Loading...
Specifications (22) "tST,-GIS ~c-ci/c Z l 7 Sw /?S RECEIVED CT ENGINEERING Iv1AR 0 9 2016 Structural Engineers 180 Nickerson Street Suite 302 Seattle, WA 98109 INC. 206.285.4512 (V) 208.285.0618 (F) CITY OF TIGARD BUILDING DIVISION #15238 Structural Calculations River Terrace ��o iDRf ��Plan 5 "> o'• " '�T Elevation BVti � Tigard, OR ,` REGONA� T2'G��F�`� /91FS Design Criteria: 2012 IBC (ORSC, OSSC) 09/14/2015 ASCE 7-10 Wind Speed: 120(ULT); 93(ASD); Kzt=1 .0 Seismic: Ss=0.972, S1 =0.423, SDC=D Roof Snow Load = 25 psf Site Class = D, Bearing = 2000 psf Client: Polygon Northwest Company 109 East 13th Street, Suite 200 Vancouver, WA 98660-3229 Ph: 360.695.7700 Fax: 360.693.4442 Architect: Milbrandt Architects 25 Central Way, Suite 210 Kirkland, WA 98033 Ph: 425.454.7130 Fax: 425.646.0945 I C T ENGINEERING 180 Nickerson St. INC Suite 302 Seattle,WA 98109 (206)285-4512(V) (206)285-0618(F) Polygon Northwest Company Multiple locations in Tigard,OR DESIGN SUMMARY: The proposed project is to be single-family homes. We understand that these homes are to be constructed in multiple locations throughout Tigard, Oregon. Design parameters are as noted below: The structures are two-story wood-framed. Roof framing is primarily with pre-manufactured pitched chord wood trusses. Upper floor framing is primarily with pre-manufactured parallel chord wood trusses. Floor framing over crawlspace is primarily pre-manufactured wood joists. The foundations are to be conventional spread footings. Wind design is based on the ASCE 7-10 MWFRS(Envelope Procedure)for 120 mph ultimate wind speed, exposure category B,and with a Kzt value of 1.00. Lateral design is based on the ASCE 7-10"equivalent lateral force"procedure with Ss equal to or less than 1.10 and S1 equal to or less than 0.50 and with soil classification"D". Plywood or OSB shearwalls are the primary lateral force resisting system (R=6.5). . Foundations have been sized for Class 4 soils as defined in IBC 1806.2. Codes considered; 2012 IBC,and currently adopted ORSC and OSSC. SHEET TITLE: DEAD LOAD SUMMARY CT PROJECT#: CT# ROOF Roofing- 3.5 psf Roofing-future 0.0',psf 5/8"•plywood(O.S.B.) 2.2'psf Trusses at 24"oc. . 4.0 psf Insulation 1.0 psf (1)5/8"gypsum ceiling "2.8 psf Misc./Mech. . 1.5',psf ROOF DEAD LOAD 15.0 PSF FLOOR floorfinish 4.0 psf NO gypsum concrete 0.0 psf 3/4"plywood•(O.S.B.) 2.7 psf joist at 12" 2.5'psf Insulation !1.0 psf (1) 1/2"-,gypsum ceiling ,Y "2.2psf Msc" 2.6 psf FLOOR DEAD LOAD 15.0 PSF 14 (2)2[8 HDR J ( )2x8 I-OR (212x8 HrR RB 1 RB 2 RB.3 RB.4 AB.5 re [ gf.o x m I : Iro u St' V T i 1 1 I. 1 11': GT l bl I ; GT 1 CVI 1 1 I 1 I 1 I 1 I 1 I 1 1 i i i i 1 1 1 1:=�1--� i! 1 , 1 I 1 1 1 I 1 ; N I , I I ' I , I is di 1 • 1 1 1 1 I 1 I . 0 T A I Ft 1`D tx In _ � op 1 1 :I 1 ,-1 i • i 1 , ROOF TRUSS(424"O.0 I 1 8 1 I I 1 cc 1 :0 UlP -..............,.... GT (iT.b2; ; I El n er. t.1 .Q - N I la O M min :3 A (2)2k8 HDP &i RB.13 . `, R 17 © ';;`" "1 --I-1 i 1 GABLE END TRUSS RB•1_ ( I r 12 I $.10 11 RR 10 1 apR1 F pNn TRUSS GABLE END TRUSS OPLAN 5B PLAN 5B Roof Framing Plan 1/4"='I-0" CT# 14051 2014.05.09 1/4" = 1,-o. (11x17) 09 . (P4) . Y• op --1=--- _ 11v II F 11 W M F 4 I Inji ____, m F 0 (" 1 : .; WM (-, •i II' K_______ El . mit II P . E . N MI ai 7 1 I ,1Mt ,_____A.___ `-I F .I II: ■ ,y 4. a 4. • m 1 400 • Tc 4 4.Te 4.T, MI %IP 41:10 41:10 PLAN/�N J 5B PLAN 5B Top Floor Shear Plan O 1/4"=1.-O" CT# 14051 2014.05.09 1/4" = 1'-0" (11x17) AM ati %V qar a a 14 STI-1014 1.Ma 4x10 HDR 1 mb 3.5x9 GLB HDR 1.Mc 4x10 HDR 4x10 HDR 4x10 HDR 1.Md _;-r— =:=_===>C-=IC \ 1�.1 B.2 B. (-B.:. B.3 II / o 1 \ ) p -- ' I m [1_ ' — -- -:s __1. -- •-�I I 0 r -I d H•13 z — J r I . O R. rn 7 ere TjI •eoN I _14 1 i 3.5x IG BEAM - 3.5x14 B B • FB 3.5x9 3LB HDR H Y 7`0 --- B-it 11^ B.12 1 II M J i �. I I v / i - 4/jfHDR 4.-,HDR csi1, 1 :�7C ��\STAIR / III 3 .4 l STHD14 a 11 i STi4 14 1 r \FRAMINCj on b II II I----i -STH ST1D14 \ / rs -----41101 -- t -- I P4 \ / \/ e 1 1 /\ i / \ P4 / \ /-N / \ y-y; S1HD14 \ I I / \ 11 S D14 3. BIG FB r , 5.5x16 IIB HDR _ = _-' 1 I - - - _ B B.1 ` I I16 O I -------- , ------ I I .14 I I ---_59.0 --_-_ x 1 rS 1 II • 1 - fC- --- ---�--Tr -- r L___ 1---__ _______ K 0 x ,i I18 i 1•)2x8 HDR II O 1`� B.1 w II _ n 18 i' n pai 1:1 5.5x12 GIB HD 2 i S6.1 m%lipB 16 (�.��11�1----- .='''''' '1".:41"'"'''' =. 4x10 rIDR ' .-4-.;. ©r :::::140). -. O STHD14 � P3 . B.15 14 a :i:%_ SIM. 0 my Nov 4.Mc & 4.Md not used this elevation `.-:�::.;;:`.-:s::::= i!3" 4'-0" 3" -I-31 \ �•jI(. T.O.S. 31/2"CONC.SLAB .0.4.,..... c -0'-712" 'VOW' v I.0'-3' T.O.S. STHD14 STHD14 . ..... ."... ......................". ... ......... !. 12'TJLFLOOR JOISTS.@...'.. 1NSTALL'SYSTEM TO.ALLOW "I �" �- 92 O.C. PUNO." •';) ��.I ADEQUATE DRAINAGE AT" C U N.O A ,'.I. t DEPTH ':• PONY WAL I WH I STHD14 STHD14 P4 O T.O.S. CD L.... .. o.. :...... ,.I......'... : .. I. 30"x20"x70'.FTG'.".'. 75"""WIDE-LVL TO TCH':.I. ........ .... ra 3in"CONC.SLAB ............ SLABSLOPES 312" j':.'.':.'...'..'.. .............. .. .......... .............. ........... 0 -1'-012" FROM BACK TO APRON WITH GRADING PLAN11. Aft I I r- I 2x4.PQ.. WALL.'. t_ � � _� o, I ,I �rH-- Kr'• I T.O.S. r. :.'...- '�' ril Aik i 0 STHD14 0 STHD74 I , I .L_____ ..__.. ___ ____.1. 18 1'-012" Ur I m I ! ® 0 36.1 © a 'OFSTHD14 STHD14 31/2"CONC.SLAB SLOPED DOWN 1/4 :12 L 0 FIF �uj 2'-1" 16'-3" 2'-2", T-10" `'� LAN 5✓-8" , �,i1 PLAN 5B 40'-0- �J 114"-1'-O" CT# 14051 2014.05.09 ,�J4" = 1'-0" (11x17) CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr. (206)285 4512 Fax: (206)285 0618 r tea 2s Mt R zola a29PM Lic.#: KW-06002997 Licensee:c.t.engineering Description PLAN 5.B Top Floor Framing , g B1 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Pill 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,0.0 to 2.670 ft,Trib=3.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point D=0.990, S=1.650 k @ 2.670 ft Design Summary D o aa,�c Max fb/Fb Ratio = 0.795; 1 lb:Actual: 983.60 psi at 2.663 ft in Span#1 Fb:Allowable: 1,237.45 psi Load Comb: +D+0.750L+0.7505+H • • Max fv/FvRatio= 0.588: 1 fv:Actual: 121.63 psi at 3.485 ft in Span#1 Fv:Allowable: 207.00 psi also+t 4X10 Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.024 in Downward Total 0.038 in Left Support 1.05 0.87 0.92 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.60 0.87 1.84 Live Load Defl Ratio 2120>360 Total Defl Ratio 1333>180 B.2 BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade:TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-PrIl 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pct Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 6.50 ft,Trib=23.0 ft Unif Load: D=0.010 k/tt,Trib=8.0 ft Point D=0.560, S=0.9350 k @ 3.250 ft Design Summar Max fb/Fb Ratio = 0.736. 1 D o. u ;= tb:Actual: 1,600.40 psi at 3.250 ft in Span#1 ' 111111111111r Fb:Allowable: 2,175.87 psi Load Comb: +D+0.750L+0.750S+H Max fv/FvRatio= 0.511:1 e fv:Actual: 182.08 psi at 5.352 ft in Span#1 Fv:Allowable: 356.50 psi 6.5011,1.75X14 Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr. S W S H Downward L+Lr+S 0.066 in Downward Total 0.104 in Left Support 1.43 1.33 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.97 1.33 2.02 Live Load Defl Ratio 1187>360 Total Dell Ratio 748>180 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Pit 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,1.50 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point D=0.560, S=0.9350 k @ 1.50 ft - CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 2014,429PM Lic.#: KW-06002997 Licensee:c.t.engineering Design Summary r cic.�: Max fb/Fb Ratio = 0.681• 1 0,11119,:l.ie,.,�. is,,�_ fb:Actual: 842.88 psi at 1.941 ft in Span#1 ::2 Fb:Allowable: 1,237.45 psi Load Comb: +D+0.750L+0.750S+H • •' Max fv/FvRatio= 0.502: 1 A A fv:Actual: 103.92 psi at 0.000 ft in Span#1 Fv:Allowable: 207.00 psi 4.250 ft,4x10 Load Comb: +D+0.750L+0.7505+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.023 in Downward Total 0.036 in Left Support 1.17 0.87 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.34 0.87 1.40 Live Load Defl Ratio 2242>360 Total Defl Ratio 1411 >180 ,, tcalcu `x r „ `.7 2 f1,j2,>✓ O , ) i11 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Nil 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary _ Max fb/Fb Ratio = 0.578. 1 :; �simoimmommriam fb:Actual: 715.19 psi at 2.125 ft in Span#1 Fb:Allowable: 1,237.45 psi Load Comb: +D+0.750L+0.750S+H o • Max fv/FvRatio= 0.401: 1 A A iv:Actual: 83.02 psi at 3.485 ft in Span#1 Fv:Allowable: 207.00 psi +.5e 7t•470 Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.020 in Downward Total 0.031 in Left Support 1.23 0.87 1.22 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.23 0.87 1.22 Live Load Defl Ratio 2591 >360 Total Dell Ratio 1632>180 z c iiiiiia on e °, 5. .. 4:''''may4,,, ,..,-.,.. 401 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pill 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary MMIIIIIIIIIMEr Max fb/Fb Ratio = 0.109 1 AMU lb:Actual: 127.33 psi at 1.375 ft in Span#1 Fb:Allowable: 1,169.59 psi Load Comb: +D+S+H 0 o Max fv/FvRatio= 0.092: 1 A A 1v:Actual: 15.85 psi at 0.000 ft in Span#1 Fv:Allowable: 172.50 psi 2750 ft,2.2re Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.002 in Downward Total 0.003 in Left Support 0.23 0.06 0.17 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.23 0.06 0.17 Live Load Dell Ratio 19147>360 Total Defl Ratio 9430>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr. (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 2014,429PM ,. ��4�� �N a ���"...;;337�£,. M g;. Lic.#: KW-06002997 Licensee : c.t.engineering N x. BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft • Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary Max fb/Fb Ratio = 0.520 1 ��� `� fb:Actual: 606.14 psi at 3.000 ft in Span#1 Fb:Allowable: 1,165.07 psi Load Comb: +D+S+H • Max fv/FvRatio= 0.283: 1 A A fv:Actual: 48.83 psi at 5.400 ft in Span#1 Fv:Allowable: 172.50 psi &0R 2-2eS Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.039 in Downward Total 0.079 in Left Support 0.51 0.12 0.38 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.51 0.12 0.38 Live Load DO Ratio 1843>360 Total Dell Ratio 908>180 rrrike ,M B 7 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PM 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft • Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary Max fb/Fb Ratio = 0.292. 1 =•••= -, - fb:Actual: 340.95 psi at 2.250 ft in Span#1 Fb:Allowable: 1,167.23 psi Load Comb: +D+S+H • Max fv/FvRatio= 0.195: 1 A A fv:Actual: 33.57 psi at 0.000 ft in Span#1 Fv:Allowable: 172.50 psi 4.508 2-2xe Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lrr a w E H Downward L+Lr+S 0.012 in Downward Total 0.025 in Left Support 0.38 0.09 0.28 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.38 0.09 0.28 Live Load Deft Ratio 4369>360 Total Deft Ratio 2152>180 ' a�am.88 m�; ' -tine k£ Ee - `F f VA' J; BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Pill 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary D 0.2213 I.0.590 Max fb/Fb Ratio = 0.277. 1 fb:Actual: 298.66 psi at 1.750 ft in Span#1 Fb:Allowable: 1,077.23 psi Load Comb: +D+L+H • • Max fv/FvRatio= 0.205: 1 A A fv:Actual: 36.84 psi at 2.730 ft in Span*1 Fv:Allowable: 180.00 psi 3.50 R 4x10 Load Comb: +D+L+H Max Deflections Max Reactions (k) 2 L j Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Deft Ratio 7745>360 Total Defl.Ratio. 5633>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 2014,429PM Lic.#: KW-06002997 Licensee:c.t.engineering Mme gg BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Pr!! 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary .0.7113 L 0.590 Max fb/Fb Ratio = 0.277. 1 fb:Actual: 298.66 psi at 1.750 ft in Span#1 Fb:Allowable: 1,077.23 psi Load Comb: +D+L+H Max fv/FvRatio= 0.205: 1 A A fv:Actual: 36.84 psi at 2.730 ft in Span#1 Fv:Allowable: 180.00 psi 3.500.4210 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr s W E H Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Defl Ratio 7745>360 Total Deft Ratio 5633>180 BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Pill 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary D 02213 L 0.590 Max fb/Fb Ratio = 0.372.1 fb:Actual: 766.31 psi at 3.000 ft in Span#1 Fb:Allowable: 2,062.40 psi Load Comb: +D+L+H ,<> Max fv/FvRatio= 0.295: 1 A fv:Actual: 91.39 psi at 4.840 ft in Span#1 Fv:Allowable: 310.00 psi 6.0 a 1.75x14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W EH Downward L+Lr+S 0.028 in Downward Total 0.038 in Left Support 0.66 1.77 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.66 1.77 Live Load Defl Ratio 2581 >360 Total Defl Ratio 1877>180 6 11 BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade:TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-PM 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unit Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary •02213 L 0.590 Max fb/Fb Ratio = 0.198. 1 fb:Actual: 431.05 psi at 2.250 ft in Span#1 Fb:Allowable: 2,180.79 psi Load Comb: +D+L+H - • Max fv/FvRatio= 0.175: 1 A A fv:Actual: 54.39 psi at 0.000 ft in Span#1 Fv:Allowable: 310.00 psi 4.500,1.75x14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L USW E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.50 1.33 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.50 1.33 Live Load Dell Ratio 6120>360 Total Defl Ratio 4451 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr. (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 2014 429PM Lie.#. KW-06002997 Licensee:c.t.engineering '$ B12 r` BEAM Size: 3.125x9,GLB, Fully Unbraced OR 3.125X10.5 Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-Pit 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 per Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.0 ft Design Summary •0.210 0.560 Max fb/Fb Ratio = 0.736; 1 fb:Actual: 1,752.18 psi at 4.000 ft in Span#1 Fb:Allowable: 2,379.75 psi Load Comb: +D+L+H • Max fv/FvRatio= 0.504: 1 A A fv:Actual: 133.60 psi at 0.000 ft in Span#1 e.o tt 3.125x9 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) o L Lr a w_ E H Downward L+Lr+S 0.152 in Downward Total 0.209 in Left Support 0.84 2.24 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.84 2.24 Live Load Dell Ratio 632 >360 Total Defl Ratio 459>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr. (206)285 4512 Fax: (206)285 0618 _ Printed:26 MAR 2014,428PM Lic.#: KW-06002997 Licensee:c•t.engineering Description : PLAN 5•B Top Floor Framing, Cont. ® 4 e B13 04, BEAM Size: 3.5x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade:TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-PM 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 Idft,Trib=8.0 ft Unif Load: D=0.0150, L=0.10 k/ft,Trib=5.0 ft Design Summary Max fb/Fb Ratio = 0.422. 1 �`a"" fb:Actual: 962.10 psi at 4.250 ft in Span#1 Fb:Allowable: 2,280.40 psi Load Comb: +D+L+H • Max fv/FvRatio= 0.310: 1 • fv:Actual: 95.96 psi at 7.338 ft in Span*1 Fv:Allowable: 310.00 psi 8.50 ft.3.5814 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr W E y Downward L+Lr+S 0.078 in Downward Total 0.097 in Left Support 0.83 3.49 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.83 3.49 Live Load Dell Ratio 1306>360 Total Defl Ratio 1055>180 asp a � • � - . .H . 1 { f - e4 - 1 BEAM Size: 5.125x18,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-PM 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=12.0 ft Design Summary Max fb/Fb Ratio = 0.634; 1 D 0.180 L 0.480 fb:Actual: 1,466.89 psi at 10.125 ft in Span#1 Fb:Allowable: 2,313.03 psi Load Comb: +D+L+H Max fv/FvRatio= 0.350: 1 • 20.250 ft5.125x18 fv:Actual: 92.72 psi at 18.765 ft in Span#1 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W EI!-, Downward L+Lr+S 0.407 in Downward Total 0.560 in Left Support 1.82 4.86 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.82 4.86 Live Load Deft Ratio 596>360 Total Defl Ratio 433>180 � �1 ® a A B.15 BEAM Size: 4x12,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Pill 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=2.750 ft Design Summary Max fb/Fb Ratio = 0.893. 1 fb:Actual: 876.94 psi at 4.375 ft in Span#1 Fb:Allowable: 982.26 psi Load Comb: +D+L+H •._.,,._... - .=, ,• . ..;,. . , ..�. ,.._ _.,. . Max fv/FvRatio= 0.411: 1 A fv:Actual: 73.91 psi at 0.000 ft in Span#1 Fv:Allowable: 180.00 psi 8.750 ft,4x12 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E i Downward L+Lr+S 0.090 in Downward Total 0.126 in Left Support 0.80 1.66 0.30 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.80 1.66 0.30 Live Load Defl Ratio 1172 >360 Total Deft Ratio 831 >180 CT Engineering Project Title: ineer. Project ID: 180 Nickerson,Suite 302 En g Seattle,WA 98109 Project Descr-. (206)285 4512 Fax: (206)285 0618 anted 26 NAR 2014428PM !VIIRITRTRZRITIWRIIZZMVROM ua.'% tza3 t„., 6 s--- -,,o- 3<....,-- ?,s:1i"3 ---,:,..0 `",�,,..,-:,,,, ,,,,,33,..u,< ,,,,' ,,,,,.ice"- �., �;3„i ,, µ ,,° °.F Lic.#: KW-06002997 Licensee:c.t.engineering Oleta/titz.Wiitaiaat fig"B.16 .111 BEAM Size: 5.125x12,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-Pr!! 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Unif Load: D=0.0150, S=0.0250 klft,Trib=2.0 ft Design Summary Max fb/Fb Ratio = 0.771• 1 �I' '•' „' ,. lb:Actual: 1,834.37 psi at 8.250 ft in Span#1 Fb:Allowable: 2,379.23 psi Load Comb: +D+L+H .' • Max fv/FvRatio= 0.369: 1 • 16.50 ft, 5.125x12 fv:Actual: 97.83 psi at 0.000 ft in Span#1 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.543 in Downward Total 0.760 in Left Support 1.42 3.14 0.41 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.42 3.14 0.41 Live Load Dell Ratio 364>360 Total Defl Ratio 260>180 t B.17 ;j BEAM Size: 2-2x8,Sawn Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 • Fb-Tension 850 psi Fc-Prll 1300 psi Fv 150 psi Ebend-xx 1300 ksi Density 27.7 pcf Fb-Compr 850 psi Fc-Perp 405 psi Ft 525 psi Eminbend-xx 470 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.250 ft Design Summary D 0.1238 0.330 • Max fb/Fb Ratio = 0.312. 1 fb:Actual: 317.25 psi at 1.750 ft in Span#1 Fb:Allowable: 1,016.71 psi • Load Comb: +D+L+H • Max fv/FvRatio= 0.241: 1 A A fv:Actual: 36.14 psi at 2.905 ft in Span*1 Fv:Allowable: • 150.00 psi 3.508.2-2x8 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr $ W E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.22 0.58 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.22 0.58 Live Load Defl Ratio 4643>360 Total Deft Ratio 3377 >180 BEAM Size: 2-2x8,Sawn Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Prll 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.250 ft Design Summary .0.123. 0.330 Max fb/Fb Ratio = 0.312. 1 fb:Actual: 317.25 psi at 1.750 ft in Span#1 Fb:Allowable: 1,016.71 psi • Load Comb: +D+L+H • Max fv/FvRatio= 0.241: 1 A A fv:Actual: 36.14 psi at 2.905 ft in Span#1 Fv:Allowable: 150.00 psi 3.508.2-2x8 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Is S W E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.22 0.58 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.22 0.58 Live Load Defl Ratio 4643>360 Total Defl Ratio• 3377 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 2014,428PM ; 414 kms.._ w a '� 'aE1. 1Liic.#: KW-06002997 Licensee:c.t.engineering ., >. , . Y i.,-4 wa d �`c._ Y& 'x'�i - t i B 6 �''!! �i7� r�'y� .. ,�. rasa. ',....��n ...'zCme.'+ k � M ..,n..K:- s :., �.. ..%` ,- t.,\ » BEAM Size: 4x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Prll 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 klft,Trib=3.50 ft Design Summary Max fb/Fb Ratio = 0.593. 1 0 0.05250 S 0.08750 fb:Actual: 791.49 psi at 5.375 ft in Span#1 Fb:Allowable: 1,334.07 psi Load Comb: +D+S+H • • Max fv/FvRatio= 0.192: 1 A A fv:Actual: 39.74 psi at 10.177 ft in Span#1 10.750 4 4x8 Fv:Allowable: 207.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Is S W E. H Downward L+Lr+S 0.149 in Downward Total 0.238 in Left Support 0.28 0.47 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.28 0.47 Live Load Defl Ratio 867 >360 Total Defl Ratio 542 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MAR 2011 9:51AM rys ir..°^` . w '� �` r $ �` €h di f `'E,2 4 z'�'ga' �J as mt t w€>';aI osamznaoa���� 4 P � gs.��a'a,"3*:J���y b ��"i�� gE�-r s t3� r"� ���' , �� E ����r'� as m,,g i mum.�.,,h„i,.... $a ,n ata u. ,,:..amgt ,a. V.,.y.....a.: .,..,.,.,.. . ..2.a,„a:.et ,. a p . ,cc _ 4, 9 �'v ,,y � ,zrd��zt�t xh�r�sd1:d�w } . Lic.#: KW-06002997 Licensee:c.t.engineering Descri•tion : PLAN 5•B 2nd floor wall Headers _ ' 5 ,T •ical Partial/Non Bearin• Header 6'clear s Ilan max. 6'trib max BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pit 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Design Summary •0.0750 S 0.1250 i Max fb/Fb Ratio = 0.476 1 � ��_ fb:Actual: 482.28 psi at 3.250 ft in Span#1 Fb:Allowable: 1,013.55 psi Load Comb: +D+S+H 0 A Max fv/FvRatio= 0.245: 1 N:Actual: 36.76 psi at 0.000 ft in Span#1 Fv:Allowable: 150.00 psi 6.505,2-2x8 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.041 in Downward Total 0.065 in Left Support 0.24 0.41 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.24 0.41 Live Load Defl Ratio 1913>360 Total Defl Ratio 1196>180 INVInfirtioargaliflal T •ical Full width Bearin• Header 4'clear s•an max 23'Trib Max BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 klft,Trib=23.0 ft Design Summary .0.3450 S 0.5750 Max fb/Fb Ratio = 0.934. 1 fb:Actual: 948.44 psi at 2.125 ft in Span#1 Fb:Allowable: 1,015.94 psi Load Comb: +D+S+H A = Max fv/FvRatio= 0.647: 1 N:Actual: 97.08 psi at 3.655 ft in Span#1 Fv:Allowable: 150.00 psi 4250k 2-2x8 Load Comb: +D+S+H Max Deflections Max Reactions (k) DI__ US W E H Downward L+Lr+S 0.034 in Downward Total 0.055 in Left Support 0.73 1.22 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.73 1.22 Live Load Defl Ratio 1488>360 Total Defl Ratio 930>180 IgatalnirifirtrrtAl•Header RB 9 B ijili BEAM Size: 2-2x8,Sawn Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 klft,Trib=5.0 ft Point D=1.010, S=1.680 k @ 0.50 ft Design Summary 4 • - Max fb/Fb Ratio = 0.597. 1D 0.0750 S 0.1250 fb:Actual: 696.61 psi at 1.348 ft in Span#1 =� _ Fb:Allowable: 1,166.16 psi Load Comb: +D+S+H 0 0 Max fv/FvRatio= 0.265: 1 A A Tv:Actual: 45.67 psi at 4.655 ft in Span#1 Fv:Allowable: 172.50 psi 5250 n,2-2x6 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S WE H Downward L+Lr+S 0.038 in Downward Total 0.060 in Left Support 1.11 1.85 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.29 0.49 Live Load Defl Ratio 1671 >360 Total Defl Ratio 1044>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer Project ID: Seattle,WA 98109 Project Descr. (206)285 4512 Fax: (206)285 0618 Printed:6 MAR 2014,9:51AM Lic.#: KW-06002997 Licensee:c.t.engineering a E Header RB.17 B _ } !„. � a,,.. ...-Ojai . �i,�i,a',:+.. ,r�',a � . ,/ . a ,vrm..roHa �.j.i�; .�z:�. <F .'JAR' 1„3•L_ :,, BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Prll 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Point D=0.90, S=1.50k@0.50ft Design Summary S,. Max fb/Fb Ratio = 0.556. 1 D 0.0750 S 0.1250 fb:Actual: 648.22 psi at 1.488 ft in Span#1 Fb:Allowable: 1,166.16 psi Load Comb: +D+S+H • • Max fv/FvRatio= 0.254: 1 A A fv:Actual: 43.76 psi at 4.655 ft in Span#1 Fv:Allowable: 172.50 psi 5.250 rt 2-2x8 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L U SW E H Downward L+Lr+S 0.036 in Downward Total 0.057 in Left Support 1.01 1.69 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.28 0.47 Live Load Defl Ratio 1774>360 Total Deli Ratio 1108>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr. (206)285 4512 Fax (206)285 0618 Ported.6 X2014,9.22AM 3t` 7a' 32'§ z.L ra7t'> la� .�Aa„ „,„ # m -" _y „ Lic.# KW-06002997 Licensee:c.t.engineering Descri.tion PLAN 5.B Crawlspace Framing BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Prll 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Design Summary D 0.142 L 0.380 '.. Max fb/Fb Ratio = 0.823. 1 fb:Actual: 883.28 psi at 3.750 ft in Span#1 Fb:Allowable: 1,073.71 psi Load Comb: +D+L+H Max fv/FvRatio= 0.403: 1 A A fv:Actual: 72.63 psi at 0.000 ft in Span#1 Fv:Allowable: 180.00 psi 7.50 ft.4x10 Load Comb: +D+L+H Max Deflections Max Reactions (k) D 1. I S w E H Downward L+Lr+S 0.074 in Downward Total 0.101 in Left Support 0.53 1.43 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.53 1.43 Live Load Defl Ratio 1222>360 Total Dell Ratio 888>180 TJI JOISTS and RAFTERS Code Code 1 Code SIgpest Suggest Suggest_Lpick L IICk LpIck_l Lpick Joist b _ d Spa. LL DL ' M max V max EI L fb _L fv L TL240 L LL360 L max TL deft..I LL defl. L TL360 L LL480 L max ':TL dell.TL den.LL deft,i LL deft. size& rade width In de th(In.) (In.) ( sq.(p_.2 (ft-lbs) (�_L (psi) ._ (ft.) _..._. _ (ft•.) _a.__-__ 9 ( ) p ssi _(ft.)-_J2.1-_. �_(n.L___-_Lf)-__._....Lft:)_-__: (t.) .._22)._.._ratio __Sin._,i.ratio- 5. 4_.._360.._._._.3_- -_- _5"TJI 110 1.75 9.519.2 40 15 2380 1220 1.40E+08 14.71 27.73 15.23 14.80 14.71 0.661 0.48 13.31 13.45 i 1321' 0.44 360 0.32 495 -00.341 _._..__._ 9.5"TJI 110 1.75 9,5 16 40 15 2380 1220 1.40E+08 18.11 33.27 16,19--15.73 16.73 0.721 0.52 14,14 _ 14.29 114.141 0.47 360 0.34! 495 _._5 0 _.-_,_-_ 9.5" J 110 1.75 9.5 12 40 15 2380 1220 1.40E+08 18.61 44.36 17.82 17.31 17.31 0.791 0.58 15.57 15.73 15.57 0.52 360 0.381_ 495 9.5_TJI 110 1:75 9.5 9.6 40 152380. 1220 1.40E+08 20.80 55.45 19,19 18,64 18.84 0.85 0,62 16.77 16.94" 16.77 0.56 360 0.411 495 9.5"TJI 110 1.75---9 5 19.2 40 10 2500 1220 1,57E+08 15.81 30,50 1834 15.37 15.37 0,641- 0.51 14.27 13.97 , 13 97 0.44 384 0,36 480 9.5"TJI 110 1.75" 9.5 16 40 10, 2500 1220 :1.57E+08„ '1742 13160 17.38 - 16134 18.34 0.68 0.5415.17 14 84 ,,,' -,14.44 0.46 384 0.37 rl''480 9.5"TJI-110 1.75 9.5 12 40 10 2500 1220 1.57E+08 20.00 48.80 19,11 17.98 17.98_ 0.751 0.60 16,69 16 34 18.34 0 51 384 0.411 480 - 9.5"TJI 110_ 1.75 _ 9,5__9.6 40 10 2500 1220 1,57E+08•_22.36`61.00 20,58 19,37 19.37 0.811__ 0.6517.98 17 60 17.130 0.55 384 0.444_•-480.1- 480 .444_•- .1 ___._.__ 5"TJI 210 2.0625 9.5 19.2 40 10 3000 1330 1.87E+08 17.32 33.25 17.32 16.30 18.30 0.681 09. ..54 -15 13 14 81 :14.81 0.48 384 0.371 480 9,5"TJI 210 2.0625 9.5 161 40 10 3000 1330 1,87E+08 18.97 '39.90 18.40 17.32 1 17.32 0.72 0.58 16.08 ' -;15 74 - 1674- 0 ;;0.49 384 0.39 480 y9 5 TJI•210 2.0625 9,5 12 40 10 3000 1330 1.87E+08 21.91 53.20 2126 19,0619.06_ 0.79' 0.64 17.70 17,32 17.32 0,54 384 0.431 480 _, 9,51TJI 210 2,0625 9.5 9.6 40 10_ 3000 1,87 1330 E+08 24.49 66.50 21.82 20.53- 20.53 0.881 0.68 19.06 18.66 18.813 0.58 384 .47 0 480 9.5"TJI 230 2.3125 9.5 19.2 40 10 3330 1330 2.06E+08 18.25 33.25 1789 16.83 18.83 0.701 0.56 15.63 15.29 '16.29 0.48 384 0.38E 480 9.5"TJI230 2.3125 15 16 40 10 3330 1330 :2.06E+08'--> 19,99 39.90 .;19.01 17.89 17:89 0.75 160 16,60 16.25:-,'016,2810.51 384 0,41 480 9.5" 5 TJI 230 2 3125 9 12 40 10 3330 1330 2.06E+08 23.08 53.20 20.92 19.69 19.89 0.824__ 0.66 18.28 17.89 '1 89 0,56 384 0,451 480 9.5"TJI 2.3125 9.5 9.6 40 10 3330 1330 2,06E+08 25.81 66.50 22.54 21.21 21.21 - -0,881 0.71 -19.69 19.27 19.27 0.60 384 0.481 480 �.--- _ 11.875"TJI 110 1.75 11.875 19.2 40 10 3160 1560 2.67E+08 17.78 39 OOy 19.50 18.35 17.78 0.671 0.54 17.04 16 67 1_6.8.7 0.52 384 0.421 480 11,875"T.11110 175 11.875 16ri 40 10 3160.' 1560 ;2.67E+08 19,47 -::46.80 . 20:72 19650 19.47 081 0.65 18.10' 17.7211;1e4, ;045 384 044 `480 11,875"TJI 110 1.75 11.875 12 40 10 3160 1560 4,67E+08 22.49 62.40 22,81 21.46 21.413 0.894 0.72 19.93 19.50 19.50' 0,61 384 0A91_ 480 11.875"TJI 110 7.75 11.875 9.6 40 10 3160 1560 2.87E+08 25.14 78.00 24.57 23.12 23.12 0,981 0.77`-_ 21.46 21.01 - ',21.01' 0.66 384 0.531 480 ..__ _1.--_ t -- .._.1.-__._ 11.875"TJI 210 2.0625 11.875 19.2 40 10 3795 1655 3.15E+08 19.48 41 38 20.61 19.39 19.39 0.811 0.65 18.00 17.62 17.132 0.55 384 0.44 1 480 11.875'TJI 210 2.0625 11:875 ; 16 40 10 . 3795 1655 3.15E+08 21.34 .':149.65 .21.90 2041 2041 0.86 ` 0,69 19.13 18/2 ,,, 6 - 10:59 384 0.47 ':480 11.875"TJI 210 2.0825 11.875 12 40 10 3795 1655 8.15E+08 24.64 66.20 24.10 22.68 22.88 0.95 0.76 21.05 20.61 ,'20.81 0.64 384 0.521 480 11.875"TJI 210 2.0625 11.875 9.6 40 10 3795 1655 3.15E+08 27.55 82.75 25.96 24.43 24.43 1.02 0.81 22.68 22.20 22.20 0.69 384 0.551 T 480 11.875"TJI 230 2.3125 11.875 19.2 40 10 4215 1655 3.47E+08 20.53 41.38 21.28 20.03 20.03 0.831 0.67 18.59 18.20 -- 18.20 0.57 384 0.45 480 11,875"TJI 230 2.3125 11,875, 16' 4D 10 4215' -1655 3.47E+08 ..22.49 ' :49,65 22.62 „.21.28 21.28 0.89 ,0.71 1916 . .19.3419%40, 0.60 384 0.48 480 11.875"TJI 230 2.3125 11.875 12 40 10 4215 1655 3.47E+08 25.97 66.20 24.89 23.42 23.42 0.981 0.78 21.74 21.28 21.29: 0.67 384 0.531 480 11.875"TJI 230 2_3125 11.875 9.6 40 10 4215 1655 3.47E+08 29.03 82.75 28.81 25,23 26.23 1,05 0,84 23,42 22,93 22.93 0.72 384 0.571_ 480 11.875"RFPI 400 2.0625 11.875 19.2 40 10 4315 1480 3,30E+08 20.77 37 00 20.93 19.69 19.89 0.821 0,66 18.28 17.89 '17.89 0,56 384 0,451 480 11.875"RFPI 400 2.0625' '11.876- 16 40 10 4315 1480 .3,30E+08' 22,76 '.44,40 -22,24 20:93 -20193 0:87 w 0.77 21.38 29 91 ,.20.93 '0.69 384; 0A8 480 11.875"RFPI 400 2.0625 11.875 12 40 10 4315 1480 3.30E+08 26.28 59.20 24.48 23.03 23.03 0.96 0.77 21.38 20.93 .20 93 0.65 384I 0.52I 480 11.875"RFPI 400 2.0625 11.875 9.6 40 10 4315 1480 3.30E+08 29.38 74.00 26.37 24.81 24.81 1.031 0.83 23.03 22.54 22.54 0.701 384T 0.561 480 Page 1 D+L+S CT814051.4015.2 Twin Creek I LOAD CASE (12.12) (BASED ON ANSI/AFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ks 1.00 Design Buckling Factor D+L+S c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 Cf(Fb) Cf(Fc) 1997 NDS Cb (Vedas) > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NDS 3.9.2 Maz.Wall duration duration factor factor use Stud Grade Width Depth Spedng HeIgM Laid Vert.Load Hor.Load em 1.0 Load®Plate Cd(Fb)Cd(Fc) Cf Cf Cr Fb Fe perp Fe E Fb' Fe perp' Fe• Fce F'c fc fe F'c tb ib/ In. In. In. 6. PP pot pit (Fb) (Fe) Psi Psi Psi Psi Psi psi Pal Psi Pd Psi psi Fb'(1-fefFee) H-F Stud 1.5 3.5 16 7.7083 28.4 1730 0.9916 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 508 968 515.42 441.22 439,37 1.00 0,00 0.000 H-F Stud 1.5 3.5 16 9 30.9 1340 0.9966 1993.4 1.00 1.15 1.1 1.05 1.15 875 405 800 1,200,000 854 508 968 378.09 340.90 340.32 1.00 0.00 0.000 H-F Stud 1.5 3.5 12 9 30.9 1785 0.9947 2657.8 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 968 376.09' 340.90 340.00 1.00 0.00 0.000 H-F Stud 1.5 3.5 18 825 28.3 1550 0.9921 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 968 449.95 395.22 393.65 1.00 0.00 0.000 H-F Stud 1.5 3.5 12 8.25 28.3 2070 0.9953 2857.8 1.00 1.15 1.1 1.05 1.15 875 405 800 1,200,000 854 506 968 449.95 39522 394.29 1.00 0.00 0.000 H-F Stud 1.5 3.5 8 8.25 28.3 3100 0.9921 3986.7 1.00 1.15 1.1 1.05 1.15 875 405 800 1,200,000 654 506 966 449.95 395.22 393.65 1.00 0.00 0.000 SPF Stud 1.5 3,5 16 7.7083 26.4 1695 0.9052 2091.8 1.00 1.15 1.1 1,05 1.15 675 425 725 1,200,000 854 531 875.438 515.42 431.52 430.48 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 9 30.9 1320 0.9944 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 378.09 336.17 335.24 1.00 0.00 0.000 SPF Stud 1.5 3.5 12 9 30.9 1760 0.9044 2789.1 1.00 1.15 1.1 1.05 1.15 875 425 725 1,200,000 854 531 875.438 378.09 336.17 335.24 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 8.25 28.3 1525 0.9957 2091.8 1.00 1.15 1.1 1.05 1.15 875 425 725 1,200,000 854 531 875.438 449.95 388.13 387.30 1.00 0.00 0.000 SPF Stud 1.5 3.5 12 8.25 28.3 2030 0.9925 2789.1 1.00 1.15 11 1.05 1.15 875 425 725 1,200,000 854 531 875.438 449.95 388.13 386.87 1.00 0.00 0.000 SPF Stud 1.5 3.5 8 8.25 28.3 3050 0.9957 4183.8 1.00 1.15 1.1 1.05 1.15 575 425 725 1,200,000 854 531 875.438 449.95 388.13 387.30 1.00 0.00 0.000 H-F 02 1.5 5.5 16 7.7063 16.8 3132 0.2408 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 506 1644.5 1375.83 1031.58 506.18 0.49 0.00 0.000 H-F 02 1.5 5.5 16 9 19.8 3132 0.3852 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 508 1844.5 1011.45 837.57 506.18 0.60 0.00 0.000 H-F 02 1.5 5.5 16 8.25 18.0 3132 0.2858 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 508 1644.5 1203.70 948.77 506.18 0.53 0.00 0.000 SPF 02 1.5 5.5 16 7.7083 18.8 3287 0.2737 3267.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1484.89 1015.45 531.23 0.52 0.00 0.000 SPF 92 1.5 5.5 18 9 19.6 3287 0.3905 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1089.25 850.16 531.23 0.82 0.00 0.000 SPF 92 1.5 5,5 16 825 18.0 3287 0.3155 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1296.30 945.38 531.23 0.56 0.00 0.000 SPF Stud 1.5 3.5 16 14.57 50.0 545 0 0.9913 2091.8 1.00 1.15 1.1 1.05 1.15 875 425 725 1,200,000 854 531 875.438 144.28 139.02 138.41 1.00 0.00 0.000 SPF 82 1.5 5.5 18 19 41.5 1450 0' 0.9917 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 244.40 235.32 234.34 1.00 0.00 0.000 H-F02 1.5 5.5 18 19 41.5 1360 0 0.9969 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 506 1644.5 226.04 220.14 219.80 1.00 0.00 0.000 Page 1 D+L+W CT#14051-40182 Twin Creek I LOAD CASE (12-13) (BASED ON ANSIIAFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling Factor D+L+W c 0.80(Constant)> Section 3.7.1.5 J Cr KcE 0.30(Constant)> Section 3.7.1.5 I Cf(Fb) Cf(Fc) 1997 NDS Cb (Varies > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NDS 3.9.2 Max.Wall duration duration factor factor use Stud Grade Width Depth Spadnq Height' Lei,Vert,Load Hor.Load u-1.0 Load a Plate Cd(Pb)Cd(Fc) Cf Cf Cr'' Fb Fc perp Fc E Fb' Fc perp' Fc• Fee Pc fc fclF'c lb fa/ In. In. In. 0. p0 psf pit (Fb) (Fe) psi psi psi psi psi psi Pei psi psi pal psi Fb'•(1-fc/Fee) H-F Stud 1.5 3.5 16 7.7083 20.4 1075 9.71 0.9951 1993.4 1.80 1.00 1.1 1,05 1.15 875 405_ 800 1,200,000 1,358 508 840 515.42 427.08 273.02 0.84 376.78 0.586 H-F Stud 1.5 3.5 18 9 30.9 755 8.48 0.9942 1993.4 1.60 1.00 1.1_1.05 1.15 875 405 800 1,200,000 1,306 508 840 378.09 333.99 191.75 0.57 447.52 0.665 H-F Stud 1.5 3.5 12 9 30.9 1140 8.48 0.9998 2657.8 1.80 1.00 1.1 1.05 1.15 875 405 800 1,200,000 1,368 506 840 378.09 333.99 217.14 0.65 335.64 0.577 H-F Stud 1.5 3.5 10 8.25 28.3 970 8.13 0.9943 1993.4 1.80 1.00 1.1 1.05 1.15 875 405 800 1,200,000 1,366 506 840 449.95 384.87 246.35 0.84 381.37 0.585 H-F Stud 1.5 3.5 12 8.25 28.3 1425 8.13 0.9974 2657.5 1.80 1.00 1.1 1.05 1.15 875 405 600 1,200,000 1,366 500 840 449.95 384.87 271.43 0.71 271.03 0.500 H-F Stud 1.5 3.5 8 825 28.3 2355 8.13 0.9981 3988.7 1.80 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 840 449.95 384.87 299.05 0.78 180.89 0.394 SPF Stud 1.5 3.5 16 7.7083 20.4 1080 9.71 0.9971 2091.8 1.80 1.00 1.1 1.05 1.15 875 425 725 1,200,000 1,366 531 781.25 515.42 415.53 289.21 0.85 376.78 0.577 OFF Stud 1.5 3.5 16 9 30.9 700 8.48 0.9115 2091.8 1.60 1.00 1.1 1.05 1.15 875 425 725 1,200,000 1,386 531 781.25 378.09 328.30 177.78 0.54 447.52 0.618 SPF Stud 1.5 3.5 12 9 30.9 1125 8.46 0.9931 2789.1 1.80 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 781.25 378.09 328.30 214.29 0.65 335.64 0.587 SPF Stud 1.5 3.5 16 825 28.3 980 8.13 0.9970 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 449.95 378.35 243.81 0.85 381.37 0.577 SPF Stud 1.5 3.5 12 8.25 28.3 1405 8.13 0.9952 2789.1 1.80 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 449.95 376.35 267.62 0.71 271.03 0.490 SPF Stud 1.5 3.5 8 8.25 28.3 2320 8.13 0.9958 4183.8 1.00 1.00 1.1 1.05 1.15 875 425 725 1,200,000 1,388 531 78125 449.95 378.35 294.80 0.78 180.89 0.383 H-F#2 1.5 5.5 16 7.7063 18.9 3132 9.71 0.3909 3132.4 1.60 1.00 1.3 1.10_1.15 550 405 1300_1,300,000 2,033 506 1430 1378.83 969.91 506.18 0.52 152.58 0.119 H-F#2 1.5 5.5 16 9 19.0 3132 8.48 0.5743 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 508 1430 1011.45 804.50 508.18 0.63 181.23 0.178 H-F#2 1.5 5.5 16 825 18.6 3132 8.13 0.4411 3132.4 1.80 1.00 1.3 1.10 1.15 850 ' 405 1300 1,300,000 2,033 508 1430 1203.70 899.13 508.18 0.56 146.34 0.124 SPF#2 1.5 5.5 16 7.7083 16.8 3287 9.71 0.4327 3287.1 1.80 1.00 1.3 1.10 1.15 875 ' 425 1150 1,400,000 2,093 531 1265 1484.89 940.30 531.23 0.56 152.58 0.114 SPF#2 1.5 5.5 16 9 19.8 3287 8.48 0.6033 3287.1 1.80 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1285 1069.25 806.08 531.23 0.86 181.23 0.189 SPF#2 1.5 5.5 16 8.25 18.0 3287 8.13 0.4790 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1265 1296.30 884.89 531.23 0.80 148.34 0.118 SPF Stud 1.5 3.5 18 14.57 50.0 70 8.46 0.9957 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,388 531 781.25 144.26 138.14 17.78 0.13#88648 0.979 SPF#2 1.5 5.5 18 19 41.5 680 9.71 0.9941 3287.1 1.80 1.00 1.3 1.10 1.15 675 425 1150 1,400,000 2,093 531 1265 244.40 233.80 106.87 0.46 927.02 0.786 H-F#2 1.5 5.5 16 19 41.5 800 9.71 0.9921 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 508 1430 228.94 219.02 96.97 0.44 927.02 0.796 Page 2 i�Y m m T T T T T m T T -,,m aa�Y!�! i aT!iT! p¢ Z ^N C N N a N N N a w m N�0 0 0 g 0 g g.,t 6 6 G O. 6 6 1 a N: N ... NNN ...... NNN.Nl 11 0 0+O O O 8 N 0 285 v Na N ::NNNN ulNNwN N::::: 4 S -10 �m 3e 44 0 444 000 ....... mNON00'Q V V Y i' mmmm 4 m . m ' mm p�p m m vw o g i a a mm V Nm W a.5NYN1Nmm W NYN1Nmm5 ^; >>>G N w w l N1� N1� r (J44 !a++ O m 0 m m 0 N m O 0 a O m m 0 0 0 0 $ O++ G Om> Cm,O uW:100♦ :,WmlDw NN m O l0 8mm O VVr NNN q050qqpp OaaOOOppr g x m 0 PP -m am aaa amam mm ai m m mmlio • t u0+ uo� w+wwg&- 00,wtt+ S. 0 0 0 0 0 0 opo 0 0 0 0 0 0 0 0 0 0 0 0° z Ti! i :t1 NNstatist m•mm•ppim- mm i m 'N +t N Eta' Or .W I�1NNtON Os iial u _ O N ft Y N +O + p mr 1. +O O NNO +++ S.moaa um °NOO NtV O ±Vj NN 0ma+O mtVuu. -4 p C O 0 00 0 00o Soo 88000c gt0000 '" l m o O [� 3 0 2 .. N NNN NNN NNNNNN NNNNNN 9=q, v a 1:',Z: u w + 1414 ( u u u ++++++ L.:.-+++ O i PT T M—0 D ' G G C o G. G o o 7 0 Q O O N 0 0 0 0 0 0 S S N N N N S N N N N N v O O Z q N N N N O N N N N N NN N N N N N N 0. __ y O v EN 2 MI !: : 55N►a t• N NNNNNN Saa00W00a+ N +++ VVNNNN $0000008 m 8S '" too 088 m _ ___ ___ __ __ _ A J A N 71;1.7. iJ 1i W i.-u1±411.-s, N O Q N IJ IJ Q 88 o0 80 088 8Gmo088 00N008Q81m z 808 §• $8§ §§§ 8$$8s8 0080038 on N NM +�W N N N N N N 7.,', +++ W+W+�q1qJJ+++1 Q .s�n' -Et $• EEE 222 0000 Cml 000 00 00 0 + T uop Np�1 C W p� + N V+ 888 ""`N'u"N" 88$d8w? ' + o�> t222 tt p-- VVNVV Op BopOgB,Sm a$ W 1►1 N 0 NN;"): tit! ow4�W'4 aW CUOIO W 00 • �� + y a a Nm O a 484 t t t 0 V+ 2244'4412. r at ♦N N 2 2. S+4 a m m O 0 N ♦O x 8 fN!1 p o N w N N N a a W N N S a a N + a N + O OaOa O S 0 W u yyyy1.►i m V V O N O N O N O V 0 0 0 0 0+ LA S S O O+ Z + a N N O O N V V O W W W V V N Namasa +0 mSVNNN 33 3NtN8NuNN4Na. i75.` O EGGmOm OONNO 5t +: . O O O O o 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 0 1 ;;t1 ;13 MI Hit 0 V O+0♦V• V 0 1.0..t V Y NN ►5111 ►m+ g;mNtm mOVOYtV�a V V 0+N OO1�+N O , NN tut 'rat O W V♦N V 010.1 V allo T Q i poo 000 O o O O O O o m Om O 0 0 o 0 0 0 SM m 4274 .W}m 8 S O V C 0 S+O+t S Z. D+L+S+,SW CT#14081-4015.2 Twin Creak I LOAD CASE I (12-15) I (BASED ON ANSI/AFBPA NOS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Bucking Factor D+L+411+W/2 c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 _ Cf(Fb) Cf(Fc) 1997 NOS Cb (Varies) > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fe) Eq.3.7-1 NOS 3.9.2 Max.Waf duration duration factor factor use Stud Grade Width Depth Spadng Height Le/d Vert.Load Hor.Load um 1.0 Load©Plate Cd(Fb)Cd(Fc) Cf Cf Cr Fb -Fe perp Fc E Fb' Fe perp' Fc• Fee Pc fc Ic/P c fb lb/ In. In. In. ft. pit pat pit (Fb) (Fc) _ psi psi psi psi pd psi psi Pell psi psi psi Fb'(1-1e/Fce) H-F Stud 1.5 3,5 16 7.7083 26.4 1335 4.855 0.9935 1993.4 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,368 506 968 515.42 441.22 339.05 0.77 188.39 0.403 H-F Stud 1.5 3.5 16 9 30.9 970 4.23 0.9923 1993.4 1.60 1.15 1.1 1.05 1.15_ 675 405 000 1,200,000 1,388 506 988 378.09 340.90 248.35 0.72 223.78 0.470 H-F Stud 1.5 3.5 12 9 30.9 1380 4.23 0.9978 2857,8 1.80 1,15 1.1 1.05 1.16 675 405 800 1,200,000 1,388 506 988 378.09 340.90 262.88 0.77 187.82 0.403 H-F Stud 1.5 3.5 18 825 28.3 1195 4.065 0.9960 1993.4 1.60_ 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,386 508 966 449.95 395.22 303.49 0.77 180.69 0.406 H-F Stud 1.5 3.5 12 8.25 26.3 1880 4.085 0.9990 2657.8 1.80 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,366 506 968 449.95 395.22 320.00 0.61 135.51 0.343 H-F Stud 1.5 3.5 8 8.25 28.3 2885 4.085 0.9999 3986.7 1.80 1.15 1.1 1.05 1.15 675 - 405 800 1,200,000 1,386 506 988 449.95 395.22 338.41 0.88 90.34 0.267 SPF Stud 1.5 3.5 18 7.7053 26.4 1315 4.855 0.9907 2091.8 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,388 531 875.438 515.42 431.52 333.97 0.77 188.39 0.392 SPF Stud 1.5 3.5 18 9 30.9 965 423 0.9970 2091.8 1.00 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,388 531 875.438 378.09 336.17 245.08 0.73 223.76 0.466 SPF Stud 1.5 3.5 12 9 30.9 1370 4.23 0.9990 2789.1 1.80 1.15 1.1 1.05 1.15_675 425 725 1,200,000 1,388 531 875.438 378.09 338.17 280.95 0.78 187.82 0.398 OFF Stud 1.5 3.5 18 8.25 28,3 1180 4.065 0.9922 2091.8 1.80 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,388 531 875.438 449.95 388.13 299.86 0.77 180.89 0.398 SPF Stud 1.5 3.5 12 8.25 28.3 1880 4.085 0.9973 2789.1 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,386 531 875.438 449.95 388.13 316.19 0.81 135.51 0.334 SPF Stud 1.5 3.5 8 8.25 28.3 2830 4.085 0.9969 , 4183.8 1.80 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,308 531 075.438 449.95 388,13 333.97 0.86 90.34 0.257 H-F#2 1.5 5.5 18 7.7083 16.8 3132 4.855 0.3001 3132.4 1.60 1.15 1.3 1.10 1.15 850_ 405 1300 1,300,000 2,033 508 1644.5 1370.83 1031.58 506.18 0.49 76.29 0.059 H-F#2 1.5 5.5 18 9 19.8 3132 4.23 0.4544 3132.4 1.60 1.15 1.3'1.10 1.15 850 405 1300 1,300.000 2,033 506 1644.5 1011.45 837.57 506.18 0.60 90.61 0.089 H-F 02 1.5 5.5 18 8.25 18.0 3132 4.085 0.3479 3132.4 1.80 1.15 1.3 -1.10 1.15 850 405 1300 1,300,000 2,033 508 1844.5 1203.70 948.77 506.18 0.53 73.17 0.082 SPF#2 1.5 5.5 18 7.7083 16.8 3287 4.855 0.3304 3287.1 1.80 1.15 1.3 1.10 1.15 875 425 _1150'1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 76.29 0.057 SPF 02 1.5 5.5 16 8 19.6 3287 4.23 0.4750 3287.1 1.80 1.15 1.3 1.10 1.15 875 - 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.10 531.23 0.82 90.81 0.085 SPF#2 1.5 5.5 18 8.25 18.0 3287 4.065 0.3750 .3287.1 1.80 1.15 1.3 1.10 1.15 575 425 1150 1,400,000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 73.17 0.059 SPF Stud 1.5 3.5 16 14.57 50.0 255 4.23 0.9959 2091.8 1.80 1.15 1.1 1.05 1.15 875 425 725 '1,200,000 1,366 531 875.438 144.28 139.02 64.78 0.47 586.43 0.779 SPF#2 1.5 5.5 16 19 41.5 935 4.855 0.9925 3287.1 1.60 1.15 1.3 1.10 1.15_ 675 425 1150 1,400,000 2,093 531 1454.75 244.40 235.32 151.11 0.64 463.51 0.580 H-F#2 1.5 5.5 18 19 41.5 585 4.855 0.9970 3132.4 1.60 1.15 1,3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1844.5 228.94 220.14 139.80 0.64 463.51 0.594 Page 4 7 7 079 -t TT70007 T T TT 1 �1 zn amm nn mn PP W PPP Wan WPW P G] aaaaa� €€ €fi€ a NN N wNN NN N NNf!NNN 1JN NN gNgN? = O O O C v 2eag ysysS tvgNN N NNN NNN NIJ�NNNN wNfJ�N tINN� vvS.t' yyma 38c I8 a W p W P W W O N P N W W O N P N O W m V V V i" 8 o V V V V = WPW 0 t moo & gaga O g V 8.3 NeY N N N O e Y N N N 0 0 g = >>>g N r W ++ O O P O O 0 0 0 0 0 0 0 0 0 0 0 0 0 w.�+q NN . ouoa ouou WWWOPi W1.1.1012>W1.1.1012>a a 0 o N N O P ++W p N a$ O N ° .o a $v V 884 0 8.+0.$5 88.N II 8 P m PP V� mm V V J V V V V V V V V V V V V V V V V- • ,o 2 r OO O moo pp pm a05p0 m00a a am�0�pp 0�0�pp 0 v 88 0+ 442 A N£. O+W E>a E V p+Y g Y , W �_v G +o V N N O IJ r � gm NN + aNNNNN W N+Ia1++ pa 00 N o N +W+ +V$V m O j N N N W +O+. g v O N 0 0 s. a+ a aaa O+Cs p c s gg g goo 000 000008 08$008 Q L a 2 o i N N 0 N N N N N N N N N N N N ,5;7 ,51z;,1 n o y a +.'o .+o. 800 888888 555558241 NN Nw5 5NN NwNNNN NwNNNw e7° � O N 0 n EEE 0 V V V P J 0 0 0 N N N N 0 O N N N N O g 0 N N N N N N N N S P s r oa a a A a a a aaa a a a a o p a NN 611 808 NNNNNN BNNNNNl7 N + +W+ 1N11N1N111Ni11NU 8888 n a�, -""8""5-" $O$ O IU O IJ O N IU IV IJ IV IJ!J $O O O O$ $.$0$ 8...$$$$m $$ $ oo$ o$$ $$$$$$ $$$o.$'. RR N NN + NCN N NNN ++++++ _++++++7 Q n Yu P u4oiu Yuu gO$igg0a EIEE8mPP1 O Y , 8g ,, 8S8 88488m ii$i88 a Q a 1gVJ 1 i N a V V V V'V • m- f p r 0II990 utocAmmut 888848 888888 N ♦ p N N ♦8 as • W t It p O 2 III O> O O t O O+ O a a W Y N.1g S P O N O N O 0 41 Y 585883 555883 _ ?P NU �p y O N P N g N t w V 881188 m m O O+ N O O '° fv Z +N NL1in N{,�y,. N V O + aN N O0 pV V pO Y W YyV V eN� Ni3N O{O�NCC +q ;i j N wi+ 5 8 0 W I V EEE N N+OObP fmf NNN Gb0V PIJ PJlN W mm P w w w mos. 111 0 V P W++O+V PPP P O O P PPPPPP 000000 g.o N O N N5 Y O y WV W POO N V NPP N ° O O t W O ♦0 g V+e1 a a w V+N a P W a 2t w N N V O N V O O V N w k liO W t Y kt aa O .O O moo O O ..O commocom +g o BS 8S2 N$maa i.1 L'w'u Virg WO N+N SU. 88.8R. • C T ENGINEERING • 180 Nickerson St { p Suitt 302 SeattleProject: + �r @ I N C. 98109,WA 48109 Date: (206) 285-4512 C)N6� � �n��"}Lv � L�7� Page NumberFAX: (206)2854618 • -.C.Lkt. ? - � o . GS 1„,i,4 ,,::.. 3 s • • � . v A � / a: :Orr'. i _,� !`! s . M1t ,fi ]]��j � nig�� 1� 7— 1't ( a SL ; i i CR ' .", . : -:. . .: '':' '': ,;. ' ','Ji. ;•.: .'1. ..,...;:; ,,FI.; : 414.i.. . Eull 1,.";_ .;::;.';,,,, ',,_,..!-:;_.,;,.__,',1'.::,,,:;ii, .�1,, • ; _ wTe . L - G �. V • • i k law o a . • - . , - ; ) •33 3 F .,F • C'z '---. . a _ a _ q � i 5 -4 a t. F � f L d C. # i ti .._,. y "F7'7"_ t 3 8 .. !r S. M . . _ € 233 Vs( , , a Structural Engineersr � ' �2.- iim ENGINEERING ' 150 gidteneat St. Suite 302 / i D Seattle.WA . 98109 / Pzuject: --77-- '' '-='' — ' ' l. d. Date (206)3$ .45L2 MX.: Client Page Number: (206)285-0515 ' $11-°A' illi APO!, psr - 04 • - ( /50r) iv.- 64-00 ggirl. Naor OA 0-5)-/S) -=-12o fiR--.2... oir/tVait7f6 ) ler 30C- Witt, .7-- jeer ..A j) / ) (4 $) '2-`' !..!,— ...,t,- 10.0 pkf- .5t2 2024 041sz — t4rip ....._ - _____ __?-1,41ro ... isrelosre, . - . skit.. tor.: 4-04(404,-) 4.1003 .s., crio eis,Y( 2.rtsv).4s-cps itc iLi- *, 7* , . t .112.71.aNsit, i piT_ Oa + My il- ce,5 ..7..- 4609g. 11"---11••1 .e x v,-- k I.!r 1- a c. 21s4' ----iya 1 z , .. ! . - 2.ilb 130" sifori. C , • . Is . ., Structural Engineers . ! Design Maps Summary Report Page 1 of 1 LIS Design Maps Summary Report User—Specified Input Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 45.43123°N, 122.77149°W Site Soil Classification Site Class D —"Stiff Soil" Risk Category I/II/III �d"`�w. 4a�' °afire _,, `,�`� 8- n4"� ..... a z r�a _ qtr .t,*,, ,tro ,k,,,,... ,..,..,. r„,, + - t 1,, -4 ,.,:,:lgat-r, r '`,,,t'S. .*4,t---,f'''''';--r° :.-4. -::,4,,„....t. ''''''' ',..,.'" 0- ,:',1„ii?-;)';''.'5'-'74'''FA' '-li:' , ,. . a 4."',,.- 4'.. :, ', , V` A'$ e' • itit pax - ukie s .'=4 44 ''' '4!'':.''- tv,rt �; �� A USGS—Provided Output Ss= 0.972 g SMs = 1.080 g S°s = 0.720 g S: = 0.4238 S,1 = 0.667 g SDI = 0.445 g nd Si va For information on how the SS alues above have been calculated from probabilistic(risk-targeted)and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEHRP"building code reference document. ag MCE5 Response Spectrum esignl IResponlse Spectrum 1.150. 1 010 0,220.12 054 aaa 0.54 A$4 3 0.42 SI 0. v.aa 0420.24 0.22 au 011 0 0.00 .00 0.00 0.20 0.uk d 50 b 00 1.se i_2 3 1.40 1.50 1.;a 4.txt 0.20 h 1. 1 1.111 i_ Lit 200 Period, tow) Paid.T(sea) Although this information is a product of the U.S.Geological Survey,we provide no warranty,expressed or implied,as to the accuracy of the data contained therein.This tool is not a substitute for technical subject matter knowledge. http://ehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?template=minimal&latit... 9/14/2015 2012 IBC SEISMIC OVERVIEW SHEET TITLE: 2012 IBC SEISMIC OVERVIEW CT PROJECT#: Elevation B Step# 2012 IBC ASCE 7-10 1. RISK CATEGORY TYPE=II Table 1604.5 Table 1.5-1 OCCUPANCY CATEGORY 2. IMPORTANCE FACTOR IE 1 00 Section 1613.1 ->ASCE Table 1.5-2 3. Site Class-Per Geo.Engr. S.C. D :r Section 1613.3.5 Section 11.4.2/Ch.20 Table 1613.3.3(2) Table 20.3-1 4. 0.2 Sec.Spectral Response Ss 0 97 Figure 1613.3.1(1) Figure 22-1 5. 1.0 Sec.Spectral Response Si= 0 43 Figure 1613.3.1(2) Figure 22-2 Latitude= 45,46 N Longitude 122,89 W N/A _ (Or by ZIP code) (Or by ZIP code) http://earthquake.usgs.q ov/research/hazmaps/ htto://aeohazards.usus.00vklesianmaos/us/arelication.phD 6. Site Coefficient(short period) Fa 1 11 Figure 1613.3.3(1) Table 11.4-1 7. Site Coefficient(1.0 second) Fv 1,58, Figure 1613.3.3(2) Table 11.4-2 SMS=Fa*SS SMs= 1.08 EQ 16-37 EQ 11.4-1 SM,=F,,*Si SM1= 0.68 EQ 16-38 EQ 11.4-2 SDS=2/3*SMS SDS= 0.72 EQ 16-39 EQ 11.4-3 SD,=2/31°SM, SD,= 0.45 EQ 16-40 EQ 11.4-4 8. Seismic Design Category 0.2s SDCs= D Table 1613.3.5(1) Table 11.6-1 9. Seismic Design Category 1.Os SDC,= D Table 1613.3.5(2) Table 11.6-2 10. Seismic Design Category SDC= D Max. Max. 11. Wood structural panels :. - N/A Table 12.2-1 12. Response Modification Coef. R '.6'..6:::• •;1:],]i,;:',;•.:;,'•']:, N/A Table 12.2-1 13. Overstrength Factor Qo 30' N/A Table 12.2-1 14. Deflection Amplification Factor CD 40 N/A Table 12.2-1 15. Plan Structural Irregularities - No N/A Table 12.3-1 16. Vertical Structural Irregularities - No ' N/A Table 12.3-2 17. Permitted Procedure Equi Lateral Force - Table 12.6-1 Page 2 2012 IBC EQUIV.LAT.FORCE SHEET TITLE: 2012 IBC EQUIVALENT LATERAL FORCE PROCEDURE PER ASCE 7-10 CT PROJECT#: Elevation B Sos= 0.72 h„ = 18.00(ft) ............_................. SD1= 0.45 X = 0.75ASCE 7-05(Table 12.8-2) R= 6.5 C,= 0.020 ASCE 7-05(Table 12.8-2) IE= 1.0 T= 0.175 ASCE 7-05(EQ 12.8-7) S1= 0.43 k= 1ASCE 7-05(Section 12.8.3) T�= 6 ASCE 7-05(Section 11.4.5:Figure 22-15) Cs=sos/(R/IE) 0.111 W ASCE 7-05(EQ 12.8-2) Cs=SD1/(T*(R/IE)) (for T<TL) 0.399 W ASCE 7-05(EQ 12.8-3)(MAX.) Cs=(S01*T1)/(1-Z*(R/IE)) (for T>TL) 0.000 W ASCE 7-05(EQ 12.8-4)(MAX.) Cs=0.01 0.010 W ASCE 7-05(EQ 12.8-5)(MIN.) Cs=(0.5 S1)/(R/IE) 0.033 W ASCE 7-05(EQ 12.8-6)(MIN.if S1>0.6g) CONTROLLING DESIGN BASE SHEAR= 0.111 W VERTICAL DISTRIBUTION OF SEISMIC FORCES PER ASCE 7-10 SECTION 12.8.3 (EQ 12.8-11) (EQ 12.8-12) C„x= DIAPHR. Story Elevation Height AREA DL w; wj *hjk wX */7„k DESIGN SUM LEVEL Height (ft) h, (ft) (sqft) (ksf) (kips) (kips) Ew- Vi DESIGN Vi Roof - 18.001 18.00 1666 0.022' 36.652 659.7 0.58 3.88 3.88 2nd `.' 8.00 10.00_ 10.00 1712 0.028= 47.936 479.4 0.42 2.82 6.70 1st(base);, 10.00 0.00 SUM= 84.6 1139.1 1.00 6.70 E=V= 9.38(LRFD) E/1.4= 6.70(ASD) DIAPHRAGM FORCES PER ASCE 7-10 SECTION 12.10.1.1 (EQ 12.10-1) Design Fp„= DIAPHR. F, E Fj wr E w1 Fp„= EF;=wp„ 0.4*SDs*IE*wP 0.2*SDS*IE*wp LEVEL (kips) (kips) (kips) (kips) (kips) Ew, Max.FPX Fp„ Min. Roof 3.88 3.88 36.7 36.7 5.28 3.88 10.56 5.28 2nd 2.82 6.70 47.9 84.6 6.91 3.80 13.81 6.91 1st(base) 0.00 0.00 0.0 84.6 0.00 0.00 0.00 0.00 Page 3 ASCE 7-10 WIND Part2 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 2 CT PROJECT#: Elevation B NS E-W F-B SS 2012 IBC ASCE 7-10 Ridge Elevation(ft) 30 00 , =30.00'ft. Roof Plate Hl.= 18.00 18.00 Roof Mean Ht.= 24.00 24.00 ft. - - Building Width=.s 40 0 48 0','ft. V ult. Wind Speed 33.,ow 120 .ri 120:mph Figure 1809 Fig. 28.5-1Athru C Vasd. Wind Speed 3g.Gpr p, ,,��r mph (EQ 18-33) ExposureB B 6='y ,' 1.0 1.0+` N/A N/A Roof Type=QUipable0;!!],pbble: P830 A 286 ,'`28:0:psf Figure 28.6-1 P830 a= 4 6 4.6:psf Figure 28.8-1 P830 C 20 7 120.?psf Figure 28.6-1 P8300 47 4:7';psf Figure 28.8-1 N=.,.elOri:OiliA11466 Figure 28.6-1 Kr=. . 100 :t '100` Section 28.8 windward/lee-:':,4K:1:.00 a 1,00(Single Family Home) X•Kr,•I : 1 1 Ps=X•Kzt*I*pas= (Eq.28.8-1) P8A= 28.80 28.80 psf (LRFD) (Eq.28.8-1) Pee= 4.60 4.60 psf (LRFD) (Eq.28.6-1) Pac- 20.70 20.70 psf(LRFD) (Eq.28.6-1) Pao• 4.70 4.70 psf(LRFD) (Eq.28.6-1) PsAenv Csmogs= 24.7 24.7 psf (LRFD) Psa=,do..=.0.= 4.7 4.7 psf (LRFD) a- 4 4 Figure 28.6-1 2a= 8 8 width-2.2a= 24 32 MAIN WIND-ASCE 7-10 CHAPTER 28 PART 2 Areas(N-S) Areas(E-W) (N-S) (E-W) Wind(N-S)(LRFD) Wind(E-W) (LRFD) width factor roof-> 1.00 440: 1.00: 1.00 18 psf min. 16 psf min. width factor 2nd-> 1.00: 1Aq wind(LRFD)wind(LRFD) DIAPHR. Story Elevation Height AA As AC AD AA Aa A0 AD per 28.4.4 per 28.4.4 WIND SUM WIND SUM LEVEL Height (ft) hi(ft) h(ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) VI(N-S) V(N-S) VI(E-W) V(E-W) 30.00 12.0 0 192 0 288 0 192 0 384 Roof - 18.00 18.00 4.0 64 0 96 0 64 0 128 0 10.2 12.3 8.05 8.05 7.17 7.17 2nd 8.00 10.00 10.00 9.0 144 0 216 0 144 0 288 0 5.8 6.9 8.59 14.84 10.08 17.25 1st(base) 10.00 0.00 0.00 0 0.00 0.00 AF= 1000 AF= 1200 18.0 19.2 V(n-a)= 14.84 V(e-w)= 17.25 kips(LRFD) klps(LRFD) kips kips Page 4 ASCE 7-10 Part 1 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 1 CT PROJECT S: Elevation B SEE SEAW RAPID SOLUTION SPREADSHEET AND INSERT VALUES BELOW MAIN WIND-7-10 CHAPTER 28 PART 1 Wind(N-S) Wind(E-W) Min/Part 2(Max.) Min/Method 1(Max.) Wind(N-S)(LRFD) Wind(E-W)(LRFD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) Vi(N-S) V(N-S) Vi(E-W) V(E-V Vi(N-S) V(N-S) Vi(E-W) V(E-W) Roof - 18.00 18.00 0.00 0.00 0.00` 0.00 10.24 10.24 1229 12.29 2nd 8.00 10.00 10.00 0.00' 0.00 0.00; 0.00 5.76 16.00 6.91 19.20 1st(base) 10.00 0.00 0.00 V(n-s) 0.00 V(e-w)= 0.00 V(ns)= 16.00 V(e-w)= 19.20 kips kips kips(LRFD) kips(LRFD) DESIGN WIND-MinJPart 2/Part 1 ASD Wind(N-S)(LRFD) Wind(E-W)(LRFD) Wind(N-S)(ASD) Wind(E-W)(ASD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) VI(NS) V(N-S) Vi(E-W) V(E-W) Vi(N-S) V(NS) Vi(E-W) V(E-W) Roof 8 10 10 10.24 10.24 12.29 12.29 7.93 7.93 9.52 9.52 2nd 10 0 0 5.76 16.00 6.91 19.20 4.46 12.39 5.35 14.87 1st(base) 0 0 0 V(nap 16.00 V(e-w)= 19.20 V(na). 12.39 V(e-w)= 14.87 kips(LRFD) kips(LRFD) kips(ASD) kips(ASD) Part 1 Base Shear Part 2 Base Shear = 0.0 0.0 ratio ratio Page 5 SHEET TITLE: SDPWS SHEARWALL VALUES PER TABLE 4.3A CT PROJECT#: Elevation B SHEATHING THICKNESS %heating=7/16" NAIL SIZE nail size fl.131"dia X 2 5 long STUD SPECIES SPECIES ' ';or SPF' SPECIFIC GRAVITY S.G.= 0.13 ANCOR BOLT DIAMETER Anc.Bolt dia.= 0.625 ASD F.O.S. 2.0, SHEARWALL TYPE Table 4.3A Seismic Table 4.3A Wind 7/16"w/8d common V seismic V salloowable V wind V wallowable (15/32"values per (SDPWS-2008) modify per S.G. (SDPWS-2008) modify per S.G. footnote 2) (divide by 2.0 FOS) (divide by 2.0 FOS) (for ASD) (for ASD) — 0 1 0 1 P6TN 150:; 150 „ X50'; 150 P6 5201 242 730 339 P4760: 353 1065 495 P3 9801 456 1370', 637 P2 1280 595 i'' 1.1790. 832 2P4.. 1520: 707 2130 990 2P3 '1960' 911 2740: 1274 2P2....... 2560' 1190 . 3580; 1665 N.G. 10000 4650 10000 4650 GYPSUM THICKNESS ty,i„o= 1/2" NAIL SIZE nail size=•,-...-t 11471p6§;,,N0;6,-„TYpe.9.11p(willoiligimihilingilk Response Modification Coef. R= 6.5 SHEARWALL TYPE Table 2306.4.7 Seismic Wind 1/2"w/1 1/4"screw V allowable V sallowable V wallowable Blocked (PER 2009 IBC) modify G7 125 R>2 not allowed R>2 not allowed G4 150 R>2 not allowed R>2 not allowed 2G7 250 R>2 not allowed R>2 not allowed 2G4 300 R>2 not allowed R>2 not allowed 2G4 300 150 SHEET TITLE: LATERAL"N-S(front to back-up/down) CT PROJECT#: Elevation B Diaph.Level: Roof Panel Height 8'ft. Seismic V I= 3.88 kips Design Wind N-S V I- 7.93 kips Max.aspect 3,5 SDPWS Table 4.3.4 Sum Seismic V I= 3.88 kips Sum Wind N-S V I= 7.93 kips Min.Lwall= 2.29 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pt= 1.00 Table 4.3.3.5 Wind Wind E.Q. E,Q. p= 1.00 E.Q. E.Q. Wind Wind E,Q. E.Q. E.Q. E.Q, Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL eff. C o w dl V level V abv.V level V abv. 2w/h v i Type Type v i OTM ROTM Unet Ueum OTM ROTM Unet Usum Usum HD (sqft) (ft) (ft) (kif) (kip) (kip) (kip) (kip) p (plf) (pit) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext. A.T1 416 15.0 46,0 . 1,00' 0.15 1.98 0.00 0.97 0.00 1.00 1.00 65 P6TN P6TN 132 7.76 26.12 -1.28 -1.28 15.86 31.05 -1.06 -1.06 -1.06 Ext, A.T2 139 5,0 46.0 .1,00 , 0.15 0.66 0.00 0.32 0.00 1.00 1.00 65 P6TN P6TN 132 2.59 8.71 -1.41 -1.41 5.29 10.35 -1.17 -1.17 -1.17 Ext.'. A.T3 .;. 278' 10.0 ' 46 0 "1,00 0.15 1.32 0.00 0.65 0.00 1.00 1.00 65 P6TN P6TN 132 5.17 17.41 -1.31 -1.31 10.58 20.70 -1.08 -1.08 -1.08 0 ' 0.0, 0,0' .1.00- 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0 0.0 0.0,= 1.00• 0.001 0.00 0.00 0.00 0.00 1,00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0,0 ..'0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ; 0 ` 0.0.. 0.0 1.00--:.0 00 0,00 0.00 0.00 0.00 1.00 0.00 0-- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0; 0,0 1,00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o 0.0 ' 0.0 • 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 • 0.0 0.0 1.00. -0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ext 'B.T1 150: 5,0 47.0 1.00 •0.15' 0.71 0.00 0.35 0.00 1.00 1.00 70 P6TN P6TN 143 2.80 8.90 -1.41 -1.41 5.72 10.58 -1.12 -1.12 -1.12 Ext. B.T2• 300 10,0 ; 47,0 1'.004-.(0,15! 1,43 0.00 0.70 0.00 1.00 1.00 70 P6TN P6TN 143 5,59 17.79 -1.31 -1.31 11.43 21.15 -1.04 -1.04 -1.04 Ext B?3 143 : 4,8 47,0 1,00 ' 0.15 0,68 0.00 0.33 0.00 1.00 1.00 70 P6TN P6TN 143 2.66 8.45 -1.42 -1.42 5.43 10.05 -1.13 -1.13 -1.13 Ext B,T4 240 8.0. 47.0 .1.00 0.15 1.14 0.00 0.58 0.00 1.00 1.00 70 P6TN P6TN 143 4.47 14.23 -1.33 -1.33 9.15 18.92 -1.08 -1.06 -1.06 0 0.0 0,0 •1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 : 0.0 0.0 ".;1.00 0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0: '0.0 0.0 '1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 .,0.0,-,.;1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0,0 .,i 0.0-1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 ' 1,00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 • 0 0.0 0.0 1,00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 i 0.0 0.0 '1.00 • 0,00'i 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0= 0.0 0.0 ,1.00 0.00'. 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0'r 0.0, 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1,00 0,00', 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.0o 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- o o.00 0.00 0.00 0.00 0.0o o.00 o.00 o.00 0.00 0 ` 0.0 0.0-.1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 • 0.0 0.0. -1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1,00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1668 57.8 57.8=L eff. 7.93 0.00 3.88 0.00 EVwrnd 7.93 EVEQ 3.88 Notes: * denotes with shear transfer ** denotes perferated shear wall iSB denotes 1SB Shear Panel SHEET TITLE: LATERAL N-S(front to back-up/down) CT PROJECT#: Elevation B Diaph.Level: 2nd Panel Height= ., ;.9,ft. Seismic V I.: 2.82 kips Design Wind N-S V I• 4.46 kips Max.aspect=; ,..3,51 SDPWS Table 4.3.4 Sum Seismic V i IN 6.70 kips Sum Wind N-S V I■ 12.39 kips Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pi= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL eM. C 0 w dl V level V abv.V level V abv. 2w/h v i Type Type vi OTM ROTM Unet Ueum OTM ROTM Un.t Uaum U.ym HD (sift) (ft) (ft) (klf) (kip) (kip) (kip) (kip) p (pIf) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext; A.Ma 621 29 0 48 0 i 00 0 75 1.62 2.88 1.02 1.41 1.00 1.00 84 P6TN P6 155 21.85 50.50 -1.01 -2.29 40.43 60.03 -0.69 -1.75 -1.75 Ext. A Mtn 235 `11 0 48;:0 1 00:' 0 15' 0.61 1.09 0.39 0.53 1.00 1.00 84 P6TN P6 155 8.29 19.18 -1.05 -2.46 15.34 22.77 -0.72 -1.89 -1.89 0 00 0.0 1 00:' 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 -1.31 0.00 0.00 0.00 -1.08 -1.08 tl '0 0„ 0 0 1 b0 0.00; 0.00 0.00 0.00 O.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ,.!,0 0 00 1 00! 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 •.'0 0 , 0 00 1 00 0 00 0.00 0.00 0.00 0.00 1.0o 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 O o 0 0 1 00' 0 00 0.00 0.00 OM 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 • O 0 p0 00 0 0 1 0 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0', 0 0 00 1 00: 000;; 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 k o 0 00 1 00 tl 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ext E Ma 571 ''10 0 '47.0 1 00-,015; 1.49 2.64 0.94 1.29 1.00 1.00 223 P6 P4 413 20.09 17.79 0.25 -1.16 37.18 21.15 1.72 0.60 0.60 Ext: 0 it Mb `285 ,!5 0„ ,47:0. 1 00 '0.15!: 0.74 1.32 0.47 0.65 1.00 1.00 223 P6 P4 413 10.05 8.90 0.27 -1.04 18.59 10.58 1.85 0.81 0.81 :40 00 1 00.;:0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0- 0 0.00 0.00 0.00 -1.42 0.00 0.00 0.00 -1.13 -1.13 0 !0 0 .;0;0 1 00 tl 00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 -1.33 0.00 0.00 0.00 -1.06 -1.06 ----'---"0---00---..„. , 0•0 1.00 0 00. 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 :0.0 00 1 00 0.00. 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0:0 1 06„ 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 ' '0.0 1 00^ 0.00:: o.00 0.00 0.00 0.00 too 0.00 0- -- o o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o A 0 0'.0 •1.00 o Doi; o.00 o.00 0.00 0.00 too 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0,.0 1,00:, 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0,0 0 0 1 00 0 00 o.00 o.00 o.00 o.00 too 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o, 0 0 , 0 0.' 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 '' 0 0 ..`.0.0 1.00 00- - . 0: 0.00 0.00 0.00 0. 00 1.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 d 0.0 . .0'.0 1 00'; 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o O 0 00 1.00; 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 MMMnMMWI0, j,0 ,. 0, 0 0 1;00: 0 00 .00 00.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 : 00 1 Oo 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 O 00 1 00. 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0' 00 0.0 t 00'=,-0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ;0 0 00 1.00' 000 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1712 55.0 55.0=Leff. 4.46 7.93 2.82 3.88 1.00 EVwind 12.39 EVEQ 6.70 Notes: * denotes with shear transfer "" denotes perferated shear wall MB denotes MB Shear Panel SHEET TITLE: LATERAL E-W(side to,side-left/right) CT PROJECT#: Elevation B Diaph.Level: Roof ..._......... .. Panel Height 81 ft. Seismic V I= 3.88 kips Design Wind E-W V I= 9.52 kips Max.aspect=,, "3.5 SDPWS Table 4.3.4 Sum Seismic V I= 3.88 kips Sum Wind E-W V I= 9.52 kips Min.Lwall= 2.29 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pi= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL off. C 0 w dl V level V abv.V level V abv. 2w/h vi Type Type vi OTM ROTM Unet Usum OTM ROTH Unet Usum Usum HD (soft) (ft) (ft) (klf) (kip) (kip) (kip) (kip) p (pl0 (pit) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Rear 1.Ta 283.6` :8.0"40.0 1.007 0.15 1.62 0.00 0.66 0.00 1.00 1.00 83• * 203 5.28 12.11 -0.93 -0.93 12.96 14.40 -0.20 -0.20* Rear ?:Tb F407.6 11,5°°-40,0 -1,00 0.15 2.33 0.00 0.95 0.00 1.00 1.00 83• 203 7.59 17.41 -0.91 -0.91 18.63 20.70 -0.19 -0.19* Rear 3.Tc• 141.8` 4.0 40.0" 1.00 0.15 0.81 0.00 0.33 0.00 1.00 1.00 83* • 203 2.84 6.06 -1.02 -1.02 8.48 7.20 -0.22 -0.22* ' Rear' 4,Td 0 0.0 0.0. .1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0•- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 • 0 0 0• 0.0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ' Int •;:N/A 0 0 0 0.0 1.00' 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int N/A .0.;H:...''':0.0.2,::•!:'",0.6.,..:' 1".00;- 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 "- 0" ';••-0.0,•[::::0.0.;"'''1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int N/A0` .0.0 "0.0 -1.00- 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 • - 0 0.0: 0.0 1.00 , 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front" 4.Ta 148.7 2.5.:,;,.,1, 11.0 1.00J,.-...,.0.15! 0.85 0.00 0.35 0.00 1.00 0.83 222• 340 2.77 1.04 0.94 0.94 6.80 1.24 3.03 3.03' Front .4 , .Tb,-"148.7 2.5 .1,1.0 '1.00':,-.,..0.15. 0.85 0.00 0.35 0.00 1.00 0.63 222" 340 2.77 1.04 0.94 0.94 8.80 1.24 3.03 3.03' Front:.4 Tc 119; 2.0: : 9.7 1.00 0.15 0.68 0.00 0.28 0.00 1.00 0.50 277• • 340 2.22 0.73 1.11 1.11 5.44 0.87 3.43 3.43• "Front 4.Td 119 2.0 9,7 1.00 0.15 0.68 0.00 0.28 0.00 1.00 0.50 277* * 340 2.22 0.73 1.11 1.11 5.44 0.87 3.43 3.43* Front 4.Te, 148.7 . 2.5 11.7 " ,1.00,.0.15' 0.85 0.00 0.35 0.00 1.00 0.63 222* ' 340 2.77 1.10 0.91 0.91 8.80 1.31 2.99 2.99' Front 4.11 •148.7 2 5 11.7 • 1,00 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222• 340 2.77 1.10 0.91 0.91 6.80 1.31 2.99 2.99* 0 0 0 0.0 .1.000: 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 01 0.0 0.0 1.o0 0.o0: 0.00 0.00 0.00 0.00 too o.00 o- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ' 0.0 0.0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0-. 0.0 1.00 0.00 0.00 0.00 0.00 0.00 too o.00 o- - o o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0,0 "1.00'r 0.00 0.00 0.00 0.00 0.00 too o.00 o-- - o o.00 o.00 o.00 o.00 o.00 o.00 o.00 0.00 0.00 0 0 0 ,o 0 1.00 .0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 '0` 0.0' -0.0..,:-:too 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0; 0.0 0.0' 1.00, 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0,0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0. 0.0 1.00 . 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0" 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 . .1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0.0 .1.00 0.00': o.00 o.00 o.00 0.00 too o.00 o- - o o.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0,0 '..0.0., 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1686 37.5 37.5=L eff. 9.52 0.00 3.88 0.00 EVwind 9.52 EVE0 3.88 Notes: * denotes with shear transfer "" denotes perferated shear wall iSB denotes ISB Shear Panel GARAGE ABWP SHEET TITLE: LATERAL E-W(side to side-left/right) CT PROJECT#: Elevation B Diaph.Level: 2nd Panel Height 2000-Sii.ft. Seismic V I• 2.8• Ips Design Wind E-W V I- 5.35 klps Max.aspect=' .3.5 SDPWS Table 4.3.4 Sum Seismic V I- 8 0 kips Sum Wind E-W V I is 14.87 kips Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7pQe 0.6D+W perSDPWS-2008 pi= 1.00 Table 4.3.3.5 Wind Wind '.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL art. C 0 w dl V level V abv level V abv. 2wm v 1 Type Type vi OTA Ro7M Unet Us= OTM ROTM Unet Usum U. (elft) (ft) (ft) (kit) (kip) (k• (kip) (kip) p (plf) (plt) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Rear 1.Ta ?107 6 4 3 `'123 1 00 0151 0.3, 1.20 0.18 0.49 1.00 0.94 166" • :: 361 5.98 1.98 1.12 0.18 13.80 2.36 3.19 3.00• Rear 2.Tb.'98,77 ! 12.3 1 00; 0.1'5;1 0•1 1.10 0.18 0.45 1.00 0.87 181 • 361 5.49 1.82 1.14 0.23 12.66 2.16 3.25 3.08" -Rear 3.Tc 158«3- ' 8 3 1$5 1.00: 0 15 1.50 1.78 0.26 0.72 1.00 1.00 156• • 361 8.80 4.61 0.75 -0.27 20.30 5.48 2.65 2.44• (dear 4 Td 6331 2,5 19 5 1.00' 0,15 0.20 0.70 0.10 0.29 1.00 0.56 282" 361 3.52 1.85 0.91 0.91 8.12 2.19 3.23 3.23* 0 0 0 0 0 i 00 0 :' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int N/A :'1811 55 55 1 00 45" 0.57 0.00 0.30 0.00 1.00 1.00 54 P6TN P6TN 103 2.68 1.15 0.32 0.32 5.10 1.36 0.77 0.77 0.77 gin't„ ,N/A !`246 9 7 5 .;7 5 1;.00 d 15 0.77 0.00 0.41 0.00 1.00 1.00 54 P8TN P6TN 103 3.66 2.13 0.22 0.22 6.95 2.53 0.65 0.65 0.85 i 0 0. 0 I 0 0 t 1 0 00; 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1nt A'r];!-.6'... .3' 0 00 0 0 1.01 00 1.00 70 P6TN P6TN 134 6.34 3.79 0.27 0.27 12.05 4.50 0.81 0.81 0.81 e i 0 . 0 e! +00. 0.•0 0.0. <.00 0.10 1.'' 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front `s 1 4.Ta i71 2 4 '20 5 1 00 015 0.37 0.89 0,19 0.62 1.•c 0.54 829 ABWP ABWP 785 7.35 1.88 3.13 4.07 17.06 2.23 8.48 11.51 ABWP Front 4 Tb 0 " 0 0A;04041,9 0 15= 0.00 0.00 0.00 0.00 1.. 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4 Tc 0 0 0 0 0 1 00 015 0.00 0.00 0.00 0.00 1.0 0, 0.00 0- 00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 Front 4 Td.!; 117 4 : 2 4 0 5 1 001 0,15; 0.37 0.89 0.19 0.62 1.•' 0.54 629 ABWP ABWP 785 7.35 1.88 3.13 4.24 17.08 2.23 8.48 11.90 ABWP rs,. 9. 9 0" '1 ,i e a '5 0. ' • 6 0 ' 1.1' 0.44 589" " 576 4.55 0.88 2.75 3.66 10.38 1.05 6.99 9.99 Front 4 Tf 96'91 ' 2 0 11 7 1.00, 0 15 0.30 1.49 0.18 0.35 1.00 0.44 569* 576 4.55 0.88 2.75 3.66 10.38 1.05 6.99 9.99• „0:.,,,0.0 , ;'0 0 1.00 0.00! o.00 o.00 o.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 1.00; 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. ,: 0 0 0 0 1.00' b 00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,,, 0 0 0 0 1.001 000 0.00 0.00 0.00 0.00 1.00 0.00 0- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 ti 0 1 00 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0„1 0 0 0t 0 1.00 0 0,0, 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 1.00', 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6 + iiiiitilt 0 0 ':1.00'. "0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 1.00, .0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0, 0 0 100, 0 00' 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3-";' 0.0 0 0,,1 00,,,0 00;. 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0 0 1.00 0.00'j 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,., 0 0 -,041 '.1.00 0 00 o.o0 0.00 0.00 0.00 too 0.00 0--- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 4.001 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1712 48.7 48.7=L eff. 5.35 9.52 2.82 3.88 EV,ond 14.87 EVEQ 6.70 Notes: • denotes with shear transfer ABWP Alternate Braced Wall Panel-2308.9.3.2 •• denotes perferated shear wall iSB denotes iSB Shear Panel JOB#: Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 4.Ta,4.Tb Roof Level w dl= 150 pff V eq 692.6 pounds V1 eq= 362.3 pounds V3 eq= 330.3 pounds V w= 1699.7 j pounds V1 w= 889.1 pounds V3 w= 810.6 pounds ► —_•, v hdr eq= 63.4 pff ► •H head= A v hdr w= 155.7 pff ............................. 1 Y Fdragl eq= 183 F2 eq= 166 Fdragl w= F2 -408 H pier= vl eq= 127.9 Of v3 eq= 127.9 pff P6TN E.Q. 5.0 vi w= 313.8 pff v3 w= 313.8 plf P6 WIND feet Htotal= 2w/h= 1 2w/h= 1 9 • Fdrag3 eq= : F4 e.- 166 feet A Fdrag3 w=448 F4 w=408 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 63.4 plf P6TN 3.0 EQ Wind v sill w= 155.7 pff P6 feet OTM 6234 15297 R OTM 4461 5363 • • UPLIFT 173 969 Up above 0 0 UP sum 173 969 H/L Ratios: L1= .2.8" L2= 5.5 L3= 2.6 HtotaUL= 0.82 4 1. 4 N Hpier/L1= 1.76 _ Hpier/L3= 1.94 L total= 10.9 feet JOB#. Elevation B SHEARWALLWI , TH FORCE TRANSFER .: ID. Elevation B 4 Tc:4.Td - Roof Level w dl 1501 plf V eq :: :.5.54.1..! pounds V1 eq= 277.1 pounds V3 eq= 277.1 pounds V w= ,-.1..359.7'; pounds V1 w= 679.9 pounds V3 w= 679.9 pounds v hdr eq= 58.3 pH ► •H head= A v hdr w= 143.1 plf :I v Fdragl eq= 160 F2 eq= 160 A Fdragl w= !4 F2 -394 H pier= vl eq= 173.2 plf v3 eq= 173.2 pif P6 E.Q. ......_-5.0.. v1 w= 339.9 plf v3 w= 339.9 plf P6 WIND ....._............._....... feet H total= 2w/h= 0.8 2w/h= 0.8 9 v Fdrag3 eq= -. F4=.- 160 feet A 1 Fdrag3 w=394 F4 w=394 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 58.3 pif P6TN 47:9:...- EQ Wind v sill w= 143.1 plf P6TN feet OTM 4987 12238 R OTM 3379 4061 w v UPLIFT 182 926 Up above 0 0 UP sum 182 926 H/L Ratios: L1= 2.0- L2= ,11,:1'..5.5 L3=s., . .20 HtotalL= 0.95 4 0 4 H ► Hpiier/L1= 2.50 ► Hpier/L3= 2.50 L total= 9.5 feet JOB# Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 4.Te,4.Tf Roof Level w dl= 150 p/f V eq 692.6 pounds V1 eq= 346.3 pounds V3 eq= 346.3 pounds V w= 1699.7, pounds V1 w= 849.8 pounds V3 w= 849.8 pounds _______•. -0. v hdr eq= 60.2 plf i •H head= A v hdr w= 147.8 plf 1 `r Fdrag1 eq= 196 F2 eq= 196 • Fdragl w= •_i F2 -480 H pier= v1 eq= 138.5 plf v3 eq= 138.5 plf P6TN E.Q. 5.0 vt w= 339.9 plf v3 w= 339.9 plf P6 WIND feet Htotal= 2w/h= 1 2w/h= 1 9 v 1 Fdrag3 eq= .- F4-.- 196 feet • Fdrag3 w=480 F4 w=480 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 60.2 plf P6TN 3.0 EQ Wend v sill w= 147.8 plf P6TN feet OTM 6234 15297 R OTM 4951 5951 v • UPLIFT 118 863 Up above 0 0 UP sum 118 863 H/L Ratios: L1= , 2.5_ L2= ;, 6.5 L3= ' 2.5 Htotal/L= 0.78 Hpier/L1= 2.00 Hpier/L3= 2.00 L total= 11.5 feet JOB#. Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 1 Ma,1 Mb'I . Roof Level w dl= plf V3 eq= 597.7 pounds V eq 'f 275 1' pounds V1 eq= 677.4 pounds V w 2940.5 pounds V1 w= 1562.2 pounds V3 w= 1378.4 pounds v hdr eq= 106.3 pH H head= A v hdr w= 245.0 plf Fdragl eq= 226 F2 eq= 199 Fdragl w= 1 F2 -459 H pier= v1 eq= 159.4 plf v3 eq= 159.4 plf P6 E.Q. S 0 vi w= 367.6 plf v3 w= 367.6 plf P4 WIND feet Htotal= 2w/h= 1 2w/h= 1 9 Fdrag3 eq= c F4 - - 199 feet • Fdrag3 w=521 F4 w=459 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 106.3 plf P6TN EQ Wind v sill w= 245.0 plf P6 feet OTM 11476 26465 R OTM 5391 6480 ♦ UPLIFT 537 1763 Up above 0 0 UP sum 537 1763 H/L Ratios: L1= !1.3 L2= "4.0 L3= ,38 Htotal/L= 0.75 4 ► H Hpier/L1= 1.18 .41 Hpier/L3= 1.33 L total= 12.0 feet JOB#. Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 1.Mc,1.Md Roof Level w dl= 150 plf ..................._.. V eq 1368.9 pounds V1 eq= 977.8 pounds V3 eq= 391.1 pounds V w= 3157.1 pounds V1 w= 2255.0 pounds V3 w= 902.0 pounds ► v hdr eq= 62.2 plf •H head= A v hdr w= 143.5 plf 1 v Fdragl eq= 589 F2 eq= 236 • Fdragl w= - 8 F2 -543 H pier= v1 eq= 156.4 plf v3 eq= 156.4 plf P6 E.Q. 5.0 v1 w= 360.8 plf v3 w= 360.8 plf P4 WIND feet Htotal= 2w/h= 1 2w/h= 1 9 v Fdrag3 eq= F4=•- 236 feet • Fdrag3 w=1358 F4 w=543 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 62.2 plf P6TN 3.0 EQ Wind v sill w= 143.5 plf P6TN feet OTM 12320 28413 R OTM 18119 21780 • UPLIFT -272 311 Up above 0 0 UP sum -272 311 H/L Ratios: L1= !. 6.3 L2= 13.3 L3= '2.5 Htotal/L= 0.41 4 ► 4 ►4 Hpier/L1= 0.80 Hpier/L3= 2.00 L total= 22.0 feet JOB#. Elevation B SHEARWALLiWITH FORCE TRANSFER ! ID:Elevation B 4,lMe;4,Mf', Roof Level w dl =>-150,; plf V eq 1011.7;; pounds V1 eq= 505.9 pounds V3 eq= 505.9 pounds V w= 2305 8 pounds V1 w= 1152.9 pounds V3 w= 1152.9 pounds v hdr eq= 89.3 plf A H head= A v hdr w= 203.5 pff 3111111.10:41 Fdragl eq= 327 F2 eq= 327 Fdragl w= •• F2 -746 H pier= v1 eq= 252.9 pff v3 eq= 252.9 pff P4 E.Q. w= 576.5 pff v3 w= 576.5 pff P3 WIND feet Htotal= 2w/h= 1 2w/h= 1 7 Fdrag3 eq= F4=•-327 feet • Fdrag3 w=746 F4 w=746 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 89.3 pff P6TN EQ Wind v sill w= 203.5 plf P6 feet OTM 7082 16141 R OTM 4805 5777 UPLIFT 213 972 Up above 118 863 UP sum 332 1835 H/L Ratios: L1=EREM2;,0: L2= '- 7.3 L3=: 20 Htotal/L= 0.62 ► ^4 ► 11 Hpier/L1= 1.50 Hpier/L3= 1.50 L total= 11.3 feet r j :V. �•. 1 ,','Ir:,;:'' FIA y, , ,..0 - a .y .„..,...t...:,..,..:,... ,..,.....::::: : : . r c -a niti: Topics TT-1O0F APRIL 2014 A PortalFrame with Hold Downs Applications.. for Engineered The APA portal-frame design,as shown in Figure 1,was envisioned primarily for use as bracing in conventional light- frame construction.However,it can also be used in engineered applications,as described in this technical topic.The portal frame is not actually a narrow shear wall because it transfers shear by means of a semi-rigid,moment-resisting frame.The extended header is integral in the function of the portal frame,thus,the effective frame width is more than just the wall segment,but includes the header length that extends beyond the wall segment.For this shear transfer mechanism,the wall aspect ratio requirements of the code do not apply to the wall segment of the APA portal frame. Cyclic testing has been conducted on the APA portal-frame design(APA 2012).Recommended design values for engi- neered use of the portal frames are provided in Table 1.Design values are derived from the cyclic test data using a rational procedure that considers both strength and stiffness. The Table 1 values in this report were developed using the CURES cyclic test protocol(ASTM E2126),using a flexible load head.Earlier testing was conducted using rigid load heads and the sequential phased displacement(SPD)method, as outlined in SEAOSC(1997)Standard Method of Cyclic(Reversed)Test for Shear Resistance of Framed Walls for Buildings. The design values in Table 1 ensure that the code(IBC)drift limit and an adequate safety factor are maintained.For seismic design,APA recommends using the design coefficients and factors for light-frame(wood)walls sheathed with wood structural panels rated for shear resistance(Item 15 of Table 12.2-1 of ASCE 7-10).See APA Report T2004-59 for more details.For designs where deflection may be less of a design consideration,for example,wind loading while the portal frames are used in tandem with each other,and not used as conventional shear walls,a load factor of 2.5, based on the cyclic test results is used. Since cyclic testing was conducted with the portal frame attached to a rigid test frame using embedded strap-type hold downs,design values provided in Table 1 of this document should be limited to portal frames constructed on similar rigid-base foundations,such as a concrete foundation,stem wall or slab,and using a similar embedded strap- type hold down. 1 ®2014 APA—The Engineered WoodAssocinlion PORTAL FRAME DESIGN (MIN.WIDTH =22 1/2"): EQ=810#< EQ(ALLOW)= 1031# WIND= 1260#<WIND (ALLOW)= 1444# Table 1.Recommended Allowable De gn Val for APA Portal Frame Used on a Rigid-Base Minimum Width Maximu eight Allowable Design(ASD)Values per Frame Segment (in.) ) Sheart"•q(lbf) Deflection(in.) Load Factor 8 850 (1190 WIND) 0.33 3.09 16 10 625 (875 WIND) 0.44 2.97 8 1,675 (2345 WIND) 0.38 2.88 24 . . 0.51 3.42 1'-10 1/2" 8 1520 EQ(2128 WIND) V-10 1/2" 10fab 1 31 EQ(1444 WIND) Foundation for Wind or Seismic Loading"'`,'" ' (a) Design values are based on the use of Douglas-fir or Southern pine framing.For other species of framing,multiply the above shear design value by the specific gravity adjustment factor=(1-(0.5-SG)),where SG=specific gravity of the actual framing.This adjustment shall not be greater than 1.0. (b) For construction as shown in Figure 1. (c) Values ore for a single portal-frame segment(one vertical leg and a portion of the header).For multiple portal-frame segments,the allowable shear design values are permitted to be multiplied by the number of frame segments(e.g.,two=2;three=3x,etc.). (d) Interpolation of design values for heights between 8 and 10 feet,and for portal widths between 16 and 24 inches,is permitted. (e) The allowable shear design value is permitted to be multiplied by a factor of 1.4 for wind design. (f) If story drift is not a design consideration,the tabulated design shear values are permitted to be multiplied by a factor of 1.15.This factor is permitted to be used cumulatively with the wind-design adjustment factor in Footnote(e)above. Figure 1. Construction Details for APA Portal-Frame Design with Hold Downs Extent of header with double portal frames(two braced wall panels) • • Extent of header with single portal frame (one braced wall panels) Header to jack-stud strap I' 2'to 18'rough width of opening per wind design min 1000 lbf 9 on both sides of opening for single or double portal opposite side of sheathing t Pony v._ III . wall height s s Fasten top plate to header with two rows of 16d x s� sinker nails at 3"o.c. typ •▪ r t• Fasten sheathing to header with 8d common or : Min.3/8"wood structural 12' »•I galvanized box nails at 3'grid pattern as shown panel sheathing max total •: �Header to jack-stud strap per wind design. wall .}: ;. Min 1000 lbf on both sides of opening opposite i height •r side •of sheathing. t If needed,panel splice edges _ shall occur over and be 10' .:i i.. Min.double 2x4 framing covered with min 3/8" nailed to common blocking max -'� thick wood structural panel sheathing with �_:__: within middle 24'of portal height ti 8d common or galvanized box nails at 3"o.c. height.One row of 3"o.c. •,:" - in all framing(studs,blocking,and sills)typ. nailing is required in each panel edge. W ::. \ : N ... Min length of panel per table 1 Typical portal frame construction Min(2)3500 lb strap-type hold-downs (embedded into concrete and nailed into framing) Min double 2x4 post(king and jack stud).Number of —Min reinforcing of foundation,one#4 bar _ I jack studs per IRC tables top and bottom of footing.Lap bars 15'min. R.502.5(1)&(2). Min footing size under opening is 12'x 12".A turned-down Min 1000 lb hold-down slab shall be permitted at door openings. device(embedded into concrete and nailed Min(1)5/8"diameter anchor bolt installed per IRC R403.1.6- into framing) with 2"x 2"x 3/16"plate washer 2 m 2014 APA-The Engineered Wood Association References APA, 2004, Confirmation of Seismic Design Coefficients for the.APA.Portal Frame, APA Report T2004-59, APA—The Engineered Wood Association,Tacoma,WA. APA,2012,Effect of Hold-Down Capacity on IRC Bracing Method PFH and IBC Alternate Method,APA Report T2012L-24, APA—The Engineered Wood Association,Tacoma,WA. ASCE,2010,Mtninuan Design Load for Buildings and Other Structures.ASCE 7.American Society of Civil Engineers. Reston,VA. ASTM E2126-11,Standard Test Methods for Cyclic(Reversed)Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings,ASTM International.West Conshohocken,PA. SEAOSC, 1997,Standard Method of Cyclic(Reversed)Test for Shear Resistance of Framed Walls for Buildings,Structural Engineers Association of Southern California.Whittier,CA. • We have field APA trademarked products.For additionalresentatives in ass assistance in specifyingr U.S.dfies pnd in Cn who cano help answer questions involving www anawoo rg engineered wood products,contact us: AM HEADQUARTERS:7011 So.19th St.■Tacoma,Washington 98466•(253)565-6600■Fax:(253)565-7265 APA PRODUCT SUPPORT HELP DESK:(253)620.7400•E-mail:help@apawood.org Form No.IT-100F Revised April 2014 DISCLAIMER:The information contained herein is based on APA—The Engineered Wood Association's continuing programs of laboratory testing,product research,and comprehensive field experience.Neither APA nor its members make any warranty,expressed or implied,or assume any legal liability or responsibility for the use,application APA at and/or reference to opinions,findings,conclusions,or recommendations included in this publication.Consult your local jurisdiction or design professional to assure compliance with code,construction,and performance requirements.Because APA has no control over quality of workmanship or the conditions under which engineered wood products ore used,it cannot accept responsibility of product performance or designs as actually constructed. 3 ®2014 APA—The Engineered WoodAssocialion 180 Nickerson St. CT E N G I N E E R I N G Suite 302 :Fran ev✓CXM D Seattle,WA Project: � y� C Date: (2 6)285-4512 Client: J4 v 4r7,2) Page Number: (2 6)285-0618 W10 IVO aril? o gs� b ---fE ® Q ,(_st3 r X lb`` iZ" kX 51 Leilt 6 KS—tArDC-4- Ft42- s4e3rtt) fx,757)iti 6*. ri* Picc)tweaftiol . e u -Yesm c -ri7e UR- - M�tnA�c $ VA/b,t _ (5S)0 1)06) , g5 Z3 e_i ) M gort)Uo( _ • 111„ (1)6 2)111e) ,e 3gz) r to aft= 5` - 8 X Ccs LA)/(2) 44- of o,;66 6-t tVr. /ZXkZ /-0/0-4-1s4 e6w5N6., 14- Aepoi ,, 5 t) eg_SVJ1 ;5 33/. L om : . . . M,n- l w Structural Engineers WOOD FRAME CONSTRUCTION MANUAL 63 ;, Table 2.2A Uplift Connection Loads from Wind . •• . .S . (For Roof-to-Wall,Wall-to-Wall,and Wall-to-Foundation) 700-yr.Wind Speed 3-second gust(mph) 110 115 120 130 140 150 160 170 180 195 Roof/Ceiling Assembly � � ,� Design Dead Load Roof Span(ft) Unit Connection Loads(plf) a 12. 118 128 140 164 190 219 249 281 315 369 24 195 213 232 -272 315 362 412 465 521 612 0 0 psf8 36 272 298 324 380 441 506 576 650 729 856 M 48 350 383 417 489 567 651 741 836 938 1100 111 . 60 428 468 509 598 693 796 906 1022 1146 1345 In . 12 70 80 92 116 142 171 201 233 267 321 24 111 129 148 188 231. 278 328 381 437 528 rn 10 psf 36 152 178 204 260 321 386 456 530 609 736 N 48 194 227 261 333 411 495 585 680 782 944 Z 60 236 276 317 406 501 604 714 830 954 1153 12, 46 56 68 , 92 118 147 177 209 243 297 24 69 87 106 146 189 236 286 339 395 486 15 psf 36 92. 118 144 200 261 326 396 470 549 676 48 116 149 183 255 333 417 507 602 704 866 60 140 180 221 310 405 508 618 734 858 1057 12 22 ' 32 44 68 94 123 153 185 219 273 •• 24 27 45 64 104 147 194 244 297 353 444 20 psf 36 32 58 84 140 201 266 336 410 489 616 r�` .' 48 38 71 105 177 255 339 429 524 626 788 • 60 44 84 125 214 309 412 522 638 762 961 12 - 8 20 44 70 99 129 161 195 249 • 24 - 3 22 62 105 152 202 255 311 402 • 25 psf 36 - - 24 80 141 206 276 350 429 556 48 - - 27 99 177 261 351 446 548 710 • 60 - - 29 118 213 316 426 542 666 865 I. Tabulated unit uplift connection loads shall be permitted to be multiplied by 0.75 for framing not located within 6 feet of corners for buildings less than 30 feet in width(W),or W/5 for buildings greater than 30 feet In width. 2 Tabulated uplift loads assume a building located in Exposure 8 with a mean roof height of 33 feet. For buildings located in other exposures,the tabulated values for 0 psf roof dead load shall be multiplied by the appropriate adjustment factor in Section 2.1.3.1 then reduced by the appropriate design dead load. 3 Tabulated uplift loads are specified in pounds per linear foot of wall. To determine connection requirements, multiply the tabulated unit uplift load by the multiplier from the table below corresponding to the spacing of the . • . connectors: Connection Spacing(in.) I 1216 19.2 24 48 • Multiplier 1.00 I 1.33 I 1.60 I 2.00 I 4.00 ° Tabulated uplift loads equal total uplift minus 0.6 of the roof/ceiling assembly design dead load. s Tabulated uplift loads are specified for roof-to-wall connections. When calculating uplift loads.for wall-to-wall-or i. wall-to-foundation connections,tabulated uplift values shall be permitted to be reduced by 73 plf(0.60 x 121 plf) r•J for each full wall above. ..i it, 6 When calculating uplift loads for ends of headers/girders,multiply the tabulated unit uplift load by 112 of the 7. 5 , ,: header/girder span(ft.). Cripple studs need only be attached per typical uplift requirements. c''° T For jack rafter uplift connections,use a roof span equal to twice the jack rafter length.The jack rafter length '1t. includes the overhang length and the Jack span. :i r 1 8 Tabulated uplift loads for 0 psf design dead load are included for Interpolation or use with actual roof dead loads. i itia. AMERICAN WOOD COUNCIL 180 Nickerson St. CT ENGINEERING Suite 302 INC. Seattle,WA 98109 Protect: ��In!►/�j�i�� Date: (206) (206)285-4512 PAX: Client: Page Number. (206)285-0618 • 1 i .t10 LOt.i?L UPVR‘I-7 MW. •14iL AV'S 0151. 1. • e In kZ lb n- MPS uL?) 5 - p, DZ • - . • .:. CSM, N h s 4PI . . ' fi-: 1 • • • . ur • : . . n ,lis 2x An�J OP • -n?1•4,1 • •••••: .(41*5A-: s 61- • l2' 4-7;1c4)(z) of ✓� 11(P, - ap 6t Per e -Mak' I =-4 f 771'0 • 14-7-, -06y. zi-Q4)(p..-1-56).,6 .: 4-1'1 C,i 1Qc Ct --'P, lv►,r'e?eo. .64. .PLY. • - rk _ld 10( - : l - F • ` , CsY 7s17.14:/ e34-4)F Dto.d. Structural Engineers TRUSS TO WALL CONNECTION •,i'I VM ill: I°FPLI6 SS CONNECTOR TO TRUSS TO TOP PLATES fill III I I 1 HI (6)0.131" X 1.5' (4)0.131'X 2.5" .t(iti ,e) 1 H2.5A (5)0.131"X25' (5)0.131"X25" `,v.. no 1 SOWC15600 - - •11f, ... .1 L...._ 2 H10-2 (9)0.148" X 1.5" (9)0.148"X 1.5" 10/(1 IGn 2 (2)H2.5A (5) 0.131"X 2.5" EA. (5) 0.131'X 2.5" EA. I1!10 2A 2 (2)SDWC15600 - - 9/0 2.1(1 3 (3)SDWC15600 - - 115', 3.15 ROOF FRAMING PER PLAN 8d AT 6" O.C. 2X VENTED BLK'G. i � ' 0.131" X3" TOENAIL A� �' AT 6" 0.C. jp I H2.5A & SDWC15600 STlfl F COMMON/GIRDER TRUSS ---1- PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE 3/4"=1'-0" (BEAM/HEADER AT SIMILAR) 14 TYP. RAISED HEEL TRUSS TO WALL CONNECTION [ TRUSS TO WALL CONNECTION SPE VALUES #OF TRUSS CONNECTOR 10 TRUSS TO TOP PLATES UPI..IFT FI PLIES 1 111 (6) 0.131' X 1.5" (4)0.131" X 2.5" -400 115 1 H2.5A (5) 0.131"X 2.5" (5)0.131'X 2.5" 535 I10 1 SDWC15600 - _ 4y.y----.115 ... 2 H10-2 (9) 0.148' X 1.5" (9)0.148" X 1.5" '107D -766-- 2 (2)H2.5A (5)0.131"X 2.5" EA. (5)0.131'X 2.5' EA. 1070 220 I 2 (2)SDWC15600 - - - (1m 2.10 3 (3)SDWC15600 - - -1-4!6------,5-4Y- - - ADD A35 0 48"0.C. ROOF FRAMING PER PLAN FOR.H2.5A AND SDWC 5711E -� Rd AT 6' O.C. CONNECTIONS 2XBUM.VENTED � Pitkioo iiiiiic.*.__...:N -0- i....,., I H2.5A & SDWC15600 STYI F COMMON/GIRDER TRUSS PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE 3/4"=1'-0" (BEAM/HEADER AT SIMILAR) 19 TYPICAL TRUSS TO WALL CONNECTION [