Loading...
Report (59) ,. i..6;2-ori --co Fl3 * ' 7s—r - sets rce_t, ecee:471 try, I'4---- Efourill3A1T011111VPUTUATA TANK FOUNDATION CALCULATIONS TiojectName:= "Apollo Mechaitical.1500 Gal LAR"1 RECEPF_P i i3uildingcode:= "OSSC 2014" . _ OCT 1 6 201f . ;REVISION1PATE 09/07/17 9/2015.1-8/ 72-3i3F:3-11A— CITY OF 1 IGARD 'ProjectNumber:="177733"I Address:= " tkQit\le2grp'rdC;N+e"1 iLOcation:= "Tigard,OR"! lb lb Unit Reference: kip.7= 1000-lb cf ME ft3 sf a 112 Psf 2 . Psilb 7 ksi 1000— ft in in2 "Von-Essential Service": FOUNDATION PAD DIMENSIONS ALLOWABLE SOIL BEARING PRESSURE . - 1500psf Width a-= 15.ft ., pads:=1; Frostlepth !Fd:= 111b iProduct:.,.. "ARGON"1 Length 11 -.. 10.A Number of VesselsNaps• !INT -= 1 • . eq t ;Capacity:= 1504 Thickness FL:= K"'ili Shear Key Depth ;IA:.aft I 1 I Number of bolts Nbh:= i Bolt Spadng f s1 :=Om .s2 :=Obti Bolt Circle Radius Lr:=37-in Lr= 37-in SELECT A TOP REBAR SIZE (F.! spt O.0 SPACING: :t :=5 ENTER A WHOLE NUMBER.ENTER BETWEEN 4 ' THROUGH 6 :spt:= 16in SELECT A BOTTOM REBAR SIZE© spb O.0 SPACING: br:= g ENTER A WHOLE NUMBER.ENTER BETWEEN 6 THROUGH 11 Ispb:= 12in _IAD PROFts, 'cc*" et N e 6> Wind Speed .V := 11Q mph co i•%4 e"9 6=0 :.4000psi 84.1 ir et" 595 51PE PrecastPad:= "Yes" Enter Yes or No SEISMIC LOAD --(2 -,7 , .45).OREGON t:Fil. Design Spectral response t/j.elliBEB Slts, Acceleration Sds:=0.720 4k4 80!J.-2-i -I Acceleration for Ss:=0.972 (for short period)Eq.16-39 1_i i_19 , ort period Design Spectral response Spectral Acceleration for Si :=0.421 Acceleration Sell :=0.444 1econd od (for 1-sec period)Eq.16-40 ' . -speri 2 FOUNDATION INPUT DATA 9/8/2017 A-1 Apollo Mechanical 1500G LAR on EZ.xmcd u I • 0' V 1 • T. 111 VESSEL DIMENSIONS AND WEIGHTS Chart Vessels 900 1500 3000 6000 9000 11000 13000 15000 "Capacity" 0 66 66 86 86 114.19 114.19 114.19 114.19 "Diameter" 1 Nitrogen:= 6.7451b 134 188 228 382 347 406 465 525 "Height" 2 Argon:= 11.631b 37 37 35.53 35.53 48.56 48.56 48.56 48.56 "BCR" 3 Oxygen := 9.5271b 9.5 9.5 13.75 13.75 18 18 18 18 "Leg Plate Size" 4 CarbonDioxide:= 8.471b "Ci" 5.10 7.00 13.50 24.50 36.80 44.10 52.10 59.90 "Empty we' 5 Hydrogen:= 0.59061b 14.90 24.60 48.90 92.50 142.50 173.80 204.70 235.50 "ARGON" 6 13.10 21.40 42.50 80.20 123.40 150.30 177.10 203.70 "OXYGEN" 7 10.80 17.20 34.00 63.90 98.10 119.30 140.60 161.80 "NITROGEN" 8 0 1 2 3 4 5 6 7 8 0) Capacity:j =0 through 7 Product:i =6 through 8 Capacity = 1500 Product = "ARGON" i:= if(Product= "NITROGEN",8,if(Product= "ARGON",6,if(Product= "OXYGEN",7,if(Product= "HYDROGEN",9,"Error")))) j := 0 if Capacity = 900 1 if Capacity= 1500 2 if Capacity = 3000 3 if Capacity = 6000 4 if Capacity= 9000 5 if Capacity = 11000 i = 6 6 if Capacity = 13000 7 if Capacity= 15000 "Error" otherwise j = 1 Capacity= 1500 Product = "ARGON" Q VERTICAL VESSEL INFORMATION 9/8/2017 A-2 Apollo Mechanical 1500G LAR on EZ.xmcd f 1 0,11 111 Risk Category Importance Factor IE:= if(Product = "NITROGEN",1,if(Product = "ARGON", 1,if(Product = "OXYGEN", 1.25,if(Product= "HYDROGEN" 1.25, 1)))) IE = 1 = if(I= "Essential Service", 1.5,1E IE = 1 RiskCategory:= if(IE= 1,"II",if(IE= 1.25,"III",if(IE = 1.5,"IV","I"))) RiskCategory = "II" Response Modification := 2 Non Building Structures Factor Calculate Fundamental Period of Tank(T) Tank Height G in W = 2,j• H = 15.667•ft 4 ► A Tank Weight(empty) Wte:= G5 j•kip Wte = 70001b Tank Weight(full) Wtf:= Gi j•kip Wtf = 246001b H Tank Diameter 4:= Gl,j'in W= 5.5 ft Tank Bolt Radius Lr= 37•in Lr= 37•in TANK BOLT RADIUS Lr= 37•in Lr= 37•in TANK GRAVITY CENTROID TO _ Lr REAR ANCHOR DISTANCE Lg'— 2 Lg = 18.5 in TANK Lg+Lr=Lc Lc:= Lg+Lr Lc = 4.625 ft Tank Gravity Centroid to RearAnchor Distance Lg = 18.5•in Lg = 18.5•in Tank Wall thickness at Support tw:= 3 in 8 Uniform Weight Distribution Tank Weight(empty) We Wte we = 446.8 ft 1.0•lb Tank Weight(full) wf Wtf wf = 1570.2 ft 1•lb 9/8/2017 A-3 Apollo Mechanical 1500G LAR on EZ.xmcd Tank Period Wtf = 24600 lb H = 15.667ft e H 2 117 lb W Empty Tank Te:= 0.00000765• 1 •sec.1.4 W) tw Te = 0.024 s ft wf 2 — W Full Tank Tf:= 0.00000765 CW) •lblb w •sec 1.4 Tf = 0.046 s ft Sds = 0.72 R = 2 ASCE Eq. 12.8-2 Cs:= Sas-(R Cs = 0.36 ;IE) IE = 1 /R l ASCE Eq. 12.8-3 Empty Tank Csemx := Shc• I Te) •sec Csemx = 9.11 � E (R l Full Tank Csfmx:= Sdi•I I•Tf) •sec C5fi = 4.86 l E Cminl := 0.14Sds IE Cminl = 0.101 0.8S1 Cmin2 _ Cmin2 = 0.168 R 1 0.5S1 S1 = 0.421 l = 0.105 R•IE Csmin:= Cmin2 if S1 > 0.6 ASCE Eq. 15.4-2 Cmin2_> Cminl Cmin1 otherwise == 0.168 9/8/2017 A-4 Apollo Mechanical 1500G LAR on EZ.xmcd Seismic Response Coefficient used for Seismic force calculation Empty Tank CSe:= CsemX if CS > CsemX Csmin if Cs< Csmin Cs otherwise CSe = 0.36 Full Tank Csf:= Csfmx if Cs > CsfmX Csmin if Cs Csmin Cs otherwise Csf = 0.36 Seismic Base Shear Empty Tank Vse:= Cse Wte Vse = 2.52.kip Full Tank Vs:= Csf Wtf Vs = 8.856.kip Seismic Use Group Calculation Sds = 0.72 Table 11.6-1 ASCE 7-10 SeismicDesignCategory:_ "A" if Sds< .167 "B" if Sds >_ .167 "C" if Sds >_ .33 "D" if Sds >_ .5 "E" if S1 _> .75 SeismicDesignCategory = "D" Table 11.6-2 ASCE 7-10 t� !: ....... := "A" if Sdt < .067 "B" if Sdt >_ .067 "C" if Shc >_ .133 "D" if Shc >_ .2 "E" if S >_ .75 SeismicDesignCategory = "D" 9/8/2017 A-5 Apollo Mechanical 1500G LAR on EZ.xmcd Table 11.6-1 ASCE 7-10 FOR ESSENTIAL SERVICE !!• !: ;'.!.,; :t•! := if/I= "Essential Service", "A" if Sds< .167 ,SeismicDesignCategory) "C" if Sds >_ .167 "D" if Sds _> .33 "D" if Sds >_ .5 "F" if Si > .75 J Table 11.6-2 ASCE 7-10 '• !! !: ;.'.!.: :t•t► := if 1I= "Essential Service", "A" if Shc < .067 ,SeismicDesignCategory) "C" if Sd1 > .067 "D" if Shc >_ .133 "F" if S1 >_ .75 J SeismicDesignCategory = "D" WIND LOADS Base Equation: P=qZ x G x Cf xAf ASCE eq.6-28 Gust Effect Factor(for rigid structure,Sect.26.9.1 Gg:= 0.85 Velocity Pressure q =0.00256 x KZ x Kzt x Kd x V2 (psf) ASCE Eq.6-15 Exposure Coefficient (Table 6-3, Exposure"C") 15 .85 .7 EXPOSURE:= "C" 20 .9 .7 Kz:= 25 .94 .7 b:= if(H< 15ft,1,if(H< 20ft,2,if(H< 25ft,3,if(H< 30ft,4,if(H_< 40ft,5,5))))) 30 .98 .76 lµ:= if(EXPOSURE = "C", 1,2) 1= 1 i = 2 40 1.04 .81 50 1.13 .85 ) b =M:= Kz0,1 HEIGHT:= HEIGHT = 20 1,0 K . 1 = 0.9 9/8/2017 A-6 Apollo Mechanical 1500G LAR on EZ.xmcd Exposure Coefficient (Exposure"C") KZ:= KZ1 at 30 feet.Table 6-3 . Direction Factor K2 = 0.9 Kd:= 0.95 ASCE 7 Table 26.6-1 Topographic Factor Kzt:= 1 K2t= 1 VelocityPressure 2 q:= 0.00256•KZ KZt•Kd•V •psf 27.3-1 q = 26.484•psf W. of = 28.305 W = 2.848 ft p _ r Cf:_ .8 Figure 29.5-1 H '---"./, ..- - ARMS I .4.11 \ t FLEXIBLE VESSEL T>.06 SEC Wind Pressure P:= q•Gg Cf 29.5-1 P = 18.009•psf Object Area Av:= WH A = 86.167ft2 W = 5.5 ft H = 15.667 ft Total Base Shear by Wind Vw:= P•A Vw = 1.6.kip MOMENT ARM LENGTH SEISMIC WIND (H– 1.5•ft)2 H ARMs :_ + 1.5 ft ARMw:= — 3 2 ARMs = 10.9 ft ARMw = 7.8 ft 9/8/2017 A-7 Apollo Mechanical 1500G LAR on EZ.xmcd ANCHOR BOLT LOADS MOMENT ARM(ARM) RESISTING MOMENT SEISMIC ARMs = 10.94 ft SEISMIC Mrs:= Lg•Wtf Mrs = 38-kip-ft WIND ARMw = 7.83 ft WIND Mrw:= Lg•Wte Mrw= 11•kip ft OVERTURNING MOMENT(Mot) Vse = 25201b ARMs = 10.944 ft H = 15.667 ft Vs = 8856 lb 5•ft)1 C(H— 1. SEISMIC Mots:= Vse-ARMs+ + 1.5•fb1J•(Vs—Vse) Mots = 82•kip ft 2 Per ASCE 10, 15.7.10.2 vessels containing liquids,lateral load is located at the volumetric centroid. ARMw = 7.833 ft Vw = 1551.8141b WIND Motw:= Vw•ARMw Motw= 12•kip-ft LEG TENSION (T) (Resisted by one member) Mots = 81.964•kip ft Mrs = 37.925•kip ft Lc = 4.625 ft Sds = 0.72 Mots-.7—.6Mrs Wtf•.7 SEISMIC Ts:= Lc + .2•Sds 3 Ts = 8.312•kip J5,:= if(Ts< Okip,Okip,Ts) Mots— .9Mrs Wtf Seismic Ultimate Ten Load Tsu:= Lc + .2•Sds moi,:= if(Tsu< Okip,Okip,Tsu) Tsu = 11.523•kip Lc = 4.625 ft Motw = 145.871•kip in Mrw = 129.5•kip in Seismic Ultimate Ten Load in Orthoganal Direction Mots— .9•Mrs Wtf +.2•Sds = 10.137.kip ((Lr•sin(60•deg)))2.2 3 Lr•sin(60•deg) 9/8/2017 A-8 Apollo Mechanical 1500G LAR on EZ.xmcd WINDMotes•.6—Mrw•.6 Tw Tw= 0.177•kip := if(Tw< Okip,Okip,Tw) Lc Wind Ultimate Load Twu:= Motw—Mrw•.9 Twu= 0.528•kip := if(Twu< Okip,Okip,Twu) Lc Twu= 0.528•kip r i LEG COMPRESSION (C) (Resisted by one member) SEISMIC Cs:= Mots•.7+Mrs .2•Sds Wtf•.7 Lc 3 Cs = 21.432.kip Mots = 81.964 kip ft Seismic Ultimate Compressive Load Mrs = 37.925.kipft Wtf = 24.6.kip Mots+Mrs•1.2 .2•Sds Wtf Csu:_ + Csu = 28.743•kip Sds = 0.72 Lc 3 Lc = 4.625 ft Seismic Ultimate Compressive Load in Orthoganal Direction Mots+Mrs•1.2 .2•Sds•Wtf + = 25.05•kip ((Lr•sin(60-deg)))2.2 3 Lr•sin(60.deg) 7"----'------... WIND Cw:= Motw•.6+Mrs Lc Cw= 10•kip I Motes•1 +Mrs-1.2 Cwu:= Lc Cwu= 12.468•kip H 4 LEG SHEAR (S) (Assuming three legs) J il SEISMIC Ss := Vs Ss = 2.952.kip _ WIND Vw fi Sw:= 3 Sw = 1•kip + T C JIASCE LOAD CALCULATIONS 9/8/2017 A-9 Apollo Mechanical 1500G LAR on EZ.xmcd U I-OUNOA I ION CALCULA I IONS FOUNDATION DESIGN Vs-Neq Vw Neq pads pads Neq= 1 pads = 1 FOUNDATION PAD: Concrete Strength: fe = 4004 psi Vessel Bearing Plate: Bearing Plate Size: BP := G4,j•in BP = 9.5•in Csu = 28.743•kip Maximum Compression Force: ,:= Csu C = 28.743•kip .85.65 = 0.553 Maximum Bearing Stress: c = 318.479•psi Section 10.14 BP2 Allowable Bearing Stress BSa:= .65•.85 fe if BSa> c "OK","NG" = "OK" BSa = 2210-psi BP2 ) Foundation Slab Punching Shear: be 1.5 Effective Depth de:= T—3.in— 8 •in b„= 8 de = 11.5•in T = 1.333 ft Punching ShearArea: Aps:= (BP+de)-4-de Aps = 966•in2 BP = 9.5 in Punching Shear Stress: PS := C = 28.743•kip Aps PS = 29.754•psi fe = 4004 psi f Allowable Shear Stress: PSallow:= .754 - psi Eq (11-33) psi PSallow= 189.737•psi if(PSallow> PS,"OK","NG") = "OK" 9/8/2017 A-10 Apollo Mechanical 1500G LAR on EZ.xmcd . FOUNDATION WEIGHT(Wf) Wf BLT 150. 50 lb Wf = 30-kip T = 1.333 ft cf L = loft Wtf-Neq GRAVITY LOADS (P) SEISMIC Ps:= pads +Wf Ps = 54.6-kip B — 15 ft Wte Ne pads = 1 SEISMIC EMPTY TANK: Pse:= q+Wf Pse= 37.kip pads Neq= 1 Wte.Neq WIND Pw:_ +Wf Pw = 37•kip Wte = 7000 lb pads Wtf = 24600 lb FOUNDATION/TANK STABILITY CHECK Vs = 88561b OVERTURNING MOMENTS (Mot)SIESMIC mz,:= Vse-(ARMs+T)+[(H— L5•ft)1 + 1.5•ft+11].(Vs—Vse) 2 Mots = 93.772.kip ft SEISMIC EMPTY TANK: Motse:= Vse-(ARMs+T) Motse = 30.94•kip-ft Vs = 88561b Vse = 25201b WIND Aku„:= Vw•(ARMw+T) Motw = 14.225•kip ft T = 1.333 ft RESISTING MOMENTS (Mr) SEISMIC := Ps-L Mrs = 273•kip ft H = 15.667 ft 2 L = 10 ft WIND Mix,,:= Pw•L Mrw = 185•kip ft 2 SEISMIC EMPTY TANK: Mrse:= Pse-L Mrse = 185•kip-ft 2 OVERTURNING SAFETY FACTOR SEISMIC Mrs•.6 FULL FSs:= FSs = 2.5 if(FSs> 1,"OK","NG") = "OK" Mots•.7 EMPTY FSse:= Mrse•.6 FSse = 5.13 if(FSse> 1,"OK","NG") = "OK" Motse-.7 WIND FSw:= Mrw-0.6 FSw= 13.01 if(FSw> 1,"OK","NG") = "OK" Motw-.6 9/8/2017 A-11 Apollo Mechanical 1500G LAR on EZ.xmcd SLIDING SAFETY FACTOR LATERAL BEARING(Lb)=A*P Mn,+s 1tfl A1=FOUNDATION EDGE AREA, Al := L•(T-2•in) Al = 11.667ft2 EXCLUDE TOP 6 INCHES OF FOUNDATION DEPTH A2=SHEAR LUG AREA, Ld= 0 A2 := L•Ld A2 = 0 FOUNDATION WIDTH/2xLUG r ;;5 DEPTH,Ld. IF NO LUG A2=0 A=TOTAL BEARING AREA Aiug:= Al +A2 Aiug = 11.667ft2 7F_f P=LATERAL BEARING PRESSURE Psoil := 150 psf —2•in+Ld) ft J Psoi1 = 175-psf Psoil+ 150psf = 2 Psoii = 162.5 ft 2•lb = if(PrecastPad= "Yes",Opsf,Psoi1) PrecastPad= "Yes" Psoil = 0 psf Lb=TOTAL LATERAL RESISTANCE Lb:= Psoil Lb = 0-kip FRICTION RESISTANCE(SR)=0.25xP(FROM IBC TABLE 1804.2) SEISMIC FULL TANK SRsf:= .25•Ps-.6 SRsf = 8.19-kip SEISMIC EMPTY TANK SRse:= .25•Pse-.6 SRse = 5.55•kip WIND SRw:= .25•Pw•.6 SRw = 5.55•kip Lateral Resistance for Clay soils L•B.130psf = 19.5•kip 9/8/2017 A-12 Apollo Mechanical 1500G LAR on EZ.xmcd ADD LATERAL BEARING TO FRICTION RESISTANCE TO DETERMINE TOTAL RESISTANCE TO SLIDING Tank Full Seismic if[(SRsf+Lb) > Vs•.7,"OK","NG"] = "OK" Tank Empty Seismic if[(SRse+Lb) > Vse•.7,"OK","NG"] = "OK" Wind Tank Empty if[(SRw+Lb) > Vw•.6,"OK","NG"] = "OK" SOIL PRESSURE ALLOWABLE SOIL BEARING PRESSURE qa = 1500.psf if(qa> Ps "OK" "NG"),= �OKE B•L ) ECCENTRICITY=E SEISMIC Mots = 93.772•kip-ft Ps = 54.6•kip Es:= Mots .7 Es = 24.044•in Ps•.6 EFFECTIVE FOOTING LENGHT(Le) Les:= L —Es�3 Les = 8.989 ft L = 10 ft 2 Xs:= CL2 —Esl 3 Xs = 8.989 ft Ps = 364 psf B•L Maximum Soil Bearing Pressure: qmaxs:= 2•Ps-.6 _ Ps B.Xs "�" qmaxs = 485.929•psf if(qa> qmaxs,"OK","NG") = "OK" ECCENTRICITY=E KERN:= L KERN = 20•in 6 SEISMIC Mots = 93.772•kip.ft Ps = 54.6 kipMots•.7 ,VO",:= Ps Es = 14.426•in 9/8/2017 A-13 Apollo Mechanical 1500G LAR on EZ.xmcd EFFECTIVE FOOTING LENGHT(Le) := (2 L —Es) 3 3 Les = 11.393 ft L = 10 ft HL, :_ —Es)3 Xs = 11.393 ft Ps = 364 psf B•L Maximum Soil Bearing Pressure: _ 2 Ps Ps B.Xs qmaxs = 638.967•psf if(qa> qmaxs,"OK","NG") = "OK" WIND Pw = 546001b Ew:= Motes-.6 Ew= 1.876•in KERN = 20•in Pw Q2 := Pw 6•Ew 1 Pw r 6•Ew 1 Q1 := BL•�l + L ) B.L I 1 — L ) Q1 = 398.14•psf Q2 = 329.86•psf if Oa> Q1,"OK","NG") = "OK" Motes•.6 WIND Pw = 546001b14,:= Ew= 3.126•in KERN = 20•in Pw•.6 _ Pw "1+ 6 Ew) _ Pw•�l — 6 Ewl , �`tf B.L v L ) B•L v L ) 1 —a Q 1 = 420.9.psf Q2 = 307.1 sf if > Q 1 "OK","NG") = "OK" -4—tt.�t t I P (qa J yr MOMENTS AND SHEARS AT CRITICAL SECTIONS ` IREfT SEISMIC Distance from edge to critical section : L L —T L = loft 9 �:= 2 Lc = 3.667 ft de = 0.958 ft (Xs—Lc) Shear at Critical Section: qatLc:= qmaxs. qatLc= 433.332•psf Xs L Vcs:= qatLc Lc+(qmaxs—qatLc). o 2 Vcs = 1.966•kip ft 9/8/2017 A-14 Apollo Mechanical 1500G LAR on EZ.xmcd qatLc•Lc2 Lc)2 Moment at Critical Section: Mcs := 2 +(qmaxs—qatLc). l 3 Mcs = 3.835•kip—ft ft WIND Shear at Critical Section: 4414„:= Q2+ Q1 —Q2.(L—Lc) L Vcw:= gatLc•Lc+(Q1 —gatLc)•c 2 Vcw= 1.467 kip ft qatLc•Lc2 (1„)2 Moment at Critical Section: Mcw:= 2 +(Q1 —gatLc)• 3 Mcw = 2.736•kip— ft ft Reinforcement Design: Vu:= 1.5 max(Vcs,Vcw)•12in Vu = 2.949•kip Mu:= 1.5 max(Mcs,Mew).12in Mu= 5.752•kip ft ksi = 1000 lb in GUESS INITIAL As As:= 1•in2 d:= T—3.5•in d= 12.5•in Fc:= Fy:= 60ksi BASE EQUATION FMu=Fy*As(D-A/2) ( As-Fy '\1 1 .85•Fc-12in J 2 a:= root Mu—.9•Fy As d— J,A�J a = 0.103 m =As 2 rhoact:= a rhoact = 0.0006858 12in-d 9/8/2017 A-15 Apollo Mechanical 1500G LAR on EZ.xmcd REINFORCEMENT BOTTOM BAR SELECTION Re-bar Mu Quick Check kip-ft = 0.115 in^2 pmin:_ .0018 pmax:_ .0214.12in•f 2 pmax= 0.029 4 d AREA OF ONE BOTTOM BAR IS: AREA OF REQ. FLEXURAL MINIMUM AREA OF REBAR REQ. STEEL (grin •4 = 0.785•in2 a = 0.103•in2 .0018•d• 2 in= 0.135•in2 2 / 2 BottomRebarBending:= if 8 brim , , -rr) 4 spb 1.— . 12112 > a "OK" "NG"G BottomRebarBending= "OK" AREA OF ONE TOP BAR IS: AREA OF REQ. MINIMUM STEEL 2 (-11-.i 8 mJ • 4- = 0.307•in2 AL:_ .0018.12in•T As = 0.346•in2 tr 12 2 1 7r 12in br . 1 IT. 12•in MinSteel:= if —in —•—+ —•m —• > As,"OK" "NG"I MinSteel = "OK" 8 ) 4 spt 8 ) 4 spb J 2 2 tr 1 7r 12•in br . i 7r 12•iri 2 — in — + —•in) —4 spb = 8 4 spt 8 1.015 in MAXIMUM TOP BAR SPACING=3XTAND LESS THAN 18 INCHES. CHECK SHEAR BASIC EQUATION .85.2•J f012in.d kip psi• in2 tbVn := ShearCheck:= if(bVn > Vu,"OK","NG") ShearCheck= "OK" 1000 4Vn = 16.128•kip > Vu = 2.949•kip O.K. pads Vw•pads 1,71,:= Vs• Neo A174:= Ne 9 Fl FOUNDATION CALCULATIONS 9/8/2017 A-16 Apollo Mechanical 1500G LAR on EZ.xmcd • www.hilti.us Profis Anchor 2.7.3 Company: AIRGAS Page: 1 Specifier: 1500 Gal.LAR Project: Apollo Mechanical Address: Sub-Project I Pos.No.: 177733 Phone I Fax: I Date: 9/20/2017 E-Mail: Specifier's comments: 1 Input data MILT! IP Anchor type and diameter: HIT-HY 2OO+HAS B7 I Effective embedment depth: hef,act=10.000 in.(het,limit=-in.) t ti,t Material: ASTM A 193 Grade B7 Evaluation Service Report: ESR-3187 Issued I Valid: 11/1/201613/1/2018 Proof: Design method ACI 318-08/Chem Stand-off installation: eb=0.000 in.(no stand-off);t=1.250 in. Anchor plate: Ix x ly x t=17.000 in.x 9.500 in.x 1.250 in.;(Recommended plate thickness:not calculated Profile: S shape(AISC);(L x W x T x FT)=3.000 in.x 2.330 in.x 0.170 in.x 0.260 in. Base material: cracked concrete,4000,fc'=4000 psi;h= 16.000 in.,Temp.short/long:32/32°F Installation: hammer drilled hole,Installation condition:Dry Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D, E,or F) yes(D.3.3.5) Geometry[in.]&Loading[Ib,in.lb] z t ao �� tkw" " } firAiagAnt „cpy FAint • Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan i 1■■1111.11191191 www.hilti.us Profis Anchor 2.7.3 Company: AIRGAS Page: 2 Specifier: 1500 Gal.LAR Project: Apollo Mechanical Address: Sub-Project I Pos.No.: 177733 Phone I Fax: I Date: 9/20/2017 E-Mail: 2 Proof I Utilization (Governing Cases) Design values[Ib] Utilization Loading Proof Load Capacity DN/iiv[%] Status Tension Bond Strength 13921 15230 92/- OK Shear Steel Strength 2952 20669 -/15 OK Loading PN PV Utilization DN,v[%] Status Combined tension and shear loads 0.914 0.143 1.0 89 OK 3 Warnings • Please consider all details and hints/warnings given in the detailed report! Fastening meets the design criteria! 4 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan 0 •110• 01 1.•1 1t , VAPORIZER FOUNDATION CALCULATIONS Buildingcode ="OSSC 2014" ii REVISION DATE 09/07/17 ProjectName:= "Apollo Mechanical CEXI A6-EG" 1 8/15/2016 9:11:38 AM ProjectNumber:_ "177733" Address:_ "7555 SW Tech Center Drive" Location:_ "Tigard,OR" Unit Reference: kip- 1000•lb cf- ft3 sf - ft2 psf -= lb psi - Ib ksi 1000-L3 ft in in I:= "Non-Essential Service" FOUNDATION PAD DIMENSIONS ALLOWABLE SOIL BEARING PRESSURE qa:= 1500psf Width B := 15•ft pads:= 1 Frostdepth Fd:= 14in Product:= "ARGON" Length ,L:= 10.ft Number of VesselsNaps: Neq:= 1 Thickness £:= 16•in Shear Key Depth Ld:= Oft Number of bolts Nbh:= 1 SELECTATOP REBAR SIZE @ 16"O.0 SPACING: tr:= 5 ENTER A WHOLE NUMBER. ENTER BETWEEN 4 THROUGH 6 spt:= 16in SELECT A BOTTOM REBAR SIZE @ 12"O.0 SPACING: b,.:= 8 ENTER A WHOLE NUMBER. ENTER BETWEEN 6 THROUGH 11 spb:= 12in Wind Speed V:= 110 mph fe:= 4000psi PrecastPad:= "Yes" Enter Yes or No SEISMIC LOAD Design Spectral Response Sds:= 0.720 Spectral Acceleration for Ss:= 0.972 Acceleration short period (for short period)Eq.16-39 Design Spectral Response Shc := 0.444 Spectral Acceleration for Si := 0.421 Acceleration 1-second period (for 1-sec period)Eq.16-40 IR FOUNDATION INPUT DATA 9/8/2017 B-1 Apollo Mechanical CEXI A6-EG Vap.xmcd ASCE 10 STANDARD VAPORIZER LOAD CALCULATIONS REFERENCE INFORMATION ("CEXI A6-EG" "Model" 0) 36.0 "Width" 1 143.5 "Height" 2 21.5 "Dist.Bet.Blts" 3 0.625 "Bolt hole Dia." 4 AcIN:= 1 "#of Bolts" 5 i:= 8 3 "Leg Plate Size" 6 0.336 "Dry Wt" 7 1.431 "Half Ice Wt" 8 3.611 "Full Ice Wt" 9 1 5 0) j := 0 Bh:= G4,j•in Model:= GO j Model = "CEXI A6-EG" Nbh := G5 j Nbh = 1 Bh = 0.625•in Half Ice Weight: G1 j•in-(GI � m+ 12•in)(G2 j•in-34in)•22• lb +G7j•kip = 1.431.kip ft Full Ice Weight: (GI,j-in 1 lb 9 G1 j•in• 2 + 12.in j•in-34in).32• 3 +G7 j•kip= 2.526.kip ft Unit Reference: kip = 10041b cf= ft3 sf _= ft2 psf = lb psi = lb ksi - 1000 lb ft m2 in 9/8/2017 B-2 Apollo Mechanical CEXI A6-EG Vap.xmcd SEISMIC LOAD Design Spectral response Acceleration (for short period)Eq.16-40 Sds = 0.72 Design Spectral response Acceleration Shc = 0.444 (for 1-sec period) Ig:= 1 if Product= "NITROGEN" 1 if Product= "ARGON" 1.25 if Product = "OXYGEN" 1.25 if Product = "HYDROGEN" 1.5 if I= "Essential Service" IE = 1 SeismicUseGroup:= if(IE= 1,"II",if(IE= 1.25,"III",if(IE= 1.5,"IV","I"))) SeismicUseGroup= "II" w Vaporizer Height := G2,j•in H = 11.958-ft 1 ► D Vaporizer Weight p 9 (Dry) Wte:= G7 j•kip Wte = 336 lb Vaporizer Weight(Iced) Wtf:= Gi,j•kip Wtf = 14311b H Vaporizer Width ,V:= G1,j-in W = 36-in Vaporizer Bolt Distance Lr:= G3,j•in Lr= 21.5•in V Vaporizer Gravity Centroid to RearAnchor Distance L Lr S�= 2 Lg = 10.75•in Vaporizer Bolt Distance Lc:= Lr Lc = 1.792 ft ASCE 7-10 Equation ap := 2.5 Ip := IE Rp:=3 z:= Oin h:= Oin Ip = 1 9/8/2017 B-3 Apollo Mechanical CEXI A6-EG Vap.xmcd • z .4•an.Sds 1 +2• ) Seismic Response Coefficient C __ h� Cs• Rp Cs = 0.24 Ip 1.6•Sds Ip = 1.152 Max .3•Sds Ip = 0.216 Min Min.Seismic Response C smin:= .3.Sds'Ip csmin= 0.216 Seismic Response Coefficient DryVaporizer used for Seismic force calculation p Cse CS C„ = 0.24 Iced Vaporizer Csf:= Cs Csf = 0.24 Seismic Base Shear Dry Vaporizer Vse:= CSe Wte Vse = 0.081•kip Iced Vaporizer Vs:= Csf•Wtf Vs = 0.343•kip SeismicDesignCategory:= "A" if Sds< .167 "B" if Sds >_ .167 "C" if Sds >_ .33 "D" if Sds > .5 "E" if Sdi >_ .75 SeismicDesignCategory = "D" !! !: '!.: ::!M := if/I= "Essential Service", "A" if Sds< .167 ,SeismicDesignCategory) "C" if Sds > .167 "D" if Sds >_ .33 "D" if Sds >_ .5 "F" if Shc >_ .75 ) SeismicDesignCategory = "D" 9/8/2017 8-4 Apollo Mechanical CEXI A6-EG Vap.xmcd WIND LOADS(ASCE-10) Base Equation: Fh =qh x G x CrxAf 29.5-2 Per Fig.6-19 v:= W v = 3.986 Cf:= 1.4 EXPOSURE:_ "C" Gust Effect Factor(for rigid structure) Gg := 0.85 Velocity Pressure qZ=0.00256 x KZ x Kzt x Kd x V2 x 1,„,(psf) 27.3-1 ("H" "C' "B" 15 .85 .57 , ;a9.5,11 „:_ "C" Table 27.3-1 20 .9 .62 KZ:= 25 .94 .66 := if(H< 15ft,1,if(H< 20ft,2,if(H< 25ft,3,if(H< 30ft,4,if(H< 40ft,5,5))))) 30 .98 .70 40 1.04 .76 At, if(EXPOSURE = C ,1,2) 1 = 1 i = 1 50 1.09 .81 ) IG7�w+�,424t, Kz0 1 HEIGHT:= Kzi,0 HEIGHT = 15 H = 11.958 ft K . = 0.85 Exposure Coefficient KZ:= KZi l KZ = 0.85 Direction Factor Kd:= 0.95 Kd = 0.95 (Table 26.6-1) Topographic Factor KZt:= 1 KZt= 1 Wind Speed V = 110 mph 9/8/2017 8-5 Apollo Mechanical CEX1 A6-EG Vap.xmcd VelocityPressure 2 q:= 0.00256•Ki KZt Kd•V •psf q= 25.013•psf Wind Pressure P:= q•Gg.Cf P = 29.766•psf Wind Area = H•W A = 35.875 ft2 Total Base Shear by Wind Vw:= P•A Vw= 1067.8.1b FOUNDATION PAD AND ANCHOR DIMENSIONS MOMENT ARM LENGTH SEISMIC WIND H–32in ARMs:_ +32in ARMw:_ — 2 2 ARMw = 6 ft ANCHOR BOLT LOADS MOMENT ARM(ARM) RESISTING MOMENT SIESMIC ARMs = 7.31 ft SIESMIC Mrs:= Lg•Wtf Mrs = 1•kip ft WIND ARMw = 5.98 ft WIND Mrw:= Lg•Wte Mrw = 0•kip ft OVERTURNING MOMENT(Mot) SIESMIC Mots := Vs-ARMs Mots = 3•kip ft WIND Motw:= Vw•ARMw Motw = 6•kip ft LEG TENSION (T) (Resisted by two members) Mots•.7–Mrs•0.6 .2•Sds Wtf•.7 SEISMIC Ts:_ + Ts = 0.312.kip 2Lc 4 a,:= if(Ts< Okip,Okip,Ts) Ts•1.3 Ts = 0.406•kip 9/8/2017 B-6 Apollo Mechanical CEXI A6-EG Vap.xmcd Mots—Mrs•0.9 .2.Sds'Wtf SEISMIC Tsu:_ + Tsu = 0.43-kip Tsu:= Tsu 2Lc 4 = if(Tsu< Okip,Okip,Tsu) Tsu = 0.43-kip Anchor bolt Tension design load Vs Vsieg:= Vsieg = 0.086•kip Anchor bolt Shear design load Motw-.6—Mrw-.6 WIND Tw:= Tw= 1.019•kip := if(Tw< Okip,Okip,Tw) 2Lc Motw-1—Mrw-.9 Twu:= Twu= 1.706•kip := if(Twu< Okip,Okip,Twu) 2Lc Twu= 1.706-kip Wind Tension design load Vw Vwleg:= 4 Vwieg = 266.96•lb Anchor bolt Wind Shear design load LEG COMPRESSION (C) (Resisted by two members) Mots+Mrs .2•Sds'Wtf-.7 SEISMIC Cs:= + Cs = 1.095•kip 2Lc 4 Mots+Mrs-1.2 .2-Sds'Wtf Csu:_ + Csu = 1.182•kip 2Lc 4 Motw-0.6+Mrs-0.6 WIND Cw:= Cw= 1-kip 2Lc Motw+Mrs-1.2 Cwu:= Cwu= 4.422•kip Lc 1ASCE VAPS LOAD CALCS 9/8/2017 B-7 Apollo Mechanical CEXI A6-EG Vap.xmcd 1 4 IWO` •1 N 1/ •N FOUNDATION DESIGN Vs-Neq Vw Neq Neq= 1 pads = 1 pads pads FOUNDATION PAD: Concrete Strength: fe = 4000•psi Vaporizer Bearing Plate: Bearing Plate Size: BP := G6,j•in BP = 3.in Csu = 1.182•kip Maximum Compression Force: £:= Csu .85•.65 = 0.553 C = 1.182•kip Maximum Bearing Stress: c = 131.297.psi section 10.14 BP2 Allowable Bearing Stress BSa:= .65.85 fe if/BSa> C "OK","NG" = "OK" BP2 ) BSa = 2210-psi Foundation Slab Punching Shear: br 1.5 br= 8 Effective Depth de:= T—3•in— in 8 de = 11.5•in T = 1.333 ft Punching ShearArea: Aps:= (BP+de)-4.de Aps = 667 int BP = 3•in Punching Shear Stress: PS := c C = 1.182•kip Aps PS = 1.772•psi fe = 4000•psi f Allowable Shear Stress: PSallow:= .75.4• psipsi Eq (11-33) PSallow= 189.737•psi if(PSallow> PS,"OK","NG") = "OK" 9/8/2017 8-8 Apollo Mechanical CEXI A6-EG Vap.xmcd + FOUNDATION WEIGHT(Wf) Wf := L.T-150• lb Wf = 3O kip T = 1.333 ft cf L = 10 ft Wtf•Nal GRAVITY LOADS(P) SEISMIC Ps:= +Wf Ps = 31.431-kip B = 15 ft pads Wte•Neq SEISMIC VAPORIZER DRY: Pse:= +Wf Pse = 30.336•kip pads = 1 pads Neq= 1 Wte•Neq WIND Pw :_ +Wf Pw = 30.336•kip Wte = 336 lb pads Wtf = 14311b FOUNDATION/TANK STABILITY CHECK Vs = 343.44 lb OVERTURNING MOMENTS(Mot) SIESMIC ,Maw= Vs•(ARMs+T) Mots = 2.969•kip-ft SEISMIC DRY VAPORIZER: Motse:= Vse.(ARMs+T) Motse = 0.697•kip ft Vs = 343.44 lb WIND &JAL:= Vw•(ARMw+T) Motw= 7.809•kip ft Vse = 80.641b T = 1.333 ft RESISTING MOMENTS (Mr) SEISMIC m:= Ps• Mrs = 157.155•kip-ft H = 11.958 ft 2 WIND AUL:= Pw-2 p Mrw = 151.68-kip- L = 10 ft SEISMIC DRY VAPORIZER: Mrse:= Pse L Mrse = 151.68 kip ft 2 9/8/2017 8-9 Apollo Mechanical CEXI A6-EG Vap.xmcd OVERTURNING SAFETY FACTOR SEISMIC ICED FSs:= Mrs•.6 FSs = 45.37 if(FSs> 1,"OK","NG") = "OK" Mots•.7 DRY FSse:= Mrse .6 FSse = 186.48 if(FSse> 1,"OK","NG") = "OK" Motse•.7 WIND FSw:= Mrw•0.6 FSw= 19.42 ifFSw> 1 �� ,�'�,OK "NG",�) = „OKE, Motw•.6 SLIDING SAFETY FACTOR LATERAL BEARING(Lb)=A*P yl c, l' _�F Al=FOUNDATION EDGE AREA, '1 Mot- EXCLUDE TOP 6 INCHES OF A1 := T-2•in) Al = 11.667ft2 2 �`"�tfi L•( � FOUNDATION DEPTH r' A2=SHEAR LUG AREA, f1 FOUNDATION WIDTH/2xLUG Ld = 0 A2 :— L Ld A2 = 0 DEPTH,Ld. IF NO LUG A2=0 g r o> A=TOTAL BEARING AREA Aiug:= Al +A2 A1ug = 11.667ft2 z< P=LATERAL BEARING PRESSURE. P 150• sf /T—2•in+Ldl p 175 sf soil p \ ft I soil = h Psoil+ 150psf 2 1'soil = 162.5 ft 2•lb := if(PrecastPad= "Yes",Opsf,Psoii) PrecastPad= "Yes" Psoil = 0 psf 9/8/2017 B-10 Apollo Mechanical CEXI A6-EG Vap.xmcd Lb=TOTAL LATERAL RESISTANCE Lb:= Atug Psoil Lb = 0-kip FRICTION RESISTANCE(SR)=0.25xP (FROM IBC TABLE 1804.2) SEISMIC ICED VAPORIZER SRsf:= .25-Ps•.6 SRsf = 4.715.kip SEISMIC DRY VAPORIZER SRse:= .25-Pse•.6 SRse = 4.55-kip WIND SRw:= .25•Pw•.6 SRw = 4.55•kip Lateral Resistance for Clay soils L.B•130psf = 19.5.kip ADD LATERAL BEARING TO FRICTION RESISTANCE TO DETERMINE TOTAL RESISTANCE TO SLIDING Vaporizer Iced Seismic if[(SRsf+Lb) > Vs•.7,"OK","NG"] = "OK" Vaporizer Dry Seismic if[(SRse+Lb) > Vse•.7,"OK","NG"] = "OK" Wind Vaporizer Dry if[(SRw+Lb) > Vw•.6,"OK","NCI = "OK" SOIL PRESSURE ALLOWABLE SOIL BEARING PRESSURE qa = 1500•psf ifI qa> Ps "OK" "NG"J= "OK" \ B-L ECCENTRICITY=E SEISMIC Mots = 2.969•kip ft Mots-.7 Ps = 31.431•kip Es:= Es = 1.323•in Ps•.6 EFFECTIVE FOOTING LENGHT(Le) Les:= CL—Es�3 Les = 14.669 ft L = 10ft 2 Xs:= I L—Es�3 Xs = 14.669 ft Ps = 209.54.psf 2 B•L 2•Ps-.6 Maximum Soil Bearing Pressure: qmaxs:_ := Ps B•Xs qmaxs = 171.41•psf if Oa> qmaxs,"OK","NG") = "OK" 9/8/2017 B-11 Apollo Mechanical CEXI A6-EG Vap.xmcd ECCENTRICITY=E KERN:= L KERN = 20-in 6 Mots-.7 SEISMIC Mots = 2.969•kip-ft , 5,:= Es = 0.794•in Ps Ps = 31.431-kip EFFECTIVE FOOTING LENGHTLe ( ) := (—L 2 —Es);3 Les = 14.802 ft L = 10 ft , :_ -L -Es)3 Xs = 14.802 ft Ps = 209.54 psf 2 B-L Maximum Soil Bearing Pressure: 2 Ps Ps ��_ B•Xs qmaxs = 283.131-psf if Oa> qmaxs,"OK","NG") = "OK" WIND Pw = 314311b Ew:= Motw Ew = 2.981-in KERN = 20-in Pw II Pw 6-Ew Pw (16-EwI,— (14. Vs 13- L ) B-L L blot- /t f Q1 = 240.774 psf Q2 = 178.306-psf if(qa> Q1,"OK","NG") = "OK" — y ■■i MOMENTS AND SHEARS AT CRITICAL SECTIONS ■ i SEISMIC x., Distance from edge to critical section : L L Lr :R_f c:= 2—2 L = 10ft Lc = 4.104 ft de = 0.958 ft Xs—Lc) Shear at Critical Section: qatLc:= qmaxs- qatLc= 204.625-psf Xs Vcs:= qatLc-Lc+(qmaxs—qatLc).1� Vcs = 1.001-kip ft qatLc-Lc2 (Lc)2 Moment at Critical Section: Mcs:= 2 +(qmaxs—qatLc). 3 ft Mcs = 2.164 kip-— ft 9/8/2017 8-12 Apollo Mechanical CEXI A6-EG Vap.xmcd WIND Shear at Critical Section: := Q2+ Q1 L Q2•(L—Lc) Vcw:= gatLc•L�+(Q1 —gatLc)• 2c , Vcw = 0.936•kip ft gatLc•Lc2 (Lc)2 Moment at Critical Section: Mcw:= 2 +(Q1 —qatLc). 3 ft Mcw = 1.956.kip— ft Reinforcement Design: Vu:= 1.5max(Vcs,Vcw)-12in Vu = 1.501-kip Mu:= 1.5 max(Mcs,Mcw).12in Mu= 3.246•kip ft ksi - 1000 lb in GUESS INITIAL As As:= 1•int d:= T—3.5•in d = 12.5•in Fc:= fc Fy:= 60ksi BASE EQUATION FMu=Fy"As(D-A/2) As-Fy '\1 11 a:= root Mu—.9 Fy As d— .85•Fc-12in) A 2 2 J 1 a= 0.058.in =As rhoact:= a rhoact= 0.0003861 12in•d REINFORCEMENT BOTTOM BAR SELECTION Mu Re-bar kip ft pmin:= .0018 pmax:= .0214.12in T pmax= 0.029 Quick Check d = 0.065 in^2 ft2 4•— in 9/8/2017 B-13 Apollo Mechanical CEXI A6-EG Vap.xmcd N' AREA OF ONE BOTTOM BAR IS: AREA OF REQ. FLEXURAL MINIMUM AREA OF REBAR REQ. STEEL 2 C grin 4 = • 0.785•int a= 0.058•int .0018•d• 2 in= 0. 135•int \2 1 8 BottomRebarBending:= if brin I •IT 12'J 4 Spb-1-1- > a, , J "OK" "NG"I BottomRebarBending= "OK" AREA OF ONE TOP BAR IS: AREA OF REQ. MINIMUM STEEL l2 tril = 0.307in2 2 8 ) 4 A4,,,,,:= .0018.12in•T As = 0.346•in 22 1 tr 12in br , 1 it 12•inn MinSteel := if —in •—•—+ —•in •—• > As,"OK","NG"J MinSteel = "OK" 8 J 4 spt 8 J 4 Spb i 2 2 (tr i 1 7T 12•in br 1 7r 12•in 2 —• n •—• —•+ n •—• = 1.015•in 8 ) 4 spt 8 ) 4 spb MAXIMUM TOP BAR SPACING=3XT AND LESS THAN 18 INCHES. CHECK SHEAR BASIC EQUATION 85 2 fo 12in•d ki psi• int p 4Vn := ShearCheck:= if(4.Vn > Vu,"OK","NG") ShearCheck= "OK" 1000 �Vn = 16.128.kip Vu = 1.501•kip O.K. pads Vw•pads := Vs. Neq := Neq ['FOUNDATION CALCULATIONS 9/8/2017 B-14 Apollo Mechanical CEXI A6-EG Vap.xmcd 111111111Irr 1 www.hilti.us Profis Anchor 2.7.3 Company: AIRGAS Page: 1 Specifier: CEXI A6-EG Vap Project: Apollo Mechanical Address: Sub-Project I Pos.No.: 177733 Phone I Fax: Date: 9/8/2017 E-Mail: Specifier's comments: 1 Input data Anchor type and diameter: Kwik Bolt TZ-SS 304 1/2(2) �1Mtttbttttt! Effective embedment depth: hef=2.000 in.,hnom=2.375 in. Material: AISI 304 Evaluation Service Report: ESR-1917 SAFIET Issued I Valid: 6/1/2016 15/1/2017 Proof: Design method ACI 318/AC193 Stand-off installation: eb=0.000 in.(no stand-off);t=0.375 in. Anchor plate: Ix x lY x t=6.000 in.x 3.000 in.x 0.375 in.;(Recommended plate thickness:not calculated Profile: S shape(AISC);(L x W x T x FT)=3.000 in.x 2.330 in.x 0.170 in.x 0.260 in. Base material: cracked concrete,4000,fb'=4000 psi;h= 16.000 in. Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D, E,or F) no Geometry[in.]&Loading[Ib,in.lb] Z Wt p Co ss.„ „, 10__ � s a a -. • • Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan – k I-IIiTI www.hilti.us Profis Anchor 2.7.3 Company: AIRGAS Page: 2 Specifier: CEXI A6-EG Vap Project: Apollo Mechanical Address: Sub-Project I Pos.No.: 177733 Phone I Fax: I Date: 9/8/2017 E-Mail: 2 Proof I Utilization (Governing Cases) Design values[Ib] Utilization Loading Proof Load Capacity ON/0v[%] Status Tension Pullout Strength 1706 2212 78/- OK Shear Pryout Strength 267 3005 -/9 OK Loading PN PI/ S Utilization RN,v[%] Status Combined tension and shear loads 0.771 0.089 5/3 67 OK 3 Warnings • Please consider all details and hints/warnings given in the detailed report! Fastening meets the design criteria! 4 Remarks; Your Cooperation Duties • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis. If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or programs,arising from a culpable breach of duty by you. Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AG,Schaan M M i • • Description of Argon gas: Argon is a monatomic, chemically inert gas composing 0.93% of normal air. Its symbol is Ar, atomic number is 18 and atomic weight is 39.948. Argon is normally found in its gaseous state with a specific gravity of 1 .38 and a boiling point of 302.6°F. Argon is colorless, odorless, tasteless, noncorrosive, nonflammable and nontoxic. Argon gas, although not life sustaining as the only element in an atmosphere, has no known direct or side effect on humans through contact and its flows harmlessly back into the atmosphere when released. It contains no potential human toxicants. Argon is very stable, twice as dense as air and not known to form true chemical compounds. The human body naturally contains about 6 ppb (parts per billion) of Argon by weight. The name Argon comes from the Greek word "Argos" meaning "inactive". Common Name: Argon gas Chemical Name: Argon CAS Registry Number: 7440-37-1 Empirical and Structural Formula: i8Ar4° Specifications for food grade material: High Purity, 99.998% pure Ar Quantitative Compositions: Argon, being a noble gas, does not readily combine with other atoms to form new /modified materials. There are no known Binary Compounds formed in the presence of Argon. Manufacturing Process: Argon is a product of cryogenic air separation, where liquefaction, distillation and purification processes are used to commercially produce High Purity Argon gas. Although PermafreshTM intends to limit a "standard" argon application to less than one ounce for the above conditions of use, there is no scientific evidence indicating that an upward limit/self limit must be imposed. Argon, as a food substance, is GRAS. Discussion: Although I can find no documented history of pure Ar used regularly with foods, air, and thus Ar, has come in contact with food ever since an earth atmosphere was formed. According to experts in gas manufacturing and the food packaging industries, Argon, primarily in combination with N2 and CO2, has been used to preserve freshness in food packaging and transportation to processing/market for over 30 years (statement available on request). An existing wine preservation product called "Private Preserve" (http:I/www.privatepreserve.com/) claims to use Argon as a primary • preservation agent, but the gas applied is air with the 02 removed. PermafreshTM first used Ar during our product research and development stages as early as 1994. 000019 2