Loading...
Specifications (22) 6u ig,02-01? "alirifw_t5-73 RE ED OWf._..,� • FEB 2 1 Z017 Str u ctu ro I uC%DING tiurlY OFT, ;. L' oncep-ts C-7717. nglneering „„,,„:_:m4: , /.-;,, „,,,,,,e, z, E : i 1815 Wright Ave La Verne, Co. 91750 Tel:909-596-1351 Fox:909-59ro-718ro Project Name : GED GREEN TECH �,so PR0A-0 04 Project Number : R-020217-SLV a 7254aPEr4 Date : 02/07/17 ' ,'N v doros Street Address: 14100 SW 72ND AVE 11 p �` City/State : 7B�OR 97224 '4gtLHAaS Scope of Work : STIRAGE RACKS FEB 072017 Structural Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: ENHAO Project: CED GREEN TECH Project#: R-020217-6LV TABLE OF CONTENTS Title Page 1 Table of Contents 2 Design Data and Definition of Components 3 Critical Configuration 4 Seismic Loads 5 to 6 Column 7 Beam and Connector 8 to 9 Bracing 10 Anchors 11 Base Plate 12 Slab on Grade 13 Other Configurations 14 CED GREEN TECH TYPE 1 Page 3- of �j 2!7/2017 Structural Concepts _____jEngineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: ENHAO Project: CED GREEN TECH Project#: R-020217-6LV Design Data 1)The analyses herein conforms to the requirements of the: 2015 IBC Section 2209 2013 CBC Section 2209A ANSI MI-116.1-2012 Specifications for the Design of Industfial Steel Storage Racks"2012 RMI Rack Design Manual" ASCE 7-10,section 155.3 2)Transverse braced frame steel conforms to ASTM A570,Gr.55,with minimum strength,Fy=55 ksi Longitudinal frame beam and connector steel conforms to ASTM A570,Gr.50,with minimum yield,Fy=50 ksi All other steel conforms to ASTM A36,Gr.36 with minimum yield,Fy=36 ksi 3)Anchor bolts shall be provided by installer per ICC reference on plans and calculations herein. 4)All welds shall conform to AWS procedures,utilizing E70xx electrodes or similar.All such welds shall be performed in shop,with no field welding allowed other than those supervised by a licensed deputy inspector. 5)The existing slab on grade is 5"thick with minimum 2500 psi compressive strength.Allowable Soil bearing capacity is 1000 psf. The design of the existing slab is by others. 6)Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components A f—/-- ! Column Beam - l _ y_ Horizontal Brace 4/ Beam to Column . _ / tonnector \ / HorizoUlagOrnaltal Brace \<, Frame Height • Beam Product Spacing Base Plate and Anchors I _,, .i� I Panel Beam Height ..— Length �1.- II W 1911 11-11' Irlf - H Frame id Depth Front View: Down Aisle Section A: Cross Aisle (Longitudinal) Frame (Transverse) Frame CEO GREEN TECH TYPE 1 Page S of 13 2/7/2017 I S tr turaI • Loncepts - Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: ENHAO Project: CED GREEN TECH Project#: R-020217-6LV Configuration&Summary:TYPE 1 SELECTIVE RACK N N **RACKCOLUMN REAC TONS ASD LOADS 64" 48" AXIAL DL= 90/b AXIAL LL= 4,500/b 48" SEISMIC AXIAL Ps=+/- 4,693/b BASE MOMENT= 8,000 in-lb 192" 64" 192" 48" \ 64" 36" N �` --I/ 96" -I' 42" 4 Seismic Criteria #Bm Lvls Frame Depth Frame Height #Diagonals Beam Length Frame Type Ss=0.972,Fa=1.111 3 42 in 192.0 in 4 96 in Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=4590 Ib,M=18901 in-lb 0.8-OK Column&Backer None None None N/A Beam Fy=50 ksi KINGMORE SB505 5"x2.5"xl5ga Lu=96 in Capacity:6015 lb/pr 0.5-OK Beam Connector Fy=50 ksi Lvi 1:3 pin OK Mconn=11588 in-lb Mcap=11592 in-lb 1-OK Brace-Horizontal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.15-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.23-0K Base Plate Fy=36 ksi 8x5x3/8 1 Fixity=8000 in-lb 0.76-OK Anchor 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=2346 Ib) 0.592-OK Slab&Soil 5"thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.51-OK Level Load** Story Force Story Force Column Column Conn. Beam Per Level Beam Spcg Brace Transv Longit. Axial Moment Moment Connector 1 3 X 2 ih m--fr-trr tt in tP.m: 1.47 k 4;710 lb 15,901 "# I I; 2 3,000 lb 64.0 in 48.0 in 373 lb 294 lb 3,060 lb 11,760 "# 7,442 "# 3 pin OK 3 3,000 lb 64.0 in 48.0 in 559 lb 441 lb 1,530 lb 7,056 "# 3,326 "# 3 pin OK 48.0 in a **Load defined as product weight per pair of beams Total: 1,118 lb 882 lb - Notes CED GREEN TECH TYPE 1 Page It of t3 2/7/2017 Structural Concepts --- jEngineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: ENHAO Project: CED GREEN TECH Project#: R-020217-6LV Seismic Forces Configuration:TYPE 1 SELECTIVE RACK Lateral analysis Is performed with regent to the requirements of the 2015 IBC Section 2209,2012 RMI ANSI MH 16.1-2012 Sec 2.6&ASCE 7-10 sec 15.5.3 Ss= 0.972 Transverse(Cross Aisle)Seismic Load -MIS1= 0.421 V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) ==== vt Fa= 1.111 Csl= Sds/R e; Fv= 1.579 = 0.1800 Cs-max*Ip= 0.1800 IIM Sds=2/3*Ss*Fa= 0.720 Cs2=0.044*Sds Vm,n= 0.015 Sd1=2/3*S1*Fv= 0.443 =0.0317 Eff Base Shear=Cs= 0.1800 Transverse Elevation Ca=0.4*2/3*Ss*Fa= 0.2880 Cs3= 0.5*S1/R Ws= (0.67*PLRF1*PL)+DL(RMI 2.6.2) (Transverse,Braced Frame Dir.)R= 4,0 = 0.0526 = 6,210 lb Ip= 1.0 Cs-max= 0.1800 Vtransv=Vt= 0.18*(180 lb+ 6030 Ib) PRF1= 1.0 Base Shear Coeff=Cs= 0.1800 Etransverse= 1,118 lb Pallet Height=hp= 54.0 in Limit States Level Transverse seismic shear per upright DL per Beam Lvl= 60 lb Level PRODUCT LOAD P P*0.67*PRFI DL hi wi*hi Fi Fi*(hi+hp/2) 1 3,000 lb 2,010 lb 60 lb 64 in 132,480 186.3 lb 16,953-# I 2 3,000 lb 2,010 lb 60 lb 128 in 264,960 372.7 lb 57,7694 3 3,000 lb 2,010 lb 60 lb 192 in 397,440 559.0 lb 122,4214 I sum: P=9000 lb 6,030 lb 180 lb W=6210 lb 794,880 1,118 lb 2=197,143 Longitudinal(Downaisle)Seismic Load Similarly for longitudinal seismic loads,using R=6.0 Ws= (0.67*PLRF2*P)+DL PRS= _.'. h,<_;:.:1 r....,,.� .1 t.,..,1 Cs1=Sd1/(T*R)= 0.1421 = 6,210 lb (Longitudinal,Unbraced Dir.)R=6.: - r92: 0 017 ['w-r mbsen U 1.421 T---0 s2 gcr ,. .- Cs3= 0.0351 Vlong= 0.1421* (180 lb+ 6030 Ib) H;':"' H' =3 F71 Cs-max= 0.1421 Elongitudinal= 882 lb Limit States LevelLongrt seismic shear per upright - Level PRODUC LOAD P P*0.67*PRF2 DL hi wi*hi Fi Front View 1 3,000 lb 2,010 lb 60 lb 64 in 132,480 147.0 lb 2 3,000 lb 2,010 lb 60 lb 128 in 264,960 294.0 lb 3 3,000 lb 2,010 lb 60 lb 192 in 397,440 441.0 lb sum: 6,030 lb 180 lb W=6210 lb 794,880 882 lb CED GREEN TECH TYPE 1 Page 5 of I. 2!7/2017 Structural Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: ENHAO Project: CED GREEN TECH Project#: R-020217-6LV Downaisle Seismic Loads Configuration:TYPE 1 SELECTIVE RACK Determine the story moments by applying portal analysis.The base plate is assumed to provide partial fixity. Seismic Story Forces Typical frame made Vlong= 882 lb Tributary area oftwocolumns Vcoi=VIong/2= 441 lb of rack frame, F1= 147 lb i Typical Frame made F2= 294 lb Maoftwo columns F3= 441 lb "I'' L El +a- , L MEI TOD View Front View Side View Seismic Story Moments Conceptual System COt Mbase-max= 8,000 in-lb <===Default capacity hl-eff= hl-beam clip height/2 Mbase-v= (Vcol*hleff)/2 = 61 in Vcol MAW = 13,451 in-lb <__=Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v h2 = 8,000 in-lb M 1-1= [Vcol*hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2]*h2 Ad R/1 __ = (441 lb*61 in)-8000 in-lb = [441 lb- 147 Ib]*64 in/2 y = 18,901 in-lb = 11,760 in-lb h1 hleff S' II Mseis= (Mupper+Mlower)/2 Beam to Column Elevation Mseis(1-1)= (18901 in-lb+ 11760 in-lb)/2 Mseis(2-2)= (11760 in-lb+7056 in-lb)/2 = 15,331 in-lb = 9,408 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector . 11,5 8 ,#B. 3�0^,t }, in '>;S4E3� i8-9E31 in-tai 1_ 34 irt.}tr 1 3>4 in-1h " t 2 64 in 3,060 lb 11,760 in-fb 9,408 in-lb 1,224 in-lb 7,442 in-lb 3 pin OK 3 64 in 1,530 lb 7,056 in-lb 3,528 in-lb 1,224 in-lb 3,326 in-lb 3 pin OK 1 Mconn= (Mseismic+Mend-fixity)*0.70*rho Mconn-allow(3 Pin)= 11,592 in-lb **all moments based on limit states level loading CED GREEN TECH TYPE 1 Page 6 of i3 2/7/2017 Structural Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: ENHAO Project: CED GREEN TECH Project#: R-020217-6LV Column(Longitudinal Loads) Configuration:TYPE 1 SELECTIVE RACK Section Properties Section: Hannibal IF3014-3x3x14ga 3.000 in e, Aeff= 0.643 in^2 Iy= 0.749 inA4 Kx= 1.7 X _ Ix= 1.130 in^4 Sy= 0.493 in^3 Lx= 61.5 in 1 Sx= 0.753 in^3 ry= 1.080 in Ky= 1.0 y_._._._.-y 3.000 in rx= 1.326 in Fy= 55 ksi Ly= 36.0 in f 10.075 in' 4f= 1.67 Cmx= 0.85 Cb= 1.0 E= 29,500 ksi 0.75 in Loads Considers loads at level 1 COLUMN DL= 90 lb Critical load cases are:RMI Sec 2.1 COLUMN PL= 4,500 lb Load Case 5::(1+0.105*Sds)D+0.75*(1.4+0.14Sds)*B*P+0.75*(0.7*rho*E)<=1.0,ASD Method Mcol= 18,901 in-lb axial load coeff 0.78791265*P seismic moment coeff: 0.5625*Mcol Sds= 0.7199 Load Case 6::(1+0.104*Sds)D+(0.85+0.14Sds)*B*P+(0.7*rho*E)<=1.0,ASO Method 1+0.105*Sds= 1.0756 axial load coeff.• 0.66555 seismic moment coeff. 0.7*Mcol 1.4+0.14Sds= 1.5008 By analysis,Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1008 0.85+0.14*Sds= 0.9508 Axial Load=Pax= 1.100786*90 lb+0.950786*0.7*4500 lb Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 3,094 lb = 0.7* 18901 in-lb rho= 1.0000 = 13,231 in-lb Axial Analysis KxLx/rx= 1.7*61.5"/1.326" KyLy/ry= 1*36'/1.08" Fe > Fy/2 = 78.8 = 33.3 Fn= Fy(1-Fy/4Fe) = 55 ksi*[1-55 ksi/(4*46.8 ksi)] Fe= n^2E/(KL/r)maxA2 Fy/2= 27.5 ksi = 38.9 ksi = 46.8ksi Pa= Pn/Qc Pn= Aeff*Fn 4c= 1.92 = 24982 lb/1.92 = 24,982 lb = 13,012 lb Bending Analysis Check: Pax/Pa +(Cmx*Mx)/(Max*px)<_ 1.0 P/Pao+Mx/Max<_ 1.0 Pno= Ae*Fy Pao= Pno/ c Myield=My= Sx*Fy = 0.643 in^2*55000 psi = 35365lb/1.92 = 0.753 inA3*55000 psi = 35,365 lb = 18,419 lb = 41,415 in-lb Max= My/cif Pcr= n^2EI/(KL)max^2 = 41415 in-lb/1.67 = n^2*29500 ksi/(1.7*61.5 in)^2 = 24,799 in-lb = 30,099 lb px= {1/[1-(S2c*P/Pcr)]}^-1 = {1/[l-(1.92*3094 lb/30099 1b)]}^-1 = 0.80 - Combined Stresses (3094 Ib/13012 Ib)+(0.85*13231 in-lb)/(24799 in-lb*0.8)= 0.80 < 1.0,OK (EQ C5-1) (3094 lb/18419 Ib)+(13231 in-lb/24799 in-lb)= 0.70 < 1.0,OK (EQ C5-2) **For comparison,total column stress computed for load case 5 is: 72.0% ing loads 3642.40998lb Axial and M= 9923/n-lb CED GREEN TECH TYPE 1 Page 7 of f 3 2/7/2017 Str tural once is ngineering �""--•~ 1815 Wright Ave La Verne,CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: ENHAO ZHANG Project:CED GREEN TECH Project#:R-ozo217-6 v BEAM Configuration:TYPE 1 SELECTIVE RACK Dt i ERMINE ALLOWABLE MOMENT CAPACITY 2.50 in A)Check compression flange for local buckling CB2.1) .1.50 in 4' W= c-2*t-2*r = 1.5 in-2*0.064 in-2*0.064 in r---1 '( = 1.244 in 1.625 in w/t= 19.44 1=lambda= [1.052/(k)^0.5]*(wit)*(Fy/E)^0.5 Eq.B2.1-4 ok„ 5.000 in = [1.052/(4)^0.5]* 19.44*(50/29500)^0.5 = 0.421 <0.673,Flange is fully effective Eq.B2.1-1 1 0.064 in I B)check web for local buckling per section b2.3 I f1(comp)= Fy*(y3/y2)= 46.24 ksi � f2(tension)= Fy*(yl/y2)= 93.29 ksi Y= f2/f1 Eq.B2.3-5 Beam= KINGMORE SB505 5"x2.5"xl5ga = -2.018 Ix= 2.718 in^4 k= 4+2*(1-Y)^3+2*(1-Y) Eq.B2.3-4 Sx= 1.039 in^3 = 65.01 Ycg= 3.300 in flat depth=w= yl+y3 t= 0.064 in = 4.744 in w/t= 74.125 OK Bend Radius=r= 0.064 in 1=lambda= [1.052/(k)^0.5]*(wit)*(fl/E)^0.5 Fy=Fyv= 50.00 ksi = [1.052/(65.01)1\0.5]*4.744*(46.24/29500)^0.5 Fu=Fuv= 60.00 ksi = 0.383 <0.673 E= 29500 ksi be=w= 4.744 in b2= be/2 Eq B2.3-2 top flange=b= 1.500 in bl= be(3-Y) = 2.37 in bottom flange= 2.500 in = 0.945 Web depth= 5P' ' bl+b2= 3.315 in > 1.572 in,Web is fully effective fi(comp) Determine effect of cold working on steel yield point(Fya)per section A7.2 A 1 _� •_ • Fya= C*Fyc+(1-C)*Fy (EQ A7.2-1) -.- - Lcomer=lc= (p/2)*(r+t/2) yz 0.151 in C= 2*Lc/(Lf+2*Lc) Lflange-top=1 f= 1.244 in =P 145 in Y3 m= 0.192*(Fu/Fy)-0.068 (EQ A7.2-4) depth = 0.1620 Bc= 3.69*(Fu/Fy)-0.819*(Fu/Fy)^2- 1.79 (EQ A7.2-3) = 1.459 since fu/Fv= 1.20 < 1.2 Ycg yl and r/t= 1 <7 OK then Fyc= Bc*Fy/(R/t)^m (EQ A7.2-2) - _. 2(tension) = 72.950 ksi Thus, Fya-top= 54.48 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth-Ycg) yl= Ycg-t-r= 3.172 in = 105.76 ksi (tension stress at bottom) y2= depth-Ycg= 1.700 in Check allowable tension stress for bottom flange y3= y2-t-r= 1.572 in Lflange-bot=Lfb= Lbottom-2*r*-2*t _ = 2.244 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) - = 0.119 Fy-bottom=Fyb= Cb*Fyc+(1-Cb)*Fyf = 52.72 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 27.16 ksi if F= 0.95 Then F*Mn=F*Fya*Sx= 26.81 in-k 84 Strural Lonce is Engineerin 9 ___ 1815 Wright Ave La Verne,CA 91750 Tel:909.596.1351 Fax:909.596.7186 By: ENHAO ZHANG Project:CED GREEN TECH Project#:R-020217-6LV BEAM Configuration:TYPE 1 SELECTIVE RACK RMI Section 5.2,PT II Section Beam= KINGMORE SB505 5"x2.5"xl5ga Ix=Ib= 2.718 in^4 2.50 in Sx= 1.039 in^3 t= 0.064 in E= 29500 ksi L1,7 1.50 in J Fy=Fyv= 50 ksi F= 190.0 Fu=Fuv= 60 ksi L= 96 in r--_ Fya= 54.5 ksi Beam Level= 1 I 1.625 in P=Product Load= 3,000 lb/pair 1 D=Dead Load= 60 lb/pair 5.000 in '1 0.064 in 1.Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L*W*Rm/8 W=LRFD Load Factor= 1.2*D+ 1.4*P+1.4*(0.125)*P RMI 2-Z item 8 FOR DL=2olo of PL, W= 1.599 Rm= 1-[(2*F*L)/(6*E*Ib+3*F*L)] t- I BIIIIfHilllllllillllillHlUlltlilllilllliilllillililH awnowninemommomen It 1-(2*190*96 in)/[(6*29500 ksi*2.718 in^3)+(3*190*96 in)] 'Mil = 0.932 if F= 0.95 Then F*Mn=F*Fya*Sx= 53.78 in-k Thus,allowable load - I • it per beam pair=W= F*Mn*8*(#of beams)/(L*Rm*W) Beam = 53.78 in-k*8*2/(96in*0.932*1.599) Length = 6,015 lb/pair allowable load based on bending stress Mend= W*L*(1-Rm)/8 (6fI c ihJ2)*a6 j,*. WOVE, = 2,454 in-lb @ 6015 lb max allowable load = 1,224 in-lb @ 3000 lb imposed product load 2.Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1-(4*F*L)/(5*F*L+ 10*E*Ib) Allowable Deflection= L/180 = 1-(4*190*96 in)/[(5*190*96 in)+(10*29500 ksi*2.718 in^4)] = 0.533 in = 0.918 in Deflection at imposed Load= 0.266 in if Dmax= L/180 Based on L/180 Deflection Criteria and Dss= 5*W*L^3/(384*E*Ib) L/180= 5*W*L^3*Rd/(384*E*Ib*#of beams) _ solving for W yields, W= 384*E*I*2/(180*5*L^2*Rd) = 384*2.718 in^4*2/[180*5*(96 in)^2*0.918) = 8,087 lb/pair allowable load based on deflection limits Thus,based on the least capacity of item 1 and 2 above: Allowable load= 6,015 lb/pair Imposed Product Load= 3,000 lb/pair 'Beam Stress= 0.5 Beam at Level I • +rl,or+,weer nnino_o_rinn 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: ENHAO Project:CED GREEN TECH Project#: R-020217-6LV 3 Pin Beam to Column Connection TYPE 1 SELECTIVE RACK I he beam end moments shown herein show the result of the maximum induced fixed end monents form seismic+static loads and the code mandated minimum value of 1.5%(DL+PL) Mconn max= (Mseismic+ Mend-fixity)*0.70*RhoC P1 rho= 1.0000 = 11,588 in-Ib Load at level 1 z^ 111.1 IF IF2^ C v 1,2" \1r" Connector Type= 3 Pin Shear Capacity of Pin Pin Diam= 0.40 in Fy= 50,000 psi Ashear= (0.4 in)^2*Pi/4 = 0.1257 in''2 Pshear= 0.4*Fy*Ashear = 0.4*50000 psi*0.1257inA2 = 2,514 lb Bearing Capacity of Pin tcol= 0.075 in Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha*Fu*diam*tcol/Omega = 2.22*65000 psi*0.4 in*0.075 in/2.22 = 1,950 lb < 2514 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in Fy= 50,000 psi C= P1+P2+P3 tclip= 0.14 in Sclip= 0.127 in^3 = P1+P1*(2.574.5")+P1*(0.5"/4.5") = 1.667*P1 Mcap= Sclip*Fbending C*d= Mcap= 1.667 d= E/2 = 0.127 in^3*0.66*Fy = 0.50 in = 4,191 in-lb Pclip= Mcap/(1.667*d) = 4191 in-lb/(1.667*0.5 in) Thus, P1= 1,950 lb = 5,028 lb Mconn-allow= [P1*4.5"+P1*(2.574.5")*2.5"+P1*(0.574.5")*0.51 = 1950 LB*[4.5"+(2.574.5")*2.5"+(0.574.5")*0.51 = 11,592 in-lb > Mconn max, OK CED GREEN TECH TYPE 1 Page 9 of 13 2/7/2017 • Structural Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: ENHAO Project: CED GREEN TECH Project#: R-020217-6LV Transverse Brace Configuration:TYPE 1 SELECTIVE RACK Section Properties Diagonal Member= Hannibal 1-1/2x1-1/2x16ga Horizontal Member= Hannibal 1-1/2x1-1/2x16ga Area= 0.273 in^2 Area= 0.273 in^2 1.500 in r min= 0.496 in r min= 0.496 in h '50° Fy= 55,000 psi Fy= 55,000 psi I 1 K= 1.0 I 11.500 in K= 1.0 4c= 1.92 �_ _J . 11.500 0.250 in - , 4-0.250 Frame Dimensions Bottom Panel Height=H= 48.0 in Clear Depth=D-B*2= 36.0 in Frame Depth=D= 42.0 in X Brace= NO Column Width=B= 3.0 in rho= 1.00 Diagonal Member 0 - 'Load Case 6::(i+ * 85+0.14Sds)*B*P#[07*rho*E]<=1.0,ASD Method I-. 1 p —.I Vtransverse= 1,118 lb vb MAIM Vb=Vtransv*0.7*rho= 1118 lb*0.7* 1 (kl/r)= (k*Ldiag)/r min = 7831b = (1 x 55.3 in/0.496 in) Ldiag= [(D-B*2)^2+(H-6")^21^1/2 = 111.5 in Ldiag = 55.3 in Fe= pi^2*E/(kl/r)^2 H Pmax= V*(Ldiag/D)*0.75 = 23,419 psi = 7731b 11 I axial load on diagonal brace member Since Fe<Fy/2, 3°tYP Pn= AREA*Fn Fn= Fe a = 0.273 in^2*23419 psi = 23,419 psi Typical Panel = 6,393 lb Configuration Pallow= Pn/52 Check End Weld = 6393 lb/1.92 Lweld= 3.0 in = 3,330 lb Fu= 65 ksi tmin= 0.060 in Pn/Pallow= 0.23 <=1.0 OK Weld Capacity= 0.75*tmin*L*Fu/2.5 = 3,510 lb OK Horizontal brace Vb=Vtransv*0.7*rho= 783 lb (kl/r)= (k*Lhoriz)/r min Fe= pi^2*E/(kl/r)^2 Fy/2= 27,500 psi = (1 x 42 in)/0.496 in = 40,584 psi = 84.7 in Since Fe>Fy/2,Fn=Fy*(1-fy/4fe) Pn= AREA*Fn Pallow= Pn/4c = 36,366 psi = 0.273in^2*36366 psi = 9928 lb/1.92 = 9,928 lb = 5,1711b Pn/Pallow= 0.15 <=1.0 OK CED GREEN TECH TYPE 1 Page (0 of (3 2/7/2017 Structural Concepts 4 Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: ENHAO Project: CED GREEN TECH Project#: R-020217-6LV Single Row Frame Overturning Configuration:TYPE 1 SELECTIVE RACK Loads Critical Load case(s): 1)RMI Sec 2.2,item 7: (0.9-0.2Sds)D+(0.9-0.20Sds)*B*Papp-E*rho hp e.:= a Sds= 0.7199 y Vtrans=V=E=Qe= 1,118 lb (0.9-0.2Sds)= 0.7560 DEAD LOAD PER UPRIGHT=D= 180 lb (0.9-0.2Sds)= 0.7560 PRODUCT LOAD PER UPRIGHT=P= 9,000 lb B= 1.0000 H h Papp=P*0.67= 6,030 lb rho= 1.0000 Wst LC1=Wst1=(0.75602*D+0.75602*Papp*1)= 4,694 lb Frame Depth=Df= 42.0 in T Product Load Top Level, Ptop= 3,000 lb Htop-Iv1=H= 192.0 in DL/Lvl= 60 lb #Levels= 3 1 - oft Seismic Ovt based on E,E(Fi*hi)= 197,143 in-lb #Anchors/Base= 2 height/depth ratio= 4.6 in hp= 54.0 in SIDE ELEVATION A)Fully Loaded Rack h=H+hp/2= 219.0 in Load case 1: Movt= E(Fi*hi)*E*rho Mst= Wstl*Df/2 T= (Movt-Mst)/Df " = 197,143 in-lb = 4694 lb*42 in/2 = (197143 in-lb-98574 in-lb)/42 in = 98,574 in-lb = 2,347 lb Net Uplift per Column Net Seismic Uplift= 2,347 lb B)Top Level Loaded Only Load case 1: 0 V1=Vtop= Cs*Ip*Ptop>=350 lb for H/D>6.0 Movt= [Vl*h+V2*H/2]*0.7*rho = 0.18*3000 lb = 84,959 in-lb = 540 lb T= (Movt-Mst)/Df Vleff= 540 lb Critical Level= 3 = (84959 in-lb-50487 in-lb)/42 in V2=VDL= Cs*Ip*D Cs*Ip= 0.1800 = 821 lb Net Uplift per Column Mst= (0.75602*D+0.75602*Ptop*1)*42 in/2 = 50,487 in-lb I Net Seismic Uplift= 821 lb Anchor Check(2)0.5"x 3.25"Embed HILTI KWIKBOLT TZ anchor(s)per base plate. Special inspection is required per ESR 1917. Pullout Capacity=Tcap= 1,961 lb L.A.City Jurisdiction? NO Tcap*Phi= 1,961 lb Shear Capacity=Vcap= 2,517 lb Phi= 1 Vcap*Phi= 2,517 lb Fully Loaded: (1173 Ib/1961 Ib)^1 +(279 lb/2517 Ib)^1 = 0.71 <= 1.2 OK Top Level Loaded: (410 lb/1961 Ib)^1 +(135 lb/2517 Ib)^1 = 0.26 <= 1.2 OK CED GREEN TECH TYPE 1 Page 1 1 of U) 2/7/2017 Structural Concepts Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: ENHAO Project: CED GREEN TECH Project#: R-020217-6LV Base Plate Configuration:TYPE 1 SELECTIVE RACK Section '- a -v P Baseplate= 8x5x3/8 11-.4 Eff Width=W= 8.00 in a= 3.00 in e, Mb Eff Depth=D= 5.00 in Anchor c.c. =2*a=d= 6.00 in s, Column Width=b= 3.00 in N=#Anchor/Base= 2 11 Column Depth=dc= 3.00 in Fy= 36,000 psi I b . w L= 2.50 in Plate Thickness=t= 0.375 in Downaisle Elevation Down Aisle Loads Load Case 5::(1+0.105*Sds)D+0.75*((1.4+0.14Sds)*B*P+0.75*[0,7*rho*Ej<=1.0,ASD Method COLUMN DL= 90 lb Axial=P= 1.0755895*90 lb+0.75*(1.500786*0.7*4500 lb) COLUMN PL= 4,500 lb = 3,642 lb Base Moment= 8,000 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0756 = 8000 in-lb*0.75*0.7*rho 1.4+0.14Sds= 1.5008 = 4,200 in-lb Effe B= 0.7000 Axial Load P = 3,642 lb Mbase=Mb= 4,200 in-lb Effe Axial stress=fa= P/A=P/(D*W) M1= wL^2/2=fa*L^2/2 = 91 psi = 285 in-lb Moment Stress=fb= M/S=6*Mb/[(D*B^2] Moment Stress=fb2= 2*fb*L/W = 78.8 psi = 49.2 psi Moment Stress=fbl = fb-fb2 M2= fb1*L^2)/2 I = 29.5 psi = 92 in-lb M3= (1/2)*fb2*L*(2/3)*L= (1/3)*fb2*L^2 Mtotal = M1+M2+M3 = 103 in-lb = 479 in-lb/in S-plate= (1)(t^2)/6 Fb= 0.75*Fy = 0.023 inA3/in = 27,000 psi fb/Fb= Mtotal/[(S-plate)(Fb)] F'p= 0.7*Pc = 0.76 OK = 1,750 psi OK Tanchor= (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,961 lb OK = -1,647 lb No Tension Cross Aisle Loads O ak load caseMKT Sec Z1,item 4:(1+O.I jDL+(1+0.14SDS)PL"D.75+EL"v.75<=LO,ASDMethod Check uplift load on Baseplate r rbrark.,it&frirrrais rot taaeoplatitv with?en. Raa 4-v Pstatic= 3,642 lb When the base plate configuration consists of two anchor bolts located on either side of the column and a net uplift force exists,the minimum base plate thickness Movt*0.75*0.7*rho= 103,500 in-lb Pseismic= Movt/Frame Depth shall be determined based on a design bending moment in the plate equal Frame Depth= 42.0 in = 2,464 lb to the uplift force on one anchor times 1/2 the distance from P=Pstatic+Pseismic= 6,107 lb the centerline of the anchor to the nearest edge of the rack column" b=Column Depth= 3.00 in T I.4 c i L=Base Plate Depth-Col Depth= 2.50 in Ta Muail Ta .iwilill` -li- fa= P/A=P/(D*W) M= wL^2/2=fa*L^2/2 I ( b = 153 psi = 477 in-lb/in Elevation Uplift per Column= 2,346 lb Sbase/in= (1)(t^2)/6 Fbase= 0.75*Fy Qty Anchor per BP= 2 = 0.023 inA3/in = 27,000 psi Net Tension per anchor=Ta= 1,173 lb c= 2.50 in fb/Fb= M/[(S-plate)(Fb)] Mu=Moment on Baseplate due to uplift= Ta*c/2 = 0.75 OK = 1,466 in-lb Splate= 0.117 inA3 [fb/Fb]*0.75= 0.348 OK CED GREEN TECH TYPE 1 Page (Zof t3 2/7/2017 Structural Concepts - Engineering 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: EN-IAO Project: CED GREEN TECH Project#: R-020217-6LV Slab on Grade Configuration:TYPE 1 SELECTIVE RACK / 1VP slab a Concrete a ' D fc= 2,500 psi b e tslab=t= 5.0 in slab t I I i Cross teff= 5.0 in IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIi iIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ----c ----' :_Aisle..:. phi=fb= 0.6 .- x .� c ... Soil 4Y ...........: B ::.:::.:.::::: fsoil= 1,000 psf L Down Aisle Movt= 138,000 in Ib SLAB ELEVATION Frame depth= 42.0 in Baseplate Plan View Sds= 0.720 Base Plate 0.2*Sds= 0.144 Effec.Baseplate width=B= 8.00 in width=a= 3.00 in X= 0.600 Effec.Baseplate Depth=D= 5.00 in depth=b= 3.00 in p=6/D= 1.600 midway dist face of column to edge of plate=c= 5.50 in F'c^0.5= 50.00 psi Column Loads midway dist face of column to edge of plate=e= 4.00 in DEAD LOAD=D= 90 lb per column Load Case 1) (1.2+0.2Sds)D+(1.2+0.2Sds)*B*P+rho*E RMI SEC 2.2 EQTN 5 unfactoredASD load = 1.34398*90 lb+ 1.34398*0.7*4500 lb+1*3285 lb PRODUCT LOAD=P= 4,500 lb per column = 7,639 lb unfactoredASD load Load Case 2) (0.9-0.2Sds)D+(0.9-0.2Sds)*B*Papp+rho*E RMI SEC 22 EQTN 7 Papp= 3,015 lb per column = 0.75602*90 lb+0.75602*0.7*3015 lb+ 1 *3285 lb P-seismic=E= (Movt/Frame depth) = 4,949 lb = 3,285 lb per column Load Case 3) 1.2*D+ 1.4*P RMI SEC 2.2 EQTN 1,2 unfactored Limit State load = 1.2*90 lb 4-1.4*4500 lb B= 0.7000 = 6,408 lb rho= 1.0000 Load Case 4) 1.2*D+1.0*P+ 1.0E ACI 318-11 Sec 9.21,E!th 9-5 Sds= 0.7199 = 7,893 lb 1.2+0.2*Sds= 1.3440 Effective Column Load=Pu= 7,893 lb per column 0.9-0.20Sds= 0.7560 Puncture Apunct= [(c+t)+(e+t)]*2*t 195.0 in' 2 Fpunctl= [(4/3+8/(3*(3)]*X*(F'c^0.5) fv/Fv= Pu/(Apunct*Fpunct) = 90.psi = 0.507 < 1 OK Fpunct2= 2.66*X*(F'c^0.5) = 79.8 psi Fpunct eff= 79.8 psi Slab Bending Pse=DL+PL+E= 7,893 lb Asoil= (Pse*144)/(fsoil) L= (Asoil)^0.5 y= (c*e)^0.5+2*t = 1,137 in^2 = 33.72 in = 14.7 in x= (L-y)/2 M= w*x^2/2 S-slab= 1*teff^2/6 = 9.5 in = (fsoil*x^2)/(144*2) = 4.17 inA3 Fb= 5*(phi)*(fc)^0.5 = 314.3 in-lb fb/Fb= M/(S-slab*Fb) = 150.psi = 0.503 < 1,OK CED GREEN TECH TYPE 1 Page 30f. 13 2/7/2017 Stru ural Loonce is engineering 1815 Wright Ave La Verne,CA 91750 Tel:909.596.1351 Fax:909.596.7186 6y: ENHAO ZHANG Project CED GLEENTECH ProJect#: Configuration: TYPE 2 SELECTIVE RACK Client: SPEEDRACK WEST Project Name: CED GLEENTECH For: JASON ANCELL Project Address: 14160 SW 72ND AVE Date: 2/20/2017 TIGARD,OR 97224 Preliminary Rack Analysis The proceeding analysis is provided by - — Structural Concepts Engineering as a tool I for preliminary component sizing only, 64" 48" and does not constitute a final deisgn or 1, guarantee of approval by the local =,_-- 48" building official.The components herein 192„ are designed within the guidelines of the 64" 192" 2013 CBC,2012 IBC 2012 RMI and 48" ASCE 7-10 and with due regard to testablished Industry standards.The final Seismic Design Coeff design of the system is valid only with 64" 36 Ss=0.972 ` sl=0.421 proper approval from the jurisdictional Fa= 1,111 Fv= 1.579 building official. �L ^I 96 42" 4 Sds=0.720 Sd1=0.443 TYPE 2 SELECTIVE RACK Seismic Criteria #Beam Lvls Frame Depth Frame Height Beam Length #of Diagonals Frame Type Ss=0.972,Fa=1.111 3 42 in 192,0 in 96 in 4 Single Row COMPONENT DESCRIPTION STRESS COLUMN Fy=55 ksi Hannibal IF3012-3x3x12ga P=3863 lb, M=23638 in-lb 0.6-OK COLUMN &BACKER None None None N/A BEAM Fy=55 ksi , HMH 41160/4.125" Face x 0.06" thk Lu=96 in Capacity: 4945 lb/pr 0.51-OK BEAM CONNECTOR Fy=55 ksi Lvl 1: 3 pin OK Mconn=12761 in-lb Mcap=17768 in-lb 0.72-OK BRACE-HORIZONTAL Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.13-OK BRACE-DIAGONAL Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga 0.2-OK BASE PLATE Fy=36 ksi 8x5x3/8 Fixity= 0 in-lb 0.64-OK ANCHORS 2 per Base 0.5"x 3.25"Embed HILTI KWIKBOLT TZ ESR 1917 Inspection Reqd(Net Seismic Uplift=1982 Ib) 0.5-OK MIN. SLAB&SOIL 5" thk x 2500 psi slab on grade. 1000 psf Soil Bearing Pressure 0.43-OK Per Level Spacing Height Transv Longit. (Pb) (in-1b) Connection __ I 1 2,500 lb 64 in 36.0 in 15$ lb 129 lb 3,863 12,761 3 pin Ok 1 2 2,500 lb 64 in 48.0 in 315 lb 258 lb 2,575 6,658 3 pin OK 3 2,500 lb 64 in 48.0 in 473 lb 388 lb 1,288 3,042 3 pin OK 48.0 in • I 1 Total: 945 lb 775 lb -▪ NOTES i CED GLEENTECH TYPE 2 2/20/2017 _y_