Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Report
7 315 Ift,v 1,(c.;7 6(c. 70o RECEIVED SEP 1 8 2017 Structural CITY OF TIGARD BUILDING DIVISION Concept, Engineering 1815 Wright Ave La Verne, Ga. 91750 Tel:909-596-1351 Fax:909-596-7186 Engineer of Record AH Abolhassani, Structural Concepts Eng. 5.,c DEC 51 dpn 23142 Arrov: Wita Rprichc Snta KeiefpaFlt, N Project Name : PACKAGING SPECIALTIES 2544P Project Number : R-090717-4LV 150 OREGON , Date : 09/08/17 ,• Street Address: 7319 SW KABLE LANE, SUITE 700 City/State : TIGARD, OR 97224 SEP 11 2017 Scope of Work : STORAGE RACK Structural Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#: R-090717-4LV TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 Slab on Grade 13 Other Configurations 14—15- PACKAGING sPACKAGING SPECIALTIES TYPE A Page of I c 9/7/2017 Structural Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#: R-090777-4LV Design Data 1)The analyses herein conforms to the requirements of the: 2012 IBC Section 2209 2016 CBC Section 2209A ANSI MH 16.1-2012 Specifications for the Design ofIndustrial Steel Storage Racks"2012 RMI Rack Design Manual" ASCE 7-10,section 15.5.3 2)Transverse braced frame steel conforms to ASTM A570;Gr.50,with minimum strength,Fy=50 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.50,with minimum yield,Fy=50 ksi All other steel conforms to ASTM A36,Gr.36 with minimum yield,Fy=36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70x(electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 5"thick with minimum 2500 psi compressive strength.Allowable Soil bearing capacity is 1000 psf. The design of the existing slab is by others. 6)Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A JColumn r Beam • - :, d{ 4_ Horizontal Brace A/dill Beam to Column Connector Diagonal Brace : El Frame Height :.. Beam Product Spacing Base Plate and I Anchors T :_C' . m i Panel Beam ---Ii. Height Length I„Frame. . Front View: Down Aisle . Depth (Longitudinal) Frame Section A: Cross Aisle (Transverse) Frame PACKAGING SPECIALTIES TYPE A Page 5 of l 9/7/20 17 Str tura) Loncepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#: R-090717-4LV Configuration&Summary:TYPE A SELECTIVE RACK N. N` - - T 7-7---' **RACK COLUMN REACTIONS 24 ASD LOADS 60AXIAL DL= 113/b 24" AXIAL LL= 5,100/b 24" f SEISMIC AXIAL Ps=+/- 4,951 lb 180" BASE MOMENT= 8,000 is-/b 60" 180" 24" 4' / l 24" 60"I 1, 24" N '` N'" ,( 96" .- .1,-- 42" Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.968,Fa=1.113 3 42 in 180.0 in 7 96 in Single Row Component Description STRESS Column Fy=50 ksi KINGMORE C3312TD 3x3x12ga P=5213 Ib,M=21669 in-lb 0.67-OK Column&Backer None None None N/A Beam Fy=50 ksi KINGMORE SB405 4"x2.5"xl5ga Lu=96 in Capacity:4412 lb/pr 0.77-OK Beam Connector Fy=50 ksi Lvl 1:3 pin OK Mconn=13438 in-lb Mcap=14944 in-lb 0.9-OK Brace-Horizontal Fy=50 ksi KINGMORE C 1.58x0.95x0.38x16ga 0.38-OK Brace-Diagonal Fy=50 ksi KINGMORE C 1.58x0.95x0.38x16ga 0.25-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity=8000 in-lb 0.83-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLTTZ ESR 1917 Inspection Reqd(Net Seismic Uplift=2282 ib) 0.592-OK Slab&Soil 5"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.6-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 3,400 lb 60.0 in 24.0 in 211 lb 174 lb 5,213 lb 21,669 "# 13,438 "# 3 pin OK 2 3,400 lb 60.0 in 24.0 in 423 lb 347 lb 3,475 lb 13,013 "# 8,586 "# 3 pin OK 3 3,400 lb 60.0 in 24.0 in 634 lb 521 lb 1,738 lb 7,808 "# 4,032 "# 3 pin OK 24.0 in 24.0 in 24.0 in 24.0 in **Load defined as product weight perpair of beams Total: 1,268 lb 1,041 lb Notes PACKAGING SPECIALTIES TYPE A Pace t of I S— 917120 17 Structural Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#: R-090717-4LV Seismic Forces Configuration:TYPE A SELECTIVE RACK Lateral analysis is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6&ASCE 7-10 sec 15.5.3 Ss= 0.968 Transverse(Cross Aisle)Seismic Load S1= 0.420 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) vt Fa= 1.113 Csl= Sds/R irgus .ear, Fv= 1.580 = 0.1796 Cs-max*Ip= 0.1796 Sds=2/3*Ss*Fa= 0.718 Cs2= 0.044*Sds Vnrin= 0.015 Sd1=2/3*S1*Fv= 0.442 = 0.0316 Eff Base Shear=Cs= 0.1796 Transverse Elevation Ca=0.4*2/3*Ss*Fa= 0.2873 Cs3= 0.5*S1/R Ws= (0.67*PLRF1*PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4.0 = 0.0525 = 7,059 lb Ip= 1.0 Cs-max= 0.1796 Vtransv=Vt= 0.1796*(225 lb+ 6834 lb) PRF1= 1.0 Base Shear Coeff=Cs= 0.1796 Etransverse= 1,268 lb Pallet Height=hp= 48.0 in Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 75 lb Level PRODUCT LOAD P P*0.67*PRF1 DL hi wi*hi Fi Fi*(hi+hp/2) 1 3,400 lb 2,278 lb 75 lb 60 in 141,180 211.3 lb 17,749-# 1 2 3,400 lb 2,278 lb 75 lb 120 in 282,360 422.7 lb 60,8694 3 3,400 lb 2,278 lb 75 lb 180 in 423,540 634.0 lb 129,336-# sum: P=10200 lb 6,834 lb 225 lb W=7059 lb 847,080 1,268 lb 2=207,954 Longitudinal(Downaisle)Seismic Load Similarly for longitudinal seismic loads,using R=6:0 Ws= (0.67*PLRF2*P)+DL p Cs1=Sal/(T*R)= 0.14752= " l � = 7,059 lb (Longitudinal,Unbraced Dir).)R= 6.0 Cs2= 0.0316 Cs=Cs-max*Ip= 0.1475 T 0.50 sec Cs3= 0.0350 Vlong= 0.1475*(225 lb+6834 lb) 1 Cs-max= 0.1475 Elongitudinal= 1,041 lb LimitStates Level Longit seismicshearperupnght Level PRODUC LOAD P P*0.67*PRS DL hi wi*hi Fi Front View 1 3,400 lb 2,278 lb 75 lb 60 in 141,180 173.5 lb 2 3,400 lb 2,278 lb 75 lb 120 in 282,360 347.0 lb 3 3,400 lb 2,278 lb 75 lb 180 in 423,540 520.5 lb sum: 6,834 lb 225 lb W=7059 lb 847,080 1,041 lb PACKAGING SPECIALTIES TYPE A Page r of CC- 9/7/201 7 Structural Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#: R-090717-4LV Downaisle Seismic Loads Configuration:TYPE A SELECTIVE RACK Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. Seismic Story Forces Typical frame made Vlong= 1,041 lb Tributary area oftwocolumns Vco1=Vlong/2= 521 lb ofrick frame N.,,k, F1= 174 lb �- � -'i. mill -::: TypicalFramemade F2= 347 lb F3= 521 lb �- oftwo columns, ED Top View Front View Side View Seismic Story Moments Conceptual System COI Mbase-max= 8,000 in-lb <===Default capacity hl-eff= hi-beam clip height/2 Mbase-v= (Vcol*hleff)/2 = 57 in !Nair Vcol = 14,834 in-lb <__=Moment going to base - 2. Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = = 8,000 in-lb M 1-1= [Vcol*hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2] *h2 _11/4_ (521 lb*57 in)-8000 in-lb = [521 lb- 173.5 Ib]*60 in/2 I � = = 21,669 in-lb = 13,013 in-lb h1 jhleff Mseis= (Mupper+Mlower)/2 I Beam to Column Elevation Mseis(1-1)= (21669 in-lb+ 13013 in-lb)/2 Mseis(2-2)= (13013 in-lb+7808 in-lb)/2 = 17,341 in-lb = 10,410 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 60 in 5,213 lb 21,669 in-lb 17,341 in-lb 1,856 in-lb 13,438 in-lb 3 pin OK I 2 60 in 3,475 lb 13,013 in-lb 10,410 in-lb 1,856 in-lb 8,586 in-lb 3 pin OK 3 60 in 1,738 lb 7,808 in-lb 3,904 in-lb 1,856 in-lb 4,032 in-lb 3 pin OK Mconn= (Mseismic+Mend-fixity)*0.70*rho Mconn-allow(3 Pin)= 14,944 in-lb **all moments based on limit states level loading PACKAGING SPECIALTIES TYPE A Page I, of(c 9/7/2017 Structural Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#: R-090717-4LV Column(Longitudinal Loads) Configuration:TYPE A SELECTIVE RACK Section Properties Section: KINGMORE C3312TD 3x3x12ga 3.000 in Aeff= 0.822 inA2 Iy= 1.079 inA4 Kx= 1.7 Ix= 1.445 inA4 Sy= 0.592 inA3 Lx= 58.0 in Sx= 1.170 inA3 ry= 1.025 in Ky= 1.0 I 0.105 in rx= 1.187 in Fy= 50 ksi Ly= 24.0 in 3.000 in 4f= 1.67 Cmx= 0.85 Cb= 1.0 E= 29,500 ksi Loads Considers loads at level 1 COLUMN DL= 112 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 5,100 lb Load Case 5::(1(0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0.75*(11.7*rho*E)<=L0,ASD Method Mcol= 21,668 in-lb axial loadcoeff.• 0.78779505*P seismic momentcoeff.• 0.5625*Moot Sds= 0.7183 Load Case 6::(1+0.14*Sds)D+(0.85+0.14Sds)*B*P+(0,7*rho*E)<=L0,ASD Method 1+0.105*Sds= 1.0754 axial load coeff: 0.66539 seismic moment coeff 0.7*Mcol 1.4+0.14Sds= 1.5006 By analysis,Load case 6 governs utilizing loads as such - 1+0.14Sds= 1.1006 0.85+0.14*Sds= 0.9506 Axial Load=Pax= 1.100562*112 lb+0.950562*0.7*5100 lb Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 3,517 lb = 0.7*21668 in-lb rho= 1.0000 = 15,168 in-lb Axial Analysis KxLx/rx= 1.7*58'71.187" KyLy/ry= 1*24"/1.025" Fe >Fy/2 = 83.1 = 23.4 Fn= Fy(1-Fy/4Fe) = 50 ksi*[1-50 ksi/(4*42.2 ksi)] Fe= nA2E/(KL/r)maxA2 Fy/2= 25.0 ksi = 35.2 ksi = 42.2ksi Pa= Pn/S2c Pn= Aeff*Fn S2c= 1.92 = 28925 lb/1.92 = 28,925 lb = 15,065 lb P/Pa= 0.23 > 0.15 Bending Analysis Check: Pax/Pa+(Cmx*Mx)/(Max*Nx)5 1.0 P/Pao+Mx/Max 5 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy = 0.822 inA2*50000 psi = 41100lb/1.92 = 1.17 inA3*50000 psi = 41,100 lb = 21,406 lb = 58,500 in-lb Max= My/S2f Pcr= nA2EI/(KL)maxA2 = 58500 in-Ib/1.67 = nA2*29500 ksi/(1.7*58 in)A2 = 35,030 in-lb = 43,275 lb px= {1/[1-(Qc*P/Pcr)]}A-1 = {1/[1-(1.92*3517 lb/43275 lb)]}A-1 = 0.84 Combined Stresses (3517 lb/15065 Ib)+(0.85*15168 in-lb)/(35030 in-Ib*0.84)= 0.67 < 1.0,OK (EQ C5-1) 4 (3517 lb/21406 Ib)+(15168 in-lb/35030 in Ib)= 0.60 < 1.0,OK (EQ C5-2) **For comparison,total column stress computed for load case 5 is 61.0% ig loads 4138.201963 lb Axial and M= 11375 in-lb PACKAGING SPECIALTIES TYPE A Page 7 of IC 9/7/201 7 Str tural V once is ngineering 1815 Wright Ave La Verne,CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#:R-090717-4 LV BEAM Configuration:TYPE A SELECTIVE RACK Dt t ERMINE ALLOWABLE MOMENT CAPACITY 2.50 in X-- A)Check compression flange for local buckling(B2.1) 1.50 in is w= c-2*t-2*r = 1.5 in-2*0.064 in-2*0.064 in -�- f = 1.244 in 1.625 in w/t= 19.44 1=lambda= [1.052/(k)^0.5] *(w/t)*(Fy/E)^0.5 Eq.B2.1-4 N J. = [1.052/(4)1\0.5]*19.44*(50/29500)1\0.5 a.000 in = 0.421 <0.673,Range is fully effective Eq.B2.1-1 1 0.064 in B)check web for local buckling per section b2.3 J fl(comp)= Fy*(y3/y2)= 45.29 ksi f2(tension)= Fy*(y1/y2)= 92.35 ksi Y= f2/f1 Eq.B2.3-5 Beam= KINGMORE 58405 4"x2.5"xl5ga = -2.039 Ix= 1.538 in^4 k= 4+2*(1-Y}^3+2*(1-Y) Eq.B2.3-4 Sx= 0.722 in^3 = 66.21 Ycg= 2.640 in flat depth=w= y1+y3 t= 0.064 in = 3.744 in w/t= 58.5 OK Bend Radius=r= 0.064 in 1=lambda= [1.052/(kr0.5]*(wit)*(f1/E)^0.5 Fy=Fyv= 50.00 ksi = [1.052/(66.21)^0.5]*3.744*(45.29/29500)^0.5 Fu=Fuv= 65.00 ksi = 0.296 <0.673 E= 29500 ksi be=w= 3.744 in b2= be/2 Eq 62.3-2 top flange=b= 1.500 in bl= be(3-Y) = 1.87 in bottom flange= 2.500 in = 0.743 Web depth= 4.0^n4^ b1+b2= 2.613 in > 1.232 in,Web is fully effective Determine effect of cold working on steel yield point(Fya)per section A7.2 fl(comp) Fya= C*Fyc+(1-C)*Fy (EQ A7.2-1) Lcorner=Lc= (p/2)*(r+t/2) 0.151 in C= 2*Lc/(Lf+2*Lc) r2 Lflange-top=Lf= 1.244 in = 0.195 in I y3 m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) depth = 0.1820 rf Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy}^2- 1.79 (EQ A7.2-3) = 1.623 since fu/Fv= 1.30 > 1.2 OK Ycg Y' and r/t= 1 < 7 OK then Fyc= Bc*Fy/(R/t)^m (EQ A7.2-2) rz(tenson) = 81.150 ksi iii Thus, Fya-top= 56.09 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) yl= Ycg-t-r= 2.512 in = 108.87 ksi (tension stress at bottom) y2= depth-Ycg= 1.360 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.232 in Lflange-bot=Lfb= Lbottom-2*r*-2*t = 2.244 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.119 Fy-bottom=Fyb= Cb*Fyc+(1-Cb)*Fyf = 53.70 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 27.66 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 18.97 in-k 5,1 Ott-Aural once is Cngineerin g 1815 Wright Ave La Verne,CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: BEN Project:PACKAGING SPECIALTIES Project#:R-09071.7aw BEAM Configuration:TYPE A SELECTIVE RACK RMI Section 5.2,PT II Section Beam= KINGMORE SB405 4"x2.5"xl5ga Ix=Ib= 1.538 inA4 2.50 in Sx=0.722 in^3 —y t= 0.064 in E= 29500 ksi 1.50 in 4. Fy=Fyv= 50 ksi F= 150.0 l �( Fu=Fuv= 65 ksi L= 96 inf Fya= 56.1 ksi Beam Level= 1 1.625 in P=Product Load= 3,400 lb/pair D=Dead Load= 75 lb/pair a.000 0.064 in 1.Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L*W*Rm/8 W=LRFD Load Factor= 1.2*D+ 1.4*P+1.4*(0.125)*P RMI2.2,item 8 FOR DL=2%of PL, W= 1.599 I Rm= 1 [(2*F*L)/(6*E*Ib+3*F*L _ illililliillilllllilii(IIIIIIIIIIIIiIII 11111lllifli [( )/( )1 1-(2*150*96 in)/[(6*29500 ksi*1.538 inA3)+(3*150*96 in)] = 0.909 if F= 0.95 Then F*Mn=F*Fya*Sx= 38.47 in-k Thus,allowable load - 1 --- ' tC per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) Beam = 38.47 in-k*8*2/(96in*0.909* 1.599) Length = 4,412 lb/pair allowable load based on bending stress —. Mend= W*L*(1-Rm)/8 = (4412 lb/2)*96 in*(1-0.909)/8 = 2,409 in-lb @ 4412 lb max allowable load = 1,856 in-lb m 3400 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1-(4*F*L)/(5*F*L+10*E*Ib) Allowable Deflection= L/180 = 1-(4*150*96 in)/[(5*150*96 in)+(10*29500 ksi*1.538 inA4)] = 0.533 in = 0.890 in Deflection at imposed Load= 0.411 in if Dmax= L/180 Based on L/180 Deflection Criteria and Dss= 5*W*LA3/(384*E*Ib) L/180= 5*W*LA3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*I*21(180*5*LA2*Rd) = 384*1.538 in^4*2/[180*5*(96 in)A2*0.89) = 4,720 lb/pair allowable load based on deflection limits Thus,based on the least capacity of item 1 and 2 above: Allowable load= 4,412 lb/pair Imposed Product Load= 3,400 lb/pair (Beam Stress= 0.77 Beam at Level 1 fir?/ Structural Concepts :'. nninp.prsint, 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#: R-09071 7- 3 Pin Beam to Column Connection TYPE A SELECTIVE RACK i he beam end moments shown herein show the result of the maximum induced fixed end monents form seismic+static loads and the code mandated minimum value of 1.5%(DL+PL) —n- Mconn max= (Mseismic+ Mend-fixity)*0.70*Rho ei i 1 iii rho= 1.0000 1 C 1/2" 12" Connector Type= 3 Pin Shear Capacity of Pin Pin Diam= 0.40 in Fy= 50,000 psi Ashear= (0.4 in)^2*Pi/4 = 0.1257 in^2 Pshear= OA*Fy*Ashear = 0.4*50000 psi*0.1257inA2 = 2,514 lb Bearing Capacity of Pin tcol= 0.105 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha*Fu*diam*tcol/Omega = 2.22*65000 psi*0.4 in*0.105 in/2.22 = 2,730 lb >25141b Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 50,000 psi C= P1+P2+P3 tclip= 0.14 in Sclip= 0.127 in^3 = P1+P1*(2.574.5")+P1*(0.574.5") = 1.667*P1 Mcap= Sclip*Fbending C*d= Mcap= 1.667 d= E/2 = 0.127 in^3*0.66*Fy = 0.50 in = 4,191 in-lb Pclip= Mcap/(1.667*d) = 4191 in-lb/(1.667*0.5 in) Thus,P1= 2,514 lb = 5,028 lb Mconn-allow= [P1*4.5"+P1*(2.574.5")*2.5"+P1*(0.574.5")*0.51 = 2514 LB*[4.5"+(2.574.5")*2.5"+(0.5"/4.5")*0.51 = 14,944 in-lb > Mconn max, OK PACKAGING SPECIALTIES TYPE A Page Cl of (c 9/7/2017 Structural ._ Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#: R-090717-4LV Transverse Brace Configuration:TYPE A SELECTIVE RACK Section Properties Diagonal Member= KINGMORE C 1.58x0.95x0.38x16ga Horizontal Member= KINGMORE C 1.58x0.95x0.38x16ga Area= 0.215 in^2 1.580 in Area= 0.215 in^2 r min= 0.355 in r min= 0.355 in {i-1.580 1 Fy= 50,000 psi ' Fy= 50,000 psi 10.950 in K= 1.0 0.950 4c= 1.92 L. 1 1 L. —.Li —a <=—0.380 in Frame Dimensions —a 0.380 Bottom Panel Height=H= 24.0 in Clear Depth=D-B*2= 36.0 in Frame Depth=D= 42.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member 0 I Load Case 6::(1±0 .85+0,14Sds)*B*P+f0,7*rho*EJ<=1A,ASD Method I-. 0 —.I Vtransverse= 1,268 lb vb IMAM Vb=Vtransv*0.7*rho= 1268 lb* 0.7 *1 (kl/r)= (k*Ldiag)/r min = 888 Ib = (1 x 40.2 in/0.355 in) Ldiag= [(D-B*2)^2+(H-6")^23^1/2 = 113.2 in Ldiag = 40.2 in Fe= pi^2*E/(kl/r)^2 H Pmax= V*(Ldiag/D)*0.75 = 22,721 psi = 637 Ib 11 axial load on diagonal brace member Since Fe<Fy/2, Pn= AREA*Fn Fn= Fe f� = 0.215 in^2*22721 psi = 22,721 psi B Typical Panel = 4,885 lb Configuration Pallow= Pn/52 = 4885 lb/1.92 ff = 2,544 lb Pn/Pallow= 0.25 <=1.0 OK Horizontal brace Vb=Vtransv*0.7*rho= 888 lb (kl/r)= (k*Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 25,000 psi = (1 x 42 in)/0.355 in = 20,804 psi = 118.3 in Since Fe<Fy/2,Fn=Fe Pn= AREA*Fn Pallow= Pn/S2c = 20,804 psi = 0.215in^2*20804 psi = 4473 lb/1.92 = 4,473 lb = 2,330 lb Pn/Pallow= 0.38 <=1.0 OK PACKAGING SPECIALTIES TYPE A Page t of fS 9/7/201 7 Structural Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#: R-090717-4LV Single Row Frame Overturning Configuration:TYPE A SELECTIVE RACK Loads Critical Load case(s): A 1)RMI Sec 2.2,item 7: (0.9-0.2Sds)D+(0.9-0.20Sds)*B*Papp-E*rho hp Sds= 0.7183 v Vtrans=V=E=Qe= 1,268 lb (0.9-0.2Sds)= 0.7563 DEAD LOAD PER UPRIGHT=D= 225 lb (0.9-0.2Sds)= 0.7563 PRODUCT LOAD PER UPRIGHT=P= 10,200 lb B= 1.0000 H h Papp=P*0.67= 6,834 lb rho= 1.0000 Wst LC1=Wst1=(0.75634*D+0.75634*Papp*1)= 5,339 lb Frame Depth=Df= 42.0 in T t Product Load Top Level,Ptop= 3,400 lb Htop-Iv1=H= 180.0 in DL/Lvl= 75 lb #Levels= 3 F. Df Seismic Ovt based on E,E(Fi*hi)= 207,954 in-lb #Anchors/Base= 2 height/depth ratio= 4.3 in hp= 48.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 204.0 in Load case 1: Movt= E(Fi*hi)*E*rho Mst= Wstl*Df/2 T= (Movt-Mst)/Df = 207,954 in-lb = 5339 lb*42 in/2 = (207954 in-lb- 112119 in-lb)/42 in = 112,119 in-lb = 2,282 lb Net Uplift per Column Net Seismic Uplift= 2,282 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs*Ip*Ptop>=350 lb for H/D>6.0 Movt= [V1*h+V2*H/2]*0.7*rho = 0.1796*3400 lb = 89,745 in-lb = 611 Ib T= (Movt-Mst)/Df Vleff= 611 lb Critical Level= 3 = (89745 in-lb-57576 in-lb)/42 in V2=VDL= Cs*Ip*D Cs*Ip= 0.1796 = 766 lb Net Uplift per Column = 40 lb Mst= (0.75634*D+0.75634*Ptop*1)*42 in/2 = 57,576 in-lb Net Seismic Uplift= 766 lb Anchor Check(2)0.5"x 3.25"Embed HILTI KWIKBOLT TZ anchor(s)per base plate. Special inspection is required per ESR 1917. Pullout Capacity=Tcap= 1,961 lb L.A.City Jurisdiction? NO Tcap*Phi= 1,961 lb Shear Capacity=Vcap= 2,517 lb Phi= 1 Vcap*Phi= 2,517 lb Fully Loaded: (1141 lb/1961 Ib)^1 +(317 lb/2517 1b)^1 = 0.71 <= 1.2 OK Top Level Loaded: (383 Ib/1961 Ib)^1 +(152 lb/2517 Ib)^1= 0.26 <= 1.2 OK PACKAGING SPECIALTIES TYPE A Page [k of tc 9/7/2017 Structural Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#: R-090717-4LV Base Plate Configuration:TYPE A SELECTIVE RACK Section p f a -► Baseplate=8x5x0.375 ll, Eff Width=W= 8.00 in a= 3.00 in Eff Depth=D= 5.00 in Anchor c.c. =2*a=d= 6.00 in Mb Column Width=b= 3.00 in N=#Anchor/Base= 2 ■y Column Depth=dc= 3.00 in Fy= 36,000 psi 1 � b h- i s%� L= 2.50 in �- w ~ Plate Thickness=t= 0.375 in Downaisle Elevation Down Aisle Loads Load Case 5::(1#0.105*Sds)D+0.75*f(1.4+0.145ds)*B*P+0.75*70.7*rho*EJ<=1.0,ASD Method COLUMN DL= 113 lb Axial=P= 1.0754215*112.5 lb+0.75*(1.500562*0.7*5100 Ib) COLUMN PL= 5,100 lb = 4,139 lb Base Moment= 8,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0754 = 8000 in-lb*0.75*0.7*rho 1.4+0.14Sds= 1.5006 = 4,200 in-lb Effe B= 0.7000 I Axial Load P= 4,139 lb Mbase=Mb= 4,200 in-lb Effe Axial stress=fa= P/A=P/(D*W) M1= wLA2/2=fa*LA2/2 = 103 psi = 323 in-lb Moment Stress=fb= M/S=6*Mb/[(D*BA21 Moment Stress=fb2= 2*fb*L/W = 78.8 psi = 49.2 psi Moment Stress=fbl = fb-fb2 M2= fb1*LA2)/2 I = 29.5 psi = 92 in-lb M3= (1/2)*fb2*L*(2/3)*L=(1/3)*fb2*LA2 Mtotal= M1+M2+M3 = 103 in-lb = 518 in-lb/in S-plate= (1)(t"2)/6 Fb= 0.75*Fy = 0.023 inA3/in = 27,000 psi fb/Fb= Mtotal/[(S-plate)(Fb)] Fp= 0.7*F'c = 0.82 OK = 1,750 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,961 lb OK = 1,970 lb No Tension Cross Aisle Loads Cnticalbad case RN%Sec 21,hn4.'(140115ds)OLt(1+O.14SDS)PL.0.75+EL#J75<-1.O,ASO Method Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 4,139 lb 'When the base plate configuration consists of two anchor bolts located on either side .f the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 109,176 in-lb Pseismic= Movt/Frame Depth ,hall be determined based on a design bending moment in the plate equal Frame Depth= 42.0 in = 2,599 lb o the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 6,738 lb he centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.00 in T If-' c ► kill L=Base Plate Depth-Col Depth= 2.50 in Ta Mu Ta .,rmlll fa= P/A=P/(D*W) M= wLA2/2=fa*LA2/2 ( ' I b I r I = 168si P = 526 in-lb/in Elevation Uplift per Column= 2,282 lb Sbase/in= (1)(tA2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 inA3/in = 27,000 psi Net Tension per anchor=Ta= 1,141 lb c= 2.50 in fb/Fb= M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 = 0.83 OK = 1,426 in-lb Splate= 0.117 inA3 fb Fb *0.75= 0.338 OK PACKAGING SPECIALTIES TYPE A Pace f� of (.S-- 917/2017 Structural ,. Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#: R-090717-4LV Slab on Grade Configuration:TYPE A SELECTIVE RACK P slab • : ••. a Concrete �.� D Pc= 2,500 psi slab t t b e tslab=t= 5.0 in IIIHJIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIuIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIil -� _ Cross teff= 05 60 in --- - Aisle ..... phi=0= 0.6 to-- x c • . Soil y _i fsoil= 1,000 psf Down Aisle H. Movt= 145,568 in Ib SLAB ELEVATION Frame depth= 42.0 in Baseplate Plan View Sds= 0.718 Base Plate 0.2*Sds= 0.144 Effec.Baseplate width=B= 8.00 in width=a= 3.00 in ?=0.600 Effec.Baseplate Depth=D= 5.00 in depth=b= 3.00 in R=B/D= 1.600 midway dist face of column to edge of plate=c= 5.50 in F'c^0.5= 50.00 psi Column Loads midway dist face of column to edge of plate=e= 4.00 in DEAD LOAD=D= 113 lb per column Load Case 1) (1.2+0.2Sds)D+(1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN 5 unfactoredASD load = 1.34366* 113 lb+ 1.34366*0.7*5100 Ib+1 *3465 lb PRODUCT LOAD=P= 5,100 lb per column = 8,414 lb unfactoredASD load Load Case 2) (0.9-0.2Sds)D+(0.9-0.2Sds)*B*Papp+rho*E RMI SEC 2.2 EQTN 7 Papp= 3,417 lb per column = 0.75634* 113 lb+0.75634*0.7*3417 lb+ 1*3465 lb P-seismic=E= (Movt/Frame depth) = 5,360 lb = 3,465 lb per column Load Case 3) 1.2*D+ 1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Limit State load = 1.2*113 lb+1.4*5100 lb B= 0.7000 = 7,275 lb rho= 1.0000 Load Case 4) 1.2*D+ 1.0*P+1.0E ACI 3113-11 Sec 9.2.1,WA9-5 Sds= 0.7183 = 8,701 lb 1.2+0.2*Sds= 1.3437 Effective Column Load=Pu= 8,701 lb per column 0.9-0.20Sds= 0.7563 Puncture Apunct= [(c+t)+(e+t)]*2*t = 195.0 in^2 Fpunctl= [(4/3+8/(3*R)]*?,,*(F'c^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 90. psi = 0.559 < 1 OK Fpunct2= 2.66*1,,*(F'c^0.5) = 79.8 psi Fpunct eff= 79.8 psi Slab Bending Pse=DL+PL+E= 8,701 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+2*t = 1,253 in^2 = 35.40 in = 14.7 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 10.4 in = (fsoil*x^2)/(144*2) = 4.17 in^3 Fb= 5*(phi)*(fc)A0.5 = 372.2 in-lb fb/Fb= M/(S-slab*Fb) r = 150.psi = 0.596 < 1,OK PACKAGING SPECIALTIES TYPE A Page (S of lc 9/7/201 7 Str Aural 4. Loncepts - Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#: R-090717-4LV Configuration&Summary:TYPE B SELECTIVE RACK r **RACKCOLUMN REAC77ONS 24 / ASO LOADS 4" N AXIAL DL= 113/b 24" \ AXL4L LL= 6,300/b 24" /3 SEISMIC AXIAL Ps=+/- 6,079/b 180" l• BASE MOMENT= 8,000/n-lb 60" 180" 24.. 1- 24" / 24" 60" l'- 24" `24" \ Ni. \ 11' -f' 144" 1- 42" -7 Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.968,Fa=1.113 3 42 in 180.0 in 7 144 in Single Row Component Description STRESS Column Fy=50 ksi KINGMORE C3312TD 3x3x12ga P=6413 lb,M=27784 in-lb 0.86-OK Column&Backer None None None N/A Beam Fy=50 ksi KINGMORE SB555 5.5"x2.5"xl5ga Lu=144 in Capacity:4698 lb/pr 0.89-0K Beam Connector Fy=50 ksi Lvl 1:4 pin OK Mconn=16956 in-lb Mcap=26687 in-lb 0.640K Brace-Horizontal Fy=50 ksi KINGMORE C 1.58x0.95x0.38x16ga 0.47-OK Brace-Diagonal Fy=50 ksi KINGMORE C 1.58x0.95x0.38x16ga 0.31-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity=8000 in-lb 0.75-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLTTZ ESR 1917 Inspection Reqd(Net Seismic Uplift=2802 Ib) 0.725-OK Slab&Soil 5"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.85-0K Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 4,200 lb 60.0 in 24.0 in 260 lb 213 lb 6,413 lb 27,784 "# 16,956 "# 4 pin OK 2 4,200 lb 60.0 in 24.0 in 519 lb 426 lb 4,275 lb 15,975 "# 10,587 "# 4 pin OK 3 4,200 lb 60.0 in 24.0 in 779 lb 639 lb 2,138 lb 9,585 "# 4,996 "# 4 pin OK 24.0 in 24.0 in 24.0 in 24.0 in **Load defined as product weight per pair of beams Total: 1,5571b 1,2781b I Notes PACKAGING SPECIALTIES TYPE B Page i I of t5 9/7/20I 7 4 S tr tura Loncepts - -- Engineering • 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BEN Project: PACKAGING SPECIALTIES Project#: R-090717-4LV Configuration&Summary:TYPE T SELECTIVE RACK N T **RACK COLUMN REACTIONS 24 / ASD LOADS 60" 4" AXIAL DL= 113/b 24" 'I, AXIAL LL= 5,550/b 24" /' SEISMIC AXIAL Ps=+/- 5,621 lb 180" 4BASE MOMENT= 8,000 in-lb 60" 180" 24" 24" 24" 60" ,, 24" 1 ti 'J t 144" .I` 4f 42" Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.968,Fa=1.113 3 42 in 180.0 in 7 144 in Single Row Component Description STRESS Column Fy=50 ksi KINGMORE C3312TD 3x3x12ga P=5663 lb,M=23640 in-lb 0.73-OK Column&Backer None None None N/A Beam Fy=50 ksi KINGMORE SB555 5.5"x2.5"xl5ga Lu=144 in Capacity:4698 lb/pr 0.96-0K Beam Connector Fy=50 ksi Lvl 2:4 pin OK Mconn=10419 in-lb Mcap=26687 in-lb 0.39-OK Brace-Horizontal Fy=50 ksi KINGMORE C 1.58x0.95x0.38x16ga 0.41-OK Brace-Diagonal Fy=50 ksi KINGMORE C 1.58x0.95x0.38x16ga 0.27-OK Base Plate Fy=36 ksi 8x5x0.375 I Fixity=8000 in-lb 0.67-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Regd(Net Seismic Uplift=2724 lb) 0.692-OK Slab&Soil 5"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.72-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 2 4,500 lb 60.0 in 24.0 in 502 lb 412 lb 4,575 lb 15,467 "# 10,419 "# 4 pin OK 3 4,500 lb 60.0 in 24.0 in 753 lb 619 lb 2,288 lb 9,281 "# 5,006 "# 4 pin OK 24.0 in 24.0 in 24.0 in 24.0 in **Load defined as product weight perpair of beams Total: 1,376 lb 1,130 lb Notes ASSUMED AS INTERIOR TUNNEL NEXT TO TYPE B PACKAGING SPECIALTIES TYPE T Page (5 of (C 9/7/201 7