Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (25)
S r /G —06/6-16 I ? 7 // Sti ' />''7Z r ax' : c�.n� , E. t; CT ENGINEERINGr� Structural Engineers A P k 4 Z015 180 Nickerson Street Suite 302 Seattle, WA 98109 INC. 206.285.4512 (v) 208.285.0818 (F) CiTY OF #15238 Structural Calculations River Terrace Eo PRo, 4 Plan 5 GINF�� , 60 • Elevation B •. u, Tigard, OR irrEciAN4f14.<2 2z X Design Criteria: 2012 IBC (ORSC, OSSC) 09/14/2015 ASCE 7-10 Wind Speed: 120(ULT); 93(ASD); Kzt=1 .0 Seismic: Ss=0.972, S1 =0.423, SDC=D Roof Snow Load = 25 psf Site Class = D, Bearing = 2000 psf Client: Polygon Northwest Company 109 East 13th Street, Suite 200 Vancouver, WA 98660-3229 Ph: 360.695.7700 Fax: 360.693.4442 Architect: Milbrandt Architects 25 Central Way, Suite 210 Kirkland, WA 98033 Ph: 425.454.7130 Fax: 425.646.0945 C T ENGINEERING INC 180 Nickerson St. Suite 302 Seattle,WA 98109 (206)285-4512(V) (206)285-0618(F) Polygon Northwest Company Multiple locations in Tigard,OR DESIGN SUMMARY: The proposed project is to be single-family homes. We understand that these homes are to be constructed in multiple locations throughout Tigard, Oregon. Design parameters are as noted below The structures are two-story wood-framed. Roof framing is primarily with pre-manufactured pitched chord wood trusses. Upper floor framing is primarily with pre-manufactured parallel chord wood trusses. Floor framing over crawlspace is primarily pre-manufactured wood joists. The foundations are to be conventional spread footings. Wind design is based on the ASCE 7-10 MWFRS(Envelope Procedure)for 120 mph ultimate wind speed, exposure category B,and with a Kit value of 1.00. Lateral design is based on the ASCE 7-10"equivalent lateral force"procedure with Ss equal to or less than 1.10 and S1 equal to or less than 0.50 and with soil classification"D". Plywood or OSB shearwalls are the primary lateral force resisting system (R=6.5). . Foundations have been sized for Class 4 soils as defined in IBC 1806.2. Codes considered;2012 IBC,and currently adopted ORSC and OSSC. SHEET TITLE: DEAD LOAD SUMMARY CT PROJECT#: CT# ROOF Roofing 3.5;psf Roofing-.7 future' : - 0.0 psf 5/8"plywood„(0 S.B).' 2.2 psf Trusses at24”oc �.4.0'psf Insulation 1.0;psf (1).5/8"8"gypsum ceiling ; 2.8 psf Misc./Mech. . "'1.5 psf ROOF DEAD LOAD 15.0 PSF FLOOR floor finish 4.0 psf NO gypsum concrete `0.0 psf 314"plywood.(O.S B) . X2.7;psf joist at 12" 2.5 psf Insulation i1.0psf (1) 1/2''gypsum ceiling`F 2.2;psf Misc 2.6I psf FLOOR DEAD LOAD 15.0 PSF (2)2x8 HDR ( )2x8 .R (212x8 H1R RB RB RB RB )B.5 rT g I m IN I u N 1� A _ - " - v 4 Y w- Y - _ ' , 1 I i GT i . ` 1 GT bl 1 1 1 i i i 2 I 1 II I I I I I I I I I I I I 1 1 1 I I 1 1 u I 1 Ip_' I 1 _ I 1 1 I v I -li 1 I mlo'. i` i 64t I I 1 T <01 N 1 =t� I• �� gill 1 ` 1 = T-J C I I F , 1 I 1 I 1 I ROOF TRUSS#24'O.0 i¢ I I O ® -:H. ..........._........ GTI dT.b2 1 1 = mA h p c:::.-.:-::::.::::::::•:::::::::::::::: I o'. re It CI, O . v ::::::�ii'.:: J : _ :: :: 7 4 RB.13 J (2),r. HD' R 7 1O`®11IM1i2— moi--- GABLE END TRUSS ,.\ RB.1 ,_— um , , B 12 I .. i-- GABLE END TRUSS OPLAN 5B PLAN 5B Roof Framing Plan 1/4"_1'-0" CT# 14051 2014.05.09 1/4" = 1.-o" (11x17) 19 0 . Y• I (----Th _>< Illr • Ili (_ H II F 1 1 p0 rn E4 ] mm 4 II I E 01 )_ l� F .1] i 4 , ,WMEli . n . El , , , . _ E Di L.. . J K,..., 1 1 ..__." I= E I a i. 11 4. a 4. ai F4Nalllillfr 4.Te 4.T• 0 qti 0 4 An Ar% OPLAN 5B PLAN 5B Top Floor Shear Plan 1/4"=1'-0" CT* 14051 2014.05.09 1/4" = 1'-0" (11x17) 0 0 9E3 4ZE3 a 0 14 STHD14 1.Ma 4x10 HDR 1 i, 3.5x9 GLB HDR 1 Mc 4x10 HDR 4x10 HDR 4x10 HDRv. 11.1 ../ " B.2 B. ,B. B.3 / f 1 O lobi1 / }- a w4 ..• J I 1 v 0 ,-L__ _ -_-, __ I F 11 -� f I� ' O;-I ? 3,. X I I m I K 11111111 VIIIIlm/M,.i i1 0 I I I I I3.5x I;1 BIG BEAM FB 3.5x14 B B FB 3.5x9 3LB HDR 1,-----++:-:J ----- '--- ----- - --'- -- --- -'----�-1 Fi---- - 1 ]�0 B.11 11 9.12 I '--I- • _w ' I i �\ -- eisHD_ 4 HDR ro _= C '111 4 i i I ? —11_21 , I \STAIRIN / b :1 \FMGQ STHD14 o STW+14 I 11 I- --. .STM ST4D14 1 \ / �' �N y -----a - I---- , P4 1 \ / 1 \/ Ei w I I,; /\ I I i / \ P4 I \I i / \ � 014 STHD14—' 1111 \ / _ _3.\• BIG BEAM FB r 5.5x18 rIIBHDR _r - ,I -r-��s as arac,r��-r 1•••• •••M•1• 1=••••0011.41.10 _ � B.1: IIII I 1 16 £ ---- --------- -- o --i 14 1 --- -S9. - A = 1 ��w --- Cm IM ; I I F - il 4C 1 II i I i r 1---CT 4.-- /ram111 r 0 0 ,,)2x8 HDR III 0 I `* B.1' 1 1x IF::: crZi 11 ___ 55x12 GLB HDR I —A 56.! 1 .5X14 BIG B ::TT�= r� rrC:,r 3= 4cit Yx0�=I.: t. . mB.16 I A 11"F, © 4x10 HDR 4.M ® =11.=.-.��I— Q STHD14 `�M 4 B.25 -4 P3 I SIM. • _ :::::t::t::: 0 4.Mc & 4.Md not used this elevation `'i ����%���=�'=�'-< EYB.19 ,.d`To-:iichiii:5i .... 44 HDR .1 =Mar B.19 19 MONO TRUSSES 24'O.C. (1)PLAN 5B PLAN 5B Main Floor Shear/Top Floor Framing 1/4"=1'-O" CT# 14051 2014.05.09 1/4" = l'-0" (11x17) SII 1-V-31 . T.O.S. 312"CONC.SLAB b � _// -03" -0-712' T7 T.O.S. STHD14 STHD14 -- _. IL1i�I/= 12'TJJ.FLOOR JOISTS @ JNSTALL'SYSTEM TOALLOW I , 9.2"O.C. U.N.O ) ADEQUATE DRAINAGE AT , i y . CRAWL SPACE 1 u�i 1 75x9 LVL i:' I 18'X16 x40'FIG I i' 1.".'.'.'.'.'.'.".". ".'."'.'.'.'.'.':.".'.':."..'.'.':...'...........� ........... 2x6 PONY WAlGF'OR."..".'.".'.'. ..'.'.'."..'.".:..".".. 1 ti 3' �175'WIDEL TOMATO IJOIST ", I i. I 1 DEPTH :. PONY W I , if I . -I WH ISTHD14 STHD14 ..1.. - .'.-.':..':.'�' .._,.:.:._...".'.:.:.;:..'.". ti EiEil P4) T.O.S. P4 "I- 30'x20.'x40'.FTG....'."'.:.". ".'.'.'.'."."". ..... '!.".:'. "WI(3)'EA.WAY- ...:....I GIST-DEPTH"A.BS „PGNM I -, STHD14 L S S A 3 II ii 312"CONC.SLAB �.... ...... .. m SLAB SLOPES 312' -1'-012.1 FROM BACK TO APRON VERIFY GARAGE SLAB HEIGHT , ............ ................ .......... WITH GRADING PLAN49 I' ,-........ J. .........m .. _1'-042"........x. 19'-10' '.1.':...'..'."."."."9=.0 :.'.'..'.......'.'.' .:..':.'.".".".'.'.". ...'.'.11-2'.".". I ._I___.__ -_— +. ........... .. . ........... .. 1 (1 ........... ..... ... i i -0'-6^ t. • STHD14 i:. 1 0 STHD14 41071 ` .c._ .^._._ ..- ::--- --�: ` •'J' 18 1 612' UP m , El L. 36.1 „,...)--,$) P3 4UPSTHD14 STHD14 31/2"CONC.SLAB SLOPED DOWN P3 1/4:12 .411.11 fill ea For— An 0 "2.-1.'' PLA1 IF 5B 12'-2'� 7.,0" PLAN 5 -6. , 1 40'. . CT# 14051 2014.05.09 ,i/4" = 1'-0" (11x17) CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Prosed Descr. (206)285 4512 Fax: (206)285 0618 Printed 26 MAR 2014 429PM if s� '�v b' T �y '.l`� '�� �.�. ��'R �,���3�^''�'�•"ny L 'n kJ IX u �$'' �`i`'Jz a. "ir' ' �.� ..z-�_f�.i".'.5��'._a., � ,..,....,�.b��.,iz s" � &.3:��..:,:,�., a.t 3�-:c:��27iv_.� ��.r����;��. r•�.tz$.�:t<zcvzr:«au a. Lic.#: KW-06002997 Licensee. c.t.engineering Descri'tion : PLAN 5.B Top Floor Framing T ti `•" '�` �lM ,eIB -to< a,.= .: a ga b a a BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Pril 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,0.0 to 2.670 ft,Trib=3.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 4.250 ft,Trib=23.0 ft Unit Load: D=0.010 k/ft,Trib=8.0 ft Point D=0.990, S=1.650 k @ 2.670 ft Design Summary Doo-,� DO.' :rra' ') Max Actuafb/Fbl Ratio = 983.60 psi5. 1 �i i to) fb:Actual: psi at 2.663 ft in Span#1 Fb:Allowable: 1,237.45 psi Load Comb: +D+0.750L+0.7505+H • • Max fv/FvRatio= 0.588: 1 A A iv:Actual: 121.63 psi at 3.485 ft in Span*1 Fv:Allowable: 207.00 psi 4.250x.axto Load Comb: +D+0.750L+0.7505+H Max Deflections Max Reactions (k) D L Lr a W E H Downward L+Lr+S 0.024 in Downward Total 0.038 in Left Support 1.05 0.87 0.92 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.60 0.87 1.84 Live Load Defl Ratio 2120>360 Total Defl Ratio 1333>180 iatgAl eg B.2 BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Pr!! 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unit Load: D=0.0150, S=0.0250 kik,2.670 to 6.50 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point D=0.560, 5=0.9350 k @ 3.250 ft Design Summary :o!�" c Max fb/Fb Ratio = 0.736. 1 D o r.,-,u= +✓.'°.',::�� tb:Actual: 1,600.40 psi at 3.250 ft in Span#1 .,�.,..j Fb:Allowable: 2,175.87 psi Load Comb: +D+0.750L+0.750S+H Max fv/FvRatio= 0.511: 1 • • Iv:Actual: 182.08 psi at 5.352 ft in Span*1 Fv:Allowable: 356.50 psi 6.50 4 1.75x14 Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.066 in Downward Total 0.104 in Left Support 1.43 1.33 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.97 1.33 2.02 Live Load Defl Ratio 1187>360 Total Deft Ratio 748>180 isil:117.4111;17141 B.3 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Prll 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,1.50 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point D=0.560, S=0.9350 k @ 1.50 ft _ CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 2014,429PM ? tic.#: KW-0600299jk'7 > . _. &- . '"- h - Licensee.•c.t.engineering Design Summary Max fb/Fb Ratio = 0.681• 1 p ?,2 �__ tb:Actual: 842.88 psi at 1.941 ft in Span#1 : :1MIC Fb:Allowable: 1,237.45 psi Load Comb: +D+0.750L+0.7505+H • • Max fv/FvRatio= 0.502: 1 A A Tv:Actual: 103.92 psi at 0.000 ft in Span#1 Fv:Allowable: 207.00 psi 4250 ft,4x10 Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S W E t Downward L+Lr+S 0.023 in Downward Total 0.036 in Left Support 1.17 0.87 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.34 0.87 1.40 Live Load Defl Ratio 2242>360 Total Defl Ratio 1411 >180 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Prll 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary Max fb/Fb Ratio = 0.578 1 --- " "'i= ib:Actual: 715.19 psi at 2.125 ft in Span#1 Fb:Allowable: 1,237.45 psi Load Comb: +D+0.750L+0.7505+H 0 0 Max fv/FvRatio= 0.401: 1 A A fv:Actual: 83.02 psi at 3.485 ft in Span#1 Fv:Allowable: 207.00 psi 4250a MO Load Comb: +D+0.750L+0.7505+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.020 in Downward Total 0.031 in Left Support 1.23 0.87 1.22 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.23 0.87 1.22 Live Load Defl Ratio 2591 >360 Total Defl Ratio 1632>180 B.5 Cl- BEAM Size: 2-2x8,Sawn Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pr!! 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 klft,-Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary ,• -,« Max fb/Fb Ratio = 0.109 1 �;E�;s fb:Actual: 127.33 psi at 1.375 ft in Span#1 Fb:Allowable: 1,169.59 psi Load Comb: +D+S+H 0 0 Max fv/FvRatio= 0.092: 1 A A fv:Actual: 15.85 psi at 0.000 ft in Span#1 Fv:Allowable: 172.50 psi 2.750 It,2,248 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.002 in Downward Total 0.003 in Left Support 0.23 0.06 0.17 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.23 0.06 0.17 Live Load Defl Ratio 19147>360 Total Defl Ratio 9430>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (los)285 0618 Printed 26 MAR 2014 429PM „ _� r...3 .4 ' - "S''ie..;` Lic.#: KW-06002997 Licensee:c.t.engineering B6 ��: � °��� 'tea��� BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pril 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary Max fb/Fb Ratio = 0.520. 1 fb:Actual: 606.14 psi at 3.000 ft in Span#1 Fb:Allowable: 1,165.07 psi • Load Comb: +D+S+H Max fv/FvRatio= 0.283: 1 A A fv:Actual: 48.83 psi at 5.400 ft in Span#1 sort 22x3 Fv:Allowable: 172.50 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E 1:1 Downward L+Lr+S 0.039 in Downward Total 0.079 in Left Support 0.51 0.12 0.38 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.51 0.12 0.38 Live Load Defl Ratio 1843>360 Total Defl Ratio 908>180 d• - m "'r,"r BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pril 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 kit,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary =_„ti: .;;_ ,--•IM IN II '-"MIIIMMINIM Max fb/Fb Ratio = 0.292; 1 fb:Actual: 340.95 psi at 2.250 ft in Span#1 Fb:Allowable: 1,167.23 psi Load Comb: +D+S+H ® • Max fv/FvRatio= 0.195: 1 A A fv:Actual: 33.57 psi at 0.000 ft in Span#1 .w a 2 zxe Fv:Allowable: 172.50 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lrr E W E H. Downward L+Lr+S 0.012 in Downward Total 0.025 in Left Support 0.38 0.09 0.28 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.38 0.09 0.28 Live Load Defl Ratio 4369>360 Total Defl Ratio 2152>180 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Prll 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary D 02213 L 0.590 Max fb/Fb Ratio = 0.277; 1 fb:Actual: 298.66 psi at 1.750 ft in Span#1 Fb:Allowable: 1,077.23 psi Load Comb: +D+L+H • = A Max fv/FvRatio= 0.205: 1 fv:Actual: 36.84 psi at 2.730 ft in Span#1 3.501E 4x10 Fv:Allowable: 180.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr E W E H Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Deft Ratio 7745>360 Total;Deti Ratio 5633>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:25 MAR2014,429PM FAN, t Lic.#:KW-06002997 Licensee:c.t.engineering i' i B IW 9 ` �` of '� •§� ...> .�se.§ BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Pr!! 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pcf Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary •0.2213 L 0.590 Max fb/Fb Ratio = 0.277; 1 fb:Actual: 298.66 psi at 1.750 ft in Span#1 Fb:Allowable: 1,077.23 psi Load Comb: +D+L+H Max fv/FvRatio= 0.205: 1 A A fv:Actual: 36.84 psi at 2.730 ft in Span#1 Fv:Allowable: 180.00 psi 3.50 A 4410 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Deft Ratio 7745>360 Total Defl Ratio 5633>180 B.10 , *. ,07-"( MW-€v ,�.`f 1 ..zn'° 1,y u ..t BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Pril 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary D 02213 L..590 Max fb/Fb Ratio = 0.372.1 fb:Actual: 766.31 psi at 3.000 ft in Span#1 Fb:Allowable: 2,062.40 psi ,, Load Comb: +D+L+H Max fv/FvRatio= 0.295: 1 A A fv:Actual: 91.39 psi at 4.840 ft in Span#1 Fv:Allowable: 310.00 psi 8.0 R 1.75x14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.028 in Downward Total 0.038 in Left Support 0.66 1.77 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.66 1.77 Live Load Defl Ratio 2581 >360 Total Defl Ratio 1877>180 W - WW ' . '� 6.11 ,.. BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade:TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-PrIl 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary •02213 L 0.590 Max fb/Fb Ratio = 0.198. 1 fb:Actual: 431.05 psi at 2.250 ft in Span#1 Fb:Allowable: 2,180.79 psi Load Comb: +D+L+H Max fv/FvRatio= 0.175: 1 A A fv:Actual: 54.39si at 0 p .000 ft in Span#1 Fv:Allowable: 310.00 psi 4.50 9,1.75214 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr SW E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.50 1.33 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.50 1.33 Live Load Defl Ratio 6120 >360 Total Defl Ratio 4451 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr. (206)285 4512 Fax: (206)285 0618 Printed 26 MAR 2014 429PM t �a...�i...�... .,., : , ° •^. i�io r a Y Ltc.#: KW-06002997 Licensee.c.t.engineering r ' ; i. ! � B12 BEAM Size: 3.125x9,GLB, Fully Unbraced OR 3.125X10.5 Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-Pr!! 1,650.0 psi Fv 265.0 psi Ebend-roc 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.0 ft Design Summaw •0.210 L 0.560 Max fb/Fb Ratio = 0.736; 1at 4.000 ft in S fb:Actual: 1,752.18 p pan#1 Fb:Allowable: 2,379.75 psi Load Comb: +D+L+H A41 Max fv/FvRatio= 0.504: 1 A fv:Actual: 133.60 psi at 0.000 ft in Span#1 Fv:Allowable: 265.00 psi 8.011 3.125x9 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.152 in Downward Total 0.209 in Left Support 0.84 2.24 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.84 2.24 Live Load Defl Ratio 632>360 Total Defl Ratio 459>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr. (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 2014,428PM .R A Lic.#: KW-06002997 Licensee:c.t.engineering Description : PLAN 5.B Top Floor Framing, Cont. s 7 [i1 + .13 BEAM Size: 3.5x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade:TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-PM 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.0 ft Unif Load: D=0.0150, L=0.10 k/ft,Trib=5.0 ft Design Summary Max fb/Fb Ratio = 0.422 1 fb:Actual: 962.10 psi at 4.250 ft in Span#1 Fb:Allowable: 2,280.40 psi Load Comb: +D+L+H Max fv/FvRatio= 0.310: 1 A A• fv:Actual: 95.96 psi at 7.338 ft in Span#1 Fv:Allowable: 310.00 psi 8.50 R,3.5x14 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.078 in Downward Total 0.097 in Left Support 0.83 3.49 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.83 3.49 Live Load Dell Ratio 1306>360 Total Defl Ratio 1055>180 BEAM Size: 5.125x18,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-Pr!! 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=12.0 ft Design Summary Max fb/Fb Ratio = 0.634. 1 D 0.180 L 0.480 fb:Actual: 1,466.89 psi at 10.125 ft in Span#1 Fb:Allowable: 2,313.03 psi Load Comb: +D+L+H • Max fv/FvRatio= 0.350: 1 20.250 n, 5.125x18 fv:Actual: 92.72 psi at 18.765 ft in Span#1 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.407 in Downward Total 0.560 in Left Support 1.82 4.86 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.82 4.86 Live Load Dell Ratio 596>360 Total Defl Ratio 433>180 Tritte:e<-m m B.15 BEAM Size: 4x12,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Nil 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=2.750 ft Design Summary D,, 1_, . 5 Max fb/Fb Ratio = 0.893. 1 fb:Actual: 876.94 psi at 4.375 ft in Span#1 Fb:Allowable: 982.26 psi Load Comb: +p+L+H Max fv/FvRatio= 0.411: 1 A A fv:Actual: 73.91 psi at 0.000 ft in Span#1 Fv:Allowable: 180.00 psi 8.750 ft.4x12 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.090 in Downward Total 0.126 in Left Support 0.80 1.66 0.30 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.80 1.66 0.30 Live Load Dell Ratio 1172>360 Total Defl Ratio 831 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 26 MAR 2014,428PM „� ; ,�,1�,`}.'.v Lic.#: KW-06002997 Licensee.c.t.engineering B16 BEAM Size: 5.125x12,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade 24F-V4 Fb-Tension 2,400.0 psi Fc-Pr!! 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unit Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=2.0 ft Design Summary Max fb/Fb Ratio = 0.771• 1 ����' fb:Actual: 1,834.37 psi at 8.250 ft in Span*1 Fb:Allowable: 2,379.23 psi Load Comb: +D+L+H • •_ Max fv/FvRatio= 0.369: 1 16.50 ft, 5.125x12 fv:Actual: 97.83 psi at 0.000 ft in Span#1 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) 2 L Lr S W E H Downward L+Lr+S 0.543 in Downward Total 0.760 in Left Support 1.42 3.14 0.41 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.42 3.14 0.41 Live Load Defl Ratio 364>360 Total Defl Ratio 260>180 BEAM Size: 2-2x8,Sawn Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem FirWood Grade: No.2 Fb-Tension 850 psi Fc-Pill 1300 psi Fv 150 psi Ebend-xx 1300 ksi Density 27.7 pcf Fb-Compr 850 psi Fc-Perp 405 psi Ft 525 psi Eminbend-xx 470 ksi Applied Loads Unit Load: D=0.0150, L=0.040 k/ft,Trib=8.250 ft Design Summary .0.123. 0.330 Max fb/Fb Ratio = 0.312; 1 tb:Actual: 317.25 psi at 1.750 ft in Span#1 Fb:Allowable: 1,016.71 psi • • Load Comb: +D+L+H Max fv/FvRatio= 0.241: 1 A A fv:Actual: 36.14 psi at 2.905 ft in Span*1 Fv:Allowable: 150.00 psi 3.50t 2"2x8 Load Comb: +D+L+H Max Deflections Max Reactions (k) 2 L Lr E w E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.22 0.58 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.22 0.58 Live Load Defl Ratio 4643>360 Total Deft Ratio 3377>180 o BEAM Size: 2-2x8,Sawn Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem FirWood Grade: No.2 Fb-Tension 850.0 psi Fc-PM1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unit Load: D=0.0150, L=0.040 k/ft,Trib=8.250 ft Design Summary .0.1233 0.330 Max fb/Fb Ratio = 0.312. 1 ib:Actual: 317.25 psi at 1.750 ft in Span#1 Fb:Allowable: 1,016.71 psi • • Load Comb: +D+L+H Max fv/FvRatio= 0.241: 1 A A fv:Actual: 36.14 psi at 2.905 ft in Span#1 Fv:Allowable: 150.00 psi '.son 2-zx0 Load Comb: +D+L+H Max Deflections Max Reactions (k) 2 L Lr S w E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.22 0.58 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.22 0.58 Live Load Defl Ratio 4643 >360 Total Defl Ratio 3377>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr. (206)285 4512 Fax: (206)285 0618 Printed:26 MAR 7814,428PM Lic.#: KW-06002997 Licensee.c.t.engineering - .49.44 BEAM Size: 4x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900 psi Fc-Pr!! 1350 psi Fv 180 psi Ebend-xx 1600 ksi Density 32.21 pct Fb-Compr 900 psi Fc-Perp 625 psi Ft 575 psi Eminbend-xx 580 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 kilt,Trib=3.50 ft Design Summary Max fb/Fb Ratio = 0.593. 1 D 0.05250 S 0.08750 tb:Actual: 791.49 psi at 5.375 ft in Span#1 � Fb:Allowable: 1,334.07 psi Load Comb: +D+S+H • • Max fv/FvRatio= 0.192: 1 A A fv:Actual: 39.74 psi at 10.177 ft in Span#1 10.750 rt, 4x8 Fv:Allowable: 207.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) L Lr S W E H Downward L+Lr+S 0.149 in Downward Total 0.238 in Left Support 0.28 0.47 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.28 0.47 Live Load DO Ratio 867>360 Total Defl Ratio 542>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr. (206)285 4512 Fax: (206)285 0618 tea 6 MAR 2014 9 51AM Lic.#: KW-06002997 Licensee.c.t.engineering Descri.tion PLAN 5.B 2nd floor wall Headers t�5 T 'Ica! Partial/Non Bearin• Header 6'clears `6 t i ,m $ e � � � •an max. 6 tnb max. ��; ALtaiatlagiQUEZZaigai BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Design Summary •0.07so s 0.,zso Max fb/Fb Ratio = 0.476. 1 -.......'••............i.••. '� fb:Actual: 482.28 psi at 3.250 ft in Span#1 Fb:Allowable: 1,013.55 psi • Load Comb: +D+S+H A Max fv/FvRatio= 0.245: 1 fv:Actual: 36.76 psi at 0.000 ft in Span#1 Fv:Allowable: 150.00 psi 5.so it 2-2x8 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr 5 W Is H Downward L+Lr+S 0.041 in Downward Total 0.065 in Left Support 0.24 0.41 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.24 0.41 • Live Load Dell Ratio 1913>360 Total Defl Ratio 1196>180 • ffi T •ical Full width Bearin• Header 4'clear s•an max 23'Trib Max. BEAM Size: 2-2x8,Sawn Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-PrIl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unit Load: D=0.0150, S=0.0250 k/ft,Trib=23.0 ft Design Summary •0.3450 0.5750 Max fb/Fb Ratio = 0.934. 1 fb:Actual: 948.44 psi at 2.125 ft in Span*1 Fb:Allowable: 1,015.94 psi • Load Comb: +D+S+H A A Max fv/FvRatio= 0.647: 1 fv:Actual: 97.08 psi at 3.655 ft in Span*1 425o a z Fv:Allowable: 150.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E Li Downward L+Lr+S 0.034 in Downward Total 0.055 in Left Support 0.73 1.22 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.73 1.22 Live Load Defl Ratio 1488>360 Total Defl Ratio 930>180 rilitailig.I14,14„Lalliljatader RB 9 B BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Prtl 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Point D=1.010, 5=1.680k@0.50ft Design Summary - • '"'" Max fb/Fb Ratio = 0.597. 1 _ •0.0750 s o.�zso fb:Actual: 696.61 psi at 1.348 ft in Span#1 Fb:Allowable: 1,166.16 psi Load Comb: +D+S+H • A• Max fv/FvRatio= 0.265: 1 fv:Actual: 45.67 psi at 4.655 ft in Span#1 s zso 4 2-24Fv:Allowable: 172.50 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr 3 W E Li Downward L+Lr+S 0.038 in Downward Total 0.060 in Left Support 1.11 1.85 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.29 0.49 Live Load Defl Ratio 1671 >360 Total Defl Ratio 1044>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MAR 2014,9:51AM a^ 3 .tea-,. ,i1 f ��it I fF�° j Lic.#: KW-06002997 Licensee:c.t.engineering "L61.4.,;; 5 .,4, Header RB.17 B BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Prll 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 kilt,Trib=5.0 ft Point D=0.90, S=1.50 k @ 0.50 ft Design Summary .�. Max fb/Fb Ratio = 0.556.1 D 0.0750 S 0.1250 fb:Actual: 648.22 psi at 1.488 ft in Span#1 Fb:Allowable: 1,166.16 psi Load Comb: +D+S+H Max fv/FvRatio= 0.254: 1 A A fv:Actual: 43.76 psi at 4.655 ft in Span#1 5z50 n,2-24 Fv:Allowable: 172.50 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D I. Lr S W E H Downward L+Lr+S 0.036 in Downward Total 0.057 in Left Support 1.01 1.69 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.28 0.47 Live Load Defl Ratio 1774>360 Total Defl Ratio 1108>180 CT Engineering Project Tile: 180 Nickerson,Suite 302 Engineer. Project ID: Seattle,WA 98109 Project Descr (206)285 4512 Fax (206)285 0618 Printed 6 MAR 2014 922AM Lic.#: KW-06002997 Licensee.c.t.engineering Descri tion : PLAN 5.B Crawispace Framing BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Pill 1,350.0 psi Fv 180.0 psi Ebend-xx1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 klft,Trib=9.50 ft Desian Summary D 0.142 1_0.380 Max fb/Fb Ratio = 0.823. 1 lb:Actual: 883.28 psi at 3.750 ft in Span#1 Fb:Allowable: 1,073.71 psi Load Comb: +D+L+H A Max fv/FvRatio= 0.403: 1 fv:Actual: 72.63 psi at 0.000 ft in Span#1 Fv:Allowable: 180.00 psi 7.50 ft,4x10 Load Comb: +D+L+H Max Deflections Max Reactions (k) g L Lr s_ w € H Downward L+Lr+S 0.074 in Downward Total 0.101 in Left Support 0.53 1.43 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.53 1.43 Live Load Defl Ratio 1222>360 Total Defl Ratio 888>180 TJI JOISTS and RAFTERS Code Code 1 Code Suggest Suggest Suggest' Lpick t_pick Lpick f Lpick Joist b d Spa. LL DL M max V max El L ib L iv L TL240 L LL360 L max TL deft, ( LL deft. L TL360 L LL480 L!max ,TL deft.TL deft,LL deft.,LL deft ._..size&grade-_..width(in.) depth(In.)Jinja �sfL_(psf)_(R Iba) (Psi) (Psi - L (ft.) ..._(ft)•-- _cit.) (J ln1_ all__ _kW - (ft.)-- _ .)- (ft.) (In.) ratio (in.)-i ratio_ 9.5"TJI 110 1.75 9.5 19.2 40 15 2380 1220 1.40E+08 14.71 27,73 15.23 14,80 14.71 0,661 0.48 13.31 13.45 J13.31'^ 0,44 360 -..-.7._ _._._.-_.._._._.._ 0.32. 495 0_.._., _._._._.__. 110 1.75 9.5 16 40 15 2380 1220 1.40E+08 16.11 33.27 16.19 15.73 15.73 0.72 0.52 14.14 14.29 :,14.141 0.47 360 0.341 495 9.5"TJI 110 1.75 9.5 12 40 15 2380 1220 1.40E+08 18.61 44.3617.82 17.31 17.31 0.79 0.58 15.57 15.73 '15.57=- 0.52 360 0.38� 495 . .._._.___._.__.._.. 9.5"TJI 110 1.75 9.5 9.6 40 15 2380 1220 1.40E+08 20.80 55.45 19.19 18.64 18.64 0.85E 0.62 16.771694 16.77;, 0.566 360 0.41'•._ 495 495 -r-- 9.5"TJI 110 1.75 9.5 19.2 40 10 2500 1220 1.57E+08 15.81 30.50 16.34 15.37^ 15.37 0.64! 0.51 14.27 13.97 13.97. 0.44 384 0.351- 480 p.5.TJI 110 ' ,' 1.75 9.5 16 40 10, 2500.•;1220 1.57E+08 ,17.32, :38,60 17.38 ;16,34 18.34 ' 0.68 0.54 15.17" 14 84, 0,46 384 037 1 ,480 ,- 9 5'TJI 110 1.75 9.5 12 40 10 2500 1220 1.57E+08 20.00 48.80 19 11 17 98 17 98 _ 0.751 0.60 16.69 16.34 116.34 0A1 384 0.411 480 9.5"TTJI 110 1.75 9.5 9.6 40 10 _ 2500 1220 1.57E+08 22.38 61.00 20.58 19.37 19.37 021 0.85 .17.9_8 _-17 60 , 17.60 0 55- 384__0,441 480 _ .._.. . 480 210 2.0625 9.5 78.2 40 10 3000 1330 1.87E+08 17.32 33.25 17.32 18.30 16.30 0.68- 0.54 15.13 14.81 114,81 0.48 3 384 0.37f 480 •9,5 TJI 210 20625 9,5 16 40 10 3000 1330 1.87E+08 '18,97 ?'!39A0 1840 1732. 17.32 0,72 0,58 16.08 ', 15,74 ,A15,,til„°,1, 32 0.49 384 039 480 9.5"TJI 210 2.0625 9.5 12 40 10 3000 1330 1,87E+08 21.91 53.20 20,26 19.06 19,06 0,791 0.64 17.70 17.32- 17.32 0.54 384 0.431 480 ---0 66..__ _._. .8 _ -0.58-_._..4.__._._.7 ._•__ ____• JI 210 2.0625 9.5 9.6 40 10 3000 1330 1.87E+08 24.49 66.50 21.82 20.53 20.53 0.88f 0.68 19.06 18.66 18.88 0.58 384 0.47( 480 • 9.5"TJI 230 2.3125 9.5 19.2 40 10 3330 1330 2.06E+08 18.25 33.25 17.89 16.83 18.83 -0 701 0.56 15.63 15.29 16 29 0.48 448 384 0.381 480 9.5"TJI 230, 2.3125 9.5 16 40 10 ' 3330 1330 '2,06E+08 19,99,°'39.90" :19,01 17:89 ,:,17.89• ' 0.75 0.60 ,16.60- 16 25F ;,;1{6,25' ; ;0.51 384 0,41 480 9 5 TJI 230 2.3125 9.5 12 40 10 3330 1330 2.06E+08 23.08 53.20 20.92 19,69 19.69 0.821 0,66 18.28 17.89 . 17.89 0.N 384 0.451 480 9.5"TJI 230 2.3125 9.5 9.6 40 10 3330 1330 2.06E+08 25.81 66.50 22.54 21.21 21.21 0.5iir 0.71 19.69 19.27 19.27 0.60 384 0.4151 480 11.875"TJI 110 1.75 11.875 19.2 40 10 3160 1560 2.67E+08 17.78 39.00 19.50 18.35 17.78 0.671 0.54 17.04 16.67 18.87 0.52 384 0.42!480 11.875"TJI 110 1.75 11275 ..16= 40 '(10 3160_2,1560 12,67E+08 19.47 ',46.80 20.72 ,.1920 19.47 , 0.81 '.0,65 18.10 '17.72 y, X7"72:' 0.55 384 0,44 480 11.875"TJI 110 1.75 11.875 12 40 10 3160 1560 2.67E+08 22,49 62.40 22.81 21.48 21.46 0.89 0.72 19.93 19.50 0.81 384 0,491 480 19.60 �_.._..._.. _._.. _._ 11.875"TJI 110 1.75 11.875 9.6 40 10 3160 1560 2.67E+08 25.14 78.00 24.57 23.12 23.12 0.981 0.77 21.46 21.01 21.01 i 0.68 38484 0.53;3i 480 11.875"TJI 210 2.0625 11.875 19.2 40 10 3795 1655 3.15E+08 19.48 �41 38 20.61 19.39 19.39 0.811 0.65 18.00 17.62 . , 1 17 62' 0.55-384 -0.44 480 .11.87W TJI'210 , '210625 11.875 ';16 • 40`- 10 3795 .1655 3.15E+08 " 21.34. '!49A5 :21.90 20.81 20:61 ,, . 0.86 F, 0.69 19.13 18.72 g,€,_T6rj2i ' 0.59 ' 384 0.47 ; '480 11.875"TJI 210 2.0625 11.875 12 40 10 3795 1655 3.15E+08 24.64 66.20 24.10 22.68 22.68 0.951 0.76 21.05 20.61- 20.61 0.64 384 0.521 480 11.875"TJI 210 2.0625 11.875 9.6 40 10 3795 1655 3.15E+08 27.55 82.75 25.98 24.43 24.43 1.02 0.81 22.68 22.20 22.20 0.69 384 0.551 480 11.875"TJI 230 2.3125 11.875 19.2 40 10 4215 1655 3.47E+08 20.53 41.38 21.28 20.03 20.03 0.831 0.67 18.59 18.20 -- 18.20 0.57 384 0A-5-1-- 480 i ..,11A75"TJI 230 11.875 TJI 230 2,3125 11.875 12 40 10 4215 -1655 3,47E+08 25.97 66.20 262 -21 28 -;21.28 <.: 0.89 .0.71. • '19.76. 19 34 ,,- 9'34 0.60 384 0.48 ';480 3125 11,875 16_ 40 10 4215 1655 147E+08 2249.;-,49.85 2 24.89 23.42 23.42 0.981 0.78 21.74 21.28 , =21.28: 0.67 384 0.531 480 11.875 TJI 230 2.3125 11.875 9,6 40 10 4215 1655 3.47E+08 29,03 82,75 26,81 25.23 26.23 1,051 -0.84 __-23,42 2293`, 22.93' 0.72 384 0.571_ 480 117875"RFPI 400 2.0625 11.875 19.2 40 10 4315 1480 3.30E+08 20.77 37.00 20.93 19.69 19.89 0.82 i 0.66 18.28 17.89 ''17.89 0.56 384 0.451 480 11875"RFPI 400 .'2.0625 11:875 ;- 16 40 10 ' • 4315' 1480 3.30E+08 ;I 22,76- .;44.40-"22.24 .,'2023' -20:93 ; ';0170 19.43• , '19,01171,(101j-' 0:59 384' 0,48 480; ;• ,0;87 11.875"RFPI 400 2.0625 11.875 12 40 10 4315 1480 3.30E+08 26.28 59.20 24.48 23.03 23.03 0.961 0.77 21.38 20.93 20.93 0,651 384 0.52j 480 11.875"RFPI 400 2.0625 11.875 9.6 40 10 4315 1480 3.30E+08 29.38 74.00 26.37 24.81 24.81 1.031 0.83 23.03 22.54 22.54: 0.70 384 0.561- 480 Page 1 D+L+S CTA 14061•4015.2 Twin Creek I LOAD CASE (12.12) (BASED ON ANSI/AF&PA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Budding Factor D+L+S c 0.80(Constant)c Section 3.7.1.5 Cr KeE 0.30(Constant)' Section 3.7.1.5 Cl(Fb) Cf(Fe) 1997 NDS Cb (Vada . Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fe) Eq.3.7-1 NDS 3.9.2 Max.Wati duration duration factor factor use Stud Grade IMdth Depth Spadng Height Ls/d Vert.Load Hor.Loa <.1.0 Load 6 Plate Cd(Fb)Cd(Fe) Cf Cf Cr Fb Fc perp Fc E Fb' Fe perp' Fc• Fee Pc lc te/F'c Ib 1b/ In. In. In. 5. plf pot plf (Fb) (Fc) Psi Psi psi psi Psi Psi Psi Pal pal psi psi Fb'(1-fc/Fce) H-F Stud 1.5 3.5 16 7.7083 28.4 1730 0.9916 1993.4 1.00 1.15 1.1 1.05 1.15 875 405 800 1,200,000 854 506 966 515.42 441.22 439.37 1.00 0.00 0.000 H-F Stud 1.5 3.5 18 9 30.9 1340 0.9968 1993.4 1.00 1.15 1.1 1.05 1.15 875 405 800 1,200,000 854 508 986 378.09 340.90 340.32 1.00 0.00 0.000 H-F Stud 1.5 3,5 12 9 30.9 1785 0,9947 2857.8 1.00 1.15 1.1 1.05 1.15 875 405 800 1,200,000 854 506 968 378.09 340.90 340.00 1.00 0.00 0.000 H-F Stud 1.5 3.5 16 8.25 28.3 1550 0.9921 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 968 449.95 395.22 393,85 1.00 0.00 0.000 H-F Stud 1.5 3.5 12 825 28.3 2070 0.9953 2857.8 1.00 1.15 1.1 1.05 1.15 875 405 800 1,200,000 854 506 988 449.95 395.22 394.29 1.00 0.00 0.000 H-F Stud 1.5 3.5 8 8.25 28.3 3100 0.9921 3986.7 1.00 1.15 1.1 1.05 1.15 875 405 800 1,200,000 854 506 986 449.95 395.22 393.65 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 7.7083 28.4 1695 0.9952 2091.8 1.00 1.15 1.1 1.05 1.15 875 425 725 1,200,000 854 531 875.438 515.42 431.52 430.48 1.00 0.00 0,000 SPF Stud 1.5 3.5 15 9 30.9 1320 0.9944 2091.5 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 554 531 875.438 378.09 338.17 335.24 1.00 0.00 0.000 SPF Stud 1.5 3.5 12 9 30.9 1760 0.9944 2759.1 1.00 1.15 1.1 1.05 1.15 875 425 725 1,200,000 854 531 875.438 378.09 338.17 335.24 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 8.25 28.3 1525 0.9957 2091.8 1.00 1.15 1.1 1.05 1.15 875 425 725 1,200,000 854 531 875.438 449.95 388.13 387.30 1,00 0.00 0.000 SPF Stud 1.5 3.5 12 8.25 28.3 2030 0.9925 2789.1 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 449.95 385.13 386.57 1.00 0.00 0.000 SPF Stud 1.5 3.5 8 825 28.3 3050 0.9957 4183.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 449.95 388.13 387.30 1.00 0.00 0.000 H-F 102 1.5 5.5 16 7.7083 18.8 3132 0.2408 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 508 1644.5 1378.83 1031.58 508.18 0.49 0.00 0.000 H-F 02 1.5 5.5 16 9 19.6 3132 0.3852 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 506 1644.5 1011.45 837.57 508.18 0.80 0.00 0.000 H-F 02 1.5 5.5 18 8.25 18.0 3132 0.2858 3132.4 1.00 1.15 1.3 1.10 1.15 550 405 1300 1,300,000 1,271 506 1644.5 1203.70 946.77 506.18 0.53 0.00 0.000 SPF 02 1.5 5.5 18 7.7083 16.8 3287 0.2737 3257.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1484.89 1015.45 531.23 0.52 0.00 0.000 SPF 02 1.5 5.5 16 9 19.6 3287 0.3905 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 108925 850.18 531.23 0.82 0.00 0.000 SPF 02 1.5 5.5 16 825 18.0 3287 0.3158 3287.1 1.00 1.15 1,3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1298.30 945.38 531.23 0.56 0.00 0.000 SPF Stud 1.5 3.5 18 14.57 50.0 545 0 0.9913 2091.8 1.00 1.15 1.1 1.05 1,15 875 425 725 1,200,000 854 531 875.438 14428 139.02 138.41 1.00 0.00 0.000 SPF 02 1.5 5.5 18 19 41.5 1450 0 0.9917 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 244.40 235.32 234.34 1.00 0.00 0.000 H-F 02 1.5 5.5 18 19 41.5 1380 0 0.9969 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 506 1644.5 228.94 220.14 219.80 1.00 0.00 0.000 Page 1 D+L+W CT#14051-4015.2 Twin Creek I LOAD CASE (12-13) (BASED ON ANSI/AF&PA NDS-189 Ke 1.00 Design Buckling Factor D+L.W' - SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 c 0.80(Constant)> Section 3.7.1.5 _ Cr KcE 0.30(Constant)> Section 3.7.1.5 Cf(Fb) Cf(Fe) 1997 NDS Cb (Vedas) > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NOS 3.9.2 Max.Wall duration duration factor factor use Stud Grade Width Depth Spadng Height Le/d Vert.Load Hor.Load <-1.0 Load g6 Plate Cd(Fb)Cd(Fc) Cf Cf Cr Fb Fc perp Fc E Fb' Fc perp' Fc• Fce F'c is fclF'c fb ib/ in. In. In. IL plf psf P6 (Fb) (Fc) psi pd _ psi psi Psi psi psi psi psi Psi psi Fb'•(1-fc/Fce) H-F Stud 1.5 3.5 16 7.7083 28.4 1075 9.71 05951 1993.4 1.60 1.00 1.1 1.05 1.15 875_ 405 800 1,200,000 1,368 506 840 515.42 427.08 273.02 0.64 378.78 0.566 H-F Stud 1.5 3.5 18 9 30.9 755 8.46 0.9942 4 1893.4 1.80 1,00 1.1 1.05 1.15 875 405_ 800 1,200,000 1,388 506 840 378.09 333.99 191.75 0.57 447.52 0.665 H-F Stud 1.5 3.5 12 9 30.9 1140 6.45 0.9998 2657.8 _1.80 1.00 1.1 1.05 1.15 875 405 800 1,200,000 1,366 508 840 378.09 333.99' 217.14 0.65 335.84 0.577 H-F Stud 1.5 3.5 18 8.25 28.3 970 8.13 0.9943 1993.4 1.80 1.00 1.1 1,05 1.15 675_ 405 800 1,200,000 1,388 508 840 449,95 384.87 246.35 0.64 381.37 0.585 FI-F Stud 1.5 3.5 12 9.25 28.3 1425 8.13 0.9974 2857.8 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,386 506 840_449.95 384.87 271.43 0.71 271.03 0.500 H-F Stud 1,5 3.5 8 8.25 26.3 2355 8.13 0.9981 3988.7 1.80 1.00 1.1 1.05 1.15 875 405 800 1,200,000 1,388 508 840 449.95 384.87 299.05 0.78 180.89 0.394 SPF Stud 1.5 3.5 16 7.7083 25.4 1060 9.71 0.9971 ' 2091.8 ' 1.80 1.00 1.1 1.05 1.15 875_ 425_ 725 1,200,000 1,366 531. 761.25 515.42 415.53 269.21 0.85 376.78 0.577 SPF Stud 1.5 3.5 18 9 305 700 8.48 0.9115 2091.8 1.60 1.00 1.1 1.05 1.15 875 425 725 1,200,000 1,366 531 781.25 378.09 328.30 177.78 0.54 447.52 0.618 SPF Stud 1.5 3.5 12 9 30.9 1125 8.46 0.9931 2788.1 1.80 1.00 1.1 1.05 1.15 875 425 725 1,200,000 1,386 531 781.25 378.09 328.30 214.29 0.85 335.64 0.567 OFF Stud 1.5 3.5 16 8.25 28.3 960 8.13 0.9970 - 2091.8 1.80 1.00 1.1 _1.05 1.15 875 425 725 1,200,000 1,386 531 78125 449.95 376.35 243.81 0.65 361.37 0.577 SPF Stud 1.5 3.5 12 8.25 26.3 1405 8.13 0,9952 2789.1 1.60 1.00 1.1 1.05 1,15 875 425 725 1,200,000 1,366 531 761.25 449.95 376.35 267.62 0.71 271.03 0.490 OFF Stud 1.5 3.5 8 8.25 28.3 2320 8.13 0.9858 4183.8 1.80 1.00 1.1 1.05 1.15 875_ 425 725 1,200,000 1.368 531 781.25 449.95 376.35 294.60 0.78 180.69 0.383 H-F#2 1.5 5.5 18 7.7083 18.8 3132 9.71 0.3909 3132.4 - 1.80 1.00 1.3 1.10 1.15 850 405 9300_1,300,000 2,033 506 1430 1370.83 969.91 506.18 0.52 152.58 0.119 H-F#2 1.5 5,5 18 9 19.6 3132 8.48 0.5743 3132,4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 1011.45 804.50 508.18 0.63 181.23 0.178 F1-F#2 1.5 5.5 16 8.25 18.0 3132 8.13 0.4411 3132.4 1,80 1.00 1.3 1,10 1.15 850 405 1300 1,300,000 2,033 508 1430 1203.70 899.13 506.18 0.58 146.34 0.124 SPF#2 1.5 5.5 18 7.7083 16.8 3287 9.71 0.4327 3287.1 1.60 1.00_ 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1285 1484.89 940.30 531.23 0.58 152.58 0.114 SPF#2 1.5 5.5 16 5 19.6 3287 8.46 0.6033 _ 3287.1 1.80 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,083 531 1265 1089.25 806.08 531.23 0.66 181.23 0.169 SPF#2 1.5 5.5 16 8.25 18.0 3287 8.13 0.4700 3287.1 1.80 150 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1285 1296.30 884.69 531.23 0.60 146.34 0.118 SPF Stud 1,5 3.5 16 14.57 50.0 70 8.46 0,9957 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 76125 144.28 138.14 17.78 0.13 64YW 0.979 SPF#2 1.5 5.5 16 19 41.5 660 9.71 0.5941 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150_1,400,000 2.093 531 1265 244.40 233.80 106.67 0.46 927.02 0.786 H-F#2 1.5 5.5 16 19 41.5 600 9.71 0.9921 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 226.94 219.02 96.97 0.44 927.02 0.796 Page 2 D+L+W+.58 C79 14051-4015.2 Twin Creak I LOAD CASE I (12.14) I (BASED ON ANSI/AF&PA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 , 3.7.1 3.7.1 Ke 1.00 Design Bucking Factor D+L+W+812 c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 CI(Fb) Cf(Fc) 1897 NDS Cb (Varies). > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NOS 3.92 Max.We9 duration duration factor factor use Stud Grade Width Depth Spacing Height Leld Vert.Load Hor.Load <.1.0 Load¢2 Plate Cd(Fb)Cd(Fc) Cf Cf Cr Fb Fc perp Fc E Fb' Fc perp' Fc• Fee Pe fc fe/P c lbhi In. In. In. S. p6 Pat pit (Pb) (Fe) Psi Psi PSI psi psI Pct Pct pal , Pei pal psiFb"(1 ) 1 H-F Stud 1.5 3.5 16 7.7083 26.4 1095 9.71 0.9962 1993.4 1.80 1.15 1.1 1.05 1.15 675 405 900 1,200,000 1,368 508 988 515.42 44122 278.10 0.83 376.78 0.599 H-F Stud 1.5 3.5 18 9 30.9 785 8.48 0.9988 1993.4 1.60 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,386 506 988 378.09 340.90 194.29 0.57 447.52 0.874 H-F Stud 1.5 3.5 12 9 30.9 1150 8.48 0.9989 2657.8 1.80 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,388 508 968 378.09 340.90 219.05 0.64 335.64 0.584 ; H-F Stud 1.5 3.5 16 8.25 28.3 985 8.13 0.9983 1993.4 1.60 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,388 508 966 449.95 395.22 250.16 0813 361.37 0.598 H-F Stud 1.5 3.5 12 825 28.3 1445 8.13 0.9959 2657.8 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,388 508 988 449,95 395.22 275.24 0.70 271.03 0.511 H-F Stud 1.5 3.5 8 825 28.3 2390 8.13 0.9980 3986.7 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,388 508 988 449.95 395.22 303.49 0.77 180.89 0.406 SPF Stud 1.5 3.5 16 7.7083 26.4 1080 9.71 0.9935 2091.8 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,368 531 875.438 515.42 431.52 274.29 0.64 376.78 0,589 SPF Stud 1.5 3.5 18 9 30.9 780 8.48 0.9968 2091.8 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,366 531 875.438 378.09 338.17 193.02 0.57 447.52 0.669 SPF Stud 1.5 3,5 12 9 30.9 1140 8.46 0.9944 2789.1 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,368 531 875.438 378.09 336.17 217.14 0.65 335.84 0.577 SPF Stud 1.5 3.5 16 825 28.3 975 8.13 0.9952 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,368 531 875,438 449.95 388.13 247.62 0.84 381.37 0.588 SPF Stud 1.5 3.5 12 8.25 28.3 1430 8.13 0.9952 2789.1 1.80 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,386 531 875.438 449.95 388.13 272.38 0.70 271.03 0.503 SPF Stud 1.5 3.5 8 8.25 28.3 2360 8.13 0,9922 4183,6 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,388 531 875.438 449.95 396.13 299.68 0.77 180.89 0.396 H-F02 1.5 5.5 18 7.7063 18.8 3132 9.71 0.3593 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1844.5 1378.83 1031.58 506.18 0.49 152.58 0.119 H-F82 1.5 5.5 16 9 19.6 3132 8.46 0.5437 3132.4 1.80 1.15 1.3 1.10 1.15 650 405 1300 1,300,000 2,033 508 1844.5 1011.45 837.57 506.18 0.80 181.23 0.178 H-F 82 1.5 5.5 16 8.25 18.0 3132 8.13 0.4100 3132.4 1.60 1.15 1.3 1.10 1,15 950 405 1300 1,300,000 2,033 500 1644.5 1203,70 946.77 506.18 0.53 146.34 0.124 SPF#2 1.5 5.5 16 7.7083 18.8 3287 9.71 0.3872 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 152.58 0.114 SPF 82 1.5 5.5 16 9 19.6 3267 6.48 0.5595 3287.1 1.80 1.15 1,3 1.10 1,15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.10 531.23 0,82 18123 0.169 SPF192 1.5 5.5 16 825 18.0 3287 8.13 0,4342 3287.1 1.60 1.15 1.3 1.10 1.15 975 425 1150 1,400,000 2,093 531 1454.75 1296,30 945,38 531.23 0.56 146.34 0.118 SPF Stud 1.5 3.5 18 14.57 50.0 70 8,46 0.9955 2091.8 1.60 1.15 1.1 1.05 1,15 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 17,78 0.13 WPM 0.979 SPF 82 1.5 5.5 16 19 41.5 680 9.71 0.9914 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 244.40 235.32 108.67 0.45 927.02 0.766 H-F02 1.5 5.5 16 19 41.5 600 9.71 0.9901 3132.4 1.80 1.15 1,3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 226.94 220.14 96,97 0.44 927.02 0.796 Page 3 D+L+S+.SW VIII CT/14061-4016.2 Twin Creek I LOAD CASE I (12-16) I (BASED ON ANSI/AF&PA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buck9ng Factor IAL+B+W/2 e 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 Cf(Fb) Cf(Fc) 1997 NDS Cb (Varies). > Section 2.3.10 Bending Comp. Size Size_Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NDS 3.9.2 Mau.WaM duration duration factor factor use Stud Grade Width Depth Spedng Height Lehi Vert.Load Hor.Load o.1.0 Load GIPlate Cd(Fb)Cd(Fc) Cf Cf Cr Fb ,Fc perp Fc E Pb' Fe perp' Fe• Fee Fc fc IWF'c fb Po/ in. In. In. ft. plf psf pit (Fb) (Fc) psi psi Pal Psi psi psi pal pal psi pal psi Fb"(1-fc/Fce) H-F Stud 1.5 3.5 18 7.7083 26.4 1335 4.855 0.9935 1993.4 1.60 1.15 1.1 _1.05 1.15 875 405 800 1,200,000 1,366 508 966 515.42 441.22 339.05 0.77 188.39 0.403 H-F Stud 1.5 3.5 18 9 30.9 970 4.23 0.9923 1993.4 1.80 1.15 1.1 -1.05 1.15 875 405 800 1,200,000 1,386 506 966 378.09 340.90 246.35 0.72 223.76 0.470 hi-F Stud 1.5 3.5 12 9 30.9 1380 4.23 0.9976 2657.8 1.80 1.15 1.1_1.05 1.15 675 405 800 1,200,000 1,386 506 966 378.09 340.90 282.86 0.77 187.82 0.403 H-F Stud 1.5 3.5 16 825 28.3 1195 4.085 0.9980 1993.4 . 1.60 1.15 1.1 1.05 1.15 675 ' 405 ' 800 1,200,000 1,368 508 966 449.95 395.22 303.49 0.77 180.69 0.408 H-F Stud 1.5 3.5 12 8.25 28.3 1680 4.065 0.9990 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 966 449.95 395.22 320.00 0.81 135.51 0.343 H-F Stud 1.5 3.5 8 8.25 28.3 2685 4.065 0.9999 3986.7 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,368 506 966 449.95 395.22 338.41 0.86 90.34 0.267 SPF Stud 1.5 3.5 16 7.7083 28.4 1315 4.855 0.9907 2091.8 1.60 1.15 1.1 1.05 1.15 675 ' 425 725 1,200,000 1,388 531 875.438 515.42 431.52 333.97 0.77 188.39 0.392 SPF Stud 1.5 3.5 16 9 30.9 965 4.23 0.9970 2091.8 1.80 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,386 531 875.438 378.09 338.17 245.08 0.73 223.78 0.466 SPF Stud 1.5 3.5 12 8 30.9 1370 4.23 0.9990 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,368 531 875.438 378.09 336.17 280.95 0.78 167.82 0.396 SPF Stud 1.5 3.5 16 8.25 28.3 1180 4.065 0.9922 2091.8 1.80 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,366 531 675.438 449.95 388.13 299.68 0.77 180.89 0.398 OFF Stud 1.5 3.5 12 825 28.3 1660 4.065 0.9973 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,368 531 875.438 449.95 388.13 316.19 0.81 135.51 0.334 SPF Stud 1.5 3.5 8 8.25 26.3 2830 4.065 0.9969 4183.8 1.60 1.15 1.1 1.05 1.15 875 425_ 725 1,200,000 1,386 531 875.438 449.95 388.13 333.97 0.86 90.34 0.257 H-F 02 1.5 5.5 16 7.7083 18.8 3132 4.855 0.3001 3132.4 1.60 1.15 1.3 1.10 1.15 850_ 405 1300 1,300,000 2,033 506 1844.5 1378.83 1031.58 506.18 0.49 78.29 0.059 H-F#2 1.5 5.5 18 9 19.6 3132 4.23 0.4544 3132.4 1.80 1.15 1.3 1.10 1.15 850_ 405 ' 1300_1,300,000 2,033 506 1644,5 1011.45 837.57 506.18 0.60 90.61 0.089 H-F#2 1.5 5.5 16 8.25 18.0 3132 4.085 0.3479 ' 3132.4 1.80 1.15 1.3'1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1203.70 848.77 508.18 0.53 73.17 0.062 SPF#2 1.5 5.5 18 7.7083 18.8 3287 4.855 0.3304 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150.1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 76.29 0.057 SPF#2 1.5 5.5 18 9 19.6 3287 4.23 0.4750 3287.1 1.60 1.15 1.3 1.10 1.15 675 . 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 53123 0.62 90.61 0.085 SPF#2 1.5 5.5 18 8.25 18.0 3287 4.065 0.3750 3287.1 1.80 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1298.30 945.38 531.23 0.56 73.17 0.059 SPF Stud 1.5 3.5 18 14.57 50.0 255 4.23 0.9959 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,388 531 875.438 144.26 139.02 84.78 0.47 588.43 0.779 SPF#2 1.5 5.5 18 19 41.5 935 4.855 0.9925 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 244.40 235.32 151.11 0.64 463.51 0.580 H-F#2 1.5 5.5 16 19 41.5 865 4.855 0.9970 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 228.94 220.14 139.80 0.84 463.51 0.594 Page 4 D+L+S+,7E CT014051•4015.2 Twin Creek I LOAD CASE I (12.16) I (BASED ON ANSI/AFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling Factor D+L+B+EIIA c 0.80(Constant)a Section 3.7.1.5 Cr KcE 0.30(Constant)a Section 3.7.1.5 Cf(Fb) Cf(Fc) 1997 NDS Cb (Vader) a Section 2.3.10 Bending Comp. Size Size Rap. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NDS 3.9.2 Max.Well duration duration factor factor use Stud Grade iNdth Depth Spacing Height Laid Vert.Load Hor.Load <-1.0 Load#2 Plate Cd(Fb)Cd(Fc) Cf CI Cr Fb Fc perp Fc E Pb' Fc perp' Fc• Fee Pe k k/F'c lb lb/ In. In. In. 2 Plf psi pit (Fb) (Fc) Psi Pct Psi Psi Psi Psi Psi Psi Psi psi pal Fb"(1-fc/Fce) H-F Stud 1.5 3.5 16 7.7083 28.4 1415 3.57 0.9903 1993.4 1.80 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,386 506 988 515.42 441.22 359.37 0.81 138.53 0.335 H-F Stud 1.5 3.5 18 9 30.9 1010 3.57 0.9980 1993.4 1.60 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,388 506 988 378.09 340.90 258.51 0.75 185.85 0.430 H-F Stud 1.5 3.5 12 9 30.9 1420 3.57 0.9937 2857.8 1.60 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,366 506 986 378.09 340.90 270.48 0.79 141.83 0.364 H-F Stud 1.5 3.5 16 8.25 28.3 1225 3.57 0.9981 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 986 449.95 395.22 311.11 0.79 158.88 0.376 H-F Stud 1.5 3.5 12 8.25 28.3 1710 3.57 0.9947 2857.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,388 506 966 449.95 395.22 325.71 0.82 119.01 0.315 H-F Stud 1.5 3.5 8 825 25.3 2700 3.57 0.9988 3988.7 1.60 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,368 508 986 449.95 395.22 342.86 0.87 79.34 0.244 SPF Stud 1.5 3.5 18 7.7083 26.4 1395 3.57 0.9984 2091.9 1.80 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,366 531 875.438 515.42 431.52 354.29 0.62 138.53 0.324 SPF Stud 1.5 3.5 16 9 30.9 1000 3.57 0.9918 2091.8 1.80 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,386 531 875.438 378.09 336.17 253.97 0.76 188.85 0.421 SPF Stud 1.5 3.5 12 9 30.9 1410 3.57 0.9982 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,388 531 875.438 378.09 338.17 268.57 0.80 141.83 0.358 SPF Stud 1.5 3.5 18 8.25 29.3 1210 3.57 0.9932 2091.9 1.80 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,369 531 875.438 449.95 388.13 307.30 0.79 158.89 0.396 SPF Stud 1.5 3.5 12 825 28.3 1890 3.57 0.9940 2789.1 1.60 1.15 1.1 1.05 1.15 975 425 725 1,200,000 1,368 531 875.438 449.95 388.13 321.90 0.83 119.01 0.306 SPF Stud 1.5 3.5 8 8.25 28.3 2870 3.57 0.9987 4183.8 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,366 531 875.439 449.95 388.13, 339.05 0.87 79.34 0.238 H-F 02 1.5 5.5 18 7.7083 16.8 3132 3.57 0.2844 3132.4 1.80 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1378.83 1031.58 506.18 0.49 58.10 0.044 H-F 02 1.5 5.5 16 9 19.8 3132 3.57 0.4405 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 508 1644.5 1011.45 837.57 508.18 0.60 78.47 0.075 H-F 02 1.5 5.5 16 8.25 18.0 3132 3.57 0.3404 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1203.70 946.77 508.18 053 64.26 0.055 SPF02 1.5 5.5 16 7.7083 16.8 3287 3.57 0.3154 3287.1 1.80 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 56.10 0.042 SPF02 1.5 5.5 16 9 19.6 3287 3.57 0.4819 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23 0.62 76.47 0.071 SPF 02 1.5 5.5 16 825 18.0 3287 3.57 0.3878 3287.1 1.80 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1298.30 945.38 531.23 0.58 64.20 0.052 SPF Stud 1.5 3.5 16 14.57 50.0 285 3.57 0.9981 2091.8 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,366 531 875.439 144.26 139.02 72.38 0.52 494.93 0.727 SPF*2 1.5 5.5 16 19 41.5 1020 3.57 0.9910 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 244.40 235.32 164.85 0.70 340.83 0.500 H-F 02 1.5 5.5 18 19 41.5 945 3.57 0.9939 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 226.94 220.14 152.73 0.89 340.93 0.513 Page 5 180 Nickerson St. - C T ENGINEERING Suite 302 _ 1 �� f..C ^I N C. Seattle,WA Project ? e 4 Date: 8109 _ (206) 285-9512 Client • �) Vt4 / V}LV �[L A�QLex Page Number: FAX: (206)285-0618 Atli 'G,_D. GLk35,. > • , r (4:0141.; I .::::.•••••*, r4b•t�S� ' y?�''t'' �rrr.y < f.. 3 (J�_ k < � �` ��� alb - rA``} •^/�]f r 4 5 {7R6 h,', , Ste. } : Ji S. ?z , - le : - 5 5 , Z f t j , ` _ ► ...,ter. ` ; _, 't .- t�..�` ,-1•-•'•i. 1 .4v . 3 i t 2 :.7 , L J T .b� . y jf S .....6 -,.,.., :�^ .,1v } +.-,� } _ 1 •OXY ���y,��+�y• ■y Structural Engineers '" t r, Ito'1L.- 'fit► E'rf , C T N N 1 180 ricke =tsSt. - Suite 302 a .•4 c• , . Seattle.WA 98109 / Protect - —77.-7-- -- 4 ." 4 d - PAX: Meat: Page Minix= (206)285-$A18 • ' -25t4 : APO, p5f - 44 • •, ( /50v F5v- tifroic). Or:. ?tar NA(2-511-/s) ----- 20 Ptf-1,„. 644)(efrateS •si=365- ALL, Tx leo . fiL, % - -.__._._._.,LL_O_t_,....,_"o 14/44- 115) = ?!4•S _ . -- .... ,k, rz iso 0 .s..2 favAist .144 ..'-,,:, , rdik .... .. • ..."70-00 72_ isropsr V _ 1 ir *hi:7 . , al*. iA)14. 464/941,4q414;t3 -*S'' 4.170 101Sgt '""*. (15W. 2.0g5)1,7-4s3cits *, e Orc, -711--- .--117 p 1,pti-e 1 -:. 3,543 lipwitx , . . 2.7w. 1 z i . . 1090 - lb e go . voi3V 't..-- .2„It 3'9 lifel'es - rzLi • i., Structural Engtneers • 1 Design Maps Summary Report Page 1 of 1 Design Maps Summary Report User—Specified Input Building Code Reference Document International (2012which utilizes USGS hazard data Building availabCodele in 2008) Site Coordinates 45.43123°N, 122.77149°W Site Soil Classification Site Class D —"Stiff Soil" Risk Category I/II/III tea �^ '-E !..'� $ e � %, zd3VirtA,„%VW''','a'-•$$'L.,-$',$, -., 1.004$ +44,,,,,,b,.°:,p.ituva-y- § it. - atat we"; 1 j • A.V ; t---4,----,—.7.--1-7:74^ � - a*. :14,„:74;,.;,44,,k4! .: .-F:ft:`,4.i..,:il , ''0.-^::, v:,,6,.lcfit4-,....;-.,,, W; y ' �'r 'Alt :;,:nz,z, .4„e iitiviaoisil.,..-.. i l''''''' ''''r4tr'''It'"It:A4 '':,_,;,-$.„--"1,44tVi ift.l.s.22 as • } '. " Ki 9 i 44,21F*; f 4...k- --..„-c.OrtS,0*-2A.M.,...%.:41,..:,44z04.04‘..-71L:=,,p-st.wetor,,...;,. .„,,,,,.,,,4 i ,t'.;,t,'''' - 4` 1.' RIC ' e- w ..g,.„1,..:lAtri, ,1, 1,-,,-,...7-4*-4.-1,--.461r*- --4.1E- ------,4.-----_,,. 1 . ,,,,,,,',- ---v,4*-11; --.. -_-•:,,• /� 4 USGS—Provided Output Ss= 0.972 g SMS = 1.080 g S,„ = 0.720 g S1 = 0.423 g S„1 = 0.667 g SDI = 0.445 g For information on how the SS and Si values above have been calculated from probabilistic(risk-targeted)and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEHRP"building code reference document. MCE5 Response Spectrum D sign Response Spectrum 022 1.10 0.00 0.31 4,74 aleDot 0.sc S 0.42 f1 0.41 A ass CIAO I 0.44 0.22 11,22. 224 0.22 0.1r 011 002 *.00 0.00 0.20 0.40 ac0 000 1.00 1. t 1.40 1>20 2.20 200 0.00 0,20 0.40 0 40 0 1.00 120 1.40 l.i 1 2.00 P iod,t(soci i+s+rl 1.T tsaerl Although this Information is a product of the U.S.Geological Survey,we provide no warranty,expressed or implied,as to the accuracy of the data contained therein.This tool is not a substitute for technical subject matter knowledge. http://ehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?template=minimal&latit... 9/14/2015 2012 IBC SEISMIC OVERVIEW SHEET TITLE: 2012 IBC SEISMIC OVERVIEW CT PROJECT#: Elevation B. Step# 2012 IBC ASCE 7-10 1. RISK CATEGORY TYPE II Table 1604.5 Table 1.5-1 OCCUPANCY CATEGORY 2. IMPORTANCE FACTOR 'E= 100;; ; ; Section 1613.1 ->ASCE Table 1.5-2 3. Site Class-Per Geo.Engr. S.C. D Section 1613.3.5 Section 11.4.2/Ch.20 Table 1613.3.3(2) Table 20.3-1 4. 0.2 Sec.Spectral Response Ss 0 97 Figure 1613.3.1(1) Figure 22-1 5. 1.0 Sec.Spectral Response Si 0 43` Figure 1613.3.1(2) Figure 22-2 Latitude45,46 N Longitude 122':89 W N,/A.:r... .. (Or by ZIP code) (Or by ZIP code) htto://earthouake.usos.gov/research/hazmaos/ htto://geohazards.usos.ciovklesignmaps/us/arolication.oho 6. Site Coefficient(short period) Fa= 1,11 Figure 1613.3.3(1) Table 11.4-1 7. Site Coefficient(1.0 second) Fv1.58; Figure 1613.3.3(2) Table 11.4-2 SMs=Fa*Ss SMs= 1.08 EQ 16-37 EQ 11.4-1 5M,=F„,*Si SM,= 0.68 EQ 16-38 EQ 11.4-2 SDs=2/3*SMS SDs= 0.72 EQ 16-39 EQ 11.4-3 SD,=2/3*SM, SD,= 0.45 EQ 16-40 EQ 11.4-4 8. Seismic Design Category 0.2s SDCs= D Table 1613.3.5(1) Table 11.6-1 9. Seismic Design Category 1.0s SDC,=pMir,ERE Table 1613.3.5(2) Table 11.6-2 10. Seismic Design Category SDC= D Max. Max. Woodstructural pa 11 ."s nels - N/A Table 12.2-1 12. Response Modification Coef. R= 6.5 N/A Table 12.2-1 13. Overstrength Factor Do=iilegliM1501N/A Table 122-1 14. Deflection Amplification Factor CD '4,0 N/A Table 12.2-1 15. Plan Structural Irregularities - No N/A Table 12.3-1 16. Vertical Structural Irregularities - No N/A Table 12.3-2 17. Permitted Procedure Equi Lateral Force - Table 12.6-1 Page 2 2012 IBC EQUIV.LAT.FORCE SHEET TITLE: 2012 IBC EQUIVALENT LATERAL FORCE PROCEDURE PER ASCE 7-10 CT PROJECT#: Elevation B SDs= 0.72 h„ = 18.00(ft) SDI= 0A5 X = 0/5 ASCE 7-05(Table 12.8-2) R= 6.5C,= 0.020 ASCE 7-05(Table 12.8-2) IE= 1.0 T= 0.175 ASCE 7-05(EQ 12.8-7) .........__._......... . . S1= 0A3 k= 1ilASCE 7-05(Section 12.8.3) _.._......._....................... Ti.= 6 ASCE 7-05(Section 11A.5:Figure 22-15) Cs=Sos/(R/IE) 0.111 W ASCE 7-05(EQ 12.8-2) Cs=S01/(T*(R/IE)) (for T<TO 0.399 W ASCE 7-05(EQ 12.8-3)(MAX.) Cs=(SDI*TJ/(T2*(R/IE)) (for T>TL) 0.000 W ASCE 7-05(EQ 12.8-4)(MAX.) Cs=0.01 0.010 W ASCE 7-05(EQ 12.8-5)(MIN.) Cs=(0.5 S1)/(RAE) 0.033 W ASCE 7-05(EQ 12.8-6)(MIN.if S1>0.6g) CONTROLLING DESIGN BASE SHEAR= 0.111 W VERTICAL DISTRIBUTION OF SEISMIC FORCES PER ASCE 7-10 SECTION 12.8.3 (EQ 12.8-11) (EQ 12.8-12) C,„, = DIAPHR. Story Elevation Height AREA DL w; w, *h,k wx *h„k DESIGN SUM LEVEL Height (ft) h; (ft) (sqft) (ksf) (kips) (kips) Ew, "h1k Vi DESIGN Vi Roof - 18.00 18.00 1666 , 0.0221 36.652 659.7 0.58 3.88 3.88 2nd :' 8.00 10.00: 10.00 1712 0.028 47.936 479A 0A2 2.82 6.70 1st(base)''; 10.00 0.00 SUM= 84.6 1139.1 1.00 6.70 E=V= 9.38(LRFD) E11.4= 6.70(ASD) DIAPHRAGM FORCES PER ASCE 7-10 SECTION 12.10.1.1 (EQ 12.10-1) Design Fp, = DIAPHR. F, E F, w, E w, Fpr = EFf=w, 0.4*SDs*IE*wp 0.2*SDs*IE*wp LEVEL (kips) (kips) (kips) (kips) (kips) Ew, Fpx Max. Fpx Min. Roof 3.88 3.88 36.7 36.7 5.28 3.88 10.56 5.28 2nd 2.82 6.70 47.9 84.6 6.91 3.80 13.81 6.91 1st(base) 0.00 0.00 0.0 84.6 0.00 0.00 0.00 0.00 Page 3 ASCE 7-10 WIND Part2 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 2 CT PROJECT#: Elevation B NS E-W F-B SS 2012 IBC ASCE 7-10 Ridge Elevation(ft) ",.30 04 30.00;ft. Roof Plate Ht.= 18.00 18.00 Roof Mean Ht.= 24.00 24.00 ft. - - Building Width= 40 0 48.0;ft. V utt. Wind Speed s.-D K ; ,12© °120;mph Figure 1609 Fig. 28.5-1A thru C V asd. Wind Speed 3 s.a cw.e_ mph (EQ 16-33) Exposure=' B B- iw ,' 1.0 ],,,]]7.1.0• N/A N/A Roof Type Gable..! Gable Peao A=_' 28 8 28 6_psf Figure 28.6-1 Ps3o e= 4 6 4.6 psf Figure 28.6-1 13830C= '` 20 7 20 7 pat Figure 28.6-1 Peao o 4 7 4.7 pef Figure 28.6-1 X=;% 100,,;; .1,00;. Figure 28.6-1 Kn=. 1 00 1 00;- Section 26.8 windward/lee 100 s 1 00+:(Single Family Home) X•Kd'I : 1 1 Ps=X•Kzt•I•P.3o' (Eq.28.6-1) Pea= 28.60 28.60 psf (LRFD) (Eq.28.6-1) pa a= 4.80 4.80 psf(LRFD) (Eq.28.6-1) Pac= 20.70 20.70 psf (LRFD) (Eq.28.6-1) Pep• 4.70 4.70 psf (LRFD) (Eq.28.6-1) PsA.Mc.vx.p.= 24.7 24.7 psf (LRFD) Psa.saoaverage 4.7 4.7 pal (LRFD) a= 4 4 Figure 28.6-1 2a= 8 8 width-2'2a= 24 32 MAIN WIND-ASCE 7-10 CHAPTER 28 PART 2 Areas(NS) Areas(E-W) (NS) (E-W) Wind(NS)(LRFD) Wind(E-W) (LRFD) width factor roof-> 100 1.00:: 1,00 1.(10 16 psf min. 16 psi min. width factor 2nd-> ;;;1,(10, i.00 wind(LRFD)wlnd(LRFD) DIAPHR. Story Elevation Height AA As Ac AD AA AB Ac AD per 28.4.4 per 28.4.4 WIND SUM WIND SUM LEVEL Height (ft) hi(ft) h(ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) VI(N-S) V(N-S) VI(E-W) V(E-W) 30.00 12.0 0 192 0 288 0 192 0 384 Roof 18.00 18.00 4.0 64 0 96 0 64 0 128 0 10.2 12.3 6.05 6.05 7.17 7.17 2nd 8.00 10.00 10.00 9.0 144 0 216 0 144 0 288 0 5.8 8.9 8.59 14.64 10.08 17.25 1st(base) 10.00 0.00 0.00 0 0.00 0.00 AF= 1000 AF= 1200 18.0 19.2 V(ns)= 14.84 V(s-w)= 17.25 kips(LRFD) kips(LRFD) kips klps Page 4 ASCE 7-10 Part 1 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 1 CT PROJECT*: Elevation B SEE SEAW RAPID SOLUTION SPREADSHEET AND INSERT VALUES BELOW MAIN WIND-7-10 CHAPTER 28 PART 1 Wind(N-S) Wind(E-W) Min/Part 2(Max.) Min/Method 1(Max.) Wind(NS)(LRFD) Wind(E-W)(LRFD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Vi(N-S) V(N-S) Vi(E-W) V(E-W) ........_...._.. Roof - 18.00 18.00 0.00 0.00 0.00: 0.00 10.24 10.24 1229 1229 2nd 8.00 10.00 10.00 0.00 0.00 0.00` 0.00 5.76 16.00 6.91 1920 1st(base) 10.00 0.00 0.00 V(n.$)= 0.00 V(e-w 0.00 V(n-s 16.00 V(e-w)= 19.20 kips kips kips(LRFD) kips(LRFD) DESIGN WIND-MinJPart 2/Part 1 ASD Wind(NS)(LRFD) Wind(E-W)(LRFD) Wind(NS)(ASD) Wind(E-W)(ASD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) Vi(N-S) V(N-S) VI(E-W) V(E-W) Vi(N-S) V(NS) Vi(E-W) V(E-W) Roof 8 10 10 10.24 10.24 12.29 12.29 7.93 7.93 9.52 9.52 2nd 10 0 0 5.76 16.00 6.91 19.20 4.46 12.39 5.35 14.87 1st(base) 0 0 0 V(n-s)= 16.00 V(e-w)= 19.20 V(n-s)= 12.39 V(e-w 14.87 kips(LRFD) kips(LRFD) kips(ASD) kips(ASD1 Part 1 Base Shear Part 2 Base Shear = 0.0 0.0 ratio ratio Page 5 SHEET TITLE: SDPWS SHEARWALL VALUES PER TABLE 4.3A CT PROJECT#: Elevation B SHEATHING THICKNESS tsneath; =7/16" NAIL SIZE nail size= 0.131dia.X 2 5'long STUD SPECIES SPECIES=::H*Or:..$P.FAIIINIP;11!111111112 SPECIFIC GRAVITY S.G. 0.43 ANCOR BOLT DIAMETER Anc. Bolt dia.= 0.625 ASD F.O.S. 2.0 SHEARWALL TYPE Table 4.3A Seismic Table 4.3A Wind 7/16"w/8d common V seismic V s allowable V wind V w allowable (15/32"values per (SDPWS-2008) modify per S.G. (SDPWS-2008) modify per S.G. footnote 2) (divide by 2.0 FOS) (divide by 2.0 FOS) (for ASD) (for ASD) —I 0 1 0 1 P6TN , E 1150; 150 150; 150 P6 520. 242 730! 339 P4 ;760, 353 1065', 495 P3 980 456 1370! 637 P2 :1280; 595 1790' 832 2P4 1520.1 707 2130' 990 2P3 1960;: 911 27401 1274 2P2 ,,,, 256©`; 1190 3580; 1665 N.G. 10000 4650 10000 4650 GYPSUM THICKNESS NAIL SIZE nail size= 1 1/4'long'No 6 Type S or,W Response Modification Coef. R= 6.5 SHEARWALL TYPE Table 2306.4.7 Seismic Wind 1/2"w/1 1/4"screw V allowable V a allowable V w allowable Blocked (PER 2009 IBC) modify G7 125 R>2 not allowed R>2 not allowed G4 150 R>2 not allowed R>2 not allowed 2G7 250 R>2 not allowed R>2 not allowed 2G4 300 R>2 not allowed R>2 not allowed 2G4 300 150 SHEET TITLE: LATERAL N-S(front to back-up/down) CT PROJECT#: Elevation B Diaph.Level: Roof ....._.._.... Panel Height 8 ft. Seismic V I- 3.88 kips Design Wind N-S V 1 m 7.93 kips Max.aspect 3.5 SDPWS Table 4.3.4 Sum Seismic V I- 3.88 kips Sum Wind N-S V I= 7.93 kips Min.Lwall= 2.29 ft. (0.6-0.14Sds)D+0.7pQe 0.6D+W per SDPWS-2008 pL= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL eff. C 0 w dl V level V abv.V level V abv. 2w/h v i Type Type v i OTM RoTM Unet Ueum OTM Row Unet ileum Usum HD (soft) (ft) (ft) (klf) (kip) (kip) (kip) (kip) p (pif) (pif) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext. A.T1 416 15,0 ':46.0 1.00 0.15 1.98 0.00 0.97 0.00 1.00 1.00 85 P6TN P6TN 132 7.76 28.12 -1.28 -1.28 15.86 31.05 -1.06 -1.06 -1.06 Ext.. A.T2 139 5.0, 46.011.00' 0.151 0.68 0.00 0.32 0.00 1.00 1.00 65 P6TN P6TN 132 2.59 8.71 -1.41 -1.41 5.29 10.35 -1.17 -1.17 -1.17 "Ext. A.T3 278 -10.0 46.0 1.00 0.15 1.32 0.00 0.65 0.00 1.00 1.00 65 P6TN P6TN 132 5.17 17.41 -1.31 -1.31 10.58 20.70 -1.08 -1.08 -1.08 0 0.0 •!.0.0 -1,00 0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0.0::.::1; .00 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 . 0.0„ .0.0 1.00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0' 0.0-...':..0.0 ..•,,1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .. 0.0 0.0,e 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -' 0 0.0 0 0 ;1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ext. B.T1 150 5.01....47 0 .1.00. 0.15 0.71 0.00 0.35 0.00 1.00 1.00 70 P6TN P6TN 143 2.80 8.90 -1.41 -1.41 5.72 10.58 -1.12 -1.12 -1.12 Ext ' B.72, 300 :10,0 47.0 1.00 0.15. 1.43 0.00 0.70 0.00 1.00 1.00 70 P6TN P6TN 143 5.59 17.79 -1.31 -1.31 11.43 21.15 -1.04 -1.04 -1.04 Ext. B.T3 143 ::.:;,:"4.8 >47,0 `1.00 "0.15 0.88 0.00 0.33 0.00 1.00 1.00 70 P6TN P6TN 143 2.66 8.45 -1.42 -1.42 5.43 10.05 -1.13 -1.13 -1.13 Ext. B,T4 240:. .8.0:' 7,0::..:1.00.!..;, 40,15' 1.14 0.00 0.56 0.00 1.00 1.00 70 P6TN P6TN 143 4.47 14.23 -1.33 -1.33 9.15 16.92 -1.08 -1.06 -1.06 n'' . 0,0 n 0.!.'•.1.0(Y..,-0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0' 0.0 .0.0 ;1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0: 0.0 0.0 '1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 "-0.0 ' 0.0 '1.00 0.001 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0' `0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 -0.0 0:0. .1.00" 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0•...:,:.0.0 ',1.00, 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 ' 0 0 ;1.00: 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0: 0.0 0.0 1.00 0.00- - 0.00 0.00 0.00 0.00 1.00 0.00 0-_ - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 -, 0.0 0.0 1.00 , 0.00': 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ' 0.0 0.0 1.00: 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0'.: 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1,00 .0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ' 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0• 0.0 0.0 .1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1666 57.8 57.8=L eff. 7.93 0.00 3.88 0.00 EV wind 7.93 EVEt 3.88 Notes: denotes with shear transfer "" denotes perferated shear wall iSB denotes iSB Shear Panel SHEET TITLE: LATERAL N-S(front to back-up/down) CT PROJECT#: Elevation B Diaph.Level: 2nd Panel Height =. ,.'9 ft. Seismic V I e 2.82 kips Design Wind N-S V i■ 4.46 klps Max.aspect=g014k SDPWS Table 4.3.4 Sum Seismic V I e 6.70 kips Sum Wind N-S V 1■ 12.39 klps Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pi= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LOL et. C 0 w dl V level V abv.V level V abv. 2W/h V i Type Type vi OTM ROTM Unet Usum OTM ROTM Unet Us= Usum HD (sqft) (ft) (ft) (kV) (kip) (kip) (kip) (kip) p (pIf) (pit) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext.,, A.Ma% 621......„.„„....,...„,,,,,,,„.,..pig46 .0 1.00+; 0.15; 1.62 2.88 1.02 1.41 1.00 1.00 84 P6TN P6 155 21.85 50.50 -1.01 -2.29 40.43 60.03 -0.69 -1.75 -1.76 fillExtnitA.Mb` 235 11 0 480 1 00,` 015 0.61 1.09 0.39 0.53 1.00 1.00 84 P6TN P6 155 8.29 19.16 -1.05 -2.46 15.34 22.77 -0.72 -1.89 -1.89 „Q,,, 0 0 0 0 1 00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0..- --- 0 0.00 0.00 0.00 -1.31 0.00 0.00 0.00 -1.08 -1.08 0 r 0 0 00 1 00'r.;0.00i 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0 0 !00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00. 0.00 0.00 iggFillEK*Igliggfie0 0 0 0;0 !00 0 00, o.00 o.00 o.00 0.00 too o.00 0- •- o o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ;,'.0 0 0 0 1 00 ,0.00!; 0.00 0.00 0.00 0.00 too o.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o 0 0 .0,0 1 00'.: o 00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 , 0 0 .;0 0 1 00e 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 1 00; 0 00; 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ext. S Ma, 571 :!Q 0 47 0 i 00,, 0 151 1.49 2.64 0.94 1.29 1.00 1.00 223 P6 P4 413 20.09 17.79 0.25 -1.16 37.18 21.15 1.72 0.60 0.60 ill!Ext. B Mb 285 5 0 ,47 0 1.00: 015: 0.74 1.32 0.47 0.65 1.00 1.00 223 P6 P4 413 10.05 8.90 0.27 -1.04 18.59 10.58 1.85 0.81 0.81 0 0 0 0 0 1 00 -,0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 -1.42 0.00 0.00 0.00 -1.13 -1.13 0 A0 0 .,'0 0 1.00: =,0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 -1.33 0.00 0.00 0.00 -1.06 -1.06 f! 0 D ,NO 0 1,00; 0,00: 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.,,. 0 0„ 0'. 0 1 00= 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 A 0, ,0 0 1.00; 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0,.;- 0 0, 1 00 0.00: o.00 o.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ?' 0 0 '=0 0, :1.00; 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 ...0 0 .1,00 0 00; o.00 o.00 o.00 0.00 too 0.00 0--- -- o o.00 o.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 1.001 0 00; 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 1 00 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ! 0 0 .:0 0 '1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 b , 0.0 -0 0 :'1.00: 0 00 0.00 0.00 0.00 0.00 too 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 . 1,00 0 00; 0.00 0.00 0.00 0.00 1.00 0.00 0- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0.0. 1,00! --.0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0, : 0 0 0 0 1 00 ,0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 1 00 '0.00'; 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0'r 0 0 U 0 *0,:116,0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ..: 0 0 0 0 1'.00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1712 55.0 55.0=L eff. 4.46 7.93 2.82 3.88 1.00 EVwi„d 12.39 EVE0 8.70 Notes: denotes with shear transfer " denotes perferated shear wall MSB denotes ISB Shear Panel SHEET TITLE: LATERAL EA?),(side to side-left/right) CT PROJECT#: Elevation B Diaph.Level: Roof Panel Height. . 8 ft. Seismic V I e 3.88 kips Design Wind E-W V I- 9.52 kips Max.aspect=. 3,5'SDPWS Table 4.3.4 Sum Seismic V 1 m 3.88 kips Sum Wind E-W V I.. 9.52 kips Min.Lwall= 2.29 ft. per SDPWS-2008 (0.6-0.14Sds)D+0.7 p Qe 0.6D+W pt= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall Lot.ea. C 0 w dl V level V abv.V level V abv. 2w/h v 1 Type Type vi OTM ROTM Unet Usum OTM ROTM Una* Usum Usum HD (sqft) (ft) (ft) (klf) (kip) (kip) (kip) (kip) p (plf) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Rear ,1.Ta* 283.6 -`8,0 40,0 1,00. 0.151 1.62 0.00 0.68 0.00 1.00 1.00 83* * 203 5.28 12.11 -0.93 -0.93 12.96 14.40 -0.20 -0.20* Rear 2,Tb* 407.6" 11 5 .:40.0 1.00..0.15 2.33 0.00 0.95 0.00 1.00 1.00 83* 203 7.59 17.41 -0.91 -0.91 18.63 20.70 -0.19 -0.19* Rear,,.:3.Tc* 141.8: 4 0 40.0,'1.00 0.15 0.81 0.00 0.33 0.00 1.00 1.00 83* 203 2.64 6.06 -1.02 -1.02 6.48 7.20 -0.22 -0.22* Rear'; 4 Td 0' 0.0, 0.0 - 1.00 0.00` 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ..Int N/A ', 0 0.0 0.0 `1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int N/A '•0 ;0.0- 0.0 1',00- 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - •' '0 ,-,0.0-.. 0.0 1.00, 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int :N/A 0 0.0 `.0,0- 1.00• 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0 0' 0.0 "1.00 . 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4,Ta 148.7 2.5 11.0 1.00 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222" * 340 2.77 1.04 0.94 0.94 6.80 1.24 3.03 3.03* Front 4.Tb . 148.7 2.5 11.0 1.00 0.15' 0.85 0.00 0.35 0.00 1.00 0.83 222" * 340 2.77 1.04 0.94 0.94 6.80 1.24 3.03 3.03* Front 4.TC 119 2.0. 9.7 1.00 ; 0.15 0.68 0.00 0.28 0.00 1.00 0.50 277* * 340 2.22 0.73 1.11 1.11 5.44 0.87 3.43 3.43* Front''4.Td ',119' .2 0 - 9.7 •1.00 • 0.15: 0.68 0.00 0.28 0.00 1.00 0.50 277* 340 2.22 0.73 1.11 1.11 5.44 0.87 3.43 3.43" Front..4.Te 148.7: 2,5 11,7-, 1.00 0.15 0.85 0.00 0.35 0.00 1.00 0.63 222* * 340 2.77 1.10 0.91 0.91 6.80 1.31 2.99 2.99* Front 4.Tf 148.7' 2.5 11.7,- 1.00 0.15' 0.85 0.00 0.35 0.00 1.00 0.63 222* * 340 2.77 1.10 0.91 0.91 6.80 1.31 2.99 2.99* 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0. 0.0 . 1.00. 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0` 0.0 1,00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0-. 0.0. 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0,0 0.0 1.00' 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0,0. 1'00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0` 0.0- 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 -'0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0: 0.0 . 0.0 . 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 - -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0•` 0.0 0.0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0,0 0.0•' 1.60.• 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0„ 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 '0.0 0.0;, 1.00., 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1666 37.5 37.5=L eff. 9.52 0.00 3.88 0.00 EV,„„d 9.52 EVEQ 3.88 Notes: * denotes with shear transfer ** denotes perferated shear wall ISB denotes ISB Shear Panel GARAGE ABWP SHEET TITLE: LATERAL E-W(side to side-IefUright) CT PROJECT#: Elevation B Diaph.Level: 2nd Panel Height=::;;;: 0 ft. Seismic V i• 2.8- kips Design Wind E-W V I 5.35 kips Max.aspect 3„5 SDPWS Table 4.3.4 Sum Seismic V i 6 0 kips Sum Wind E-W V I 14.87 kips Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7 p Qe 0.80+W perSDPWS-2008 pt= 1.00 Table 4.3.3.5 Wind Wind '.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall Lo�.n, C u w dl V level V abv level V abv. 2w/h vi Type Type v i OTM Roan Unet U.um ON RoTM Un.1 U.um U,um HD (soft) (ft) (ft) OM (kiP) (kip) (klp) p (p11) (PIO (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Rear „1 Ta 107.6 43 12 S 1 00 0, 5 0. 1.20 0.18 0.49 1.00 0.94 168' " 361 5.98 1.98 1.12 0.18 13.80 2.36 3.19 3.00 Rear 2 Tb 98 7 3 0 12 3 1.00; 0.15 0 .1 1.10 0.18 0.45 1.00 0.87 181 " 361 5.49 1.82 1.14 0.23 12.66 2.16 3.25 3.06' Rear 3,Tc 1583 8 3 18 5 !00 015: x.50 1.76 0.26 0.72 1.00 1.00 158* * 361 8.80 4.61 0.75 -0.27 20.30 5.48 2.85 2.44" Rear 4 Td 63 31 2 5 19 5 1 00! 0 15' 0.20 0.70 0.10 0.29 1.00 0.56 282* 361 3.52 1.65 0.91 0.91 8.12 2.19 3.23 3.23" �' 0 D 0 0 0 1 Db 0 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 tlt.„:NIA? 181 1 ._ 5 5 5.5 1.00; 15 0.57 0.00 0.30 0.00 1.00 1.00 54 P6TN P6TN 103 2.68 1.15 0.32 0.32 5.10 1.36 0.77 0.77 0.77 int N/Q,x 246 9 7 5 5 1`.00 0 15, 0.77 0.00 0.41 0.00 1.00 1.00 54 P6TN P6TN 103 3.66 2.13 0.22 0.22 8.95 2.53 0.65 0.85 0.65 0 0 0 0 0 1`. t; 0 00: 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n1 8.- 1b 0 a " A�0 b 3 00 0 0 '.0' 00 1.00 70 P6TN ....P6TN 134 8.34 3.79 0.27 0.27 12.05 4.50 0.81 0.81 0.81 e 0 e .0 t 00' 0.;0 0.0= ..00 0.10 1. 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Ta,: 11T 1 2 4 20 5 1,00 015; 0.37 0.89 0.19 0.62 1. 0.54 829 ABWP ABWP 785 7.35 1.88 3.13 4.07 17.08 2.23 8.48 11.51 ABWP Front 4 Tb 0.' a 4 .°-0 4 1 D0. 0.15 0.00 0.00 0.00 0.00 1. '' 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4 Tc 0 0 0 d 0 1.00 015 0.00 0.00 0.00 0.00 1.0' 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front, Td 117 1 2 4 2Q 5 1.00 0 15' 0.37 0.89 0.19 0.62 1. 0.54 629 ABWP ABWP 785 7.35 1.88 3.13 4.24 17.06 2.23 8.48 11.90 AWP rs : T '9. 9 0'`'11 ' ' oi0 5i 0. i 6 09.92 :' 0.44 569* 576 4.55 0.88 2.75 3.68 10.38 1.05 8.99 9.99* prom 4 Tf 96 91 7 D 11.7 1.00 0.15 0.30 1.49 0.16 0.35 1.00 0.44 569" 576 4.55 0.88 2.75 3.66 10.38 1.05 8.99 9.99* 0 0 0 0 0 1.00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0--- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 1)0 0 0 1:00 0 00 o.00 o.00 o.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 D .y 00 0 0 1-.00 o 00 o.o0 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 „0 0 0 0 1 00 0,,001 o.o0 0.0o 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ''''')''''''::°.°''''''''' b 0 0 0 i b0 o b0 0.00 0.00 0.00 0.00 1.00 0.00 0- - o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 D 0 0 „,0.0 1.00 0"Ob!, 0.00 0.00 0.00 0.00 1.00 0.00 0--- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 D .1.00 ?0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 1`•00 0.001. 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 1,00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,; 0 b, 0 0 !00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 D ?. a 0 0 D„.1.t)0,„0 0b', 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 •0 0 :D 0 1.00 0.00:1 0.00 0.00 0.00 0.00 1.00 0.00 0•- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.' 0.0` :0 0, 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .x 0 0 ,.0.0 1.00 .0.00: 0.00 0.00 0.00 •0.00 •1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1712 48.7 48.7=L eff. 5.35 9.52 2.82 3.88 EV- 14.87 EVEo 6.70 Notes: " denotes with shear transfer ABWP Alternate Braced Wall Panel-2308.9.3.2 "" denotes perferated shear wall ISB denotes ISB Shear Panel JOB# Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 4.Ta,4.Tb Roof Level w dl= 150 p/f V eq 692.6 pounds V1 eq= 362.3 pounds V3 eq= 330.3 pounds V w= 1699.7; pounds V1 w= 889.1 pounds V3 w= 810.6 pounds —__•. v hdr eq= 63.4 pff 4- •H head= A v hdr w= 155.7 pff ............................. 1 v Fdragl eq= 183 F2 eq= 166 • Fdragl w= ..,; F2 -408 H pier= v1 eq= 127.9 plf v3 eq= 127.9 pif P6TN E.Q. 5.0 vi w= 313.8 Of v3 w= 313.8 pff PS WIND feet Htotal= 2w/h= 1 2w/h= 1 9 v Fdrag3 eq= ; F4 e.- 166 feet • Fdrag3 w=448 F4 w=408 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 63.4 p/f P6TN 3.0 " ,:: EQ Wind v sill w= 155.7 pff P6 feet OTM 6234 15297 R OTM 4461 5363 v • UPLIFT 173 969 Up above 0 0 UP sum 173 969 H/L Ratios: L1= 2.8 L2= 5.5 L3 2 6 Htotal/L= 0.82 4 I. 4 • ' 10. Hpier/L1= 1.76 o Hpier/L3= 1.94 + L total= 10.9 feet JOB it: ,,.." Elevation B SHEARWALL.WITH FORCE TRANSFER ID: Elevation B 4;Tc;4.Td Roof Level w dl : 150; plf V eq 554.1; pounds V1 eq= 277.1 pounds V3 eq= 277.1 pounds V w 1359.7', pounds Vi w= 679.9 pounds V3 w= 679.9 pounds v hdr eq = 58.3 pe H head= A v hdr w= 143.1 plf 1 ;:fir Fdragl eq= 160 F2 eq= 160 l Fdragl w= •4 F2 -394 H pier= vl eq= 173.2 plf v3 eq= 173.2 pff 126 E.Q. 5 D vl w= 339.9 plf v3 w= 339.9 pff P6 WIND feet H total= 2w/h= 0.8 2w/h= 0.8 9 Fdrag3 eq= >' F4=•- 160 feet A Fdrag3 w=394 F4 w=394 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 58.3 pff P6TN EQ Wind vsillw= 143.1 plf P6TN feet OTM 4987 12238 R OTM 3379 4061 UPLIFT 182 926 Up above 0 0 UP sum 182 926 H/L Ratios: 11= 2.0 L2= 5.5 L3= 2:0 Htotal/L= 0.95 0 4 104 Hpier/L1= 2.50 Hpier/L3= 2.50 L total= 9.5 feet JOB#. Elevation B SHEARWALL WITH FORCE TRANSFER ID:Elevation B 4.Te,4.Tf Roof Level w dl= 150 pff ......._.._............... V eq 692.6 pounds V1 eq= 346.3 pounds V3 eq= 346.3 pounds V w= 1699.7', pounds V1 w= 849.8 pounds V3 w= 849.8 pounds ► ► v hdr eq= 60.2 pff •H head= A v hdr w= 147.8 pff 1 v Fdragl eq= 196 F2 eq= 196 • Fdragl w= ,-0 F2 -480 H pier= v1 eq= 138.5 pff v3 eq= 138.5 pff P6TN E.Q. 5.0 v1 w= 339.9 pff v3 w= 339.9 pff PS WIND feet H total= 2w/h= 1 2w/h= 1 9 v 1 Fdrag3 eq= _. F4 e.- 196 feet • Fdrag3 w=480 F4 w=480 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 60.2 pff P6TN 3.0 EQ Wind v sill w= 147.8 pff P6TN feet OTM 6234 15297 R OTM 4951 5951 v v UPLIFT 118 863 Up above 0 0 UP sum 118 863 H/L Ratios: L1= 2.5 L2= 6.5 L3= 2.5 Htotal/L= 0.78 ► 4 ,. Hpier/L1= 2.00 Hpier/L3= 2.00 L total= 11.5 feet JOB#. Elevation B SHEARWALL,WITH FORCE;TRANSFER :: ID: Elevation B 1'Ma,1.ML Roof Level w d1= 150:: plf .............._.:.__.._...._... V eq 1275.1; pounds V1 eq= 677.4 pounds V3 eq= 597.7 pounds V w 2940.61 pounds V1 w= 1562.2 pounds V3 w= 1378.4 pounds v hdr eq= 106.3 plf •H head= A v hdr w= 245.0 plf Fdragl eq= 226 F2 eq= 199 Fdragl w= '•1 F2 -459 H pier= v1 eq= 159.4 plf v3 eq= 159.4 plf PS E.Q. vi w= 367.6 plf v3 w= 367.6 plf P4 WIND feet Htotal= 2w/h= 1 2w/h= 1 9 • Fdrag3 eq= • F4=• 199 feet • Fdrag3 w=521 F4 w=459 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 106.3 Of P6TN 3 D EQ Wind v sill w= 245.0 plf P6 feet OTM 11476 26465 R OTM 5391 6480 UPLIFT 537 1763 Up above 0 0 UP sum 537 1763 H/L Ratios: L1= 4,3!: L2 4.0, Htotal/L= 0.75 ►4 Hpier/L1= 1.18 Hpier/L3= 1.33 L total= 12.0 feet JOB#. Elevation B SHEARWALL WITH FORCE TRANSFER ID: Elevation B 1.Mc,1.Md Roof Level w dl= 150 pff V eq 1368.9; pounds V1 eq= 977.8 pounds V3 eq= 391.1 pounds V w= 3157.1 pounds V1 w= 2255.0 pounds V3 w= 902.0 pounds ► *. v hdr eq= 62.2 plf ► •H head= A v hdr w= 143.5 plf 1 y Fdragl eq= 589 F2 eq= 236 Fdragl w= < 8 F2 -543 H pier= v1 eq= 156.4 plf v3 eq= 156.4 pff P6 E.Q. 5.0 v1 w= 360.8 pff v3 w= 360.8 pff P4 WIND feet Htotal= 2w/h= 1 2w/h= 1 9 , Fdrag3 eq= F4-•- 236 feet A Fdrag3 w=1358 F4 w=543 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 62.2 pff P6TN 3.0 EQ Wind v sill w= 143.5 pff P6TN feet OTM 12320 28413 R OTM 18119 21780 v • UPLIFT -272 311 Up above 0 0 UP sum -272 311 H/L Ratios: L1= 6.3 L2= 13.3 L3= 2.5 Htotal/L= 0.41 Hpier/L1= 0.80 :I Hpier/L3= 2.00 L total= 22.0 feet JOB#: Elevation B SHEA••WALL WITH FORCE TRANSFER ID:Elevation B"4 Me;4.Mf Roof Level w dl= .., "1150; plf ... :................: V eq1:0111911M pounds V1 eq= 505.9 pounds V3 eq= 505.9 pounds V w= 2305.8; pounds V1 w= 1152.9 pounds V3 w= 1152.9 pounds v hdr eq= 89.3 plf •H head= A v hdr w= 203.5 plf 1 Fdragl eq= 327 F2 eq= 327 Fdragl w= •• F2 -746 H pier= v1 eq= 252.9 plf v3 eq= 252.9 plf P4 E.Q. aff34Igigill v1 w= 576.5 plf v3 w= 576.5 pH P3 WIND feet Htotal= 2w/h= 1 2w/h= 1 7 Fdrag3 eq= F4 -•- 327 feet A Fdrag3 w=746 F4 w=746 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 89.3 plf P6TN EQ Wind v sill w= 203.5 plf P6 feet OTM 7082 16141 R OTM 4805 5777 • UPLIFT 213 972 Up above 118 863 UP sum 332 1835 HIL Ratios: L1= 2.01 L2= . ':7.3 L3= 20 Htotal/L= 0.62 r ►� Hpier/L1= 1.50 HpiedL3= 1.50 L total= 11.3 feet `� . Ia r9 A PA doh 0 ics TT- 100F APRIL 2014 A Portal Frame with Hold Downs for Engineered Applications The APA portal-frame design,as shown in Figure 1,was envisioned primarily for use as bracing in conventional light- frame construction.However,it can also be used in engineered applications,as described in this technical topic.The portal frame is not actually a narrow shear wall because it transfers shear by means of a semi-rigid,moment-resisting frame.The extended header is integral in the function of the portal frame,thus,the effective frame width is more than just the wall segment,but includes the header length that extends beyond the wall segment.For this shear transfer mechanism,the wall aspect ratio requirements of the code do not apply to the wall segment of the APA portal frame. Cyclic testing has been conducted on the APA portal-frame design(APA 2012).Recommended design values for engi- neered use of the portal frames are provided in Table 1.Design values are derived from the cyclic test data using a rational procedure that considers both strength and stiffness. The Table 1 values in this report were developed using the CUREE cyclic test protocol(ASTM E2126),using a flexible load head.Earlier testing was conducted using rigid load heads and the sequential phased displacement(SPD)method, as outlined in SEAOSC(1997)Standard Method of Cyclic(Reversed)Test forShear Resistance of Framed Walls for Buildings. The design values in Table 1 ensure that the code(IBC)drift limit and an adequate safety factor are maintained.For seismic design,APA recommends using the design coefficients and factors for light-frame(wood)walls sheathed with wood structural panels rated for shear resistance(Item 15 of Table 12.2-1 of ASCE 7-10). See APA Report T2004-59 for more details.For designs where deflection may be less of a design consideration,for example,wind loading while the portal frames are used in tandem with each other,and not used as conventional shear walls,a load factor of 2.5, based on the cyclic test results is used. Since cyclic testing was conducted with the portal frame attached to a rigid test frame using embedded strap-type hold downs,design values provided in Table 1 of this document should be limited to portal frames constructed on similar rigid-base foundations,such as a concrete foundation,stem wall or slab,and using a similar embedded strap- type hold down. ®2014 APA—7hc Engineered Wood Association PORTAL FRAME DESIGN (MIN.WIDTH =22 1/2"): EQ=810#< EQ(ALLOW)= 1031# WIND= 1260#<WIND (ALLOW)= 1444# Table 1.Recommended Allowable De gn Val for APA Portal Frame Used on a Rigid-Base Minimum Width Maximu eight Allowable Design(ASD)Values per Frame Segment (in.) ) Sheart"M(lbf) Deflection(in.) Load Factor 8 850 (1190 WIND) 0.33 3.09 16 10 625 (875 WIND) 0.44 2.97 8 1,675 (2345 WIND) 0.38 2.88 24 0.51 3.42 1'-10 1/2" 8 1520 EQ(2128 WIND) roundationV-10 for Wind or Seismic Loading�'•b'`�31 EQ(1444 WIND) (a) Design values are based on the use of Douglas-fir or Southern pine framing.For other species of framing,multiply the above shear design value by the specific gravity adjustment factor=(1—(0.5—SG)),where SG=specific gravity of the actual framing.This adjustment shall not be greater than 1.0. (b) For construction as shown in Figure 1. (c) Values are for a single portal-frame segment(one vertical leg and a portion of the header).For multiple portal-frame segments,the allowable shear design values are permitted to be multiplied by the number of frame segments(e.g.,two=2x,three=3x,etc.). (d) Interpolation of design values for heights between 8 and 10 feet,and for portal widths between 16 and 24 inches,is permitted. (e) The allowable shear design value is permitted to be multiplied by a factor of 1.4 for wind design. (f) If story drift is not a design consideration,the tabulated design shear values are permitted to be multiplied by a factor of 1.15.This factor is permitted to be used cumulatively with the wind-design adjustment factor in Footnote(e)above. Figure 1. Construction Details for APA Portal-Frame Design with Hold Downs • Extent of header with double portal frames(two braced wall panels) Extent of header with single portal frame (one braced wall panels) Header to jock-stud strap 2'to 18'rough width of opening per wind design min 1000 lbf 9 on both sides of opening for single or double portal opposite side of sheathing t -i-- s_ IT A 4 1.IIII height • r- £v` £ qF £ with twotop rropws of late t16d der z sinker nails at 3'o.c. tYP ") . Fasten sheathingto header with 8d common or Min.3/8'wood structural 12' galvanized box nails at 3'grid pattern as shown panel sheathing max / total 4 r Header to jack-stud strap per wind design. , wall 'r Min 1000 lbf on both sides of opening opposite • i: - height side of sheathing. y If needed,panel splice edges shall occur over and be 10 " Min.double 2x4 framing covered with min 3/8" :�_/ within to common o looking max ,. thick wood structural panel sheathing with , _ _ } portal height n rr 8d common or galvanized box nails at 3'o.c. , height.One row of 3"o.c. :..:" in all framing(studs,blocking,and sills)typ. nailing is required in each panel edge. Min length of panel per table 1 Typical portal frame RI construction ` Min(2)3500 lb strap-type hold-downs (embedded into concrete and nailed into framing) Min double 2x4 post(king and jack stud).Number of Min reinforcing of foundation,one#4 bar _I _ jack studs per IRC tables ' I top and bottom of footing.Lap bars 15'min. - 's R502.5(1) (2). Min footing size under opening is 12'x 12'.A turned-down Min 1000 lb hold-down slab shall be permitted at door openings. device(embedded into concrete and roiled Min(1)5/8'diameter anchor bolt installed per IRC R403.1.6— into framing) with 2"x 2'x 3/16"plate washer 2 ®2014 APA—The Engineered Wood Association References APA, 2004, Confirmation of Seismic Design Coefficients for the.APA.Portal Frame, APA Report T2004-59, APA—The Engineered Wood Association,Tacoma,WA. APA,2012,Effect of Hold-Down Capacity on IRC Bracing Method PFH and IBC Alternate Method,APA Report T2012L-24, APA—The Engineered Wood Association,Tacoma,WA. ASCE,2010,Minimum Design Load for Buildings and Other Structures.ASCE 7.American Society of Civil Engineers. Reston,VA. ASTM E2126-11,Standard Test Methods for Cyclic(Reversed)Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings,ASTM International.West Conshohocken,PA. SEAOSC, 1997,Standard Method of Cyclic(Reversed)Test for Shear Resistance of Framed Walls for Buildings,Structural Engineers Association of Southern California.Whittier,CA. • We have field representatives in many major U.S.cities and in Canada who can help answer questions involving tin.vvv.op awoo d.org APA trademarked products.For additional assistance in specifying engineered wood products,contact us: AM HEADQUARTERS:7011 So.19th St.•Tacoma,Washington 98466•(253)565-6600•Fax:(253)565-7265 APA PRODUCT SUPPORT HELP DESK:(253)620-7400•E-mail:help@apawood.org Form No.TT-100F Revised April 2014 DISCLAIMER:The information contained herein is based on APA—The Engineered Wood Association's continuing programs of laboratory testing,product research,and comprehensive field experience.Neither APA nor its members make any warranty,expressed or implied or assume any legal liability or responsibility for the use,application �� of and/or reference to opinions,findings,conclusions,or recommendations included in this publication.Consult your local jurisdiction or design professional to assure compliance with code, construction,and performance requirements.Because APA has no control over quality of workmanship or the conditions under which engineered wood products are used,it cannot accept responsibility of product performance or designs as actually constructed. 3 to 2014 APA—The Engineered Wood Association IRO Nickerson St. C T ENGINEERING Sultc 302 Project : f "7Nc1 c f3lQ JZ bcp PAWL— Date: Atli l. I , S(2e0at)l28 W4 512 Clent: g4,e, 2,5"3i9,3,2 ZI . J Page Number: (2 6)285-0618 fI% 36 '1/5 120 OrC9 A I � a o� � 1 6( 6 `" AL4' A\ . `` X lb`` 12" k X2`7 Li30-.5t k51-4) f>671Pit4 r-DR c>vGilivv-eatiD/U) --fV1 m- -riuo ec7-1410os . The i Wv p.56.3•01 gt= 6)6°1 60)" $5 Z3 LIZ) M (01°,1)60 6)62)110,i) t.6 66 ,ct44- Y• - q;., ter 5 O. X w/(2) 112A44: • N &614)196., �II 8AU9 eov! S 3X MSL ode 014, P`,-g-116, a, t9 Structural Engineers WOOD FRAME CONSTRUCTION MANUAL 63 ;,di Table 2.2A Uplift Connection Loads from Wind I r. • . _ . (For Roof-to-Wail,Wall-to-Wall,and Wall-to-Foundation) 700-yr.Wind Speed 3-second gust(mph) 110 115 120 130 140 150 160 170 180 I 195 - f Roof/Ceiling Assembly Roof Span(ft) Unit Connection Loads(pif)42'3'4'5'6'7 Design Dead Load 12. 118 128 140 164 190 219 249 281 315 369 24 195 213 232 •272 315 362 412 465 521 612 2 O psfe 36 272 298 324 380 441 506 576 650 729 856 M 48 350 383 417 489 567 651 741 836 938 1100 rn . 60 428 468 509 598 693 796 906 1022 1146 1345 g . 12. 70 80 92 116 142 171 201 233 267 321 t7 24 111 129 148 188 231. 278 328 381 437 528 y 10 psf 36 152 178 204 260 321 386 456 530 609 736 -� 48 194 227 261 333 411 495 585 680 782 944 Z 60 236 276 317 406 501 604 714 830 954 1153 12 46 56 68 92 118 147 177 209 243 297 24 69 87 106 146 189 236 286 339 395 486 15 psf 36 92. 118 144 200 261 326 396 470 549 676 48 116 149 183 255 333 417 507 602 704 866 . 60 140 180 221 310 405 508 618 734 858 1057 • 12 22 32 44 68 94 123 153 185 219 273 24 27 45 64 104 147 194 244 297 353 444 20 psf 36 32 58 84 140 201 266 336 410 489 616 Will�' 48 38 71 105 177 255 339 429 524 626 788 • 60 44 84 125 214 309 412 522 638 762 961. 12 - 8 20 44 70 99 129 161 195 249 • 24 - 3 22 62 " 105 152 202 255 311 402 25 psf 36 - - 24 80 141 206 276 350 429 556 48 - - 27 99 177 261 351 446 548 710 60 - - 29 118 213 316 426 542 666 865 J. Tabulated unit uplift connection loads shall be permitted to be multiplied by 0.75 for framing not located within 6 feet of corners for buildings less than 30 feet in width(W),or W/5 for buildings greater than 30 feet in width. g 2 Tabulated uplift loads assume a building located In Exposure B with a mean roof height of 33 feet. For buildings located in other exposures,the tabulated values for 0 psf roof dead load shall be multiplied by the appropriate adjustment factor in Section 2.1.3.1 then reduced by the appropriate design dead load. F a Tabulated uplift loads are specified in pounds per linear foot of wall. To determine connection requirements, f' multiply the tabulated unit uplift load by the multiplier from the table below corresponding to the spacing of the . connectors: Connection Spacing(in.) 12 16 192 24 48 Multiplier I 1.00 1.33 I 1.60 I 2.00 4.00 4 Tabulated uplift loads equal total uplift minus 0.6 of the roof/ceiling assembly design dead load. s Tabulated uplift loads are specified for roof-to-wall connections. When calculating uplift loads.forwall-to-wall-or i wall-to-foundation connections,tabulated uplift values shall be permitted to be reduced by 73 plf(0.60 x 121 plf) -: for each full wall above. it%'.• 6 When calculating uplift loads for ends of headers/girders,multiply the tabulated unit uplift load by 1/2 of the s. header/girder span(ft.). Cripple studs need only be attached per typical uplift requirements. Z{ 'i7' For jack rafter uplift connections,use a roof span equal to twice the jack rafter length.The jack rafter length -.. includes the overhang length and the jack span. `• Tabulated uplift loads for 0 psf design dead load are included for Interpolation or use with actual roof.dead loads. c"-R�V. i6 ' a AMERICAN WOOD COUNCIL 180 Nickerson St. C T ENGINEERING Suite 302 `yin/►/�j p�� INC. 1 Seattle,WA Protect: �1 1 I` l- 5)11r fly . Date: 98109 (206)285-4512 PAX: Client: Page Number. (206)285-0618 *ND 1 .0.1 (it1;R/- @ 5 ` u e;IklI rn . Q 1456- Pis... WVDf CQ ; 11 ►k : 3 r ) kkb 7- I l 0: MQ Gtai 15 Pte DZ t) CamA `S ss 4?)1 36: .40.. : Mtn 4P8 /./44- 6-17°414644.. 5 : _ Ter. comtvintio P07.#11.t.3 -n71,146 ceON .=t;-6 2)- (2 - (.4)(2) (I,off( 11/P, - 14-7— (1-6,y 40/7)(e.75 (0,61 .. -=_. 4-t. , v-ado- N,i 49c (t) -T(P. Gvrp co . PL @ - ) (BSC 7sM) e3.44 1 Structural Engineers TRUSS TO WALL CONNECTION ;11 VM l it'; i) PLES SS CONNECTOR TO TRUSS TO TOP PLATES UI'I III 1 I 1 HI (6)0.131"X 1.5" (4)0.131"X 2.5" ;t(it1 ;L'i., 1 H2.5A (5)0.131" X 2.5" (5)0.131' X 2.5" >':; ._ Itii r_ 1 SDWC15600 ..... ..._ 2 H10-2 (9)0.148'X 1.5" (9)0.148"X 1.5" in7ri ..IOP-. 2 (2)112.5A (5) 0.131"X 2.5" EA. (5)0.131"X 2.5" EA. •Ii l6. ... .2.-.4.- 2 (2)SDWC156110 - - r11-..__0.....- --;,.10 3 (3)SDWC15600 - - I.15;.,-" 315 ROOF FRAMING PER PLAN-- . .. Rd AT 6' O.C. z 2X VENTED BI.K'G. 0.131" X3" TOENAIL �'�'"' AT 6' O.C. i i \1-12.5A & SDWC15600 STY,F PCER PLAN 2DER TRUSS TRUSS TO WALL CONNECTION TO EACH Hl STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE 3/4"=1'-0' (BEAM/READER AT SIMILAR) 114 TYP. RAISED HEEL TRUSS TO WALL CONNECTION [ • TRUSS TO WALL CONNECTION SPF VALUE> i Cr TRUSS PLIES CONNECTOR 10 TRUSS TO TOP PLATES UPLIFT Fl 1 H1 (6)0.131"X 1.5" (4)0.131' X 2.5" 400 915 1 H2.5A (5) 0.131'X 2.5" (5)0.131" X 2.5" 555 Ila 1 S011C15600 - • - gss5' -.._115... • 2 .H10-2 (9) 0.148"X 1.5" (9)0.148' X 1.5" .1070_7011-- 2 (2)112.5A (5)0.131'X 2.5' EA. (5)0.131"X 2.5" EA. i0/112211 2 (2)SDWC15600 . - - (170731) ... 4 3 (3)SDWC15600 - - 145; -- 345 ADD A35 0 48"0.C. ROOF FRAMING PER PLAN FOR.H2.5A AND 1114 SDWC STYLE 6d AT 6" 0.C. CONNECTIONS 2X VENTED BLK'G. 1111111g►.*% 4/1,-' i ice % Ill I H2.5A & SDWC15600 STY!F COMMON/GIRDER TRUSS _ PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE 3/4"=1'-0" (BEAM/HEADER AT SIMILAR) • 119 I TYPICAL TRUSS TO WALL CONNECTION [