Loading...
Specifications (12) AU 64017 °a111-7 1 (100 St72 1 * 110)0 Siructural SEP 1I 2.o,, CITY OF I iLiAti� 8UiL.Dl\IG r)! ' rr.,< L.. onceps , , ,-- -, , ' Engineering, „ , . , . , ,\,,,,, 5 t itt 1815 Wright Ave La Verne, Ga. 91750 Tel:909-596-1351 Fox:909-590-7186 Project Name : JEVO EXPiRES Project Number : R-0.90117-1LV DEC ' 1.0, \'') Date : O9/O1/17 '' Street Address: 15100 SW 72ND AVE111): ORE� ` O � :i'':7'1 City/State : PORTLAND, OR 97224 Scope of Work : SELECTIVE ``' - `` ` 48 r,pi ,a _aev.m",s J SEP 0 5 2011 A `7tr tura) oncepts o, Engineering " '. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BOB Project: JEVO Project#: R-090117-1 Iv TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 " Slab on Grade 13 Other Configurations 14 4-. ‘1"-- type I select levo Page 2 of L S 9/1/2017 Str tura) Loncepts '..001,0.-- „0 �'` Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BOB Project: JEVO Project#: R-090117-11v Design Data 1)The analyses herein conforms to the requirements of the: 2012 IBC Section 2209 2016 CBC Section 2209A ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks'2012 RMI Rack Design Manual” ASCE 7-10,section 15.5.3 2)Transverse braced frame steel conforms to ASTM A570,Gr.55,with minimum strength, Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.55,with minimum yield, Fy=55 ksi All other steel conforms to ASTM A36,Gr. 36 with minimum yield,Fy=36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures, utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 6"thick with minimum 2500 psi compressive strength.Allowable Soil bearing capacity is 750 psf. The design of the existing slab is by others. 6) Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria " Definition of Components At_ Column 7-- Beam =Z r' 1 : Horizontal Brace Beam to Column Connector AI Diagonal Brace Frame Height Beam • ProductSpacing Base Plate and Anchors -x1 . �� . .� 1 dianel Beam _' ght Length Frame 4.1 Depth Front View: Down Aisle (Longitudinal) Frame Section A: Cross Aisle (Transverse) Frame • type I selectievo Page 2 of (S 9/1/2017 Stri. turai V oncepts ,--� Engineering 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: BOB Project: JEVO Project#: R-090117-1Iv Configuration&Summary:TYPE A SELECTIVE RACK o - - **RACK COLUMN REACTIONS ASD LOADS 366" AXIAL DL= 75/b 72" t AXIAL LL= 4,000/b 36" SEISMIC AXIAL Ps=+/- 3,226/b / BASE MOMENT= 8,000 in-lb 192" 192" 36" / ,l 36" 72" 36" 96" I-' 'I` 44" Seismic Criteria #Bm Lvls Frame Depth Frame Height Diagonals 96 in Ss=0.964, Fa=1.114 I 2 I 44 in I 192.0 in I # Beam Length I Frame Type g 5 Component Description STRESS Column Fy=55 ksi SPCRK FH-20/3x3x14ga P=4075 Ib,M=19980 in-lb 0.86-OK Column&Backer None None None N/A Beam Fy=55 ksi SpaceRak SB406M 4 in x 0.06 in Lu=96 inI Capacity:4478 lb/pr 0.89-OK - Beam Connector Fy=55 ksi Lvl 1: 3 pin OK 1 Mconn=11995 in-lb Mcap=12691 in-lb 0.95-0K Brace-Horizontal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.16-0K 0.16-OK Brace-Diagonal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga Base Plate Fy=36 ksi 8x5x0.375 ( Fixity= 8000 in-lb 0.71-OK Anchor 2 per Base 0.5"x 3.25"Embed POWERS SD2 ESR 2502 Inspection Reqd(Net Seismic Uplift=1142 Ib) 0.325-OK Slab&Soil 6"thk x 2500 psi slab on grade.750 psf Soil Bearing Pressure 0.33-0K LevelLoad** Story Force Story Force Column Column Conn. Beam I Per Level Beam Spcg I Brace I Transv i Longit. i Axial I Moment Moment Connector 1 4,000 lb 72.0 in 36.0 in 329 lb 270 lb 4,075 lb 19,980 "# 11,995 "# 3 pin OK 2 4,000 lb 72.0 in 36.0 in 657 lb 541 lb 2,038 lb 9,733 "# 5,002 "# 3 pin OK 36.0 in 36.0 in 36.0 in _ I**Load defined as product weight per pair of beams Total: 986 lb 811 lb Notes -" 9/1/2017 type I select levo Page,4of t, Strjurai oncepts Engineering _..,./ 1815 Wriaht Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BOB Project: JEVO Project#: R-090117-1 lv Seismic Forces Configuration:TYPE A SELECTIVE RACK Lateral analysis is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6&ASCE 7-10 sec 15.5.3 Ss= 0.964 Transverse(Cross Aisle)Seismic Load r� 51= 0.419 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) ===- vt Fa= 1.114 Cs1= Sds/R !;� Fv= 1.581 = 0.1790 Cs-max*Ip= 0.1790 1� Sds=2/3*Ss*Fa= 0.716 Cs2= 0.044*Sds Vmin= 0.015 Sd1=2/3*S1*Fv= 0.442 = 0.0315 Eff Base Shear=Cs= 0.1790 Transverse Elevation Ca=0.4*2/3*Ss*Fa= 0.2864 Cs3= 0.5*S1/R Ws= (0.67*PLRF1*PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R=4,0 = 0.0524 = 5,510 lb Ip= 1.0 Cs-max= 0.1790 Vtransv=Vt= 0.179* (150 lb+5360 Ib) PRF1= 1.0 Base Shear Coeff=Cs= 0.1790 Etransverse= 986 lb Pallet Height=hp= 48.0 in Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 75 lb Level PRODUCT LOAD P P*0.67*PRFI DL hi wi*hi Fi Fi*(hi+hp/2) 1 4,000 lb 2,680 lb 75 lb 72 in 198,360 328.7 lb 31,555-# 2 4,000 lb 2,680 lb 75 lb 144 in 396,720 657.3 lb 110,426-# I sum: P=8000 lb 5,360 lb 150 lb W=5510 lb 595,080 986 lb 2=141,982 Longitudinal(Downaisle)Seismic Load Similarly for longitudinal seismic loads,using R=6.0 Ws= (0.67*PLRF2* P) + DL PRP2= 1.0 l-'••'•l 1:::<•,1 ::.•::•.{ f:,.:•: Cs1=Sd1/(T*R)= 0.1472 = 5,510 lb (Longitudinal,Unbraced Dir.)R= 6.0 b. Cs2= 0.0315 Cs=Cs-max*Ip= 0.1472 T= 0.50 sec ""`I �''''` ., Cs3= 0.0349 Vlong= 0.1472* (150 lb+5360 Ib) P."'1 1_• :k17.7 I Cs-max= 0.1472 Elongitudinal= 811 lb Limit States Level Leegit.seismie shear per upright Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi Fi Front View 1 4,000 lb 2,680 lb 75 lb 72 in 198,360 270.3 lb I 2 4,000 lb 2,680 lb 75 lb 144 in 396,720 540.7 lb I sum: 5,360 lb 150 lb W=5510 lb 595,080 811 lb type 1 select levo Page of IS- 9/1/2017 Strj. urai oncepts c 107-0/ Engineering 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: BOB Project: JEVO Project#: R-090117-1 Iv Downaisle Seismic Loads Configuration:TYPE A SELECTIVE RACK Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. Seismic Story Forces Typical(tame made Vlong= 811 lb Tributary area of two column, o(rack(tame�, Vcol=Vlong/2= 4061b —. F1= 270 lb .♦�.. I � H 1 r . --� I --►I t- Typical Frame made F2= 541 lb ./o(two columns F3= 0 lb -► I —4 H f 4 ~ r ,a - S. Lq -►1 - I... J 14— ( _.4 �.... " 1 t- 5 r t r f �f Top View I Front View Side View Conceptual System COL Seismic Story Moments Mbase-max= 8,000 in-lb <_==Default capacity hl-eff= h1-beam clip height/2 Mbase-v= (Vcol*hleff)/2 = 69 in Vcol '� �_ = 13,990 in-lb <===Moment going to base s' Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = 8,000 in-lb Ai M 1-1= [Vcol * hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2] * h2 '.�.��A�,_ = (406 lb* 69 in)-8000 in-lb = [406 lb-270.4 Ib]*72 in/2 h1 h1eff - = 19,980 in-lb = 9,733 in-lb I ri Mseis= (Mupper+Mlower)/2 Beam to Column Elevation Mseis(1-1)= (19980 in-lb+9733 in-lb)/2 Mseis(2-2)= (9733 in-lb+0 in-lb)/2 = 14,856 in-lb = 4,866 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 72 in 4,075 lb 19,980 in-lb 14,856 in-lb 2,280 in-lb 11,995 in-lb 3 pin OK 2 72 in 2,038 lb 9,733 in-lb 4,866 in-lb 2,280 in-lb 5,002 in-lb 3 pin OK Mconn= (Mseismic+Mend-fixity)*0.70*rho - Mconn-allow(3 Pin)= 12,691 in-lb **all moments based on limit states level loading type 1 select-levo Page (D of (,S 9/1/20 17 Strurai oncepts -44 Pr Engineering 1815 Wright Ave La Verne, CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: BOB Project: JEVO Project#: R-090117-11v Column(Longitudinal Loads) Configuration:TYPE A SELECTIVE RACK Section Properties Section: SPCRK FIi-20/3x3x14ga 3.000 in _el Aeff= 0.643 in^2 Iy= 0.749 in^4 Kx= 1.7 X Ix= 1.130 in^4 , Sy= 0.493 in^3 Lx= 70.0 in 0 i Sx= 0.753 in^3 ry= 1.080 in Ky= 1.0 I y_._.r'- .. 1 3.000 in rx= 1.326 in Fy= 55 ksi Ly= 36.0 in 10.075 in I 4f= 1.67 Cmx= 0.85 Cb= 1.0 _ X _J P E= 29,500 ksi k_0.75 in Loads Considers loads at level 1 �I COLUMN DL= 75 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 4,000 lb Load Case 5::(110.105*Sds)D+0.75*(1.4+0.145ds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Mcol= 19,979 in-lb axial load coeff: 0.78761865*P seismic moment coeff. 0.5625*Mcol Sds= 0.7159 Load Case 6::(1+0.14*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0752 axial load coeff: 0.66516 seismic moment coeff: 0.7*Mcol 1.4+0.14Sds= 1.5002 By analysis,Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1002 - 0.85+0.14*Sds= 0.9502 Axial Load=Pax= 1.100226*75 lb+0.950226*0.7*4000 lb Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 2,743 lb = 0.7* 19979 in-lb rho= 1.0000 = 13,985 in-lb - Axial Analysis KxLx/rx= 1.7*70"/1.326' KyLy/ry= 1*36"/1.08" Fe > Fy/2 = 89.7 = 33.3 Fn= Fy(1-Fy/4Fe) = 55 ksi*[1-55 ksi/(4*36.2 ksi)] Fe= n^2E/(KL/r)max^2 Fy/2= 27.5 ksi = 34.1 ksi = 36.2ksi Pa= Pn/52c Pn= Aeff*Fn Qc= 1.92 = 21914 lb/1.92 = 21,914 lb = 11,413 lb P/Pa= 0.24 > 0.15 Bending Analysis Check: Pax/Pa+(Cmx*Mx)/(Max*px) 5 1.0 P/Pao+ Mx/Max<_ 1.0 Pno= Ae*Fy Pao= Pno/4c Myield=My= Sx*Fy . = 0.643 in^2*55000 psi = 35365lb/1.92 = 0.753 inA3*55000 psi = 35,365 lb = 18,419 lb = 41,415 in-lb Max= My/4f Pcr= n^2EI/(KL)max^2 = 41415 in-lb/1.67 = n^2*29500 ksi/(1.7*70 in)^2 = 24,799 in-lb = 23,233 lb px= {1/[1-(4c*P/Pcr)]}^-1 = {1/[1-(1.92*2743 lb/23233 Ib)]}^-1 = 0.77 Combined Stresses (2743 lb/11413 Ib)+ (0.85*13985 in-lb)/(24799 in-Ib*0.77) = 0.86 < 1.0,OK (EQ C5-1) - (2743 lb/18419 Ib)+ (13985 in-lb/24799 in-Ib) = 0.71 < 1.0,OK (EQ C5-2) **For comparison, total column stress computed for load case 5 is: 77.0% loads 3231.1123125 lb Axial and M= 10488 in-lb - type 1 select-levo Page (.i of 1 A 9/1/2017 Sttjiturai on is r - , engineering '� 1815 Wright Ave La Verne,CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: BOB Project:JEVO Project#: R 090117 llv Transverse Column Configuration:TYPE A SELECTIVE-RACK Section Properties V Load at level= 1 -i Section: SPCRK FH-20/3x3x14ga 3.V Aeff= 0.643 in^2 Iy= 0.749 inA4 \ Pv Ix= 1.130 in^4 Sy= 0.493 in^3 Sx= 0.753 in^3 ry= 1.080 in 3.0.. I I rx= 1.326 in Fy= 55 ksi Qf= 1.67 Cmx= 0.85 Ps Ps E= 29,500 ksi I width= 3.000 in ' Cb= 1.0 depthl= 3.000 in ,I, X 0.75" Kx= 1.7 thickl= 0.0750 in Ky= 1.0 Lx= 70.0 in Ly= 36.0 in Transverse Elevation Loads COLUMN DL= 75 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 4,000 lb Load Case 5::(1+0.105*Sds)D+0.75*(1.4+0.145ds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Sds= 0.7159 Load Case 6::(1+0.104*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASD Method 1+0.105*Sds= 1.0752 1.4+0.14Sds= 1.5002 Load Case 5: 1+0.14Sds= 1.1002 Axial Load= 1.0751695*75 lb+0.75*(1.500226*0.7*4000 lb)+0.75*(0.7*rho*3227 lb) 0.85+0.14*Sds= 0.9502 = 4,925 lb B= 0.7000 Load Case 6: rho= 1.0000 Axial Load= 1.100226*75 lb+0.950226*0.7*4000 lb+(0.7*rho*3227 Ib) Movt= 141,982 in-lb = 5,002 lb - Frame Depth=D= 44 in Seismic Axial=Pv= Movt/D I Eff.Axial Load= 5,002 lb = 3,227 lb Axial Analysis KyLy/ry= 1*36"/1.08" Fe > Fy/2 = 8 899 KxLx/rx = .*70"/1.326"7 = 33.3 Fn= Fy(1-Fy/4Fe) F 2= 27 5 ksi = 55 ksi*[1-55 ksi/(4*36.2 ksi)] Fe= n^2E/(KL/r)max^2 y/ = 34.1 ksi = 36.2ksi Pa= Pn/Qc Pn= Aeff*Fn Qc= 1.92 = 21914 Ib/1.92 = 21,9141b = 11,4131b P/Pa= 0.44 > 0.15 Bending Analysis Check: P/Pa +(Cmy*My)/(May*py) 5 1.0 P/Pao+ My/May <_ 1.0 Pao= Pno/Qc Myield=My= Sy*Fy Pno= Ae*Fy = 35365lb/1.92 = 0.493 in^3* 55000 psi = = 0.6435, b2*55000 psi = 18,419 lb = 27,115 in-lb My/Qf lb Pcr= n^2EI/(KL)max^2 May= = nA2*29500 ksi/(1.7*70 in)^2 = 2711155 in-lb/1.67 = 23,233 lb = 16,237 in-lb ix= {1/[1-(Qc*P/Pcr)]}^-1 = {1/[1-(1.92*5002 lb/23233 Ib)]}^-1 = 0.59 Combined Stresses 0.44 < 1.0,OK (EQ C5 1) (5002 lb/11413 lb)+ (0.85*0 in-lb)/(16237 in-Ib*0.59) = 0 27 < 1.0,OK (EQ C5-2) - (5002 lb/18419 lb) + (0 in-lb/16237 in-Ib) = Page 7.Z of /1 of StruraI Von is ngineering •� It 1815 Wright Ave La Verne,CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: BOB Project: JEVO Project#: R-090117-1Iv BEAM Configuration:TYPE A SELECTIVE RACK DETERMINE ALLOWABLE MOMENT CAPACITY 2.50 in A)Check compression flange for local buckling(B2.1) 1.63 in ,I w= c-2*t-2*r -�T = 1.625 in-2*0.06 in-2*0.06 in _____________ = 1.385 in 1.625 in w/t= 23.081=lambda= [1.052/(k)^0.5] * (w/t)*(Fy/E)^0.5 Eq. B2.1-4a.oao in - = [1.052/(4)^0.5]* 23.08* (55/29500)^0.5 I = 0.524 < 0.673, Flange is fully effective Eq. B2.1-1 10.060 in B)check web for local buckling per section b2.3 II fl(comp)= Fy*(y3/y2)= 50.15 ksi f ,mrrr f2(tension)= Fy*(yl/y2)= 101.91 ksi Y= f2/fl Eq. B2.3-5 Beam= SpaceRak SB406M 4 in x 0.06 in = -2.032 Ix= 1.471 in^4 k= 4+2*(1-Y)A3+2*(1-Y) Eq. B2.3-4 Sx= 0.694 in^3 = 65.81 Ycg= 2.640 in flat depth=w= y1+y3 t= 0.060 in = 3.760 in w/t= 62.66666667 OK Bend Radius=r= 0.060 in 1=lambda= [1.052/(k)^0.5]*(w/t)*(fl/E)^0.5 Fy=Fyv= 55.00 ksi = [1.052/(65.81)A0.51*3.76* (50.15/29500)^0.5 Fu=Fuv= 65.00 ksi = 0.335 < 0.673 E= 29500 ksi be=w= 3.760 in b2= be/2 Eq B2.3-2 top flange=b= 1.625 in b1= be(3-Y) = 1.88 in bottom flange= 2.500 in = 0.747 Web depth= 4.P^FY^ bl+b2= 2.627 in > 1.24 in,Web is fully effective f1(comp) Determine effect of cold working on steel yield point(Fya)per section A7.2 ♦ _..........- - _ Fya= C*Fyc+(1-C)*Fy (EQ A7.2-1) Lcorner=Lc= (p/2)* (r+t/2) r2 0.141 in C= 2*Lc/(Lf+2*Lc) Lflange-top=Lf= 1.385 in = 0.169 in 1,3 m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) depth = 0.1590 V Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)A2- 1.79 (EQ A7.2-3) A 4 = 1.427 r+ since fu/Fv= 1.18 < 1.2 Ycg and r/t= 1 <7 OK _ f2(tension) then Fyc= Bc* Fy/(R/t)Am (EQ A7.2-2) -�� = 78.485 ksi Thus, Fya-top= 58.97 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) yl= Ycg-t-r= 2.520 in = 114.48 ksi (tension stress at bottom) y2= depth-Ycg= 1.360 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.240 in Lflange-bot=Lfb= Lbottom-2*r*-2*t = 2.260 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) - = 0.111 Fy-bottom=Fyb= Cb*Fyc+ (1-Cb)*Fyf = 57.61 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.68 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 19.56 in-k S . , Str ural U_ one is Engineering "°� 1815 Wright Ave La Verne,CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: BOB Project: ]EVO Project#: R-090117-1w BEAM Configuration:TYPE A SELECTIVE RACK RMI Section 5.2, PT II Section Beam= SpaceRak SB406M 4 in x 0.06 in 2.50 in Ix=lb= 1.471 inA4 -, Sx= 0.694 inA3 1.63 in t= 0.060 in E= 29500 ksi 4` Fy=Fyv= 55 ksi F= 150.0 — �+ Fu=Fuv= 65 ksi L= 96 in 1.625 in Fya= 59.0 ksi Beam Level= 1 P=Product Load= 4,000 lb/pair D=Dead Load= 75 Ib/pair4.000 in T 0.060 in 1.Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L*W*Rm/8 __ W=LRFD Load Factor= 1.2*D+ 1.4*P+1.4*(0.125)*P IFOR DL=2%of PL, RMI 2.2,item 8 W= 1.599 1j11111111111111111111111111111111111111111110 li Rm= 1- [(2*F*L)/(6*E*Ib+3*F*L)] 1- (2*150*96 in)/[(6*29500 ksi*1.471 in^3)+(3*150*96 in)] I M • 1 = 0.905 .. if F= 0.95 _ Then F*Mn=F*Fya*Sx= 38.88 in-k _ 1 _.. Il Thus,allowable load Beam per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) Length = 38.88 in-k*8* 2/(96in*0.905* 1.599) _ _ = 4,478 lb/pair allowable load based on bending stress Mend= W*L*(1-Rm)/8 _ (4478 lb/2)*96 in*(1-0.905)/8 = 2,552 in-lb @ 4478 lb max allowable load = 2,280 in-lb @ 4000 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Allowable Deflection= L/180 Rd= 1- (4*F*L)/(5*F*L+ 10*E*Ib) = 0.533 in = 1 -(4*150*96 in)/[(5*150*96 in)+(10*29500 ksi*1.471 inA4)] Deflection at imposed Load= 0.476 in = 0.886 in if Dmax= L/180 Based on L/180 Deflection Criteria and Dss= 5*W*L^3/(384*E*Ib) L/180= 5*W*L^3*Rd/(384*E*Ib*#of beams) solving for W yields, W= 384*E*I*2/(180*5*L^2*Rd) - = 384*1.471 in^4*2/[180*5*(96 in)^2*0.886) = 4,535 lb/pair allowable load based on deflection limits Thus,based on the least capacity of item 1 and 2 above: Allowable load= 4,478 lb/pair Product Load= 4,000 lb/pair I Beam Stress= 0.89 Beam at Level 1 8. Z �tru tura) is ., ; ngineering 1815 Wright Ave La Verne, CA 91750 Tel:909.596.1351 Fax: 909.596.7186 by: BOB Project:JEVO Project#: R-090117-11v 3 Pin Beam to Column Connection TYPE A SELECTIVE RACK I he beam end moments shown herein show the result ot the maximum induced tixed end monents torm seismic+static loads and the code mandated minimum value ot 1.5u/o(DL+PL) -tr Mconn max= (Mseismic+Mend-fixity)*0.70*Rho 0 Pl rho= 1.0000 = 11,995 in-lb Load at level 1 O P2 O " 1/2" C \12" Connector Type= 3 Pin Shear Capacity of Pin Pin Diam= 0.44 in Fy= 55,000 psi Ashear= (0.438 in)^2*Pi/4 = 0.1507 in^2 Pshear= 0.4* Fy*Ashear = 0.4*55000 psi *0.15071n^2 = 3,315 lb Bearing Capacity of Pin tcol= 0.075 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha* Fu*diam*tcol/Omega = 2.22*65000 psi*0.438 in*0.075 in/2.22 = 2,135 lb < 3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 55,000 psi C= P1+P2+P3 tclip= 0.18 in Sclip= 0.127 inA3 = P1+P1*(2.5"/4.5")+P1*(0.5"/4.5") = 1.667* P1 Mcap= Sclip* Fbending C*d= Mcap= 1.667 d= E/2 = 0.127in^3*0.66* Fy = 0.50 in = 4,610 in-lb Pclip= Mcap/(1.667*d) = 4610.1 in-lb/(1.667*0.5 in) Thus, P1= 2,135 lb = 5,531 lb Mconn-allow= [P1*4.5"+P1*(2.5"/4.5")*2.5"+P1*(0.5"/4.5")*0.51 = 2135 LB*[4.5"+(2.5"/4.5")*2.5"+(0.574.5")*0.51 = 12,691 in-lb > Mconn max, OK type 1 select-levo Page ( of / � 9/1/2017 Str1turai L4'oncepts p Engineering 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax:909.596.7186 By: BOB Project: JEVO Project#: R-090117-11v Transverse Brace Configuration:TYPE A SELECTIVE RACK Section Properties Diagonal Member= Sperack 1-1/2x1-1/4x14ga Horizontal Member= Sperack 1-1/2x1-1/4x14ga Area= 0.292 inA2 I„ 1.500 in _j r Area= 0.292 inA2 r min= 0.430 in min= 0.430 in 1.500 Fy= 55,000 psi r""—"--' Fy= 55,000 psi �__._._ K= 1.0 1.250 in K= 1.0 i S2c= 1.92 � ,1.250 1--0.250 in Frame Dimensions --t=1 t=i--0.250 Bottom Panel Height=H= 36.0 in Clear Depth=D-B*2= 38.0 in Frame Depth=D= 44.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member 0 I Load Case 6::(1+1 I- : : 1.85+0.145ds)*B*P t[0.7*rho*EJ<=1.0,ASD Method Vtransverse= 986 lb vb L Vb=Vtransv* _ 0.7*rho= 986 Ib*0.7* 1 (kl/r)= (k* Ldiag)/r min = 690 1b = (1 x 48.4 in/0.43 in) Ldiag= [(D-B*2)A2+(H-6")^2]^1/2 = 112.6 in Ldiag • = 48.4 in Fe= piA2*E/(kl/r)A2 H Pmax= V*(Ldiag/D)* 0.75 = 22,964 psi Pmax = 569 Ib axial load on diagonal brace member Since Fe<Fy/2, tYP 3., Pn= AREA*Fn Fn= Fe = 0.292 inA2*22964 psi = 22,964 psi s = 6,705 lb Typical Panel Configuration Pallow= Pn/4 Check End Weld = 6705 lb/1.92 Lweld= 3.0 in = 3,492 lb Fu= 65 ksi tmin= 0.075 in Pn/Pallow= 0.16 <= 1.0 OK Weld Capacity= 0.75*tmin* L*Fu/2.5 = 4,388 lb OK Horizontal brace Vb=Vtransv*0.7*rho= 690 lb (kl/r)= (k* Lhoriz)/r min Fe= pi^2*E/(kl/r)A2 Fy/2= 27,500 psi = (1 x 44 in)/0.43 in = 27,821 psi = 102.3 in Since Fe>Fy/2, Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/Qc = 27,817 psi = 0.292in^2*27817 psi = 8123 lb/1.92 = 8,123 lb = 4,231 lb Pn/Pallow= 0.16 <= 1.0 OK type 1 select-levo Page I V of j($ 9/1/2017 Strurai . a oncepts Engineering 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BOB Project: JEVO Project#: R-090117-11v Single Row Frame Overturning Configuration:TYPE A SELECTIVE RACK Loads Critical Load case(s): A I 1) RMI Sec 2.2,item 7: (0.9-0.2Sds)D+(0.9-0.20Sds)*B*Papp-E*rho hp • ,(f) A • Sds= 0.7159 v Vtrans=V=E=Qe= 986 lb (0.9-0.2Sds)= 0.7568 DEAD LOAD PER UPRIGHT=D= 150 lb (0.9-0.2Sds)= 0.7568 PRODUCT LOAD PER UPRIGHT=P= 8,000 lb B= 1.0000 H h Papp=P*0.67= 5,360 lb rho= 1.0000 Wst LC1=Wst1=(0.75682*D+0.75682*Papp*1)= 4,170 lb Frame Depth=Df= 44.0 in T 5 Product Load Top Level, Ptop= 4,000 lb Htop-Iv1=H= 144.0 in I • DL/Lvl= 75 lb # Levels= 2 It Df-11 Seismic Ovt based on E,.E(Fi*hi)= 141,982 in-lb #Anchors/Base= 2 height/depth ratio= 3.3 in hp= 48.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 168.0 in Load case 1: Movt= r(Fi*hi)*E*rho Mst= Wst1 *Df/2 T= (Movt-Mst)/Df = 141,982 in-lb = 4170 lb*44 in/2 = (141982 in-lb-91740 in-lb)/44 in = 91,740 in-lb = 1,142 lb Net Ulift p per Column Net Seismic Uplift= 1,142 lb B)Top Level Loaded Only Load case 1: C3 V1=Vtop= Cs*Ip *Ptop>= 350 lb for H/D >6.0 Movt= [V1*h+V2* H/2]*0.7*rho = 0.179*4000 lb = 85,555 in-lb = 716 lb T= (Movt-Mst)/Df Vleff= 716 lb Critical Level= 2 = (85555 in-lb-69098 in-lb)/44 in V2=VDD= Cs*Ip*D Cs*Ip= 0.1790 = 374 lb Net Uplift per Column = 27 lb Mst= (0.75682*D+0.75682*Ptop*1)*44 in/2 = 69,098 in-lb Net Seismic Uplift= 374 lb Anchor Check(2)0.5"x 3.25"Embed POWERS SD2 anchor(s)per base plate. Special inspection is required per ESR 2502. Pullout Capacity=Tcap= 1,961 lb L.A.City Jurisdiction? NO Tcap*Phi= 1,961 lb Shear Capacity=Vcap= 2,517 lb Phi= 1 Vcap*Phi= 2,517 lb ' Fully Loaded: (571 lb/1961 Ib)^1 + (246 Ib/2517 Ib)^1 = 0.39 <= 1.2 OK Top Level Loaded: (187 Ib/1961 Ib)^1 + (179 Ib/2517 Ib)^1 = 0.17 <= 1.2 OK tyre I selectlevo Page /( of I!-- 9/1/2017 Strj.QuraJ oncepts _4 r- Engineering 1815 Wright Ave La Verne, CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: BOB Project: JEVO Project#: R-090117-11v Base Plate Configuration:TYPE A SELECTIVE RACK P Section ~ a -' Baseplate= 8x5x0.375 0,4 Eff Width=W= 8.00 in a= 3.00 in 101 Mb Eff Depth=D= 5.00 in Anchor c.c. =2*a=d= 6.00 in ishimmommiiimryo Column Width=b= 3.00 in N=#Anchor/Base= 21 a ( b I,_ L Column Depth=dc= 3.00 in Fy= 36,000 psi - w L= 2.50 in Plate Thickness=t= 0.375 in Downaisle Elevation Down Aisle Loads Load Case 5::(1.0.105*5ds)D+0.75*f(1.4+0.14Sds)*B*P+0.75*f0.7*rho*EJ<=1.0,ASD Method COLUMN DL= 75 lb Axial=P= 1.0751695* 75 lb+0.75* (1.500226*0.7*4000 Ib) COLUMN PL= 4,000 lb = 3,231 lb Base Moment= 8,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0752 = 8000 in-lb* 0.75*0.7*rho 1.4+0.14Sds= 1.5002 = 4,200 in-lb Efff B= 0.7000 Axial Load P= 3,231 lb Mbase=Mb= 4,200 in-lb Effe Axial stress=fa= P/A= P/(D*W) M1= wL^2/2= fa*L^2/2 = 81 psi = 252 in-lb Moment Stress=fb= M/S= 6*Mb/[(D*B^2] Moment Stress=fb2= 2*fb*L/W = 78.8 psi = 49.2 psi " Moment Stress=fbl= fb-fb2 M2= fbl*L^2)/2 F = 29.5 psi = 92 in-lb M3= (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*LA2 Mtotal = Ml+M2+M3 = 103 in-lb = 447 in-lb/in S-plate= (1)(t^2)/6 Fb= 0.75*Fy = 0.023 in^3/in = 27,000 psi fb/Fb= Mtotal/[(S-plate)(Fb)] F'p= 0.7*F'c = 0.71 OK = 1,750 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,961 lb OK = -1,385 lb No Tension Cross Aisle Loads Critical load case RHISec 21,dem 4:(1+o.115ds)DL+(1+o.14505)PL,0.75+EL*o.75<=Id,A50Method Check uplift load on Baseplate Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 3,231 lb 'When the base plate configuration consists of two anchor bolts located on either side .f the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 74,541 in-lb Pseismic= Movt/Frame Depth ,hall be determined based on a design bending moment in the plate equal Frame Depth= 44.0 in = 1,694 lb o the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 4,925 lb he centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.00 in T I~ ci L=Base Plate Depth-Col Depth= 2.50 in Ta Mu hi a ..mill fa= P/A= P/(D*W) M= wL^2/2= fa*L^2/2 1---i% I b I _I = 123 psi = 385 in-lb/in Elevation Uplift per Column= 1,142 lb Sbase/in= (1)(t^2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 in^3/in = 27,000 psi Net Tension per anchor=Ta= 571 lb _ c= 2.50 in fb/Fb= M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 = 0.61 OK = 714 in-lb Splate= 0.117 in^3 fb Fb *0.75= 0.169 OK type I select levo Page /2. of (S 9/1/2017 I Strjurai onceepts Engineering - 1815 Wright Ave La Verne. CA 91750 Tel:909.596.1351 Fax: 909.596.7186 By: BOB Project: JEVO Project#: R-090117-1 Iv Slab on Grade Configuration:TYPE A SELECTIVE RACK P slab a Concrete ra 1 fc= 2 500 psi :,D . b e slab I 1 tslab=t= 6.0 in ••Cross teff= 6.0 in IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIO HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII c ---� Aisle phi=O= 0.6 x �I I~ c Soil 14: 4 y fsoil= 750 psf Down Aisle Movt= 120,288 in-lb SLAB ELEVATION Frame depth= 44.0 in Baseplate Plan View Sds= 0.716 Base Plate 0.2*Sds= 0.143 Effec.Baseplate width=B= 8.00 in width=a= 3.00 in X,=0.600 Effec.Baseplate oepth=D= 5.00 in depth=b= 3.00 in p=B/D= 1.600 midway dist face of column to edge of plate=c= 5.50 in F'C^0.5= 50.00 psi Column Loads midway dist face of column to edge of plate=e= 4.00 in DEAD LOAD=D= 75 lb per column Load Case 1) (1.2+0.2Sds)D+ (1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN 5 unfactoredASD load = 1.34318*75 lb+ 1.34318*0.7 *4000 lb+ 1* 2733 lb • PRODUCT LOAD=P= 4,000 lb per column = 6,595 lb unfactoredASD load Load Case 2) (0.9-0.2Sds)D+(0.9-0.2Sds)*B*Papp+rho*E RMI SEC 2.2 EQTN 7 Papp= 2,680 lb per column = 0.75682*75 lb+0.75682*0.7* 2680 lb+ 1*2733 lb P-seismic=E= (Movt/Frame depth) = 4,210 lb = 2,733 lb per column Load Case 3) 1.2*D+ 1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Limit State load = 1.2*75 lb+ 1.4*4000 lb B= 0.7000 = 5,690 lb rho= 1.0000 Load Case 4) 1.2*D+ 1.0*P+ 1.0E AQ318-115.92.1,Egt,9-5 Sds= 0.7159 = 6,823 lb 1.2 + 0.2*Sds= 1.3432 Effective Column Load=Pu= 6,823 lb per column 0.9-0.20Sds= 0.7568 Puncture Apunct= [(c+t)+(e+t)]*2*t = 258.0 in^2 Fpunctl= [(4/3+8/(3*13)] *A.*(F'c^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 90.psi = 0.331 < 1 OK Fpunct2= 2.66*X.* (F'c^0.5) = 79.8 psi Fpunct eff= 79.8 psi Slab Bending Pse=DL+PL+E= 6,823 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+2*t = 1,310 in^2 = 36.19 in = 16.7 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 • = 9.8 in = (fsoil*x^2)/(144*2) = 6.0 in^3 Fb= 5*(phi)*(f c)^0.5 = 247.6 in-lb fb/Fb= M/(S-slab*Fb) = 150. psi = 0.275 < 1,OK type 1 select-levo Page fS of /r 9/1/2017 Str Aural • onceepts Engineering 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 + By: BOB Project: JEVO Project#: R-090117-1Iv Configuration&Summary:TYPE B SELECTIVE RACK -r **RACK COLUMN REACTIONS 36" ASD LOADS .1 AXIAL DL= 75/b 72 I` AXIAL LL= 4,000/b 36 SEISMIC AXIAL Ps=+/- 3,226 lb T BASE MOMENT= 8,000 in-lb 192" 192" 36" 72„ 36" 316" -I' 108" .I' * 44" 4 Seismic Criteria # Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.964, Fa=1.114 2 44 in 192.0 in 5 108 in Component Description STRESS Column Fy=55 ksi SPCRK FH-20/3x3x14ga P=4075 Ib, M=19980 in-lb 0.86-OK Column&Backer None None None N/A Beam Fy=55 ksi SpaceRak SB506M 5 in x 0.06 in Lu=108 in Capacity: 5502 lb/pr 0.73-OK Beam Connector Fy=55 ksi Lvl 1: 3 pin OK Mconn=11609 in-lb Mcap=12691 in-lb 0.91-OK Brace-Horizontal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.16-OK Brace-Diagonal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.16-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity= 8000 in-lb 0.71-0K Anchor 2 per Base 0.5"x 3.25"Embed POWERS SD2 ESR 2502 Inspection Reqd(Net Seismic Uplift=1142 Ib) 0.325-OK Slab&Soil 6"thk x 2500 psi slab on grade. 750 psf Soil Bearing Pressure 0.33-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 4,000 lb 72.0 in 36.0 in 329 lb 270 lb 4,075 lb 19,980 "# 11,609 "# 3 pin OK 2 4,000 lb 72.0 in 36.0 in 657 lb 541 lb 2,038 lb 9,733 "# 4,616 "# 3 pin OK 36.0 in 36.0 in 36.0 in I • **Load defined as product weight per pair of beams Total: 986 lb 811 lb Notes type 2 select-levo Page 11 of L 9/1/2017 Str tura) oncepts r Ft Engineering w 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: BOB Project: JEVO Project#: R-090117-1 Iv Configuration&Summary:TYPE C SELECTIVE RACK 1 T **RACK COLUMN REACTIONS 36" ASD LOADS AXIAL DL= 75/b 72" AXIAL LL= 4,500/b 36" SEISMIC AXIAL Ps=+/- 3,619 lb BASE MOMENT= 8,000 in-lb 192" 192" 36" 72„ 36" 36" `, \ I \ -I' 144" ,f' 44" 4 Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.964, Fa=1.114 2 44 in 192.0 in 5 144 in Component Description STRESS Column Fy=55 ksi SPCRK FH-20/3x3x14ga P=4575 Ib, M=22940 in-lb 1-OK Column&Backer None None None N/A Beam Fy=55 ksi SpaceRak SB606M 6 in x 0.06 in Lu=144 in Capacity: 5364 lb/pr 0.84-OK Beam Connector Fy=55 ksi Lvi 1:4 pin OK Mconn=13382 in-lb Mcap=22664 in-lb 0.59-OK Brace-Horizontal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.18-OK Brace-Diagonal Fy=55 ksi Sperack 1-1/2x1-1/4x14ga 0.18-OK Base Plate Fy=36 ksi 8x5x0.375 Fixity=8000 in-lb 0.76-OK Anchor 2 per Base 0.5"x 3.25"Embed POWERS SD2 ESR 2502 Inspection Reqd(Net Seismic Uplift=1280 Ib) 0.367-OK Slab&Soil 6"thk x 2500 psi slab on grade.750 psf Soil Bearing Pressure 0.37-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 4,500 lb 72.0 in 36.0 in 369 lb 303 lb 4,575 lb 22,940 "# 13,382 "# 4 pin OK 2 4,500 lb 72.0 in 36.0 in 737 lb 607 lb 2,288 lb 10,921 "# 5,353 "# 4 pin OK 36.0 in 36.0 in 36.0 in I • **Load defined as product weight per pair of beams Total: 1,106 lb 910 lb Notes type 3 select levo Page ((of I i 9/1/2017