Loading...
Specifications NISHKIAN DEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 �► ND31642 Fowler Middle School Renovation 10865 SW Walnut St. RECEIVED Tigard, OR 97223 APR 2 4 2017 CITY OF TIGARD BUILDING DIVISION STRUCTURAL CALCULATIONS ams- sw w4/c471-- zo( -ezA OFFICE COPY , UC TU 4/21/2017 S431 PROF_ ,1 Ar Rob Aman, PE, SE, LEED AP Project Manager -41"C:-REG°" Chad Norvell PE t(l A4, 30. tg cy,A/ T o e. Project Engineer I EXPIRA1101 DAM 12-31-17 Serena Gilles, PE DOTAL AT 0.-21-t7 Project Engineer Edwin T. Dean, PE, SE Principal-In-Charge N I S H K I A N DEAN PROJECT:Fowler Middle School Reno NO: 31642 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 SHEET: OF BY: SHG DATE:4/21/2017 • Narrative Description Fowler Middle School is a building is a 1-story, 125,000 square foot building consisting of classrooms, a library,a cafeteria,gym, and other areas. It was originally constructed in 1974 and had one addition completed in 1980.The original building consists of a mix of wood framed shear walls,concrete shear walls, concrete floor slab,glulam and steel columns, steel deck roofing on steel joists, and tectum and plywood over roof framing.The addition at the west end consists of wood framed shear walls,steel columns, and plywood over roof framing. This existing building will undergo a voluntary seismic upgrade funded by the Oregon Seismic Rehabilitation Grant Program (SRGP).A Tier 2 ASCE 41-13 Report has been completed.This report identified structural deficiencies including shear stresses in wood shear wall above allowable, diaphragm continuity, and diaphragm stresses in the gym above allowable. Nonstructural deficiencies include bracing and anchorage for sprinkler piping, mechanical equipment and suspended ceilings. All deficiencies have been addressed in this calculations package and corresponding permit drawings set. Some areas of the building are being renovated.These renovations have been designed to current codes. • Design Criteria Summary A. Code 1. Oregon Structural Specialty Code(OSSC) 2014, refers to a.2012 International Building Code b.ASCE 7-10 Minimum Design Loads for Buildings and Other Structures 2. ASCE 41-13 Seismic Evaluation and Retrofit of Existing Buildings B. Loads and other criteria 1. Risk Category: Ill 2. Floor Live Load: Classrooms 50 psf, Lobbies and First Floor Corridors 100 psf 3. Seismic Design Criteria a.Seismic Design Category: D b.lmportance Factor: IE= 1.25 c.MCE Spectral Response Acceleration at Short Periods:Ss=0.967g d.MCE Spectral Response Acceleration at Period of 1 Second: Si=0.422g e.ASCE 41-13 Parameters: i. Design Spectral Response Acceleration for Short Period: Sxs=0.458g ii. Design Spectral Response Acceleration for Period of 1 Second: Sxi=0.260g f. ASCE 7-10 Parameters: i. Design Spectral Response Acceleration for Short Period: SDs=0.717g ii. Design Spectral Response Acceleration for Period of 1 Second: SD1=0.444g • N I S H K I A N DEAN PROJECT:Fowler Middle School Reno NO: 31642 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 SHEET: OF BY: SHG DATE:4/21/2017 • Material Properties A. STRUCTURAL STEEL 1. Wide Flange Shapes:ASTM 992 2. Plates and Other Rolled Shapes:ASTM A36 3. Tubes:ASTM A500 Gr. B 4. Pipe:ASTM A53 Gr. B 5. Fasteners a.High-Strength Bolts:ASTM A325N b.Standard Anchor Bolts:ASTM F1554, Gr. 36 c.Wood Connection Bolts:ASTM A307 6. Welding a.Electrodes: E70xx B. CONCRETE 1. 28-Day Compressive Strength:4000 psi 2. Reinforcing Steel a.Typical:ASTM A615, Gr. 60 C. WOOD 1. Structural light framing: No. 2 Douglas Fir-Larch 2. 3x&4x members: No. 1 Douglas Fir-Larch • 3. Other members: as noted on drawings TABLE OF CONTENTS Gravity Loads GL1-GL17 Lateral Loads LD1-LD66 Nonstructural Upgrades NS1-NS18 Miscellaneous Items MC1-MC3 41111 NISHKIAN DEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 • ND31642 Fowler Middle School Renovation 10865 SW Walnut St. Tigard, OR 97223 GRAVITY LOADS • • GL1 JOB -Fer1,4)Lt Q M:S;10 NO. 3(( Li-4 NISHKIAN DEAN SHEET NO. OF CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 1 1022 SW Salmon Street,Suite 300, Portland,OR 97205 CALCULATED BY �SH°G DATE 4/lLi /2-Ai ri c> Tel:(503)274 1843 Fax:(503)273-5696 CHECKED BY DATE t SCALE %r ry 5 -E-01-t-61")11-4, PA-Ea e:5 'FMR 'p 1s'-i4-o l,As1A-c7 S Li V -F- - : I-10 Ps°F LA tr.) --rsi c .^ -camttN . `7- 10) 110 • GL2 • . • SEISMIC WEIGHTS FLOORS / ROOFS Science/Math Humanities Auditorium 1 Auditorium 2 Library Floor/Roof Component X Weight X Weight X Weight X Weight X Weight Built-up roofing,X no. 1 1.00 1 1.00 1 1.00 1 1:00 1 1.00 1/2" rigid insulation, X no. 1 0.75. 1 0.75 1 0.75 1 0.75 1 0.75 1/2" plywood sheathing,X no. 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Wood joists,X psf 0 0.60 0 0.00 0 0.00 0 0.00 0 0.00 Wood framing,X psf 0 0.00 0 0.00 0 0.00 0 0.00 `. 2.75 2.75 Steel deck,X psf 1.8 1.80 1.8 1.80 1.8 1.80 1.8 1.80 0 0.00 Steel joists,X psf 5 5.00 5 5.00 5 5.00 5 5.00 0 '°0.00 3"Tectum planks,X psf 0 0.00 0 0.00 0 0.00 0 0.00 5.3 5.30 Concrete slab,X"thick 0 0.00 ` 0 0.00 0 0.00 0 0.00 0 0.00 Concrete joists, X psf 0 0.00 0 0.00 0 0.00 0 0.00 0 0:00 5/8"gypsum board,X no. 0 0.00 0 0.00 1 2.75 0 0.00 0 0.00 Acoustic tile ceiling,X psf 4 4.00 4 4.00 0 0.00 0 0.00 0 0.00 Suspended ceiling,X psf 0 0.00 0 0.00 0 0.00 2 2.00 0 0.00 MEP,X psf 2 2.00 2 2.00 2 2.00 2 2.00 0 0.00 Miscellaneous, X psf 1.5 1.50 1.5 1.50 1.5 1.50 1.5 Total Weight(psf) i 1.50 1.5 1.50 '. x c = Floor Area (sqft) 14275 9000 2950 650 5000 •a 2 m Floor Weight (kips) 229.1 144.5 43.7 9.1 56.5 • Floor Area (sqft) 0 0 0 0 0 Floor Weight(kips) 0.0 0.0 0:0 0.0 0.0,E Y E Floor Area (sqft) 0 0 0 0 0 3 i• x Floor Weight(kips) 0.0 0.0 x0.0 0.0 s 0.0 a E Floor Area (sqft) 0 0 0 0 0 0 = W Floor Weight(kips) 0.0 0,0,. 0.0 0.0 - 0.0 w Fowler MS Seismic Upgrade • • • SEISMIC WEIGHTS FLOORS / ROOFS Offices 1 Offices 2 Commons 1 Commons 2 Arts 1 Floor/Roof Component X Weight X Weight X Weight X Weight X Weight Built-up roofing,X no. 1 1.00 1 1.00 , 1 1.00 1 1.00 1 1.00 1/2" rigid insulation,X no. 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1/2" plywood sheathing,X no. 0 0.00 0 0.00 0 0.00' 1 1.60 0 0.00, Wood joists,X psf 0 0.00 0 0.00 0 0.00 2.5 2.50 0 0.00 Wood framing,X psf 0 0.00 0 0.00 2.75 2.75' 0.5 0.50 0 0.00 Steel deck,X psf 1.8 1.80 1.8 1.80 0 0.00 0 0.00- 1.8 1.80 Steel joists,X psf 5 5.00 5 5.00 0 0.00 0 0.00 5 5.00 3"Tectum planks,X psf 0 0.00 0 0.00 5.3 5.30 0 0.00 ., 0 0.00 Concrete slab,X"thick 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Concrete joists,X psf 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 5/8"gypsum board,X no. 0 0.00 1 2.75 0 0.00 1 2.75 0 0.00 Acoustic tile ceiling,X psf 4 4.00 0 0.00 0 0.00 0 0.00 , 4 4.00 Suspended ceiling,X psf 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 MEP,X psf 2 2.00 2 2.00 0 0.00 2 2.00 2 2.00 Miscellaneous,X psf 1.5 1.50 1.5 1.50 1.5 1.50 1.5 1.50 1.5 1.50 Total Weight(psf) - -: ,, ,:.'' ..1 'L...-:..'_`:-: [ ' ..... - I",, - .0 i . r Floor Area (sqft) 6500 500 11750 1650 6225 2 2 Floor Weight (kips) 104.3 7.4 132.8 20.8 • 99 9 c . Floor Area (sqft) 0 0 0 0 0 •4 ' W Floor Weight(kips) 0.0 0.0 0.0 0.0 00 " E2 Floor Area (sqft) 0 0 0 0 0 0 3 c' Floor Weight(kips) 0.0 0.0 0.0 0.0 0.0 k E Floor Area (sqft) 0 0 0 0 0 0 Floor Weight(kips) 0.0 0.0 0.0 0:0 0.0 -4. . Fowler MS Seismic Upgrade • • 0 SEISMIC WEIGHTS FLOORS / ROOFS Arts 2 Foyer Kitchen Receiving 1 Receiving 2 Floor/Roof Component X Weight X Weight X Weight X Weight X Weight Built-up roofing, X no. 1 1.00 1 1.00 1 1.00 1 1.00 1 '1.00 1/2" rigid insulation, X no. 1 0.75 1 0.75 1 ' 0.75 1 0.75 1 0.75 1/2" plywood sheathing, X no. 0 0.00 0 .0.00 ' 0 0.00 1 1.60. 0 0.00 Wood joists,X psf 0 0.00 0 0.00 0 0.00 2.5 ''' 2.50 0 0.00 Wood framing,X psf 2.75 2.75 0 0.00 0 0.00 0.5 0.50 0 0.00 Steel deck,X psf 0 0.00 1.8 1.80 1.8 1.80 0 0.00 1.8 1.80 Steel joists,X psf 0 0.00 5 5.00 5 5.00 0 0.00 5 5.00 3"Tectum planks,X psf 5.3 5.30 0 0.00 0 0.00 0 0.00 0 0.00 Concrete slab,X"thick 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Concrete joists,X psf 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 5/8"gypsum board,X no. 0 0.00 0 0.00 1 175 1 2.75 1 2.75, Acoustic tile ceiling,X psf 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Suspended ceiling,X psf 0 0.00. 2 2.00 0 1O00 0 k 0.00 0 0.00 MEP,X psf 0 0.00 2 2.00 2 2.00 2 2.00 2 2.00 Miscellaneous, X psf 1.5 1.50 1.5 1.50 1.5 1.50 1.5 1.50 1.5 1.50 Total Weight(psf) *."..,7 , I .1- ' ; • ::":' , .., .e Floor Area (sqft) 5700 1500 2600 350 825 g :4 03 Floor Weight(kips) 64.4 21.1 38.5, 4A 12.2 .c E Floor Area (sqft) 0 0 0 0 0 c.g Floor Weight(kips) 0.0 0.0 0 00 00.0 E Floor Area (sqft) ...V 0 0 0 0 0 0 0 3 c' Floor Weight(kips) 0.0 0.0 00 0.0 0.0 1,. E Floor Area (sqft) 0 0 0 0 0 W Floor Weight(kips) 0.0 0.0 0.0 0.0 0.0 (Il Fowler MS Seismic Upgrade • . • SEISMIC WEIGHTS FLOORS / ROOFS Choral 1 Band 1 Band 2 Main Gym Corridor 1 Floor/Roof Component X Weight X Weight X Weight X Weight X Weight Built-up roofing, X no. 1 1.00 1 ' '1.00 ' 1 1.00 1 1.00 '7!`: 1 1.00 1/2" rigid insulation,X no. 1 0.75 1 0.75 1 0.75 1 0.75 1 0.75 1/2" plywood sheathing, X no. 0 0.000 0.00 0 0.00 0 0.00 0 0.00 Wood joists,X psf 0 0.00 0 0.00 0 0.00 ` 0 0.00 0 0.00 Wood framing,X psf 0 0.00 0 0.00 0 0.00 2.75 2.75 2.75 2.75 ''i Steel deck,X psf 1.8 1.80 1.8 1.80 1.8 1.80 0 ;0.00 0 0.00 Steel joists,X psf 5 5.00 5 5.00 5 5.00 0 0.00 0 0.00 3"Tectum planks,X psf 0 0.00 0 0.00 0 0.00 5.3 5.30 5.3 5.30 Concrete slab, X"thick 0 0.00 0 0.00 0 0.00 0 '' 0.00 0 0.00, Concrete joists,X psf 0 0.00 0 0.00 00.00 0 0.00 0 - 0.00 ',. 5/8"gypsum board,X no. 0 0.00 . 1 2.75 0 0.00 0 0.00 . 0 .0.00 Acoustic tile ceiling,X psf 4 4.00 0 0.00 4 4.00 0 0.00'-.., 0 0.00 Suspended ceiling,X psf 0 0.00 ` 0 `0.00; 0 0.00 0 0.00 2 2.00 MEP,X psf 2 2.00 2 2.00'' 2 2.00 0 0.00 0 0.00 Miscellaneous, X psf 1.5 1.50 1.5 1.50 1.5 1.50 1.5 1.50 1.5 1.50 Total Weight(psf) ,aI. •a �o Floor Area (sqft) 1600 700 2050 0 9200 m Floor Weight (kips) 25.7 10.4 32.9 0.0': 122.4 E Floor Area (sqft) 0 0 0 12600 0 Floor Weight(kips) 0.0 0.0 0.0 142.4 0:0 Y ; Floor Area (sqft) 0 0 0 0 0 3 c' Floor Weight(kips) 0.0 0.0 0.0 0.0 0.0 a E Floor Area (sqft) 0 0 0 0 0 W Floor Weight(kips) 0.0 0.0 0.0 0.0 ;0.0 rn Fowler MS Seismic Upgrade • • • SEISMIC WEIGHTS FLOORS / ROOFS Corridor 2 Corridor 3 Corridor 4 Vestibule 1 Vestibule 2 Floor/Roof Component X Weight X Weight X Weight X Weight X Weight Built-up roofing,X no. 1 1.00 1 1.00 >` 1 1.00 1 `1.00; 1 1.00 1/2" rigid insulation,X no. 1 0.75 1 0.75 1 0.75, 1 0.75 1 0.75 1/2" plywood sheathing, X no. 0 0.00 0 0.00 1 1.60 0 0.00 w 0 0.00 Wood joists,X psf 0 0.00 0 0.00 2.5 2:50 00.00 0 0.00 Wood framing,X psf 0 0.00 2.75 2.75 0.5 0.50 2.75 11113=1 0 :0.00 Steel deck,X psf 1.8 1.80 0 0.00 0 0.00 0 0.00 1.8 "1.80 Steel joists,X psf 5 5.00 0 0.00 0 0.00 0 0.00 5 5:00 3"Tectum planks,X psf 0 0.00 5.3 5.30 0 0.00*= 5.3 5.30 0 0.00 Concrete slab,X"thick 0 0.00 0 0.00", 0 0.00 0 0.00 0 ;0.00 Concrete joists,X psf 0 0.00 0 0.00 0 0.00 0 0.00 M" 0 0.00 5/8"gypsum board, X no. 0 0.00 0 0.00 0 0.00 0 0,00 0 0:00 µ: Acoustic tile ceiling,X psf 0 0.00 0 0.00 0 0.00 0 0.00 0 0:00 Suspended ceiling,X psf 2 2.00 0 0.00 2 2.00 2 2.00 2 2.00 MEP,X psf 0 0.00 0 0.00 0 0:0.0 2 2.00 ` 2 2.00 Miscellaneous, X psf 1.5 1.50 1.5 ;: 1.50 1.5 1.50 1.5 1.50 1.5 6'. 1:50 ' Total Weight(psf) °a r Floor Area (sqft) 830 725 2050 290 540 2 m Floor Weight(kips) 10.0 8.2 20.2: 4.4 7.6 E Floor Area (sqft) 0 0 0 0 0 76 Floor Weight(kips) 0.0 ` 0.0`` 0.0 0.0 0.0 Y E Floor Area (sqft) 0 0 0 0 0 kJ c' Floor Weight(kips) 0.0 ' 0.0_x; 0.0 0.0 X0:0 a E Floor Area (sqft) 0 0 0 0 0 Va ' " Floor Weight(kips) 0.0 0.0 0.0 0.0 OA Fowler MS Seismic Upgrade • • • SEISMIC WEIGHTS FLOORS / ROOFS Addition 1 Addition 2 Addition 3 Mezzanine Storage 1 Floor/Roof Component X Weight X Weight X Weight X Weight X Weight Built-up roofing,X no. 1 `1.00 1 X1.00 . 1 1.00 0 0.00- 0 '> 0.00 1/2" rigid insulation,X no. 1 0.75 1 0.75 "' 1 0.75 0 0.00` 0 0.00 1/2" plywood sheathing,X no. 1 1.60 1 1.60 1 1.60 1 1.60 1 1.60 Wood joists,X psf 2.5 2.50 2.5 2.50 2.5 2.50 2.5 2.50 2.5 2.50 Wood framing,X psf 0.5 0.50 0.5 0.50 0.5 0.50 0.5 0.50 `° 0.5 0.50 Steel deck,X psf 0 0.00` 0 0.00 0 0.00 0 0.00 0 0.00 Steel joists,X psf 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 3"Tectum planks,X psf 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Concrete slab,X"thick 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Concrete joists,X psf 0 0.00 0 0.00 0 0.00 0 0.00x. 0 0.00 5/8"gypsum board,X no. 0 0.00 1 2.75 1 '2.75 0 0.00 0 0.00 Acoustic tile ceiling,X psf 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Suspended ceiling, X psf 2 2.00 2 2.00 0 0.00 0 0.00 0 0.00 MEP,X psf 2 2.00 2 2.00 2 2.00 5 5.00 0 0.00; Miscellaneous,X psf 1.5 1.50 1.5 1.50 18 18.00 6 6.00 31.25 31.25 Total Weight(psf) i *:';',a= ,,, c = Floor Area (sqft) 10300 880 720 12800 725 •a 2 m Floor Weight(kips) 122.1 12.8 21:0 -. r '199.7 26.0 E Floor Area (sqft) 0 0 0 0 0 w Floor Weight (kips) 0.0 0.0 0.0 0.0 -0.0 Y E Floor Area (sqft) 0 0 0 0 0 3 c4 Floor Weight(kips) 0.0 0.0 ' 00< 0.0 0.0, c E Floor Area (sqft) 0 0 0 0 0 r " Floor Weight(kips) 0.0 0.0 0.0i. 0.0 , 0.0' Fowler MS Seismic Upgrade • • SEISMIC WEIGHTS FLOORS / ROOFS Storage 2 Locker Room Upper Gym Floor/Roof Component X Weight X Weight X Weight Built-up roofing,X no. 0 0.00 0 0.00 1 1.00 1/2" 1/2" rigid insulation,X no. 0 0.00 0 0.00 1 0.75 1/2" plywood sheathing, X no. 0 0.00 0 0:00 0 0.00 Wood joists,X psf 0 .0.00 0 0.00 0 0.00 Wood framing,X psf 0 0.00 0 0.00.` - 2.75 2.75 Steel deck,X psf 0 0.00 "` 0 0.00 0 0.00 Steel joists, X psf 0 0.00 0 0.00 0 0.00 3"Tectum planks,X psf 0 0.00 0 0.00 5.3 5.30 Concrete slab,X"thick 7 87.50 3.5 43.75 0 0::.00 Concrete joists,X psf 0 0.00 55 55.00 0 0.00 5/8"gypsum board,X no. 0 0.00 0 0.00 0 0:00 Acoustic tile ceiling,X psf 0 0.00 0 0.00<; 0 0.00 Suspended ceiling,X psf 0 0.00 0 0.00` 0 0.00. MEP,X psf 0 0.00 0 0.00 0 0.00 Miscellaneous,X psf 31.25 31.25 1.5 1.50 1.5 1.50 Total Weight(psf) , c = Floor Area (sqft) 735 0 0 •a13 2 m Floor Weight (kips) 87.3 0.0, 0.0 .E E Floor Area (sqft) 0 0 0 Floor Weight(kips) 0.0 0.0 ; 0.0 Y E Floor Area (sqft) 0 9750 0 tx Floor Weight(kips) 0.0 977.4 0.0 a E Floor Area (sqft) 0 0 9750 cryo ' " Floor Weight(kips) 0.0 0.0 110.2 Fowler MS Seismic Upgrade S • • SEISMIC WEIGHTS WALLS Wall A (1973) Wall B(1973) Wall C(1973) Wall D(1973) Wall E(1973) Wall Component X Weight X Weight X Weight X Weight X Weight 2x6 studs spaced at X" 10 2.24` 10 2:24 10 2.24 10 2:24 10 2.24 2x4 studs spaced at X" 0 0.00 0 0.00 0 0.00 0 0.00 ', 0 0.00 3.5" steel studs spaced at X" 0 0.00` 0 0.00 0 0.00 0 0.00 0 0.00 6" steel studs spaced at X" 0 0.00 `' 0 0:00 0 0.00 0 0.00 0 0.00 4.5" brick veneer,X no. 1 38.00 0 0.00 0 0.00 0 0.00 0 0.00 Metal siding,X no. 0 0.00 0 0.00 0 0.00 1 '` 3.00 0 0.00 1/2" plywood sheathing,X no. 1 1.60 1 .1.60 0 0:00 1 1.60 1 1.60,r�`' 1/2"gypsum sheathing,X no. 0 0.00 0 0.00 1 2.50 0 x..< 0.00 0 0.00 5/8"gypsum board,X no. 2 5.50 : 4 11.00 2 5.50 2 5.50 4 11.00 Insulation, X"thick 5.5 1.10 - 5.5 1.10 5.5 1.10 , 5.5 1.10 ' 0 0.00 Concrete wall,X"thick 0 0.00 0 0.00 0 0:00 "' 0 0.00 0 0.00 Concrete columns,X psf 0 0.00 0 0.00 0 0.00,,, 0 0.00 0 0.00 CMU wall,X psf 0 0.00 0 0.00 0 0.00 0 N 0.00 0 0.00"s Miscellaneous,X no. 1 1.50 1 1.50 1 1.50 1 1.50 1 1.50 Total Weight(psf) . . ' _ [ ) .c lc Wall Area (sqft) 15931 1568 1123 1966 7515 a m Wall Weight(kips) 795.6 27.3 14.4 29.4 .122.8: c E Wall Area (sqft) 0 0 0 0 0 i ( Wall Weight(kips) 0.0 0.0 0.0: r. 0.0 0.0 Y41 E Wall Area (sqft) 0 0 0 0 0 Wall Weight(kips) 0.0 0.0' 0.0 0.0 0.0 a s Wall Area (sqft) 4422 0 0 4760 0 0. W Wall Weight(kips) 220.8 0.0 0.0 71.1 0:0 0 r 1 O Fowler MS Seismic Upgrade • • • SEISMIC WEIGHTS WALLS Wall F(1973) Wall G(1973) Wall H(1973) Wall I(1973) Wall J(1973) Wall Component X Weight X Weight X Weight X Weight X Weight 2x6 studs spaced at X" 10 2.24 10 2.24 10 2.24 10 2.24 0 0.00 2x4 studs spaced at X" 0 0.00 ' 0 0..00 0 0.00 , 0 0,00 16 0:90 3.5" steel studs spaced at X" 0 0.00 0 0.00 0 0.00 0 0:00 0 0.00 6" steel studs spaced at X" 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 4.5" brick veneer,X no. 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Metal siding,X no. 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00# 1/2" plywood sheathing, X no. 1 1.60 ' 0 0.00 0 0.00 1 1.60 0 0.00 1/2"gypsum sheathing,X no. 0 0.00 0 0.00 0 0.00 0 0.00;." 0 0.00 5/8"gypsum board,X no. 2 5.50 4 11.00 2 5.50 2 5.50 =` 2 5.50 Insulation,X"thick 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Concrete wall,X"thick 0 0.00 0 0.00 , ' 0 0.00 0 0.000 :0.00 r Concrete columns,X psf 0 0.00 0 0.00 y 0 0.00 0 0.00 ` 0 0.00 CMU wall,X psf 0 0.00 0 0.00 0 000 0 0.00 0 0.00 Miscellaneous,X no. 1 1.50.: 1 1.50 1 1.50 1 1.50 1 1.50 Total Weight(psf) 13 Wall Area (sqft) 4831 5394 6169 914 1358 2 m Wall Weight(kips) 52.4 79.5 57.0 9.9 .:.- 10.7 Wall Area (sqft) 0 0 0 0 0 W Wall Weight(kips) 0.0 0,0 0.0 0.0 0.0 Y ; Wall Area (sqft) 0 0 0 0 2341 Wall Weight(kips) 0.0 0.0 0.0 0.0 18.5 a £ Wall Area (sqft) 0 0 5552 0 0 0. Wall Weight(kips) 0.0 0:0 ' 51.3 00 0.0 r J Fowler MS Seismic Upgrade • • • SEISMIC WEIGHTS WALLS Wall K(1973) Wall L(1973) Wall M(1973) Wall N(1973) Wall 0(1973) Wall Component X Weight X Weight X Weight X Weight X Weight 2x6 studs spaced at X" 0 0.00` 0 0.00 0 0:00 10 2.24 0 0.00. 2x4 studs spaced at X" 0 0.00 ,: 0 0.00 16 0.90 0 0.00 : 0 0.00 3.5"steel studs spaced at X" 16 1.20 0 0.00 0 0.00 0 0.00 0 0.00 6" steel studs spaced at X" 0 0.00 16 1.80 0 0.00 0 0.00 0 0.00 4.5" brick veneer,X no. 0 0.00 0 0.00 0 0:00 1 38.00 0 0.00 Metal siding,X no. 0 0.00 0 0.00 0 0.00 0 0.00, 0 0.00 1/2" plywood sheathing,X no. 0 0.00 0 0.00 0 0:00 1 1.60 0 0.00 1/2"gypsum sheathing,X no. 0 0.00 0 0.00 0 0.00 1 2.50 0 0.00 5/8"gypsum board,X no. 2 5.50 2 5.50 4 11.00 2 5.50 0 0.00 Insulation,X"thick 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Concrete wall, X"thick 0 0.00 0 0.00 0 0.00 0 0:00 6.5 81.25 Concrete columns,X psf 0 0.00 0 0.00 0 0:00 ' 0 0.00 5.1 5.10 CMU wall, X psf 0 0.00 0 0.00 0 0.00 0 0:00 0 0.00 Miscellaneous,X no. 1 1.50} 1 1.50 1 1.50 1 1.50 1 1.50; Total Weight(psf) ` '. '" Wall Area (sqft) 13843 3543 280 658 0 ' m Wall Weight(kips) 113.5 31.2 3:8 33.8 00 .E E Wall Area (sqft) 0 0 0 0 6095 Wall Weight(kips) 0.0 0.0`' 0.0; 0.0 535.4 Y E Wall Area (sqft) 0 0 0 0 0 ec Wall Weight(kips) 0.0 0.0; 0.0 0.0;> 0.0 I, E Wall Area (sqft) 0 0 0 0 1280 Wall Weight(kips) 0.0 0.0 =00 ;. 0.0 112.4, G) 1- 17 N Fowler MS Seismic Upgrade • • • SEISMIC WEIGHTS WALLS Wall P(1973) Wall Q(1973) Wall R(1973) Wall 5(1973) Wall T(1973) Wall Component X Weight X Weight X Weight X Weight X Weight 2x6 studs spaced at X" 0 0.00> 0 0.00 0 0.00 = 0 1' 0.00 0 0.00 2x4 studs spaced at X" 0 0.00 0 0.00 : 0 0.00 0 0.00, 0 0.00 =. 3.5"steel studs spaced at X" 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 6" steel studs spaced at X" 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 4.5" brick veneer,X no. 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Metal siding,X no. 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1/2" plywood sheathing,X no. 0 0.00 0 0.00 0 0:00 0 0.00 0 0.00 1/2"gypsum sheathing,X no. 0 0.00 0 0:00 0 0.00 0 0.00 0 0.00 5/8"gypsum board,X no. 0 0.00 0 0.00 0 -0.00 0 ' 0.00 0 0.00 Insulation, X"thick 0 0.00 0 0.00 0 0:00 0 0.00 0 0.00 Concrete wall, X"thick 8 100.00.. 8 10000 10 125.00 12 150.00 0 '0.00 Concrete columns,X psf 0 0.00 0 0.00 0 0.00 0 0.00 0 0:00 CMU wall, X psf 0 0.00 0 0.00; 0 0.00 0 0:00 28 28.00 Miscellaneous,X no. 1 1.50 1 1.50 1 1.50 1 1.50 1 1.50 Total Weight(psf) :` L, .s 1 Wall Area (sqft) 817 1166 0 0 860 m Wall Weight(kips) 82.9 118:3 0.0 =0.0 25.4 E Wall Area (sqft) 0 1359 3036 0 0 Wall Weight(kips) 0.0 137.9 384.1 0.0 0.0 Y E Wall Area (sqft) 0 2454 1489 1318 2506 3 c' Wall Weight(kips) 0.0 249.1 188.4 ;199.6 73.9 a £ Wall Area (sqft) 0 0 0 0 0 Wall Weight(kips) 0.0` 0.0: 0.0 0.0 0.0 r W Fowler MS Seismic Upgrade • • 0 SEISMIC WEIGHTS WALLS Wall U(1973) Wall V(1973) Wall W(1973) Wall A(1981) Wall 8(1981) Wall Component X Weight X Weight X Weight X Weight X Weight 2x6 studs spaced at X" 0 0.00 0 0.00 0 0.00 16 1:40 16 1.40 2x4 studs spaced at X" 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 3.5" steel studs spaced at X" 0 0.00 0 0.00 0 0.00 0 0.00 i . 0 0.00 6" steel studs spaced at X" 0 0.00 0 0.00 0 =.0.00 0 0.00 0 0.00 4.5" brick veneer, X no. 1 38;00 1 38.00 1 38:00 1 38.00 0 0.00 Metal siding,X no. 0 0.00 0 0.00 0 0.00 0 0:00 1 ;3.00 1/2" plywood sheathing, X no. 0 0.00 0 0.00 : 0 0.00 1 1.60 1 1.60 1/2"gypsum sheathing,X no. 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 5/8"gypsum board,X no. 0 0.00 0 0.00 0 0.00 1 2.75 1 2.75 Insulation, X"thick 0 0:00 0 0.00 0 h 0.00 5.5 1.10 5.5 1.10 Concrete wall,X" thick 0 0.00 8 100.00 10 125.00 0 0.00 0 0.00 Concrete columns,X psf 0 0.00 0 0.00 0 0.00 0 0.00rt": 0 0.00 CMU wall,X psf 67 . x67.00 0 0.00 0 0.00 0 0.00 0 0.00. Miscellaneous,X no. 1 1.50 1 1.50 1 1:50 1 1.50 1 1.50 Total Weight(psf) ' A ; .c If Wall Area (sqft) 0 0 0 3836 1264 a m Wall Weight(kips) 0.0 0.0; 0.0 177.8 14.3 E Wall Area (sqft) 0 0 0 0 0 Wall Weight(kips) 0.0 0.0. 0.0 0.0 0.0'..,. Y E Wall Area (sqft) 772 646 2132 0 0 3 ° Wall Weight(kips) 82.2 90.1 350.8 0.0 0.0 a E Wall Area (sqft) 0 0 0 0 0 t. (7 Wall Weight(kips) 0.0 0.0 0.0 0.0 0.0 0 I- -P. 1 Fowler MS Seismic Upgrade • • • SEISMIC WEIGHTS WALLS Wall C(1981) Wall D(1981) Wall E(1981)(Add'!) Wall F(1981) Wall G(1981) Wall Component X Weight X Weight X Weight X Weight X Weight 2x6 studs spaced at X" 16 1.40 0 0.00 0 0.00 16 1.40 16 1.40 2x4 studs spaced at X" 0 0.00 0 0:00 0 0.00 0 0:00 16 0.90 3.5" steel studs spaced at X" 0 0.00, 24 0.80 24 0.80 0 0.00 0 0.00, 6" steel studs spaced at X" 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 4.5" brick veneer,X no. 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Metal siding, X no. 0 0.00 0 0.00 0 0.00 0 0.00 - 0 0.00 1/2" plywood sheathing,X no. 0 .0.00 0 0.00 0 0.00 1 1.60 0 0.00 1/2"gypsum sheathing,X no. 0 0:00 0 0.00 2 5:00 0 0.00 0 0.00`'' 5/8"gypsum board,X no. 2 5.50 2 5.50 2 5.50 2 5:50 ' : 4 11.00 Insulation,X"thick 0 0:00 0 0.00 0 0.00 0 0.00 0 0.00 Concrete wall,X" thick 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Concrete columns, X psf 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 CMU wall,X psf 0 0.00 0 0.00 0 0:00 0 0.00 0 0.00:;h' Miscellaneous, X no. 1 1.50 1 1.50 1 1.50 1 1.50 2 3.00 Total Weight(psf) L. , Wall Area (sqft) 3829 2500 619 959 585 g 74 m Wall Weight(kips) 32.2 19.5 7.9 9.6 9.5 E Wall Area (sqft) 0 0 0 0 0 g LDWall Weight(kips) 0.0` ;0.0_ 0.0 0.0 0.0 YE Wall Area (sqft) 0 0 0 0 0 Wall Weight(kips) 0.0 0.0 0.0 ' 0.0 0.0 a £ Wall Area (sqft) 0 0 0 0 0 Wall Weight(kips) 0.0 0.0 0.0 0.0 0.0 0 r V, Fowler MS Seismic Upgrade • • • SEISMIC WEIGHTS WALLS Wall H(1981) Wall J(1981) Wall K(1981) Wall L(1981)(Add'1) Wall M(1981)(Add'1) Wall Component X Weight X Weight X Weight X Weight X Weight 2x6 studs spaced at X" 0 0.00 16 1.40 16 1.40 0 0.00 0 0.00 2x4 studs spaced at X" 16 0.90 0 0.00 0 0.00 0 0.00 n0 0.00 3.5" steel studs spaced at X" 0 0.00 0 0.00 0 0.00 0 0.00" '` 0 0.00 6" steel studs spaced at X" 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 4:' 4.5" brick veneer,X no. 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00.. Metal siding,X no. 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1/2" plywood sheathing,X no. 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 1/2"gypsum sheathing,X no. 0 0.00 0 0.00 0 0.00 0 0.00 0 0,00 5/8"gypsum board,X no. 2 '5.50 2 5.50 2 5.50 1 2.75 2 5.50 Insulation,X"thick 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 Concrete wall,X"thick 0 0.00' 0 0.00 0 0.00 0 0.00 0 0.00 Concrete columns, X psf 0 0.00. 0 0.00 0 0.00 0 0.00 0 0.00 CMU wall,X psf 0 0.00 . 0 0.00 0 0.00 0 ' 0.00 0 0.00 Miscellaneous,X no. 3 4.50 2 3.00 2 3.00 1 1.50 1 1.50 Total Weight(psf) c = Wall Area (sqft) 812 290 311 1046 539 •a m Wall Weight(kips) 8.9 2.9 31 : 4.4 3.8 • E Wall Area (sqft) 0 0 0 0 0 Wall Weight(kips) 0.0 0.0 0.0 0.0." ; ; 0.0 Y41 E Wall Area (sqft) 0 0 0 0 0 CC Wall Weight(kips) 0.0 0.0 0.0 0.0. 0.0 ;, E Wall Area (sqft) 0 0 0 0 0 W Wall Weight(kips) 0.0 0.0 0.0 0.0 ia. 0.0 r /1 V/ Fowler MS Seismic Upgrade • • • SEISMIC WEIGHTS WALLS Wall N(1981)(Add'!) Wall P(1981) Open Walls Wall Component X Weight X Weight X Weight 2x6 studs spaced at X" 0 0.00 16 1.40_ 2x4 studs spaced at X" 0 0.00 0 0.00 3.5"steel studs spaced at X" 0 0.00 0 0.00 6" steel studs spaced at X" 0 0.00 0 0.00 4.5" brick veneer,X no. 0 0.00 0 0.00 Metal siding,X no. 0 0.00 0 0.00 1/2" plywood sheathing, X no. 0 0.00 0 0.00 a, 3 0 1/2"gypsum sheathing, X no. 0 0.00 0 0.00 to m. 5/8"gypsum board,X no. 2 5.50 3 8.25 Insulation, X"thick 0 0.00 0 0.00' Concrete wall,X"thick 0 0.00 0 0.00 Concrete columns,X psf 0 0.00 0 0.00 CMU wall,X psf 0 0.00 ; 0 0.00 Miscellaneous, X no. 2 3.00 1 1.50 Total Weight(psf) .:..7:' c = Wall Area (sqft) 1145 325 5884 •a 2 m Wall Weight(kips) 9.7 3.6 35.3 E Wall Area (sqft) 0 0 0 Wall Weight(kips) 0.0 0.0 0.0 Y41 E Wall Area (sqft) 0 0 0 c' Wall Weight(kips) 0.0 0.0 0.0 E., E Wall Area (sqft) 0 0 0 Wall Weight(kips) 0.0 0.0 '0.0 r V Fowler MS Seismic Upgrade NISHKIAN DEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 • ND31642 Fowler Middle School Renovation 10865 SW Walnut St. Tigard, OR 97223 LATERAL DESIGN • • LD1 CD Nishkian Dean Consulting and Structural Engineers Since 1919 Project: Fowler MS Seismic Upgrade No: ND31642 1022 SW Salmon St,Suite 300,Portland,OR 97213 Calculated by: CN Date: 01/)4(/17 Tel:(503)274-1843 Fax:(503)273-5696 Checked by: RAA Date: 01/)0/17 • FA Design Maps Summary Report User-Specified Input Report Title Fowler Middle School Wed October 28,2015 16:43:28 UTC Building Code Reference Document ASCE 41-13 Retrofit Standard,BSE-1E (which utilizes/SGS hazard data available in 2008) Site Coordinates 45.43142°N, 122.7892°W Site Soil Classification Site Class D-"Stiff Soil". Ammummgainnem-"iiii -, 3` ' r t 4 avi� n e • x �c Y a ' s Z � t''''''''--.14: 4---4:;'',7'-''-' -:-...-t,"42,,,,' � v '�' wi, g - fid4 pp 1,--MP -Aril 1.- - '- eks1 itr%1 1 4., 1---OPM s fir- ,-4, i ,, e'" ^' ` ' '. why - as r ad^¢II.p 4` - = it *Xwa�a 4. _,. .4.,,,. „. 4- e.,,,, ' ,,,,-...v',`„,..1 ,, , . o#,air ke O ti. ) ,'a l:-� ,,, .__ , _,....,.7.,,;_____ „010074--_"4___ � �/ ,9 � yy rr, __ + 1; -ii.0K i d ,y 9 I e �� ',. , -..ilt-,,, , i,_!;-;-A,,,,i..;::eil,:,.. ‘,.'r -ft ',-------_-4---i-P,# 4.4r -'''.7--*---- t Y:::,..i to--,,,,.--„,.i-T s € , _, F, d.-a P f -.L4 F . --.--:1:...,..„----z---,---- ..._ :a. y; T ,; _". .V.13 - . .tea_, s z m i i0 Mi �if�t USGS-Provided Output Ss,20/50 0.292 g Sxs,asE•1! 0.458 g S2,20/SO 0.110 g 82(1019e4a 0.260 g Horizontal Spectrum Vertical Spectrum 0.55 0.50 0,32 0.45 0.20 0.40 0.35 0.24 II. 0.20 'i 0.20 A 0.25 1 Vj o,16 0.20 0:12 0.15 0.10 0.09 0.05 0.04 • 0.00 o.00 0.00 0.20 0.40 0.60 0.00 1.00 1.20 1.40 1.60 1.80 2,00 0.00 0.20 0.40 0.60 0.80 1 000 1.20 1.40 1.60 1.90 2.00 Period,T(sec) Period,T( cc) • LD2 Created with PTC Mathcaci Express. See www,mathcad.com for more information. Nishkian Dean Consulting and Structural Engineers Since 1919 Project: Fowler MS Seismic Upgrade No: ND31642 1022 SW Salmon St,Suite 300,Portland,OR 97213 Calculated by: CN Date: 011)0(117 Tel:(503)274 1843 Fax:(503)273-5696 Checked by: RAA Date: 01/)0(/17 • Design Maps Summary Report .oUSGS User-Specified Input Report Title Fowler Middle School wed November 4,2015 23:15:17 UTC Building Code Reference Document ASCE 41-13 Retrofit Standard,BSE-1N (which utilizes USES hazard data available in 2008) Site Coordinates 45.43142°N,122.7892°W site Soil Classification Site Class D-"Stiff Soil" w '.....12w-124);-,-44-.„f,t, , I :.:.---'7.--,7 a I t u t 3' �. rpolik.,----------,-,'" it t➢ s\ 'ii �_ �'' 9a -t"."- y z 5 .;.''41 --'-`'` !C4:1:•`:,;:' ' yh " t9Z :A ' rn y i , r..,,,.„.-,,.4i,o,:::%:,4,:,..4.T.,va: 17f.,,,(1041 ,,c,4424-;.*,,:: \I tocit.**,---4 4 ,°!.L„ i -7 it y�; :: - * 4 l rt fin, -,. - _ '''`.7,14;i7:::-,, ' & l -N • Lrf r--.4itit;,1.441- i--..45-...,•7_,-ifLittli-44.1„;„ . , ma1'.west , „, il..,•,..pz*„,11,2i,w7�,. ir S' - III �:: .. ':`«.mi ��._-sem. .. .. ems;' �. ..,.q 4A ' Y, 1,0 , „41 ,.. _1" e ' , .'_ lf .' USGS-Provided Output 9 0.717 g Sxs,ese-tet Sln,OSE-srr 0.444 g Horizontal Spectrum 0.50 Vertical Spectrum a.55 0.12 0.64 0.45 0.56 0.40 0.48 0.29 S 0.80 X 0.40 aa 0,29 . 0.32 0.10 0.20 0.24 0.05 0.1S 0.16 0.09 0.00 0.00 0.00 0.20 0.40 0,60 0.00 1.00 1.20 1.40 1,60 1.50 2.00 0.a0 0.20 0,40 0,60 0.90 1.00 1,20 1.40 1.60 1.60 2 00 Period,T lsec) Period,T isecl 10 LD3 Created with PSC � athcad Express. See vrww,rrtathcad,cc m for more information. ean CD Nishkian ®tract Project: Fowler MS Seismic Upgrade No: ND31642 Consulting and Structural Engineers Since 1919 1022 SW Salmon St,Suite 300,Portland,OR 97213 Calculated by: CN Date: 011)0(117 Tel:(503)274-1843 Fax:(503)273-5696 Checked by: RAA Date: 011)0(/17 ASCE 41-13 TIER 1 QUICK CHECK ANALYSIS BASE SHEAR Per SRGP.requirements,for the Tier 1 analysis pseudo seismic force, the response spectral acceleration is the largest of the the value determined from BSE-1E accelerations and the value determined by 75% of the BSE-1N accelerations(equivalent to the accelerations used for design of new buildings per IBC 2012). BSE-1E BSE-1N (IBC 2012) SXS.BSE1E:=0.458 SXS.BSEIN:=0.717 0.75•SXS.BSEIN=0.538 SxlssEiE:=0.260 SXI.BS EIN°=0.444 0.75.S ICLBSE1N=0.333 Governs The building is primarily one story with a two story area containing the locker room and upper gym. The lateral system is a mixture of wood and concrete shear walls,primarily with flexible diaphragms but with a rigid diaphragm in the locker room.The modification factor is conservatively taken as the most unfavorable condition in the building. Building height also varies, and the maximum building height is used to estimate the building period. Modification factor: C:=1.4 Building fundamental period: Ct:=0.020 Itn:=33 ft �3:=0.75 T:=Ct•hnp=0.28s 0.75•Sxi.BSE1N Response spectral acceleration: Sa:= T. =1.21 > 0.75•SXS.BSEuv=0.538 Sa:=0.75•SXS.BSE1N=0.538 Base shear coefficient: . CBS.TI:=C•S =0.75 4111 LD4 Created with PTC Mathcad Express, See www,mathcad,com for more information, shkian Dean Project: Fowler MS Seismic Upgrade , No: ND31642 ConNsulting and Structural Engineers Since 1919 1022 SW Salmon St,Suite 300,Portland,OR 97213 Calculated by: CN Date: 011)007 Tel: (503)274-1843 Fax:(503)273-5696 Checked by: RAA Date: 01/)0(/17 • ASCE 41-13 LINEAR STATIC PROCEDURE (LSP) ANALYSIS BASE SHEAR For the LSP pseudo seismic force, the response spectral acceleration is the same as that used for the Tier 1 analysis. Using the simplified method with a building period less than 0.3 s and a maximum co- factor between 2 and 6, the product of the modification factors is taken from Table 7-3.The value of the effective mass factor is taken from Table 7-4. Modification factors: C1C2:=1.4 Effective mass factor: Cm 1.0 Base shear coefficient: CBs.LSP:=C1C2•Cm•So,=0.75 The base shear coefficient for LSP analysis is equivalent to that for the Tier 1. quick check analysis. IBC 2012 NEW BUILDING ANALYSIS BASE SHEAR - FOR REFERENCE The building's lateral system is a horizontal combination of wood shear walls, reinforced concrete shear walls, and precast shear walls, so the governing response modification coefficient is the minimum of • those for the three systems.The building is in Risk Category III. Response modification factor: R:=3.0 Importance factor: /e:=1.25 Base shear coefficient: C BS.IBC°_Sxs.BSEuv =0.30 (R \Ie/ • LD5 Created with PTC Mathcad Express, See www.mathcad.com for more information. SEISMIC LOAD DISTRIBUTION • BASE SHEAR COEFFICIENT Cs= I 0.75 VERTICAL LOAD DISTRIBUTION MAIN BUILDING Weight(kips) Height(ft) w*h C„x Roof Level 2674 20 53488 1.00' Base Level 0 0 0 0.00 Sum 2574 7 53488 MAIN GYM Weight Height w*h Cvx Roof Level 671 30 20133 1.00 Base Level 0 0 0 0.00 Sum 671 -I __ j 20133 UPPER GYM/ LOCKER ROOM Weight Height w*h Cvx Roof Level 338 32 10817 0.33 IP Slab Level 1832 12 21978 0.67 Base Level 0 0 0 0.00" Sum 2170 # . 32795 7. SEISMIC DESIGN LOADS Diaphragm Load(kips) Area(sqft) Dist. Load(psf) Main Building 2006 99100 20.2 Main Gym 503 12600 39.9 Upper Gym 537 9750 55.0 Locker Room 1090 9750 111.8 III LD6 Fowler MS Seismic Upgrade WOOD SHEAR WALL CAPACITIES Acceptance III Knowledge Factor Yield Strength Expected Criteria Capacity DCR Divisor to(E) DCR Divisor to(E) (K) m-Factor (v,),plf Strength(v,),plf (vw),plf Plywood Wall Gypsum Wall Existing 1/2"plywood sheathing with 6"edge nailing 0.75 3.8 520 780 2223 1.00 1.86 Existing 1/2"plywood siding on 1/2"gypsum sheathing with 6"edge nailing 0.75 3.8 280 420 1197 0.54 1.00 Existing 1/2"plywood sheathing with 6"edge nailing renailed to 4" 0.75 3.8 760 1140 3249 1.46 2.71 Existing 1/2"plywood sheathing with 6"edge nailing with new 1/2"plywood sheathing on other side with 6" 0.75 3.8 1040 1560 4446 2.00 3.71 15 0 New steel stud wall with 1/2"plywood sheathing on one side,panel edge screws at 6" 1 3.8 -- 780 2964 1.33 2.48 New 5/8"Sure-Board gypsum/metal panels with#8x2" long screws at,2"spacing at panel edges 1 2.0* 2751 4127 8253 3.71 6.89 *m factor not given by ASCE 41-13,2.0 is conservative Wood shear wall capacities are based on the provisions of ASCE 41-13 12.4.4.6.2.The yield strength is the LRFD shear capacity from the 2008 SDPWS with c= 1.0.The expected strength is 1.5x the yield shear.The acceptance criteria capacity is the shear capacity per ASCE 41-13 equation 7-36,multiplying the expected strength times the knowledge factor and the m-factor. The knowledge factor is 0.75 for existing elements or retrofits relying on existing elements.It is 1.0 for new elements. The m-factor is from ASCE 41-13 table 12-3,for wood structural panel shear walls with aspect ratios less than or equal to 3.5 for the Life Safety Performance Objective. The DCR divisor is a reference value that is defined as the ratio of acceptance criteria capacity of a given shear wall to that of a reference wall type.Dividing the DCR of the existing wall with the DCR divisor of a proposed replacement wall will give the new DCR of the replacement wall. Example:An exising 1/2"plywood wall with 6"edge nailing has a DCR of 2.20.If that plywood is renailed to 2",the new DCR would be 2.20/2.46=0.89, which would be acceptable.Alternatively,if a new layer of plywood was added to the other side of the wall with 6"edge nailing,the new DCR would be 2.20/ 1.33=1.65,which would not be acceptable. The DCR divisor can be used to quickly identify a working retrofit,since the retrofit with a DCR divisor greater than the DCR of the existing wall will reduce the DCR to less than 1.0. CFS studs with plywood:based on the provisions of ASCE 41-13 12.4.5.2.The expected strength is the LRFD shear capacity from AISI 5213(Table C2.1-3)with • „,„ =1.0.The acceptance criteria capacity is the shear capacity per ASCE 41-13 equation 7-36,multiplying the expected strength times the knowledge factor and the m-factor. The m-factor is from ASCE 41-13 table 12-3,for wood structural panel shear walls with aspect ratios less than or equal to 3.5 for the Life Safety Performance • LD7 Fowler M5 Seismic Upgrade 11114 EVALUATION REPORT Number: . TM Originally Issued: 01/26/2010 Revised: 02/27/2017 Valid Through: 02/28/2018 • EVALUATION SUBJECT: 3.0 PRODUCT DESCRIPTION SURE-BOARD®SERIES 200,200W,AND 200B STRUCTURAL PANELS INSTALLED ON 3.1 Sure-Board® Series 200, 200W, and 200B Series COLD-FORMED STEEL OR WOOD FRAMED Structural Panels SHEAR WALLS 3.1.1 Sure-Board® Series 200 Panels: Sure-Board® REPORT HOLDER: Series 200 Structural Panels consist of'A-to 3/4-inch thick Intermat (12.7 to 19.0 mm), tapered or square-edged, non-rated or 2045 Placentia Avenue Type-X fire-resistance-rated gypsum wallboard complying Costa Mesa,California 92627 with ASTM C1396, C1278 or C1177, or cement board www.sureboard.com complying with ASTM C1325, factory-laminated with support(asureboard.com water-soluble adhesive to sheet steel.The sheet steel is No. 22 gage (0.027 inch/0.686 mm) minimum base-metal CSI Division: 05-METALS thickness complying with ASTM A653 CS, Grade 33 CSI Section: 05160-Metal Framing Systems minimum, and is provided with a G40 hot-dipped galvanized coating conforming to ASTM A924. These 1.0 SCOPE OF EVALUATION panels are available in widths of 48 inches(1219 mm)and standard lengths of 8, 9, 10 and 12 feet(2438,2743,3048 1.1 Compliance to the following codes & regulations: and 3658 mm). • 2015, 2012, and 2009 International Building Code®(IBC) 3.1.2 Sure-Board®Series 200W Panels: Sure-Board® • 2015, 2012, and 2009 International Residential Series 200W Structural Panels consist of minimum 1/8- Code®(IRC) inch (3.2 mm) thick, square-edge Medium Density • 2016 and 2013 California Building Code®(CBC) Fiberboard(MDF)panels,or equal,complying with ANSI --Attached Supplement A208.2,factory-laminated with a water-soluble adhesive to sheet steel.The sheet steel is No.22 gage(0.027 inch/0.686 1.2 Evaluated in accordance with: mm) minimum base-metal thickness complying with • EC 003-2016 ASTM A653 CS,Grade 33 minimum,and is provided with a G40 hot-dipped galvanized coating conforming to ASTM 1.3 Properties assessed: A924. These panels are available in widths of 48 inches • Structural (1219 mm) and standard lengths of 8, 9, 10 and 12 feet (2438,2743,3048 and 3658 mm)and the standard lengths 2.0 PRODUCT USE may be pre-cut by request. 2.1 General 3.1.3 Sure-Board® Series 200B Panels: Sure-Board® Series 200B Structural Panels consist of Y2-to 3/4-inch thick 2.1.1 Sure-Board®Series 200,200W,and 200B Structural (12.7 to 19.0 mm), tapered or square-edged, non-rated or Panels are panels attached to cold-formed steel (CFS) or Type X fire-resistance-rated gypsum wallboard complying wood framing for shear wall applications within a Seismic with ASTM C1396, C1278 or C1177, or cement board Force-Resisting System conforming to items A.13 in Table complying with ASTM C1325, factorylaminated with 12.2-1 of ASCE 7-05, and A.15 and A.16 in Table 12.2-1 water-soluble adhesive to sheet steel.The sheet steel is No. of ASCE 7-10;or a Wind Force Resisting System. 14 gage (0.071 inch/1.81 mm) minimum base-metal thickness complying with ASTM A653 CS, Grade 50 minimum, and is provided with a G60 hot-dipped 2.1.2 The structural panels are alternatives to cold-formed galvanized coating conforming to ASTM A924. These steel or wood stud light-frame shear wall systems described panels are available in widths of 48 inches(1219 mm)and in Section 2211.6 of the 2015 and 2012 International standard lengths of 8,9, 10 and 12 feet(2438,2743, 3048 Building Code (IBC), Section 2210.6 of the 2009 and 3658 mm). International Building Code (IBC), Section 2305 of the International Building Code (IBC), Section 12.2 of 3.2 Fasteners ASCE/SEI 7,and Sections R602 and R603 of the IRC.The structural panels may also be used where an engineered 3.2.1 Sure-Board" Series 200 Panels Attached to Steel design is submitted in accordance with Section R301.1.3 of Framing (Tables 1 an® 1A): The fasteners used for the International Residential Code(IRC). attaching the Sure-Board®Series 200 Structural Panels to • The product described in this Uniform Evaluation Service(UES)Report has been evaluated as an alternative material,design or method of construction in order to satisfy and comply with the intent of the provision of the code,as noted in this report,and for at least equivalence to that prescribed in the code in quality,strength,effectiveness,fire resistance,durability and safely, 4Piagem. as applicable,in accordance with IBC Section 104.11.This document shall only be reproduced in its entirety. LD8 ANSI Copyright©2017 by Intemational Association of Plumbing and Mechanical Officials.All rights reserved.Printed in the United States.Ph:1-877-4IESRPT•Fax:909.472.4171 web:www.uniform-es.org•4755 East Philadelphia Street,Ontario,California 91761-2816—USA Page 1 of 10MISR = 111:414 i Number: TM Originally Issued: 01/26/2010 Revised: 02/27/2017 Valid Through: 02/28/2018 IDsteel framing are self-drilling/self-tapping No.2 pilot point No. 14 gage: 0.071 inch(1.81 mm) flat head, S12 drill point screws. The No. 8 screws have a No. 16 gage: 0.054 inch(1.37 mm) minimum diameter of 0.138 inch (3.5 mm), with a No. 18 gage: 0.043 inch(1.09 mm) minimum 0.3145 inch (8.0 mm) head diameter and 1.25 No.20 gage: 0.033 inch(0.84 mm) inch (31.7 mm) minimum length, and shall comply with SAE J78,ASTM C954 and C1513. 3.3.2 Steel studs for shear walls are C-shaped, with a minimum depth of 3'/2 inches (89 mm) and a minimum 3.2.2 Sure-Board® Series 200W Panels Attached to flange width of 1% inches (41 mm), with a %-inch (9.5 Steel Framing (Tables 2 and 3): The fasteners used for mm) return lip for C-shaped stud. Tracks shall be a attaching the Sure-Board® Series 200W Structural Panels minimum of 3'/z inches(89 mm)wide,with minimum 11/4- to steel framing are No. 10-0.19 inch(4.83 mm)minimum inch(31.7 mm)high flanges. diameter,with a minimum 0.3145 inch(8.0 mm)diameter pan head and 0.75 inch (19.0 mm) minimum length S12 3.3.3 No. 14 and No. 16 gage steel members shall comply drill point screws,complying with SAE J78,ASTM C954, with ASTM A653 CS Grade 50,with minimum yield and and C1513. tensile strengths of 50 ksi(340 MPa)and 65 ksi(450 MPa), respectively. The No. 18 and No. 20 gage members shall 3.2.3 Sure-Board®Series 200B Panels Attached to Steel comply with ASTM A653 CS Grade 33, with minimum Framing (Table 1): The fasteners used for attaching the yield and tensile strengths of 33 ksi(230 MPa)and 45 ksi Sure-Board®Series 200B Structural Panels to steel framing (310 MPa), respectively. Structural design shall be are minimum No.8 self-drilling S12 drill point screws with performed by the design professional in accordance with a minimum 0.138 inch (3.5 mm) diameter and minimum Section 2211.6 of the 2015 and 2012 IBC, Section 2210.6 1.25 inch(31.7 mm)length. The screw head is No.2 pilot of the 2009 IBC, Section R301.1.3 of the IRC,AISI S100, point flat head having a minimum 0.3145 inch (8.0 mm) and ASCE/SEI 7.Collector posts at each end of shear wall head diameter.The screws shall comply with SAE J78 and shall be minimum double stud and same gage as framing ASTM C954 and C1513. Larger screw diameter is material, except as described in footnote 10 to Table 1 of acceptable to use and maintain capacities listed in this this report. Actual collectors may be increased to larger or report. heavier gage element, as determined by the design III professional. 3.2.4 Sure-Board® Series 200 and 200W Panels Attached to Steel Framing(Table 6): Other fasteners for 3.3.3 IRC: Walls constructed in accordance with this attaching Sure-Board® Series 200 and 200W Structural report may be used in lieu of provisions in IRC Section Panels to steel framing include power-driven fasteners 603.Steel framing shall be designed to resist all applicable (pneumatic pins) for specific assemblies listed in Table 6 loading conditions. of this report. The minimum 1'/4 inch(31.8 mm) long by 0.100 inch (2.54 mm) diameter knurled shank pneumatic 3.4 Wood Framing nails with a minimum 5/16 inch(7.94 mm) diameter head are produced by Aerosmith Inc. and shall comply with an 3.4.1 Minimum framing members are Stud or Construction evaluation report issued by an approved and accredited grade Douglas Fir(D.F.)or equal with a minimum Specific evaluation agency. Gravity (S.G.) of 0.49, conforming to Chapter 23 of the IBC and IRC. Minimum framing member size for shear 3.2.5 Sure-Board® Series 200W Panels Attached to walls shall be nominal 2 by 4 studs. Wood Framing (Table 4): The fasteners used for attaching the Sure-Board® Series 200W Structural Panels 3.4.2 End Posts for shear walls shall be minimum 4 by 4 to wood framing are smooth shank 10d plywood nails No. 1 grade Douglas Fir or equal.Sill plates for shear walls measuring minimum 2.25 inches (57.2 mm) long by shall be minimum 2 by 4 Standard grade or better Douglas minimum 0.148 inch(3.8 mm)shank diameter. Fir or equal. 3.2.6 Sure-Board®Series 200 Panels Attached to Wood 3.4.3 Sill Plates for two-sided shear walls shall be Framing (Table 5): The fasteners used for attaching the minimum 2 by 4 Timberstrand®, 3 by 4 pressure- Sure-Board®Series 200 Structural Panels to wood framing preservative treated Douglas Fir or equal, and shall be in are No. 8 by minimum 2-inch (50.8 mm) long drywall compliance in a current evaluation report from an approved wood screws. and accredited evaluation agency. 3.3 Steel Framing 3.4.4 Fire-retardant-Treated wood framing material has • been tested with Sure-Board® panels. All stated load 3.3.1 In this report, for steel framing members, the capacities in Tables 4 and 5 of this report shall remain as following gage reference numbers, and corresponding stated in this report. minimum design base-metal thicknesses shall apply: 3.4.3 IRC: Walls constructed in accordance with this LD9 Page 2 of 10 Ittto EVALUATION REPORT Number: TM Originally Issued: 01/26/2010 Revised: 02/27/2017 Valid Through: 02/28/2018 • report may be used in lieu of provisions in IRC Section h=Wall height,in.(mm) 602. Wood framing shall be designed to resist all s=Fastener spacing at panel edges,in. (mm) applicable loading conditions. is SB = Sure-Board sheathing steel design thickness, in. 4.0 DESIGN AND INSTALLATION (mm) is F=Cold-formed steel framing design thickness,in.(mm) 4.1 Shear Wall Design v=Shear demand(V/b),lb/in(N/mm) V=Total lateral load applied to the shear wall,lb(N) 4.1.1 Seismic loadings shall be determined in accordance A=Calculated deflection,in. (mm) with IBC Section 1613 and ASCE/SEI 7 subject to anchorage=Vertical deformation from anchorage system,in. limitations set forth for Seismic Force-Resisting Systems (rnm) conforming to items A.13 in Table 12.2-1 of ASCE/SEI 7- p= 1.0 05,and A.15 and A.16 in Table 12.2-1 of ASCE/SEI 7-10. 13=product specific inelastic stiffness factor,lb/in/in 1/a,in The shear walls shall be limited to height limits and seismic Table 4.1.3 of this report. categories listed in ASCE/SEI 7, Table 12.2-1, for the a=product specific inelastic stiffness multiplier,in Table respective light frame shear wall bearing wall system. 4.1.3 of this report. Wind loadings shall be determined in accordance with IBC e)1=s/(6 in.) {s/152.4 mm} Section 1609 and ASCE/SEI 7. w2=(0.0346 in.)/ts_F{(0.8788 mm)/ts_F} w3= [(h/b)/2]°.5 4.1.2 The Nominal(V„)and Allowable Stress Design(Vasa) w4= [(33,000 psi)/Fy]0 5 {[(228 MPa)/Fy]°5} shear values for wind and earthquake forces are shown in Table 4.1.3 --Sure-Board Shear Wall Tables 1, 1A,2,3,4,5,and 6 of this report with associated Deflection Parameters deflections for shear walls using Sure-Board® Series 200, 200W, and 200B Structural Panels attached to Cold- Parameter Sure Board Sure Board Formed Steel or Wood studs. Nominal shear values shall Series 200 Series 200W be multiplied by the appropriate strength reduction factor a 2.566 2.359 to determine LRFD design strength in accordance with (3 [(Ib./in.)/(in.va)] 126.16 107.73 footnote 4 of Tables 1, 1A,2,3,4,5,and 6 of this report as R[(N/mm)/(mmu")] 6.263 4.788 set forth in 2015 and 2012 IBC Section 2211.6,2009 IBC Section 2210.6,Chapter 23 of the IBC,and R301.1.3 of the 4.1.4 The maximum shear-wall height-to-width ratio is IRC. 21/4:1.Panels shall be fastened in accordance with footnote 2 of Tables 1, 1A, 2, 3, 4, 5, and 6 of this report, as 4.1.3 Design Deflection: applicable. The deflection of a 200 or 200W shear wall fastened throughout on steel stud framing shall be permitted to be 4.1.5 Design of shear wall connections,such as uplift hold- calculated in accordance with Eq.4.1.3.Eq.4.1.3 shall not downs, shear to base anchorage and shear transfer from be used to estimate deflection for shear strengths exceeding horizontal elements are beyond the scope of this report and the tabulated nominal values in this report: the design professional shall provide appropriate design \ and detailing information to the code official.The collector _ 2vh3 0)1.632 (PGtSSB)vh (vla shall be designed in accordance to and comply with the 3ESA�b+ + (wi)1zs�z�aw4\ 1 IBC or the IRC and be sized to exceed the loads resisted by (hlthe shear wall. + \b/sanchorage (Eq. 4.1.3) 4.16 Cold-Formed Steel or Wood framing design for out- of-plane and axial loads shall comply with the IBC or IRC, Where as applicable. For installation in Seismic Design Category A� = Gross cross-sectional area of chord/boundary studs, C, D, E, and F, additional requirements in 2015 and 2012 in2(mm2) IBC Section 2211.6,2009 IBC Section 2210.6,Chapter 23 b=Width of shear wall,in. (mm) of the IBC,or IRC,AISI S 100,and ASCE/SEI 7 apply. ES=Modulus of elasticity of steel,29,500,000 psi(203,000 4.2 Installation MPa) Fy=minimum specified yield strength of steel sheet in the 4.2.1 General 1110 Sure-Board sheathing,psi(MPa) The panels shall be directly applied to the studs at interior G= Shear modulus of steel in the Sure-Board sheathing, and exterior shear walls and are limited to applications 11,300,000 psi(78,000 MPa) where there is no continuous direct exposure to the weather or damp environments other than during construction. LD1 Page 3 of 10 .1 !IN0 ► ► ' I ' Number: - :Ztlp TM Originally Issued: 01/26/2010 Revised: 02/27/2017 Valid Through: 02/28/2018 Construction exposure shall not to exceed the board supplied by manufacturer and as recommended by the (gypsum, cement, or fiberboard) manufacturer's Design Professional. recommendations or shall be protected during construction from direct moisture exposure to gypsum.In areas that may 4.2.3 Wood Framing be exposed to possible moisture intrusion, water resistant sheathing is required. Sure Board® products may be 4.2.3.1 Installation shall be in accordance with this report installed as specified by the registered design professional p on assemblies as permitted by the IBC or IRC in all Seismic and the manufacturer's published installation instructions. Design Categories. Field repair of Sure-Board® Series 200 Structural Panels with surface damaged gypsum wallboard may be 4.2.2 Steel Framing accomplished following Section 3 of Installation and Cutting Sure-Board®Series 200 and 200W,available from 4.2.2.1 Installation shall be in accordance with this report the manufacturer upon request or online at and the manufacturer's published Installation and Cutting www.sureboard.com Sure-Board® Series 200, 200W, and 200B instructions. Where conflicts occur, the more restrictive shall govern. 4.2.3.2 Sure-Board®Series 200,200W and 200B Structural Field repair of Sure-Board® Series 200, 200W, and 200B Panels shall be placed with the long dimension parallel or panels with surface damaged gypsum wallboard may be perpendicular to stud framing. The steel face shall be in accomplished following Section 3 of Installation and contact with the framing. All panel edges shall be fully Cutting Sure-Board® Series 200, 200W, and 200B, blocked by framing studs, blocking or plates. Maximum available from the manufacturer upon request or online at stud spacing as tested shall not exceed 24 inches(610 mm) www.sureboard.com on center.Nail and screw heads are required to be located % inch (9.53 mm) minimum from panel edges. Nail and 4.2.2.2 Sure-Board® Series 200, 200W, and 200B screw heads shall be installed flush with surface of MDF, Structural Panels shall be placed with the long dimension non-combustible sheathing or gypsum wallboard to parallel or perpendicular to steel stud framing. The steel accommodate application of finish material where face shall be in contact with the framing. All panel edges required. (top and bottom) shall be fully blocked by framing studs, 0 track, blocking, or flat straps of the same gage as the After Sure-Board® Series 200 or 200B panels have been framing material and include an end collector element to installed and fastened completely to framing members, be determined by the Design Professional in accordance steel structural strapping may be installed by scoring the with the IBC, IRC, the AISI S100, and the ASCE/SEI 7 gypsum sheathing and removing the gypsum material as seismic provisions. Minimum required collector elements necessary from steel sheet where strap is placed. After the are defined in Section 3.3.3 of this report,and are required gypsum material has been removed, the steel structural at both shear wall ends. Maximum stud spacing shall not strapping may be installed over Sure-Board® steel exceed 24 inches (610 mm) on center. Screws attaching sheathing and fastened in accordance with the strap panels shall be installed in one operation through the panels manufacturer's instructions and approved plans, into into the framing. Screws or pneumatic pin heads are required backing or framing and inspected. After required to be located % inch (9.53 mm) minimum from inspection, the gypsum may be patched back in and panel edges. Screw heads shall be driven flush with fastened to Sure-Board® steel sheet or framing and taped surface. Screws shall penetrate at least three exposed and finished by gypsum board applicator to required level threads into framing members. of finish without causing any adverse structural effect or unwanted buildup under the steel sheet of the Sure-Board® 4.2.2.3 A minimum panel size of 16 inches by 96 inches panels. (406 mm by 2438 mm) is acceptable, provided all perimeter edges are fastened to framing members at the 4.2.3.3 A minimum panel size of 16 inches by 96 inches required spacing.All panels may be fastened at panel joint (406 mm by 2438 mm)is acceptable provided all perimeter stud without staggering the fasteners at each panel. No edges are fastened to framing members at the required panels shall be lapped over another at these lap joint studs. spacing. All panels may be fastened at panel joint stud Joint spacing between panels shall range from 0 inch to 1/8 without staggering the fasteners at each panel. No panels inch(0 to 3.2 mm).Top and Bottom track gaps to floors or shall be lapped over another at these lap joint studs. Joint ceilings are not limited except that panels shall have at least spacing between panels shall range from 0 inch to 1/8 inch 1 inch(25.4 mm) minimum track leg height behind panel (0 to 3.2 mm). Top and Bottom plate gaps to floors or edges,without adding additional backing for fasteners.The ceilings are not limited except that panels shall have at least designed fastener spacing shall apply to each panel edge. 1 inch (25.4 mm) minimum plate thickness behind panel 0 No panel edges shall be lapped and attached with a single edge,without adding additional blocking for fasteners.The row of fasteners, designated fastener spacing applies to each panel edge.No panel edges can be lapped and attached with a single row 4.2.2.4 Holes cut in Sure-Board®panels shall be approved of fasteners. by the code official based on the recommendations LD11 Page 4 of 10 ► ► ► T Number: TM Originally Issued: 01/26/2010 Revised: 02/27/2017 Valid Through: 02/28/2018 S4.2.3.4 Holes cut in Sure-Board®panels shall be approved 7.0 IDENTIFICATION by the code official based on the recommendations supplied by manufacturer and as recommended by the A label shall be affixed on at least one of the following: Design Professional. product,packaging,installation instructions or descriptive literature. The label shall include the company name or 4.3 Special Inspections trademark, model number, and the IAPMO Uniform ES Mark of Conformity the name of the inspection agency When required by the code official, periodic special (when applicable)and the Evaluation Report Number(ER- inspections for seismic or wind resistance shall be in 126) to identify the products recognized in this report. A accordance with the requirements of IBC Chapter 17 die-stamp label may also substitute for the label. Either corresponding to the applicable type(wood or cold-formed Mark of Conformity may be used as shown below: steel)of light-framed construction. 5.0 LIMITATIONS I A p1� The Sure-Board® Series 200, 200W, and 200B Structural M Q Panels, described in this report, comply with the codes ES listed in Section 1.1 of this report,subject to the following ® or TM conditions: IAPMO ER#126 5.1 Panels are manufactured, identified and installed in accordance with this report. 5.2 The Nominal (Vs) and Allowable Stress Design(Vasd) shear values for shear walls are limited to the values noted Brian Gerber,P.E.,S.E. in Tables 1, 1A,2,3,4,5,and 6 of this report.To determine Vice President,Technical Operations the design strength values, the appropriate strength Uniform Evaluation Service reduction factor, in accordance with 2015, 2012 IBC /�/ /� Section 2211.6,2009 IBC Section 2210.6,or Chapter 23 of �����y�- ,C/� the IBC,or Section R301.1.3 of the IRC shall be applied. 5.3 Plans and calculations demonstrating compliance with Richard Beck,PE,CBO,MCP codes listed in Section 1.1 of this report and this report shall Vice President,Uniform Evaluation Service be submitted to the code official for approval. 5.4 Applied loads shall be adjusted in accordance with GP Russ Chane Section 1605 of the IBC.Calculations shall demonstrate in CEO,The IAPMO Group addition to other requirements as stipulated by the code For additional information about this evaluation report please visit official,that the applied loads are less than the design loads www.uniform-es.org or email at info(&uniform-es.org described in the IBC,or IRC and this report. 5.5 All nominal and allowable load capacities provided to this report do not include 1.33 stress increase. The 1.33 increase for transient loads shall not be applied to allowable shear loads for these products. 5.6 The panels are produced at CEMCO, WARE INDUSTRIES,WELLBILT and INTERMAT facilities. 6.0 SUBSTANTIATING DATA Data in accordance with the IAPMO Uniform ES Evaluation Criteria for the Testing and Analysis of Steel Sheet Sheathing for Wood and Cold Formed Steel Light Framed Structure Shear Walls (EC 003-2016) and an • IAPMO Uniform ES approved quality control manual. LD12 Page 5 of 10 kit* `- ► ► Number: awn TM Originally Issued: 01/26/2010 Revised: 02/27/2017 Valid Through: 02/28/2018 IIITABLE 1 - NOMINAL AND ALLOWABLE SHEAR RESISTANCE TO WIND OR SEISMIC FORCES AND DISPLACEMENT (inches) FOR SHEAR WALLS WITH SURE-BOARD®SERIES 200/SERIES 200B STRUCTURAL PANELS ATTACHED TO LIGHT GAGE STEEL C-STUDS AT 24" O.C.with SCREWS(pounds per foot) 1 STEEL FRAMING FASTENER SPACING AT PANEL EDGES INCHES ON CENTER 6 6 4 3 2 Minimum Vn2'3'4'7 Vasd2'3'8 AVasd9 Vn2'3'4'7 Vasd2'3'8 AVasd9 Vn2'3'4'7 Vasd2'3'8 AVasd9 V.2'3'4'7 Vasd2'3'8 AVasd9 Gage5 (plf) (plf) (inch) (plf) (plf) (inch) (plf) (plf) (inch) (plf) (plf) (inch) 1,085 434 0.21 1,545 618 0.21 1,730 692 0.24 1,915 766 0.26 No.20(0.033 inch) 1,54370 617 0.17 2,21110 885 0.22 2,48610 977 0.22 2,53710 906 0.16 No.18(0.043 1,40510 562 0.24 1,92510 770 0.23 2,82110 1,126 0.25 2,98910 1,196 0.21 inch) No.16(0.054 1,697 678 0.25 2,306 922 0.25 2,95710 1,092 0.26 3,64710 1,253 0.28 el inch) No.16(0.054 inch) 5,01110 1,710 0.28 2-Sided No.14(0.071 3,292 1,257 0.24 inch) No.14(0.071 inch) 4,635" 1,700 0.22 2-Sided For SI:1 inch=25.4 mm, 1 lb/linear=0.0146 N/mm. `Fasteners 6"O.C.into intermediate framing 1 These values are for short-term loads due to wind or earthquake. 2 The screws are described in Section 3.2.1 and are installed in accordance with Section 4.2.2.2 of IAPMO ES ER-126. 3 Tabulated values listed in tables are for panels applied to one side or two sides of a wall. 4 For load and resistance factor design(LRFD)loads,the tabulated Vn load values shall be multiplied by the resistance factor 0.60 for Seismic or 0.65 for Wind. 5 Section 3.3.1 in IAPMO ES ER-126,describes minimum base metal thickness associated with gages. 6 All panel edges shall be blocked.Panels can be installed vertically or horizontally.Fasteners shall be spaced a maximum of 12 inches on center along intermediate framing members,except as specifically noted in Table 1 of this report. 7 V.=Nominal Strength. 8 Vaad=ASD Design Load. 94 Vasd=Deflection at Vasd design Load. 10 Nominal strength is based on double c-stud collectors(end posts)to be designed and installed using one gage thicker than the framing material used in the shear wall. • LD13 Page 6 of 10 41kw EVALUATION REPORT Number: , TM Originally Issued: 01/26/2010 Revised: 02/27/2017 Valid Through: 02/28/2018 0 TABLE 1A-NOMINAL AND ALLOWABLE SHEAR RESISTANCE TO WIND OR EARTHQUAKE FORCES AND DISPLACEMENT(inches)FOR SHEAR WALLS WITH SURE-BOARD®SERIES 200/SERIES 200B STRUCTURAL PANELS ATTACHED TO LIGHT GAGE STEEL C-STUDS AT 16"O.C.WITH SCREWS(pounds per foot)1 STEEL FASTENER SPACING AT PANEL EDGES INCHES ON CENTER 6 FRAMING 6 4 3 2 Minimum Vn2'3'4'7 Vasd2'3'8 AVasd9 Vn2'3'4'7 Vasd2'3'8 AVasd9 Vn2'3'4'7 Vasd2'3'8 AVasd9 Vn2'3'4'7 Vasd2'3'8 AVasd9 Gage5 (plf) (plf) (inch) (plf) (plf) (inch) (pit) (plf) (inch) (pit) (pif) (inch) 14 (0.071 inch) ----- --------- ------- 5,079 1,897 0.26 2-Sided For SI: 1 inch=25.4 mm, 1 lb/foot=0.0146 N/mm. 1 These values are for short-term loads due to wind or earthquake. 2 The screws are described in Section•3.2.1 and are installed in accordance with Section 4.2.2.2 of IAPMO ES ER-126 3 Tabulated values listed in tables are for panels applied to one side or two sides of a wall. 4 For load and resistance factor design(LRFD)loads,the tabulated Vn load values shall be multiplied by the resistance factor 0.60 for Seismic or 0.65 for Wind. 5 Section 3.3.1 in IAPMO ES ER-126,describes minimum base metal thickness associated with gages. 6 All panel edges shall be blocked.Panels are installed vertically or horizontally.Fasteners shall be spaced a maximum of 12 inches on center along intermediate framing members. 7 Vn=Nominal Strength. 8 Vasd=ASD Design Load. 9 A Vasd=Deflection at Vasd design Load. S TABLE 2-NOMINAL AND ALLOWABLE SHEAR RESISTANCE TO WIND OR EARTHQUAKE FORCES AND DISPLACEMENT(inches)FOR SHEAR WALLS WITH SUREBOARD®SERIES 200W/SERIES 200B STRUCTURAL PANELS ATTACHED TO LIGHT GAGE STEELC-STUDS AT 16"O.C.WITH NO.10 SCREWS(pounds per foot)1 STEEL FRAMING No.10 SCREW SPACING AT PANEL EDGES AND FIELD 2/6,INCHES ON CENTER 6 Vn2,3,4,7 Vasd2'3'8 AVasd9 Minimum Gages (plf) OW) (inch) No.18-Ga.(0.043 in.) 2,168 703 0.14 No.16-Ga.(0.054 in.) 2,704 923 0.18 No.14-Ga.(0.071 in.) 2,755 934 0.15 No.14-Ga.(0.071 in.)2 Sided 5,091 1,922 0.29 For SI:1 inch=25.4 mm,1 plf=0.0146 N/mm. 1 These values are for short term loads due to wind or earthquake 2 The screws as described in Section 3.2.2 and installed in accordance with Section 4.2.2.2 of IAPMO ES ER-126 3 Tabulated values listed in tables are for panels applied to one side or two sides of a wall. 4 For load and resistance factor design(LRFD)loads,the tabulated Vn load values shall be multiplied by the resistance factor 0.60 for Seismic or 0.65 for Wind. 5 Section 3.3.1 in evaluation report IAPMO ES ER-126,describes minimum base metal thickness associated with gages. 6 All panel edges shall be blocked.Panels are installed vertically or horizontally.Fasteners shall be spaced a maximum of 6 inches on center along intermediate framing members. 7 Vn=Nominal Strength. 8 Vasd=ASD Design Load. 9A Vasd=Deflection at Vasd design Load. S LD14 Page 7 of 10 1111/14 EVALUATION REPORT Number: TM Originally Issued: 01/26/2010 Revised: 02/27/2017 Valid Through: 02/28/2018 STABLE 3-NOMINAL AND ALLOWABLE SHEAR RESISTANCE TO WIND OR EARTHQUAKE FORCES AND DISPLACEMENT(inches)FOR SHEAR WALLS WITH SUREBOARD®SERIES 200W/SERIES 200B STRUCTURAL PANELS ATTACHED TO LIGHT GAGE STEEL C-STUDS AT 24"O.C.WITH NO.10 SCREWS(pounds per foot)1 STEEL FRAMING No.10 SCREW SPACING AT PANEL EDGES AND FIELD 2/6,INCHES ON CENTER 6 Vn2'3'4'7 Vasd2'3'8 A Vasd Minimum Gages (plf) (plf) (inch) No.20-Ga.(0.033 in.) 1,518 505 0.11 No.18-Ga.(0.043 in.) 1,791 631 0.12 For SI:1 inch=25.4 mm, 1 plf=0.0146 N/mm. 1These values are for short term loads due to wind or earthquake 2The screws as described in Section 3.2.2 and installed in accordance with Section 4.2.2.2 of IAPMO ES ER-126. 3 Tabulated values listed in tables are for panels applied to one side or two sides of a wall. 4 For load and resistance factor design(LRFD)loads,the tabulated V,,load values shall be multiplied by the resistance factor 0.60 for Seismic or 0.65 for Wind. 5 Section 3.3.1 in evaluation report IAPMO ES ER-126,describes minimum base metal thickness associated with gages. 6 All panel edges shall be blocked.Panels are installed vertically or horizontally.Fasteners shall be spaced a maximum of 6 inches on center along intermediate framing members. 7 Vn=Nominal Strength. 8 Vasd=ASD Design Load. 9 A Vasd Deflection at Vasd design Load. TABLE 4-NOMINAL AND ALLOWABLE SHEAR RESISTANCE TO WIND OR EARTHQUAKE FORCES AND DISPLACEMENT(inches)FOR SHEAR WALLS WITH SURE-BOARD®SERIES 200W/SERIES 200B STRUCTURAL PANELS ATTACHED TO DF STUDS AT 16"O.C.WITH 10D NAILS(pounds per foot)1 • FRAMING 10d(2.25"min X.148)NAIL SPACING AT PANEL EDGES AND FIELD,INCHES ON CENTER 3 Stud: 4/6 2/6 2/6 Two Sided* 3/6 2 x 4 stud grade DF End post 23456 2357 23456 2357 8 23456 2357 8 23456 2357 8 4x 4 No.1 grade DF Vn'''' Vasd''' AVasd8 Vn'''' Vasd''' AVand Vn'''' Vasd''' AVasd Vn'''' Vasd''' AVasd8 (plf) (plf) (inch) (plf) (plf) (inch) (plf) (plf) (inch) (plf) (plf) (inch) Sill and top plate: 2x4standard 1,453 583 0.18 2,357 950 0.23 4,884 1,827 0.24 grade DF _ — *Sill Plate:2x4 TimberStrand or standard grade DF For SI: 1 inch=25.4 mm,1 plf=0.0146 N/mm. 1 These values are for short term loads due to wind or earthquake 2 The nails are described in Section 3.2.5 and are installed in accordance with Section 4.2.3.2 in IAPMO ES ER-126. 3 All panel edges shall be blocked.Panels are installed vertically or horizontally.Fasteners shall be spaced a minimum of 6 inches on center along field framing members. 4 For load and resistance factor design(LRFD)loads,the tabulated V,,load values shall be multiplied by the resistance factor 0.60 for Seismic or 0.65 for Wind. 5 Tabulated values listed in tables are for panels applied to one side or two sides of a wall. 6 Vn=Nominal Strength. 7 Vasd=ASD Design Load. 8 A Vasd=Deflection at Vasd design Load. • LD15 Page 8 of 10 %It" EVALUATION REPORT Number: TM Originally Issued: 01/26/2010 Revised: 02/27/2017 Valid Through: 02/28/2018 STABLE 5-NOMINAL AND ALLOWABLE SHEAR RESISTANCE TO WIND OR EARTHQUAKE FORCES AND DISPLACEMENT(inches)FOR SHEAR WALLS WITH SURE-BOARD®SERIES 200/SERIES 200B STRUCTURAL PANELS ATTACHED TO DF STUDS AT 16"O.C.WITH NO.8 X 2"SCREWS(pounds per foot)1 FRAMING No.8 X 2"SCREW SPACING AT PANEL EDGES AND FIELD,INCHES ON CENTER 3 Stud: 2/12 2/12(2-Sided)* 2 x 4 stud grade DF End post: 23456 2357 8 2346 237 8 4 x 4 No.1 grade DF Vn' '' Vann2,3,5,7'' AVasd Vn '' Vasd' AVasd Sill and top plate: (plf) (plf) (inch) (plf) (plf) (inch) 2 x 4 standard grade DF *Sill Plate:2x4 TimberStrand or standard 2,751 1,086 0.23 4,501 1,800 0.23 grade DF For SI:1 inch=25.4 mm,1 plf=0.0146 N/mm. 1 These values are for short term loads due to wind or earthquake 2 The screws are described in Section 3.2.6 and are installed in accordance with Section 4.2.3.2 in IAPMO ES ER-126. 3 All panel edges shall be blocked or backed.Panels are installed vertically or horizontally.Screws shall be spaced a minimum of 12 inches on center along field framing members. 4 For load and resistance factor design(LRFD)loads,the tabulated Vn load values shall be multiplied by the resistance factor 0.60 for Seismic or 0.65 for Wind. 5 Tabulated values listed in tables are for panels applied to one side or two sides of a wall. 6 Vn=Nominal Strength. 7Vasd=ASD Design Load. 8 A Vasd=Deflection at Vasd design Load. • TABLE 6-NOMINAL AND ALLOWABLE SHEAR RESISTANCE TO WIND OR EARTHQUAKE FORCES AND DISPLACEMENT(inches)FOR SHEAR WALLS WITH SURE-BOARD®SERIES 200/SERIES 200W/SERIES 200B STRUCTURAL PANELS ATTACHED TO LIGHT GAGE STEEL C-STUDS AT 16"O.C.WITH COMBINED SCREWS AND PNEUMATIC PINS MANUFACTURED BY AEROSMITH INC.(pounds per foot)1 FRAMING SCREW/SCREW/PIN SPACING AT PANEL EDGES AND FIELD INCHES ON CENTER3 6 2/12/210 No.18 gage 5/8" 2/12/270 No.16 gage 5/8" 2/12/210 No.18 gage 1/4"M/B 2/12/270 No.16 gage 1/4" No.18 gage D/G D/G MIB 3 5/8"C-stud @ 16"O.C. Vn2'3.4.5'1 Vasd2'3'5'8 A Vasd6 V"2.3.4.5.7 Vasd2'3'5'8 A Vasd Vn2,3.4,5,7 Vasd2'3'5'8 A Vasd° Vn2'3'4'5'7 Vasd2'3'S'8 A Vasd (plf) (plf) (inch) (plf) (plf) (inch) (Plf) (plf) (inch) (plf) (plf) (inch) No.16 gage 6 3 5/8"C-stud @ 16"O.C. 2,449 975 0.21 2,825 1,100 0.24 2,201 811 0.17 2,495 932 0.19 For SI:1 inch=25.4 mm, 1 plf=0.0146 N/mm. 1 These values are for short term loads due to wind or earthquake 2 The pins and screws are described in Section 3.2.4 and are installed in accordance with Section 4.2.2.2 in IAPMO ES ER-126. 3 All panel edges shall be blocked.Panels are installed vertically or horizontally.Fasteners shall be spaced a minimum of 12 inches on center along field framing members. 4 For load and resistance factor design(LRFD)loads,the tabulated Vn load values shall be multiplied by the resistance factor 0.60 for Seismic/0.65 for Wind. 5 Tabulated values listed in tables are for panels applied to one side or two sides of a wall. 6 Section 3.3.1 in evaluation report IAPMO ES ER-126,describes minimum base metal thickness associated with gages. 7 Vn=Nominal Strength. 8 Vasa=ASD Design Load. 9A Vasa=Deflection at Vasd design Load. 10 Fastener Schedule: • A)All top/bottom track screwed only with No.8 x 1 3/4"self-tapping screws at 2"o.c.B)No.8 x 1%"self-tapping screws at 12"o.c.at all vertical studs/posts C)1 '/"x 0.100-in knurled shank for DensGlass Gold(D/G)and 1 3/8"x 0.100-in for Magnesium oxide Board MgO(M/B)both at 2"o.c. between screws.(Designation for fasteners A)=2"o.c. B)=12"o.c. C)=2"o.c.) LD16 Page 9 of 10 ktrIp EVALUATION REPORT Number: TM Originally Issued: 01/26/2010 Revised: 02/27/2017 Valid Through: 02/28/2018 CALIFORNIA SUPPLEMENT 1A,2,3,4,5,and 6 of ER-126 as set forth in Section 2211.6 EVALUATION SUBJECT: or Section 2305 of the 2015 or 2012 IBC. SURE-BOARD®SERIES 200,200W,AND 200B STRUCTURAL PANELS INSTALLED ON The collector design shall comply with the CBC and sized to COLD-FORMED STEEL OR WOOD FRAMED exceed the loads resisted by the shear wall. Wall anchorage SHEAR WALLS shall comply with CBC Section 2212.5.2 or 2211A.4, as applicable. REPORT HOLDER: Intermat Cold-Formed Steel or Wood framing design for out-of-plane 2045 Placentia Avenue and axial loads shall comply with the CBC. For installation Costa mesa,California 92627 in Seismic Design Category C, D, E, and F, additional www.sureboard.com requirements for steel framing in Section 2211 of the CBC support(a,sureboard.com shall be observed. CSI Division: 05-METALS 4.2 Installation CSI Section: 05160-Metal Framing Systems 4.2.1 Steel/Wood Framing: Installation provisions in 1.0 SCOPE OF EVALUATION Section 4.2 of ER-126 shall apply to the CBC except where modified as follows. Sure-Board® Series 200, 200W, and 1.1 Compliance with the following codes: 200B Structural Panels are placed with the long dimension • 2016 and 2013 California Building Code®(CBC) parallel or perpendicular to stud framing.The steel face shall be in contact with the framing. All panel edges, top and 1.2 Recognition: The Sure-Board® Series 200,200W, bottom shall be fully blocked by framing studs, track, and 200B Structural Panels evaluated in IAPMO UES blocking, or flat strap of the same gage as the framing ER-1.26 complies with the CBC,subject to Additional material and include an end collector element to be Requirements in Sections 2.0,3,0,4.0,5.0,and 6.0 of this determined by the Design Professional and the registered supplement. design professional using the CBC. 2.0 PRODUCT USE 5.0 LIMITATIONS The structural panels are an alternative to Cold-Formed Steel The Sure-Board® Series 200, 200W, and 200B Structural or Wood stud shear wall systems described in Sections 2211 Panels,described in this report,comply with the codes listed and 2305,respectively,of the 2016 and 2013 CBC. in Section 1.1 of this supplement,subject to the conditions in ER-126,except where modified as follows: 3.0 PRODUCT DESCRIPTION 5.2 The Nominal (Vn) and Allowable Stress Design (Vasa) 3.1 Steel Framing: Steel framing shall be in accordance with shear values for wind and earthquake forces are shown in Section 2211 of the CBC. Tables 1, 1A, 2, 3, 4, 5, and 6 of ER-126. To determine the LRFD design values, the appropriate strength reduction 3.2 Wood Framing: Minimum framing members shall factor, in accordance with Section 2211 or 2305 of the CBC conform to Chapter 23 of the CBC. shall be applied. 4.0 DESIGN AND INSTALLATION 5.4 Applied loads shall be adjusted in accordance with Section 1605 or 1605A of the CBC. Calculations shall 4.1 Shear Wall Design:Design provisions in Sections 4.1.1, demonstrate in addition to other requirements as stipulated by the building official, that the applied loads are less than the 4.1.2,4.1.3, 4.1.4, 4.1.5, and 4.1.6 of ER-126 shall apply to design loads described in CBC and this report. the CBC except where modified as follows. The Nominal (Vn) and Allowable Stress Design (Vasa) shear values for 6.0 SUBSTANTIATING DATA wind and earthquake forces are shown in Tables 1, 1A,2, 3, 4, 5, and 6 of ER-126 with associated deflections for shear Data in accordance with the IAPMO Uniform ES Evaluation walls using Sure-Board® Series 200, 200W, and 200B Criteria for the Testing and Analysis of Steel Sheet Sheathing Structural Panels attached to Cold-Formed Steel or Wood for Wood and Cold Formed Steel Light Framed Structure studs. Nominal shear values shall be multiplied by the Shear Walls (EC 003-2016) and an IAPMO Uniform ES 41) appropriate strength reduction factor to determine LRFD approved quality control manual. design strength in accordance with footnote 4 of Tables 1, For additional information about this evaluation report please visit ' uniform-es.o g or email at infoc uniform-es.org LD17 Page 10 of 10 SHEAR WALL ANALYSIS-SECTOR 1 • BASE SHEAR COEFFICIENT CS= I 0.75 EXISTING CONDITION Shear Wall Trib.Area Wall Length Wall Height Deduction Gross Load Deducted Net Load Capacity Line Force(psf) (sqft) (ft) (ft) Weight(psf) (plf) Load(plf) (plf) (plf) DCR A 20.2 1630 49.00 18 0 672 0 672 2223 0.30 B 20.2 4590 143.33 15 38 647 214 `433 2223 0.19 C 20.2 15118 110.33 20 0 2768 0 2768 2223 1.25, D 20.2 5140 52.25 15 38 1987 214 1773 2223 0.80 I E 20.2 11428 84.50 15 0 2732 0 2732 2223 1.23 F 20.2 6220 67.50 18 0 1861 0 186 ' 2223 0.84 G 20.2 18469 65.25 20 0 5718 0 5718 2223 2;57 H 20.2 2533 42.00 18 0 1218 0 1218 2223 0.55 J 20.2 1323 40.50 15 0 660 0 . 660 , 1197 0.55`' RETROFIT CONDITION Shear Wall Trib.Area Wall Length Wall Height Deduction Gross Load Deducted Net Load Capacity Force(psf) DCR Line (sqft) (ft) (ft) Weight(psf) (plf) Load(plf) (plf) (plf) A -- 1630 22.17 18 see following calcs for design of this wall line using 100%IBC forces B 20.2 4590 143.33 15 38 647 214 433 2223 019: C 20.2 15118 110.33 20 0 2768 0 2768 8253 0.34 D 20.2 5140 52.25 15 38 1987 214 1773'..,- 2223 0.80 E 20.2 6591 84.50 15 0 1575 0 1575 2223 0.71 4110 F 20.2 6220 66.33 18 0 1894 0 1894 4446 0.43e. . G 20.2 13513 59.83 20 0 4562 0 4562 8253 0.55 H 20.2 2533 27.50 18 0 1861 , 0 1861 4446 0.42 J 20.2 1323 40.50 15 0 660 0 660 1197 0.55 K drag line 20.2 9794 -- 20see drag caics 0 LD18 Fowler MS Seismic Eval JOB F w1-E�'(t- MS NO. 3(C04-41.. NISHKIAN DEAN SHEET NO. OF CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 ci> 1022 SW Salmon Street,Suite 300, Portland,OR 97205 CALCULATED BY SH'C� DATE y AS 2e 17 Tel:(503)274-1843 Fax:(503)273-5696 CHECKED BY DATE SCALE C3r0a.. LINE A C&- UNC (z.) St t , N 4 h N 715 c.oe-k e r, - cr.() r;(Z-Et.icA nk 6-1,10 Us t_. IO Yo •gC -cES C SPS/��/=�) Sp Grin tZ= (o.s(wain, Ts) Se_ = 1.2-S ( /7.) 0.71`1 /C(0.5/),2,$) - 0.13$ \I= C.s1�J W rood (AvA)ltivrzlurw) = 1qesf >< (49` )( (WV' f'`I' )) = ZV. 1 k W wo..QA (p,q p . 9E12- 1cir13 Pff-cik Ow& 4 ) = 8..0 ps-c (49 ,Z5' +-33 ,ZS')(t4,s' Ito.2 k Ctve-sUOtk CA 1,50. Uat: rv .�- 0,„s(yo .3 k� sASS G. ''bw luX1 11 = S " + 3(S 22.2' - 5.55I' �iz.zr : _ 2S1 lb/44- k 0.11 = 1`lS FA..4 .,ash Sua QoP(42.9 ASV:, S r �'r�T� t'- 515'V74•3c 1 Os Co Qs- A-50 (UCS - r --r 12(e 1115408(o. rO. 1(o2 < .1.0, OY- 011 LD1 9 JOB )-i I�/5 NO. 3I SOLI 2- NISHKIAN DEAN SHEET NO. OF CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919c> /' 1022 SW Salmon Street,Suite 300,Portland, OR 97205 CALCULATED BY �J Cy DATE 4/I 9 /2-41117 1.10122(573)52;14m l (503)274 1843 Fax:(503)273 5696 CHECKED BY DATE SCALE 5E-O-A-00- 1 14- 9 CL A-c, t-tN. C.2Nve-10 '-+r.,e. (0) Ptz-A& X20.2 pa -l: '15 1/4.,.0A-0)(9 r)9 4 _c-.0- Ttzt 6) = 19811E /z q t 114 , 'h lb , Mix (.6n,9 cUNVD D. tg e1Ala i - `i 9 k "T 0 was 01 v(LAG, Lots xsa , 1,,..waxr74, . Ct4-ctc. wtsx -O ASDL: q i k 3 . , 9.8.(0 CDu-E C'.Ttxt- 01 .4,1,1,1- elCoi.L31...i.as Ls%nr c..€ A-N r( 1- Wrri t,1tc.et..-t 7 l v°.t; .04-kt Pt L... Sir-CT-16,114) Qc-0 L, t3,j�+w.-t N a Le-c-6-t_ Wst, S2UC-1.4- QCL Pc,‘.., -- X41 SC sepo t,1 f 4, = 1.6 4 T3l b • .,e, 3r? Ic..s. (mils-1 vR-wr Fle.dINftet. Trk l.c:: 9-1 , r914>I- t990 ,,-sTM- a'ks(..) 9.5-.2.2.2 leQet > C uF \4_=•- p,9 ("TAA-2k_ (.0- , Ac3L, ?ea_ e--s te,N Vuo6,S) Qc----a C..1C,c.- 51,--1.,10104.-114...S t N Cfriv1Pit.L..s,_r,t, 7.'�Ocx.> b4� " (.5 7 4 o. _ l5.9 ,t ZCNsLer ►v 2 vL_.t c eS 3`T I/w 446-'2- > 1.41JZ3 '''‘67-4)- 2 LlI ,7 ) 5L Nve,e we.e. 1%-.R. _ (1.0)CS.c)401 X E+ - 3et,. y r-,o 1.(0S Qs - 1.6 g LD20 JOB L NAS NO.3(�04 Z. NISNKIAN �y W!EAN SHEET NO. 2 OF CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 1022 SW Salmon Street,Suite 300, Portland,OR 97205 CALCULATED BY S H Cl DATE i-1/i°� /20 17 Tel:(503)274-1843 Fax:(503)273-5696 CHECKED BY DATE SCALE 9t CI-UTZ \ Vic. 7K-fc-Gl.l (614.19 Lm) cr,) (C_a'7ti4)' 4S.2 6te. 1.4i/-ti—f---- to3 yJ- - 1 6 4 - P:4- (62--* 1,0) -r y.'21 J 35 = 112 --- ' = o.4> tii/1 e-3 V-� `11P3"CZE o ) Vi=e - 216 It-%; .S= 33.6 l,s; 34,4''" 1 -E-r-=t,,S = 0.3 Sc.' , ' b - 1%.,_, •- 4 5.1- J-Let43.:Yel-0 e= 1,92 0.' s-S�) l '" o X3-1 12g. 33.` 4S.2J b = �, _ 45.2 (o.3SS ): G. 33.(, be a 1 -5.(o N .. (6. 1" Ae.= (is.6")(o, ss") + 2(9,co)(0.5'7 '') • IL-1. 1 1ri1- �_ l y•‘ 0.95'8 Q Qc.Q s 0.958 �1/1.0..r1k:r7. 3(p.4 < 4 ,'71 J -;,..2564s .%) 'Gs.%) r (U.iggyl3'1) ` 13S Q iC20 it, GIIV-7 Vt-a 33 1 1c-s Z Fn =l-cr-A3 _ (33. 14.5';)(11/4-1.'") %%1~) Ll r3`? IL 4 n n 0.0) 4 g.7 -- `'t¢9'"j 1` 1'COLD nn n) (QUC;ic-c.l NC,) Fail- Ft t�%.c E.. : c. 0 Co,Sr? IC.(0 `` F-LAJ& t..c.cAL QUCk-4.. t h1/A h/ ,,, _ LI S-,2 < 3;7co J 7-4-.23.C.—',.; ' les- , cewvFI T 8 t.J�e, Loc t4..- t3u ctt-t.‘1%.$G t /A, aei_ _ 4 e _ LI 41"17 k • 'I-G2ctr > QUF LD21 (opt)4nc,'1 lg = 439 k_ > 99 1'_ Ole- .A--Pc I Pi-l— L W-0 4. 23% > (6 %, AX t 1141- ST0LNNI'1`i-1. INiriR-1-- ASS tl \?C1Q IS A I/%1-6 SHEAR WALL ANALYSIS-SECTOR 1A(ADDITION) i BASE SHEAR COEFFICIENT Cs= I 0.75 EXISTING CONDITION Shear Wall Trib.Area Wall Length Wall Height Deduction Gross Load Deducted Net Load Capacity Force(psf) DCR Line (sqft) (ft) (ft) Weight(psf) (plf) Load(plf) (plf) (plf) A 20.2 2460 65.17 15 38 762'' 214 549 2223 0.25c B 20.2 1840 34.00 15 38 1093 214 879 2223 0.40 C 20.2 1250 32.67 15 38 773 214 559 2223 0:25 D 20.2 5300 63.00 15 0 1699 .:,. 0 1699 " 2223 0.76;;•' E 20.2 560 27.75 15 38 408 214 194 2223 0.09 F 20.2 5100 26.25 15 38 3925 214 3711•:,' 2223 1.67 G 20.2 620 15.25 15 0 821 °" 0 821 2223 0.37;" RETROFIT CONDITION Shear Wall Trib.Area Wall Length Wall Height Deduction Gross Load Deducted Net Load Capacity Force(psf) DCR Line (sqft) (ft) (ft) Weight(psf) (plf) Load(plf) (plf) (plf) A 20.2 600 65.17 15 38 186 0 186 2223 0.08'' B 20.2 1600 34.00 15 38 951 214 737 2223 0.33 C 20.2 1350 32.67 15 38 835 „'„214 621 2223 0.28 D 20.2 4600 63.00 15 0 1475 0 1475 2223 0.66' E 20.2 500 27.75 15 38 364 214 150 2223 0.07 F 20.2 2900 26.25 15 12 2232 68 2164 2223 0.97110 : G 20.2 1390 15.25 15 0 1841 0 1841 2223 0.83 H 20.2 1490 25.92 15 0 1161 0"` 1161 8253 0.14 J 20.2 2700 19.50 15 0 2797. 0`, 2797 8253 0.34 S LD24 Fowler MS Seismic Eval SHEAR WALL ANALYSIS-SECTOR 5 • BASE SHEAR COEFFICIENT I CS= I 0.75 I EXISTING CONDITION Shear Wall Force(psf) Trib.Area Wall Length Wall Height Deduction Gross Load Deducted Net Load Capacity DCR Line (sqft) (ft) (ft) Weight(psf) (plf) Load(plf) (pif) (plf) A 20.2 6054 116.08 15 38 1054 214 " 840 2223 0.38. B 20.2 10094 36.83 20 0 5536 0 5536 2223 2.49 C 20.2 3148 67.50 15 38 942 214 728 2223 0.33;, D 20.2 6054 78.00 15 0 1568 0 1568 N/A N/A E 20.2 3157 65.58 15 38 972 214 759 2223 0.34 RETROFIT CONDITION Shear Wall Trib.Area Wall Length Wall Height Deduction Gross Load Deducted Net Load Capacity DCR Line Force(psf) (sqft) (ft) (ft) Weight(psf) (pif) Load(plf) (pif) (pif) A 20.2 6054 116.08 15 38 1053 214 840 2223 0.38 B 20.2 10094 31.25 20 0 6525 0 6525 8253 0.79 C 20.2 3148 67.50 15 38 942 214 728` 2223 0.33 D 20.2 6054 78.00 15 0 1568 0 1568 N/A N/A E 20.2 3157 65.58 15 38 972"'" 214 759 2223 0]34' • • LD33 Fowler MS Seismic Eval • Wood Shear Wall Overturning and Hold Downs Effect of Dead Load on Shear Wall Overturning Per ASCE 41-13 7.2.8.1,the following relationship can be used to evaluate the adequacy of dead loads alone to resist the effects of overturning on a shear wall: 0.9Mst > MOT (C1C21-toT) For C1C2= 1.4 and µoT=8.0 (for Life Safety),this relationship becomes: 0.9Mst > MoT 11.2 Which can be more simply expressed as: MOT Mst > 10 Thus when determining the need for hold downs and when sizing hold downs,the overturning moment used is 1/10 of the actual overturning moment. • Converting Shear Wall Hold Down Catalog Values from ASD to LRFD The procedure comes from the 1996 LRFD Manual for Engineered Wood Construction: Guideline for Pre- Engineered Metal Connectors(1996 LRFD). Conversion of ASD catalog design values to LRFD reference resistance values (Z): Z = Kf x (tabulated value) Selecting the format conversion factor(1996 LRFD 3.4): Load Case Ratio of ASD Catalog LRFD Reference Resistance Z Design Values All Load Combinations 125% = 1 25 Except Those That 100% Z= (100%value) x 3.32 Contain Wind or Seismic (AF&PA/ASCE 16-95, 125% < 1 25 Equations 1.3-1 to 1.3-3) 100% Z= (100%value) x 2.88 160% = 11 .2 Z=(160%value)x(16)x3.32 Load Combinations That 133% Contain Wind or Seismic 160%and 133%not both greater of: (AF&PA/ASCE 16-95, listed or (133%value)x( 1 )x2.$8 Equations 1.3-4 to 1.3-6) 160% 1.33 133% < 1.2 1 • or (160%value)x(16)x2.88 LD36 • The factored connector resistance (Zr) is calculated normally: Zc = A• 0, •Z' ...where Z' is the adjusted connector resistance (Z modified by relevant C factors),1\is the time effect factor, and ci)=is the resistance factor for connections (normally 0.65). ASCE 41-13 C12.2.2.5.1 the above methodology. Per 12.2.2.5.1, all adjustment factors including the time effect factor shall be in accordance with the NDS, and cb=shall be 1.0. Simpson straps and hold downs have ASD capacities listed at the 160% load level,thus are divided by 1.6 to bring them down to 100%.Since only 160%values are listed,the format conversion factor(KF) is 2.88. The time effect factor(A) is 1.0 for seismic load combinations per NDS 2012 Table N3. 4)=is 1.0 per ASCE 41-13 12.2.2.5.1.Wet service factor(Cm) and temperature factor(Cr)are 1.0. Per ASCE 41-13 Table 12-3 footnote "e", connectors not listed are assumed to be force controlled, meaning that the lower-bound strength must be used,which per ASCE 41-13 12.2.2.5 is obtained by multiplying the expected strength by 0.85. The adjusted connector strength is: (tabulated value) Z' = Z• Cm • Ct = 1.6 (1.0) • (1.0) • The expected strength of the connector is: (tabulated value) ZCE = ZrKf •2.•PZ = 1.6 • (2.88) • (1.0) • (1.0) The final acceptance criteria strength value becomes: (tabulated value) ZAP = (0.85) •ZCE = 1.6 • (2.88) • (0.85) = 1.53 • (tabulated value) • LD37 Simpson Strong-Tie Wood Construction Connectors SIMPSON HDU/DTT Strong-Tie • Holdowns (cont.) -These products are available with additional corrosion protection.For more information,see p.18. DimensionsFasteners Minimum Allowable Tension Loads (in.) Wood (160)1 Code Model Ga. Anchor Member 13 Deflection at Ref. No. Post Thickness 0 W H B Cb SO Bolt Dia. Fasteners DF/SP SPF/HF Allowable Load t9 a (in.) (in.) (in.) C H (6)SD#9 x 11/2' 840 840 0.170 3 L ID DTT1Z 14 11 716 134 3/4 51 6 6 % (6)10d x 1W' 11/2 910 640 0.167 1P2, O C L19,FL C (8)10d x 11/2" 910 850 0.167 = a (8)1/4"x 11/2"SDS 11/2 1,825 1,800 0.105 © DTT2Z 14 31/4 61546 1% 1346 346 1/2 (8)1/4"x 11/2'SDS 3 2,145 1,835 0.128I Q DTT2Z-SDS2.5 (8)1/4"x 21/2"SDS 3 2,145 2,105 0.128 lb HDU2-SDS2.5 14 3 811/16 31/4 1%6 1% 5/6 (6)1/4"x 21/2'SDS 3 3,075 2,215 0.088 • HDU4-SDS2.5 14 3 101%6 31/4 15A6 13/6 5/6 (10)1/4"x 21/2'SDS 3 4,56 3,285 0.114 • HDU5-SDS2.5 14 3 133/6 31/4 1%6 1% 5/6 (14)1/4'x 21 "SDS 3 5,645 4,065 0.115 16, L8,FL 3 6,765 4,870 0.110 • HD1.18-SDS2.5 10 3 165/6 31 1% 11 '/E (20)Y"x 21/2"SDS 31 6,970 5,020 0.116 41/2 7,870 5,665 0.113 51/2 9,335 6,865 0.137 • HDU11-SDS2.5 10 3 221/4 31/2 1% 11/2 1 (30)Y"x 21/2"SDS 71/4 11,175 8,045 0.137 4x634 10,770 7,755 0.122 170 III • HDU14-SDS2.5 7 3 2571/6 31 1%6 1346 1 (36)Y"x 21/2'SDS 71/43 14,390 10,435 0.177 16 51/223 14,445 10,350 0.172 L8,FL 1.See pp.75-76 for Holdown and Tension Tie General Notes. 2.Noted HDU14 allowable loads are based on a 51/2"wide post(6x6 min.). 3.HDU14 requires heavy-hex anchor nut to achieve tabulated loads(supplied with holdown). 4.Loads are applicable to installation on either narrow or wide face of post. d z Vertical z wood o member 3075 lb (tabulated value) * 1.53= oii, 4705 lb ASCE 41 connector strength. IT o Studs/post See following pages for anchorage o calcs whose lower values will control Q Z Threaded over connector strength. 0 rod d �T 5 5 o o `- I 2-2x 'Sw blocking • o Typical HDU Tie Between Floors LD38 79 SIMPSON Anchor Designer TM Company: Date: 3/17/2017 Engineer: Page: 1/4 Strong-Tie Software Project: 0 Version 2.3.5332.0 Address: Phone: E-mail: 1.Proiect information Customer company: Project description: Customer contact name: Location:Tigard,OR Customer e-mail: Fastening description:Holdown Anchor Bolt Comment: Holdown at Slab Interior 2.Input Data&Anchor Parameters General Base Material Design method:ACI 318-11 Concrete:Normal-weight Units: Imperial units Concrete thickness,h(inch): 18.00 State:Cracked Anchor Information: Compressive strength,fc(psi):3000 Anchor type:Bonded anchor Pc,v: 1.0 Material:F1554 Grade 36 Reinforcement condition:B tension,B shear Diameter(inch):0.500 Supplemental reinforcement:Not applicable Effective Embedment depth,her(inch):8.000 Do not evaluate concrete breakout in tension:No Code report: ICC-ES ESR-2508 Do not evaluate concrete breakout in shear:No Anchor category:- Hole condition:Dry concrete Anchor ductility:Yes Inspection:Continuous hmin(inch): 10.50 Temperature range: 1 cee(inch): 15.65 Ignore 6do requirement:Not applicable Cmin(inch): 1.75 Build-up grout pad:No Smin(inch):3.00 Load and Geometry Load factor source:ACI 318 Section 9.2 Load combination:not set Seismic design:No alAnchors subjected to sustained tension:No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads:Yes <Figure 1> 3700 lb t 1 0 Ib Y 4-- 0lb 1 X I 40 1 �j I • -__ _ Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.conlLD39 SIMPSON Anchor Designer TM Company: Date: 3/17/2017 Engineer: Page: 2/4 StrongTieSoftware Project: Version 2.3.5332.0 Address: s Phone: E-mail: <Figure 2> anchor away from end of wall 3.00 3.00 Recommended Anchor Anchor Name:SET-XP®-SET-XP w/1/2"0 F1554 Gr.36 Code Report Listing: ICC-ES ESR-2508 1111 • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.corn SIMPSON Anchor Designer TM Company: Date: 3/17/2017 Engineer: Page: 3/4 Strong-Tie Software Project: • a Version 2.3.5332.0 Address: Phone: E-mail: 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, Nua(lb) V.(lb) Vuay(Ib) -V(Vuax)2+(Vuay)2(Ib) 1 3700.0 0.0 0.0 0.0 Sum 3700.0 0.0 0.0 0.0 Maximum concrete compression strain(%o):0.00 Maximum concrete compression stress(psi):0 Resultant tension force(Ib):3700 Resultant compression force(Ib):0 Eccentricity of resultant tension forces in x-axis,e'Nx(inch):0.00 Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 4.Steel Strength of Anchor in Tension(Sec.D.5.1) Use phi - 1.0 for lower bound Nsa(Ib) 0 ONsa(lb) values per ASCE 41-13 10.3.6.2 8235 045 646 1.0 8235 5.Concrete Breakout Strength of Anchor in Tension(Sec.D.5.2) Nb=kc2a\Ifchefi.5(Eq.D-6) • kc 2a fc(psi) het(in) Nb(lb) 17.0 1.00 2500 8.000 19233 . 0Ncb=0(ANc/ANco)Yed,NYc,NYcp,NNb(Sec.D.4.1 &Eq.D-3) ANc(in2) ANco(in2) 1Ted,N 'c,N 1Pcp,N Nb(Ib) 0 0Ncb(Ib) 144.00 576.00 0.775 1.00 1.000 19233 0:65 2122 1.0 3726 6.Adhesive Strength of Anchor in Tension(Sec.5.5) Zkcr=rk,crfshort-termKsat Zk,cr(psi) fshort-term Ksat Zk,cr(psi) 995 1.00 1.00 995 Nba=2 arcrgdaher(Eq.D-22) 2 a Thr(psi) da(in) hef(in) Nba(Ib) 1.00 995 0.50 8.000 12504 0Na=0(A Na/ANaO)1J'ed,Na'cp,NaNba(Sec.D.4.1 &Eq. D-18) ANa(in2) ANaO(in2) Ped,Na 1Pcp,Na Nba(lb) 0 l Ne(lb) 85.81 204.55 0.826 1.000 12504 0,66 6 1.0 4333 i Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.corrLD41 SIMPSON Anchor Designer TM Company: Date: 3/17/2017 Engineer: Page: 4/4 Strong-Tie Software Project: • et Version 2.3.5332.0 Address: Phone: E-mail: 11.Results Interaction of Tensile and Shear Forces(Sec.D.7) Tension Factored Load,Nva(Ib) Design Strength,raNn(Ib) Ratio Status Steel 3700 6476 8235 0,60 0.45 Pass Concrete breakout 3700 2422 3726 442 0.99 Pass Fag(Governs) Adhesive 3700 2846 4333 1.31 0.85 Pass Fail FAIL!Selected anchor type and embedment do not meet the selected design criteria. Use phi = 1.0 for lower bound 12.Warnings values per ASCE 41-13 10.3.6.2 -Concrete compressive strength used in concrete breakout strength in tension,adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limit to 2,500 psi per ICC-ES ESR-2508 Section 5.3. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. • • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com D42 SIMPSON Anchor Designer TM Company: Date: 3/17/2017 Engineer: Page: 1/4 StrongTie Software Project: • dl Version 2.3.5332.0 Address: Phone: E-mail: 1.Proiect information Customer company: Project description: Customer contact name: Location:Tigard,OR Customer e-mail: Fastening description:Holdown Anchor Bolt Comment: Holdown at Slab Interior 2.Input Data&Anchor Parameters General Base Material Design method:ACI 318-11 Concrete:Normal-weight Units: Imperial units Concrete thickness,h(inch): 18.00 State:Cracked Anchor Information: Compressive strength,f'.(psi):3000 Anchor type:Bonded anchor 4Po,v: 1.0 Material:F1554 Grade 36 Reinforcement condition: B tension,B shear Diameter(inch):0.500 Supplemental reinforcement:Not applicable Effective Embedment depth,hef(inch):8.000 Do not evaluate concrete breakout in tension:No Code report:ICC-ES ESR-2508 Do not evaluate concrete breakout in shear:No Anchor category:- Hole condition:Dry concrete Anchor ductility:Yes Inspection:Continuous hmin(inch):10.50 Temperature range: 1 cac(inch): 10.32 Ignore 6do requirement: Not applicable Cmin(inch): 1.75 Build-up grout pad:No Smin(inch):3.00 Load and Geometry Load factor source:ACI 318 Section 9.2 Load combination: not set Seismic design:No 0 Anchors subjected to sustained tension:No Apply entire shear load at front row:No Anchors only resisting wind and/or seismic loads:Yes <Figure 1> 28651b ,,.., , 1 1 Y 0i X ffr�o,,;; 1 "V InyIII ____ , Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.conLD43 SIMPSON Anchor Designer TM Company: Date: 3/17/2017 Engineer: Page: 2/4 Software • Strong-Tie Project: Version 2.3.5332.0 Address: a Phone: E-mail: <Figure 2> anchor near end of wall 0 T • 3.00 3.00 Recommended Anchor Anchor Name:SET-XP®-SET-XP w/1/2"0 F1554 Gr.36 Code Report Listing: ICC-ES ESR-2508 ,400 • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.conLD44 SIMPSON Anchor Designer TM Company: Date: 3/17/2017 Engineer: Page: 3/4 Strong-Tie Software Project: • , Version 2.3.5332.0 Address: Phone: E-mail: 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, Nua(Ib) V.(Ib) Vuay(Ib) J(Vuax)2+(Vuay)2(Ib) 1 2865.0 0.0 0.0 0.0 Sum 2865.0 0.0 0.0 0.0 Maximum concrete compression strain(%o):0.00 Maximum concrete compression stress(psi):0 Resultant tension force(Ib):2865 Resultant compression force(Ib):0 Eccentricity of resultant tension forces in x-axis,e'Nx(inch):0.00 Eccentricity of resultant tension forces in y-axis,e'Ny(inch):0.00 4.Steel Strength of Anchor in Tension(Sec.D.5.1) N.(Ib) � �Nsa(Ib) Use phi = 1.0 for lower bound values per ASCE 41-13 10.3.6.2 8235 0,7-6 6 1.0 8235 5.Concrete Breakout Strength of Anchor in Tension(Sec.D.5.2) Nb=kc2aJf'chef''5(Eq.D-6) • kc Aa Pc(psi) haf(in) Nb(Ib) 17.0 1.00 2500 4.000 6800 0Ncb=0(ANc/ANcc)Yed,N Yc,N Ycp,NNb(Sec. D.4.1 &Eq.D-3) ANC(in2) ANco(in2) ,.ed,N fc,N Fcp,N Nb(Ib) 0 gNcb(lb) 72.00 144.00 0.850 1.00 1.000 6800 9:65 4878 1.0 2890 6.Adhesive Strength of Anchor in Tension(Sec.5.5) TS,cr=T$crfshort-termKsat Zk,cr(psi) fshod-term Ksat TS,cr(psi) 995 1.00 1.00 995 N.=A,arcr2rdahet(Eq.D-22) 2.a M (psi) da(in) het(in) Nba(lb) 1.00 995 0.50 6.000 9378 QNa=0(ANa/ANaO)t'ed,Na Y'cp,NaNba(Sec.D.4.1 &Eq.D-18) ANS(in2) ANaO(in2) Ped,Na !cp,Na N.(Ib) 0 0Na(Ib) 78.91 204.55 0.826 1.000 9378 0 1942 1.0 2988 S Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.conLD45 SIMPSON Anchor Designer TM Company: Date: 3/17/2017 Engineer: Page: 4/4 Strong-Tie Software Project: 110 Version 2.3.5332.0 Address: Phone: E-mail: . ....................._.............. 11.Results Interaction of Tensile and Shear Forces(Sec.D.7) Tension Factored Load,N.(Ib) Design Strength,aN.(Ib) Ratio Status Steel 2865 64-74 8235 046 0.35 Pass Concrete breakout 2865 48 9 2890 4430.99 Pass Fail-(Governs) Adhesive 2865 1942 2988 44130.96 Pass Fail FAIL!Selected anchor type and embedment do not meet the selected design criteria. Use phi = 1.0 for lower bound 12.Warnings values per ASCE 41-13 10.3.6.2 -Concrete compressive strength used in concrete breakout strength in tension,adhesive strength in tension and concrete pryout strength in shear for SET-XP adhesive anchor is limit to 2,500 psi per ICC-ES ESR-2508 Section 5.3. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. S • Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.corrI 46 NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS Seismic Upgrade 31642 Holddowns Sheet no./rev. 1022 SW Salmon Street Suite 300 Portland OR,97205 Calc.by Date Chk'd by Date App'd by Date SHG 4/17/2017 HOLDDOWNS Typical wall weight of SW; IW=9 psf SW label: Sector 1 Line 11 —SW1 Length of SW; L=29.33 ft Height of SW; hr=20 ft Roof trib; tr=30 ft Applied Shear(ASCE 41-13): Roof; Vr=4562 lb/ft x L=133.803 kips; Overturing moment: MOT=Vr x (hr)=2676.1 kips_ft Resisting moment: Weights: Walls:; Ww= IW x (hr)x L=5.3 kips Roof:; DLr= 14.1 psf Wr= DLr xtr xL= 12.4kips MsT=Ww x L/2+Wr x U2=259.4 kips_ft • T=((MoT/10)—MsT)/(L—1 ft)=0.3 kips TAso=T/1.53=0.190 kips; See"Converting Shear Wall Hold Down Catalog Values from ASD to LRFD" <2.865k near end of wall, OK, use HDU2 C=(MoT/10)/(L— 1 ft)=9.4 kips SW label: Sector 1 Line 11 —SW2 Length of SW; L=16.67 ft Height of SW; hr=20 ft Roof trib; tr=30 ft Applied Shear(ASCE 41-13): Roof; Vr=4562 lb/ft x L=76.049 kips; Overturing moment: MOT=Vr x(hr)= 1521.0 kips_ft Resisting moment: Weights: Walls:; Ww= IW x (hr)x L=3.0 kips Roof:; DLr= 14.1 psf Wr=DLr x tr x L=7.1 kips MsT=Ww x L/2+Wr x L/2=83.8 kips_ft T=((MoT/10)—MST)/(L—1 ft)=4.4 kips TAso=T/1.53=2.849 kips; See"Converting Shear Wall Hold Down Catalog Values from ASD to LRFD" <3.7k,OK, use HDU2 C=(MoT/10)/(L—1 ft)=9.7 kips LD47 NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS Seismic Upgrade 31642 Holddowns Sheet no./rev. 1022 SW Salmon Street 2 • Suite 300 Portland OR,97205 Calc.by Date Chk'd by Date App'd by Date SHG 4/17/2017 SW label: Sector 1 Line 11 —SW3 Length of SW; L=13.83 ft Height of SW; hr=20 ft Roof trib; t =30 ft Applied Shear(ASCE 41-13): Roof; Vr=4562 lb/ft x L=63.092 kips; Overturing moment: MOT=Vr x (hr)= 1261.8 kips_ft Resisting moment: Weights: Walls:; Ww= IW x(hr)x L=2.5 kips Roof:; DLr= 14.1 psf Wr= DLr xtr xL=5.9kips MST=WwxU2+WrxL/2=57.7 kips_ft T=((MoT/10)—MST)/(L—1 ft)=5.3 kips TASD=T/ 1.53=3.490 kips; See"Converting Shear Wall Hold Down Catalog Values from ASD to LRFD" <3.7k, OK, use HDU2 • C=(Mor/10)/(L—1 ft)=9.8 kips SW label: Sector 1 Line L—SW1 Length of SW; L=61.67 ft Height of SW; hr=20 ft Roof trib; tr=35.69 ft Applied Shear(ASCE 41-13): Roof; Vr=2768 lb/ft x L=170.703 kips; Overturing moment: MOT=Vr x(hr)=3414.1 kips_ft Resisting moment: Weights: Walls:; Ww= IW x (hr)x L= 11.1 kips Roof:; DLr= 15.5 psf Wr= DLrxtr x L=34.1 kips MST=WwxU2+WrxL/2= 1394.2 kips_ft T=((MoT/10)—MST)/(L—1 ft)=-17.4 kips; no HD required C= (MOT/10)/(L—1 ft)=5.6 kips LD48 NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS Seismic Upgrade 31642 Holddowns Sheet no./rev. 1022 SW Salmon Street 3 • Suite 300 Portland OR,97205 Calc.by Date Chk'd by Date App'd by Date SHG 4/17/2017 SW label: Sector 1 Line L—SW2 Length of SW; L=28.92 ft Height of SW; hr=20 ft Roof trib; tr=35.69 ft Applied Shear(ASCE 41-13): Roof; Vr=2768 lb/ft x L=80.051 kips; Overturing moment: MOT=Vr x (hr)= 1601.0 kips_ft Resisting moment: Weights: Walls:; Ww= IW x(hr)x L=5.2 kips Roof:; DLr= 15.5 psf Wr= DLr xtr xL= 16.0kips MST=Ww x L/2+Wr x L/2=306.6 kips_ft T=((MoT/10)—MST)/(L—1 ft)=-5.2 kips; no HD required C=(MoT/1 0)/(L—1 ft)=5.7kips SW label: Sector 1 Line L—SW3 Length of SW; L=9.92 ft Height of SW; hr=20 ft Roof trib; tr=35.69 ft Applied Shear(ASCE 41-13): Roof; Vr=2768 lb/ft x L=27.459 kips; Overturing moment: MOT=Vr x (hr)=549.2 kips_ft Resisting moment: Weights: Walls:; Ww= IW x(hr)x L=1.8 kips Roof:; DLr= 15.5 psf Wr= DLr x tr x L=5.5 kips MsT=Wwx U2+Wrx U2=36.1 kips_ft T=((Mor/10)—Ms-r)/(L—1 ft)=2.1 kips STAso=T/1.53= 1.381 kips; See"Converting Shear Wall Hold Down Catalog Values from ASD to LRFD" <3.7k,OK, use HDU2 C= (Mor/10)/(L—1 ft)=6.2 kips LD49 NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS Seismic Upgrade 31642 Holddowns Sheet no./rev. 1022 SW Salmon Street 4 • Suite 300 Portland OR,97205 Calc.by Date Chk'd by Date App'd by Date SHG 4/17/2017 SW label: Sector 1 Line L—SW4 Length of SW; L=9.83 ft Height of SW; h,=20 ft Roof trib; tr=35.69 ft Applied Shear(ASCE 41-13): Roof; Vr=2768 lb/ft x L=27.209 kips; Overturing moment: MOT=Vr x (hr)=544.2 kips_ft Resisting moment: Weights: Walls:; Ww= IW x (hr)x L= 1.8 kips Roof:; DLr= 15.5 psf Wr= DLr xtr xL=5.4kips MST=Ww x L/2 +Wr x L/2=35.4 kips_ft T=((MoT/10)—MST)/(L—1 ft)=2.2 kips TASD=T/1.53= 1.406 kips; See"Converting Shear Wall Hold Down Catalog Values from ASD to LRFD" <3.7k, OK, use HDU2 411) C= (MoT/10)/(L—1 ft)=6.2 kips SW label: Sector 1 Line L—SW5 Length of SW; L=13.75 ft Height of SW; hr=20 ft Roof trib; tr=35.69 ft Applied Shear(ASCE 41-13): Roof; Vr=2768 lb/ft x L=38.060 kips; Overturing moment: MOT=Vr x(hr)=761.2 kips_ft Resisting moment: Weights: Walls:; Ww= IW x (hr)x L=2.5 kips Roof:; DLr= 15.5 psf Wr= DLr x tr x L=7.6 kips MST=Ww x L/2+Wr x U2=69.3 kips_ft T=((Mor/10)—MST)/(L—1 ft)=0.5 kips • TASD=T/1.53=0.349 kips; See"Converting Shear Wall Hold Down Catalog Values from ASD to LRFD" <2.865k near end of wall, OK, use HDU2 C=(MoT/10)/(L—1 ft)=6.0 kips LD50 N I S H K I A N DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS Seismic Upgrade 31642 Holddowns Sheet no./rev. 1022 SW Salmon Street 5 • Suite 300 Portland OR,97205 Calc.by Date Chk'd by Date App'd by Date SHG 4/17/2017 SW label: Sector 1 Line 8—SW Length of SW; L=66.33 ft Height of SW; hr=18 ft Roof trib; tr=5.42 ft Applied Shear(ASCE 41-13): Roof; Vr=1894 lb/ft x L=125.629 kips; Overturing moment: MOT=Vr x(hr)=2261.3 kips_ft Resisting moment: Weights: Walls:; WW= IW x (hr)x L= 10.7 kips Roof:; DLr= 15.5 psf Wr= DLr xtr xL=5.6kips MsT=Ww x L/2+Wr x L/2=541.2 kips_ft T=((MoT/10)—MST)/(L—1 ft)=-4.8 kips; no HD required C=(MoT/10)/(L—1 ft)=3.5 kips • SW label: Sector 1 Line 12 —SWI Length of SW; L=12.25 ft Height of SW; hr=18 ft Roof trib; tr=3.45 ft Applied Shear(ASCE 41-13): Roof; Vr=1861 lb/ft x L=22.797 kips; Overturing moment: MOT=Vr x (hr)=410.4 kips_ft Resisting moment: Weights: Walls:; WW= IW x (hr)x L=2.0 kips Roof:; DLr= 14.8 psf Wr= DLr x tr x L=0.6 kips MsT=W.x L/2+Wr x U2= 16.0 kips_ft T=((MoT/10)—MST)/(L—1 ft)=2.2 kips TAse=T/1.53= 1.455 kips;See"Converting Shear Wall Hold Down Catalog Values from ASD to LRFD" 411) <3.7k, OK, use HDU2 C=(MoT/10)/(L—1 ft)=3.6 kips LD51 N I S H K I A N DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS Seismic Upgrade 31642 Holddowns Sheet no./rev. 1022 SW Salmon Street 6 Suite 300 • Portland OR,97205 Calc.by Date Chk'd by Date App'd by Date SHG 4/17/2017 SW label: Sector 1 Line 12—SW2 Length of SW; L=15.25 ft Height of SW; hr=18 ft Roof trib; tr=3.45 ft Applied Shear(ASCE 41-13): Roof; Vr=1861 lb/ft x L=28.380 kips; Overturing moment: MOT=Vr x (hr)=510.8 kips_ft Resisting moment: Weights: Walls:; Ww= IW x(hr)x L=2.5 kips Roof:; DLr= 14.8 psf Wr=DLr x tr x L=0.8 kips MST=Ww x L/2+Wr x L/2=24.8 kips_ft T= ((MoT/10)—MST)/(L—1 ft)= 1.8 kips TASD=T/1.53= 1.207 kips; See"Converting Shear Wall Hold Down Catalog Values from ASD to LRFD" <3.7k, OK, use HDU2 C=(MoT/10)/(L—1 ft)=3.6 kips SW label: Sector 1 Line R—typical SW These walls are part of a renovation and must be calculated using 100% IBC level forces. Length of SW; L=5.42 ft Height of SW; hr=18 ft Roof trib; tr=24.5 ft Applied Shear(IBC 2012,0.7E ASD): Roof; Vr=175 lb/ft x L=0.949 kips; Overturing moment: MOT=Vr x (hr)= 17.1 kips_ft Resisting moment(IBC 2012,0.6D ASD): Weights: Walls,exterior:; EW=8 psf Ww=EWX (hr)xL=0.8kips Roof:; DLr= 14.8 psf Wr= DLr x tr x L=2.0 kips MST=WwxL/2+WrxL/2=7.4 kips_ft T=(MoT—0.6 x MST)/(L—1 ft)=2.853 kips <2.865k near end of wall, OK, use HDU2 C=MoT/(L-1 ft)=3.9kips LD52 N I S H K t A N DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS Seismic Upgrade 31642 Holddowns Sheet no./rev. 1022 SW Salmon Street 7 Suite 300 • Portland OR,97205 Calc.by Date Chk'd by Date App'd by Date SHG 4/17/2017 SW label: Sector 1A Line G & K SW Length of SW; L=25.92 ft Height of SW; hr=15 ft Roof trib; tr=20.14ft Applied Shear(ASCE 41-13): Roof; Vr=1161 lb/ft x L=30.093 kips; Overturing moment: MOT=Vr x (hr)=451.4 kips_ft Resisting moment: Weights: Walls:; Ww= IW x (hr)x L=3.5 kips Roof:; DLr= 11.9 psf Wr= DLr x tr x L=6.2 kips MST=Ww x L/2+Wr x L/2= 125.9 kips_ft T=((Mor/10)—MST)/(L—1 ft)=-3.2 kips no HD required C=(MoT/10)/(L- 1 ft)= 1.8 kips SW label: Sector 1A Line 01.2 SW1, SW2 Length of SW; L= 19.5 ft Height of SW; hr=15 ft Roof trib; tr=17.5 ft Applied Shear(ASCE 41-13): Roof; Vr=2797 lb/ft x L=54.542 kips; Overturing moment: MOT=Vr x(hr)=818.1 kips_ft Resisting moment: Weights: Walls:; Ww= IW x (hr)x L=2.6 kips Roof:; DLr= 11.9 psf Wr= DLr x tr x L=4.1 kips MST=Ww x L/2+Wr x L/2=65.3 kips_ft T=((Mor/10)—MST)/(L—1 ft)=0.9 kips TASD=T/1.53=0.585 kips; See"Converting Shear Wall Hold Down Catalog Values from ASD to LRFD" • <2.865k near end of wall, OK, use HDU2 C= (Mor/10)/(L—1 ft)=4.4 kips LD53 N I S H K I A N DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS Seismic Upgrade 31642 Holddowns Sheet no./rev. 1022 SW Salmon Street 8 • Suite 300 Portland OR,97205 Calc.by Date Chk'd by Date App'd by Date SHG 4/17/2017 SW label: Sector 2 Line 4.3 SWI, SW2 Length of SW; L=32.17 ft Height of SW; hr=15 ft Roof trib; tr=0 ft Applied Shear(ASCE 41-13): Roof; Vr=2358 lb/ft x L=75.857 kips; Overturing moment: MOT=Vr x (hr)= 1137.9 kips_ft Resisting moment: Weights: Walls:; Ww= IW x(hr)x L=4.3 kips Roof:; DLr=0 psf Wr=DLr x tr x L=0.0 kips MST=Wwx U2+Wr x U2=69.9 kips_ft T=((Mor/10)—MsT)/(L—1 ft)=1.4 kips TAM=T/1.53=0.921 kips; See"Converting Shear Wall Hold Down Catalog Values from ASD to LRFD" <2.865k near end of wall, OK, use HDU2 • C=(Mor/10)/(L-1 ft)=3.7kips SW label: Sector 2 Line F SWI Length of SW; L=72.0 ft Height of SW; hr=20 ft Roof trib; tr=20.84 ft Applied Shear(ASCE 41-13): Roof; Vr=2422 lb/ft x L=174.384 kips; Overturing moment: MOT=Vr x (hr)=3487.7 kips_ft Resisting moment: Weights: Walls:; Ww= IW x (hr)x L=13.0 kips Roof:; DLr= 16.1 psf Wr= DLr x tr x L=24.2 kips MsT=Ww x L/2+Wr x U2= 1336.2 kips_ft T=((MoT/10)—MST)/(L—1 ft)=-13.9 kips no HD required • C=(Mor/10)/(L—1 ft)=4.9 kips LD54 N I S H K I A N DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS Seismic Upgrade 31642 Holddowns Sheet no./rev. 1022 SW Salmon Street 9 • Suite 300 - Portland OR,97205 Calc.by Date Chk'd by Date App'd by Date SHG 4/17/2017 SW label: Sector 2 Line F SW2 Length of SW; L=54.5 ft Height of SW; hr=20 ft Roof trib; tr=20.84 ft Applied Shear(ASCE 41-13): Roof; Vr=2422 lb/ft x L=131.999 kips; Overturing moment: MOT=Vr x(hr)=2640.0 kips_ft Resisting moment: Weights: Walls:; Ww= IW x (hr)x L=9.8 kips Roof:; DLr= 16.1 psf Wr= DLr x tr x L= 18.3 kips Msr=Ww x L/2+Wr x L/2=765.6 kips_ft T=((Mor/10)—Msr)/(L—1 ft)=-9.4 kips no HD required • C=(Mor/10)/(L—1 ft)=4.9 kips SW label: Sector 3/5 Line F SW Length of SW; L=31.25 ft Height of SW; hr=20 ft Roof trib; tr=28.15 ft Applied Shear(ASCE 41-13): Roof; Vr=6525 lb/ft x L=203.906 kips; Overturing moment: MOT=Vr x(hr)=4078.1 kips_ft Resisting moment: Weights: Walls:; Ww= IW x (hr)x L=5.6 kips Roof:; DLr= 15.4 psf Wr= DLr x tr x L= 13.5 kips MsT=Ww x L/2+Wr x U2=299.6 kips_ft T=((Mor/10)—MST)/(L—1 ft)=3.6 kips TAsD=T/1.53=2.339 kips; See"Converting Shear Wall Hold Down Catalog Values from ASD to LRFD" • <2.865k near end of wall, OK, use HDU2 C=(Mor/10)/(L—1 ft)= 13.5 kips LD55 NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS FowlerMS Seismic Upgrade 31642 Holddowns Sheet no./rev. 1022 SW Salmon Street 10 . Suite 300 Portland OR,97205 Calc.by Date Chk'd by Date App'd by Date SHG 4/17/2017 SW label: Sector 3 Line 18 SW Length of SW; L=70.25 ft Height of SW; hr=20 ft Roof trib; tr=22.5 ft Applied Shear(ASCE 41-13): Roof; Vr=2631 Ib/ft x L=184.828 kips; Overturing moment: MOT=Vr x(hr)=3696.6 kips_ft Resisting moment: Weights: Walls:; Ww= IW x (hr)x L= 12.6 kips Roof:; DLr= 11.7 psf Wr= DLr x tr x L= 18.5 kips MsT=Ww x L/2+Wr x U2= 1093.7 kips_ft T= ((Mor/10)—MST)/(L—1 ft)=-10.5 kips no HD required C=(Mor/10)/(L—1 ft)=5.3 kips SW label: Sector 3 Line L SWI, SW2 Length of SW; L=8.33 ft Height of SW; hr=20 ft Roof trib; tr=30.55 ft Applied Shear(ASCE 41-13): Roof; Vr=2890 lb/ft x L=24.074 kips; Overturing moment: MoT=Vr x (hr)=481.5 kips_ft Resisting moment: Weights: Walls:; Ww= IW x(hr)x L= 1.5 kips Roof:; DLr= 14.4 psf Wr= DLr x tr x L=3.7 kips MsT=WwxL/2+WrxL/2=21.5 kips_ft T=((Mor/10)—MST)/(L—1 ft)=3.6 kips TAso=T/1.53=2.375 kips; See"Converting Shear Wall Hold Down Catalog Values from ASD to LRFD" <3.7k,OK, use HDU2 C=(Mor/10)/(L—1 ft)=6.6 kips LD56 NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS Seismic Upgrade 31642 Holddowns Sheet no./rev. 1022 SW Salmon Street 1 1 • Suite 300 Portland OR,97205 Calc.by Date Chk'd by Date App'd by Date SHG 4/17/2017 SW label: Sector 3 Line L SW3 Length of SW; L=28.0 ft Height of SW; hr=20 ft Roof trib; tr=30.55 ft Applied Shear(ASCE 41-13): Roof; Vr=2890 lb/ft x L=80.920 kips; Overturing moment: MOT=Vr x (hr)= 1618.4 kips_ft Resisting moment: Weights: Walls:; WW= 1W x (hr)x L=5.0 kips Roof:; DLr= 14.4 psf Wr= DLr xtr xL= 12.3 kips MST=Ww x U2+Wr x L/2=243.0 kips_ft T= ((Mor/10)—Ms-r)/(L—1 ft)=-3.0 kips no HD required • C=(Mo-r/10)/(L—1 ft)=6.0 kips • LD57 Nishkian Dean Consulting and Structural Engineers Since 1919 Project: Fowler MS Upgrade No: 31642 1022 SW Salmon St,Suite 300, Portland,OR 97213 Calculated by: CN Date: Tel: (503)274-1843 Fax: (503)273-5696 Checked by: RAA Date: • GYM ROOF DIAPHRAGM BRACING CHECK OF EXISTING DIAPHRAGM Load in gym diaphragm from main gym seismic load: Finain:=900 kip-2.(100 ft) (30 ft) (87.9 psf) (0.75)=504.5 kip Load into main gym diaphragm from upper gym diaphragm: :=425 kip•(106.17 ft)=252.2 kip F upper 178.92 ft J Total load in main gym diaphragm: Ftotal:=Finain+Fupper=756.6 kip 1 Ftotal verist:= 2 100 f t =3783 plf Acceptance criteria value of Tectum diaphragm: vAC:=(0.75) (2.5) (3) (360 plf)=2025 plf . Demand-capaci ratio of dia hra m in existin condition: DCR verist =1 87 tY P 9 9 e�isting:— VAC NG The existing diaphragm is loaded beyond its estimated capacity for loading in the long span. Steel cross bracing will be located in the two end bays on either side of the span. This will reduce the span of the existing diaphragm, bringing its load demand within the estimated capacity. an:Revised Tectum diaphragm s P tpr �6 j.tJ L revise :=53td f Id J.1 Load in reduced diaphragm: �� 53ft ��(y Frevised`_(125 ft) Ftotal=320.8 kip �� � I /175 b-e: wit Max. shear in Tectum diaphragm: v — Frevised =1604.1 plf OK zectvm 2.100 ft • LD58 C> Nishkian Dean Project: Fowler MS Upgrade No: 31642 Consulting and Structural Engineers Since 1919 1022 SW Salmon St,Suite 300,Portland,OR 97213 Calculated by: CN Date: Tel: (503)274-1843 Fax: (503)273-5696 Checked by: RAA Date: • DIAPHRAGM BRACING GEOMETRY, APPLIED LOADS AND RESTRAINTS 3.025k/ft 3.025k/ft X1,1 6., q J 0A t'i t� t 111 -111 Malll MIDI .,1,1 MIIICIII MIDI KIM MCI IIMMI 3.025 l��L o q ..q 3.025 "miri+ mak; r.► :o :tt MIDI WACO �E y� � 1.60 _ .i 4. „ � , • .,o 'I A9WWI DIAPHRAGM BRACING AXIAL LOADS 25.5 Akin, alik AL. - 1 0 le 0 ••• 0 40,...:. III ...../ . 44 Ah,.. <8,1 ...A:'•• .z1 1 Z;, IFFir; ..; -grie,,,, itipv, 0 hilli1,7 , 4t\iiik zz r -15 3 -45.7 ' -41.4 SIZE BRACE Max. compression force in brace: PU:=93.8 kip Adjusted ASCE 41 capacity of Pipe 6 XS for effective length of Pn:= 88.0 kip =97.78 kip OK 26' per AISC manual: 0.9 1 III LD59 C� Nishkian Dean Consulting and Structural Engineers Since 1919 Project: Fowler MS Upgrade No: 31642 1022 SW Salmon St,Suite 300,Portland,OR 97213 Calculated by: CN Date: Tel: (503)274-1843 Fax: (503)273-5696 Checked by: RAA Date: CONNECTION AT N-S WALLS 19.25 19.25 Total load transferred to conc. wall: F ( 22.83) (72.5 kip I+I 122.83) (42.1 kip)).96.6 kip ?.Input Data &AnchorParametem General Base Material Design method:ACI318-11 Concrete: Normal-weight Units: Imperial units Concrete thickness,h (inch):6.50 State:Cracked Anchor Information: Compressive strength,fo(psi):3000 Anchortype: Concrete screw LP0v: 1.0 Material:Carbon Steel Reinforcement condition: B tension,B shear Diameter(inch):0.625 Supplemental reinforcement: Not applicable Nominal Embedment depth(inch):4.250 Reinforcement provided at corners:No Effective Embedment depth,her(inch):3.180 Do not evaluate concrete breakout in tension: No Code report: ICC-ES ESR-2713 Do not evaluate concrete breakout in shear: No Anchor category: 1 Ignore 6do requirement: Not applicable Anchor ductility: No Build-up grout pad:No hmr (inch):6.42 c (inch):4.81 Base Plate Cm!' (inch): 1.75 Length x Width x Thickness(inch):34.00 x 12.00 x0.50 Smr (inch):3.00 Load and Geometry Load factor source:ACI 318 Section 9.2 Load combination:not set Seismic design:No Anchors subjected to sustained tension: Not applicable Apply entire shear load at front row: No 0,r Anchors only resisting wind and/or seismic loads:Yes <Figure 1> Dir 00143 X b LD60 Nishkian Dean Consulting and Structural Engineers Since 1919 Project: Fowler MS Upgrade No: 31642 1022 SW Salmon St,Suite 300,Portland,OR 97213 Calculated by: CN Date: Tel: (503)274-1843 Fax:(503)273-5696 Checked by: RAA Date: • 8.Steel Strength of Anchorin Shear(Sec.D.6.1) Vsa(Ib) 0srcwr 0 4o60Vsa(Ib) 10000 1.0 0.60 6000 10.Concrete Pryout Strength of Anchor in Shear(Sec.D.6.3) 0Vcis=511 Ncoa=0 (Auc/Aka)go gam '1`u,u Vico Alb(Sec.D.4.1 &Eq.D-41) kg Am(in2) Alucc(in') Sriecm u`eaau RN 6Vc4110 Na(Ib) 0 0Vcal(Ib) 2.0 393.53 91.01 1.000 1.000 1.000 1.000 5280 0.70 56331 11.Results Interaction of Tensile and Shear Forces(Sec.D.7) Shear Factored Load,V.a(Ib) Design Strength,eV.(Ib) Ratio Status Steel 4830 6000 0.81 Pass Pryout 48300 56331 0.86 Pass(Governs) 518"3 Titen HD(THDB model),hnom:4.25"(108mm)meets the selected design criteria. Load is transferred/shared through the pipe section welded to the gusset plates and passing through the (E) glulam. Size pipe for total load: Required steel area (ASCE 41 capacity) to Are,,:= F =2.76 in2 resist load (negligible effective length): 35 ksi • Use Pipe 2-1/2 XXS with A:=3.83 in2 The opposing loads perpendicular to the conc. wall have to be resolved through the connection to the glulam. Fl ((12.27 12.27 22.83) (72.5 kip))=38.97 kip F2:=I(22.83) (42.1 kip)l=22.63 kip Transfer load to glulam in through-bolts: Capacity (ASCE 41 LRFD) of 7/8" bolt in single shear Zbolt:=(2220 lbf)•3.32.1.0=7370.4 lbf connecting steel plate to 10 3/4" glulam per NDS 2012: Capacity using (6) bolts: Ztotal:=6•Zbolt=44.22 kip OK Moment caused by force couple: M:=(Fl+F2)•10.75 in=55.18 kip•ft Bending stress (weak axis): M fb:= =572.95 psi < (800 psi)•2.54=2032 psi 2 1—660 in) (10.75 in) • .'. OK LD61 C> o shkian Dean Project: Fowler MS Upgrade No: 31642 Consulting and Structural Engineers Since 1919 Calculated by: CN Date: 1022 SW Salmon St,Suite 300,Portland,OR 97213 Tel: (503)274-1843 Fax: (503)273-5696 Checked by: RAA Date: SRequired thickness of gusset plate: 72.5 kip =0.34 in Use 3/4" plate (for max. tension load) (36 ksi) (6 in) Check compression: K:=0.7 L:=7.5 in r:= 0.75 in =0.22 in K•L-=24.25 Tension check applies here too. 12 r Weld between brace and gusset: Weld size 5/16": D:=5 1.392 kip ASCE 41 weld capacity: rn:= in •D=9.28 kip 0.75 in Total required weld length: LTeQ:= 72.5 kip =7.81 in Use 8" weld length rn Net section capacity at gusset plate: • An=7.83 in2 -2.0.75 in•0.403 in=7.23 in2 U:=1 Ae:=An•U=7.23 in2 (0.75)•(58 ksi)•Ae =1.12 OK (1.0)•(36 ksi)•(7.83 inz) LD62 Nishkian Dean Consulting and Structural Engineers Since 1919 Project: Fowler MS Upgrade No: 31642 1022 SW Salmon St,Suite 300, Portland,OR 97213 Calculated by: CN Date: Tel: (503)274-1843 Fax: (503)273-5696 Checked by: RAA Date: CONNECTION AT E-W WALLS Total load transferred to conc. wall: F:=I 128.83 I (93.8 kip)I+I 121.83 I (93.8 kip)I=141.5 kip 2.Input Data&Anchor Parameters General Base Material Design method:ACI 318-11 Concrete: Normal-weight Units: Imperial units Concretethickness,h(inch):6.50 State:Cracked Anchor Information: Compressive strength,f'a(psi):3000 Anchor type:Concrete screw 4'a.r1 1.0 Material:Carbon Steel Reinforcement condition:B tension,B shear Diameter(inch):0.625 Supplemental reinforcement Not applicable Nominal Embedment depth(inch):4.250 Reinforcement provided at corners: No Effective Embedment depth,hef(inch):3.180 Do not evaluate concrete breakout in tension:No Code report ICC-ES ESR-2713 Do not evaluate concrete breakout in shear.No Anchor category. 1 Ignore Edo requirement Not applicable Anchor ductility.No Build-up grout pad:No hmin(inch):6.42 ca.(inch):4.81 Base Plate Cmin(inch): 1.75 Length x Width x Thickness(inch):34.00 x 12.00 x 0.50 Smin(inch):3.00 Load and Geometry Load factor source:ACI 318 Section 9.2 Load combination:not set Seismic design: No Anchors subjected to sustained tension:Not applicable Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads:Yes ab <Figure 1> Som ri,. X ort-o • ! LD63 Nishkian Dean Project: Fowler MS Upgrade No: 31642 Consulting and Structural Engineers Since 1919 1022 SW Salmon St,Suite 300,Portland,OR 97213 Calculated by: CN Date: Tel: (503)274-1843 Fax: (503)273-5696 Checked by: RAA Date: • B.Steel Strength of Anchor in Shear(Sec.D.6.11 Vsa(Ib) 4„,rd 0 516.1014.(Ib) 10000 1.0 0.60 6000 In ASCE 41, take q5 as 1.0: V:= 6000 lbf.10=100 kip < F=70.76 kip OK 0.60 2 10.Concrete Prvout Strength of Anchor in Shear(Sec.D.6.31 OVcpg=IlkpNcbg=$ cp(Abb/Areo)Tec,NTed.N%.N%p.NVa(Sec.D.4.1&Eq.D-41) Ncp Arc(in°) Anbo(in2) 'ec.m 'Yd.N 'YMIS Wp,IV Nb(Ib) OVciv(Ib) 2.0 658.45 91.01 1.000 1.000 1.000 1.000 5280 0.70 53482 In ASCE 41, take cp as 1.0: V:- 53482 lbf_76.4 kip < F=70.76 kip OK 0.70 2 11.Results Interaction of Tensile and Shear Forces(Sec.D.7( Shear Factored Load,V.(Pb) Design Strength,eVr,(Ib) Ratio Status Steel 7075 6000 1.18 Fail Pryout 70750 53482 1.32 Fail(Governs) FAIL!Selected anchortype and embedment do not meetthe selected design criteria See above. Governing ratio is 0.93 i • LD64 Nishkian Dean Project: Fowler MS Upgrade No: 31642 Consulting and Structural Engineers Since 1919 1022 SW Salmon St,Suite 300, Portland,OR 97213 Calculated by: CN Date: Tel: (503)274-1843 Fax: (503)273-5696 Checked by: RAA Date: • CONNECTION AT GLULAM (2-BRACE' Total load transferred to glulam: F:=((28.831 (57.7 kip))+((28.83) (57.7 kip))=87.1 kip Transfer load to glulam in through-bolts: Capacity (ASCE 41 LRFD) of 1" bolt in single shear Zbolt:_(2860 /14)•3.32.1.0=9495.2 lbf connecting steel plate to 10 3/4" glulam per NDS 2012: Capacity using (12) bolts: Ztotal:=12•Zbolt=113.94 kip.'. OK The opposing loads perpendicular to the conc. wall have to be resolved through the connection to the glulam. Fl ((22.83) (57.7 kip )=31.01 kip F2:_((22.83) (57.7 kip))=31.01 kip Moment caused by force couple: M:=(Fi+F2)•10.75 in=55.56 kip.ft # Bending stress (weak axis): M =576.95psi < (800 si 2.54=2032 psi fb:= 2 p �• 1 (60 in) (10.75 in) OK III LD65 Nishkian Dean Project: Fowler MS Upgrade No: 31642 Consulting and Structural Engineers Since 1919 1022 SW Salmon St,Suite 300,Portland,OR 97213 Calculated by: CN Date: Tel:(503)274-1843 Fax: (503)273-5696 Checked by: RAA Date: • CONNECTION AT GLULAM (4-BRACE2 Total load transferred to glulam: FA ((16.00 22.67 25.00) (81.4 kip))+ I 129.00) 93.8 kip))=125.4 kip 16.00 FB ((25.00) (47.2 kip))+ ((22.67) (57 22.67 .7 kip))=75.3 kip Transfer load to glulam in through-bolts: Capacity (ASCE 41 LRFD) of 1" bolt in single shear connecting steel plate to 10 3/4" glulam per NDS 2012: D:=1 in Fern=5.6 ksi Fyb:=45 ksi Re=0.064 Rd:=3.2 D2 2•Fem•F Z'boIt'= yb • 3.32.0.85=11081.3 Rd 3•(1+Re) 3.32.0.85=11081.3 lbf Capacity using (12) bolts: Ztotal:=12•Zbolt=132.98 kip .°. OK ID The opposing loads perpendicular to the conc. wall have to be resolved through the connection to the glulam. 19.21 18.09 Fl:=((25.00) (81.4 kip))+((29.00) (57.7 kip))=98.54 kip F2:=(( , 1809 kip + 1921 47.2 kip) =94.78 kip 2 (( : ) (93.8 )) (( : ) ( )) Moment caused by force couple: M:=(Fi+F2)•10.75 in=173.18 kip•ft Bending stress (weak axis): M fb:= =1798.33 psi < (800 psi)•2.54=2032 psi 2 1( 60 in) (10.75 in) °. OK • LD66 NISHKIAN DEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 • ND31642 Fowler Middle School Renovation 10865 SW Walnut St. Tigard, OR 97223 NONSTRUCTURAL UPGRADES • • NS1 FIELD TECHNICAL INFORMATION Application recommendations for work at the wall or ceiling • 401 Suspension Systems for Acoustical Lay-in Ceilings REVISED 10/09 Seismic Design Categories D, E & F This document has been revised based on current Building Code standards. In all buildings, other than structures classified as essential facilities,suspended ceilings installed ", `�� in accordance with the prescriptive , - ' provisions of the 401 document are .- .1.14!.... .........6....____ re ' i deemed to comply with the current „`( building code interpretation. \`'� 4 This document provides the IBC-2009 '` referenced standards for the 111 installation of suspension systems for acoustical lay-in ceilings. General Recommendations • Referenced sources per hierarchy:2009 IBC(International Building Code), Incorporation of this document will American Society of Testing Materials(ASTM C 635,ASTM C 636,ASTM provide a more uniform standard E 580/E 580M),American Society of Civil Engineers(ASCE 7-05)and Ceil- ings and Interior Systems Construction Association(CISCA). for installation and inspection.This • Partitions that are tied to the ceiling and all partitions greater than 6 feet in document is designed to accomplish height shall be laterally braced to the structure. Bracing shall be indepen- document of the ceiling splay bracing system.Source:ASCE 7-05 section 13.5.8.1 the intent of the International • For further information on bracing of non-load bearing partitions refer to NWCB technical document#200-501. Building Code(IBC)with regard •All main beams are to be Heavy Duty(HD).Source:ASCE 7-05 section 13.5.6.2.2 a to the requirements for seismic •All cross tees shall be capable of carrying the design load without exceed- design category D, E and F for ing deflection equal to 1/360 of its span.Source CISCA zones 3-4 • These recommendations are intended suspended ceilings and related items. for suspended ceilings including grid, Unless supported by engineering, panel or tile, light fixtures and air terminals weighing no more the 4 lbs. the suspension system shall be per square foot.Source: ASCE 7-05 section 13.5.6.1 installed per these requirements. maxi t m 3. (76mm) • All wire ties are to be three tight turns Manufacturers' recommendations around itself within three inches.Twelve gage Hanger wire spaced 4 foot on cen- tershould be followed where applicable. L (figure 1).Source:ASTM C 636 item 2.3.4 • Changes in ceiling planes will require • positive bracing. figure 1 Source:ASCE 7-05 13.5.6.2.2 f NS2 NORTHWEST WALL&CEILING BUREAU SUSPENSION SYSTEMS FOR ACOUSTICAL LAY-IN CEILINGS figure 2 Lateral Force Bracing(figures 2 and 3) Lateral force Bracing •Ceilings constructed of lath and plaster or gypsum board,screw or nail at- tached to suspended members that support a ceiling on one level extending from wall to wall shall be exempt from the lateral force bracing requirements. Ilkr less;> <_a5°or less Source:CISCA zones 3-4 • Lateral force bracing is the use of vertical struts(compression posts)and �iiisplay wires(see figure 2). 12 gage • For ceiling areas exceeding 1,000 square feet, horizontal restraint of the ceil- w 'W <'• �� splayed 45°or less ing to the structural system(lateral force bracing)shall be provided.source: s 45°or less wires ASCE 7-05 section 13.5.6.2.2 c • Lateral Force Bracing shall be 12 feet on center(maximum)and begin no Cross tee Main beam • farther than 6 feet from walls.Source:CISCA Seismic zones 3-4 •Seismic splay wires are to be four 12 gage wires attached to the main beam. Wires are arrayed 90°from each other and at an angle not exceeding 45°from figure 3 the plane of the ceiling.Source:CISCA Seismic zones 3-4 Maximum Recommended Lengths for •Seismic splay wires shall be attached to the grid and to the structure in such Vertical Struts a manner that they can support a design load of not less than 200 pounds or the actual design load,with a safety factor of 2,whichever is greater(figure EMT CONDUIT 6b). Source:CISCA zones 3-4 • "Powder-driven shot-in-anchors"(PAF's),when used for seismic application 1/2" EMT conduit up to 5'10" as part of the prescriptive path in Seismic Design Categories D, E and F,shall 3A" EMT conduit up to 7'8" have an ICC-ES approval for seismic applications and shall require"special inspection"irrespective of the type of occupancy category the structure is in. 1" EMT conduit up to 9'9" PAF anchors for kicker wires(splayed wires installed for purposes other than seismic restraint)are exempt from this requirement.Source:State of Oregon,Building METAL STUDS Codes Division Single 15/8" metal stud(20 gauge) up to 12'0" •Splay wires are to be within 2 inches of the connection of the vertical strut to suspended ceiling. Source:CISCA Seismic zones 3-4 Back-to-back 15/8" metal stud up to 15'0" • Rigid bracing may be used in lieu of splay wires. Source:ASCE section 13.5.6.2.2 c (20 gauge) •Ceilings with plenums less than 12 inches to structure are not required to ii Single 2'/2" metal stud(20 gauge) up to 13'6" have lateral force bracing.Source:Portland Building Department •Vertical struts must be positively attached to the suspension systems and the Back-to-back 2' " metal stud up to 15'0" structure above.Source:CISCA 3-4 (25 gauge) •The vertical strut may be EMT conduit, metal studs or a proprietary compres- Source:Portland Building Department sion post(see figure 3). Note:Plenum areas greater than 15'0"will require engineering calculations. Wall Moldings(figures 4a and 4b) •Wall moldings(perimeter closure angles)are required to have a horizontal figure 4a flange 2 inches wide.One end of the ceiling grid shall be attached to the wall Attached Wall Molding Requirements molding,the other end shall have a 3/inch clearance from the wall and free to slide.Source:ASCE 7-05 section 13.5.6.2.2 b m•%1TUm e,( •Where substantiating documentation has been provided to the local jurisdic- ) WALL tion, perimeter clips may be used to satisfy the requirements for the 2-inch closure angle.Source:State of Oregon,Building Codes Division p ` '`o •The grid shall be attached at two adjacent walls(pop rivets or approved meth- J'I od).Soffits extending to a point at least level with the bottom plane of the grid and independently supported and laterally braced to the structure above are 2'(o mm,y/ `a11-0 deemed to be equivalent to walls.Source:State of Oregon,Building Codes Divsion -" Spreader Bars (figure 4b) figure 4b •Spreader(spacer)bars shall be used to prevent the ends of the main beams Unattached Wall Molding Requirements and cross tees at perimeter walls from spreading open during a seismic event. Perimeter wires shall not be in lieu of spreader bars.Source:CISCA Seismic zones 3-4 maximum e•(202 mnj •Spreader bars are not required at perimeters where runners are attached WALL directly to closure angles. 0 •o Spreader barer •Wire tying is an acceptable alternative to spreader bars. 0 t. components fro o • keep perimiter Spreader bars are not required if a 90 degree intersecting cross or main is components from • 3/et(1g mm, %, spreading apart within 8 inches of the perimeter wall. unattachedat lwalls •Where substantiatingdocumentation has beenprovided to the local jurisdiction, 2M)",;,",;,)+/ 40� 1 .0. perimeter clips may be used to satisfy the requirements for spreader bars. Source:State of Oregon,Building Codes Division NS3 NORTHWEST WALL&CEILING BUREAU•SUSPENSION SYSTEMS FOR ACOUSTICAL LAY-IN CEILINGS Hanger(Suspension)Wires (figures 5a and 5b) figure 5a plumb 1/5 • Hanger and perimeter wires must be plumb within 1 in 6 unless(figure 5a) counter sloping wires are provided(figure 5b).Source:ASTM C 636 section 2.1.4 • Hanger wires shall be 12 gage and spaced 4 feet on center or 10 gage • spaced 5 feet on center.Source:ASTM C 636 •Any connection device at the supporting construction shall be capable of car- rying not less than 100 pounds.Source:CISCA zones 3-4 -ma"mum 5• • Powder-driven shot-in anchors(PAFs)are an approved method of attachment for hanger wires. Source:State of Oregon,Building Codes Division •Terminal ends of each main beam and cross tee must be supported within 8 • inches of each wall with a perimeter wire(see figure 4&5 b).Source:CISCA zones 3-4 •Wires shall not attach to or bend around interfering material or equipment.A figure 5b•Countersloping trapeze or equivalent device shall be used where obstructions preclude direct suspension.Trapeze suspensions shall be a minimum of back-to-back 11/4 inch cold-rolled channels for spans exceeding 48 inches.Source:CISCA zones 3-4 / 3p1,,3 "i ,/ " Electrical fixtures �`'� �`�� m\5°ang 45°angle , 4le `` • Light fixtures weighing less than 10 pounds shall have one 12 gage hanger wire connected from the fixture to the structure above.This wire may be slack. ��� Source:CISCA Seismic zones 3-4 • Light fixtures weighing more than 10 pounds and less than 56 lbs.shall have two 12 gage wires attached at opposing corners of the light fixture to the structure above.These wires may be slack.Source:CISCA Seismic zones 3-4. • Light Fixtures weighing more than 56 lbs.shall be supported directly from the figure 6a structure above.These wires must be taut. Source:CISCA Seismic zones 3-4 • Pendant mounted fixtures shall be directly supported from the structure above Vertical hanger wire attachment using a 9 gage wire or an approved alternate support without using the ceiling suspension system for direct support.Source:CISCA Seismic zones 3-4 Shot-in anchor [;]3/4" •Tandem fixtures may utilize common wires. Structural concrete 5/8" Ceiling clip max. mechanical Services l,i Terminals or services weighing 20 lbs. but not more than 56 lbs. must have two 3 turns 12 gage wires connecting them to the ceiling system hangers or the structure above.These wires may be slack.Source:CISCA Seismic zones 3-4 vertical hanger wire •Terminals or services weighing more than 56 lbs. must be independently supported directly from the structure above.These wires must be taut. source: figure 6b CISCA Seismic zones 3-4 Splayed seismic bracing wire attachment Seismic Separation Joints (figure 7) • For ceiling areas exceeding 2,500 square feet,a seismic separation joint or full aria-in expansion anchor rrn height wall partition that breaks the ceiling shall be provided unless analyses Structural concrete 45° are performed of the ceilings bracing system,closure angles and penetrations to provide sufficient clearance.Source:ASCE 7-05 section section 13.5.6.2.2 d Steel strap 1"wide x 2"long x12 gage minimum •The layout and location of the seismic separation joint shall be per the design- 3 1 turns er of record and noted on the plans. If a seismic separation joint is required by Splayed seismic bracing wire the designer,the designer may use the generic joint detailed in this document or a proprietary joint.The amount of free movement(gap design)shall be a minimum of 34 inch.Source:State of Oregon,Building Codes Division • in lieu of seismic separation joints,the ceiling may be divided into areas less figure 7 than 2500 square feet by the use of partitions or soffits as follows:partitions shall extend a minimum of 6 inches above the level of the plane of the grid and shall be independently braced to the structure above.Soffits shall extend to a point at least level with the bottom plane of the grid and shall be independently supported S41 and laterally braced to the structure above.source:State of Oregon Building Codes Division t i •Other than partitions and soffits,seismic joints may not be used as part of a fire rated ceiling assembly unless substantiating documentation is provided. Source:State of Oregon Building Codes Division7111111111177 sprinklers or ceilings without rigid bracing,sprinkler head penetrations shall have a 2 inch 4 t T T oversize ring,sleeve or adapter through the ceiling tile to allow free movement of atPop Flange least 1 inch in all horizontal directions.Flexible head design that can accommodate -m 3;m'�m- Rivet 1 inch free movement shall be permitted as an alternate.Source:ASCE 7-05 13.5.6.2.2 e NS4 NORTHWEST WALL&CEILING BUREAU•SUSPENSION SYSTEMS FOR ACOUSTICAL LAY-IN CEILINGS GLOSSARY FOR THIS DOCUMENT (regional terminology may vary) CROSS TEES LATERAL FORCE BRACING PERIMETER WIRES SThe cross member that interlock with The bracing method used to prevent Hanger wires placed within eight inches the main beams,also known as cross ceiling uplift or restrict lateral move- of the surrounding walls. runners or cross T-bars. ment during a seismic event. Lateral force bracing consists of vertical struts PLENUM DIFFUSER and splay wires. The space above a suspended ceiling. A circular or rectangular metal grill used for the passage of air from a MAIN BEAM SLACK WIRE ducted system. The primary suspension member sup- A 12 gage wire that is not tight or taut. ported by hanger wires,also known as SPREADER or SPACER BAR ESSENTIAL SERVICE BUILDINGS the main runner,carrying tee,carrying Any buildings designed to be used runner or mains. A bar with notches to prevent the sus- by public agencies as a fire station, pension system from separating, also police station, emergency operations MOLDING/CLOSURE ANGLE called a stabilizer bar. center, State Patrol office, sheriff's A light gauge metal angle or chan- SPLAY WIRES office, or emergency communication nel fastened to the perimeter wall or Wires installed at an angle rather than dispatch center. partition to support the perimeter ends of an ac- perpendicular to the grid. GRID coustical ceiling grid. VERTICAL STRUTS The main beams and cross tees of the suspension system. PERIMETER CLIPS The rigid vertical member used in Proprietary angle bracket attached di- lateral force bracing of the suspension HANGER WIRE rectly to the wall molding/closure angle system.Also known as compression 10 or 12 gage soft annealed wire used which allows for 3/" movement in the posts, seismic pods, seismic struts. as primary support for the grid system. event of seismic activity and interlocks Common materials are electrical con- Also called suspension wires. properly with ends of grid system. duit(EMT), metal studs or proprietary products. • 1032-A NE 65th St. _ The NWCB has been serving the construction NWCB I Seattle,WA 98115 Phone(206)524-4243 industry for over forty years.It is recognized as a technical authority,educational body and Fax(206)524-4136spokesperson for the wall and ceiling industry.It NORTHWEST WALL 6 CEILING BUREAU Toll Free(800)524-4215provides services to architects and the con- info@nwcb.org struction community on all matters relating to www.nwcb.org the diversified wall and ceiling industry. As the industry's development and coordina- NWCB-Oregon tion organization,the NWCB saw the need to Phone: (503)295-0333 establish a document to provide clarification and Fax:(503)295-2733 the intent of NEHRP(National Earthquake Haz- ards Reduction Program)an agency of FEMA B.C.Wall and Ceiling Association (Federal Emergency Management Agency). It Phone: (604)575-0511 is meant to serve as a set of recommendations Fax: (604)597-7208 and is not intended for any specific construction project. Alberta Wall and Ceiling Association Phone: (403)250-7045 The NWCB makes no express or implied war- Fax:(403)291-9515 rarity or guarantee. NS5 ALASKA • IDAHO • OREGON • WASHINGTON • ALBERTA • BRITISH COLUMBIA • SASKATCHEWAN Statewide Code Interpretation February 2017 • State of Oregon Building Codes Division No. 10-01 Construction Requirements for Suspended Better Buildings for Oregon Ceiling Systems Code Edition: 2014 Oregon Structural Specialty Code (OSSC) ASCE 7-10, Minimum Design Loads for Buildings and Other Structures Code Section: OSSC Section 1613.1 ASCE 7-10 Section 13.5.6 Date: July 1, 2010 (Issued) July 1, 2014 (Updated) February 2, 2017 (Updated) Subject: Construction requirements for Suspended Ceiling Systems Question: What are the minimum requirements of the Oregon Structural Specialty Code (OSSC) for the construction of suspended ceiling systems? Answer: I. For structures classified as Risk Category IV, provide an engineered ceiling system designed for the appropriate forces (ASTM E 580 Section 5.7.1) except in the following: a. Ceilings less than or equal to 144 square feet and surrounded by walls connected to the structure above are exempt from the seismic design requirement(ASTM E 580 Section 1.4 and ASCE 7 Section 13.5.6). b. Upgrading of an existing ceiling in accordance with Section V in this interpretation. II. For structures classified as Risk Category I,II, or III the following options are available: a. An engineered ceiling system designed for appropriate forces, b. A prescriptive design in accordance with ASTM E 580: 1. In Seismic Design Category C: Prescriptive ceiling systems designed and installed in accordance with ASTM E 580. 2. In Seismic Design Category D through F: Prescriptive ceiling systems designed and installed in accordance with ASTM E 580 as modified by ASCE 13.5.6.2.2(a through c) as amended by OSSC 1613.6. c. Shake table testing of components and their supports, to determine their seismic capacities, in accordance with ICC Acceptance criteria 156. {Section 13.2.5 of the ASCE 7-10.} In accordance with OAR 918-008-0110,the information contained in this statewide code interpretation is 40 legally binding on any party involved in activities regulated by applicable Oregon law,applicable Oregon regulations or the state building code.If the information contained in this statewide code interpretation is cited as a basis for a civil infraction,a representative of the jurisdiction must cite the interpretation number found in this document. Building Codes Division • Department of Consumer and Business Services • State of Oregon % �NS6 1535 Edgewater St.NW, Salem, OR 97304 ♦ P.O. Box 14470, Salem, OR 97309-0404 ,,..,':',� 503-378-4133 • Fax: 503-378-2322 ♦ oregon.gov/bcd d. Seismic qualification by experience data based on nationally recognized procedures. {Section 13.2.6 of the ASCE 7-10.} e. Northwest Wall& Ceiling Bureau - Technical Bulletin 401, 2013 Version: In structures • classified as Risk Category I, II, or III, suspended ceilings installed in accordance with the prescriptive provisions of NWCB TB 401 are deemed to comply with this interpretation. NWCB TB 401 contains information compiled from the different applicable documents such as ASCE Standard 7-10, IBC 2012, ASTM Standard C635, ASTM E 580 and is available at the following internet address: http://www.nwcb.org/401-document.html III. GENERAL NOTES The following notes are applicable to section II above: a. Specialty ceilings must be installed using an engineered design and may not use the provisions of this interpretation. Specialty ceilings include but are not limited to those incorporating arched ceilings, curved or curvilinear ceilings or sloped ceilings; or having no direct connection to the surrounding walls or supports, such as "free floating" or "cloud" ceiling elements. b. Tiles. Suspended ceilings installed to this interpretation may use either standard acoustical lay-in ceiling panels, tegular, kerfed or similar light-weight ceiling panels. c. Spreader bars 1. Wire ties are deemed equivalent to spreader bars 2. Spreader bars are not required if a 90 degree intersecting cross or main is within 8 inches of the perimeter wall. 3. Spreader bars are not required at perimeters where ceiling grid ends are attached to • closure angles. d. Wire gauge: The minimum wire size shall be US Steel Wire Gage#12 (0.1055- inch). IV. Notes specific to Seismic Design Categories D through F: a. Lateral force bracing is required for ceilings over 1000 square feet. b. Ceilings with interstitial spaces less than 12-inches to framing are not required to have lateral force bracing. c. Grid attachment: The suspended ceiling grid shall be attached to two adjacent walls. Soffits complying with d(2) are deemed to be equivalent to walls. The other end of the grid in each horizontal direction shall have a 0.75 in(19 mm) clearance from the wall and shall rest upon and be free to slide on a closure angle. d. Seismic joints 1. For ceiling areas exceeding 2,500 square feet, a seismic separation joint shall be provided with the limits of the long to short dimension ratio being less than or equal to 4 in accordance with ASCE 7-10 section 13.5.6.2.2b. The layout and location of seismic separation joints shall be per the designer of record and noted on the plans. 2. In lieu of seismic separation joints, the ceiling may be divided into areas less than 2,500 square feet by the use of partitions or soffits as described below. • a) Partitions. Where used,partitions shall extend a minimum of 6 inches above the level of the plane of the grid and shall be independently braced to the structure above. b) Soffits. Where used, soffits shall extend to a point at least level with the bottom NS7 Page 2 of 5 plane of the grid and shall be independently supported and laterally braced to the structure above. • 3. Other than partitions and soffits, seismic joints may not be used as part of a fire rated ceiling assembly unless substantiating documentation is provided. 4. The minimum movement that must be accommodated at seismic joints is 3/4 of an inch. e. Perimeter clips: Where substantiating documentation is provided,perimeter clips may be used to satisfy the following requirements: 1. 2-inch closure angle 2. Spreader bar requirements f. Sprinkler Heads: Flexible head design that can accommodate 1-inch free movement in any direction shall be permitted as an alternate to the requirement for 2-inch oversize rings, sleeves or adapters through the ceiling tile. g. "Power driven shot-in-anchors" (Applies to all Risk Categories)when used for seismic application as part of the prescriptive path in Seismic Design Categories D, E, and F shall have an ICC-ES approval for seismic applications and shall require "special inspection" irrespective of the type of"Risk Category" the structure is in. Anchors for kicker wires (splayed wires installed for purposes other than seismic restraint) are exempt from this requirement. As of the issuance of this interpretation, approved load testing values for the use of "powder driven shot-in- anchors" in normal-weight concrete over a metal pan deck have not been established. Until such time as approved load testing values are established, an on- . site pull-test of such assemblies is required. The test shall demonstrate that the anchor can support a minimum 250 lbs. for not less than 10 seconds and be conducted by an approved testing agency. At a minimum, such testing shall be performed on 5% of the total number of wires but not less than 5. Test samples shall be selected from dispersed locations. On Site Test Failures. In case of pull test failures, the testing agency shall notify the local jurisdiction. An increased level of testing, as described below, shall be conducted. All failed anchors shall be replaced. Increased testing requirements. 1. A minimum of 6 anchors in the immediate vicinity of the failed anchor shall be tested. 2. In the event of any additional failure, all anchors placed on the same day shall be tested. Load testing results are required to be submitted to the local jurisdiction for approval prior to the ceiling grid inspections. V. Upgrading of Existing Ceilings (Applies to all Risk Categories); a. Ceilings without Seismic Bracing. Where existing ceilings are without seismic bracing,the ceiling system shall be brought into substantial compliance with current code requirements when 50% or more of the ceiling tile is altered,repaired or replaced as part of a general space alteration, or if all of the ceiling system is removed. • Substantial Compliance means installation of the following items where required in new construction: 1. lateral force bracing(splayed wires) NS8 Page 3 of 5 2. compression struts 3. slack wires on all light fixtures and air terminals • This requirement does not trigger the need for: 1. 2-inch closure angle as specified in section II 2. Seismic separation joints 3. 1-inch movement in all directions around sprinkler pendants These upgrades are not required when: 1. Removing portions of tiles or panels and/or grid to alter ductwork, sprinkler pipe, low voltage wiring, etc. 2. Portions of a ceiling are removed only to facilitate the installation of sprinkler piping b. Ceilings without Compression Struts. Where existing ceilings have seismic bracing but do not have compression struts at the center of the splayed wires, the addition of compression struts will only be required when and where the grid is replaced, altered, raised or lowered. Analysis: The OSSC and ASCE 7 provide the requirements for prescriptive design and installation of suspended ceiling systems by referencing ASTM standards. Since there are no areas in Oregon classified as Seismic Design Category A or B, the lateral restraint of suspended ceiling systems is required unless specifically exempted. The specific code sections relating to this interpretation are: • OSSC Section 808 requiring acoustical ceiling systems to conform to generally-accepted engineering practices, the provisions of Chapter 8, and other applicable requirements of the • OSSC. • OSSC Section 808.1.1 requiring suspended acoustical ceiling systems to be installed in accordance with the provisions of ASTM C 635 and ASTM C 636. • OSSC Section 1604.1 requiring that buildings structures and parts thereof be designed and constructed in accordance with strength design, load and resistance factor design, allowable stress design, empirical design, or conventional construction methods, as permitted by the applicable material chapters. • OSSC Section 1613.1 requiring that every structure, and portion thereof, including nonstructural components that are permanently attached to structures,their supports, and their attachments,be designed and constructed to resist the effects of earthquake motions in accordance with ASCE 7 as modified by Section 1613.7, excluding Chapter 14 and Appendix 11A. The seismic design category for a structure is permitted to be determined in accordance with Section 1613 or ASCE 7. • OSSC Section 1613.6 amending ASCE 7, Section 13.5.6.2.2, Item c, "suspended ceilings" in Seismic Design Categories D through F as follows: c. For ceiling areas exceeding 1,000 square feet(13.4 m2), horizontal restraint of the ceiling to the structural system shall be provided. • ASCE 7 Section 13.5.6 addressing the design of suspended ceilings with subsections 13.5.6.2.1 and 13.5.6.2.2 referencing ASTM E 580 for prescriptive design and installations, • and providing some additional prescriptive requirements in addition to ASTM E 580 for Seismic Design Categories D through F. NS9 Page 4 of 5 Contact: Tony Rocco Rex L. Turner • Senior Building Code Specialist 503-373-7529 Structural Program Chief 503-373-7755 Anthony.J.Rocco(a�oregon.gov Rex.L.Turner@oregon.gov Warren Jackson Building Code Specialist 503-378-4635 Warren.D.Jackson@oregon.gov S NS1 0 Page 5 of 5 Number One AiConditioning scat ion Data ® A Application Detail CCmrePCorporaon .. .. .. Carrier Parkway .. - •Syracuse N v 13221 Armstrong C-Series Luminaire Ceiling Moduline® Air Terminals in a Custom Ceiling System Moduline air terminals are well suited to custom grid recess. With the insert, the diffuser practically ceiling systems and standard T-bar systems. One of disappears in the grid pattern. the most popular custom ceiling systems to which Moduline can be applied is the Armstrong C-Series Moduline Models 37AF and 37AJ can also be Luminaire ceiling. applied to the above application. Model 37AH, The Armstrong C-Series ceiling is available in because of its 4-in.diffuser width,is not suitable for module sizes ranging from 24 in. x 54 in. up to 6 ft x installation on the grid line. It can, however, be 6 ft square. These modules may be flat (horizontal installed in the flat area between grid members (as tiles), coffered (vaulted tiles) or a combination can all 37A units) by cutting the ceiling tiles to of both. accommodate the 4-in. diffuser width. A typical Armstrong C-Series Luminaire ceiling with vaulted tiles is shown in Fig. 1. Figure 2 illus- Moduline units are held in place in the grid system trates an Armstrong Parabolok lighting fixture in a by Carrier-supplied hanger assemblies and mounting ceiling module formed by the C-Series grid. The brackets(Fig.4). Where units are positioned end-to- main grid runners support the light fixtures and end, the adjacent ends are supported by a common cross-grid runners complete the module. Grid clips hanger assembly. The ceiling tiles rest on the unit lock the main grid runners to a main runner spline. side diffusers. The clips are also the location of the ceiling hanger wires. The cross-grid runners fit into notches in the Note that the units run parallel to the light fixtures main runners and are locked in place by the grid and are supported by the main grid runners. The clips. Grid members are 2-1/4 in. wide with a 1-in, ceiling hanger wires are located on either side of the wide black recess. unit. These features allow the feed-thru connection Moduline units of suitable diffuser length are of standard round duct to the unit plenums(Fig.4). available to match Armstrong ceiling modules. The Air distribution and sound power performance of units use standard plenums and duct connections. 37A units in these custom ceilings is comparable to On request, units meeting UL requirements as their performance in standard T-bar ceilings. Unit specified by Armstrong fire-rated ceiling construe- airflow is stable throughout the unit throttling tion can be supplied; contact Carrier for details. • range, with no air dumping. Figure 3 shows dimensional data and mounting hardware details for a typical Armstrong C-Series, For further data on Model 37AG and other 37A 60-in. ceiling unit with a Moduline 37AG air ter- Series Moduline units, refer to the 37A Series minal. The terminal is designed to replace a cross- Product Data Digests, Installation Instructions and grid member. A black insert is available to match the dimensional drawings, available on request. EXISTING CEILING TILES ARE C-60-30 (60" X 30"). TYPICAL CEILING TILE WEIGHT 0.60 PSF CONFIRMED BY MANUFATURER. 411/ TYPICAL CEILING TILE WEIGHT 0.60 PSF* (5' X 2.5') = 7.5 LBS TYPICAL CEILING LIGHT MODULE =2.80 PSF* (5'X 2.5') = 15.0 LBS NS11 ©Carrier Corporation 1982 Form 37A-25XA _. ,.. ..• LIGHT FIXTURE/ DIMENSIONS (in.) Y '8" for 48" Lamp Fixture _ in 1" increments ll RAPD lml_Irl _ TH LIED �� mialHilliallir iiiilla �IMIli� 9., 24 54 FIXTURE) IAllimmumimom \` III i \\ - 8 GRID I,,, / ii / \ � i \�" i / af CROSS TEE SECTION 8-9 ACOUSTICAL END 2 a �'{-�-I' 60 72 — PANEL X G41-1 I X 2 ___ z f ACOUSTICAL SIDE `���� I PANEL [4_1.._01 j ftI==ti 24, B4-1MAIN RUNNER WITH STANDARD MAIN RUNNER AND CROSS RUNNER SECTION A-A TRUSS SECTION GRID CLIP 81 HANGER WIRE Lam' -I CROSS GRID RUNNER 1 A III \A„___ \ MAIN RUNNER SPLICE iN ID \,____ vI:I��� STANDARD TRUSS �� MAIN GRID RUNNER \.. ACOUSTICAL END PANEL ACOUSTICAL SIDE PANEL X Fig. 1 — Typical Armstrong C-Series Luminaire Ceiling Module • • �-- - I10 X HANGER WIRE Y LIGHT FIXTURE / . FIXTURE .4011111011111111'. SUPPORT TRUSS '' 1 ACOUSTICAL PANEL '''.-7111111r- --� _,,.._..,...<.,_--------- _,,,,_- ce► i III _ _ - am► ---411-10-0- - - i -,--- `-�_--- 0 �_,-,___-___40a...-- ;% CROSS GRID RUNNER PARABOLOK LOUVER MAIN GRID RUNNER CROSS TEE NS12 Fig. 2 — Armstrong Parabolok Ceiling Module ® 2 B DIAM CONNECTION D DIAM CONNECTION 37 25° —+{ r-2.00' PLENUM OR BLANK I I TYP 11 II ® — — PLENUM II _ AI C E 14- I f 5.64 1 ' J 6.12" (CONTROL END) L 1 I ���� r 58 80" 101 MAIN RUNNER OILDISCHARGE SLOT 4.4- f 00'. 4f 32 9.. N,:„....;�,• 116 DIMENSIONS (in.) ��%�, f>.•rr 1 A B C D E '::i:;?., •!`f` MODULINE * Plenum Diem Diam _i± L�" rr::✓ 4 7 6 9-5/8 0/6 0/9-5/8 f;a 2,T 9 6/8 9-5/8 10-5/8 8 10-5/8 f ff` `' r -2- 11 DIFFUSER DETAIL 8/10 10-5/8111-5/8 10 11-5/8 <'rr .c?;r, SEE NOTE 4 CROSS GRID RUNNER NOTES 1 Tab of grid flange must be snipped off to provide unit clearance may have a black accent strip factory-inserted to match 2 This unit mounts on grid line of the Armstrong C-60/60 and Armstrong grid 11111 C-60/30 ceiling systems 5 Unit center diffuser is not removable Control access is thru 3 Special mounting package (support bracket and hanger as- ceiling tile or nearby light fixture sembly) is required There are 24 assemblies per package 6 Special thermostat with flexible lever is required 4 Slide and center diffusers are painted white Center diffuser 7 Certified drawings available on request Fig. 3 — Physical Data for Moduline® Model 37AG Air Terminal as Applied to Armstrong C-Series Luminaire Ceiling Systems HANGER WIRE MODULINE UNIT 'e _ _o it ISI ��' MOUNTING MODULINE BRACKET DIFFUSER I 11 MOUNTING LOCKING NAIL — I. BRACKET (FIELD SUPPLIED) I —e��—�' HANGER ,101. ASSEMBLYN 1111111111111111 ill I I N' :: s DSCHARGE TNNERURENNER w 0 I — A4-1 FLEXIBLE DUCT MAIN GRID RUNNER CEILING PLAN AS SEEN FROM ABOVE NS13 Fig. 4 — Typical Installation of Moduline Terminals in Armstrong C-Series Ceiling System 3 ARMSTRONG C-SERIES Below are some installations in which the Armstrong C-Series Ceiling System has been integrated with Carrier Moduline® Air Terminals. • 40 WISCONSIN PHYSICAL SERVICES, Monona KENT COUNTY PUBLIC HEALTH FACILITY, Grand Rapids bBBB a..,:y.:-...,-....-.1:,:.,.. y.. ,w.,Y . .,....,:•:,:•,;-::::::::::::.::::,:-.-:-:.. r �� . • .T �^-- Y...• N. . • OM1. of .. .. 4fx. N ;?^v+}i5/ 2 y :r..:):.:.:?:%." _ .. .4:...` .. ,moi M',a .......... ...... ...•. . . -. ....... ... ..._........i.:.:....-:-.•:•w .. •- 1979 1979 Wisconsin Physical Services Kent County Public Health Facility 1800 South Towne Drive 700 Fuller N E Monona, Wisconsin Grand Rapids, Michigan Carrier Salesman Ron Thomas Carrier Salesman. Jim Nora 0 (608) 231-3477 (616) 942-0670 1980 1980 National Machine Co Silver Bluff High School Greenfield Street Highway 278 Tiffin, Ohio Aiken, South Carolina Carrier Salesman Happ Farr Carrier Salesman Terry Hampton (216) 881-7800 (803) 254-1852 • • • III 40 Manufacturer reserves the right to discontinue,or change at any time,specifications or designs without notice and without incurring obligationsNS14 Book 3 Form 37A-25XA Supersedes 37A-22XA Printed in U S A 9-82 PC 201 Catalog No 513-731 Tab 6a NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS ND31642 Section Sheet no./rev. NISHKIAN DEAN 1022 SW Salmon Street Duct Bracing 1 • Suite 300 Calc.by Date Chk'd by Date App'd by Date Portland OR,97205 Ksm 3/28/2017 NON-STRUCTURAL COMPONENTS ASCE 41-13: Chapter 13—Architectural, Mechanical,and Electrical components Table 13-1 Mechanical F.quipmcnt(Section 13.7) I. Mechanical Equipment Boilers.(maces.pumps.and chillers Yes Nu No No No No F General manufacturing and process machinery Yes No' No" No No No F Hazardous material equipment Yes Yrs Yes Yes Yes Yes F Fire suppression equipment Yrs Yee Yes Yes Yes Yes F HVAC equipment,vibration isolated Yes No" No" No No No F HVAC equipment non-vibration isolated Yes No" No" No No No F 1IbAC equipment mounted in line with ductwork Yes Yes No' No No No P 2. Storage Vessels and Water Heaters Structurally supported vessels)Category It Yes No's No' No No No Pi'P" Fart bottom vessels tCa tegory 2) Yes No" No" No No No F' Fire water storage tanks and reservoirs Yes Yes Yes Yes Yes Yes F 3. Pressure Piping Yes Yes Yrs No No No W 4. Fire Suppression Piping Yes IM Yes Yes Yes Yes 5, Fluid Piping,not Fire Suppression Yes No No No No No Hazardous materials Yes Yes Yes Yes Yes Yes MD Nonhazardous materials Yes No No' No No No MD $, Ductwork Stair and smoke ducts Yes Yes Yes Yes Yes Yes PAF/t) ltaaardous matenal ducts Yes Yes Yes Yes Yes Yes FWD Other HVAC ducts Yes ill No' No' No' No INF/D1 • 'lluctivork that conveys hazardous matenals.exceeds b It in cross-sectional area.or is suspended more than 12in.from the top of the duct to the supporting structure at any support point shall meet the requirements of the selected perrorutarrce objective.. 13.7.6 Ductwork Seismic restraints shall not be required for ductwork that is not conveying hazardous materials and that meets either of the following conditions: 1. HVAC ducts are suspended from hangers 12 in or less from the top of the duct to the supporting structure. Hangers shall be installed without eccentricity 2. HVAC ducts have a cross-sectional area of less than 6 ft2 - Lateral bracing required for ducts with cross-section larger than 6 ft2,therefore bracing was designed for the duct along gym wall, see the following calculations. 0 NS15 NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS ND31642 Section Sheet no./rev. NISHKIAN DEAN Duct Bracing 2 1022 SW Salmon Street S Suite 300 Calc.by Date Chk'd by Date App'd by Date Portland OR,97205 Ksm 3/28/2017 DUCT SEISMIC LOAD Table 19.2.Nonstructural Corlponafd Ampbrrcadion and Response llndificetion Feetare ar[MlerWrl Components tgwnam 1051 , 0. raclweseurat Cananents(UUMion MEI a' ' Interni trmsrwittral walk and partifi.mr; Generator,bonnie..insencls,trfolffr,Bansfatmre.,and I 0 2.. Plain masonry walls I0 1.5 oder eleautai com(naIrIls colt uuded of High An°diet x ll aadp t arms I0 2,5 deltfonabilny malcuals kvc mrnem.u bracul,r b a..d u,•1mslu JI framer.(+3lou Minor`I tai omen panel Lwasd it h prat 2 5 6.0CanG iasuurm^malon ceburNs and other u,mponamt their seniors idmarkemutnxu+l of sheet nsclal framing Parapets and.antilesiral interior nnn.vra-lural u'al7s 2 5 2.5Cum nit ition equipment,.umpmu.,inumn smatir.x. I fl 2 5 Chisln eys and.lurks where laleraltt tamp::n4'd by 25 __ Joel ai,mrsds stnaalainr Basil mounted chimnecx,steaks,and coaling and electrical 2 5 10 Canldcucl c„nrpamcros,lwascd Ito.trut[ural IMOMI At.,[brut.rntt3 mower,laterally hi-aced-below their denier of m=iss of mors Ru:l-nrwallow chimneys.stmt..awl niltnu and element I.0 2.5 PaupeIo I bhomershomerss Laterally braced above Meir crnter o bass Chimneys and stacks 10 2.5 Lighting fixtures I Ii 1.5 Ekretnal nmtsirucratal wall. 13t 1.3 (Mites n e.hanical or eletluneal components Ill I.5 Exterior nnn,lnlcmrai wall components and camneeni s Vibration Padded Cmmpmnmla and Sy lrirtO Wall enenpument I it 2.5 Components and. t lated .[pine 2.5 __. Brady d wall pmci c rations 1 0 component,and ixc .elo d Il with built to or Fano c.of the connecting system I 7,3 iii sonar,.elastimerlc snubbing device,or resyhen, Veneer worirneter oohs. 11,411 def rnt;atddv t•ampian:n..and An:ha tans Ill 2 5 Spring wilated comparook and systems and vibration 25 2 0 ormabiln I 0 - its»Imeat 1 urs dl Iv .1 d g Wok in x.parate hour;Ivf y v ponems and All. ' elmtarteri.sea In y ekvtu or resilient perim.Y r.mins Pentnines I ex.pl when franc d by an extensionof the 2 5 1.5 ImcrnaIit iodated cmmp,m.'nts and systems 2.5 2.4 building frame? 2 S2.5 Ceding, Su p nd'd sihrat n t-plated equipment.twindin.in-line duct ilccs and N11,1Kfidtil in(ctnally isolated soniponetti, 411 I at 2,51 Cabinets and.salving InstribuUal Systems Pere• em no-ar-suppoled storage satinets user 011 I 0 _.. Piping in acn,rdan a with ASME 031.irk ludmg in-One _2 5 12 as r n p.li xn- rS I Inn Made h (ding or blazing .,1 k 7 t tall.including commits c .5 ?piny accordancewith ASMI M1 including innln 2.5 5.4 i'nav n nari 11 wnrap d 1Mau}JI 1 Oak.luks. 0 component, nn lru.t i a f high or Einktied fkformahility and N»dailelycs ovum 60 f l,S2u Mit,tall including natenah,with bsint.s mavie by'Threading,banding, Li a Ism' kikinirk,won 3atiikling,co pianed ompltngs LAM.it n'dluipn xn[ 1;1 2.5 Piping and tubing nisi in a.aard nce with AS41F.Rif• 2 5 5.4 Storage racks' 1.5 4.0 including in-line caunpnnema,crmarn:fed of high 'ha=ws goons ,&f rmability m.ucnals,uuh Minis manic by welding or Special inure 11,,43 I tl 2.5 hearing All other I 0 I.5 Piping and cubing not in accordance with ASNIE 011• 2 5 4 5 including in line components, nnunnled of high o r \ppcndaZc1lul+rnmmurtauun S 1• Sign,and hdlMN. 5 Stairway, Oder rid ipmxnra 2 I 0 2 5 I hwd rI fah It (al. h 1•titd b nhreiholding.amlvts I n coolplingss of gr ed c opt ng Piping d tubing conatrucnid ofl deformabitiiy 25 1p 11i;;11 def reltahilily coinparann and anaclunenl. 10 t 5: maierials,Awl,t1 il,W1,yl and nonnuelile pl sacs Liman.'deformability components and attachments I II 2 5 Muctxurk,en.'IWing mime components.constructed at 15 9.0 high deformability materials.with Minix made by welding Low d.b mhhly 1:01moncr.and a ita(itments 13t I.; or Waxing Othef fondle..unp,xl:ms Ductwork.including in limn components,constructed of 0 is,4 l light afnrmabilily compnnenesand arachtnents 2 5 1.5 high or limited deiurmabifny materials waw yams made Limited defointabdity comporporga and amiehnimits 2.5 2.5 by inean.i ocherthat welthng or burring Loin dyirmahiliry c,myonems and Akashi-nuns 2 5 1.5 Diletwirik.invIthlinghen.wirrIponenk.emosirlicied of 2 5 5.0 len def nmal•sohly materials.such as cast mem glows.and Mechanical and Eleclrksl Components(Stennis 13 hi nancluchle plash's Weltorle 11VAC holler,Minxes.annorpheric tank,and III 2.5 Bpi del-npsdls nem•d sablr imp.and plumbing III 2 5 In k-hille.rk.MAIO heal hoschungers.maporwor. Manninmitring or prikeks conveyors rnimperronnelf 2 5 111 Jif kept ai r mama:,mang r proms equipint I,:Ind tit tr a1 cvroJu I J-mspcndad'able nay, 25 (+.I? ,neat meth mc.il.nmp n tit oanaructed if high Scliemabdny outcnals Furuishingx.md Interims Equipirmtat ftiectimm 13.3I Engin,.mrh pa fu mpresa'rs,and pre.mre Ili _5 Har lila m itkaiciaalk s[cage 2 5 1.0 Gains man.upfvan.d ii,Aar. Manufacturing or p esx ennvcyars.mmpersomneit 2 5 in Skirt t. andel pressure vessels 2 5 2 5 See Arehitec'tuml Ceanprins•_nls fin all other Lk,'0,1 WWI.scaltilm onnpxncui. I f1 'A lower valise far n,I.permitted whore lunli tied 1,q denailed dynamic analyses The aiun fir e,shall nasi he bun than I n Mt value of a.equal 1-I fl is fir ngid components and rigidly anacbed cnmpinenrs The value wt ra,equal.e 2 5 is for Ilrxlhte.aiminxltmr and Ilexibty anachnd culnlwlxna Eq 1114I can he shod iw determine the per d ad the omen-1 a t.tel•m. The talus 1 8.urcd so determine die]sic,1,m dse rounealed psa,l shall inn exceed 1 5 unless the coop11001 nmMtt.k e u p nerncd Fp the ineogib of a ductile t e l yonnonicut. 'Where thrill-diaphragms p•side lateral support lor rimer etc or ill-X./Hy wafts or pal-Worms the I.les lir aminate to rise diaphragm shall he'...pt'Iricd in Section 7 III.I. 'Storage k-'- 6 In high shall he ds d in accordance with thep f Smtinn 13 1,.l 'Components 1111.1tWil Det vibrationI .lull ham-il hunger t -t or snubberh horizontal d The form shall ll b k 213,if the nominal clearance lair gap.between the egwpmem.upyn+n frame and restraint ns greater than lid in.ii"the mammal clearance spomined 4n the.a+a.tnacmien documents ni not greater[hat 1;4 in the force may he taken as 1, IIIIII NS1 6 NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS ND31642 Section Sheet no./rev. NISHKIAN DEAN 3 Duct Bracing 1022 SW Salmon Street • Suite 300 Calc.by Date Chk'd by Date App'd by Date Portland OR,97205 Ksm 3/28/2017 13.4.3 Force Analysis Fpmax= 1.6 x Sxs x Ip x Wp Fpmin=0.3 x Sxs x Ip x Wp Component amplification factor(Table 13-2); ap=2.5 Comp response modification factor(Table 13-2); Rp=6.0 Spectral response acceleration parater; Sxs=0.538 Comp importance factor; 1p= 1.25 Elevation in structure of attachment; x= 17 ft+42 in/2=18.8 ft Roof elevation; h=30 ft Component operating weight; Wp=25 ft x 4.4 psf x rz x 3.5 ft= 1209.513 lbs Fp=0.4 x ap x Sxs x Wp x(1 +(2 x x)/h)/(Rp/Ip)=305 lbs; Governs Fpmax= 1.6 x Sxs x Ip x Wp=1301 lbs Fpmin=0.3 x Sxs x 1p x Wp=244 lbs • NS17 NISHKIAN DEAN Project Job Ref. CONSULTING AND STRUCTURAL ENGINEERS Fowler MS ND31642 Section Sheet no./rev. NISHKIAN DEAN Duct Bracing 4 1022 SW Salmon Street 1111 Suite 300 Calc.by Date Chk'd by Date App'd by Date Portland OR,97205 Ksm 3/28/2017 Unistrut P1000 capacity(from Unistrut website): Beam Loading - P1000 Max Uniform Loading Lateral Allow Dell at at Deflection Bracing Uniform Uniform Span Span Span Re duct Span Load load /180 /240 /360 Factor (in) (lbs) (in) (ibis) (lbs) (lbs) 24 1,69D 0.06 1,690 1,690 1,690 1.00 < Fp, OK 36 1.130 0.13 1.130 1.130 900 0.94 48 850 0.22 850 760 500 0.88 60 680 0.35 654 480 320 0.82 72 560 0.50 450 340 220 0.78 84 480 0.68 330 250 160 0.75 96 420 0.89 250 190 130 0.71 108 380 1.14 200 150 100 0.69 120 340 1.40 160 120 80 0.66 144 280 2.00 110 80 60 0.61 168 240 2.72 80 60 40 0.55 192 210 3.55 60 50 — 0.51 216 190 458 50 40 — 0.47 240 170 5.62 40 — — 0.44 • ____As,_ 1,7 OAA BOLT 12 AX 2112 15•d'pC BTRrP MAX LAISTR EA ELS TP1dT6 UN STRUT PIGS LT OLA Xa ?MEN NO 7 M iii•DIA Fp t BEE uEePo.ICT PLAN A u LNIBTRUT P1O Pts It EA END X:a: Fp ru. Detail 1/5504 NS18 NISHKIAN DEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 • ND31642 Fowler Middle School Renovation 10865 SW Walnut St. Tigard, OR 97223 MISCELLANEOUS ITEMS i MC1 C 2007 NASPEC[AISI S100] • Project: FOWLER MS Date: 4/20/2017 Model: 4-8 FEET HDR OPENING(4"WALL) R f-w Tr 5€'"jl n C��hP '�."'h t �� aR a,��"�' 9'fr` 1 f�s � z3"t) r�� "�'^�,„y, -F av q„ p i,�xui^ra--��.g,;�Y �y.� '0, ,4 1R5, j�,"` Y3 irk�k r�r�� F. ,,ry ,7 9i A y 4 y',Y trFgy L }�} i t , 1 4 � �` rg�rrk�'A'� a' ! ; h rokr ' r r'�i d �.::Fit t 3.,haY �-- e Ihl1u,! 8 d� WA,.C�r, A ,'`M; f 5..k F�.. .""*. 61k0;410';'4*:: Unif Ld 4 r ;�,� 4iF �,a y�..y`ju.�,���.^.cia�r'�.-sd,.c [ ! Jy_ 1�c,kW„ '?�'u$�M7JbO..� o�'p ': '1P?} :'`.�I;.�1"' Y: ia�'aJ,..J��rr.:.':�"M1� ? ""it�1N, �a.- Ib/ft t I I R1 R2 8.00 ft Section : (2)400S137-43 Boxed C Stud (X-X Axis) Fy= 33.0 ksi Maxo= 1181.8 Ft-Lb Moment of Inertia, I= 1.552 in^4 Va= 3478.2 lb Loads have not been modified for strength checks Loads have not been modified for deflection calculations Flexural and Deflection Check Mmax Mmax/ Mpos Bracing Ma(Brc) Mpos/ Deflection Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma(Brc) (in) Ratio Center Span 600.0 0.508 600.0 Full 1181.8 0.508 0.151 L/636 Combined Bending and Web Crippling Reaction or Load Brng Pa Pn Mmax Intr. Stiffen Pt Load P(lb) (in) (Ib) (Ib) (Ft-Lb) Value Req'd? R1 300.0 1.50 623.8 1091.6 0.0 0.25 No R2 300.0 1.50 623.8 1091.6 0.0 0.25 No Combined Bending and Shear • Reaction or Vmax Mmax Va Intr. Intr. Pt Load (Ib) (Ft-Lb) Factor V/Va M/Ma Unstiffen Stiffen R1 300.0 0.0 1.00 0.09 0.00 0.01 NA R2 300.0 0.0 1.00 0.09 0.00 0.01 NA MC2 O 2007 NASPEC [AISI S100] • Project: FOWLER MS Date: 4/20/2017 Model: 4-8 FEET HDR OPENING (4 WALL) ' �.^ ••=5-77-7--7.7-7..1 3 {L ^ ����"ts3 ��8 � 1 � 7P� r1 r� ' r k IjF 4r" '','^',,'' ., r'�k4 1e Uify3744: 4 .y4, M tIfite; ry k , a cyi� p ,01. . ,w ,tIA3X41 nLd un { !4' u t k7t " iMg J i 5jF- 5� � yNilr1#,ALA-Av1 ; , '1e_.� Ib/ft . ! i36 f _. ' ..". ;L,. rJ. _ . :t ��. li it R2 R1 • 12.00 ft Section : (2)6005162-43 Boxed C Stud (X-X Axis) Fy= 33.0 ksi Maxo= 2779.9 Ft-Lb Moment of Inertia, I= 4.632 in^4 Va= 2831.3 lb Loads have not been modified for strength checks Loads have not been modified for deflection calculations Flexural and Deflection Check Mmax Mmax/ Mpos Bracing Ma(Brc) Mpos/ Deflection Span Ft-Lb Maxo Ft-Lb (in) Ft-Lb Ma(Brc) (in) Ratio Center Span 1350.0 0.486 1350.0 Full 2779.9 0.486 0.256 U562 Combined Bending and Web Crippling Reaction or Load Brng Pa Pn Mmax Intr. Stiffen Pt Load P(Ib) (in) (Ib) (Ib) (Ft-Lb) Value Req'd? R1 450.0 1.50 590.7 1033.6 0.0 0.40 No R2 450.0 1.50 590.7 1033.6 0.0 0.40 No Combined Bending and Shear Intr. Intr. Reaction or Vmax Mmax Va • Pt Load (Ib) (Ft-Lb) Factor VNa M/Ma Unstiffen Stiffen R1 450.0 0.0 1.00 0.16 0.00 0.03 NA R2 450.0 0.0 1.00 0.16 0.00 0.03 NA • MC2 E Legend _ 0 II =r- c. .2,, X iv II " rl •• it --.1--'-' .0' :4,0 V.,7 ' ' V7 -:i ' *C) Wood SW with plywood sheathing to c.,3-.,.. -N.) , , . • , , „, ,, __, .,„„ , ,,.. • t. , C.AlifIrliral4,... " . la iv-a 9 9 4 •• w Li-4_,L.,..1 agl•74'611 - -• • Ark OA T't.4441,C, .) 2.0-V/I4A.,i_j•Ch.7, .' .iink " 7Vief.', 0 - Wood SW with plywood sheathing ' I ,?7,._,0 . . .A VP - ---....-••-• ,dit, 7( 1467 i fir .., ' ' 4 on gypsum board ...t.1.17..-L.L" <4,'‘) ite_..ts___4,,,ii:_____ ,, _ TAXAK Z...1 1 ItY I dkl CEI" I 4 i ''''co ' '','-r --__...1 _LT_ ' 1 -0 ! "it 4 11-7 440 - , r i • • w .0 ,-- a 0< • I -•__ -r--4---- 0 II m,- -i, X iv II II an , 2v%UrgPec, , tr AS: -,- (1p,. K -. 03-,, '14• -1e- vo7. _,•tiivitifip-.4c211: 0 1 ,,II,,,,e-lh. ii70.,-,.._•::_ a,*•,7o :0„;"•7, -- t II ' ,,:ii ....It..,-.9-1 ,.... ...., Wrre:WHIN'S c.A 1;e:.eolic2 ' 1 f 1' d---i ..(-1: ' ' -B . • .,:°,i, ,_ - . x . .. , CAC.1151PULAM2 1415."' 1.141211K___ [ t " 10 ! A...I.•FgFo-nawf 4 UN'''W C>11401-RAJC.1. *Q./ ®4© Ty.,cr.c. 1 741 III I 1 '. . .r., r-t1atrigr V- 1,,,,+.1._ mLevAtlow cce. , .0. L.!, --,,,-,,,,,...0.-, ID IMC. 7g1 w, il1 -T „.,,,,,,,,, „ 4:.•),A.- at'4, • -,--,--,- - -- A iF). _, iii,,Ilif 7. jr, .. •7-'4,-,,i .-----, , ‘ •- ---',..:111; .,, _„ Ili- ;;..,:Ur- -0.1"iit ti 64.1.,,,,L. buavgy ELavAgo. w''tad 1 I! ' A ft•__ eo 1.2:w 4 Ina 414J , NV MACE I --'-' &--''..'- '- -*"-- : it 17141.4'. D A gR _ i,....,...,.. 4, iy.... ;,,,--I- i el 1.' 0-:' , (3 90311N1a-M_L...."--'. Ali , ,4'....... - • , ,w 0 , 0 -, - ,fro.,,, K-,., - 4 X = 47 r . A, . A f-1.04.-4- 0< I" - . '1 Allt# , _.,..c.r._ _ ii . ' : ea x iv II II -.4i7 , i I : 7- --- ,- - `' - -7P2:6" -'4,--'14411r ..1310rOCE L Af.)*A 0-- LAV.,A ' :-Tie% 'cats 9 9 li 4)t,j il. 143P - ,.., - i - -70-- 'HP" __'. i I . Y.,...*7 I ' :.'„ ,, , L... ••••• 1 , : , i cacmurrs.koc. I v.1,11-- : H.,_ 1 4 ,th„, I i -cm-- 1 narm"U 7 !,...n• - cat, • e, Tz7 (.. ' ,, .119aimmi-:- 1 4- -Ar_ • F. r 4i00-vit <z10•=,.i,.i,..) .4grsa'..*t*,a4k1 leieN, I:. .-;1I:vum1tt:W4dVIUL 2 1 4 #3i. _ __ry_D q •. - 't, iv, ,I . * ,V,,,b7, 4V716*,A...K A1il0 •701,ueZniI,kl,iaraN-Ji'P".4v-s--,_-7. .r,__.1... n'r.k...oi,,r......5,.),•.,M._.A.Ps_r,„_Ns,,„_ .,,.1.._N ,- 62 " 1 O • 14" -- 7 W _.41 - • ww.. .- .1. ,,.". r.!,„ -Fee kovi „ , , ,I,-. ,,- ,, -...- i 4...11tr."‘"..('-': ...XI " *r - 11 ;-11V4' 0'0 1 e . i L=72'-0" •4 4"- 4' ,`41,-:-- : 41 L=3Z-0" •-.0 otV1 L=15'-6" ri; L=14.-3" ;,-- 7 -- - - " ----7- --:.-----1.-* 0' ,,,,..i, H=20,..0„ : 4-1 ' i 9. II 4 - , : , . m. ,- •'•trum", H=200r ';'.. ek111 H=20'-0“ H=20'-0" L=40-6" 4 '60 4.1 ' I ' : . ! , v=2283 Of 1 1 , - 41 ' ..i.. --` - ., . V 2283 Of !7 r v=-2283 plf 1 v=2283 plf • H=15'-0" ! c.44 ' DCR-1.03 - --•1`7 : ....! : '-I 4- DCR=1.03 I rise% DCR=1.03 ... , DCR=1.03 1 , , -.14,7,..- v 660 plf ! • ' -' • i ' ' • - 01" ' ' ' '' illgirilY41".44! , - eIN.42r, --_-_-= •DCR=0.55 0 w‘uk ! [ • 0 -- 1-- r --- <NI, - `' ' ',011 ,''•:: '1-I'' 11.1101111 ' ,0-'. ' V ir .,, ' 0 •._. ,,,,T1,7 ink 1I•7-,4 Olt-7?41111ft;VA.; 0 II =1-- • • 1.4 • 1 ;- - l' 1,0 •"'";I 1 , • , 0< i,--sr,,warei.•-.......--.......‘: 4,0:If • -1- ; - - 4 0 " •t:4 k;1111111111.11.181CI.i I I V4 FA CZ e ...„;,--alearorr-4-.-." - i - ' ' ''''il'' ' .. rs' 0 X--.. " ''',-- - ,,,-, 1::"":" ' " , 1 II oa-- a) ,iiirlir:41,16 _,„ ,,„ra,• c,ca . .- 1 el 71.4_44.411, t I r,,,. iri •. ' ' - ,I, 0)C9,-%1 j'ig'....,&.x•rmAism: . .' .4r4r) lu''.•u Li'JKli WIT lE5 ,, 1 .__K f----;L.--- ‘" ' '. d'3 I, \' 0=... • '- ‘...:1 I : . ram-7. - ; uy , .4..., _ istinarlasu44141/ 0< , i ,4 1 Ar irb, I, owe '(1161013176=1111.112.111110104017, ."1 70_, II II L=46'-8" , ," ' N 101 L=7V-2" _...t 0 : . ; . • 0,... L=25'.-6"., --, - 1;4,- H=15-0 co, ---\_00. r ww,11 AMIE aft., re-m p co-,'• .- - - I • 1 H=15'-0" v=433 plf 517, 1;; ova 9 9 ,r =433 plf 'in;" "u - : - • - t - , 44! t4. v=433 plf fig a 001 ellitliffr.0 ii pri il a 0 New,_... .... . ' DCR=0.19 .1.4,-0- I - ""-O-W.V. - ,• -41 ,,p 01 , 3•4,41---., ,,,„,, i DCR=0.19 , , 4--,, ,..,_..:.,, , set DCR=0.19 .„.7,••1, 'ram\ moor idua.sacra " A ... rilH KEY PLAN 1110 Fowler MS Seismic Evaluation NISHKIANDEA CONSULTING AND STRUCTURAL ENGINEERS SINCE 1 N919 .11_0E21_2: 5S0W3-2S74A-L1:1403N STREET, SUITE 300 Sector 1 Shear CHECKED: RAA Walls - Existing Condition PORTLAND, OREGON 97205 FAX: 503-273-5696 PREPARED FOR: Tigard-Tualatin School District DRAWN BY: CN SCALE:NTS DATE:01/XX/17 sic_i LD22 DRAWN BY: JOB#:ND31642 SHEET NUMBER E K Legend l�,-;i 70_, II II © I t 4.1'1.- , n ; - t .41 `� U7- t r " 0 G —�� Wood SW with plywood sheathing o,,01— ,`"`�. _ _.F• n__-__ ___ fEl j..6 oto e:«,`i„' _131.0" t _.13'_rz, .1.4.„„ ,.�-r,:-_ uRt�r"• ', _ . SWood SW with plywood sheathing _ ' '��-• � _� �Q ®�. on gypsum board _p i r 14' IaF �' ' ► rr I f Ali M Z.2, i o< 1 T_ i ey� 2 r T 0< n�I '20`ecu ov Ess r1,._-J. --!__ ;Q 1 i a u n ct II v cn c? N sEl acewt 1 ' �--_ ..t._ I L eDU`144 - O N • 1.1D7E:W"e1ljf GI�R*1FT I6 9'$L.D , t ...�. -.L1 r1,nt ; j I14f 6K.,IrpBDIJLel7. ���:!� _ _�_.. /FA tf 1. e - 1. &, P• yf � h. DIY"lY""C.LMf-W/.CLT�'*© ` t 1.-`T,�� 0< '- E x ..� zp i� n u 2 r Add new 5/8" _ C. - a " II a Sure-Board this j ► :viv: _ru oI face of wall 1 nIc cr ew,✓ �J 1'� MRs- o N. al-0 q cg ®1MC. r:q• ,:-----.31"..11 =ao¢ EIEVekia-4too'• it i C iI W,i.c. i - 4''' — �I11 XI r {,irk- aa' 'r-4 rF�wtS -+�PVEv ELLVA IOIJ l 3rat!'•dl ,. -... -T of Y. • .��t II N w 1/d v - �a2 1 L....,-,-_____I___ 0-4 , w• -1 �f • F1 `VA'' O N O ,- '..4 p'.d Mp:O 4-ICr' .`r.� , Oa .41 �-�' y �xJ ii'�L._." L'�Vf! 0 -4 n r a.a a: C _ 0II II II r �• 41(®I14 �ji ',f II CP--4 cn o otic c. I a �: } L a r " GE i ,- r- Dues ;, , r.o o cq eu o z swro al q ) I Ile �. cs, In, likA _ _ I , ,- }Got�e,>y tire..• 1 [� s 1 V . °', r is11 I „s — Add new 5/8" • Fs b a� ! v ; ; 4. � Er. 4e.n 0-Fle',' Sure Board this r c + "� � _ ( face of wall " J {} ---40- 0'.4/1246''''noF.rT so •C CA•9r aa.- 02. 0�. 0 2 r ¢cavi r - 43 • [i � II 444-01:.. D xi-f 11 II 01 //��, � !3-7.1.4;4).,,,,,....i'R.:4av_ 1.-. ••t S _ �T1C'{'�.14 "bh.HnGG .^1U110 MY.{.. .,. n�• 'E-�- �C in 0 .fi (J7 ij)' n ..... .., 7 cutest to .- Hca," /a `.`°ver ' (♦ /t41'...40 ,y -- "�. 11 �I aliik c�'tP A.Ii1GNr i i J� `/is, �~ 0� Vi tL0 �).. 1' 1lAry H= 1 �► `, �� H � AV . a e .r_:.9'-10"� �_ L 61'8" vs. L=-9.-.1-1.." L v {. .. >•e 1 « �' r ,Qin20'0" cl 20'-0' .� n H=20 0" H=20-0" Openings added to this L=40'-6' ' ' 1 v= 2768 If �, .=2768 f f *TI v=2768 p1f v=2/b8 pIf .- 0_ 4:1wall for renovation.Add H=15'-0" : 2r v v=660plf 1 42,�sT, — DCR=0.34 - - =-t -- -s- DCR=0.34 I- . isn, DCR=0 34 t`'+ DCR=0 34 n 11 1/2"plywood this side ?_ `L-2'=.0 • 1 a� �' u n ar DCR=0.55 ©t © ; -�� Add new 5/8., r ��� ',kilt rdlwaE ''" .� il- ` SeBdother - ` •I �_ a� C1 a Sr o w II face :. x1?' �i_ zit 1 II V cn N t �r-ter#, . ® , ; II 2 r` `'�4f111`alw v�lgr'; Openings added to this a f all r- __ ... _._ } • ..-'.��W��I�L'1Ni-`I�tJ `. rS,- ^ `-. -__. ' w Eli s s I' II 1h: ��'s��..lr,N boo v 1 ,R�v {��— 1. ._ _ i n oo rn �t 6`! '°*! rf''•f wall for renovation. Use o w .2 ...4, o a ; Fr: ! o P � ' new 5/8"Sure Board ' O A+".'1�'� 1 ,......... Der cs a,o Dye¢ w=" :T:7 I 4A other face of wall. L=46'-8" ! l w K L=71 2" �... L=25_g^ �'r. , Ia� iir 0< 2 r i I .Q 7 t' �t�' 0 II H=15'-0" ; H=15'-0" f._.. H_15'-0" ---1 n"�s ,-,_ II II • v=433 If a. c1 Q +,I+� c�t!+t� l�ll p ® _ v=433 Of 0 ' r v-433 Of "\ w`ll"-- 2,)2 2., Jive a m_ao cn DCR=0.19 ,c `J DCR=0.19 ` r� .2- ,•, � DC 0 'a,...1.77 a. ��r�rt! _ t2, ,�; iov o c%' Openings added to this B 1,0,- _• 4 - 111111 w� � H=18'0" >'© w wall for renovation. Use es-. r .®_. r \,,,i.!� Vasd=175 plf �r�1 new 5/8"Sure-Board a (100%IBC) �� this side of walls.See 0 ' DCR=0.16 calcs using full 100% -"dila-.,•.:.fir- .. A I/ © IBC level KEY PLAN 5 Fowler MS Seismic Evaluation , NISHKIANDEAN 1p022 SW SALMON STREET, SUITE 300 Sector 1 Shear Walls - Retrofit Condition sic.i R PORTLAND, OREGON 7 2 0 5 PREPARED FOR: Tigard-Tualatin School District a DRAWN BY: SHG SCALE:NTS LD23 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 TEL: 503-274-1843 FAX: 503-273-5696 CHECKED: CN DATE:04/05/17 DRAWN BY: JOB#:ND31642 SHEET NU IS 111 Legend Wood SW with plywood sheathing • Wood SW with plywood sheathing on gypsum board '-‘- 11111 111111 111111 s "`ffirMii Ptt III ! uIIflIu 11 111111 .. :11 1? o `JI 1111:� IIII 11111 ',�, � ■ITE o ici,„rigrri- all 71.01,574111 ,. . I afil:74 Ell .al l. ,." Zhfi,Ci wv....,ma Nor mr_L7.7,...)...... '-6 11111i II FA 51 u N ill L=31'-6" —,-'.1• — =,�. 11 . Vwow Voow H=15'0" 1 11' 10{coRR. v=1699 plf �. v=1699 pl11112. DCR=0.76. � �r 'II ,E L ._JI ITS;4.W �© ! H ria © © Legend Wood SW with plywood sheathing • Wood SW with plywood sheathing on gypsum board °PFIVA% lir4,9 S VP R° ' ''` ' i�����������r illillid11111- ,y L` ', K I oz.: .111111111 "--- edia . , . „ --cn Elm, II ifs r Add new 5/8" ■ 24 o III ' � Add new 5/8" A'' Sure-Board this 1Sure-Board this P " .ri v< =rv< =r face of wallE face of wall I1IU!1iI 73 a c7 u III � �• II; ��i ?® E al '14 _. —:a.--%� .Z1 II .Z7 II IC��. „ oo II w L=31'6”phi o'b is o b w �■Co° _ w = Lv:==R141=75051"6.lf,' DCR=0.66 , �, �i"4-1 iir - 2illk „ � ■.17 •47 r KWint: .`w�� ��� /tT'# I�© I'1 r-.141 ® S ,o I Tlir. ii_i_ _ 111111111- , _ iii■■ Ialf - � = ,4 �! ■ iiii�iiIle I . moo ' 1 141,rg _fik ■ _ ���E■ � 1111 ■ �illi � . ,. I Ili" ; _ , y‘1,1, ...1 1 7 tit, _ !WA C4AEGRa2M. =MN__ . . I AIR nr• HIM 11111121111111 _ < 11 C88AC 111111111111111 • 'FA � �� III t � 108 CLA98ROOM 111 • . _ll - - --x 1�III II - n.A. . I Oki -. ,rr �"-. .. Li • ark'/ {� 176/1 n II S r u cn Cil V i. 3 L=19 6" �I i•� �}+��� u uov om I igaH=15'0" J_�"" � �� 114 if�1 f `aiY�1 L 19'6" J I I ° ocn - < «7 6\ v=2797 plf ;. T; �Ll �Q _ v t Ga ► av o a2 I IA m DCR=0.34 1,.. i .,�'�. 'Ai DCR790.34 7 plf j I LD i L=16'4" H=15'-O" { 1/ ENTRY 107 ENTRYv= 15 0" y 1 _ MI," , iiiiiiiiii i . 0 ��` - n DCR-0.28 I 4k,\►I .i�:� til I, 1/2, (I `� v= 15 plf 0" El ' I��aa�s i + -- / Add new 5/8" _��r� 1�J �i . ,I� Add new 5/8" 1 ■■ ■ ■■ plrp" LGt' U • I Sure-Board this ■I.1�..�� �l�` I DCR=0.28 'AMEN Sure-Board this I 1 �■■■■ �■I■ �����ME face of wall .face of wall ii iiuiiiiii.__ _ii rErtkialthM . fit LI I p< Sr 0 u II II �IMill -4 --4_ -_ --!_— X N II II I ii A Ul i� Y�li1Y!IIIii II_L'O « :, gil. .w + It... :.: O A(,-co I �-. o w nuour RxIIIt o w V q, lumzum„.., a• i /?i l� I' 4)d V�. ill �i B ' s. C:7 ��Il/rl�� II 1111111111111 1. G?i L=34'0” 1111111 IIIfl! IIIIII H=15'-0" t I A ___ v=737 plf DCR=0.33 L=32'-7" L=32'-7" rii H=15'-0" H=15'-0" v=186 plf DCR=00186 f _8 DCR=0.08 © 10 Classroom Addition • EL: 503- Fowler MS Seismic Evaluation 1Cip> NISHKIIANDEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 T 022 SW274-1343 SALMON STREET, SUITE 300 Sector A Shear Walls - Retrofit Condition PO FAX: 503-273-5696 -�� RT LAND OREGON 97205 PREPARED FOR: DOWA-IBI Group DRAWN BY: SHG SCALE:NTS s K LD26 CHECKED: CN DATE:04/05/17 �+ I d DRAWN BY: JOB#:ND31642 ate►t�EE T tJMBER Legend Wood SW with plywood sheathing III - , Wood SW with plywood sheathing on gypsum board L=11'-4" L=25'-10" L=31'-0" L=27'-0" H=15'-0" H=15-0" H=15.-0" H=15'-0" E v=1111 plf v=1111 plf v=1111 plf v=1111 plf DCR=0.50 DCR=0.50 DCR=0.50 DCR=0.50 A , , ,-, „,„ .... . ___ , in . _ -i--!_e . _If .. . no . .. -,:.'-:-,4 .i..MI - _n_ ::-:---..,gam,„ 1 ! _ ,_,. .:,„ _ --7:.11--,. .v1F.eeeekg - . I -;-;---- eiN . - -- ..'-_,-,:. • ' :.-.; ,6b,- . .--7/0/A ' ''''"7 :'''..-"i'icag..op r_u-ruave. ...ei,evii4e ....-.- "-7414,,Ila,--: r IICeij Vir .-- ,--.--e'',- -----•" (TM) '',. ... ,,,at..' "W.: .. . . ' ea . ii\ 4a. ' _ . , - - --- -- .- 0< g::',1,tes.,...•.:.•4. -1. „ , . -,,,,, '- . , . JJ , -1 '''.4 fr"rrE, °F cA4r6i- IMMO - - ..), ! -111 W 0 /' . ' -,- • - - , 4 II 1 ,li . • .1\4 :4=ir V, 4•;-•7 -.. d) , , IPt. .e-4 ' ' ' • 4=.1:' ci.°2 H=15'-0" F .. _ - - ,, , . . 4 o< CMPNET :' P•J•i•d. i W ' DCR=0.50 • t - 1 - L • - ' ' 4i. I• •v-,.411ri'.,- . ,4, ., --d, alcik ilk - N.) II II 1 e ., Lee.,1 WV' ‘,7 • -•- " 88 ti i '- - -' - -I 1 1- _1 ., giggy, ,a .., ,.,,..t , i- _.,....-.• AMIN ::,...,... P .; -- ... 4 , •:' 1 • ••''.•• • '.- '.. 1• '''. . • i CO Ti C2 . SAW 11414.Ott : IM.' . --,---:,-.1-4.4,...... -...-1 ... Aro , ' , , I , , - "- !EA, , VD-7.; -` '." "1. 7- 1- 7 ,...7.-.T. , ;.. . 1F,.ii. 1,0f2 , . ._ . :., - 7 - ; - , ,... ..,_ 7 Lr, CI ' .-: - •'aft.`!.' 4f--I SAC14- • • -;-..,.' Alt 1 _.1„.__V..,Ve,__,W - 1,4/ - : ,ert% it • 1.,, e0.1 (-%el LL__ 1 -....- 1-- I. 1i 1 i .'V Vot 11 '-1 .1'. le 1 .7I .. . . , .• 0< 0 ii I I- 1 -'- 1---1'.----'-- ---- - vif 1' • -i i Alt,. ArzoWilwitallliallt . . : _...t._ ..4.-....._ ___, CO cte-1 .ira ' 'MAO, ' %it iaZitigi l &;1'--4;10.L'. - ----' - -- Sb! - '• ! ' ! ' -.. ' ....,,K.- l'-''. ' _ : ...,L__jw,Alt __„,,- ..- s!.......,....let- f,.2!.... ...:-Ave........2... . ,..., , '-•- O o IIL.W. traii.7:4/13-t . • . ' -1 1 --,.--t- -f.--.-,,....,- .. r ... ilifE4W.0°yak 4---- '1,--- 11110"11111," ' ' - -.-4--itr-- ,-16 - _ _. 4._.___ - ..._ : (13 --a7 4 n. ,,,,,, ... .c.---„,.... ,:. .. .., . ...,. . N .. .... .. ._._ _____. ._ .... ._.140 ,- . - .1 t . • 4- ' - - , 1110 -i"---7-i-z 42:6 N-17 ,i, ,,,,, - , 4-- , . , ' gROPEicE , 1 : 4 ,•: . N.V 'ta • - - ... . - - ., _, . .1 1. Lb , - , __ a, IIII, 4! dgAPU•ST•---, . , 0 p.:424,_ t,ti.4ir ,..,t, .4: A t : ; ..del!itg 0...''.V.-:•"" : _ ';'..' •-----:. 4111k , ' y It 1 • vx v Eli 1 E;k1C I, , . e . - ,.... • . '' ik 1 A X"' .' ! ' -. 1 c--+-1'i L. . i ', ' le' „ , --'' Ael . 6 ‘64t:4'.. - -±-48tii ileg' • i t r t , ` •"s-•' , .4.7 ; '- ' , ' . , gib 1‘1111 $ . ; ......',...--.r**wept-IWO--z......, - , • e• -i-- -.1 ---'':-1-'-•-r.:4'.A.'''n_pr-771,, ''' 1 ''' : . , 4- • • e - Irir.7- 0< I r I- -s-r---- A:1 p.,3 II 11 , :,..,,,,,--- • i•- •- • -+ _ i.-__.---1,----r__ ._ _ 41,1, . .: . -„ • .. - t '.1....- e• 110. 4.M...C' ';''_' i _ 4_ 4_ , , • _ . - ._ . --- , , I , , :, ilOko 1 -1- - 3 • 4,MT/two! .:. . I--- , t ' " . -- - -- ' •.I. ' f , .,'-' ,-----; - -T. 1 . 1- - , i . - 1--------,, ---[ x_,. II ii LILO CIF charEr ; IL---Y 4 ., • 4..; 4 ..n co-7:-... 16 --,-:;,,,,,,,L ' '- ' ! XI I • . 1 C2400.gilt :- . ' lw - '• , ; ! i icy ;,-'. , '.! 1 ! 1 ' , ' 0 Cre L e -17 - HH-1'.71-'-'::±-'11-4-------i''*-- - -1-- , 1' - "4- -11- * --t- i1"*.LT.- r --1', 1 VA'Tii-Jit*K.0 .1'1:t11.:i.:-•.'7§1., '7'; , Am, Op I..,- ' ,;11 ;k1i, ... . i , i -.- ' 4.-sz, --: ^-• . . ' t I ,, r• - 1 .- • - -1_ • 1 : i 4 ,.'i _ i. 4, • 1 r ,4101t, G --- -- rf/..-N- TI"2441- 111, = .- e-I `:1 Iig(j-:41111kla,i -- .x:. ...: ga._ • r : . et-b.- i ".e1,.P.,T'_L404 . , le . ' i '• 1 1, ,' 'n ' H=15-0" ' C v=868 plf L=7Z-0" L=55-0" D DCR=0.73 H=20'-0" H=20'-0" v=2394 plf v=2394 plf DCR=1.08 DCR=1.08 KEY PLAN • Fowler MS Seismic Evaluation NISHKIANDEAN CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 IT 0E2L2: 5S0W3-2S74A-L1 VI843 0N STREET PORTLAND OREGON 97205 , SUITE 300 Sector 2 Shear Walls - Existing Condition FAX 503-273-5696 PREPARED FOR: DOWA-IBI Group DRAWN BY: SHG CHECKED: CN SCALE:NTS DATE:04/05/17 LD28 JOB#:ND31642 SHEET NUMBER Legend Wood SW with plywood sheathing • Wood SW with plywood sheathing on gypsum board L=11'-4" L=25'-10" L=31'-0" L=27'-0" H=15'-0" H=15'-0" H=15-0" H=15'-0" C v=1111 plf v=1111 plf H v=1111 plf v=1111 plf DCR=0.50 DCR=0.50 DCR=0.50 OCR=0.50 nLee ---------_---------1---,:,op=(�ri csd r (tl %1 .. , w_ EDGE OF L"r!!T: nit. A`. '� , ' a< — r — I• Via, u u r l� ' o Ott n u 2 r i - w o o> =15'-0" ® �� _ �� 7J WI v=603 If F p C 54ETa I.I I G'. 1— — F1 II v, k,' ;I — ,k1-,- DCR=0.50 C7 2 r - x v oo il �'C� is ,ma k bD. G1ig c _ _i_.. .__ -- - .- _ CI 1 .i rn _ •i e3 ,•- 'r. r _fj•t © i ' '4„•.z, r-r -- ', --- �:ar*-r1 _. 7.---- t - -_ it I t. }• IIiFF� ` - - ,_ - F3 �v�i.1�. � E " � f'-.�{ g .r�'TACK �� E�-1 � -.at ' j t is ' 99 a /M; 4�' `,eb'1 a. rt�R :iT a! _ _ mg-go — • ._ �1 Ut•.- 0 C.01 i..._ ti t '�i•r New 6"steel stud —r co= x pmt'ova' _ 1r, ` , 'CV --t ..., --- I. '--? r _ 1 � e shear walls and �� . � p C' -•----.-. footings this line, , , - i — I _ ' �. Y 1 yip i , _.t_ T �._ � F� — --1 — - fasteners a -,_ *-7.. • I n� , (�FF'I f to ers t 6"OC �% r -- - c t - t idr`�' --- \✓-.c.,Rrr -- el-----. ....-- , 7 Fes _ - '�+ . Alt J e ,dAm fxcla . f f_: dlt r i caro [.1•f 7 L.1115 .T r_ { t i �l •hlC t� cz, r�cic to y�• �y�-per:�r� _ � .N .» ©... i. y f co a N .-<8 , ',.. MI I G. f �'I 4�ti �.. -.I F ' I 11 2 1_' o�en- uuF of asorzr -11 :` I _ . -` e- lMRtkvle+¢ __,. -_._. I Pcf_. ' #' x. T j 3 -- Ixi I o u n 1 _ w o a a- i V0) °' r kid 8d Halls @ ' "_ ' " i r av o 0 Ad I a' - _ LIE -: 1- File' 12'OC to(E) ► © _. _ { -t } m CD I t , - — ilk �G - ,� — .. plywood this side � r -_-_--4_-- -----I # # I i, t- (AI .. --r-- ..,. :.lw.f�r 3•..r/.�>•� fao:- -1 �� ,u_'..l..- - }---1----.4-'-------""--"---- .....--1-- —L---.._—.—_ — -_ 1--..t.,;- _-_---..._ • _ 1 'may . .._ { i wwiiitom 11 ., 7S( cas Yr► M. :a",• f - , . v� S ; H=15'-0" C v=868 plf L=72'-0" L=54'-6" D DCR=0.73 H=20'-0" H=20'-0" v=2422 plf v=2422 plf Add new 5/8" DCR=0.75 DCR=0.29 Sure-Board this face of wall Mk KEY PLAN IIIFowler MS Seismic Evaluation NISHKIANDEAN 1022 S1iV SALMON STREET, SUITE 300 Sector 2 Shear Walls - Retrofit Condition s K�� PORTLAND, [� r1 Q PREPARED FOR:Shear Group �"f R �„/a DRAWN BY: SHG SCALE:NTS R LD29 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 TEL: 503-274-18437N 97205 J r503-273-5696 CHECKED: CN DATE:04/05/17 t JOB#:ND31642 SHEET t R SHEAR WALL ANALYSIS-SECTOR 2 O BASE SHEAR COEFFICIENT C5= ' 0.75 EXISTING CONDITION Shear Wall Trib.Area Wall Length Wall Height Deduction Gross Load Deducted Net Load Capacity Line Force(psf) DCR (sqft) (ft) (ft) Weight(psf) (plf) Load(plf) (plf) (plf) A 20.2 6242 95.17 15 38 1325 214 1111 2223 0.50 B 20.2 1081 26.75 15 38 816 214 603 2223 0.27 C 20.2 15169 128.00 20 0 2394 0 2394 2223 1.08 D 20.2 8223 69.00 15 38 2407 214 2194 2223 0.99 E 20.2 1265 21.50 15 38 1189 214 975 2223 0:44` F 20.2 5796 53.00 15 38 2209 214 1995 2223 0.90; G 20.2 1733 40.33 15 0 868 0 868 1197 0.73 RETROFIT CONDITION Shear Wall Trib.Area Wall Length Wall Height Deduction Gross Load Deducted Net Load Capacity Line Force(psf) DCR (sqft) (ft) (ft) Weight(psf) (plf) Load(plf) (plf) (plf) A 20.2 6242 95.17 15 38 1325 214 1111 2223 0.50 B 20.2 1081 26.75 15 38 816 214 603 2223 0.27 Cl 20.2 8634 72.00 20 0 2422 0 2422 3249 0.75 C2 20.2 6535 54.50 20 0 2422 0 2422 8253 0.29> D 20.2 3462 69.00 15 38 1014 214 800 ' 2223 0.36: E 20.2 900 21.50 15 38 846 214 632 2223 0.28 • F 20.2 3393 53.00 15 38 1293 214 1079 2223 0.49 G 20.2 1733 40.33 15 0 868 0 868 1197 0.73 H 20.2 7529 64.50 15 0 2358 0 2358 2964 0.80 S LD27 Fowler MS Seismic Eval SHEAR WALL ANALYSIS-SECTOR 3 • BASE SHEAR COEFFICIENT CS= I 0.75 EXISTING CONDITION Shear Wall Trib.Area Wall Length Wall Height Deduction Gross Load Deducted Net Load Capacity Line Force(psf) DCR (sqft) (ft) (ft) Weight(psf) (plf) Load(plf) (plf) (plf) A 20.2 5054 152.75 15 38 668 214 455 2223 0.20. B 20.2 8358 58.83 20 0 2870 0 2870 2223 =1.296 .. C 20.2 1895 42.00 15 0 911 0 911 2223 0A1:, D 20.2 9151 70.75 20 0 2613 0 2613 2223 1.18"` E 20.2 1395 45.50 18 0 619 0 619 ,. N/A N/A F 20.2 1139 43.00 18 0 535 0 535 N/A N/A G 20.2 1372 43.00 18 0 645 0 645 N/A N/A H 20.2 1500 46.50 18 38 652 257 395 2223 0.18 J 20.2 2290 46.50 15 38 995 214 781;,: 1197 0.65 RETROFIT CONDITION Shear Wall Force(psf) Trib.Area Wall Length Wall Height Deduction Gross Load Deducted Net Load Capacity DCR Line (sqft) (ft) (ft) Weight(psf) (plf) Load(plf) (plf) (plf) A 20.2 5054 152.75 15 38 668 214 455 2223 0.20 B 20.2 8358 58.42 20 0 2890 0 2890 8253 0.35 C 20.2 1895 42.00 15 0 911 0 911 ', 2223 0.41 D 20.2 9151 70.25 20 0 2631 ' 0 2631 4446 0.59 • E 20.2 1395 45.50 18 0 619 0 619 N/A N/A N/A F 20.2 1139 43.00 18 0 535 0 535 N/A G 20.2 1372 43.00 18 0 645 0 645 N/A N/A H 20.2 1500 46.50 18 38 652 257 395 2223 0.18 J 20.2 2290 46.50 15 38 995 214 781 1197 0.65```- III LD30 Fowler MS Seismic Eval p Legend Wood SW with plywood sheathing • •,..---,-.A5' I . , v ��- �r ao Wood SW with plywood sheathing F „ - - —_-__ r ongypsum boa n � Rmi 5 . • .s k 5•x• G •n• s•-ity G.•, i- •ler •5•,„ G.„ yPz. i..s n ...•• ", t,.z»-i a .,-.„ •a s1, d. _..*� roo•o ��rtf La a �.rot:aw,cv+m.■rss-'vr.�' ©,�,.._ 4 / .. �_ ...- _ _ _�J �.�cw.vuc+oyfR - -f ----- L. . T '� board a � _ > Precast concrete SW .nrr 6140 as a-�It..'ri Yom _ _ - sy �.t � � ac II o - i T--- ,aas. a�. �t ,4, +" t --•-'Min b �.1 A,}rs ecnc,e j m a,. w' 1 I- r'E u.Se ac Y'^.r r v I ®® ,.W D84F C#1 i .J .d I ems. 'S las k *.I i _ ' ----_. -- -- - : - _ Cast-in-place concrete SW os mien. i a •(I wuc_ V �' F5► �...•� t m 1 ' re' p it • ,•xco�xat -- .. t3 .It• _. -s4r-4i $p a,"sa ,i,�i ��- _ I rAbai 'us Stl rs il: b ® \1ia' /....."4'-;:.-s4 -M•O t I �. F zk, - ! p 1 —a.. ! ,, ,D�...2 jar ��- II 1.O �{4^j�acrrea s. w r �'� 7m. ..��//Fi-+,a ® �©�. 1 CY ' I ,'�4.,.. y f,. IG 'V O4 E. C_ c dilc.oNl�i� '�: 7I I _--- a - '1- .-c -6i ---- 't-,.. I. ♦:s f' Ali �'> a t.r:� =._..-11.411.(.,. F c"'�a �.... a ani /j �a, °Va.�-i .� a r��a fats ar •w:. ., ,a _ '"t .-----..1..oia ,.;�r _..:* I 0 ti A r+uve ••= 1 73 1 "/ ---11 I i _. a T ELY 'i 'nucr 91� aI;1 sretexrc '"^L' . i r �is �Ill! " ' ` - �-- I 'I to .� IF ' y rhe - 1 y �"r ;II ( .I -e- a5b' i!3 __ _ a5".0, ,,,-,1,2. �-- .-. 7 .h. aw •.. •-.s...s. .. ..�` rrr E1�C F Tw ,t b 12 :::11 6 21111:17111 to .... _ tt']--. s (� I � s ,�7 , ' I .�ouur� Ji _ Z-•ro>ov,seD xc..,r.uf+ aT���"'' � I �r '�' A�4' ®Ps..ATFODM _ , I!,` I . tr f ( --V.h.T I :._ - _..____ oz. K.v.mc_ al ■ ' Z. f coMLi oL ; I 1 uMDE¢ n 2 r '�' a �:a -' 8 Jj- rdc a+�a:,c avaaJ>;r F,a., - A. i ` II .N -.rr x. i Ft .•.:. _._.._..__._ /.. .,-..._._ ..�__-._..._._..-...__ 'v +-7,-,.,..,.... :► ` ----•-----_ co,. F 0 ij uytc ; �, .s. w.vcx A d , / /re w w cuttaiW WIC , 1 0 t°c'cse° - "Yr _., et. •. V- Ow -�.,.. `i �'r .. ''}A -:-1.4 i .,Y0,4 m y. .. I `— -- � — ? ' +1� •3 ���.� ./L_1J1 j gi c.K- WA�F7✓cs j1d.� ,"a. _ ry FInEG e..7)� ( 6 (Ll• _m4 � [�':JV M'� j ._, �- - I Lut PJ.LYMA17.. 4'v'••N� 3 STC 2. ! ! . �'{.! I _ ..._, I, -.._. I I • -4 evIITiv,,AH- T�' --1 F.L._ J4-t�` _ .. t t - - 11 -1... y! �8'�' f`y� i A �- G�s'X' 1 © r „,,,r-'...," ' ' ' -0 1 � A - - — r r 1= 3 � ,�",es... © 4:! •tsracY �� s�`eor k �� erg F3 ® 31 �... ...._�_ ---_.• --t � r c its r. 5 e`Fu�a�� r ` Oj /e, 4.+" f^ i K -- -- ill_ J'�j'1 �-0 f 1 tt1 Ct W� t!` L=27';',-6'... _ . Z'a 'iffi'TEa —_ I , - x w+' -17-11"--IT: nz-" - r��- H-20-0 _ var. ,7�.i O ,a oa j e n ss a> j' _r► .5 w •., ,:.�_. - ,,,,,,,r,------ .,o ---- D=2870 plf aa• 1' y4� 1 L Q.:., , f ��, ,<. #� __ CR=1.2 O , - / . i' , P"''•C' : == Ammex L=13 8: IV I S°e,b..- -7-t. i i_`•.+a. rL=8' 10" L=F-10" 'mi0m! ! �i%1 A`.,iip'4'� ■ ,i! " ,:■9 .. .. r..- rd $ s'. ti' ' � • H=20'0' H=20'0" H-20'0" iR� _., +� ' + .urn _ - „AI �r.1t.; e` `v - :fir, : I - -'� as--i- plf If ;, _. -. � � , ;� ! ,.r, v=2870 plf v=2870 plf •r: p< �' FJ A I ft DCR 1.29 m► DCR=1.29 DCR=1.29 % : r • 1r rlk*ts a I. n u . .mom. 4� , p >d --, .; t F E-,_• •.i I u ��w ©V�STI t UI c; -„`4 © n< xr� -J 11 + ll11i11i ' } ' , o_tnw 6 Q �• ,kf t, '► o< d1 -' kik VT <vB, a co torn ' F 63 *� FAr7 ":h ,.z l� �kn..+� a.P. a ( ,8 ii (i, „_raw _ .�, d, c�'o o°� ~ s�I... rD O ! T�-w`R �� � F3-7 E,t o oo'" ., ®IC l'�At ID ii n 1i & s a /`, !ir0< 7.L., a :� �_ �.1 s4,�,f?u.,,0. - ",.%,.ZE2 ..I. :...Ea izcf t 1:T ! : II Viz, - Ap,utYo �.r.a. GJ ) � a `*�Q' IfBTOR ►_ !. II _c._O° T -- ___.3-..„...,___ -* o •; L=59'-3" L=33'-2" L=40'-10" Ill H=15'-0" H=18'0" L=19'8" H=18'0" v=455 plfIll III v=455 plf H=18'-0" v=455 plf DCR=0.20 DCR=0.20 v=455 plf DCR=0.20 III DCR=0.20 KEY PLAN 0 Fowler MS Seismic Evaluation NISHKIANDEA, N 1022 SW SALMON STREET, SUITE 300 Sector 3 Shear Walls - Existing Condition s K-� PC}RT LA N G J 5 PREPARED FOR: DOWA-IBI Group DRAWN BY: SHG SCALE:NTS LD31 (I> CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 TEL: 503-274-1343 FAX: 503-273-5696 CHECKED: CN DATE:04/05/17 p DRAWN BY: JOB#:ND31642 SHEET MBS D Legend Wood SW with plywood sheathing I 1 Erl 1' -IIS liliia_q�rriy�� - riirr " I -. �` ��'� ® _.�, 0�. 1, ��r �... a' ;-•:-' Wood SW with plywood sheathin • 1 - . -- - - ..;=-1... o um boar !�-9'A�<r.'.S� 5'k:4 G IIA' S'-K6 5�•�/ /-'10 $'-9;P4 G I<f 5'.11' �'- —`- O • —�- � - �-�—� ,--, , � .� � ,�4rN!..- -'��`�'''`'���,�G r 74�G a.Y .. �� >. s9 a�__ �i ..o• i gy �� g Gy da : ,....ls `1 --r - ✓� uJ 0'4' •d- i1N _.L' -' _. p...0. +s4Y '� Precast concrete SW _.... - K -• •e7. � \0 cl ��1:if \ Ems. AI �..- -. RC ri . i..., r u 0; .o' B 4' o" SFr'. _ :17::::41',:::.:-.:17:-.1''.'.:1-:-'5. oI ;' v �` I ,f, , :::2:2,21.:4'4111: ��e ,0 O I { � Cast-in-place concrete SW 1 � o. Q \ iii i I Y� alb .. . r� ,t.t.:-_- 1 i �`• f OR I wr n iNrr @! R 6 - �1 im , '�,�i*�� 4.-:?:4;°1-1:11'1•••.; fU ` t .. arrrmp i 4/ b.. m I ' :- #. • .., -ti-- - f.vrn.."s -.•�-, ..... I is 4w Ir # �' ` i K- m� a a WZ ( • � ' ^�,.ju a' S I 11;• i s r.e��ry C7.:'i li�/- - is r u l �3i,�,'l AliJ�7 "ipI j •0 i i r i.,acxr 1 • : 'rwe , f 414, �, it, --_-,,z- �,r ad 1,; i tt i� -resit i. I ter! 1L1 ._ 0 V�acacEva r� ..-,. _ ►� s Qirel° _ EZ R5��.+.tL. f.:],� ela(L .: i )( `.a� j a li IA f .fs, m ap"u - w r z m rcOrC,plAmJ ALJ q��'c' 'r7I I i-:— :1-: 4,. p. __ .__. y'. Ib t1 - ,III . 0 .0k Qi' .'L'Ll -...,•.iiiix--ve",„.., - Ir -fie: � p > / x� e .� • 43r li nr.r. OMNI ■■ x , Il1+."- 111 .r•, _ , 1 ``..4 1 bl - -t I • _ 21716'.0..,L4'.. 4..o..,'[�p1�i�Fblc� I r I isa I r„.., i Add new 1/2" •*• I u �;a, ; l ti ; plywood s• heathing to I `�' -_�� _,I t 9 w other face of wall, ,r, � -_ ss e ( g I 7, v ,r 4®, r I_ a4'o• ly.g I; �-P T `"'--- ed a nailingat 6' O.C. ,*,,,,�+ - y4. 4� © n1Enc A p i rNYrrlrrr�rr�r�rt �.. IS sur•. rr rr• I �� S a ♦ t , I " - -,ao*ca,ce0 m�. iwau- --yr= — Ills Ani t!9 I _ ®COM}.itOtJS ::1.:1,21t.4,,i. t...4_,.7 ! I 7:11,-ZHA:2 :0: =r .canvcorw .I . . ---- - _._ •e :a .ZI N II awn _�—.. _ —.. 6 ,.>3 �� IIdo - ':Oar vom.JE7 F4II.. to �I I o_. ` II N„sill .rr.,,. I ..- ..._ t■Ix I� 41�s m I a �> - ' o o ca D 57C?R. I I _ 3tj ^. �"u-`� F- gar CD=� I a '� ._• ries. .iJiLIN hiK ^ ...1.1.802..a.AI I,E)1 ti o rlrxl 4 -rt...�l..,.,�... Alik Loc,craag-4.14''''---7,--- Idol n �+. 1111 1 m, I4,,,,,.1/41 _ _..Mau iI /t J : C.Q.w�,ai� .26, ry s ,La. I .'i y` F4 Ep sn 6 T • oraictum �{ESEa -. ONE¢ . 4/"-J4.4 i -K-11.1511.04;.Yr.r., 'n 51 2. I ' ( = j f t °� n„ 'T - X,: Add new 5/8" ou uisa Ise c /t% a. 2. ]u v. trot _ � j R Sure Board this ;r ®. r• _ _ ..CRT) r :, : a.� t.,, I 4'A. "-v.rsroar r p it.� 4-f v. - e. .MN/z,i ), • _- _ _ r — _ stm• s �r r - - - H=$0 0" ' i� °. fray _ oa _ — . y-__ as4' a & - v=2 90 If lab- -°7--- •y�<t+ , - �I � _-_,":4 wu CI P I La ® `"" :.� I _- DCR=0.35 P s.; _ - - p ca -. p,ac� 6: ,c11..{15 _ _ O rs t. V, re] e4':n l osc ,f,1% `��1= __ -- • ��jJj�+ f T B F7 J �• Ah/ ^., ,�1 1'`�`,._ _ tf,/ °�' ���I 0--,4 "•�I: I !' J �L�■��- "- -- -- - -- Ij _ 1 H ' L=13-9 �Ey cr - °�. � - i � >I ! ' " ;�w :� * a I' _ - - r�ew,e b �,� , of $5J3v. r+r+ o r3 1`i r 1 y - -,6 431111 ,:rl r s 1� L=8'-4" L=8'-4"II ""'w Flail" I-% i1-:71 1-- �✓ ° H=20'-0' " tUalH=20'-0 E H-20 0 � Asx._ 4 t c e V=2890 Of • #I c?$ba 'r I � F�Ira: l a a {� sA V=2890 If v=2890 If Ki-6 " Q DCR 0.35 6, ,��' P P ♦�,.-.T o< 2 r -' . DCR-0.35 DCR=0.35 �+ ; u t� 4 1 e f.tge15 ar i0111irrt A7 II u r •csm. �� e 11 1 ; t r r---`-' - CO 0---- ---"--1"--' n< 2r) ''- .I `i I li ; I (: WI ' E 1 � STQ� Ill - L TI �L• oa - • ii 11 EFLAIL A. ���� r�w� cl G N 6 „� .. I—ja . ! F' W © a �; ,. rC1 _ CO-w JviTCI.1E.IJ —�- l L1,GWHiU� 2 : � iFL. —(�,,�, T LIC!.."?''''- E. '' --- -'4"7.r'.. .. '4"7.r .. i%l`►,G' w o!1 7 �iAFJD L� I I ._ ,: � 7�II , .b. y 1P! i1 ++ I'J 11- '`>t .Zl II II II ��Q1 '.,.. .E'a ' Q.Ja,a,Ji?a IG1.a� FREEZES Lata e+7, .,. `® 10.4;1 -, to * Leg.� ,.w,uerr, ,J.I.c. tJ !�� ''3.71 Q 1�.' 1OQ ►'y': e# 11 II 72 W... .: , ;`.,- . ---- ---- -'� w j'�O - H L=59'-3" L=33'-2" L=40'-10" El H=15'-0" H=18'-0" L=19'-6" H=18'-0" v=455 plf III © v=455 plf H=18'-0" v=455 plf DCR=0.20 DCR=0.20 V=455 plf DCR=0.20 1111 11111 DCR=0.20 KEY PLAN • Fowler MS Seismic Evaluation NISHKIANDEAN 1922 SW SALMON STREET, SUITE 300 Sector 3 Shear Walls - Retrofit Condition K.3 PORTLAND, n g ('1 PREPARED FOR: DOWA-IBI Group �j t'J DRAWN BY: SHG SCALE:NTS LD32 CONSULTING AND STRUCTURAL ENGINEERS SINCE 1919 TEL: 503-274-1843 FAX: 503-273-5696 CHECKED: CN DATE:04/05/17 j DRAWN BY: JOB#:ND31642 SHEET NUMBER Legend Wood SW with plywood sheathing Wood SW with plywood sheathing • on gypsum board Precast concrete SW C L=16'-6" L=10'-7" D L=60'-2" L=28'-10" E H=15'-0" H=15-0" H=15'-0" H=15-0" v=840 plf v=840 plf v=840 plf v=840 plf DCR=0.38 DCR=0.38 DCR=0.38 DCR=0.38 It Ie I ..._.�_ T `- 1 I J -- �,,,iNoYS3*44-::,--1-: , L��.F ! t i i x - .:.1�ir. 1 -. 8< =r I I I I L i t C. o< r - 1 N jrrAH1 131a — _ ---+ - f----+ ',- - - r[ i A q o I • •,,.... " ......„...,,,...........„._ ., 1 . „ 1 t j y . .____.___ .. N.,-. _,___,_ _ _.,,____ , - _, , ------.----------- , ,,.... essc _ • , _ W•6 Orn t_. 4.... __--,.— --- _ _._ _ !�` 3 „kr tF,p, t ii Lit 1111 :; i I -1� �cam 1----1 _..._ i___.4 . , [ ) ' - 1 ": - - t-t-i_--_rt , 4 r '._� _ _ � - - _ - -- � i - . - t. -- �,1-_ �m, _ coes.:vctt, -T —- -_ ¢ • ••i vrir I.,�,404'tt41S10 NIG,✓moi -- --4,"0.... �a t r---1. n< 2 r r 410 ___ • • ,, _.,„..._, __-------—------40 7 , 11 , ___te 1 4-(:„4,,,w, . - , ., :: ,., 1. s -. ,,- 1- .- . ; 1 1, 1 ' if, i.4°-c, c?' (9.' '. . ; ' .." . . 1 '„la' _l____i______:_ .....1_- --—-,-,,x.- A ... 0 t-- ___. . :_,r ------ , . CI • t '_ "- R... _ a Iii i•: —i -', - �1 0; 10, - _:_r ,. 1= - i . tyr y f�' f �� Q��' d y ; V' i�7L'>!� _.._ f7 :�E pow -3 Ix �• _ t �sY r� i' 1 'i _-k-41.1 - ,,- L•:"--.:,-2-'.-.',.f ' hi '- k aLe . ------ I -..:_....r-ii---1.1.11,1 .__LI-T —---# .: ::,,...,.:,101114:.,, ..__,i,,.,_'- ' W•a O - 1- ,.. • gut �'`3',:.n�.5� -..A� `.v '�I--., W�• - - ; t o x ., ( v,. /, • t ,,..._ 11 ,- , ,:::.,,. _ , ..., - _i 6 1. . , I Gtr a ,. }, i � � l - ' dF'a � t i i F r4i ' ' a '"4. '"- • 7- 7'---'' --. --: tr-914-611 kVAIE• ' ''''''nE)AP,141:2,141.-'. lir , tv _ t e. �.. k p, r n x b N rx p ® a----:------2--",----s u _ _ .�, i M r xa .g w n m s ra L ' A 11 ` ° • jun KEY PLAN dOFowler MS Seismic Evaluation NISHKIANDEA 1022 SW SALMON STREET, SUITE 300 Sector 5 Shear Walls - Existing Condition s K.5 PORTLAND® f �"1^' �� PREPARED FOR: DOWA-IBI Group t 1 �5 V DRAWN BY: SHG SCALE:NTS LD34 CONSULTING AND STRUCTURAL ENGINEERS SINCE 19105 9 TEL 503-274-1$43 FAX 503-273-5696 CHECKED: CN DATE:04/05/17 �• r DRAWN BY: JOB#:ND31642 C T` NUMBER Legend Wood SW with plywood sheathing • Wood SW with plywood sheathing on gypsum board Precast concrete SW C L=16'-6" L=10'-7" DL=60'-2" L=28'-10" III H=15'-0" H=15'-0" H=15'-0" H=15-0" v=840 plf v=840 plf v=840 plf v=840 plf DCR=0.38 DCR=0.38 DCR=0.38 DCR=0.38 A ':.r • • mi -_..� _.. 4 ---- li _ _. �_ .. T._ I - -- A"�q *iTNd G , C Ah, Kopp i I-„' ..�_ i. . ! . r (7 u =u ii t- ! L:.,� I I p -Ft —fir a cn I I I I L ' r ( , o� _ r— — - r k - - - -- - _ : { I Tom' tisei13g NIG. i' I A o _.. _ d }-_ i o -- QOPEIC _ 6,,-a Orn - - - -(-- -.---1.---.- _L.-_ _ —� — ._` - ~ Isv� I I __ a � 1 :. .__. , y- L , CAti•`..1 --�. '� L 1 i 41 I, ------- -- --- ' 1-- V im: .-_ ; - ' , _j. - _' I d.�' --- La *AK,'W.,u, r-r • ia{ v. i ,.,;r:',/, _ — 1.' n _ 1 Y----t Q A * ` C7 = - II f : air I altasn•tl 10 NIS-' 1 I t- + < .11tc,.GI e,cusit-✓ N ®b __ — .. -J 1----4- .�_ r i.,•.i I 0 v I�A o .O �L'I._- -T_T--..� a u+Hna: �tF+ ' " 1 ,i--1- j A"O O CO -,4t_` 3� --I— r CO ----- +� .. t- • I f ME 111 qq -- _ r V'I II 4 � �'' --A'�1y � `_-- µ .. } I..-.�,.. I .5 ry _-7 ' .eeai' , ?. -,*-7-,----7-.17---------z -: 3 r. W 1 ® 1014• ■," t , W" If a �> I �I �3<„_ _ilk i� plie 't—i--<--' • 2 y k_ k. Li I I �. , I i ,rti 1 1 .� -s �_ few t :1:- _ _ I, r �I 1,- �", I i I _ ., n t on C> I _ 41-7,4 ._....,.4_,_______ f .`i_ t�5 t. (�•:aT...w� V ,a. •n� f''�'/�(�"}� D.Q. A ! I tc.-$ i F 1 ,' 9.: �,�- �' - L. �. r3�yLAi 1(.9 ' rC�J I L� ril il�\!ak''w '� I. 4 l t7+� I- FilVtr7-3111- -' . r _ W.'!<'a //,,�— a r1 B ..,. �_. ''`, ti.... s`1. e ' se ®� 4. 4 .v ,,Y-vlfi.. '.tt �, r s .. - . ° � a .— e ' .. y P 1 itif . � _—.. ." _. . n �. v m ... .. .,a � � i F R vA. M • ■:''' 't1"4" ' 1 "' ��� ! P h d 51a 'a ■� ■ m i ■ ■ i L=31'-3" H=20'-0" v=6525 plf DCR=0.79 Add new 5/8" Sure-Board this face of wall Alli. KEY FLAN • NISHKIANDEA Fowler MS Seismic Evaluation CONSULTING AND STRUCTURAL ENGINEERS SINCE 19191022 SW SALMON STREET, SUITE 300 Sector 5 Shear Walls - Retrofit Condition sk_5R PORTLAND97205 TEL 503-274-1843 FAX 503-273-5696 PREPARED FOR: DOWA-IBI Group 7 DRAWN BY: SHG SCALE:ND3 LD35 CONSULTING AND STRUCTURAL ENGINEERS SINCE CHECKED: CN DRAWN BY: DATE:04/05/17 SHEET NUMBER JOB#:N1642 SHE