 1 and 6 and 5.7 Anchor spacing and edge distance as well as Figures 2, 5A, 5B, 5C and 5D. Anchor locations must minimum member thickness must comply with Tables comply with this report and plans and specifications 3,4, and 6,and Figures 4, 5A,5B, 5C and 5D. approved by the code official. The Hilti KB-TZ must be installed in accordance with manufacturer's published 5.8 Prior to installation, calculations and details instructions and this report. In case of conflict, this report demonstrating compliance with this report must be governs.Anchors must be installed in holes drilled into the submitted to the code official. The calculations and concrete using carbide-tipped masonry drill bits complying details must be prepared by a registered design with ANSI B212.15-1994. The minimum drilled hole depth professional where required by the statutes of the is given in Table 1. Prior to installation, dust and debris jurisdiction in which the project is to be constructed. must be removed from the drilled hole to enable installation 5.9 Since an ICC-ES acceptance criteria for evaluating to the stated embedment depth. The anchor must be data to determine the performance of expansion hammered into the predrilled hole until hnom is achieved. anchors subjected to fatigue or shock loading is The nut must be tightened against the washer until the unavailable at this time, the use of these anchors torque values specified in Table 1 are achieved. For under such conditions is beyond the scope of this installation in the soffit of concrete on steel deck report. assemblies, the hole diameter in the steel deck not exceed the diameter of the hole in the concrete by more 5.10 Anchors may be installed in regions of concrete than 'la inch (3.2 mm). For member thickness and edge where cracking has occurred or where analysis distance restrictions for installations into the soffit of indicates cracking may occur (ft > fr), subject to the concrete on steel deck assemblies, see Figures 5A, 5B conditions of this report, and 5C. 5.11 Anchors may be used to resist short-term loading due 4.4 Special Inspection: to wind or seismic forces in locations designated as Seismic Design Categories A through F of the IBC, Periodic special inspection is required in accordance with subject to the conditions of this report. Section 1705.1.1 and Table 1705.3 of the 2012 IBC, or Section 1704.15 of the 2009 IBC and Table 1704.4 or 5.12 Where not otherwise prohibited in the code, KB-TZ Section 1704.13 of the 2006 IBC, as applicable. The anchors are permitted for use with fire-resistance- special inspector must make periodic inspections during rated construction provided that at least one of the anchor installation to verify anchor type, anchor following conditions is fulfilled: dimensions, concrete type, concrete compressive strength, • Anchors are used to resist wind or seismic forces anchor spacing, edge distances, concrete member only. thickness, tightening torque, hole dimensions, anchor embedment and adherence to the manufacturer's printed • Anchors that support a fire-resistance-rated installation instructions. The special inspector must be envelope or a fire- resistance-rated membrane are present as often as required in accordance with the protected by approved fire-resistance- rated "statement of special inspection."Under the IBC, additional materials, or have been evaluated for resistance to requirements as set forth in Sections 1705, 1706 and 1707 fire exposure in accordance with recognized must be observed,where applicable. standards. 5.0 CONDITIONS OF USE • Anchors are used to support nonstructural The Hilti KB-TZ anchors described in this report comply elements. with the codes listed in Section 1.0 of this report,subject to 5.13 Use of zinc-coated carbon steel anchors is limited to the following conditions: dry, interior locations. 99 ESR-1917 I Most Widely Accepted and Trusted Page 5 of 13 5.14 Use of anchors made of stainless steel as specified in 6.2 Quality-control documentation. this report are permitted for exterior exposure and 7.0 IDENTIFICATION damp environments. 5.15 Use of anchors made of stainless steel as specified in The anchors are identified by packaging labeled with the this report are permitted for contact with preservative- manufacturer's name (Hilti, Inc.) and contact information, treated and fire-retardant-treated wood. anchor name, anchor size, and evaluation report number (ESR-1917). The anchors have the letters KB-TZ 5.16 Anchors are manufactured by Hilti AG under an embossed on the anchor stud and four notches approved quality-control program with inspections by embossed into the anchor head, and these are visible after ICC-ES. installation for verification. 6.0 EVIDENCE SUBMITTED 6.1 Data in accordance with the ICC-ES Acceptance Criteria for Mechanical Anchors in Concrete Elements (AC193), dated March 2012(ACI 355.2-07). TABLE 1—SETTING INFORMATION(CARBON STEEL AND STAINLESS STEEL ANCHORS) SETTING Nominal anchor diameter(in.) INFORMATION Symbol Units ale i/2 e/e ala da In. 0.375 0.5 0.625 0.75 Anchor 0.0. (da)2 (mm) (9.5) (12.7) (15.9) (19.1) Nominal bit flair In. 3/e 1/2 6/8 3/4 diameter Effective min. In. 2 2 31/4 31/8 4 33/4 43/4 embedment ha' (mm) (51) (51) (83) (79) (102) {95} (121) `iomina! in. 2646 23/e 35/8 39/16 47/16 46/16 58/16 nbedment h70f1 (mm) (59) (60) (91) (91) (113) (110) (142) In. 25/6 25/8 4 33/4 43/4 4112 53/4 Min.hole depth ha (mm) (67) (67) (102) (95) (121) (114) (146) Min.thickness of In. 1/4 3/4 1/4 3/8 3/4 118 15/6 fastened part1 in"" (mm) (6) (19) (6) (9) (19) (3) (41) Required ft-lb 25 40 60 110 Installation torque T,"st (Nm) (34) (54) (81) (149) Min.dia.of hole In. 7/1e 3/33 11/16 13/16 in fastened part do (mm) (11.1) (14.3) (17.5) (20.6) Standard anchor In. 3 33/4 5 33/4 41/2 5112 7 43/4 6 81/2 10 51/2 8 10 lengths ranch (mm) (76) (95) (127) (95) (114) (140) (178) (121) (152) (216) (254) (140) (203) (254) Threaded length In. 7/8 15/8 27/8 15/8 23/8 3316 47/8 11/2 23/4 51/4 63/4 11/2 4 6 (Ind.dog point) Thread (mm) (22) (41) (73) (41) (60) (86) (124) (38) (70) (133) (171) (38) {102) (152) Unthreaded In. 21/6 21/6 31/4 4 length tunlhr (mm) (54) (54) (83) (102) 1The minimum thickness of the fastened part is based on use of the anchor at minimum embedment and is controlled by the length of thread.If a thinner fastening thickness is required,increase the anchor embedment to suit. 2The notation in parenthesis is for the 2006 IBC. f 100 ESR-1917 [ Most Widely Accepted and Trusted Page 6 of 13 UNC thread mandrel _ -1.01114 �'`� cif -T. dog point x expansion collar hex nut element bolt washer FIGURE 1—HILTI CARBON STEEL KWIK BOLT TZ(KB-TZ) 1 1 MIMI 'thread , i } tanch tunthr da lionsil het hnom ho Vill V • 1 r • 111 FIGURE 2—KB-TZ INSTALLED TABLE 2—LENGTH IDENTIFICATION SYSTEM(CARBON STEEL AND STAINLESS STEEL ANCHORS) Length ID marking A BC 0 E F GH I J K L M N 0 P QR S T U VW on bolt head Length of From 1 % 2 2% 3 3% 4 4 to 5 5% 6 6 1/2 7 7% 8 8% 9 9% 10 11 12 13 14 15 anchor, Up to but tom' not 2 2% 3 31A 4 4% 5 5'/: 6 6% 7 7% 8 8% 9 9% 10 11 12 13 14 15 16 (inches) including f �y / 4 13 1, FIGURE 3—BOLT HEAD WITH LENGTH IDENTIFICATION CODE AND KB-TZ HEAD NOTCH EMBOSSMENT 101 ESR-1917 I Most Widely Accepted and Trusted Page 7 of 13 TABLE 3-DESIGN INFORMATION,CARBON STEEL KB-TZ DESIGN INFORMATION Symbol Units 3 S Nominal anchor diameter 18 /2 6/3 3/4 Anchor O.D. da(d,) in. 0.375 0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) Effective min.embedment' h,, in. 2 2 3'/4 31/8 4 3314 43/4 (mm) (51) (51) (83) (79) (102) (95) (121) in. 4 5 4 6 6 8 5 6 8 6 8 8 Min.member thickness2 h,,,„, (mm) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) (203) Critical edge distance c4,. in. 43/8 4 51/2 41/2 7'12 6 6112 83/4 63/4 10 8 9 (mm) (111) (102) (140) (114) (191) (152) (165) (222) (171) (254) (203) (229) In. 21/2 23/4 23/8 36/8 3114 4314 4118 Min.edge distance cOkO (mm) (64) (70) (60) (92) (83) (121) (105) for S 2 in. 5 53/4 5314 6118 5'/° 10'/2 67/6 (mm) (127) (146) (146) (156) (149) (267) (225) in. 21/2 23/4 23/8 31I2 3 5 4 Salm Min.anchor spacing (mm) (64) (70) (60) (89) (76) (127) (102) for C Z In. 3'/8 41/8 3'/2 43/4 41/4 91/2 73/4 (mm) (92) (105) (89) (121) (108) (241) (197) in. 25/8 25/e 4 33/4 43/4 4'/2 53/4 Min.hole depth in concrete ho (mm) (67) (67) (102) (98) (121) (117) (146) Ib/in2 100,000 84,800 84,800 84,800 Min.specified yield strength fy 2 (N/mm) (690) (585) (585) (585) Ib/in2 125,000 106,000 106,000 106,000 Min.specified ult.strength fine (N/mm2) (862) (731) (731) (731) Int 0.052 0.101 0.162 0.237 Effective tensile stress area ASe,N (mm2) (33.6) (65.0) (104.6) (152.8) lb 6,500 10,705 17,170 25,120 Steel strength in tension /V., kN ( ) (28.9) (47.6) (76.4) (111.8) Steel strength in shear 14, lb 3,595 5,495 8,090 13,675 (kN) (16.0) (24.4) (36.0) (60.8) lb 2,255 5,495 7,600 11,745 Steel strength in shear,seismicV,,,,4� (kN) (10.0) (24.4) (33.8) (52.2) Pullout strength untracked lb 2,515 5,515 9,145 8,280 10,680 concrete' Np'unc (kN) (11.2) NA (24.5) NA (407) (36.8) (47.5) Pullout strength cracked concrete/ IV,„ lb 2,270 NA 4,915 NA NA NA NA (kN) (10.1) (21.9) Anchor category' 1 Effectiveness factor ku„,,uncracked concrete 24 Effectiveness factor k,.,cracked concretes 17 4"...N=kuna/kv7 1.0 Coefficient for pryout strength,k,,9 1.0 2.0 Strength reduction factor i/for tension,steel failure 0.75 modes° Strength reduction factor tb for shear,steel failure modes° 0.65 Strength reduction d factor for tension,concrete failure modes or pullout,Condition B° 0.65 Strength reduction 4 factor for shear,concrete failure modes,Condition B° 0.70 Axial stiffness in service load R,n,,, lb/in. 700,000 ranget0 /3, lb/in. 500,000 For SI:1 inch=25.4 mm,1 lbf=4.45 N,1 psi=0.006895 MPa. For pound-inch units:1 mm=0.03937 inches. 'See Fig.2. 2For sand-lightweight or normal-weight concrete over metal deck,see Figures 5A,5B,5C and 5D and Tables 5 and 6. 3See Section 4.1.8 of this report. 4For all design cases(P02.1.0.NA(not applicable)denotes that this value does not control for design.See Section 4.1.4 of this report. 'See ACI 318-11 D.4.3. 'See ACI 318 D.5.2.2. 'For all design cases W,,N=1.0.The appropriate effectiveness factor for cracked concrete(k,,,)or uncracked concrete(kun.)must be used. 8The KB-TZ is a ductile steel element as defined by ACI 318 D.1. °For use with the load combinations of ACI 318 Section 9.2.Condition B applies where supplementary reinforcement in conformance with ACI 318-11 D.4.3 is not provided,or where pullout or pryout strength governs.For cases where the presence of supplementary reinforcement can be verified,the strength reduction factors associated with Condition A may be used, t0Mean values shown,actual stiffness may vary considerably depending on concrete strength,loading and geometry of application. 102 ESR-1917 I Most Widely Accepted and Trusted Page 8 of 13 TABLE 4-DESIGN INFORMATION,STAINLESS STEEL KB-TZ Nominal anchor diameter DESIGN INFORMATION Symbol Units , $ a /g 1/2 /8 /4 Anchor O.D. do(do) in. 0.375 0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) in. 2 2 3'/4 31/8 4 33/4 43/4 Effective min.embedment' h,r (mm) (51) (51) (83) (79) (102) (95) (121) in. 4 5 4 6 6 8 5 6 8 6 8 8 Min.member thickness h",;n (mm) (102) (127) (102) {152 (152) (203) (127) (152) (203) (152) (203) (203) in. 43/8 3'/s 5'/2 41/2 71/2 6 7 8'/8 6 10 7 9 Critical edge distance Cac (mm) (111) {98) (140) (114) (191) (152) (178) (225) (152) (254) (178) (229) in. 21/2 27/8 21/8 3114 2-3/8 4'/4 4 c,," (mm) (64) (73) (54) (83) (60) {108) (102) Min.edge distance s , >_ in. 5 5/4 5/4 5/2 5/2 10 81/2 fors (mm) (127) {146) (133) (140) (140) (254) (216) in. 2'/4 27le 2 23/4 23/8 5 4 smm (mm) (57) (73) (51) (70) (60) (127) (102) Min,anchor spacing in. 31/2 41/2 31/4 41/8 41/4 02 7 forcz (mm) (89) (114) (83) (105) (108) (241) (178) in. 26/8 25/8 4 33/4 43/4 41/2 53/4 Min.hole depth in concrete ha {mm) (67) (67) (102) (98) (121) (117) (146) Ibfin2 92,000 92,000 92,000 76,125 Min.specified yield strength fr (N/mm2) (634) (634) (634) (525) Ib/in2 115,000 115,000 115,000 101,500 Min.specified ult.Strength fora (N/mm2) (793) (793) (793) (700) in2 0.052 0.101 0.162 0.237 Effective tensile stress area A,,,,v (mm2) (33.6) {65.0) (104.6) (152.8) Steel strength in tension N. lb 5,968 11,554 17,880 24,055 (kN) (26.6) (51.7) (82.9) (107.0) lb 4,720 6,880 9,870 15,711 Steel strength in shear V:a (kN) (21.0) (30.6) (43.9) (69.9) Pullout strength in tension, seismic2 Np,ev (RN) NA X1'2 2) NA NA NA lb 2,825 6,880 9,350 12,890 Steel strength in shear,seismic2 VVa,eq (kN) {12.6) (30.6) (41.6) (57.3) Pullout strength uncracked lb 2,630 5,760 12,040 concrete (kN) (11.7) NA NA NA (25.6) (53.6) Pullout strength cracked lb 2,340 3,180 5,840 8,110 concrete (kN) NA (kN) (10.4) (14.1) NA NA (26.0) (36.1) Anchor category" 1 2 1 Effectiveness factor kw,«uncracked concrete 24 Effectiveness factor k„cracked concretes 17 24 1 17 17 1 17 24 ( 17 (Pc).=kunalkcr8 1.0 Strength reduction factor 0for tension,steel failure 0.75 modes' Strength reduction factor 0 for shear,steel failure modes' 0.65 Strength reduction f factor for tension,concrete failure 0.85 0.55 0.65 modes,Condition B° Coefficient for pryout strength,kky 1.0 2.0 Strength reduction 0 factor for shear,concrete failure 0.70 modes,Condition B8 Axial stiffness in service load /i"cr lb/in. 120,000 range° /3,, lb/in. 90,000 For SI:1 inch=25.4 mm,1 lbf=4.45 N,1 psi=0.006895 MPa For pound-inch units:1 mm=0.03937 inches. 'See Fig.2. 2See Section 4.1.8 of this report.NA(not applicable)denotes that this value does not control for design. 3For all design cases 4/0,p=1.0.NA(not applicable)denotes that this value does not control for design.See Section 4.1.4 of this report. "See ACI 318-11 D.4.3. 5See ACI 318 D.5.2.2. °For all design cases W.,,v=1.0.The appropriate effectiveness factor for cracked concrete(kir)or uncracked concrete(kana)must be used. 'The KB-TZ is a ductile steel element as defined by ACI 318 D.1. eFor use with the load combinations of ACI 318 Section 9.2.Condition B applies where supplementary reinforcement in conformance with ACI 318-11 D.4.3 is not provided,or where pullout or pryout strength governs.For cases where the presence of supplementary reinforcement can be verified,the strength reduction factors associated with Condition A may be used. °Mean values shown,actual stiffness may vary considerably depending on concrete strength,loading and geometry of application. 103 ESR-1917 I Most Widely Accepted and Trusted Page 9 of 13 CO Sdeslgn Cdes1ga 'U - hmin Q Cmin at S>_ N SOS l01 11 FA Sdesign - Smin at c 111i II II h z hmin I I 1 I 1 1 1 Cdesign edge distance c FIGURE 4--INTERPOLATION OF MINIMUM EDGE DISTANCE AND ANCHOR SPACING TABLE 5-HILTI KWIK BOLT TZ(KB-TZ)CARBON STEEL ANCHORS TENSION AND SHEAR DESIGN DATA FOR INSTALLATION IN THE SOFFIT OF CONCRETE-FILLED PROFILE STEEL DECK ASSEMBLIES1'6'T'8 DESIGN INFORMATION Symbol Units 3/° 1/2 Anchor Diameter 5i° 3/4 Effective Embedment Depth her in. 2 2 31/4 31/8 4 33/4 Minimum Hole Depth h6 in. 25/8 25/8 4 33/4 43/4 41/2 Loads According to Figure 5A Pullout Resistance, uncracked lb 2,060 2,060 3,695 2,825 6,555 4,255 concrete 5 Np,deck,uncr Pullout Resistance,cracked concrete6 Np,deck,cr lb 1,460 1,460 2,620 2,000 4,645 3,170 Steel Strength in Shear' Vsa,deck lb 2,130 3,000 4,945 4,600 6,040 6,190 Steel Strength in Shear,Seismic° Vsa,deck,eq lb 1,340 3,000 4,945 4,320 5,675 5,315 Loads According to Figure 5B Pullout Resistance,uncracked N,deck,uncr lb 2,010 2,010 3,695 2,825 5,210 4,255 concrete p Pullout Resistance,cracked concrete 6 Npdecs,er lb 1,425 1,425 2,620 2,000 3,875 3170 Steel Strength in Shear' Vsa,dedc lb 2,060 2,060 4,065 4,600 5,615 6,190 Steel Strength in Shear,Seismic Vsa,deck.eq lb 1,340 1,460 4,065 4,320 5,275 5,315 Loads According to Figure 5C Pullout Resistance,uncracked Npdeck,uncr lb 1,845 1,865 3,375 4,065 ANSM concrete Pullout Resistance,cracked concrete 6 Npdeck,cr lb 1,660 1,325 3,005 2885 igRAQ Steel Strength in Shear' Vsa,deek lb 2,845 2,585 3,945 4,705 rmertifittgi Steel Strength in Shear,Seismic° Vsa,deck,eq lb 1,790 2,585 3,945 4,420 1 Installations must comply with Sections 4.1.10 and 4.3 and Figures 5A,5B and 5C of this report. 2 The values for 41/4 in tension and lIsa in shear can be found in Table 3 of this report. 3 The characteristic pullout resistance for concrete compressive strengths greater than 3,000 psi may be increased by multiplying the value in the table by(1'c/3000)1/2 for psi or(1'c 20.7)12 for MPa[minimum of 24 MPa is required under ADIBC Appendix L,Section 5.1.1]. 4 Evaluation of concrete breakout capacity in accordance with ACI 318 D.5.2,D.6.2,and D.6.3 is not required for anchors installed in the deck soffit. 5The values listed must be used in accordance with Section 4.1.4 of this report. 6The values listed must be used in accordance with Sections 4.1.4 and 4.1.8.2 of this report. 7The values listed must be used in accordance with Section 4.1.5 of this report. °The values listed must be used in accordance with Section 4.1.8.3 of this report.Values are applicable to both static and seismic load combinations. 104 i ESR-1917 I Most Widely Accepted and Trusted Page 10 of 13 TABLE 6—HILTI KINK BOLT TZ(KB-TZ)CARBON STEEL ANCHORS SETTING INFORMATION FOR INSTALLATION ON THE TOP OF CONCRETE-FILLED PROFILE STEEL DECK ASSEMBLIES ACCORDING TO FIGURE 5D'"4'3'4 Nominal anchor diameter DESIGN INFORMATION Symbol Units 3/6 1/2 Effective Embedment Depth her in, 2 2 Nominal Embedment Depth k01,, in. 25116 23/8 Minimum Hole Depth ho in. 25/e 2518 Minimum concrete thickness5 hmin,deck in. 3'/4 31/4 Critical edge distance Cac,deek,lop in. 41/2 6 Minimum edge distance C,e<,,,deck,Jop in. 3 41/2 Minimum spacing Smin,deck,fop in. 4 61/2 Required Installation Torque Tina ft-lb 25 40 'Installation must comply with Sections 4.1.10 and 4.3 and Figure 5D of this report. 2For all other anchor diameters and embedment depths refer to Table 3 and 4 for applicable values of hmie,c,"�,,and smi,. 3Design capacity shall be based on calculations according to values in Table 3 and 4 of this report. "Applicable for 31/4-in s hmie,ded.<4-in.For hmk,,deck 4-inch use setting information in Table 3 of this report. 5Minimum concrete thickness refers to concrete thickness above upper flute.See Figure 5D. e.aU' 1 ,s , t41N 3ODD PSl1JOR1rJALOJZ.SAtJE1 LIGHTWEIGHT CONCRETE �., ,r ill UPPER x FLUTE IS i (VALLEY) MIR eGAUGE '` r1U STEEL W DECk. 1 MIN.4-12'1 I i i MII1 4-1,2', I a a . I J (AIN 17 TYP. J LOWER --� FLUTE +—MAX.1' I (RIDGE) OFFSET TVA. FIGURE 5A—INSTALLATION IN THE SOFFIT OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIES' 'Anchors may be placed in the upper or lower flute of the steel deck profile provided the minimum hole clearance is satisfied. Minimum 5/8"Typical 1 Min,2-1/2"for 3/8.1/2 and 5/8x3-1/8 - MTh.3,000 psi Normal-weight or lightweight Concrete Min.3-1/4 for 5/8x4 and 3/4x3.3/4„ a ` . e ,- " ' .......,.:..,,, :::',-!:„...,:i-k I,- 1 '-'1„,-.;',.:.....,:,,,I, :,....,-, .,,..;:,.,:i::.:::!',.::. Max.3" I` Fluter :1'.....11.-.1".„NMinimum (Dalley) 20 Gauge Min. _.1 !. ' . Min. Steel W-Deck 3 7/8" I 3-7/8" I Lower I Flute y Min. 12"Typical w LLL... Min. 1" r. I+1 (Ridge) FIGURE 5B—INSTALLATION IN THE SOFFIT OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIES' 'Anchors may be placed in the upper or lower flute of the steel deck profile provided the minimum hole clearance is satisfied. 105 ESR-1917 I Most Widely Accepted and Trusted Page 11 of 13 zii:( I I , { MIN.3,000 PS/NORMAL OR SAND- . LIGHTWEIGHT CONCRETE �, UPPER 2 T r \_ U FLUTE i I (VALLEY) I t :_MIN 13' I i IN.20 GUAGE M 1-314'^' 1 i MIN 3-1(2' : STEEL W-DECK , :MIN,2-1(2' 3/4"MIN, - MIN 6'TYP f LOWER FLUTE (RIDGE) FIGURE 5C—INSTALLATION IN THE SOFFIT OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIES–B DECK1'2 'Anchors may be placed In the upper or lower flute of the steel deck profile provided the minimum hole clearance is satisfied.Anchors in the lower flute may be installed with a maximum'/3-inch offset in either direction from the center of the flute.The offset distance may be increased proportionally for profiles with lower flute widths greater than those shown provided the minimum lower flute edge distance is also satisfied. 2Anchors may be placed in the upper flute of the steel deck profiles in accordance with Figure 5B provided the concrete thickness above the upper flute is minimum 3114-inch and the minimum hole clearance of 5/B-inch is satisfied. 2. 1 I MIN.3,000 PSI NORMAL OR SAND- ! .... LIGHTWEIGHT CONCRETE ! j . - UPPER 3:1 d I v,ai FLUTE 1 ' Z r I (VALLEY) -- MIN.20 GUAGE • I M� ,,,,Ji N I �` i STEEL W-DECK •1-314' • i MIN 3-1(2 I 1 MIN.2-1/2" MIN 6`TYP FI LOWER FLUTE (RIDGE) FIGURE SD—INSTALLATION ON THE TOP OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIESt'2 'Refer to Table 6 for setting information for anchors in to the top of concrete over metal deck. 2Applicable for 3'/4-in<_hmin<4-in.For hmin?4-inch use setting information in Table 3 of this report. TABLE 7—EXAMPLE ALLOWABLE STRESS DESIGN VALUES FOR ILLUSTRATIVE PURPOSES Allowable tension(lbf) Carbon Steel Stainless Steel Nominal Anchor Pc=2,500 psi diameter(in.) Embedment depth(in.) Carbon Steel Stainless Steel 3/8 2 1,105 1,155 2 1,490 1,260 1/2 31/4 2,420 2,530 5 3'/8 2,910 2,910 /6 4 4,015 4,215 33/4 3,635 3,825 3/4 43/4 4,690 5,290 For SI:1 lbf=4.45 N, 1 psi=0.00689 MPa 1 psi=0.00689 MPa. 1 inch=25.4 mm. 'Single anchors with static tension load only. 2Concrete determined to remain uncracked for the life of the anchorage. 3Load combinations from ACI 318 Section 9.2(no seismic loading). ' 430%dead load and 70%live load,controlling load combination 1.20+1.6 L. $Calculation of the weighted average for a=0.3*1.2+0.7*1.6=1.48. 6f'e=2,500 psi(normal weight concrete). 7Cai=Ca2 a Cao 6h 2 hmin 9Values are for Condition B where supplementary reinforcement in accordance with AC 1318-11 D.4.3 is not provided ESR-1917 I Most Widely Accepted and Trusted Page 12 of 13 Mil1 1.Hammer drill a hole to the same nominal 2.Clean hole. diameter as the Kwik Bolt TT The hole depth must equal the anchor embedment listed in Tablet.The fixture may be used as a drilling template to ensure proper anchor location. z � p r w 8k rr �{ .. JD,.--- 4 ��I Ili I}._ t cd..t.,;-,..z,.4.‘....;.,.,.1,:,,i,, .,, kL, r 3.Drive the Kwik Bolt TZ into the hole using 4.Tighten the nut to the required a hammer. The anchor must be driven installation torque. until the nominal embedment is achieved. FIGURE 6—INSTALLATION INSTRUCTIONS 107 ESR-1917 I Most Widely Accepted and Trusted Page 13 of 13 Given: A' t Tec,--4 A Two 1/2-inch carbon steel KB-TZ anchors under static tension - AN 1.[ �fL. load as shown. - - ---- 1.5 he /et=3.25 in. Normal weight concrete,ff=3,000 psi s _ No supplementary reinforcement(Condition B per ACI 318-11 f11 r 0 _____--0------",D.4.3 -0----- ---' D.4.3 c) w t _- /1. s=6" Assume cracked concrete since no other information is available. 1.5 he Needed:Using Allowable Stress Design(ASD)calculate the allowable tension load for this configuration. L 1.5 her c=4" A-A Calculation per ACI 318-11 Appendix D and this report. Code Ref. Report Ref. Step 1.Calculate steel capacity: ON =0nA fu =0.75 x 2 x 0.101x 106,000=16,059Ib D.5.1.2 §4.1.2 Check whether fob is not greater than 1.9fya and 125,000 psi. D.4.3 a Table 3 Step 2.Calculate concrete breakout strength of anchor in tension: Ncbg = ANC Yec,Nwed,NTc,N�cp,NNb D.5.2.1 §4.1.3 fx Nco Step 2a.Verify minimum member thickness,spacing and edge distance: h,n;b=6 in.<_6 in. .'. OIC Smin 2.375, 5.75 D.8 Table 3 2.375-5.75 slope= =-3.0 Fig.4 3.5-2.375 For Cnin=4in= 2.375 controls 3.5,2.375 sin;„=5.75-[(2.375-4.0)(-3.0)]=0.875<2.375in<6in:.ok 0.875 .,�. 4 Cmin Step 2b.For AN check 1.5hef=1.5(3.25)=4.88 in>c 3.0he,=3(3.25)=9.75 in>s 0.5.2.1 Table 3 Step 2c.Calculate ANco and Ave for the anchorage: ANco=914f=9 x(3.25)2=95.1M.2 D.5.2.1 Table 3 AN,=(1.5hef+c)(3he f+s)= [1.5 x(3.25)+4][3 x(3.25)+6]=139.8in.2<2ANco ..ok Step 2d. Determine rVec,N: eN'=0:.4rec,N=1.0 D.5.2.4 - Step 2e.Calculate Nb:Nb =kc,.oto fJ he f=17 x 1.0 x V3,000 x 3.251.5=5,456 lb 0.5.22 Table 3 Step 2f.Calculate modification factor for edge distance: wed N=0.7+0.3 41.5(3.25)=0.95 D.5.2.5 Table 3 Step 2g.Calculate modification factor for cracked concrete: yrc T,=1.00(cracked concrete) D.5.2.6 Table 3 Step 2h.Calculate modification factor for splitting: =1.00(cracked concrete) §4.1.10 `r''N Table 3 139.8 D.5.2.1 §4.1.3 Step 2i.Calculate 0 Nag:0 Nag=0.65 x 95 1 x 1.00 x 0.95 x 1.00 x 5,456=4,952 lb 0.4.3 c) Table 3 +a,000 D.5.3.2 §4.1.4 Step 3.Check pullout strength:Table 3, 0nNp,,r,=0.65 x 2 x 5,515 lb x rZsoa=7,852 lb>4,952 OK D.4.3 c) Table 3 Step 4.Controlling strength: ¢Nobg=4,952 lb<¢nNr,„<Sw s ¢Nob,controls D.4.1.2 Table 3 Step 5.To convert to ASO,assume U=1.20+1.6L: To,,,,= 4,952=3,346 lb. - §4.2 1.48 FIGURE 7-EXAMPLE CALCULATION 108 11114111161111.11111 www.hilti.us Profis Anchor 2.5.2 Company: KIWI II CONSTRUCTION Page: 1 Specifier: ART LEON Project: TYPICAL 1/2'x(2"TW Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos.No.: 1/2"X2"EMBED Phone I Fax: 951-301-89751951-301-4096 Date: 4/21/2015 E-Mail: art@kiwiconstruction.com Specifier's comments: MAX.TENSION 7 Input data e Anchor type and diameter: Kwik Bolt TZ-CS 1/2(2) Effective embedment depth: her=2.000 in.,hnom=2.375 in. 1 - • Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2013 1 5/1/2015 Proof: Design method ACI 318/AC193 Stand-off installation: eb=0.000 in.(no stand-off);t=0.060 in. Anchor plate: Ix x lt,x t=3.000 in.x 3.000 in.x 0.060 in.;(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,3000,fe'=3000 psi;h=4.000 in. Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) no Geometry[in.]&Loading[lb,in.tb] Z t •co co o _- 4t11aj // 420-4 • • Input data and results must be checked for agreement with the existing conditions and for plausibt' PROFIS Anchor(c)2003-2009 Hdti AG,FL-9494 Schoen Hilti is a registered Trademark of Hilti l't 'Schaan 11.11111116.1.1111 www.hilti.us _ Profis Anchor 2.5.2 Company: KIWI II CONSTRUCTION Page: 2 pecifier: ART LEON Project: TYPICAL 112"X2"TW Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos.No.: 112"X2"EMBED Phone I Fax: 951-301-8975 1951-301-4096 Date: 4/21/2015 E-Mail: art@kiwiconstruction.com 2 Proof I Utilization (Governing Cases) Design values[Ib] Utilization Loading Proof Load Capacity DN/j3v[%] Status Tension Concrete Breakout Strength 1710 1712 100/- OK Shear - - - -/- - Loading RN (iv Utilization fikty[%] Status Combined tension and shear loads - - - - - 3 Warnings • Please consider all details and hints/warnings given in the detailed report! Fastening meets the design criteria! 4 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for agreement with the existing conditions and for plausibiply, PROFIS Anchor(c)2003-2009 NH AG,FL-9494 Schaan HiS is a registered Trademark of Hitti A Schaan MILTI www.hilti.us Profis Anchor 2.5.3 Company: KIWI II CONSTRUCTION Page: 1 pecifier: ART LEON Project: TYPICAL 1/2"X2"VS Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos. No.: 1/2"X2"EMBED Phone I Fax: 951-301-8975 1951-301-4096 Date: 6/11/2015 E-Mail: art@kiwiconstruction.com Specifiers comments:MAX.TENSION 1 Input data Anchor type and diameter: Kwik Bolt TZ-CS 112(2) Effective embedment depth: hef=2.000 in.,hnom=2.375 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2013 15/1/2015 Proof: Design method AC1 318/AC193 Stand-off installation: eb=0.000 in.(no stand-off);t=0.060 in. Anchor plate: lx x ly x t=3.000 in.x 3.000 in,x 0.060 in.;(Recommended plate thickness: not calculated) Profile: no profile Base material: cracked concrete,3000,fc'=3000 psi;h=4.000 in. Reinforcement: tension:condition B,shear:condition B; no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(D.3.3.6) Geometry[in.]&Loading[lb,in.Ib] Z at 0o 0 0 % r� VPs ' " Lir 5 : I any ^< tgr • Input data and results must be checked for agreement with the existing conditions and for plausibi,ityl, PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hei is a registered Trademark of Hiiti A ,Schaan Iy11 .T1 www.hilti.us Profis Anchor 2.5.3 Company: KIWI II CONSTRUCTION Page: 2 pecifier: ART LEON Project: TYPICAL 1/2"X2"VS Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos.No.: 1/2"X2"EMBED Phone I Fax: 951-301-8975 1951-301-4096 Date: 6/11/2015 E-Mail: art@kiwiconstruction.com 2 Proof I Utilization (Governing Cases) Design values[Ib] Utilization Loading Proof Load Capacity pu/ [%] Status Tension - - - -/- - Shear Pryout Strength 690 691 -/100 OK Loading PN ___ $v C Utilization 13,4,vi%] Status Combined tension and shear loads - - - - - 3 Warnings • Please consider all details and hints/warnings given in the detailed report! Fastening meets the design criteria! 4 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to ....... compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for agreement with the existing conditions and for pfausibliityb PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hili is a registered Trademark of Hilti Ali Schaan MILTI www.hilti.us Profis Anchor 2.5.2 Company: KIWI II CONSTRUCTION Page: 1 pacifier: ART LEON Project: TYPICAL 1/2"X2"VW Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos.No.: 112"X2"EMBED Phone I Fax: 951-301-8975 1951-301-4096 Date: 4/21/2015 E-Mail: art@kiwiconstruction.com Specifier's comments:MAX.SHEAR 1 Input data Anchor type and diameter: Kwik Bolt TZ-CS 1/2(2) Effective embedment depth: het=2.000 in., heo,,,=2.375 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2013 I 5/1/2015 Proof: Design method ACI 318/AC193 Stand-off installation: eb=0.000 in.(no stand-oft);t=0.060 in. Anchor plate: Ix x 1,x t=3.000 in,x 3.000 in.x 0.060 in.;(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,3000,fc'=3000 psi;h=4.000 in. Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.G,D,E,or F) no Geometry[in.]&Loading[Ib,in.Ib] Z 0 co Ver,� A C > ..pry �' -s?"" 2fi PMYU J Input data and results must be checked for agreement with the existing conditions and for ptauslii'ty PROFIS Anchor(c)2003-2009 Hilt'AG.FL-9494 Schwan HSI is a registered Trademark of 111111 A Schwan www.hilti.us Profis Anchor 2.5.2 Company: KIWI II CONSTRUCTION Page: 2 'pecifier: ART LEON Project: TYPICAL 1/2"X2"VW Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos. No.: 1/2"X2"EMBED Phone I Fax: 951-301-8975 1951-301-4096 Date: 4/21/2015 E-Mail: art@kiwiconstruction.com 2 Proof I Utilization (Governing Cases) Design values[Ib] Utilization Loading Proof Load Capacity 13N/jiv[%] Status Tension - - - -/- - Shear Pryout Strength 1800 1844 -/98 OK Loading liv c Utilization No,[%] Status Combined tension and shear loads - - - - - 3 Warnings • Please consider all details and hints/warnings given in the detailed report! Fastening meets the design criteria! 4 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for agreement with the existing conditions and for plausibilite4 PROFIS Anchor(c)2003.2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Mb AG,Sohaan 11.111111.91.111 www.hilti.us Profis Anchor 2.6.4 Company: KIWI II CONSTRUCTION Page: 1 1pecifier: ART LEON Project: TYPICAL 1/2"X2"TS .Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos. No.: 1/2"X2"EMBED Phone I Fax: 951-301-8975 1951-301-4096 Date: 4/21/2016 E-Mail: art@kiwiconstruction.com Specifier's comments:MAX.TENSION 1 Input data , Anchor type and diameter: Kwik Bolt TZ-CS 1/2(2) tfikflit* Effective embedment depth: fief=2.000 in.,hnom=2.375 In. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 10/1/20151 5/1/201 7 Proof: Design method ACI 318/AC193 Stand-off installation: eb=0.000 in.(no stand-off);t=0.060 in. Anchor plate: Ix x ly x t=3.000 in.x 3.000 in.x 0.060 in.;(Recommended plate thickness:not calculated Profile: no profile Base material: cracked concrete,3000, =3000 psi;h=4.000 in. Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(0.3.3.6) Geometry[in.]&Loading[Ib,in.lb] z • a c 0 y, n ?T � X Input data and resuls must be checked for agreement with the existing conditions and for plausib}ilIij,y PROF%Anchor(c)2003-2009 HAI AG,FL-9494 Schaan Hilo is a registered Trademark of Hi1IM&Schaan 1114111671111111 www.hilti.us Profis Anchor 2.6.4 Company: KIWI II CONSTRUCTION Page: 2 "pecifier: ART LEON Project: TYPICAL 1/2"X2"TS .address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos.No.: 1/2"X2"EMBED Phone I Fax: 951-301-8975 1951-301-4096 Date: 4/21/2016 E-Mail: art@kiwiconstruction.com 2 Proof I Utilization (Governing Cases) Design values[Ib] Utilization Loading Proof Load Capacity p/[iv[%] Status Tension Concrete Breakout Strength 640 642 100/- OK Shear - - - -/- - Loading 1314 Pt/ Utilization JINN[%] Status Combined tension and shear loads - - - - - 3 Warnings • Please consider all details and hints/warnings given in the detailed report! Fastening meets the design criteria! 4 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for agreement with the existing conditions and for plausibil' PROFIS Anchor(c)2403-2009 Hilti AG,FL-9494 Schaan Hili is a registered Trademark of HiltilAW Schrum ESR-2713 I Most WidelyAccepted and Trusted Page 6 of 12 TABLE 1—T1TEN HD@ SCREW ANCHORS AND ROD HANGERS INSTALLATION INFORMATION' •. : Nominal Anchor Diameter/Threaded Coupler Diameter(inch) .. •• t Characteristic. Symbol Units D.-- 3. • .• 1, 3, . 34 .4 . .. ...1/i. . . ‘4 Rod Hanger Red Hanger Installation Information Nominal Diameter a(06)4. .in. 1/4 3/8 . ...112 .314 . 3/8 . Drill Bit Diameter dbg in. 1/4 3/8 1h . Baseplate Clearance: ...db in. 3/8 1/2 54 " 7% !I/A' NW Hole piatitot6t2.::.:.. H . . Maximum installation T it for 24 50 65 100 150 50 50 Torque' " Maximum impact Wrench • . . .• ft-lbf . 125 .. 150' 340 340 ....3up .150 . ou Tiarque.fating 3TP , . Minimum Hole Depth lib.). in. 13/4 254 2314 31/2 33/4 45/2 41/2 6 6 63/4 23/4 3 Nominal Embedment Depth -"Imo, in. 8 21/2 4 4 .6541j 6114 21/2 .214 Effective Embedment Depth her in. 1.19 1.94 1.77 2.40 2.35 2.99 2.97 4.24 4,22 4.86 1.77 1.77 Critical Edge Distance .c in 3 6 2"/16 354 38is4 41/2 41/2 634 634 78iss 211/is 211i14: 3 Minimum Edge Distance cmg, in. 11/2 11/2 1 /4 Minimum Spacing • 4in. 11/8 '1118 3 . ...'... Minimum Concrete h8,8, in. 31/4 31/2 4 6 5 61/4 6 81/2 83/4 10 4 41/4 Thickness Anchor Data YieId.Strer . •f3psi . 100,000 97,000 . Tensile Strength fe,la, psi 125,000 110,000 ... reseA A 6 iri-2 042 0 099 '0183 0 276 0414 0,099 0.099 . Shear Strea • --.• • . . Axial Stiffness in Service Load Range- 13„88,- lb/in. 202,000 715,000 Uncracked Concrete Axial Stiffness in . : . . • .. Senlice1.0d Range- j3, Ibtiri. 173,0.00 345,000 . . Cracked Concrete. ii•i. . . For SI: 1 inch=25.4 mm,1 ft-lbf=1.356 N-rn,1 psi=6.89 kPa,1 iri2=645 mm2,1 lb/in=0.175 N/mm. 'The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or AC1 318-11 Appendix D,as applicable. 2The clearance must comply with applicable code requirements for the connected element. Titen HD°Rod Hanger version is driven directly to the supporting member surface. applies to installations using a calibrated torque wrench. :For the 2006 IBC d0 replaces d 117 ESR-2713 I Most Widely Accepted and Trusted Page 7 of 12 TABLE 2—TITEN HD°SCREW ANCHOR AND ROD HANGER CHARACTERISTIC TENSION STRENGTH DESIGN VALUES1 Nominal Anchor Diameter 1 Threaded Coupler.Diameter(Inch) Characteristic Symbol Units 31 11 3.4 1. St 3, 0 2 - z° '4 Rod Hanger Rod Hanger Anchor Category 1,2 or 3 - 1 S 1 1 1 Nominal Embedment Depth ho,,, in. 1/R 2-1/2 21 3-14 3J 4 4 51/2 51/2 6114 2-6 2i/2 Steel Strength in Tension(ACI 318-14 17.4.1 or ACI 318-11 Section 0.5.1) Tension Resistance of Steel No Of 5195 I 10,890 20,130 I 30,360 45,540 I 10,890 10,890 Strength Reduction Factor Steel Failure2 A 0.65 Concrete Breakout Strength in Tension(ACI 318-14 17.4.2 or ACt 318 Section 0.5.2) Effective Enti)ednierit Depth he in. 1.19 1.94 1.77 2.40 235 2.99 2.97 4.24 4.22 4.86 1.77 1.77 Critical Edge Distance co in. 3 6 211/14 354 3'1,6 41/2 41/2 664 75/,6 211/16 2"1, Effectiveness Factor- • ko,o - 30 24 Untracked Concrete Effectiveness Factor- .. 17 Cracked Concrete Modification factor 14)0 - 1.0 Strength Reduction Factor- 0.65 Concrete Breakout Failure3 Pullout Strength in Tension(ACI 318-14 17.4.3 or ACI 318-11 Section 0.5.3) Pullout Resistance 4 5 Uncracked Concrete N„„„, lbf N/A N/A' 2,7006 N/A4 N/A NIA' N/A' 9810 N/A4, N/A' 2,025 2 025 (re-2 500 psi) Pullout Resistance Cracked Concrete N lbf N/A'1,9056 1,2355 2,7006 N/A' N/A'3,0406 5,5706 6,0706 7,1956 1,2356 1,2356 (r=2,500 psi) Strength Reduction Factor'- 6 - 0.65 Pullout Failure' Tension Strength for Seismic Applications(ACI 318-14 17.2.3.3 or ACI 318-11 Section 0.3.3.3) Nominal Pullout Strength for Seismic Loads keg thE N/A' 1805$ 1,235$ 2,700s N/A'N/A4 3,0406 5,5701 6.0704 7,1856 1.235s 1,2356 (r4,=2 500 psi) Strength Reduction Factor for Pullout Failure' Pet - 0,65 For St 1 inch=25.4 mrri,1 ft-lbf e 1.356 N-m, 1 psi=6.89 kPa,I int=645 nim2,1 lb/in=0.175 N/mrn. 1The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix 0,as applicable. 2The tabulated value of ft.applies when the load combinations of Section 1805.2 of the IBC,ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used,as applicable.If the load combinations of ACI 318-11 Appendix C are used,the appropriate value of l must be determined in accordance with ACI 318 D.4.4(b),as applicable. 6The tabulated values of Ab applies when both the load combinations of Section 1605.2 of the IBC,ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2,as applicable,are used and the requirements of ACI 318-11 D.4.3(c)for Condition B are met.Condition B applies where supplementary reinforcement is not provided in concrete.For Installations were complying reinforcement can be verified,the cbcb factors described in ACI 318-14 17.3.3(c)or Ad i 318-11 D.4.3(c),as applicable,may be used for Condition A.If the load combinations of ACI 318 Appendix C are used,the appropriate value of must be determined in accordance with ACI 318 0.4.4(c)for Condition B. 'As described in this report,N/A denotes that pullout resistance does not govern and does not need to be considered. 'The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by(fg2.500)6.6. 'The tabulated values of(4,or,441 applies when both the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2,as applicable, are used and the requirements of ACI 318-11 0.4.3(c)for Condition B are met.Condition B applies where supplementary reinforcement is not provided in concrete.For installations were complying reinforcement can be verified,the o,or 4,factors described in ACI 318-14 17.3.3(c)or ACI 318-11 0.4.3(c),as applicable,may be used for Condition A, If the load combinations of ACt 318 Appendix C are used,the appropriate value of ci must be determined in accordance with ACt 318 0.4.4(c)for Condition B. 118 ESR-2713 1 Most Widely Accepted and Trusted Page 8 of 12 TABLE 3---TITEN HD°SCREW ANCHOR CHARACTERISTIC SHEAR STRENGTH DESIGN VALUES' Characteristic Symbol Units Nominal Anchor Diameter(inch) % 310 314 Anchor Category 1,2 or 3 - k 1 Nominal Embedment Depth h,,,,,, in. 1$/8 2112 21/2 ' 31/4 31/+ 4 4 514 51/2 6114 Steel Strength in Shear(AC1 318-14 17.5.1 or ACI 318-11 Section D.6.1) Shear Resistance of Steel Vie Lbf 2;020 4,460 " 7,455 10,000 16!840 Strength Reduction Factor Steel Failure2 d5a 0.60 Concrete Breakout Strength in Shear(ACI 318-14 17.5.2 or ACI 318-11 Section 0.6.2) Nominal Diameter da(d)4 in. 0.25 0:375 0.500 0.625 0.750 Load Bearing Length / in. 1.19 1.94 1.77 2.40 2.35 2.99 2.97 4.24 4.22 4.86 of Anchor in Shear Strength Reduction Factor- Concrete Breakout Failure3 0.70 Concrete Pryout Strength in Shear(ACt 318-1417.5.3 or ACt 318-11 Section D.6.3) Coefficient for k 1.0 2.0' Pryout Strength Strength Reduction Factor Concrete Pryout Failure3 0.70 Shear Strength for Seismic Applications(ACI 318-1417.2.3.3 or ACt 318-11 Section D.3.3.3) Shear Resistance of Single Anchor for Seismic Loads t/a�R Lbf 1;695 2,855 4,790' 8,000 0,350 (f'=2,500 psi) Strength Reduction Factor- Steel Failure2 ftaq 0.60 For SI: 1 inch=25.4mm,1 Ibf=4.45N. 'The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix 0,as applicable. 2The tabulated value of A,and dq applies when the load combinations of Section 1605.2 of the IBC,ACt 318-14 Section 5.3 or ACI 318-11 Section 9.2,as applicable,are used.If the load combinations of ACt 318 Appendix C areused,the appropriate value of 0 must be detenriined in accordance with ACt 318 0.4.4(b). 3The tabulated values of ppb and applies when both the load combinations of Section 1605.2 of the IBC ACI 318-14 Section 5.3 or ACt 318- 11 Section 9.2 are used and the requirements of ACI 318-11 0.4.4(c)for Condition B are met.Condition B applies were supplementary reinforcement is not provided in concrete. For installations where complying reinforcement can be verified,the 0,-b and 04,factors described in ACI 318-14 17.3.3(c)or ACt 318-1'1 0.4.3(c),as applicable,can be used for Condition A.If the load combinations of ACI 318 Appendix C are used,the appropriate value of Ib must be determined in accordance with ACt 318 0.4.5(c)for Condition B. 4The notation in parenthesis is for the 2006 IBC. j. 119 ESR-2713 I Most Widely Accepted and Trusted Page 9 of 12 TABLE 4—TITEN HD f'SCREW ANCHOR AND ROD HANGER CHARACTERISTIC TENSION AND SHEAR DESIGN VALUES FOR THE SOFFIT OF CONCRETE-FILLED PROFILE STEEL DECK ASSEMI3LIES1'5.6 Nominal Anctior Diameter/Threaded Coupler Di. (tter(inch) Lower Flute Upper Flute Charact stic Symbol Units Figure 5 Figure 3 Ft. re 6 Figure 4 Rod . 31 11 1 /2 8 2 r tiger Hanger 8 Minimum Hole Depth 48 in. 13/4 25h 21/8 23/4 2112 2'1/4 3 13/4 26/8 24 21/2 2,,,,2 Nominal Embedment Depth hs,,,8, n. 18/8 2u/ 1/8 212 3/ /2 21/2 21/2 18/a 21/2 1 /8 2 Effective Erriberiment Depth ha in. 1.94 1.23 1 1.29 2.56 1.77 1.77 I 1.19 1.94 1.23 1.29 Pullout Resistance Cracked 2!7 N Ibf 420 53 870 905 2040 870 870 656 1195 500 1700 Concrete e' • Pullout Resistarice,Uncracked lbf 995 75 825 ce5 1295 2910 1430 1430 1555 2850 1095 2430 Concrete3•7 Steel Strength In Shear4V k 11 1335 1745 2240 2395 2435 30 N/A N/A 2010 2420 4180 7145 44 4 Steel Strength in Shear,Seismic4 Vskd ,eg Ibf 870 1135 1434 1533 1565 2846 N/A 1305 1575 2676 4891 For SI: 1 Inch=25.4mm,1 ibf=-4.4 'Installation must comply with tions 3.4,4.1.9.1,4.3,5.4,and 5.10,and Figures 3,4 and 5 of this report. 2The values listed must be .ed in accordance with Section 4.1.4 and 4.1.8.2 of this report. 3The values listed must .- used in accordance with Section 4.1.4 of this report. 4The values listed ' be used in accordance with Section 4.1.5 and 4.1.8.3 of this report. 6'The values for reduction factor for pullout strength)can be found In Table 2 and the value for 4 (reduction factor for steel strength in shear)can ound in Table 3, 6The m anchor spacing along the flute must be the greater of 3h,or 1.5 times the flute width in accordance with Section 4.1.9.1 of this repo 7T,-characteristic pull-out resistance for greater concrete compressive strengths shall be increased by multiplying the tabular value by ( 1 3,000 psi)". TABLE 5—TITEN H13111SCREW ANCHOR INSTALLATION INFORMATION IN THE TOPSIDE OF CONCRETE-FILLED PROFILE STEEL DECK FLOOR AND ROOF ASSEft/IBLIES1'2°" Nortilltal Anchor Diameter(inch) Design Information Symbol Units 1/4 318 Figure 6 Figure 5 Effective Embedment Depth h6., in. 1.19 1.77 Minimum Concrete Thickness8 h8448 in. 21 31/4 Critical Edge Distance c848448,,,,p in. 33/4 71/ Minimum Edge Distance coli,,,,eaktop 31/2 3 Minimum Spacing smtkdocieot, in. 31/2 3 For SI: 1 inch=25.4mm,1 lbf=4.45N. lInstallatiort must comply with Sections 3.4,4.1.9.1,4.3,5.4,and 5.10,and Figures 5 and 6 of this report. 2Design capacity shall be based on calculations according to values in Jables 2 and 3 of this report. aMiriirrItirn flute depth(distance from top of flute to bottom of flute)is 1%-inch,see Figures 5 and 6. 4St(t.el deck thickness shall be minimum 20 gauge. 5Minlmum concrete thickness(h,,4 ,1 )refers to concrete thickness above upper flute,see Figures 5 and 120 ESR-2713 I Most Widely Accepted and Trusted Page 10 of 12 TABLE 6—EXAMPLE TITEN HD4'SCREW ANCHOR AND ROD HANGER ALLOWABLE STRESS DESIGN TENSION VALUES FOR ILLUSTRATIVE PURPOSES1'2'3'4's,s,7,s,s,rn Notmnal Anchor.` Nominal Embedment Effective Allowable Diameter,do Depth,h,m Embedment Tension Load, (inches) (Inches) Depth,het N„la {inches) (lbs) . ... 16/8 1.19 855 2'/2 1.94 1,424 :2'/2 1:77 1;185*` 318 3':14 2:40 • 4;960 31/4 2.35 1,900 4 2.99 2,725 s 4 2,97 2;695 I$ 5'.Iz • 4:24 4,580 . 5112 4.22 4,570 61/4 4.86 5,645 Design Assumptions: 1.Single Anchor. 2.Tension load only. 3.Concrete determined to remain untracked for the life of the anchorage. 4.Load combinations from ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2,as applicable(no seismic loading). 5.30%Dead Load(D)and 70%Live Load(L);Controlling load combination is 1.2 D+1.6L 6.Calculation of a based on weighted average:a=1.2D+1.6L=1.2(0.3)+1.6(0.7)=1.48 7.Normal weight concrete:f'=2500 psi 8.Ce=C2 Z Cad 9.h>_h,;„ 10.Values are for Condition B(Supplementary reinforcement in accordance with ACI 318-14 17.3.3 or ACI 318-11 D.4.3,as applicable,is not provided). **Illustrative Procedure(reference Table 2 of this report): 'I”Titen HD with an Effective Embedment,h*,=1.77" Step 1:Calculate Static Steel Strength in Tension per ACI 318-14 17.4.1 or AC1 318-11 Section D.5.1,as applicable;0.Nsa=0.65 x 10,890=7,078 lbs. Step 2:Calculate Static Concrete Breakout Strength in Tension per ACI 318-14 17.4.2 or ACI 318-11 Section 0.5.2,as applicable; Oe,N4w=0.65 x 2,826= 1,837 lbs. Step 3:Calculate Static Pullout Strength in Tension per ACI 318-14 17.4.3 or ACI 318-11 Section 0.5.3,as applicable;¢}Np�,a=0.65 x 2,700=1,755 lbs. Step 4:The controlling value(from Steps 1,2 and 3 above)per ACI 318-14 Section 17.3.1 or ACI 318 Section D.4.1,as applicable;ON„= 1,755 lbs. Step 5:Divide the controlling value by the conversion factor a per section 4.2.1 of this report: Tanowabla,ASD=iN„/a=1,755/1.48=1,185 lbs. TABLE 7--TITEN HD®SCREW ANCHOR AND ROD HANGER IDENTIFICATION INFORMATION Anchor Size Catalog Number 114„ THDB25xxxxH �1e THD37xxxxH 1/2” THD50xxxxH s als THDi36.2xxxxH 3/4" THD75xxxxH '18 Rod Han •ger;; THD37212RH Ile`Rod Hanger THD50234RH 121 ESR-2713 I Most Widely Accepted and Trusted Page 12 of 12 -77.- 4.1- *,..,-..; SAND-LIGHTWEIGHT CONCRETE 1..* OR NORMAL-WEIGHT CONCRETE j MI OVER STEEL DECK ilnumdeck=MIN.31/4. kV,".!IP:vd; (MINIMUM 2,500 PSI) MIN.3/4"TYP. , —i- i • 0 At .. • 0 • • 0 ' 0 * V , 6 . a. o ' • . 0 0 .. 0 ,, .. _ ... . 0 4.p.. 9 ,.., 0 . . " 0 " y . 0 .°0 •. ' 0 ' . . ° * • * 0 0 • • . • t:.' ' t MI • • • * • ' ' 0 0 .. • •.,.. C:4 11. ''' * 1 P. ' M I N. w a . . 10 00 * 1 UPPER t'. a 1 20 GAUGE y . . . ME ° FLUTE 1 1 STEEL MIN.1Y2* I MIN.14 14° ' l" ...w 0. MAX_IA*(+I-)OFFSET -.4 - MIN.3Y2* —0-, \ DECK FROM CENTER OF -4 MIN.214* 1..- LOWER FLUTE --0.- *4 MIN.6'TYP LOWER ft.• FWTE FIGURE 5—INSTALLATION OF 318-INCH DIAMETER ANCHORS IN THE TOPSIDE,AND 14-INCH DIAMETER ANCHORS IN THE SOFFIT OF CONCRETE-FILLED PROFILE STEEL DECK FLOOR AND ROOF ASSEMBLIES (1 in:,,25.4 mm) SAND-LIGHTWEIGHT CONCRETE 'I" OR NORMAL-WEIGHT CONCRETE t t 1:- OVER STEEL DECK rnIn,deck=MIN.21/2" (MINIMUM 2,500 PSI) ( . * • • ** eP. i„..... . Ot: . itt e e \,.., . •0 . . ...• . 0 . . • - • . 0 0 . * •• • ..-." • 0. 0 • • • . ...4 ` 0 * • 0- r.0 p • ,...0 0 0 • A -. • 0 • .9 a* .0 . . A 0 9. . 0 a 0 . a 0 0 . . • • 0 : • • e . . 0 ..,.., \ . . i • . \°6 1 7 0* ci', 1 0 - • (:). . . 0 UPPER °`. . ' 20 GAUGE , FLUTE STEEL MIN.114* [4MIN.144' 1 DECK 4 MIN.31/2"---0.-1 1-4-MIN.2W-0- -0 MIN.6*TYP 0.- LOWER FLUTE FIGURE 6 INSTALLATION OF 3/4-INCH DIAMETER ANCHORS IN THE TOPSIDE OF CONCRETE-FILLED PROFILE STEEL DECK FLOOR AND ROOF ASSEMBLIES (1 In=25.4 mm) 122 E ICC EVALUATION SERVICE Most Widely Accepted and Trusted ICC-ES Evaluation Report ESR-2196* Reissued October 2013 This report is subject to renewal October 2015. www.icc-es.orq I (800) 423-6587 I (562) 699-0543 A Subsidiary of the International Code Council® DIVISION: 05 00 00—METALS screws, or in collated plastic strips. See Figures 1 through Section: 05 05 23—Metal Fastenings 11 for depictions of the screws described in Sections 3.2 through 3.12, respectively. DIVISION: 06 00 00—WOOD, PLASTICS AND 3.2 HWH and HHWH Self-drilling Screws: COMPOSITES Section: 06 05 23—Wood, Plastic,and Composite The#8,#10,#12 and 1/4-inch HWH and HHWH self-drilling Fastenings screws comply with ASTM C1513 and SAE J78 and have Hex Washer or High Hex Washer head styles.The 1/4-inch DIVISION:09 00 00—FINISHES HWH screws have a larger diameter than #14 screws Section: 09 22 16.23—Fasteners complying with ASME B18.6.4, and may be used where #14 self-drilling tapping screws are specified. The screws REPORT HOLDER: have an electroplated zinc coating or a proprietary coating, as indicated in Table 1A. HILTI,INC. 3.3 HWH Self-piercing Screws: 5400 SOUTH 122ND EAST AVENUE TULSA,OKLAHOMA 74146 The #8 and #10 HWH self-piercing screws comply with (800)879-8000 ASTM C1513 and have a Hex Washer head style. The www.us.hilti.com screws have an electroplated zinc coating or a proprietary HNATechnicalServicesahilti.com coating, as indicated in Table 1A. 3.4 PPH Self-drilling Screws: EVALUATION SUBJECT: The #8 and #10 PPH self-drilling screws comply with HILTI SELF-DRILLING AND SELF-PIERCING SCREWS ASTM C1513 and SAE J78 and have a Phillips Pan head style. The screws have an electroplated zinc coating as 1.0 EVALUATION SCOPE indicated in Table 1A. Compliance with the following codes: 3.5 PPFH SD Framer Self-drilling Screws: • 2012,2009 and 2006 International Building Code®(IBC) The #7 PPFH SD Framer self-drilling screws comply with the material and performance requirements of ASTM ■ 2012 and 2009 International Residential Code®(IRC) C1513. The dimensions of the screws comply with the Property evaluated: manufacturer's quality documentation. The screws have a Phillips Pan Framing head style and have an electroplated Structural zinc coating or a proprietary phosphated coating, as indicated in Table 1A. 2.0 USES 3.6 PBH SD Self-drilling Drywall Screws: The Hilti Self-drilling and Self-piercing Screws are used to connect cold-formed steel members together and to The #6 PBH SD and #8 PBH SD self-drilling screws connect gypsum wall board, wood or other building comply with ASTM C954.The screws have a Phillips Bugle materials to cold-formed steel. The screws are used head style and have an electroplated zinc coating, a in engineered connections of cold-formed steel and proprietary duplex coating or a proprietary phosphated connections prescribed by the code for cold-formed steel coating,as indicated in Table 1 B. framing and for sheathing to steel connections. 3.7 PBH S Self-piercing Drywall Screws: 3.0 DESCRIPTION The #6 PBH S self-piercing screws comply with ASTM 3.1 General: C1002, Type S. The screws have a Phillips Bugle head style and have an electroplated zinc coating or a The Hilti Self-drilling and Self-piercing Screws are tapping proprietary phosphated coating, as indicated in Table 1B. screws, case-hardened from carbon steel conforming to 3.8 PWH SD CMT BD Self-drilling Drywall Screws: ASTM A510, Grade 1018 to 1022.Table 1 provides screw designations, sizes and descriptions of head styles, point The#8 PWH SD CMT BD self-drilling screws comply with styles, drilling/piercing ranges, length of load bearing area ASTM C954.The screws have a Phillips Wafer head style and coatings. Screws are supplied in boxes of individual and have a proprietary coating as indicated in Table 1 B. *Revised December 2014 ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed,nor are they to be construed .� Q�s� as an endorsement of the subject of the repots or a recommendation for its use.There is no warranty by 1CC Evaluation Service,LLC,express or implied,as - to any finding or other matter in this report,or as to any product covered by the report.123 "m=r. LSY MAW Copyright®2014 Page 1 of 9 ESR-2196 I Most Widely Accepted and Trusted Page 2 of 10 3.9 PTH SD Framer Self-drilling Screws: screws described in Sections 3.2, 3.4, 3.5, 3.9, 3.10, 3.11 The #10 PTH self-drilling screws have a Phillips Truss and 3.12, respectively, and the HWH self piercing screws head style and, except for the number of threads per described in Section 3.3, are recognized for use in inch, comply with ASTM C1513. The screws have an engineered connections of cold-formed steel light framed electroplated zinc coating as indicated in Table 1A. construction. 3.10 PPCH SD Framer Self-drilling Screws: For the self-drilling screws, design of the connections must comply with Section E4 of AISI S100 (AISI - NAS The#10 PPCH SD Framer self-drilling screws comply with under the 2006 IBC), using the nominal and allowable ASTM C1513. The screws have a Phillips Pancake head fastener tension and shear strengths for the screws, shown style and an electroplated zinc coating as indicated in in Table 5. Allowable connection strengths for use in Table 1A. Allowable Strength Design (ASD) for pull-out, pull-over, 3.11 TPCH SD Framer Self-drilling Screws: and shear (bearing) capacity for common sheet steel thicknesses are provided in Tables 2, 3 and 4, The#12 TPCH SD Framer self-drilling screws comply with respectively, based upon calculations in accordance with ASTM C1513. The screws have a Torx Pancake head AISI S100(AISI-NAS under the 2006 IBC). style and an electroplated zinc coating as indicated in Table 1A. For the self-piercing screws, design of connections must comply with Section E4 of AISI 5100 (AISI - NAS under 3.12 PFTH SD Framer Self-drilling Screws: the 2006 IBC), using the nominal and allowable fastener The #10 PFTH SD Framer self-drilling screws comply with tension and shear strengths for the screws, shown in ASTM C1513. The screws have a Phillips Flat Truss head Table 5. Allowable connection strengths for use in style and an electroplated zinc coating as indicated in Allowable Strength Design (ASD)for pull-over capacity for Table 1A. common sheet steel thicknesses are provided in Table 3, based upon calculations in accordance with AISI S100 3.13 Cold-formed Steel: (AISI - NAS under the 2006 IBC). Allowable connection Cold-formed steel material must comply with Section A2 of strengths for use in Allowable Strength Design (ASD) for AISI S100. pull-out and shear (bearing) capacity for common sheet 4.0 DESIGN AND INSTALLATION steel thicknesses are provided in Tables 2 and 4, respectively, based upon results of testing in accordance 4.1 Design: with AISI 5905. 4.1.1 General: Screw thread length and point style must Instructions on how to calculate connection design be selected on the basis of thickness of the fastened strengths for use in Load and Resistance Factor Design material and thickness of the supporting steel,respectively, (LRFD) are found in the footnotes of Tables 2,3 and 4. For based on the length of load bearing area (see Figure 12) connections subject to tension, the least of the allowable and drilling/piercing capacity given in Table 1. pull-out, pullover, and tension fastener strength of screws When tested for corrosion resistance in accordance with found in Tables 2, 3, and 5, respectively, must be used for ASTM 8117, screws with coatings described in Table 1 design. For connections subject to shear, the lesser of the met the minimum requirement listed in ASTM F1941, as allowable shear (bearing) and fastener strength found in required by ASTM C1613, with no white corrosion after Tables 4 and 5, respectively, must be used for design. three hours and no red rust after 12 hours. Connections subject to combined tension and shear loading must be designed in accordance with Section E4.5 4.1.2 Prescriptive Design: of AISI S100. 4.1.21 Hilti HWH & HHWH, PPH, PTH SD Framer, The values in Tables 2, 3 and 4 are based on a minimum PPCH SD Framer, TPCH SD Framer and PFTH SD spacing between the centers of fasteners of three times Framer Screws (Sections 3.2, 3.3, 3.4, 3.9, 3.10, 3.11 the diameter of the screw, and a minimum distance from and 3.12 respectively): These screws are recognized for the center of a fastener to the edge of any connected part use where ASTM C1513 screws of the same size and type of 1.5 times the diameter of the screw. Minimum edge (self-drilling and/or self-piercing) are prescribed in the IRC distance when connecting cold-formed framing members and in the AISI Standards referenced in 2012 IBC Section must be three times the diameter of the screw, in 2211 (2009 and 2006 IBC Section 2210). accordance with Section D1.5 of AISI S200 (AISI-General 4.1.2.2 Hilti PBH SD and PWH SD CMT BD Screws for 2006 IBC). Under the 2009 and 2006 IBC, when the (Sections 3.6 and 3.8, respectively): These screws are distance to the end of the connected part is parallel to the recognized for use in fastening gypsum board to cold- line of the applied force, the allowable connection shear formed steel framing 0.033 inch to 0.112 inch (0.8 to strength determined in accordance with Section E4.3.2 of 2.8 mm) thick, in accordance with IBC Section 2506 and Appendix A of AISI S100(AISI-NAS under the 2006 IBC) IRC Section R702.3.6. They are also recognized for use in must be considered. Connected members must be attaching gypsum board sheathing to cold-formed steel checked for rupture in accordance with Section E5 of AISI framing as prescribed in Section C2.2.3 of AISI S213, 5100. which is referenced in 2012 IBC Section 2211.6 (2009 4.2 Installation: IBC Section 2210.6; Section C2.2.3 of AISI-Lateral, Installation of the Hilti Self-drilling and Self-piercing Screws referenced in 2006 IBC Section 2210.5). must be in accordance with the manufacturer's published 4.1.2.3 Hilti PBH S Screws(Section 3.7): These screws installation instructions and this report. The manufacturer's are recognized for use in fastening gypsum board to cold- published installation instructions must be available at the formed steel framing less than 0.033 inch (0.8 mm) thick, jobsite at all times during installation. in accordance with IBC Section 2506 and IRC Section The screws must be installed perpendicular to the work R702.3.6. surface using a variable speed screw driving tool set to 4.1.3 Engineered Design: The Hilti HWH, HHWH, PPH, not exceed 2,500 rpm. The screw must penetrate through PPFH SD Framer, PTH SD Framer, PPCH SD Framer, 124 the supporting steel with a minimum of three threads TPCH SD Framer and PFTH SD Framer self-drilling protruding past the back side of the supporting steel. ESR-2196 I Most Widely Accepted and Trusted Page 3 of 10 5.0 CONDITIONS OF USE 5.4 Drawings and calculations verifying compliance with The Hilti Self-drilling and Self-piercing Screws described in this report and the applicable code must be submitted this report comply with,or are suitable alternatives to what to the code official for approval. The drawings and is specified in, those codes listed in Section 1.0 of this calculations are to be prepared by a registered design report, subject to the following conditions: professional when required by the statutes of the jurisdiction in which the project is to be constructed. 5.1 Fasteners must be installed in accordance with the manufacturer's published installation instructions 5.5 The rust-inhibitive (corrosion-resistant) coating on the and this report. If there is a conflict between the screws must be suitable for the intended use, as manufacturer's published installation instructions and determined by the registered design professional. this report, this report governs. 6.0 EVIDENCE SUBMITTED 5.2 The allowable loads specified in Section 4.1 are not to Data in accordance with the ICC-ES Acceptance Criteria be increased when the fasteners are used to resist for Tapping Screw Fasteners(AC118), dated June 2012. wind or seismic forces. 5.3 The utilization of the nominal strength values 7.0 IDENTIFICATION contained in this evaluation report, for the design Hilti Self-drilling and Self-piercing Screws are marked with of cold-formed steel diaphragms, is outside the an "H" on the top of the heads, as shown in Figures 1 scope of this report. Diaphragms constructed using through 11. Packages of Hilti Self-drilling and Self-piercing the Hilti self-drilling or self-piercing screws must be Screws are labeled with the report holder's name recognized in a current ICC-ES evaluation report (Hilti, Inc.), the fastener type and size, and the evaluation based upon the ICC-ES Acceptance Criteria for Steel report number(ESR-2196). Deck Roof and Floor Systems(AC43). TABLE 1A-HILTI SELF-DRILLING AND SELF-PIERCING STEEL-TO-STEEL SCREWS(ASTM C1513) DRILLING/ LENGTH NOMINAL PIERCING NOMINAL SCREW HEAD NOMINAL DRILL OF LOAD DESIGNATION DESCRIPTION DIAMETER LENGTH4 STYLE' HEAD POINT CAPACITY BEARING COATING' (Size-TPI) (inch) DIAMETER (Number) (trach) AREA4 (inch) Min. Max. (inch) S-MD 10-16 X 5/8 HWH#3 #10-16 0.190 5/8 HWH 0.399 3 0.110 0.175 0.187 Zinc-2 S-MD 10-16X3/4 HWH#3 #10-16 0.190 3/4 HWH 0.399 3 0.110 0.175 0.375 Zinc-2 S-MD 10-16 X'14 HHWH#3 #10-16 0.190 '/4 HHWH 0.399 3 0.110 0.175 0.375 Zinc-2 S-MD 10-16 X 1 HWH#3 #10-16 0,190 1 HWH 0.399 3 0.110 0.175 0.825 Zinc-2 S-MD 10-16 X11/4 HWH#3 #10-16 0.190 1'/4 HWH 0.399 3 0.110 0.175 0.875 Zinc-2 S-MD 10-16 X 11/2 HWH#3 #10-16 0.190 1'/2 HWH 0.399 3 0,110 0.175 1.125 Zinc-2 S-MD 12-14 X3/4 HWH#3 #12-14 0.216 3/4 HWH 0.415 3 0.110 0.210 0.313 Zinc-2 S-MD 12-14 X 1 HWH#3 #12-14 0.216 1 HWH 0.415 3 0.110 0.210 0.562 Zinc-2 S-MD 12-14 X11/2 HWH#3 #12-14 0.216 1'/2 HWH 0.415 3 0.110 0.210 1.062 Zinc-2 S-MD 12-14 X 2 HWH#3 #12-14 0.216 2 HWH 0.415 3 0,110 0.210 1.562 Zinc-2 S-MD'/4-14 X 3/4 HHWH#3 1/4-14 0.250 3/4 HHWH 0,500 3 0.110 0.220 0.313 Zinc-2 S-MD'/4-14 X 1 HHWH#3 1/4-14 0.250 1 HHWH 0.500 3 0.110 0.220 0.562 Zinc-2 S-MD'/4-14 X 11/2 HHWH#3 114-14 0.250 1'/2 HHWH 0.500 3 0.110 0.220 1.062 Zinc-2 S-MD'/4-14 X 2 HHWH#3 '/4-14 0.250 2 HHWH 0.500 3 0.110 0.220 1.562 Zinc-2 S-MD 10-16 X 5/e PPH#3 #10-16 0.190 5/8 PPH 0.364 3 0.110 0.175 0.313 Zinc-2 S-MD 10-16X3/4 PPH#3 #10-16 0.190 3/4 PPH 0.364 3 0.110 0.175 0.375 Zinc-2 S-MD 10-16 X 1 PPH#3 #10-16 0.190 1 PPH 0.364 3 0.110 0.175 0.500 Zinc-2 S-MD 12-24 X'/$HWH#4 #12-24 0.216 '/8 HWH 0.415 4 0.175 0.250 0.375 Zinc-2 S-MD 12-24 X 11/4 HWH#4 #12-24 0.216 1'/4 HWH 0.415 4 0.175 0.250 0.625 Zinc-2 S-MD 12-24 X 1'/4 HWH#5 #12-24 0.216 11/4 HWH 0.415 5 0.250 0.500 0.437 Zinc-2 S-MD 10-16 X 518 HWH#3 Kwik-Cote #10-16 0.190 5/8 HWH 0.399 3 0.110 0.175 0.187 Kwik-Cote S-MD 10-16 X314 HWH#3 Kwik-Cote #10-18 0.190 3/4 HWH 0.399 3 0.110 0.175 0.375 Kwik-Cote S-MD 10-16 X 3/4 HHWH#3 Kwik-Cote #10-16 0.190 3/4 HHWH 0.399 3 0.110 0.175 0.375 Kwik-Cote S-MD 10-16 X 1 HWH#3 Kwik-Cote #10-16 0.190 1 HWH 0.399 3 0.110 0.175 0.625 Kwik-Cote S-MD 12-14 X 3/4 HWH#3 Kwik-Cote #12-14 0.216 3/4 HWH 0.415 3 0.110 0.210 0.313 Kwik-Cote S-MD 12-14 X 1 HWH#3 Kwik-Cote #12-14 0.216 1 HWH 0.415 3 0.110 0.210 0.562 Kwik-Cote S-MD 12-14 X 1'/4 HWH#3 Kwik-Cote #12-14 0.216 11/4 HWH 0.415 3 0.110 0.210 0.813 Kwik-Cote S-MD 12-14 X 1'/2 HWH#3 Kwik-Cote #12-14 0.216 11/2 HWH 0.415 3 0.110 0.210 1.062 Kwik-Cote S-MD 12-14 X 2 HWH#3 Kwik-Cote #12-14 0.216 2 HWH 0.415 3 0.110 0,210 1.562 Kwik-Cote S-MD 12-24 X 11/4 HWH#5 Kwik Cote #12-24 0.216 1114 HWH 0,415 5 0.250 0.500 0.437 Kwik-Cole S-MD 12-24 X 11/4 HWH#5 Kwik Cote with #12-24 0.216 1A/4 HWH 0.415 5 0.250 0.500 0.313 Kwik-Cote Bonded Washer ESR-2196 I Most Widely Accepted and Trusted Page 4 of 10 TABLE 1A--HILTI SELF-DRILLING AND SELF-PIERCING STEEL-TO-STEEL SCREWS(ASTM C1513)(Continued) DRILLING/ LENGTH NOMINAL PIERCING DESCRIPTION NOMINAL SCREW HEAD NOMINAL DRILL CAPACITY OF LOAD 2 DESIGNATION (Size-TPI) DIAMETER LENGTH STYLE' HEAD POINT (inch) BEARING COATING (inch) (inch) DIAMETER (Number) AREA Min. Max, (inch) S-MD 12-24 X 2 HWH#5 Kwik Cote #12-24 0.216 2 HWH 0.415 5 0.260 0,500 1.187 Kwik-Cote S-MD 12-24 X 3 HWH#5 Kwik Cote #12-24 0.216 3 HWH 0.415 5 0.250 0.500 2.187 Kwik-Cote S-MD 10-16 X 3/4 M HHWH3 Collated #10-16 0.190 3/4 HHWH 0.399 3 0.110 0.175 0.375 Zinc-2 S-MD 10-16 X 3/4 HHWH3 KC M Collated #10-16 0.190 3/4 HHWH 0.399 3 0.110 0.175 0.375 Kwik-Cote S-MD 12-24 X 7 M HWH4 Collated #12-24 0.216 '/6 HWH 0.399 4 0.175 0.250 0.375 Zinc-2 S-MD 10-16 X'/8 HHWH Pilot Point #10-16 0,190 '/a HHWH 0.399 1 0.028 0.120 0.188 Zinc-2 S-MD 12-14 X 1 HHWH Pilot Point #12-14 0.216 1 HHWH 0.415 1 0.028 0.120 0.375 Zinc-2 S-SLC 02 M HWH #12-14 0.216 1 HWH 0.415 1 0.028 0.120 0.375 Zinc-2 S-MD'/4-14 X'/a HWH Pilot Point Kwik Seal 1/4-14 0.250 '/6 HWH 0.415 1 0.028 0.140 0.313 Kwik-Cote S-MD 8-18 X'/2 HWH#2 #8-18 0.164 1/2 HWH 0.335 2 0.035 0.100 0.125 Zinc-2 S-MD 8-18 X3/4 HWH#2 #8-18 0.164 3/4 HWH 0.335 2 0.035 0.100 0.375 Zinc-2 S-MD 8-18 X'12 PPH#2 #8-18 0.164 1/2 PPH 0.311 2 0.035 0.100 0.125 Zinc-2 S-MD 8-16X314 PPH#2 #8-18 0.164 3/4 PPH 0.311 2 0.035 0.100 0.375 Zinc-2 S-MD 10-18 X'/2 HWH#2 #10-16 0.190 1/2 HWH 0.399 2 0.035 0.110 0.188 Zinc-2 S-MD 10-16 X3/4 HWH#2 #10-16 0.190 3/4 HWH 0.399 2 0.035 0.110 0.313 Zinc-2 S-MD 10-16 X 1 HWH#2 #10-16 0.190 1 HWH 0.399 2 0.035 0.110 0.500 Zinc-2 S-MD 12-14 x3/4 HWH#3 Kwik Seal #12-14 0.216 3/4 HWH 0.415 3 0.110 0.210 0.125 Kwik-Cote S-MD 12-14 x 1 HWH#3 Kwik Seal #12-14 0.216 1 HWH 0.415 3 0.110 0.210 0.375 Kwik-Cote T S-MD 12-14 X 1'/4 HWH#3 Kwik Seal #12-14 0.216 1'/4 HWH 0.415 3 0.110 0.210 0.625 Kwik-Cote S-MD 12-14 X 11/2 HWH#3 Kwik Seal #12-14 0.216 11/2 HWH 0.415 3 0.110 0.210 0.875 Kwik-Cote S-MD 12-14 X 2 HWH#3 Kwik Seal #12-14 0.216 2 HWH 0.415 3 0.110 0.210 1.375 Kwik-Cote S-MD'/4-14 X3/4 HWH#3 Kwik Seal 1/4-14 0.250 3/4 HWH 0.500 3 0.110 0.220 0.125 Kwik-Cote S-MD'/4-14 x 1 HWH#3 Kwik Seal 1/4-14 0.250 1 HWH 0.500 3 0.110 0.220 0.375 Kwik-Cote ti S-MD'/4-14 X 1'/2 HWH#3 Kwik Seal 1/4-14 0.250 11/2 HWH 0.500 3 0.110 0.220 0.875 Kwik-Cote 7 X'1,6 PPFH SD Framer #7-18 0.151 '/46 PPFH 0.303 2 0.035 0.100 0.063 BP 7 X'/,6 PPFH SD Framer Zinc #7-18 0.151 1/46 PPFH 0.303 2 0.035 0.100 0.063 Zinc-2 S-DD 10-18 X'/4 PTH#3 #10-18 0.190 3/4 PTH 0.433 3 0.110 0.175 0.375 Zinc-2 S-DD 10-16 X 5/8 PPCH#3 #10-16 0.190 5/a PPCH 0.409 3 0.110 0.175 0.313 Zinc-2 S-DD 10-12 X 314 PFTH#3 #10-12 0.190 3/4 PFTH 0.364 3 0.110 0.175 0.375 Zinc-2 S-DD 12-14 X 1 TPCH#3 #12-14 0.216 1 TPCH 0,409 3 0.110 0.210 0.500 Zinc-2 Self- S-MS 8-18 X lh HWH #8-188 0.164 1/2 HWH 0.315 piercing0.015 0.072 0.072 Zinc-2 S-MS 10-12 X 3/4 HWH #10-12S 0.190 314 HWH 0.399 piefcling 0.018 0.096 0.100 Zinc-2 126 ESR-2196 I Most Widely Accepted and Trusted Page 5 of 10 TABLE 1B-HILTI SELF-DRILLING(ASTM C954)AND SELF-PIERCING(ASTM C1002)DRYWALL SCREWS DRILLING I ' LENGTH NOMINAL PIERCING NOMINAL NOMINAL DRILL OF LOAD DESCRIPTION SCREW HEAD CAPACITY z • DESIGNATION 3 DIAMETERHEAD POINT BEARING COATING (Size-TPI) (inch} LENGTH'nch} STYLE DIAMETER (Number) (inch) AREA' Min. Max. (inch) 6 X 1 PBH SD #6-19 0.138 1 PBH 0.322 1 0,033 0.112 0.625 DGP 6 X 1 PBH SD #6-20 0.138 1 PBH 0.322 1 0.033 0.112 0.625 DGP 6 X 1 PBH SD Zinc #6-19 0.138 1 PBH 0.322 1 0.033 0.112 0.625 Zinc-2 6 X 1 PBH SD Zinc #6-20 0.138 1 PBH 0.322 1 0.033 0.112 0.625 Zinc-2 6 X 11/8 PBH S #6-9S 0.138 1118 PBH 0.322 Self- 0,023 0.033 0.750 DGP piercing 6 X 11/6 PBH S Collated #6-9S 0.138 11/8 PBH 0.322 piercing 0.023 0.033 0.750 DGP 6 X 11/4 PBH SD #6-19 0.138 11/4 PBH 0.322 1 0.033 0.112 0.750 DGP 6 X 11/8 PBH SD #6-20 0.138 11/4 PBH 0.322 1 0.033 0.112 0.750 DGP 6 X 11/4 PBH SD Zinc #6-19 0.138 11/4 PBH 0.322 1 0.033 0.112 0.750 Zinc-2 6 X 11/8 PBH SD Zinc #6-20 0.138 11/8 PBH 0.322 1 0.033 0.112 0.750 Zinc-2 6 X11/8 PBH SD Zinc Collated #6-20 0.138 11/6 PBH 0.322 1 0.033 0.088 0.750 Zinc-3 6 X 11/4 PBH S #6-9S 0.138 1'/4 PBH 0.322 Self- 0.023 0.033 0.875 DGP piercing 6 X 11/4 PBH S Collated #6-9S 0.138 11/4 PBH 0.322 Self- 0 023 0.033 0,875 DGP piercing 6 X 11/4 PBH SD #6-19 0.138 1'/4 PBH 0.322 1 0.033 0.112 0.875 DGP 6 X 11/4 PBH SD #6-20 0.138 11/4 PBH 0.322 1 0.033 0.112 0.875 DGP 6 X 11/4 PBH SD Collated #6-20 0.138 11/4 PBH 0,322 1 0.033 0.088 0.875 DGP 6 X 11/4 PBH SD Zinc #8-19 0.138 11/4 PBH 0.322 1 0.033 W 0.112 0.875 Zinc-2 6 X 11/4 PSH SD Zinc #6-20 0.138 1'/4 PBH 0.322 1 0.033 0.112 0.875 Zinc-2 6 X 11/4 PBH SD Zinc Collated #6-20 0.138 1114 PBH 0.322 1 0.033 0.088 0.875 Zinc-3 6 X 11/4 PBH SD CRC #6-20 0.138 1114 PBH 0.322 1 0.033 0.112 0.875 CRC 6 X11/4 PBH SD CRC Collated #6-20 0.138 11/4 PBH 0.322 1 0.033 0.112 0.875 CRC Sef- 6 X15/6 PBH S #6-9S 0.138 1818 PBH 0.322 piece ng 0.023 0.033 1.250 DGP 6 X 15/8 PBH S Collated #6-9S 0.138 1518 PBH 0.322 Self- 0.023 0.033 1.250 DGP piercing 6 X 15/8 PBH SD #6-19 0.138 15/8 PBH 0.322 1 0.033 0.112 1.250 DGP 6 X 15/8 PBH SD #6-20 0.138 15/8 PBH 0.322 1 0.033 0.112 1.250 DGP 6 X 15/8 PBH SD Collated #6-20 0.138 15/8 PBH 0.322 1 0.033 0.088 1.250 DGP 6 X 15/8 PBH SD Zinc #6-19 0.138 15/8 PBH 0.322 1 0.033 0.112 1.250 Zinc-2 6 X 15/8 PBH SD Zinc #6-20 0.138 15/4 PBH 0.322 1 0.033 0.112 1.250 Zinc-2 6 X 15/8 PBH SD Zinc Collated #6-20 0.138 15/8 PBH 0.322 1 0.033 0.088 1.250 Zinc-3 6 X 17/8 PBH SD #6-19 0.138 17/8 PBH 0.322 1 0.033 0.112 1.500 DGP 6 X17/8 PBH SD #6-20 0.138 17/8 PBH 0,322 1 0.033 0.112 1.500 DGP 6 X 17/8 PBH SD Zinc #6-19 0.138 17/8 PBH 0.322 1 0.033 0.112 1.500 Zinc-2 6 X 1714 PBH SO Zinc #6-20 0.138 17/8 PBH 0.322 1 0.033 0.112 1.500 Zinc-2 6 X 17/8 PBH SD CRC #6-20 0.138 17/8 PBH 0.322 1 0.033 0.112 1.500 CRC 6 X 2 PBH S #8-95 0.138 2 PBH 0.322 Self- 0.023 0.033 1.625 DGP piercing 6 X 2 PBH S Collated #6-93 0.138 2 PBH 0.322 Self- 0.023 0.033 1.625 DGP piercing 6 X 2 PBH SD Collated #6-20 0,138 2 .2t'BH 0.322 1 0.033 0.088 1.625 DGP ESR-2196 I Most Widely Accepted and Trusted Page 6 of 10 DRILLING I LENGTH NOMINAL PIERCING DESCRIPTION NOMINAL SCREW HEAD NOMINAL DRILL CAPACITY LOAD DESIGNATION 8 DIAMETER 4 ' HEAD POINT BE BEARING COATING2 {Size-TPl) (Inch) L{NGT STYLE DIAMETER (Number) (inch) AREA" Min. Max. (Inch) 6 X 2 PBH SD Zinc #6-20 0.138 2 PBH 0.322 1 0.033 0.088 1.625 Zinc-3 6 X 2 PBH SD Zinc Collated #6-20 0.138 2 PBH 0.322 1 0.033 0.088 1.625 Zinc-3 8 X 23/8 PBH SD #8-18 0.164 23/8 PBH 0.330 1 0.033 0.112 2.000 BP 8 X 23/8 PBH SD Zinc #8-18 0.164 2318 PBH 0,330 1 0.033 0.112 2.000 Zinc-2 8 X 25/8 PBH SD #8-18 0.164 28/8 PBH 0.330 1 0.033 0.112 2.250 BP 8 X 2518 PBH SD Zinc #8-18 0.164 25I8 PBH 0.330 1 0.033 0.112 2.250 Zinc-2 8 X 3 PBH SD #8-18 0.164 3 PBH 0.330 1 0.033 0.112 2.625 BP 8 X 3 PBH SD Zinc #8-18 0.164 3 PBH 0.330 1 0.033 0.112 2.625 Zinc-2 8 X 11/4 PWH SD CMT BD #8-18 0.164 11/4 PWH 0.421 1 0.033 0.112 0.875 Tufcoat 8 X 1518 PWH SD CMT BD #8-18 0.164 15/8 PWH 0.421 1 0.330 0.112 1.250 Tufcoat For SI: 1 inch=25.4 mm. 'Refer to Section 3.0 and Figures 1 through 11 for head configuration abbreviations. 2For coating abbreviations,BP=Black phosphated per EN ISO 3892;DGP=Dark Grey phosphate per EN ISO 3892;Zinc-2=EN/ISO 4042 A3F;Zinc-3=electroplated zinc coating, Cr3+passivated;Kwik-Cote=Proprietary organic zinc coating;CRC=Proprietary Duplex Coating; Tufcoat=Tufcoat forest green similar to ISO 10683. 3An'S'in the thread designation indicates a double thread. Listed thread pitch is for one thread only. 'Refer to Figure 12 for nominal screw length(L)and load bearing area(LBA)description. TABLE 2-ALLOWABLE TENSILE PULL-OUT LOADS(PNOT/i2),pounds-force"2,3,4 Steel F„=45 ksi Applied Factor of Safety,0=3.0 Nominal Design thickness of member not in contact with the screw head(in.) Screw Diameter Description (in.) 0.015 0.018 0.029 0.030 0.036 0.046 0,060 0.075 0.090 0,105 0.135 Self-drilling Screws for Steel-to-Steel Connections6 #7-18 0.151 - - - - 69 92 116 144 173 202 260 #8-18 0,164 - - - - 75 100 125 157 188 220 282 #10-12 #10-16 0.190 - - - - 87 116 145 182 218 254 327 #10-18 #12-14 0.216 .. - - - 99 132 165 207 248 289 373 #12-24 1/4-14 0.250 - - - - 115 153 191 239 287 333 430 Self-piercing Screws for Steel-to-Steel Connections6 #8-18S 0.164 37 49 68 86 109 - - - - - - #10-12S 0.190 44 53 77 102 117 150 - - - - - For SI: 1 inch=25.4 mm,1 lbf=4.4 N, 1 ksi=6.89 MPa. 'For tension connections,the lower of the allowable pull-out,pullover,and tension fastener strength of screw found in Tables 2,3,and 5, respectively must be used for design. 2Unless otherwise noted,load values are based upon calculations in accordance with Section E4 of AISI S100.ANSI/ASME standard screw diameters were used in the calculations and are listed in the tables. 3The allowable pull-out capacity for intermediate member thicknesses can be determined by interpolating within the table. 'To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD 4)factor of 0.5. 5For F„z 65 ksi steel,multiply values by 1.44. 6Load values are based on testing in accordance with AISI S905. 128 ESR-2196 I Most Widely Accepted and Trusted Page 7 of 10 TABLE 3—ALLOWABLE TENSILE PULL-OVER LOADS(PNov/fl),FOR HILT!ASTM C1513 SCREWS,pounds-force'°2.3,4,5 Steel Fu=45 ksi Applied Factor of Safety,f2=3.0 Washer or Design thickness of member in contact with the screw head(in.) Screw Head Description Diameter 0,015 0.018 0.024 0,030 0.036 0.048 0,060 0.075 0.090 0.105 0.135 (in.) Hex Washer Head(HWH)or High Hex Washer Head(HHWH) #8-18S 0.315 106 128 170 #8-18 0.335 113 136 181 225 271 363 453 567 680 790 1020 #10-16 0.399 135 162 215 268 323 430 540 673 807 943 1210 #10-125 #12-14 0.415 140 168 224 279 337 447 560 700 840 980 1260 #12-24 114-14 0.500 169 203 270 336 407 540 677 843 1010 1180 1520 Phillips Pan Head(PPH) #8-18 0.311 105 126 168 210 252 336 420 525 630 735 945 #10-16 0.364 123 147 197 246 295 393 491 614 737 860 1106 Phillips Truss Head(PTH) #10-18 0.433 146 175 234 292 351 468 585 731 877 1023 1315 Phillips Pan Framing Head(PPFH) #7-18 0.303 102 123 164 205 245 327 409 511 614 716 920 Phillips Pancake Head(PPCH) #10-16 0.409 138 166 221 276 331 442 552 690 828 966 1242 Torx Pancake Head(TPCH) #12-14 .0409 138 166 221 276 331 442 552 690 828 966 1242 Phillips Flat Truss Head(PFTH) #10-12 0.364 123 147 197 246 295 393 491 614 737 860 1106 For SI: 1 inch=25.4 mm, 1 Ibf=4.4 N, 1 ksi=6.89 MPa. 'For tension connections,the lower of the allowable pull-out,pullover,and tension fastener strength of screw found in Tables 2,3,and 5, respectively must be used for design. 2Load values are based upon calculations in accordance with Section E4 of AISI S100.ANSI/ASME standard screw head diameters were used in the calculations and are listed in the tables. 3The allowable pull-over capacity for intermediate member thicknesses can be determined by interpolating within the table. 4To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD cD factor of 0.5. 'For Ft,a 65 ksi steel,multiply values by 1.44. 129 ESR-2196 I Most Widely Accepted and Trusted Page 8 of 10 TABLE 4A-ALLOWABLE SHEAR(BEARING)CAPACITY OF STEEL-TO-STEEL CONNECTIONS USING HILTI ASTM C1513 SELF-DRILLING SCREWS,pounds-force1'2'3'4'5 Steel F.=45 ksl Applied Factor of Safety,0=3.0 Design Nominal thickness of Design thickness of member not in contact with the screw head(in.) Screw member in Diameter Description (in) contact with screw head, 0.036 0.048 0.060 0.075 0.090 0.105 0.135 (in.) 0.036 167 220 220 220 220 220 220 0.048 167 257 294 294 294 294 294 0.060 167 257 360 367 367 367 367 #7-18 0.151 0.075 167 257 360 459 459 459 459 0.090 167 257 360 459 550 550 550 0.105 167 257 360 459 550 642 642 0.135 167 257 360 459 550 642 826 0.036 174 239 239 239 239 239 239 0.048 174 268 319 319 319 319 319 0,060 174 268 373 400 400 400 400 #8-18 0.164 0.075 174 268 373 497 497 497 497 0.090 174 268 373 497 597 597 597 0.105 174 268 373 497 597 697 697 0.135 174 268 373 497 597 697 897 0.036 188 277 277 277 277 277 277 0.048 188 289 370 370 370 370 370 #10-12 0,060 188 289 403 463 463 463 463 #10-16 0.190 0.075 188 289 403 563 577 577 577 #10-18 0.090 188 289 403 563 693 693 693 0.105 188 289 403 563 693 807 807 0.135 188 289 403 563 693 807 1040 0.036 200 309 315 315 315 315 315 0.048 200 308 420 420 420 420 420 0.060 200 308 430 523 523 523 523 #12-14 0.216 0.075 200 308 430 600 657 657 657 #12-24 0.090 200 308 430 600 787 787 787 0.105 200 308 430 600 787 920 920 0.135 200 308 430 600 787 920 1180 0.036 215 340 363 363 363 363 363 0.048 215 331 467 487 487 487 487 0.060 215 331 463 607 607 607 607 '/4-14 0.250 0.075 215 331 463 647 760 760 760 0.090 215 331 463 647 850 910 910 0.105 215 331 463 647 850 1060 1060 0.135 215 331 463 647 850 1060 1370 130 ESR-2196 1 Most Widely Accepted and Trusted Page 9 of 10 TABLE 4B—ALLOWABLE SHEAR(BEARING)CAPACITY OF STEEL-TO-STEEL CONNECTIONS USING HILTI ASTM C1513 SELF-PIERCING SCREWS, pounds-force/.3.4'6 Steel F.=45 ksi Applied Factor of Safety,f1=3.0 Design Nominal thickness of Design thickness of member not in contact with the screw head(in.) Screw Diameter member in Description tin) contact with screw head, 0.015 0.018 0.024 0.030 0.036 0.048 (in.) 0.015 73 87 105 107 107 - 0.018 79 90 113 113 113 - #8-18S 0.164 0.024 81 90 149 158 158 - 0.030 82 117 149 186 186 - 0.036 106 114 184 236 287 - 0.018 - 77 125 152 173 173 0,024 - 77 137 191 220 253 #10-12S 0.190 0.030 - 109 167 228 255 309 0.036 - 121 167 228 298 373 0.048 - 121 191 241 298 444 For SI: 1 inch=25.4 mm, 1 lbf=4.4 N, 1 ksi=6.89 MPa. 'The lower of the allowable shear(bearing)and the allowable fastener shear strength found in Tables 4 and 5,respectively must be used for design. 2Load values in Table 4A are based upon calculations in accordance with Section E4 of AISI S100.ANSI/ASME standard screw diameters were used in the calculations and are listed in the tables 3The allowable bearing capacity for other member thicknesses can be determined by interpolating within the table. 4To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD(1)factor of 0.5. 5For F.z 65 ksi steel,multiply values by 1.44. 6Load values in Table 4B are based on testing in accordance with AISI S905. TABLE 5—FASTENER STRENGTH OF SCREW NOMINAL FASTENER STRENGTH ALLOWABLE FASTENER STRENGTH4 SCREW DIAMETER DETERMINED BY TESTING DESCRIPTION (in.) Tension,P,5 Shear,Pg, Tension(P,Slfl)' Shear(P551i2)2'3 (lbf) (lbf) (Ibf) (Ibf) #7-18 PPFH 0.151 1000 890 335 295 #8-18 HWH, PPH 0.164 1000 1170 335 390 #8-18S HWH 0.164 1915 1570 640 525 #10-12 PFTH 0.190 2170 1645 720 550 #10-12S HWH 0.190 1915 1905 640 635 #10-16 HWH,HHWH,PPH,PPCH 0.190 1370 1215 455 405 #10-18 PTH 0.190 1390 1845 465 615 #12-14 HWH,TPCH 0.216 2325 1880 775 625 #12-24 HWH 0.216 3900 2285 1300 760 1/4-14 HWH 0.250 4580 2440 1525 815 For SI:1 inch=25.4 mm,1 lbf=4.4 N, 1 ksi=6.89 MPa. 'For tension connections,the lower of the allowable pull-out,pullover,and tension fastener strength of screw found in Tables 2,3,and 5, respectively must be used for design. 2For shear connections,the lower of the allowable shear(bearing)and the allowable fastener shear strength found in Tables 4 and 5, respectively must be used for design. 3See Section 4.1.3 for fastener spacing and end distance requirements. 4To calculate LRFD values,multiply the nominal fastener strengths by the LRFD 4 factor of 0.5. 131 ESR-2196 I Most Widely Accepted and Trusted Page 10 of 10 i�{l. I�t!,',I'�',�'�1�ktki�M .ti ~ 111111�t1�1111 • FIGURE 1—HEX WASHER HEAD(HWH)AND HIGH HEX WASHER FIGURE 2—HEX WASHER HEAD(HWH) HEAD(HHWH)SELF-DRILLING SCREW SELF-PIERCING SCREW ,tl`r1'}1t1t�,��11':,1�,1ktt�. • , IIl1l�lllltllllll'►% 8 FIGURE 3—PHILLIPS PAN HEAD(PPH) FIGURE 4—PHILLIPS PAN FRAMING HEAD(PPFH) SELF-DRILLING SCREW SELF-DRILLING SCREW ill* I FIGURE 5—PHILLIPS BUGLE HEAD(PBH) FIGURE 6—PHILLIPS BUGLE HEAD(PBH) SELF-DRILLING SCREW SELF-PIERCING SCREW * Ilii;'�ti 1�'�i1011,11 G:-- 10WW7 FIGURE 7—PHILLIPS WAFER HEAD(PWH) FIGURE 8—PHILLIPS TRUSS HEAD(PTH) SELF-DRILLING SCREW SELF-DRILLING SCREW CC—)) tilil� ISI`► f;� '' II`tl ! .!�lt� *') I�111IIII11111���It LItFIGURE 9—PHILLIPS PANCAKE HEAD(PPCH) FIGURE 10—TORX PANCAKE HEAD(TPCH) SELF-DRILLING SCREW SELF-DRILLING SCREW 1°17 I SIMI& FIGURE 11—PHILLIPS FLAT TRUSS HEAD(PFTH) SELF-DRILLING SCREW 421.1._"411111 1 MOM%A VW. 11001111 LBA___:i L LBA a Y .41 FIGURE 12—DESCRIPTION OF NOMINAL SCREW LENGTH(L)AND LOAD BEARING AREA(LBA) 132 ESR-2409 ( Most Widely Accepted and Trusted Page 9 of 14 TABLE 6---U-PANEL SECTION PROPERTIES''2'3 Base Metal DECK Weight Thickness Positive Positive Negative Negative TYPE Gauge (psf) (in) S(in3) I(in) S(in) I(in) 29 0.68 0.0139 0.0294 0.0170 0.0260 0.0117 U-PANEL 26 0.89 0.0183 0.0436 0.0243 0.0382 0.0163 24 1.13 0.0232 0.0592 0.0323 0.0539 0.0220 For SI:1 inch=25.4 mm,1 foot=304.8 mm,1 psi=6894 Pa,1 psf=47.88 Pa. Table Notes: 'Tabulated values are based on a 1-foot-wide section. 2Properties are based on 75 percent of 80,000 psi yield strength. (Tensile strength=82,000psi) 3All section properties are net values. 1„ g^ 2„ civ I 36" FIGURE 3—U-PANEL PROFILE SCREW FASTENER PATTERNS TO SUPPORT BEAMS i .¢IL • • 4 FASTENER PATTERN • •_ • • 1, • , , a 7 FASTENER PATTERN SIDE LAP DETAIL SIDE LAP FASTENERS SIDE LAP FASTENERS BETWEEN SUPPORTS BETWEEN SUPPORTS ----- --7-----Thk=T'S'' -------\-..-/- , , i FIGURE 4—INVERTED U-PANEL ATTACHMENT DETAILS 133 ESR-2409 I Most Widely Accepted and Trusted Page 10 of 14 TABLE 7—ALLOWABLE DIAPHRAGM SHEAR CAPACITY(q)AND FLEXIBILITY FACTOR(F )FOR INVERTED U-PANEL WITH SELF DRILLING FASTENERS(2-SPAN CONDITION)1'2'3s,,�,e SIDELAP FASTENER SPAN GAUGE ATTACHMENT PATTERN 2'.0" 3'_0" q'_p" 5'.0" g'_p" 7'.0.. 8'-0.. q MOM IWO 112,,, 11*a 73 54 41 None 4 F 541 368 284 235 204 183 168 @ 24"o.c 4 q 13 18 20 ': 158 105 73 54 41 F 538 364 278 226 192 168 149 @ 18"o.c 4 q 220 191 165 105 73 54 41 F 538 364 276 225 190 166 147 @ 12"o.c 4 q 231,--.- 208 ' 165 105 73 54 41 F 538 362 275 223 188 164 145 29 None 7 q 4,•=29maga 162 105 73 54 41 F 80 60 51 47 45 44 44 @ 24"o.c 7 q ;:.334 263 165 105 73 54 41 F 79 58 47 42 38 35 33 q .,)A4',ift?ki 278 165 105 73 54 41 @ 18"o.c 7 F 79 57 47 41 37 34 32 @ 12"o.c 7 q ;;.369 293 165 105 73 54 41 F 79 57 46 39 35 32 30 None 4 q 246 `186 148, 118;.:: 97 81 62 F 276 191 150 127 113 103 97 @ 24"o.c 4 q amigo 237,2 aticoki 158 110 81 62 F 274 187 144 119 102 90 81 @ 18"o c 4 q 289 251_ : 225 158 110 81 62 F 273 187 143 118 100 88 79 @ 12"o.c 4 qmime A.6.".iltog 247 158 110 81 62 F 273 186 142 116 99 86 77 26 q fifgoill4001 215 158 110 81 62 None 7 F 44 35 31 30 30 30 31 @ 24"o.c 7 q 440 g*oto 247 158 110 81 62 F 43 33 28 25 24 23 22 @ 18"o.c 7 q 456 . tifAiti 247 158 110 81 62 F 43 32 27 25 23 22 21 @ 12"o.c 7 q :t4t151Kgr 405 247 158 110 81 62 F 42 32 27 24 22 20 19 134 ESR-2409 I Most Widely Accepted and Trusted Page 11 of 14 TABLE 7—ALLOWABLE DIAPHRAGM SHEAR CAPACITY(q)AND FLEXIBILITY FACTOR(F)FOR INVERTED U-PANEL WITH SELF DRILLING FASTENERS(3-SPAN CONDITION)1•2•3'4'6'6a.6 (Continued) GAUGE SIDELAP FASTENER SPAN ATTACHMENT PATTERN 2'-0" 3'-0" 4'-0" 5'-0" 6'-0" 7'-0" 8'-0" None 4 q '- (74 9 29, 101 81 66 54 41 F 330 229 181 154 137 126 119 @ 24'b.c 4 q :.,203 171 150 105 73 54 41 F 328 224 173 142 122 108 97 @ 18"o.c 4 q 211 182 164 105 73 54 41 F 327 224 172 141 120 106 95 q igolo got 165 105 73 54 41 @ 12"o.c 4 F 327 222 170 139 118 104 93 29 None 7 q 9-..:26 '191 146 105 73 54 41 F 54 43 39 37 37 38 39 @ 24"o.c 7 q mAngi gime165 105 73 54 41 F 52 40 34 31 29 28 27 @ 18"o.c 7 q :400:tt 261 165 105 73 54 41 F 52 39 33 30 28 26 25 q 350 291 165 105 73 54 41 @ 12"o.c 7 F 51 39 32 29 26 25 23 q X229...:::1.,170. .'ologittoFgalloo 75 62 None 4 F 171 122 99 87 80 76 74 @ 24"o.c 4 q *268.. ,225.. 'f98 .; 158 110 81 62 F 169 117 92 77 67 60 55 q 278" AO* 216 158 110 81 62 @ 18"o.c 4 F 168 117 91 76 66 58 53 @ 12"o.c 4 q -295 265 246 158 110 81 62 F 168 115 90 74 64 56 51 26 None 7 q 354. 2 1 ; 493 153 110 81 62 F 31 26 25 26 27 28 30 @ 24"o.c 7 q legAlWittlEa2206 247 158 110 81 62 F 30 24 22 20 20 19 19 @ 18"o.c 7 q 429 343 247 158 110 81 62 F 29 24 21 19 19 18 18 q digtiti 384 247 158 110 81 62 @ 12"o.c 7 F 29 23 20 18 17 16 16 135 ESR-2409 I Most Widely Accepted and Trusted Page 12 of 14 TABLE 7—ALLOWABLE DIAPHRAGM SHEAR CAPACITY(q)AND FLEXIBILITY FACTOR(F)FOR INVERTED U-PANEL WITH SELF DRILLING FASTENERS(4-SPAN CONDITION)1'2.34ss,7,8(Continued) SIDELAP FASTENER SPAN GAUGE ATTACHMENT PATTERN 2'-0" 3'-0" 4'-0" 5'-0" 6'-0" 7'-0" 8'-0" None 4 q 167 „„ 123 96,, 77, ; 64 54 41 F 226 160 130 113 104 98 95 @ 24"o.c 4 q 198, og)§061 146 105 73 54 41 F 223 155 121 101 87 78 71 @ 18"o.c 4 q moat 160 105 73 54 41 F 222 154 119 99 86 76 69 @ 12"o.c 4 q 221_..., 198 „ 165 105 73 54 41 F 222 152 118 97 84 74 66 29 None 7 q :? 25 .• 63011 Epoor105 73 54 41 F 40 34 32 33 34 35 37 165 105 73 54 41 q @ 24"o.c 7 3....- 235 .` F 39 31 28 26 25 24 24 q Plook"Atm 165 105 73 54 41 @ 18"o.c 7 F 38 31 27 25 24 23 22 @ 12"o.c 7 qMON 283 165 105 73 54 41 F 38 30 26 23 22 21 20 72 62 None 4 q latog 162 •126- 1A2,"' 84 '= F 119 87 74 67 64 62 63 158 110 81 62 @ 24"o c 4 q .:'X61 z19.....':. 192.,lr F 116 82 66 56 50 45 42 q ,272 ' ;234..x: 210 158 110 81 62 @ 18"o.c 4 F 116 81 65 55 48 43 40 q atgog,0 242 158 110 81 62 @ 12"o.c 4 F 115 80 63 53 46 41 38 26 . None 7 q 536-- NAM.. 182..-; 145 110 81 62 F 24 22 22 24 25 27 29 @ 24"o.c 7 q gAiwo gotokgi247 158 110 81 62 F 23 20 18 18 18 4 17 17 @ 18"o.c 7 q 414w§i331 ,;;;; 247 158 110 81 62 F 23 19 18 17 16 16 16 @ 12"o.c 7 q 0$5$4,80373 247 158 110 81 62 F 22 18 17 16 15 15 14 For SI: 1 inch=25.4 mm,1 foot=304.8 mm, 1 plf=14.594 N/m,1 psf=47.88 Pa. Table Notes: 1q=Allowable diaphragm shear in pounds per lineal foot. 2F=Flexibility Factor: The average micro-inches a diaphragm web will deflect in a span of 1 foot under a shear of 1 pound per foot. Panels are attached with#12 self-drilling TEKS Screws manufactured by ITW Buildex with a minimum 0.211 inch diameter to intermediate and end supports as shown in Figure 5. 4#12 self drilling TEKS Screws manufactured by ITW Buildex with a minimum 0.211 inch diameter to be used for panel sidelap attachments. The spacing of screws,a0,in feet,fastening to diaphragm perimeter members parallel to the panel must be: ac = 17,500t/q where: t=thickness of deck in inch q = required diaphragm shear (Allowable Stress Design) at shear transfer,in plf 6For wind loading,values may be multiplied by a factor of 1.25. 7Panels must be attached to structural framing with a minimum thickness of 3/16 inch. 8Fasteners have a minimum 1/2"diameter washer with a minimum 0.06 inch thickness. 136 STRUCTURAL CALCULATIONS FOR 29 GA.STRUCTURAL SHEAR WALLS FROM EXAMPLES SUPPLIED IN THE STEEL DECK INSTITUTES "DIAPHRAGM DESIGN MANUAL,3rd edition"THE FOLLOWING SHEARWALL IS ANALYZED FOR STRENGTH. STRENGTH DESIGN: #OF EDGE FASTENERS = ne:= 7 #OF STITCH FASTENERS= ns:= 0 #OF GIRTS BETWEEN END= np:= 1 ns PANEL LENGTHS(MIN.) = L:= 10•FT n :- SUPPORT SPACINGS - Lv := 5.FT nP+ 1 TEK DIAMETER#12 = d:= .2111•1N PANEL GAUGE = t:= .0139.1N STEEL STRENGTH - Fy:= 60.KSI PANEL DEPTH = D:= .8125.I N MATERIAL: D=0.813.IN t=0.014.IN Fy=60•KSI CONNECTIONS: ne= 7 #12 TEKS AT EACH PANEL TO POSTS, AND n =0 AT SIDELAPS BETWEEN POSTS. d = 0.211•IN Lv= 5•FT CONNECTION STRENGTH: IN 3 Qf:= 1.25. •Fy•t•(1•KSI -0.005•Fy) eq 4.5-1 KIPS Qf= 0.73•KIPS SIDELAP STRENGTH: Qs:= 115• KIPSSI •d•t eq 4.5-2 Qs=0.337•KIPS Qs as:= — defined in section 2.2 Qf as=0.462 Lv D•- 12 X:= 1 -- 3 240•IN2 X=0.856 > 0.7 ns=0 NUMBER OF STITCH FASTENERS ns•as=0 * SUMXe:= (6+6+ 12+ 12+ 18+ 18)•IN * SUMXe=72•IN W:= 36•IN SUMXe a1 := a1 =2 W 137 1z.7 np= 1 a2:= a1 ne= 7 L= 10.FT Su :_ (2.a1 + np•a2+ ne) Qf Su = 948.675.PLF EQ.2.2-2 L SUMXe2:= 2,(62 + 122 + 182)•1N2 SUMXe2 = 1008 IN2 * SUMXp2:= SUMXe2 2•np•SUMXp2 + 4•SUMXe2 Qf Su2 := 2•(X- 1) + ns•as + — EQ.2.2-4 W2 L Su2 = 319.595.PLF B := ns•as+ 12 •(2•np•SUMXp2 + 4•SUMXe2) W B =4.667 ne N:= — W N2.82 Su3:= •Qf EQ.2.2-5 (L2,N2) + B2 ne= 7 #12 TEKS AT EACH PANEL TO POSTS, AND n = 0 AT SIDELAPS BETWEEN POSTS. Su =948.675.PLF Su2= 319.595•PLF Suf1 := if(Su <Su2,Su,Su2) Su3=333.937.PLF Suf:= if(Sufi <Su3,Suf1 ,Su3) USING A FACTOR OF SAFETY OF 2.5 Suf S:_ — 2.5 S = 128•PLF 138 STRUCTURAL CALCULATIONS FOR 26 GA.STRUCTURAL SHEAR WALLS FROM EXAMPLES SUPPLIED IN THE STEEL DECK INSTITUTES "DIAPHRAGM DESIGN MANUAL,3rd edition"THE FOLLOWING SHE'ARWALLIS ANALYZED FOR STRENGTH, STRENGTH DESIGN: #OF EDGE FASTENERS = ne:= 7 #OF STITCH FASTENERS= ns:= 0 #OF GIRTS BETWEEN END= np:= 3 PANEL LENGTHS(MIN.) = L:= 10•FT n:- ns SUPPORT SPACINGS = LV:= 2.5•FT no+ 1 TEKDIAMETER#12 - d:= .2111.IN PANEL GAUGE 26 GA. = t:_ .019.1N STEEL STRENGTH = Fy:= 60•KSI PANEL DEPTH = D:= .8125.1N MATERIAL: D=0.813•IN t=0.019•IN Fy=60•KSI CONNECTIONS; ne= 7 #12 TEKS AT EACH PANEL TO POSTS, AND n =0 AT SIDELAPS BETWEEN POSTS. d = 0.211•IN Lv=2.5•FT CONNECTION STRENGTH: 3 Qf;= 1.25• IN •Fy•t•(1•KSI - 0.005•Fy) eq 4.5-1 KIPS Qf= 0.998•KIPS SIDELAP STRENGTH: Qs:= 115.KIPSSI •d•t eq 4.5-2 Qs =0.461.KIPS as:= Qs defined in section 2.2 Qf as=0.462 Lv D•— 12 X:= 1 - 3 240.1N2• t X=0.939 > 0.7 ns =0 NUMBER OF STITCH FASTENERS ns.as= 0 SUMXe:= (6+ 6+ 12+ 12 + 18+ 18)•IN * SUMXe=72•IN W:= 36•IN SUMXe a1 := a1 =2 W 139 np= 3 a2:= a1 ne=7 L= 10.FT Su:= (2.a1 + np•a2+ ne)•Qf Su = 1695.75•PLF EQ.2.2-2 L SUMXe2 := 242 + 122 + 182)•1N2 SUMXe2 = 1008.1N2 * SUMXe2 := SUMXe2 2•np•SUMXp2 +4,SUMXe2 Qf Su2:= 2•(X- 1) + ns•as + — EQ.2.2-4 W2 L Su2=763.584•PLF B:= ns•as + 92 •(2•np•SUMXp2 + 4•SUMXe2) W B = 7.778 ne N:= — W N2 B2 Su3:= (( }} •Qf EQ.2.2-5 (L2.N2) + B2 ne= 7 #12 TEKS AT EACH PANEL TO POSTS, AND n=0 AT SIDELAPS BETWEEN POSTS. Su = 1695.75.PLF Su2=763.584•PLF Suf := if(Su <Su2,Su,Su2) Su3= 736.02•PLF Suf:= if(Sufl <Su3,Sufi,Su3) USING A FACTOR OF SAFETY OF 2.5 Suf S := 2.5 S =294•PLF 140 STRUCTURAL CALCULATIONS FOR 22 GA.STRUCTURAL SHEAR WALLS FROM EXAMPLES SUPPLIED IN THE STEEL DECK INSTITUTES "DIAPHRAGM DESIGN MANUAL,3rd edition"THE FOLLOWING SHEARWALLIS ANALYZED FOR STRENGTH. STRENGTH DESIGN: #OF EDGE FASTENERS = ne:= 7 #OF STITCH FASTENERS= ns:= 8 #OF GIRTS BETWEEN END= nip:= 3 ns PANEL LENGTHS(MIN.) = L:= 10•FT n :- SUPPORT SPACINGS = Lv:= 2.5.FT np+ 1 TEKDIAMETER#12 = d := .2111•1N PANEL GAUGE = t:= .029.IN STEEL STRENGTH = Fy:= 50.KSI PANEL DEPTH = D:= .8125.1N MATERIAL: D =0.813•IN t =0.029.IN Fy=50.KSI CONNECTIONS: ne=7 #12 TEKS AT EACH PANEL TO POSTS, AND n =2 AT SIDELAPS BETWEEN POSTS. d= 0.211•IN Lv=2.5•FT CONNECTION STRENGTH: IN 3 Qf:= 1.25. •Fy•t•(1•KSI - 0.005•Fy) eq 4.5-1 KIPS Qf= 1.359•KIPS SIDELAP STRENGTH: KIPS Qs:= 115. SI •d•t eq 4.5-2 Qs= 0.704•KIPS as := Qs defined in section 2.2 Qf as = 0.518 Lv D.- 12 X:= 1 -- 3 240.1 N 2.v t X=0.95 > 0.7 ns=8 NUMBER OF STITCH FASTENERS ns.as=4.143 * SUMXe:= (6+ 6+ 12+ 12+ 18+ 18)•IN * SUMXe=72-IN W:= 36•IN SUMXe a1 := a1 =2 W 141 np= 3 a2:= a1 ne= 7 L= 10 TT Su:= (2•a1 + np•a2+ ne) Qf Su =2310.938•PLF EQ.2.2-2 L SUMXe2:= 2.(62 + 122 + 182).1N2 SUMXe2 = 1008•1N2 * SUMXp2 := SUMXe2 2•np•SUMXp2 +4•SUMXe2 Qf Su2 := 2.(X- 1) + ns•as + — w2 L EQ.2.2-4 Su2 = 1606.994•PLF B:= ns•as + �2 •(2•np•SUMXp2 + 4•SUMXe2) W B = 11.921 ne N:= — W N2B2 Su3 := -Qf EQ.2.2-5 (L2.N2) + B2 ne=7 #12 TEKS AT EACH PANEL TO POSTS, AND n=2 AT SIDELAPS BETWEEN POSTS. Su =2310.938•PLF Su2= 1606.994.PLF Suf1 := if(Su < Su2,Su,Su2) Su3= 1443.079.PLF Suf:= if(Sufi <Su3,Sufi ,Su3) USING A FACTOR OF SAFETY OF 2.5 Suf S :_ — 2.5 S = 577•PLF I 142 Page 38 of 174 IAPMO UES Evaluation Report No, 0217 Expires: 11/2015 Issued: 11/2011 TABLE 12-ALLOWABLE SUPERIMPOSED LOADS(psi)AND ALLOWABLE DIAPHRAGM SHEAR STRENGTH, q(pit), FOR PLW2TM-36 FORMLOKTM &W2-36 FORMLOKTM DECK PANELS WITH CONCRETE FILL1'2'3'4'5'6 TOTAL NO.OF DECK SLAB DECK SPANS&MAX DEPTH GAGE UNSHORED &CONC. CLEAR SPANS SPAN(ft-in.) TYPE (ft-in,) 6'-0" 7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6" 10'-0" 10'•6" 11'-0" 11'-6" 12'-0" 12'-6" 13'-0' 14'-0" 1: 7'-9" 337 261 2321 172 ..152.•135 120 107 96 86 78 70 63 57 ' 46 2: V-0" 337 261 232 209 189 171 l07 - 120 195, 8B 78 70 63 57 ;r46 1 22 3: V-2" 337 261 232 209 189 171 -120,,, 107 _96 86., 78 ..7d. 63 57...;. 46 q-3 welds 1674 1635 1619 1606 1594 1583 1573 1565 1557 1550 1543 1537 1532 1527 1518 q-4 welds 1834 1762 1734 1708 1686 1667 1649 1633 1619 1606 1594 1583 1573 1563 1547 1: 8'-6" 377 292 260 234 211 ,155 139 Y'125 1112 101 9,1 82 X75 68 55 2: 9'-8" 377 292 260 234 211 192 175 1125y 112 101 82 91. 75 68•J 55' 21 3: 10'-0" 377 292 260 234 211 192 175 1611112 ,101, H 91,., 82 'a5r 68_,,,: 55 _) q-3 welds 1680 1637 1620 1605 1592 1580 1570 1560 1552 1544 1537 1530 1524 1519 1509 q-4 welds 1867 1788 1756 1729 1704 1683 1663 1646 1630 1616 1602 1590 1579 1569 1551 1: 9'-3" 400 324 288 259 234 213 1 158.:,,:142 128 1,'16 105 9,5 '86 79� 65 2: 10'-3" 400 324 288 259 234 213 195 179 f'[28 116 105 95' 20 3: 10'-8" 400 324 288 259 234 213 195 179 1651 116-. 105 ,.95 , 86 79 65 3 4" q-3 welds 1689 1643 1624 1608 1593 1580 1569 1559 1549 1541 1533 1526 1519 1513 1503 Normal q-4 welds 1902 1816 1781 1751 1725 1701 1680 1661 1643 1628 1613 1600 1588 1577 1557 Weight 1: 10'-0" 400 389 347 311 275 242 214 190 ,,;161 146;; '133 121' 110 99 ` 81; / JJ (145 pcf) 2: 11'-5" 400 389 347 311 275 242 214 190 169 1521 133 121 11099 81 19 3: 11'-10" 400 389 347 311 275 242 214 190 169 152 136 121 l q-3 welds 1714 1659 1637 1618 1602 1587 1573 1561 1550 1540 1531 1523 1515 1508 1496 q-4 welds 1977 1877 1836 1801 1770 1742 1718 1696 1675 1657 1640 1625 1611 1598 1575 1: 10'-5" 400 400 386 335 293 258 229 203 1 '181 "162: '146, 131 118 105" 84 2: 12'3" 400 400 386 335 293 258 229 203 181 162 146 131 118 105 84 18 3: 12'-5" 400 400 386 335 293 258 229 203 181 162 146 131 118 105. 84 q-3 welds 1739 1678 1653 16321613 1596 1581 1568 1556 1545 1534 1525 1517 1509 1495 q-4 welds 2044 1931 1886 1847 1812 1781 1753 1729 1706 1686 1667 1650 1634 1619 1593 1: 11'-2" 400 400 396 356 322 292 261 233 208 187' 157,,, 143 131 116 93 2: 13'-11" 400 400 396 356 322 292 261 233 208 187 168 148 131 116 93 16 3: 13'-1" 400 400 396 356 322 292 261 233 208 187 168 148 131 116 93 ;i q-3 welds 1809 1733 1702 1675 1652 1631 1612 1595 1580 1566 1553 1541 1531 1521 1503 q-4 welds 2212 2071 2015 1965 1922 1883 1848 1817 1789 1763 1740 1718 1698 1680 1647 1: 7-5" 380 294 tgagalKillt 152, 135 121 108 97 87 78 70 63 51 2: 6-7" 380 294 262 235 213 8' 14641061,0010- *Natastooligg40001 mwpv 22 3: 9 380 294 262 235 213 '152; '135 „'121 1.08 97, ` 87 , „78 ,-,70 63 51 ,.1 q-3 welds 1913 1874 1858 1845 1833 1822 1812 1804 1796 1789 1782 1777 1771 1766 1757 q-4 welds 2073 2001 1973 1947 1925 1906 1888 1872 1858 1845 1833 1822 1812 1802 1786 1: 8'-1" 400 329 293 2631196 174 156 y 140 125 113 102 92 ;8nt75 62'; 2: 9'-3" 400 329 293 263 238 2161156 140 125 113 102 92 83# 75 62 21 3: 9'-6" 400 329 293 263 238 216 198 11.40 125 ,113., 102 92 ,.83, 75,.<.62;! 4'/2' q-3 welds 1919 1876 1859 1844 1831 1819 1809 1799 1791 1783 1776 1769 1763 1758 1748 Normal q-4 welds 2106 2027 1995 1968 1943 1922 1902 1885 1869 1855 1842 1829 1818 1808 1790 Weight 1: 8'-9" 400 364 324 291 263'198 '177'`;159 143 130 '117 106 97: 88 ' 73 (145 pcf) 2: 9`-10" 400 364 324 291 263 239 219 toogifittRoomagimitioWiltd 20 _ 3: 10'-2" 400 364 324 291 263 239 219 201 1143, 130 117 ,106 97 88 73, q-3 welds 1928 1882 1863 1847 1832 1819 1808 1798 1788 1780 1772 1765 1758 1752 1742 q-4 welds 2141 2055 2020 1990 1964 1940 1919 1900 1882 1867 1853 1839 1827 1816 1796 1: 9'-7" 400 400 389 349 316 287 262';199 1;80 163 149 136 124 113 `95 2: 10'-11" 400 400 389 349 316 287 262 241 222 l 163,` 149 1.36 124 113 95. 1 19 3: 11'-4" 400 400 389 349 316 287 262 241 222 206' 149 1136 124 4'13, 95 q-3 welds 1953 1898 1877 1857 1841 1826 1812 1800 1789 1779 1770 1762 1754 1747 1735 q-4 welds 2216 2116 2075 2040 2009 1982 1957 1935 1915 1896 1880 1864 1850 1837 1814 See Page 43 for footnotes. (continued) 143 PLW2' or W2 FORMLOK' 4% in. TOTAL SLAB DEPTH Normal Weight Concrete . , 01.- • Maximum Unshored Clear Span(ft-in.) C., 3 Concrete Properties Deck Number of Deck Spans Density Uniform Weight Uniform Volume Compressive Gage 1 2 3 (1,01) 4380 (yd3/100 ft2) Strength,r0(psi) _ .,.. 22 7-5" 8'-7" 8t-9" 145 42.3 1.080 3000 ,- ----.> -. ,>.--—,N, /I!,,,,,,, ,,...r,,,..-...,,,,a-m a, *..,..-..--••rca.-na,*,,,C,,,.,,,,,,,CS,, 21 8%1" 9'-3" 9%6" Notes: 20 8'-9" 9'-10" 10-2. 1.Volumes and weights do not include allowance for deflection, 2.Weights are for concrete only and do not include weight of steel deck. 19 9.-7" 10'-11" 11.-e 3.Total slab depth is nominal depth from top of concrete to bottom of steel deck. 18 10.-0" 11'-9" 12'4)" Sr 0- PAO' 16 1081 13'43' 124" ----------......_ Shoring is required for spans greater than those _ 4 -z 3+ Z., ,i 1 .tI - 48 Ps r , shown above.See Footnote 1 on page 51 for required bearing. + frt 6t Allowable Superimposed Loads(psf) 5•0•••••,...,,,O.,,,,,"ii...,,,,,,,,,,..*,,,,,,,,...,..X,.....W.....M.“.‘,440.........,,,,Mccox.=....x.ax,,,,,,xpe--,...1.5,...,....re,6,,,....*,,,,,,..x...,.....,..2,m,,,,,,,,,,,,,,,,,,,,,,,,, ... Deck Number of Span(ft-in.) Gage Deck Spans 8'4" 7'4" 7'-6" 8;4" 8'-6" 9%0" 9'-6" 10'-0" 10'$" 11'4" 11'4" 12'4" 12'-6" 13'4" 14'4" „ 1 380 294 [ 220 194 171 152 135 121 108 97 87 78 70 63 51 22 2 380 294 262 235 213 152 135 121 108 97 87 78 70 63 51 3 380 294 262 235 213 152 135 121 108 97 87 78 70 63 51 -------------T 400 329 293 263 196 174 156 140 125 113 102 92 83 75 62 21 2 400 329 293 263 238 216 156 140 125 113 102 92 83 75 62 3 400 329 203 263 238 216 198 140 125 113 102 92 83 75 62 1 400 364 324 291 2e3 198 177 159 143 130 117 106 97 88 73 20 2 400 364 324 291 263 239 219 159 143 130 117 106 97 88 73 3 400 364 324 291 263 239 219 201 ,,.143 130 117 106 97 88 73 _ 1 400 400 389 349 316 287 262 1 199 180 163 149 136 124 113 95. 19 2 400 400 389 349 316 287 262 241 222 I 163 149 136 124 113 95 3 400 400 389 349 316 287 262 241 222 206 L149 136 124 113 95 ----71--- 400 400 400 399 361 328 300 275-1 211 192 fie- ToT 147 135 iiE 18 2 400 400 400 399 361 328 300 275 254 235 210 1 161 147 135 115 3 400 400 400 399 361 328 300 275 254 235 210 185J 147 135 115 ., 1 400 400 400 397 359 327 298 274 253] 101- Ili 159- -146- 134 114 16 2 400 400 400 397 359 327 298 274 253 234 217 197 179 160 I 114 3 400 400 400 397 359 327 298 274 253 234 217 197 1101_134 114 _ See footnotes on page 51.- Shoring required in shaded areas to right of heavy line. Allowable Diaphragm Shear Strengths,q(plf)and Flexibility Factors, F(inilb.x 106) Attachment DeckSpan(ft-in.) . _ Pattern Gage 6'..0r T-tr 7'43" 8c0". 8*-6" 9%0" 9*-6" 10.-0, 10%6" 11"-0 114" 124-0" 12'-6 13*-0 144" 22 q 1913 1874 1858 1845 1833 1822 1812 18041796 1789 1782 1777 1771 1766 1757 21 q 1919 1876 1859 1844 1831 1819 1809 1799 1791 1783 1776 1769 1763 1758 1748 20 q 1928 1882 1863 1847 1832 1819 1808 1798 1788 1780 1772 1765 1758 1752 1742 36/3 19 q 1953 1898 1877 1857 1841 1826 1812 1800 1789 1779 1770 1762 1754 1747 1735 18 q 1978 1917 1892 1871 1852 1835 1820 1807 1795 1784 1774 WM VW 1748 1734 16 q 2048 1972 1941 1914 1891 1870 1851 1834 1819 1805 1792 1781 1770 1760 1742 22 q 2073 2001 1973 1947 1925 1906 1888 1872 1858 1845 1898 1822 1812 187021788 21 q 2108 2027 1995 1968 1943 1922 1902 1885 1869 1855 1842 1829 1818 1808 ino 20 q 2141 2055 2020 1990 1964 1940 1919 1900 1882 1867 1853 1839 1827 1816 1796 ( 3614 19 q 2216 2116 2075 2040 2009 1982 1957 1935 1915 1896 1880 1864 1850 1837 1814 18 q 2283 2170 2125 2086 2051 2020 1992 1968 1945 1925 1906 1889 1873 1859 1833 16 q 2451 2310 2254 2204 2161 2122 2087 2056 2028 2002 1979 1957 1937 1919 1887 xoT,Men.a.c.,,xx.7.7.mszealatawn".......4.,M.,,,,,,,,,,,,•n•N...•••,••••X<C,,,,,,X Na.......00*,.....,•••,,,...,•••••,,,,,,, •+.,,,-^,,,,.,,,,,,,,,,,,,,m,‹,<.......,....,,,,,,,,..m.msomxwx....v., See footnotes on page 51. www.vercodeck.com VERC6415ECKING, INC. VF5 n 53 PUNT" or W2 FO LSIM 2 in. Deep FORMLOK Deck PhosphatizedlPainted or Galvanized PLW2 FORMLOK used with PunchLok II System ; W2 FORMLOK used with TSWs or BPs 3 W2 FORMLOK-SS used with Screws Dimensions t 5,, t T. t 12" 26' 'F 5., 36" PLW2 or W2 FORMLOK W2 FORMLOK-SS r Standard Interlocking Screw Fastened Sidelap Sidelap Deck Weight and Section Properties Weight Id for Moment Allowable Reactions per ft of Width(lb)due to Web Crippling Deflection One Flange Loading Two Flange Loading GageGaiv Painted Single Multi +Seg _SQA End Bearing Interior Bearing End Bearing Interior Bearing Span Span Length Length Length Length (psf) (psf) (in.4/ft) (in.4lft) (in31ft) (in31ft) 2" 3" 4" 4" 6" 2" 3" 4" 4" 6" 22 1.8 1.7 0.340 0.340 0.246 0.256 412 475 527 793 911 405 454 495 956 1108 21 2.0 1.9 0.381 0.381 0.283 0.294 492 565 626 945 1084 499 557 607 1148 1329 20 2.1 2.0 0.422 0.422 0.323 0.333 577 661 732 1109 1269 602 671 729 1356 1566 19 2.4 2.3 0.503 0.503 0.405 0.415 765 874 966 1472 1678 836 928 1006 1818 2092 18 2.7 2.6 0.564 0.564 0.471 0.481 940 1071 1182 1808 2056 1058 1172 1268 2247 2580 16 3.3 3.2 0.707 0.707 0.623 0.638 1424 1613 1773 2738 3097 1697 1868 2013 3441 3931 Notes: 1. Section properties are based on Fy=50,000 psi. 2. Id is for deflection due to uniform loads. 3. Seff(+or-) is the effective section modulus. 4.Allowable(ASD)reactions are based on web crippling,per AISI S100 Section C3.4,where Ow=1.70 for end bearing and 1.75 for interior bearing. Nominal reactions may be determined by multiplying the table values by Ow. LRFD reactions may be determined by multiplying nominal reactions by$ =0.9 for end reactions and 0.85 for interior reactions. Attachment Patterns to Supports 36/3 36/4 e Note: j indicates location of arc spot weld,power actuated fastener, or screw as indicated in the load tables. 50 n VF5 VERCO DECK111%,INC. www.vercodeck.com idoldowns and Tension TiesSIMPSON S/LTT, S/®TT and HTT Tension Ties Strong-Tie The HIT is a single-piece formed tension tie—no rivets, W and a 4-ply formed seat.No washers are required. '` '3i, W-wl T S/DTT2Z tension tie is suitable for lighter-duty hold-down S1\ f ° applications on single or back-to-back studs,and installed 0 \ , easily with#14 self-drilling screws. .J 0 1:' The HTT,S/DTT and S/LTT Tension Ties are ideal for retrofit E I , or new construction projects.They provide high-strength, ® ° 45rnm post-pour,concrete-to-steel connections. ® C. f Material:HTT-111 mil(11 ga) H °°•° } S/DTT2Z-68 mil(14ga) (1. ® H 1 ° • H ° 78mm S/LTT208—Strap:97 mi!(12ga);Plate:229 rnil(3ga) • Washer/ • not f=inish:HTT S/LTT—Galvanized;S/DTT2Z—ZMAX® required coatinga Installation: /. � �/> ` 1�N:,. a3 • Use all specified fasteners. I I,o • Use the specified number of type of screws to attach S/DTI-2z (HTT4 i similar) ,,,,,L.::the strap portion to the steel stud.Bolt the base to the i N wall or foundation with a suitable anchor;see table for , J� �_ the required bolt diameter. Vi El I� • S/DTT2Z requires a standard cut washer(included) )/ l°°' C be installed between the nut and the seat. iI°°. Load Transfer Plate-Washer 0 • Do not install S/LTT206 raised off of the bottom track. °e not required °f/3 11 °u C Typical HTT5 S/LTT20 • See SB and SSTB Anchor Bolts on pages 108-11 1 '01,1,1.-I ° Installation I� for anchorage options. t,4 i ( as a Holdown • See SET-XP"'and AT-XP adhesive products for _ C E ri anchor bolt retrofit options, ����. . . � ,;,may „; Codes:See page'!1 for Code Report Reference Key Chart. , mow,.F �� tJ} I' P- C 11411leir 0 0 Dimensions(in) Fasteners Stud ASD(lbs.) LHFD(lbs.) a Nominal Model Anchor Bolt Member Deflection Deflection Tension Load' Code W H CL `Diame l Stud. Thickness Tension Tension ) Ref. tu Fasteners5 mil(ga.) Load at ASD . Load at LEWD. (lbs. (in.) Load' Load' z cc S/LTT20 2 20 111 31 8-#10 33(20 ga) 1200 0.125 1890 0.250 4625 0 33(20 ga) 1570 0.138 2200 ` 0.250 ` 4265 a. 0® S/DT72Z 1% 61346 146 16 8-#14 43.(18 ga) 1685 0.151 2355 0.250 5570. 2-33(2-20 1735 .. 0.153 2430 0.250' 5735 IP1, Eli ® HTT4 2 12% 1% Sia 18 41033(20 ga) 3180 0.104 4770 0.187 8215 L2, 'FzF4 2-33(2-20 ga) 4395 0.125 6675 0.250 11835 ch 9 43(18ga) 4240 0.125 6505 0250`.: 11585 I♦ HITS 214 16 1% % 26-#10 2-43(2-18 gay 4670 0.125 6970 a250 ': 12195 1-54(1-16 ga),`: 4150 0.125 6425 ` 0.250 12365 ®These products are available with additional corrosion protection.Additional products on this page may also be available with this option.Check with Simpson Strong Tie for details. 1.The Designer shall specify the foundation anchor material type,embedment and configuration. 2.Stud design by Specifier.Tabulated loads are based on a minimum stud thickness for fastener connection. 3.Deflection at ASD or LRFD includes fastener stp,holdown deforrnation and anchor rod elongation for holdowns installed up to 4"above top of concrete.Holdowns may be instated raised,up to 18°above top of concrete, with no load reduction provided that additional elongation of the anchor rod is accounted for.See bottom of page 114 for installation detail. 4.The Nominal Tension Load is based on the tested average ultimate(peak)load and Is provided for design in accordance with section C5 of AIS18213 that requires a tension tie to have a nominal strength to resist the lesser of the amplified seismic load or the maximum force the system can deliver. 5.See pages 65 through 01 for more information on Simpson Strong-Tie fasteners. 115 146 ITEM 20 BLADE STRUCTURE: Pw:= 32.9.PSF•.6 Pw= 19.74•PSF WORST CASE AT TOP EXTENDS 4 FT PAST BUILDING: L:= 4•FT Pw•14•FT•L2 M: M= 2210.88•FT•LB 2 Sxreq:= M Sxreq= 0.961 IN3 6"X6"X3/I6"TUBE STEEL OK 46000.PSI..6 CHECK CONNECTION AT BASE HAIRPINS AROUND 5/8"'TRU BOLTS 23"APART PER DETAIL 5/KS9 Mr:= 3068.LB•23•IN Mr= 5880.333 FT•LB >> M = 2210.88•FT.LB OK LESSOR WINGS IN OTHER AREAS OK BY COMPARISON ITEM 22 LEDGER ANCHORAGE TO CMU WALLS FOR GRAVITY LOADS P:= (FDL + FLL)•5•FT•2•FT P= 1730 LB Vail:= 2123•LB PER ICC ESR 1385 CHECK LEDGER IN BENDING BETWEEN ANCHORS (FDL + FLL).5•FT•(2•FT)2 M:= M = 432.5•FT•LB 8 4"X4"Xl/4"ANGLE Sx:= 1.03.1N3 fb:= M fb= 5038.835•PSI << Fb:= 36000•PSI•.6 Fb= 21600.PSI OK Sx 147 CHECK CONCRETE DECK FOR BEARING LOAD OF 5461 PLF CONSERVATIVELY CHECK ONLY CONCRETE TOPPING FOR AXIAL LOAD: A 211\1.12.1N A=24 IN2 P:= 5461•LB fa fa=227.542•PSI COMPOSITE DECK IS 3000 PSI A faf:= fa-1.6 faf=364.067•PSI Fa:= .85•3000•PSI Fa=2550-PS1 >> faf=364.067•PSI OK CHECK SHEAR ON REBAR AT DECK TO WALL INTERSECTION PER 12/S3.2: #5 BARS AT 12"0/C IN SHEAR Vail:= .4.60000.PSI•.3068.1N2 VaIl 7363.2 LB > P =5461 LB OK NOTE THIS ISA FULL BASEMENT WITH EQUAL AND OPPOSITE FORCES ON THE opposrrE SIDES CHECK COMBINED BENDINGAND AXIAL ON COMPOSITE DECK: Ac:= 4.1N.7 IN Ac=281N2 CONSERVATIVELY USE TRAPEZOIDAL SECTION As:= .048-IN-9.25.1N As=0.4441N2 AREA OF 18 GAGE DECK FOR PORTION OF SECTION USE EQUIVALENT TRAPEZOIDAL SECTION IN ATTACHED ANALYSIS WITH(4)#3 BA RS WITH 5461#LOAD THE MEMBER IS 30.1%STRESSED PER VERCO TABLE ALLOWABLE LIVE LOAD ON DECK IS 203 PSF WITH BOTHAXIAL AND BENDING THE COMBINED STRESS IS.... 125 ,301 =0.917 < 1.0 OK 203 NOTE OVER 2"OF THE 2"TOPPING NOT USED IN ANALYSIS WHICH WILL DECREASE OVERALL STRESS EVEN MORE THEREFORE THIS ISA SIMPLIFIED YET CONSERVATIVE DESIGN y 4 5 C z 148 0 15 t) KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project 1D: MURRIETA,•CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 arkfttkiwiconstruction.com Printed 31 OCT 2016,it,rmtd He=CAUsersiALEON-1 KIMDOCUME-11ENERCA-11tigardi .ec Concrete Column " • , ENERCALC,INC.1983-201uddt.16.6.7,Ver.6.16.6.7 Lic.#:KW-06008193 Licensee;KIWI II CONSTRUCTION Description: -None-- Code References ....._ Calculations per ACI 318-1 1, IBC 2012,CBC 2013,ASCE 7-10 Load Combinations Used:ASCE 7-10 General information fc:Concrete 28 day strength = 10 ksi Overall Column Height 10.0 ft E= = 3,122.0 ksi End Fixity Top&Bottom Pinned Density = 150.0 pcf Brace condition for deflection(buckling)along columns: 13 = 0.850 X-X(width)axis: fy-Main Rebar = 60.0 ksi Unbraced Length for X-X Axis buckling=10 ft,K=1.0 E-Main Rebar = 29,000.0 ksi Y-Y(depth)axis: Allow.Reinforcing Limits ASTM A6I5 Bars Used Fully braced against buckling along Y-Y Axis Min.Reinf, - 1.0% Max.Reint = 8.0% Column Cross Section Column Dimensions: Top Widtht--5.Oin,Bottom Width=90m , Y Height=4.0in,Top Offset=2.0in,Column Edge to Rebar Edge Cover=1.0in 410#3 fiks Column Reinforcing: general /003 an x Jr Rebar Sizes&Locations Total bars= 4 X&'Y distances measured from lower-left corner. Bar Size X Y Bar Size X Y Bar Size X Y Bar Size X 'I' # in in # in in # in in # in in #3 6.000 3.000 #3 3.000 3.000 #3 7,500 1.000 #3 1.500 1.000 Applied Loads Entered loads are factored per load combinations specified by user. Column self weight not internally calculated AXIAL LOADS._ Axial Load at 10.0 ft above base,H=5.461 k DESIGN SUMMARY Load Combination +1.40D+1.60H Maximum SERVICE Load Reactions.. Location of max.above base 9.933 ft Top along Y-Y 0.0k Bottom along Y-Y 0.0 k Maximum Stress Ratio 0301:'I Top along X-X 0.0k Bottom along X-X 0.0 k Ratio=(PuA2+MitA2)A.5/(PhiPnA2+PhiMnA2)A,5 Pu,- 8.738 k 9 *Pn= 28.641 k Maximum SERVICE Load Deflections.., Mu-x= 0.7857 k-ft 9 *Mn-x= -2.623 kft Along Y-Y 0.0 in at 0.011 above base Mu-y= 0.0 k-ft (P*Mn-y= 0.0k-ft for load combination: ivki Angle= 0.0 deg Along X-X 0.Oin at 0.0 ft above base Mu at Angle= 0.7857 k-ft ylVln at Angle= 2.638 k-ft for load combination: Pn&Mn values located at Pu-Mu vector intersection with capacity curve General Section Information. p = 0.650 t3 =0.850 0 = 0.80 Column Capacities... Pnmax:Nominal Max,Compressive Axial Capacity 96.678 k p :%Reinforcing 1.571 'Yo Rebar%Ok Pnmin:Nominal Min.Tension Axial Capacity -26.40 k Reinforcing Area 0.440 inA2 tp Pn,max:Usable Compressive Axial Capacity 50,273 k Concrete Area 28.0 inA2 ip Pn,min:Usable Tension Axial Capacity -17.160 k „......... . . , ., 4 Ze>, 149 -------, - pi....4 444..s.,,,,i-3/2--Y" /1......./e-frolZ —....----..,......— f-4 0 .-- r., ‘. 64 ei_ir.7-- v*4-4-4._ A rr--"C tr.0,Z.4-41" q> jeZia 0 g .., vi. 4. ) v co v: oi .... 8 12 N cm 0 0 oft-1— . r , eq tr-21-4- ( .e.. if.-,>,."7 -1 k;„cis ...! VI ill 811 f',F.• 4.,4=( -›. q'i. qa r r, 0 d(5 c. 4 h.,,Ift r. 1.."4 0 0 $2 5 5 ef)0 4 ' 0.'t 60:7( e)(i, )(1-c)( -0(e..3,-..s.) g-- < -, 1 2 1--„„•- = r4.0 X i I ‘ 2-,, ft- f:- 5 4 I-- -0 4 t> til 4 . , in P- 1 t;) ?L'''' 0 E o ,• • . . i o) ,..,....„ -0 • . . ii.. . . .ti . . . (/) Z LU • . M) . • , . . • , . . . . • . , . . . . . - . , • . . ,. . . . " . . , . ' . , ... %.*h. a-i.PA.,1 4LPL." rt 4.0.1-00-10 _/2. -," i• I 4.• ,..s. PROJECT DATE STRUCTURAL DESIGN - .-- SHEET 150 .. , . . . ... .. .. KIWI II CONSTRUCTION 28177 KELLER ROAD MURRIETA,CA92563 (877)465-4942 (951)301-8975 (951)301-4096 FAX ATTN:ART LEON STRUCTURAL CALCULATIONS FOR ROOF ANCHORAGE DESIGN LOADS ROOF DEAD LOAD DL:= 4•PSF CMU WALL DEAD LOAD Wp:= 84•PSF 8"CMU SOLID GROUTED SEISMIC LOADING I := 1.0 SDS:_ .608 Sps =0.608 SD1 := .672 SD1 =0.672 ANCHORAGE FORCE REQUIRED Lf:= 30 ka := 1.0+ Lf ka = 1.3 ASCE 7-10 EQ. 12.11-2 100 Fp:= .4•SDs•ka Fp =0.316 ASCE 7-10 EQ. 12.11-1 H:= 17.5•FT P := 5.833.FT PARAPET — w:= H P + P1•(Wp)•.7.Fp w=216.883•PLF FACTOR.7 FOR ALLOWABLE STRESS DESIGN 2 l PER DESIGN LOAD COMBINATION IN 2.4.1 w•48•IN=867.531•LB 5/8"X 5"EMBED EXPANSION ANCHORS,ICBG 1385 WITH SPECIAL INSPECTION,40"0/C Tallexp:= 870•LB Tallexp =870 LB > w•48•IN =867.531•LB LEDGER BENDING L:= 10•FT H= 17.5•FT w=216.883•PLF w•L2 M ._ 8 M Sxreq 30000.PSI Sxreq= 1.084IN3 USE 6"X16 GAGE'C'LEDGER Sx:= 1.155.1N3 SEE ATTACHED OK NOTE ABOVE LEDGER DESIGN INCLUDES ka FACTOR NOT REQUIRED FOR LEDGER,CONSERVATIVE LARGER LEDGER AND HEADER OK BY COMPARISON LEDGER ATTACHMENT TO DRAG STRUT: P:= w•10•FT P =2168.827 LB USE(4)#12 SCREWS TO DRAG STRUT Vail := 619.1_13•4 Vali =2476 LB > P =2168.827 LB OK 151 1 I IND WI Metal Roof and Wall Systems PBU Panel SECTION PROPERTIES NEGATIVE BENDING POSITIVE BENDING PANEL Fy WEIGHT Ixe Sxe Maxo Ixe Sxe Maxo GAUGE (KSI) (PSF) (IN.4/FT.) (IN,3/FT,) (KIP-IN.) (IN.4/FT.) (IN.31FT.) (KIP-IN.) 29 60* 0.75 .....0.0109-- 0.0242 0.9111 0.0151 0.0255 1.0913 26 60* 0.94 --- 0.0160'- 0.0368 1.4323 0.0233 0.0411 1.8067 24 50 1.14 0.0217.- 0.0526 1.5743 0.0316 0.0574 1.7175 _ 22 50 1.44 0.0305 0.0703 2.1049 0.0422 0.0771 2.3097 .Fy is 80-ksi reduced to 80-ksi in accordance with the 2012 edition of the North American Specification For Design Of Cold-Formed Steel Structural Members-A2.3.2. NOTES: 1.AU calculations for the properties of PBU Roof panels are calculated in accordance with the 2012 edition of the North American Specification For Design Of Cold-Formed Steel Structural Members. 2. Ixe is for deflection determination. 3. Sxe is for bending, 4. Maxo is allowable bending moment. 5. All values are for one foot of panel width. The Engineering data contained herein is for the expressed use of customers and design professionals.Along with this data,itis recommended that the design professional have a copy of the most current version of the North American Specification for the Design of Cold-Formed Steel Structural Members published by the American Iron and Steel Institute to facilitate design.This Specification contains the design criteria for cold-formed steel components.Along with the Specification,the designer should reference the most current building code applicable to the project jobsite in order to determine environmental loads.If further information or guidance regarding cold-formed design practices is desired,please contact the manufacturer. Subject to change without notice. 152 Effective November 18,2013 I 5 C -29 GA. SHEAR WALL DESIGN 7esign taken from THE STEEL DECK INSTITUTES, "DIAPHRAGM DESIGN MANUAL" STRENGTH DESIGN INPUTS: #of end fasteners = nt:= 7 PANEL INPUT #of edge fasteners = ne:= 7 Steel Strength = FY=60•ksi (between supports) Panel Depth = D:= .75•in #of stitch fasteners = ns:= 0 (between supports) 29 ga. panel thickness = t:= 0.0139•in #of supports = np;= 3 Panel Width = W:= 36.in (between ends) "between supports" refers to the sum Panel Lengths = L:= 20.11 of all fasteners for full panel length (3-span condition, min.) Support Spacing = L,:= 5.11 Panel Moment of Inertia (inA4/ft) = I:= 0.0109 CONNECTIONS: (7)#12 TEKS AT EACH PANEL TO SUPPORTS AND (0) #12 TEK AT SIDELAPS BETWEEN SUPPORTS f x � Corrugation properties per Figure 3.2-2 (inches): Corrugation pitch = d := 6 / e -/9/ /9/ e:= 1.75 f:= 1 g:= .75 w:=)I(f)2+ 0.752 w= 1.25 CORRUGATION DIMENSIONS Developed flute width = s:= 2.(e+ w) + f s =7 BUCKLING CHECK PER SDI 3RD EDITION: Stdb:= 2.65 FACTOR OF SAFETY FOR BUCKLING, TABLE 2.1 1 4 3250.1000•plf 3 t)3 d Sb :_ • I .\-1 •— Sb = 854.0979•plf L, in s it SB:= SZdb SB =322.3011•plf > vALL:= 128•plf therefore ok (11D A -26 GA. SHEAR WALL DESIGN '?esign taken from THE STEEL DECK INSTITUTES, "DIAPHRAGM DESIGN MANUAL" STRENGTH DESIGN INPUTS: # of end fasteners = nt:= 7 PANEL INPUT: #of edge fasteners = ne:= 7 Steel Strength = FY= 50•ksi (between supports) Panel Depth = D:= .75•in # of stitch fasteners = ns:= 0 (between supports) 26 ga. panel thickness = t:= 0.0183•in #of supports = nP:= 3 Panel Width = W:= 36•in (between ends) "between supports" refers to the sum Panel Lengths = L:= 10•ft of all fasteners for full panel length (3-span condition, min.) Support Spacing = L,:= 2.5•ft Panel Moment of Inertia(inA4/ft) = I:_ .0160 #12 Tek Diameter= d:= 0.211•in * CONNECTIONS: (7)#12 TEKS AT EACH PANEL TO SUPPORTS AND(0) #12 TEK AT SIDELAPS BETWEEN SUPPORTS (U PANEL) f lorrugation properties per Figure 3.2-2 (inches): Corrugation pitch = d:= 6 e:= 1.75 f:= 1 g:= .75 / e /g/ /g/ e w:= 4(f)2+ 0.752 w= 1.25 CORRUGATION DIMENSIONS Developed flute width = s:= 2.(e + w) + f s=7 BUCKLING CHECK PER SDI 3RD EDITION: I2db:= 2.65 FACTOR OF SAFETY FOR BUCKLING, TABLE 2.1 1 3250.1000•plf 3 ( t 13 d Sb= • 1 •I —J — Sb = 2799.8513•plf L� in s ft SB := 5Z b SB = 1056.5476•plf > vALL:= 294.plf therefore ok 154 153 -22 GA. SHEAR WALL DESIGN 'Design taken from THE STEEL DECK INSTITUTES, "DIAPHRAGM DESIGN MANUAL" STRENGTH DESIGN INPUTS: #of end fasteners = nt:= 7 PANEL INPUT. #of edge fasteners = ne:= 7 Steel Strength = F =50•ksi (between supports) Panel Depth = D:= .75•in #of stitch fasteners = ns:= 8 (between supports) 22 ga. panel thickness = t:= 0.0299•in #of supports = nP:= 3 Panel Width = W:= 36•in (between ends) "between supports" refers to the sum Panel Lengths = L:= 10.ft of all fasteners for full panel length (3-span condition, min.) Support Spacing = L, := 2,5•ft Panel Moment of Inertia(in^4/ft) = 1:= .0305 #12 Tek Diameter= dt:= 0.211•in CONNECTIONS:NS: 7 #12 TEKS AT EACH PANEL TO SUPPORTS AND (2) #12 TEK AT SIDE LAPS BETWEEN SUPPORTS (U PANEL) f ;orrugation properties per Figure 3.2-2 (inches): / I Corrugation pitch = d := 6 e:= 1.75 f:= I g:= .75 / e ./g/ /g/ e / / d / w:= 4(f)2 + 0.752 w= 1.25 CORRUGATION DIMENSIONS Developed flute width = s 2.(e+ w) + f s=7 BUCKLING CHECK PER SDI 3RD EDITION: S1db:= 2.65 FACTOR OF SAFETY FOR BUCKLING, TABLE 2.1 1 4 3250.1000•p1f 3 t)3 d Sb:_ • 1 JI Sb =6564.2472•p1f Lv in s ft SB:= Sb SB =2477.0744•plf > vAL.L:= 577•plf therefore ok 12db 1