Loading...
Plans (14) (DI Structural Calculations For: Storquest Self Storage 12740 SW Pacific Highway Tigard, OR 97223 Or' ZOK,-- e_cf2/01 City of Tigard Ap.rely' e Plans By , 1 Date2JI5jf7 OFFICE COPY griltrIA1 I I31728, Tgob v8S/ON, 8-3-16 Prepared for: Magellan Architects Job #: 02257-2015-03 Date: August 3, 2016 SEATTLE 2124 Third Ave,Suite 100 Seattle,WA 98121 TACOMA 934 Broc,oway.Suite 100.Tacoma,WA 98402 0 206 443 6212 0 253 284 9470 4e...9, 1sat_44, W-'t"" '41.F" - P--1-...4.5 I Pa02. 0.#4.1.4.5a.S 9 n 9 (Y (7 nI 9 14 (4 -0 20'4' y ....._g?o s-a•y, aso• �o'o• }•oy ,2.' de I I§ 1) O I CF ti r . . . 1;2174,1 ,J 1 1 14,,0. isb , ! ,�. t 4 ; It P;,p 1 Ili'''. F } :I f c7 1 F%t. + is i pre,.5 Ir_ `� `",__ i�°'Is ;'�5'i{`Y•, s ,�i s'6' ,y{{�d I __ ill, 17° Fru. 5 "Iii ___;t, 7- „Fli , P11, 1 3 S r pm. 3 i P °�,r'�' F0.7 /C);-* �J INS} f3- 1 i 111 > 1 sI tz `, ` ="4.3§= ' F F • i F � p Fj — I° 1 E 4` :�1 1i_7 1 3 '` ice¢" ;! ' ..4 Ifroi 1 o�3.5 ;; 1 s : , i� I ; ..7:j— — I, mil al ! . §+ § i 4 I p Z3•5 ii 'E I _ 'ta 6'4 1-2 s g b 62.5 . !1 it1 `:0'8 i�1 _- 1 .0 hi y° it.' ,. iii1 1I.a s f7, fI r t I (1IIL" 31 I1^ 1„,, ;1:11 1 .0 �,-:,:+., I 41 P,, _ r 1 a F 3 ;, 1 �i 4, (P yrs,3 :' F31 a I :y;.' F3.3 F3,3 1 F 5r3 d 3' 1 r 3 +r34 1 P3.p P'I 3• --- 4 Ia+ JI �' 9' ° i f I - fn. 11111 'mil R 1 ix=5" 5 I i 4 ` J(5'1 1 II '� 0 4 1 f...�. :.' _____4-4. ...�-`..—s < i =jam, 1 1 5 ., ‘,.. „,„,..,e_,,,_,6,...r.,,„..,, 2'-O• B•o" Zdo' i ftp• a-d ee•.o• [ Sr re..cicr[. �=0cs4+ 4- 7 0).—' �t)/ PLs�g„- 1 4 9 4 4 4 4 4 4 4 4 4 4 o�l ..o. 6_pG .... 6. ru •` vzt .6* .as ..0111* ;o;a Aa Aa .a-.a Asa. Ain Aa .�.A .'VM 6„ �. N i@- 1 I' ISI _ _ y , P , I 1 i tit 1e ri _... , 1.1.,,„ p � i I I k 1 I 1 I r-- +� I I 1 1 P 1 1 1 1 1 1 S 1 I I 1 � 1 I I I I § CD s I I • I Lrr .. I I I I I 77. 1 I j. I 1 1 1 13 I 1 �+. I I I I I W it I t� �(-1-A.- .., ,i1 it..L.1-1-L1-...-C...-I 4...L....,L_ 1-1_[_ ...1...4 I 9 1I - gel V • I I • I I ( I 1 1 ;`,0. 1 I' 1 Q N I I 1 1 t 1 I 1 I 1 I MUM ' I I I I 1 l' elt:N I I I 1 t I 1 ! f I S ---: Atr i.�w�s 1 a a .bs 1 .o-sl Q,� Il[i �=3 oac:J. '�.. I I j j t 7111111111111 1 3 0 .�1 I I I4 1IIill ::I8 'rl.E3 I I I I I ! I 1. t 1 1 . 3NIlH31VIN la I Pi I0- IIIIIIIIIIIIIIIIMIIIIIMIIIIIIMNMIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIt N •*-4 1111111111111111111111111111111111111111111U 101 icir . -Awtvii V t: ciia: l F A k 1 Z � a ---I-,« «' f. I421594 c.e/) .1.i ri __ � �S'h-1 4.1a Lata " a I a I �� x--)07 �' 74.zdd :'Ci 1 : S•ti� a ..i fill Jrdi it oofts i 1 ,i fool 1 : i ii, I . i �� `, a , y "" I � 1 I :11P oN aIIII: f { Ail _ t 'Iwool, • 1 It 4a I u , 1 5 :I 0- I w ..,4---:i� _ ---1.---d-k., St j g .:i IIv = g ow 11111, j♦ 021 i7_•a I d���I b I s' •Wl OS � � p ,� 11114q , b t € 1.4 1 , ; .y a I. A li 7 1 1 __) — 71 L__ I 4 All 4 f7 d SLioi v WV,4 rcit 7•• '143Cd.9 IZMIR i i„ i4, , .c=.� :o-� ,e-et ..a-41 � ZZ A 66 BL LL Sl 4L� (3 £1 I I I 1 ..._,. Gf?f'•.Jc.7-42)4 4-(..,e N rqV l:1 61 Iit Ls G-PC d i t'- �,S<y #iL : _ a—Sir- .1- n O 0 -----> r c. to co F 1`1j0* i 14)t"-al = 5. O � is--wc- ;,• n P" rt '"'-' pct C 5 r ez. yrS ~ M PT t--., t-14 } c) 1714r = l . ra y- Q; a a' ? c_f. -e-'EG- 'j C} ( S Gam, moi' y3r-� t,r-' a 1...1-51-1 m M N� ILI CZ v .5 t 2.S' s` .s 11,51 Z. 35 X G 2,5 014- (s44 P) OA 4 - reosS 4--e-A=s.$ i d, 5' ,92 1,F5 G)Lr'v- mac. }°`a r}r Jam, a U) z 0 z yA44. 4.4 Si o2 PROJECT DATE TRiJGTURAiEER � 2 'r- ldGiiVlNG DESIGN 4 SHEET I "BOEF.xls"Program Version 1.1 BEAMON ELASTIC FOUNDATION ANALYSIS For Soil Supported Beam,Combined Footing,Blab Strip.or Mat Strip of Assumed Finite Length with Both Ends Free Job Name: Storquest Self Storage Subject: FTG1 Job Number: 02257-2015-03 Originator: RJA I Checker: IRJA I Input Data: I C > Beam Data: ( e b Length, L=^120.0000 ft. { a1 I Width,W:. 2.5000 ft. .p Thickness,T ; 1.0000`P ft. +wb j d 1 1 j ,, - 1 l+we +M +w111 Modulus, E= 3605 ksi - I I I I 1 I I 11 I I I I 4 I I Y I Subgrade, K= 100 kcf �» < � ,t��,-,,i ,.4a s,ai ori rh ,, t T Inertia, I= 0.208 ft.^4 . . . .':' ; E,1 ;::. L Subgrade. Beam Loadings: >x Nomenclature Full Uniform: I w= 0.0000.. kips/ft. Results: Start End Beam Flexiblity Criteria: I Distributed: ` b(ft.) Wb(kips/ft) a(ft.) we(kips/ft.); for 13*L<=7t/4 beam is rigid #1: . for It/4<(3*L<It beam is semi-rigid #2:. for f3*L>=It beam is flexible #3: for ii*L>=6 beam is semi-infinite long #5:- 13= 0.155r3=((K*W)/(4*E*144*1))^(1/4) #6: .' 8*1_= 18.61 -R*L=Flexibility Factor Point Loads: a(ft) « P lkips) 1 r Beantis-fiexible—t #1: 1040000 ..50:70 r #2: 20.0000 50.70 . #3 .30.0000 50.70,.. .; Max.Shears and Locations: #4:. 4,0.0000 50.70 +V(max)= 27.86 k @ X= 110.00 ft. #5: 500000 50.717 V(max)_ -27.86 k @ x= 10.00 ft. #6: 500000 50.70 #7;< 700000. ,50:70 Max.Moments and Locations: #8: 80.0000 50.70 +M(max)= 67.49 ft-k @ x= 10.00ft. #9 , 90 0000 50.70 ., -M(max)_ -21.74 ft-k @ x= 25.20 ft. #10: 100.90 50.70 #11: ;110.0000 5070 Max.Deflection and Location: #12 L(max)= -0.264 in. @ X= 20,00 ft. Moments:- �r c(ft.y, M,(ft(aps);_ Max.Soil Pressure and Location: I #1: Q(max)= 2.196 ksf @ x= 20.00 jft. #2: 1 #3: #4: I 1 of 2 5 7/25/2016 1:31 PM I I "BOEF.xIs"Program Version 1.1 M Shear Diagram m_ T 30.0 -i --,-,--;,---7-771-1.1-7-77711-'-',i P xj SI. + its; ii?s s } 1Ei� , -'I la s si sltf i rJ I �. it" , .iti; 111 i' �: -I1 +ii t i, 20.0 i1 ; I'j kf ;' � r. � ;l� ysl ,t1 ; 1 ; - i f 1 ii 4 { t 1�f r �It } r t� k IJ 40.4 1. 1 1 E { z ik 1 13 ii z rir F { { f C2.`"Y O.Q +.t r I t Irl i. i-- r f "i4,-4! i f r t I t k I E i 1 i •�a 4 r a ,. o - o o d 1 I - n y1 a 1 t } ,1 i---?. u, e t n W, .jN j W =S., tl' o a, io lc- ;O fl I k1 d t `` o t > d !Q • rtf.l a i of f m - m;_I ro t1v, .;r E; ;r. m• ? ttcli 1 rn -1 .o 3 r r I � 1 t*I S �i �1 4'_��tCl +� i .0 �/�,w I 1 I W{1 P !r � Wi i � !Qf � 'O Al } 1 r 1 j td , 14; il , ; 14 ( it H i `Et } Pj ;' 200 } it - f 1 I t;ri f1 ! i I ; +: .t s ( I! I' .i I X(ft.) IMoment Diagram 7Q.4 ________,--,--„,-,-,-7,7,-7-7,--.77-77i777-17 111.1. 1 3 t t k .i k I .:t 1 c ri i 1f 1 - t �( I t -y -'1 84.0 }i{ L...Lj1.14;..�. � ��,�.r... ,�_t 1 � s i�--�i.� }i y�I ,.{.. k t �k l,'�.,'�..q. ,�.,!_'• ..(. d{a! .:{—i I 50.0 tty , .i L t E ; ` h 40.0 ,: , ift ' i? ..1-4...k-iii,-4-L-1,---,4,2i-1,,i,E 4-,4-f!I- `i Tri—ht I} Mid' fstti r;4 t•# R. �1 2 !; ff tr! E{.f i 4 t 1 13i 3 1 Y 3D.4 111-1-t!-•, i j1-111-r: ,.,�_ .Cif` �.j f � - t l �}' r�� f a r d t H� 1}.a. 1 �7 �_� I I 20.0 }F I 'd . ; k .i H r r it I 400!i( ..! s ; a -1-11:17- i. w,i j i k k t t y...,; .4-44;i4-!-.4" E 0.0�11 I� s i3EQp t(1}��` rt � }s3 t I rI T tpl iY.�t .. 4j ( { 4i tp-t f .mw-,' W $ i 11 M _.i}t I r_• E { :1 1 i.,-,1 !`N t l0 1. m ) a � -10.0 9!1 s9s .rm,d ..ami i. o .t.: t:..? , r -.i. i. .a.y..j.r` 4-4,113. m .rc..q. c ,ci o ..;,d A-lrpi+ ir1 i - - ' - t k,F 20.0 1!! ,:ii t . 3 tE ai.,1 -ii I� i.I :;-1-4-;;;;;!-'14-1-44-44-4-4 .!!t:!1i r 30.0- ..0 4.1.I. �� i _��_�L _mss l -=- 1_!ii_W__f k_'? .__ ini: s: 1 , i `t 1 E_« t Ix(ft.) Bearing Pressure Diagram '°30°1;"; 300 I rmpp p 7© p. p p p , O p , m (� I�j V ft+ir 8r ESD t m. � Nr f t'3 `.tQ .f7 i, NI i0 = M @, q i O: d3 ion {p 1 a t a rn f 4r111_11'7] y <a Iao f . ao 11d r- 6I r� i-nd ro t d>: .tet P'6- f o r I SC {s 1 ct �I1) 1 ctr �i m; m I!,,,ii; v I kn �i F } } { t t � _im .p il fv. W�I k00: m f rm f{it c. Q.00D l/� 1 1I i}j1I #1 II L,_ , 1-t... ,±+, # t f.a..trs ,,-.-d!If I�( I r 1 1 j - t T i` 3 _ s 4 1 fl I r {I 1 t t 1 i f I I y; j f Ij } Ss 1 t- �' k i (sfl s. k , 1 tl 0.500 }'- r' 1 s E I a. :: , ;kt } . . { t y..{ i1Ik a t: r, F . I� 3 1j i f li ( 1 . 11 !! 1.000 fa � f } "f #Irk } {1t { j � } tit}� } t � -( i t ! ;i1 Ili I { ! ;; ilk {E f I !t ; r Ir lilti { I _. linO. 1.500- � ;i 1 1 k k.p f1f o.t t i +i "i i f'� f I+-{._ i i _ 1 f`i`i-i tr ,-s-t t t _ i-,t ` _ t€i q -.. 1 ! a. '; fI ; 111 ii k 1 4; Ir. 14 I Ii j' i ' 1 Ii'. 11 'i m 2.00b ELI' i i.,�..1 i..H t 1 1 H t i a`i s f i ,£!' 1 1 I f .}. ...i..� f s{ _H 1 s f . !;:..}. If j.i.} .,i I CO i f 1 S f i�,.__1�_'�_.:.,t 1 1 I'y � i' 1__wy I I I N--- �� Will F 4..:.•,..-4-------,4- • 1 P{ ; 'I I f i f ,i 2.500 i�_,__,_._.� _- !_ _ �1 t _� x(ft.) I I 2 of 2 6 7/25/2016 1:31 PM I I 1 PDi.+L€. Footing Design I Based on ACI 318-11, IBC 2012,ASCE 7-10 Col Dim Footing Type Allowable Soil Pressure= 2500 PSF fc= 3000 psi t //V; I B Footing Criteria I B W t POt, P« Col Dim Reinforcement i� git (in) I) (in) (int EA WAY) 2.33 2.33 10. 3.08 3,74 .4".. 0.722 ##5 @ 12"oc Trans. Soil Pressure Check Pressure= 2.18 KSF <=Allowable,OK One-Way Shear Check It Trib Area d Vu 4>Vn (PSF) (SF) (in) (k) (k) 3.26 0.9786 8.94 3.19 20.54 +DVn>Vu, OK Two-Way Shear Check Trib Area Vu bo B bold as Vc/tfcbod)! cl,Vc (SF) (k) (in) (k) 4.27 13.89 51.76 0.333333 5.79 40 4 76.03502 (Min>Vu, OK Reinforcement Check Mu En g pgross penin Mt read Use Mt (k-ft) (psi) (in2) (in2) 3.78 22.56 0.0004 0.0003 0.0018 0.50 0.722 Ast>Ast Req'd, OK I Concrete Strain a c Et I 0.608 0.715 0.035 >.004,OK Design Summary I Soil Pressure-- OK , ; One-Way Shear-- OK , C 5ic/►ti tL t 4 Third Ave,Suite 100,Beattie,WA 98 21 . a TACOMA 334 Broadway,Suite 100,Tacoma,WA 98402 Two-Way Shear-- OK Reinforcement-- T 206.443. 6212 F 206. 443.4870 Concrete Strain-- 4N< I 11I I "BOEF.xls"Program IVersion 1.1 BEAM-ON ELASTIC FOUNDATION ANALYSIS II For Soil Supported Beam,Combined Footing,Slab Strip or Mat Strip of:Assutned Finite Length with Both EndsFree Job Name: Storquest Self Storage Subject: FTG1 Job Number: 02257-2015-03 Originator: RJA ( Checker: (RJA I I Input Data: , C I Beam Data: I e b ,. Length,L=pt30.0000 ft. a Width,W=*2.3300 ft. +P I Thickness,T= .0.8300 : ft. +wb +we +M +w Modulus, E= 3605 ksi _1 1 1 1 1 1 1 1 1 1 1 1 4-14 1 r 1 ¢ J Subgrade, K= 100 kcf T a > ,� <,41 e `4 �\\,a n , , „, �„ T Inertia,II I -.. a1 1� f 1 t. 4 , E,I L Subgrade :: Beam Loadings: x Nomenclature ' Full Uniform: W= 0.0000 kips/ft, Results: I Start End Beam Flexiblity Criteria: Distributed b(ft) wb(kipslft) a(ft.) we:(kips/ft.) for f3*L<=n/4 beam is rigid #1: 0.0000 5.0700 ,7 5000 .5.0700 for n/4<0•L<7C beam is semi-rigid #2: :17.5000`. :5.0700 30.0000 5:0700 > for(3*L>=It beam is flexible I #3 for a*L>=6 beam is semi-infinite long #4. #5: 6 = 0.178 R=((K*W)/(4*E*144*I))^{114) :_ ' <.' ji*L= 5.35 - J3*L=Flexibility Factor I' Point Loads: a(ft:). P(kips) #1: . ;8.7500 19:00; tr-Bestmts-Nt3xtbPe I #2:, 16.2500 19,00 #3: Max.Shears and Locations: +V(max)= 14.70 k @ X= 16.25 ft, I #5: . . . . . V( x)= -14.36 k (a�x= 8.75 ft. #6: r #p Max.Moments and Locations: #8: +M(max)= 6.01 ft-k @ x= ! 16.25 ft. I #9 -M(max)_ -21,21 ft-k ©X= 12.60 ft. #10: . #11: Max.Deflection and Location: Q(max)=7 -0.282 in. @ x= 0.00 ft. I Moments: c(ft) ,_ M.(ft-kips), Max. Soil Pressure and Location: #1: Q(max)= 2.353 ksf @ x= 0.00 ft. #3 #4: I I 1 of 2 8 7125/2016 1:31 PM I I "BOEF.xis"Program Version 1.1 111 Shear DiagramII 20.0 Iii' 5t i {il' t 7' ikr 1 si" �� '7! ; i 1 -� + 1(11IW I i - it 15.0 , ., ,_,11 1-11, { .,i. k ¢ I ,.'i ;E J E i ' - { H S l E.i 1' f � r+1 tE' � _3 .i1 10.0 1 I i{,{.._ + 4,a 1_1..A .1..L.:0„.....,,,,-...„:;_,,.4i l-p .d 6 +M- F j-. ' 1.. 1 �. 1-i..; i..i 1 s r'!',, '�i t' i ,I i 11 f 4 i 7t r1 p t t; •i1 [ NI' k 2- 5.0 : i t 1 i ..i i 11 r1 03 k i it. ,F {{ t } i s _1 ,t `4tfti if 6, f 1- f r ' i ,s LIt,r 1 ' k T j t j .j 1} -1.2.-1-'14-4-1-1-4-4,-, . � 15.� -1.i_.d... r i E :1 CP 0.0 t 1—7711'11111111.'17-i` $' `aa N 't� 4 ;',.. 1 ',.1, ,;,,,:! : ;016 +a 5 'ryI v - W :...,!, !,,,11 5 $ !8 U �81j N ,, d .D 7 W 6,,. h N n tt1 rD f.. _W j N N N N N N 5.0 ( .; .1,!,....1....",....;;.4.-.4.44:-',L,++: r °1 ;i r 1 € 1 k E i t !t i ( i- IS :. k k E ' t! + i F t ' i t -10.0 f i 1.{.. r i.! ,',!; ! ;!!i!.',.. y{. k 1J t k-ri r F1.41 .c..t k .i_! i 1 1` i 0 Li /11 1. ; tS t i } i !r ' { i tr -15.0 1--; ' • ---""'"'----• • __..________'-'•---_--`- e x(ft.) IMoment Diagram 10.0 ....---:-...„-,7,-,..,� k . ,i_t__ .7 1 ..'..1• t f .Tr i `:!t t 1.,� 4,;? ;HT' i tt 1t l::11 . t -;- $ is !!44;,?.!i .. tQ �n1i q i a- ? r o bt, o o �o '-o lo# + o a. IC o t g i',<5.'', W o rid -m io a. 4' ¢ 1 t N m a k N d N- v ,E d i rQ 2 m - N + M" d 11)1 t, E i N' ,m df r0 1Wi 6t 6 i T N O { n !a0 p y � C 1 '� ":T.'.4.1 N 1 kNi N N eN M �N 1tp { }ppMM1 -5.011' ., tf iala.r I jl?..r .q1, ri.2 1111. . r i -P lits H'.ig rt' i . W C -10.0 i i { t 1 + m k ,, st1 ..t it-i i tt k 1! 11 ' t -i ` t{ ti E i! 114 1t. 1 1 HI i t ii- .l tT, titt f ! +1 S t C -15.0.)t4 �.(1111',' i.,_I.� 1,_ib4� tlkt ;t4 ;;11 xe it11 i4-T-1-4-;-;:t 1!Ti: Ti Jt] E. 1 i i ` { ! Ii 1 4 1 4 t T t .t t1 i t ;1 t :i r I;i t -20A i a 1 t.. ; _ ..ty k r +... ;ITT;k.+- { =-7` S i t i kl { k' 1 l r k i CO ' t tt ' k '+t{ 1' - ilt t 1r1i -!{ -25.0.�_R___._l!1��_l _, _�.L -1._L_�r_.,._ �!.t_____ r t_�L.__._� E__�_. .rt L_i_S ___ I ____ x(fit.) 111 • Bearing Pressure Diagram 0 o q o �i C a o #'y `8, 8 g o pp pr 6 $ w w o O N d tp �W O V .O N o q N vi d Ri n GD o N M d m m N N N .-Nl N fV t'� 6.000 � ( _,_.,_ , t ..� �_ � a_. 'it 1 't1 1, i i 1 H + i 9 t( �� 1!S 1 s 11llE1 ,, �., ,, 1 l ' i( 1i . 1 ;1,, t 1r+i. {ik 1 , it k l 1 t' f F4 t isk l 0.500 k r 1 1�r 1 4,1 t i t 3 !. > �i i t k a 4 ' �i+ 1. ! IF.1 i 1 �• .._..1.�.{4 E- t t �tilr't 1. E .Ft;� R � } ., k 'T-1 1 � t 1 r k �i V E i ,{ ! r ; 1 +t t+ I H ;1 ; '{ T;113' 1 t 1 ;' ' Ti i Hilt i IT ft; H ;E 1 ;1 0 i � 1 ; T1 ;H 11 i t (: 1+ 31-1,.".1-',";!: f a L � F i 0 1.000 ti";'"� 1 a,:I. -,-; lrti r r f { j ¢1 R i!#{),. rj...y r j.41ipF1¢. -4 {tr fpr Pt}js 1 t l -1{E 1ili, t 1 1 i1il HIf tHiI1 ' � 11 r i! {P1 Ii to ! !! 1; 11 11 i1 111E I i}Is E1il 141 + :t A. 1.500{Iit1!.,.ici{,.1 i1 I1 l41.!.4[i, 1 Ei ;~1... 1+pk•.. kFiTi 1+ 1_�I s,- r''' 1.,./ rl !1H Oji tir 1}j1 '-I 1 1i i 1 i H t+ f 1 f !{E 111 11 t yi 1Ii 2 1 i 1 C t c •� �. 6. f r 7 1 I-! 3.,. s F k f d 1 .i, { ,�_t !C 2.000 I4 at lkt i {.. r -1r l 1 1 f k 1 i, r} { 1k-1 m t {Ir i 1:,,i till 1St t1{ l #r _,•;— " ; t m t l 11 t ,lii€ 11 11 E i II • �4 , .' I'. 1 °IHi1 1i '1'111 1114 :;t 2.500 �.•_.•_�� 1 .. - .d_� ' °--i____. __.._����_____.....,..._---..�_J._..._ X(ft.) I • • I 2 of 2 9 7/25/2016 1:31 PM I I I Poi.+LL IFooting Design Based on ACI 318-11, IBC 2012,ASCE 7-10 Col Dims Air IFooting Type= O Allowable Soil Pressure= ;2500 PSF 1 f c= 3000 psi t _^ /W / / IB Footing Criteria B W t Ppb PLL Col Dim Reinforcement Iftp ffil fin) in (int EA WAY) 1.5 1.5 10 1.24 3.52 4 0.465 #5 @ 12'oc Trans. Soil Pressure Check Pressure= 2.12 KSF <=Allowable, OK IOne-Way Shear Check gs Trib Area d Vu cDVn (PSF) (SF) (in) (k) (k) I3.16 0.0075 8.94 0.02 13.22 (I)Vn> Vu, OK Two-Way Shear Check I Trib Area (SF) Vu bo (in) B bo/d as Vc/ff cbod) 0Vc (k) (k) 1.09 3.44 51.76 0.333333 5.79 40 4 76.03502 4DVn >Vu, OK I Reinforcement Check Mu Rn E across pmin Mt read Use Mt (k-ft) (psi) (in2) (in2) I0.81 7.48 0.0001 0.0001 0.0018 0.32 0.465 Ast>Ast Req`d, OK Concrete Strain I a c Et 0.608 0.715 0.035 >.004, OK Design Summary rY Soil Pressure-- iOlf One-Way Shear-- OIC t SEATTLE 2724 Third Ave.Suite 700.Seattle.WA 98121 Two-Way Shear-- OK ITACOMA 934 Broadway. 100 Y Tacoma.WA 98402 Reinforcement-- OIC 443. 443.4870 Concrete Strain-- OIC T 206. 6212 F 206. I 10 1 I r.-ry i, 6 I-1--- c-4. o t t--'f t s. c.-4---` ---C, S P2o4.:6 /C-1-6-5 = A /t`.S A-n.t.,i.r-t` tai..,-,4..L. m v iv 4 r^ N N P 4 -5 l 1 W 1 aaaST- (tea A-O # W O O WW G'0 Pr A vi-42,..6, Z-qty 2- �. �S Q tL r Ey E. rt !a'1 r .. e. O Ler s F Li.G •. v.1~1 Pour- /,."rb .5 a il I 3$, 3 �� A-4-.A1-5 ' E5, 2t s� - a 1r ryy N i I V t5- 2-1 _ 5 -1 —> Li , o' -.1 9 N F . -.9- : tc""' , f.(7sr L04,6 - 6, 3 .) Pr.z 31. �� ' I N t A ::- _2_ , "" -- i9 2 . & , �.. Cie:Pst, ,`� 4„,,,5 Y? ,ht" ` 3 , Co 1 --.0 j, o`-` .5' 0 a v, z 0 1n a W in 1 I 111 5 rca/Z-t. k_ S1 PROJECT DATE 0 PRO./ # I SYR4URAl. R-u t- ENCaONEC7ERlN+a DESIGN 11 SHEET I I I PDL+LL IFooting Design Based on ACI 318-11, IBC 2012,ASCE 7-10 Col pim,1 I Footing TYPO= C) ALiaAllowable Soil Pressure= :2500 PSF I tr . w fre 3000 psi } / a/ I Footing Criteria B B W t PDL PLL Col Dim Reinforcement I .{fl) ifs (in) Q) in (int EA WAY) 4.5 4.5 12 13.2 .37.5 4 1.24 (4)#5 Bot Ea Way ISoil Pressure Check Pressure= 2.50 KSF N.G. IOne-Way Shear Check RE Trib Area d Vu 4Vn (PSF) (SF) (in) (k) (k) I3.75 6.0225 10.94 22.56 48.54 4 Vn >Vu, OK Two-Way Shear Check Trib Area Vu bo B bo/d as Vc/(f'cbodi 4)Vc (SF) (k) (in) (k) 18.70 70.03 59.76 0.333333 5.46 40 4 107.4261 0.0Vn >Vu, OK I Reinforcement Check Rig Rn 2 pgross pmin Ast read Use Mt (k-ft) (psi) (in2) (in2) 1 36.57 75.45 0.0013 0.0012 0.0018 1.17 1.24 Ast>Ast Req'd, OK Concrete Strain c Et 0.540 0.636 0.049 >.004, OK I Design Summary rY Soil Pressure-- 41. ,'k, I One-Way Shear-- OK s aTrLE 2124 rnird ave,suite t0t,.scathe,ti?,:s97;412(1)2 Two-Way Shear-- OK .+ a TACUMA 93k Broadway,Suite 900,Tacoma,WA 98402 , Reinforcement-- OK 1 T 206.443. 6212 F 206.443.4870 Concrete Strain -- OK. I 12 1 I I PDL+LL Footing Design I Based on ACI 318-11, IBC 2012,ASCE 7-10 Col Dim> 1 / Footing Type I Allowable Soil Pressure= 2500 PSF — f c= 3000 psi t W I / a X B Footing Criteria I B W t PDL PLL Col Dim Reinforcement (in) a) in (in2 EA WAYS I 4 4 12 9.9 28.125 4 1..24 (4)#5 Bot Ea Way Soil Pressure Check I Pressure= 2.38 KSF <=Allowable, OK One-Way Shear Check gs Trib Area d Vu to (PSF) (SF) (in) (k) (k) 3.56 4.35333 10.94 15.48 43.14 4)Vn>Vu, OK I Two-Way Shear Check Trib Area Vu bo B bold as Vcl(f cbod) ci)Vc (SF) (k) (in) (k) 14.45 51.37 59.76 0.333333 5.46 40 4 107.4261 cDVn>Vu, OK Reinforcement Check Mu Rn E paross pmin Mt read Use Mt (k-ft) (psi) (int) (in2) 23,90 55.46 0.0009 0.0009 0.0018 1.04 1.24 Ast>Ast Req'd, OK I Concrete Strain a c Et 0.608 0.715 0.043 >.004, OK I Design Summary 111 Soil Pressure-- lOK ` One-Way Shear-- OK SEATTLE 2124 Third Ave.Suite 100,Seattle,WA 95121 Two-Way Shear— 'OK/w rt TACOMA 934 Broadway,Suite 100,Tacoma,WA 95402 Reinforcement-- OK T 206. 443. 6212 F 206. 443.4870 Concrete Strain-- OK I 13 I I PDL+LL IFooting Design Based on ACI 318-11, IBC 2012,ASCE 7-10 �� Got Dim I Footing TV0e= 0 Allowable Soil Pressure= 2500 PSF ALM I for- 3000 psi t r- _-1, w . ; / /,/ IFooting Criteria B B W t PDL PLL Col Dim Reinforcement ILIDft in - (in) jin2 EA WAY) 3.67 3.67 12 8.25 23.438< 4 ;. 1.24 . (4)#5 Bot Ea Way ISoil Pressure Check Pressure= 2.35 KSF <=Allowable, OK IOne-Way Shear Check gs Trib Area tt Vu (Mtn (PSF) (SF) (in) (k) (k) I3.52 3.38863 10.94 11.93 39.58 cl)Vn >Vu, OK Two-Way Shear Check I Trib Area Vu bo (in) B bold as Vcl(f cbod) Q>Vc (SF) (k) (k) 11,92 41.95 59.76 0.333333 5.46 40 4 107.4261 cVn >Vu, OK IReinforcement Check Mu Rn 2 pgross pinfil Mt read Use Ast (k-ft) (psi) (in2) (in2) I17.97 45.47 0.0008 0.0007 0.0018 0,95 1.24 Ast>Ast Req'd, OK Concrete Strain 1 a c Et 0.662 0.779 0.039 >.004, OK Design Summary Soil Pressure-- xOK I One-Way Shear-- OK sEArn a X724 Third Ava,Suite 1t70,Seattle,WA 98121 Two-Way Shear-- OK �uwamrea TACOMA 934 6roadway,Suite too,Tacoma,WA 98402 Reinforcement-- OK T 206.443. 6212 F 206.443.4870 Concrete Strain-- OK I 14 I <04--41ray c- ,1- pe A-c-IL- I • p r v OD a in _ N ry OO " _._Fr,- 4—•6zr-i 't Z , +D '}, %6. , ---,. /'-/4, ' M ',--.' pe.A_ -0 z s y0 1 I- 1..)=r 1c-4 rt:._6 5 P2 -. 1y4-r( s r v,42III 1--i t o h 4. (� -r s-/V.d <. o 0 s, 7.,-0 N A --4,.-S m (S,rte, t•L/"- &m jr= - Gr .,s - ,i i• z. '3, s- ` --r, 3'- Es-- cq — t-3. 7- W a 1-g I t k , /is- mc...1-e a...i pt_ 1 S , tit• a I A2CS it-kad Z-5p s y r ... G r+- 117-077,_ c- 3, t° r "; ' _ .y vi K-1 L--+1 4 1.-'C4'-c,r.., 1 f' 13 t..5 y- 3`1. LO L Liz ,1 K I 17 I in 2 - z a G y 1�-)` Jo I J L,. � l5,.E f, : -u-, 1 t , - F 4,Srn I e 1"-'1 32-4 1--c..rE ten./ elt (. ? / tc. ' 2-I,2-- 2,c-, .S ,4 4;" r�r"' ---2> �a'`� ' z I� . � I I I PROJECT DATE Qtal PROD. /2-j-1- / TRUC[URAL EHRGIPd8:E121PlG DESIGN 15 SHEET I I PDL+LL IFooting Design Based on ACI 318-11, IBC 2012,ASCE 7-10 Col Dim I Footing Type= 3 3 Allowable Soil Pressure= >2500 PSF I f c= 3000 psi t — Adlijillit/W / .4/ IFooting Criteria B B W t PDL PLL Col Dim Reinforcement I1fi.fin (k1 (in) (int EA WAY) 3.33 3.33 12 6.75- 18.75 4 0.93 (3)#5 Bot Ea Way ISoil Pressure Check Pressure= 2.30 KSF <=Allowable, OK IOne-Way Shear Check gl Trib Area d Vu OVn (PSF) (SF) (in) (k) (k) I3.44 2.5086 10.94 8.62 35.92 OVn >Vu, OK Two-Way Shear Check I Trib Area Vu bo B bo/d as Vcl(f'cbod� cpVc (SF) (k) (in) (k) 9.54 32.77 59.76 0.333333 5.46 40 4 107.4261 NVn>Vu, OK I Reinforcement Check Mu Rn 2 paross pmin Ast read Use Ast (k-ft) (psi) (in2) (in2) 12.84 35.81 0.0006 0.0005 0.0018 0.86 0.93 Ast>Ast Req'd, OK 1 Concrete Strain 1 d C Et 0.548 0.644 0.048 >.004, OK IDesign Summary Soil Pressure-- OK ,; I One-Way Shear— OK SEATTLE 2124 Third Ave,Suite 100.Seattle,WA 98121 ■� "n TACOMA 934 Broadway,Suite 100 Tacoma,WA 98402 Two-Way Shear-- OK T 206. Reinforcement-- OK 443. 6212 F 206. 443.4870 Concrete Strain-- OK I 16 I I POL+LL Footing Design I Based on AC1 318-11, IBC 2012,ASCE 7-10 /r Cal Dirn> 41.04 Footing TYPe ) I Allowable Soil Pressure= 2500 PSF fc= 3000 psi t W I / .1/' B Footing Criteria B W t PDL PLL Col Dim Reinforcement On) ,(k) u in jin2 EA WAY) I 3 3 12 5.625 ." 15.625 4 0.93. ;:(3)#5 Bot Ea Way Soil Pressure Check I Pressure= 2.36 KSF <=Allowable, OK One-Way Shear Check gs Trib Area d Vu g)Vn (PSF) (SF) (in) (k) (k) 3.53 1.765 10.94 6.23 32.36 (I)Vn >Vu, OK Two-Way Shear Check Trib Area Vu ba B bold as Vc/(fcbod) 4:1Vc , (SF) (k) (in) (k) 7.45 26.28 59.76 0.333333 5.46 40 4 107.4261 d>Vn >Vu, OK Reinforcement Check Mu Rn 2 pgross pmin Mt reed Use Mt (k-ft) (psi) (int) (int) 9.41 29.11 0.0005 0.0004 0.0018 0.78 0.93 Ast>Ast Req'd, OK I Concrete Strain a c Et 0.608 0.715 0.043 >.004, OK Design Summary I Soil Pressure-- :OK , „ `. One-Way Shear-- OK sEarn.s 2124 Third Ave.suite 704,Seattle,WA 98321 Two-W a Shear-- OK *.fcw4ALruTACOMA 934 Broadway,Suite 904,Tacoma,WA 98402 y ,' Reinforcement-- OK T 2o6. 443. 6212 F 206.443.4870 Concrete Strain-- OK I 17 1 I IF-ar 1 f COA-- S o Ct.a'd....1.-53 Q7 QFT(1,,.e to 0) Igco c• -n It-^-r t,16 rttL, s2..4:apt 4— L-t,1-f 1 --0 f=1E—,5ry o a, co rn I C/1 .� d O ▪ .,) v),n 1 � m • 7 r i ov ui 43 C C Q tn ml U d u.Q N a oN h PROJECT DATE 1 PR?J.k 2..T4 DESIGN __111SHFtEET I 1--ar7'44.-tDrt... ,►" GO'Ii'r ,S G.4 V4 e.- ) I N o (74 .- w. m O /Lig tz N-13,0-_t s e"""11.--1— C.._...r...4 d i E a n.J w/ <a,..G- v,---A-y.b.. 4,6 V= co .: G N N N .D1.- 2- 11 3 3 P Fez- 0 0 o ,E6 03 / 4!6 w C 44 r.. = _........ D a ? Jo .wry ! '-1 >>'i"�0. f,—,4{. �' I Y� �i / /Z_ _ #..--1'-ter •;// C-a,...L r—4-.1— 1 0"o �y t a a � v / 3 Q 1-G- / LS�� 7. No „ 6-+Q id `^°w E/� $ !s, a. c. ! , _v I 1oL4i D SP/2–d 140ca)",N`S ` 41C C &a-0S - it= 4 I _Lr c V N PTS & 7, q1 13 . g La. ` ) 112 .1 Utz . 111 a u. 1 a1 1, , t7 - ` o . , +i k /6" A L t C.. w/ (') Z o I 7) &4"/AS L — 6,fI:1,i", 1' I 4 40 FG. o r1-1.5 I &'-=" S y IL" w/ (,mi) G 4.-Y- -II', I 51a12-G4vef..-S7" Q61 CS PROJECT BATE PROJ..if i STRUCT1,{RAt 1- I G:LR1BdG DEsicrJ 19 SHEET I I ' DL+LL Footing Design I Based on ACI 318-11, IBC 2012,ASCE 7-10 A1 X01❑imp 7, Footing Tvoe ANawable Soil Pressure= 2500 ' PSFAAA" fc= 3000 psi t L moms W I ,,/ B Footing CriteriaI B W t PDL PIS, Cot Dim Reinforcement (in) L (in) (int EA WAY) 6 6 14 ' 30.2. 50 6 2.2- (5)#6 Bot Ea Way Soil Pressure Check Pressure= 2.23 KSF <=Allowable,OK One-Way Shear Check I cis Trib Area d Vu 4)Vn (PSF) (SF) (in) (k) (k) 3.23 11.53 12.94 37.23 76.55 4DVn >Vu, OK I Two-Way Shear Check Trib Area Vu bo B bold as Vc/(fcbod) 43Vc I (SF) (k) (in) (k) 33.51 108.20 75.76 0.5 5.85 40 4 161.0854 (Mtn>Vu, OK Reinforcement Check I Mu Rn p parole mi.p Mt read Use Ast (k-ft) (psi) (in2) (in2) 73.26 81.02 0.0014 0.0013 0.0018 1.81 2.2 Ast>Ast Req'd, OK I Concrete Strain a c Et 0.719 0.846 0.043 >.004, OK Design Summary I Soil Pressure-- Q1VK0 COne-Way Shear-- FOK �.yl rAnt4LE 2124 third Ave,suite 100.Seattle,wA 598327 Two-Way Shear-- Q1C "�a""'�"" TACOMA 984 Broadway.Suite 1QQ.Tacoma,WA 98402 a ozb Reinforcement-- Ott T 206.443. 6212 F 206.443.4870 Concrete Strain -- 4K _. 1 I 21 I I (3,3av4 ms4.-y c.it.-/r_c_(4._ vt CA i�-!� C42-IN tt • 1E L4.+! l �'r •5 o ,, N N O O 1 / 3'"'S - j ./ 7 = 3. .33 ` t`i .7.;.o TP'}' Co "1 51,"or6 m c 3 7 1. , in g 0 0 I avOyfr..�c..r d ?. S3 452 -' ) •m• 2S ltea, 1>SSRcr, n It I cG we 2-31 - a,y 1 aQ to 1- 2 - k.,--e'y S,-1-6 fl r dl '�.c T' At'f....5.f.rte.as.' ..,4-4--epx, t E r Q Yi 23� (�� 1C N 8 a (43 1 F rA t`C fk..0,7.,-'11 ti+p-" a'C..d -t,,A--.s C.+-6 p(i'r..1 L. , 5 t AVN---Y `-1PP , j Tt u. z u) I e.fr,s .. v4.1-,v e...Ly 4$b-.-%�. 1 Oo•9`. 41I.s;-12--(i.VV)-c7 W to fr—' R.a.-c.,.. .p_ .s+-. L• ` 57,E-2tP, ©, "-3 I51- (z.oa) - j + I .7- 1*. LP 2.3?-.S ., c) C1,-.',....‘,."r‘, t=. —', /14-t$6. - ®e-14`7 { r NJ 7' €.,..4-4, 1 ‘.1„.-.747,z_.Cir 7- PROJECT DATE 1 'RROJ.# STRUC'PURAL 4.T�" ETNGiN;ERINL0 DESIGN 22 I SHEET I "RECTBEAM.xis"Program Version 3.1 I RECTANGULAR CONCRETE BEAM/SECTION,ANALYSIS ' . . `Flexure,Shear,Crack Control,and InertIa for Singly or Doubly Reinforced Sections II 1 . Per AC1318-99.Code' 111 1. Job Name: Storquest Subject: Grade Slab Job Number:, Originator: RJA I Checker: JRJA Input Data: I fr b=60" 1 Beam or Slab Section? <Slab:` ; ,, ' I Exterior or Interior Exposure? Exterior ' ' Reinforcing Yield Strength,fy=_ 60 ksi 4 Concrete Comp. Strength,f'c ` 4 ksi h=6" n, „` d=3" Slab Section Width, b 60.000 '; in. �� w r , Depth to Tension Reinforcing,d= 3.000 in. Total Slab Section Depth,h 6.000 in. ' As=1.86 Tension Reinforcing,As= t860 in^2 Singly Reinforced Section No.of Tension Bars in Slab, Nb 6000 Tension Reinf.Bar Spacing,s1 1i.-0-60 in. d' i_ b , Clear Cover to Tension Reinf„Cc= 2.680 in. Depth to Compression Reinf.,d 00 0 0 : in, A's A 5 `. 'W Compression Reinforcing,A's 0.000 = in,^2 i t ' Working Stress Moment, Ma= 7.53 ft-kips h „,,-,'' , ': i d Ultimate Design Moment,Mu= 10 56 ft-kips Ultimate Design Shear,Vu 8.62 kips \ - I Total Stirrup Area,Av(stirrup) 0000' in.^2 i ,, = As Tie/Stirrup Spacing,s2= 0.0000. in. Doubly Reinforced Section Results: I Moment Capacity Check for Slab-Type Section: Crack Control(Distribution of Reinf.): X31 = 0.85 Per ACI 318-99 Code: I C= 0.644 in. Es= 29000 ksi a= 0.547 in, Ec= 3605 ksi Pb= 0.02851 n= 8.04 n=Es/Ec p(prov)= 0.01033 fs= 18.22 ksi I p(min)= N.A. fs(used)= 18.22 ksi As(min)= N.A. in.^2 s1(max)= 22.95 in. >=s1=12 in.,O.K. p(temp)= 0.0018 {total for section) As(temp)= 0.324 in^2/face Per ACI 318-95 Code: p(max)= 0.02138 do= 3.0000 in. As(max)= 3.848 in.A2 >=As=1.86 in.A2,O.K. z= 102.85 k/in. f's= N.A. ksi z(allow)= 129.00 k/in. >=z=102.85 k/in., ' •Mn= 22.82 ft-k >=Mu=10.56 ft-k,O.K. O.K. Shear Capacity Check for Slab-Type Section: Moment of Inertia for Deflection: I 4Vc= 19.35 kips >=Vu=8.62 kips,O.K. fr= 0.474 ksi $Vs= N.A. kips kd= 0.9990 in. jVn=QVC+4Vs= N.A. kips Ig= 1080.00 in,^4 iVs(max)= N.A. kips Mcr=_ 1423 ft-k I Av(prov)= N.A. in.^2 =Av{stirrup)`(12/s2) Icr= 79.85 in.A4 Av(req'd)= N.A. in.A2 Ie= 1080.00 in.A4 {for deflection) Av(min)= N.A. in.A2 I s2(max)= N.A. in, Comments: I 1 of 1 23 7/25/2016 1:31 PM I "GRDSLAB.xls"Program I Version 1.5 CONCRETE SLAB ON GRADE ANALYSIS IFor Slab Subjected to Interior Concentrated Post or Wheel Loading Assuming ACI-360"Type B"Design-Reinforced for Shrinka a and Temperature Only Job Name: Subject: Job Number: Originator: I Checker. IInput Data: Post Wheel ' Slab Thickness,t= 5.000 - in. Concrete Strength,f'0= ' 3000 ' psi Conc. Unit Weight,we= " 1500 MI` >pcf Top/SlabReinforcing Yield,fy= 600(50 4 psi __ I Subgrade Modulus,k 100 pci Concentrated Load, P= .2000.00 lbs. Contact Area,Ac t Contact Area,Ac= 4.00 ; : ? : (Subgrade) '-s:,;: ..... . . .. Factor of Safety, FS= 2.00 ; ; :: :-` ` r5: I Dowel Bar Dia,db= 0.750 ` in. Concrete Slab on Grade ` •.r...:.;:‘..::•::.• •••. Dowel Bar Spacing, s= 24.000.' 'in. < Direction of pour Const.Joint Width,z= 0.2500in. Lubricate this end Stop slab reinf,(As)at joint Min.of Joint Spacing,L 10.000 ft. of all Dowels 1/8-1/4 x t!4 formed}Dint t/3 or 2" ' Temperature Range,AT= 30.00 - deg. r" .;',°'" '...�:'` ,1 ' ,, Increase for 2nd Wheel,i= 5 % h' � • 4 a ... s.• .•`•.• ..,.. . •:':;•.•'::'�i3/4"$Plain Dowels_�12". •::::•;:�=:.�:;•.,.,,., :.•.., ;i Results: Typical Construction Joint for Load Transfer I Check Slab Flexural Stress: (assuming unreinforced slab with interior load condition) Effective Load Radius,a= 1.128 in. a=SQRT(At t) Modulus of Elasticity, Ec= 3320561 psi Ec=33*wc"1.5*SQRT(f'c) I Modulus of Rupture, MR= 492.95 psi MR=9*SQRT(f'c) Cracking Moment,Mr= 2.05 ft-k/ft. Mr=MR*(12*M2I6)/12000 (per 1'= 12"width) Poisson's Ratio,µ= 0.15 µ=0.15(assumed for concrete) Radius of Stiffness, Lr= 24.390 __in. Lr=(Ec*t"3/(12*(11µ02)*k))"0.25 I Equivalent Radius, b= 1.825 in. b=SQRT(1.6*a"2+t"2)-0.675*t, for a<1.724*t 1 Load:fb1(actual)= 140.94 psi fbl(actuai)=3*P*(1+Et)/(2*te*t"2)*(LN(Lr/b)+0.6159) (Ref.1) 2 Loads:fb2(actual)= 147.99 psi fb2(actuat)= fbl(actuai)*(1+11100) ' Fb(allow)= 246.48 psi Fb(allow)=MR/FS Fb(allow)>=fb(actual),O.K. Check Slab Bearing Stress: (assuming working stress) (Ref.4) fp(actual)= 500.00 psi fp(actuai)=P/Ac I Fp(aliow)= 2070.39 psi Fp(allow)=4.2*MR Fp(ailow)>=fp(actual),O.K. Check Slab Punching Shear Stress: (assuming working stress) (Ref.4) I fv(actubal)=o 8. 14000 in. bo=4*SQRT(Ac) (assumed shear perimeter) = .29 psi fv(actual)=P/(t*(bo+4*t)) Fv(allow)= 133.10 psi Fv(aliow)=0.27*MR Fv(aliow)>=fv(actual),O.K. I Shrinkage and Temperature Reinf.: (assuming subgrade drag method) (Ref.3) Friction Factor, F= 1.50 F= 1.5(assumed friction factor between subgrade and slab) Slab Weight,W= 62.50 psf W =we*(t/12) I Reinf.Allow.Stress,fs= 45000 psi fs=0.75*fy As= 0.010 in."2/ft. As= F*L*W/(2*fs) (continued) I 1 of 2 247/25/2016 1:41 PM I ...................................... } I "GRDSLAB.xls"Program Version 1.5 I Determine Estimated Crack Width: (assuming no use of stabilized or granular subbase) I Slab-base Frict.Adjust., C= 1.00 C= 1.0(assumed value for no subbase) Thermal Expansion,a= 0.0000055 in./in./deg a=5.5x10^(-6)(assumed thermal expansion coefficient) Shrinkage Coefficient,c0.00046 in./in. s=3.5x10^(-4)(assumed coefficient of shrinkage) I Est. Crack Width,AL= 0.©750 in. AL=C*L*12*(a*AT+c) (Ref.5) Check Bearing Stress on Dowels at Construction Joints with Load Transfer: (Ref.2) 111Pt Le 1 Le 1di ' d4 d3 d2 dl d2 d d4 ' di • : • • • • • r • i • t 0*Pr. '" 4'Pr. (1-14-1)*s(Le)*Pc (1-(4-1)*s/Le)*Pc I(1-(3-1)*s/Le)*Pc (1-(3-1)*s/Le)*Pc (1-(2-1)*s/Le)*Pc (1-(2-1)*s/Le)*Pc 1.o*Pc Assumed Load Transfer Distribution for Dowels at Construction Joint I Le= 24.390 in. Le= 1.0*Lr=applicable dist.each side of critical dowel Effective Dowels, Ne= 1.03 bars Ne= 1.0+2*E(1-d(n-1)*s/Le) (where:n=dowel#) Joint Load, Pt= 1000.00 lbs. Pt=0.50*P (assumed load transferred across joint) Critical Dowel Load, Pc= 969.04 lbs. Pc=Pt/Ne Mod.of Dowel Suppt., kc= 1500000 psi kc= 1.5x10^6(assumed for concrete) I Mod.of Elasticity, Eb= 29000000m psi Eb:29x10^6(assumed for steel dowels) Inertia/Dowel Bar, Ib= 0.0155 in.^4 Ib=a*db^4/64 Relative Bar Stiffness, 0= 0.889 (i=(kc*db/(4*Eb*Ib))^(1/4) fd(actuat)= 2552.34 psi fd(actuai)=kc*(Pt*(2+13*z)/(4*J3^3*Eb*Ib)) I Fd(aiiow)= 3250.00 psi Fd(allow)=(4-db)/3*f'c Fd(allow)>-fd(actual),O.K. References: I 1."Load Testing of Instumented Pavement Sections-Improved Techniques for Appling the Finite Element Method to Strain Predition in PCC Pavement Structures"-by University of Minnesota, Department of Civil I Engineering(submitted to MN/DOT, March 24,2002) 2."Dowel Bar Opimization: Phases I and II-Final Report"-by Max L. Porter(Iowa State University,2001) 3."Design of Slabs-on-Ground"-ACI 360R-06-by American Concrete Institute(2006) 4. "Slab Thickness Design for Industrial Concrete Floors on Grade"(15195.01 D)-by Robert G. Packard (Portland Cement Association, 1976) 5."Streses and Stains in Rigid Pavements"(Lecture Notes 3)-by Charles Nunoo, Ph.D., P.E. (Florida International University, Miami FL-Fall 2002) Comments: I I I 2 of 2 257/25/2016 1:41 PM I "GRDSLAB.xls"Program IVersion 1.5 CONCRETE SLAB ONGRADE ANALYSIS.` For Slab.Subjected to Stationary Uniformly Distributed Live Loads I Job Name: Subject: Job Number: Originator: Checker: 1 I Input Data ' Aisle Width Slab Thickness,t= 5.000 in. wit--� �� wLL—� Concrete Strength,f'c= 3000 psi /—Top/Slab Subgrade Modulus, k= 100- pd v v v v. v Y v v — v IG I Factor of Safety, FS= 2.000,. Uniform Live Load,wLL= 125.00; psf t ' 5... rade U b9 ) I 'Concrete Slab on Grade with Uniform Loads *Note: In an unjointed aisleway between uniformly distributed load areas, I negative bending moment in slab may be up to twice as great as positive moment in slab beneath loaded area. Allowable uniform load determined below is based on critical aisle width and as a I result,there are no restrictions on load layout configuration or uniformity of loading. Results: I Design Parameters: Modulus of Rupture, MR= 492.95 psi MR=9*SQRT(f'c) Allow. Bending Stress, Fb= 246.48__psi Fb=MR/FS I Modulus of Elasticity,Ec= 3122019 Ec=57000*SQRT(f'c) Poisson's Ratio, µ= 0.15 ft=0.15(assumed for concrete) Radius of Stiffness, Lr= 24.02 in. Lr=(EC*t^3/(12*(1-lt^2)*k))^0.25 Critical Aisle Width,Wcr= 4.42 ft. Wcr=(2.209*Lr)/12 (Ref.3,Appendix 2 page 64) I (presented for information only) Stationary Uniformly Distributed Live Loads: Per Ref.#1:wLL(allow)=1. 804.36 psf WLL(allow)=257.876*Fb*SQRT(k*tIEc) IwLL(allow)>=wLL,O.K. Per Ref.#2:wLL(allow)= 677.90 psf WLL(allow)=0.123*Fb*SQRT(k*t) wLL(allow)>=wLL,O.K. IReference: 1. "Concrete Floor Slabs on Grade Subjected to Heavy Loads" I Army Technical Manual TM 5-809-12,Air Force Manual AFM 88-3,Chapter 15(1987) 2. "Slab Thickness Design for Industrial Concrete Floors on Grade"(15195.01 D) by Robert G.Packard(Portland Cement Association, 1976) 3. "Design of Slabs-on-Ground"-ACI 360R-06-by American Concrete Institute '', I Comments: I I 1 of 1 267/25/2016 1:41 PM I I 1...--",1- '1 4-L.-- V>4,..5.t ts.n,l I N R ) 0 CO IN r•4 00 S s 1ea5 -N I�a v to 'CAA s 55n CO CO m ) .' ,. P e-1� m m I1;.5 , r s x "9-N- /, a y on a a .9t5 w t [5 ! `n -ca -F- o F m` v� ra 1 + r`74m Gk'-c /Ceps-it/4 t-re-e-1- FL-'- t A 46f'A04-7' t St 44 g5 ..-tays' a u et I vi1- . 1- E -+t +i4-....4P-4- rti,q---)e.ut_+2 ,....._____________I---"1: F 3`33' jo0� (v' 0 {cam 333c`, , ?2 rj o N QJ M _ LI, 2.-w" vIo ED II • 4 aII to Z a to W NI I I I I 0_-1 PROJECT DATE CS "" PROJ.# I ST➢tFJCTFJFtAL )2-14- 6FttGFN12FFVG DESIGN 27 SHEET I 8Z ' 1 1 1 i 1 Lt.L8t 33 • OS'CIL dd ` 5.4°Sl '�'� -,�'Yv✓ A 1 I E8'06t 33 I i 1 1 I I Wall Design Design Data I soil density: 125 pcf at-rest soil pressure: 57 pcf I soil cover depth: l- t` "':'..x 5":ft controlling lateral load: 114 psf wall height: 10.33 ft Calculated Design Forces I Wuniform=456 Fsur= 4710.5 lbs R top= 3369 lbs Msur= 6082 Wbot-soil= 588.81 Fsoil= 3041.2 lbs R bot= 4383 lbs Msoil= 4031 I Ms total= 10113 ft-lbs Load Factor 1 f,,,,,,,;;„�,.r.m.a Mu= 16181;ft-lbs Wall Design I wall thickness: 8'in rebar strength fy= 60 ksi rebar size: }p t 4s'€7 conc strength fc= tis,, 3000;psi bar spacing: �;�;.�����1,2;�in oc clear cover: 2 in d= 5.56 in rebar area: 0.60 sq-in d-a/2= 4.97 in calc comp block= 1.18 in 1pMn 13456.:ft-lbs Mu 161$1:;ft-tbs - �*� w/ �r�G. spa ta+K Ria I © I-1 0+E4- ,t-rrkc d-0 Al i -s iti Anchorage at Top of the Wall I rebar dowel size: RA dowel strength fy= 60 ksi dowel spacing: 1K in conc strength fc= 3000 psi dowel area: 0.60 sq-in dowel brg length: 2.5 in shear capacity of dowel = 14431.plf Rum= ,3gj Of OK '... bearing capacity of dowel ;191$8pit I Anchorage at Bottom of the Walt rebar dowel size: ° f, 6` dowel strength fy= 60 ksi I dowel spacing sw,2 in coef of friction= 0.6 smooth surface dowel area: 0.44 sq-in shear friction capacity ' of the footing-to-wall dowel 13518'::plf Ruito=, ,77012 pit OK `i' I Project: Storquest Date: 7/27/2016 I 60..2'1' Project#: 02257-2015-03 Design:sEATTt.E 2124 Third Ave,5uite100,seatite,WA98121RJA '.a TACOMA 434 Broadway,Suite 100.Tacoma,WA 98402 Sheet I 29 I I I RetainPro(c)1987-2016, Build 11.16.07.15 License:KW-06052576 License To:SWENSON SAY FAGET Restrained Retaining Wail Code: IBC 2012,ACI 318-11,ACI 530-11 Criteria I Soil Data I I Retained Height = 16.33 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil 7.33 ft Equivalent Fluid Pressure Method Total Walt Height = 23.66ft At-rest Heel Pressure = 57.0 psf/ft I Top Support Height = 10.33 ft Passive Pressure Soil Density W 250.0 psf/ftc 125.00 pcf Slope Behind Wal = 0.00 Footingl;Soil Frictior = 0.350 Height of Soil over Toe = 0.00 in Soil height to ignore Ifor passive pressure = 12.00 in ' Thumbnail ISurcharge Loads I Uniform Lateral Load Applied to Stem 0Adjacent Footing Load Surcharge Over Heel = 250.0 psf Lateral Load - 0.0#/ft Adjacent Footing Load - 0.0 lbs >>>Used To Resist Sliding&Overturning .,.Height to Top - 0.00 ft Footing Width = 0.00 ft I Surcharge Over Toe = 0.0 psf }{eight to Bolton = 0.00 ft Eccentricity _ 0.00 in Used for Sliding&Overturning Axial LoadApplied to Stem Load Type = Wind(W) Wall ntTypeFtg Dist 0,00 ft Footing Line Load Axial Dead Load = 660.0 lbs {5trengtn Level) Base Above/Below Soil = at Back of Wall 0.0 ft I Axial Live Load = 1,875.0 lbs 0.0 in Wind on Exposed Stem= 0.0 psf - Axial Load Eccentricity = Poisson's Ratio 0.300 Earth Pressure Seismic Load 0 Kh Soil Density Multiplier= 0.035 g Added seismic per unit area = 0.0 psf I _Stem Weight Seismic Load 0 Fp/WP Weight Multiplier = 0.200 g Added seismic per unit area = 0.0 psf • Design Summary Concrete Stem Construction 1 ITotal Bearing Load5,260 lbs Thickness = 8.00 in Fy 60,000 psi resultant face. 9.34 in Wall Weight = 100.0 psf fc = 3,000p si Soil Pressure @ Toe = 2,248 psf OK Stem is FREE to rotate at top of footing I Soil Pressure @ Heel = 2,248 psf OK Allowable = 2,500f Soil Pressure Less Than Allowable @ Top Support MTop&Base Between @ Base of Wall ACI Factored @ Toe = 0 psf Shear NGt Stem OK Shear NG! I ACI Factored @ Heel = 12,016 psf Footing ShearDesign Height Above Fig = 10.33 ft 4.36 ft 0.00 ft cab Toe 1.7 psi OK Rebar Size # 6 # 7 # 6 Footing Shear @ Heel = 0.3 psi OK Rebar Spacing = 12.00 in 12.00 in 12.00 in Allowable = 75.0 psi Rebar Placed at = Edge Edge Center I Reaction at Top = 5,461.3 lbs Rebar Depth 'd' = 5.50 in 6.00 in 4.00 in Reaction at Bottom5,060.7 lbs Design Data fb/FB+fa/Fa = 0.654 0.900 0.000 Sliding Calcs Mu....Actual = 6,563.7 ft-# 13,152.3 ft-# 0.0 ft-# Lateral Sliding Farce = $,060.7 lbsI Mn'Phi Allowable = 10,033.3 ft-# 14,607.0 ft-# 7,063.3 ft-# Shear Force @ this height = 6,034.7 lbs 6,379.6lbs Shear Actual = 91.43 psi 132.91 psi IVertical component of active lateral soil pressure 1S Shear Allowable = 82.16 psi 82.16 psi NOT considered in the calculation of soil bearing Other Acceptable Sizes&Spacings: Toe:#5 @ 18.00 in -or- Not req'd:Mu<phi*5iambda*sgrt{Yc)Sm I Load Factors Heel_#5 @ 12.00 in -or- Not req'd:Mu<phi*5*lambda*sgrt(fc)*Sm Building Code IBC 2012,ACi Key: No key defined -or- No key defined Dead Load 1.200 Live Load 1.600 Earth,H 1.600 30 I Wind,W 1.000 Seismic,E 1.000 I I RetainPro(c)1987-2016, Build 11.16.07.15 License:KW-06052576 Restrained Retaining Wall Code: IBC 2012,ACI 318-11,ACI 530-11 License To:SWENSON SAY FAGET Concrete Stem Rebar Area Details Top Support Vertical Reinforcing Horizontal Reinforcing I As(based on applied moment): 0.2815 in2/ft (4/3)*As: 0.3754 in2/ft Min Stem T&S Reinf Area 1.984 in2 200bd/fy:200(12)(5.5)/60000: 0.22 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft I 0.0018bh:0.0018(12)(8): 0,1728 in2/ft Horizontal Reinforcing Options: -- One layer of: Two layers of: Required Area: 0.2815 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area: 0.44 in2/ft #5@ 19.38 in #5@ 38.75 in I Maximum Area: 0.8941 in2/ft #6@ 27.50 in #6@ 55.00 in Mmax Between Ends Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0.5145 in2/ft I (4/3)*As: 0.6859 in2/ft Min Stem T&S Reinf Area 1.147 in2 200bd/fy:200(12)(6)/60000: 0.24 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12x8): 0.1728 in2/ft Horizontal Reinforcing Options: One layer of: Two layers of: I Required Area: 0.5145 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area: 0.6 in2/ft #5@ 19.38 in #5©38.75 in Maximum Area: 0.9754 in2/ft #6@ 27.50 in #6@ 55.00 in I Base Support Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0 in2/ft (4/3)*As: 0 in2/ft Min Stem T&S Reinf Area 0.837 in2 I 200bd/fy:200(12x4)/60000: 0.16 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12x8): 0.1728 in2/ft Horizontal Reinforcing Options: One layer of: Two layers of: Required Area: 0.1728 in2/ft #4@ 12.50 in #4@ 25.00 in I Provided Area: 0.44 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area: 0.6503 in2/ft #6@ 27.50 in #6©55.00 in Footing Strengths&Dimensions I _Footing Design Results Li 'Toe Width - 1.67 ft I Heel Width - 0.67 Factored Pressure = 0 12,016 psf Total Footing Widtt = 2.34 Mu':Upward = 220 0 ft-# Footing Thickness = 12.00 in Mu':Downward - 251 0 ft-# I Key Width - 0.00 in Mu: Design - -31 -0 ft-# Key Depth = 0.00 in Actual 1-Way Shear = 1.70 0.26 psi Key Distance from Toe - 0.00 ft Allow 1-Way Shear - 75.00 75.00 psi Pc = 2,500 psi Fy = 60,000 psi I Footing Concrete Density = 150.00 pcf Min footing T&S reinf Area 0.61 in2 Min.As% = 0.0018 Min footing T&S reinf Area per foot 0.26 in2 eft Cover @ Top = 2.00 in @ Btm.= 3.00 in If one layer of horizontal bars: If two layers of horizontal bars: I #4© 9.26 in #4@ 18.52 in #5@ 14.35 in #5@ 28.70 in #6@ 20.37 in #6@ 40.74 In I I I 31 1 I I I RetainPro Ic)1987-2016, Build 11.18.07.15 License:KW-06052575 License To:SWENSON SAY FAGET Restrained Retaining Wall Code: IBC 2012,ACI 318-E 1,ACI 530-11 Summary of Forces on Footing : Slab RESISTS sliding,stem is PINNED at footing I Forces acting on footing soil pressure (taking moments about front of footing to find eccentricity) Surcharge Over Heel 0.8Ibs 2.34 ft 1.9ft-# Axial Dead Load on Stem = 2,535.OIbs 2.00 ft 5,078.5ft-# I Soil Over Toe = lbs ft ft-# Adjacent Footing Load lbs ft ft-# Surcharge Over Toe = lbs ft ft-# Stem Weight = 2,366.2lbs 2.00 ft 4,740.3ft-# I Soil Over Heel6.8tbs 35 2.34 ft 15.9ft-# Footing Weight 1.O1bs 1.17 ft 410.7ft-# Total Vertical Force = 5,259.8lbs Moment = 10,247.3ft-# INet Mom.at Stemll=tg Interface= -4,093.3 ft-# Allow.Mom.@Stem/Ftg Interface= 4,414.6 ft-# Allow.Mom.Exceeds Applied Mom.? Yes I Therefore Uniform Soil Pressure= 2,247.8 psf Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. I I I I I I I I I I 32 1 I I RetainPro(c)1987-2016, Build 11.16.07.15 License:KW-06052576 Restrained Retaining Wall Code: IBC 2012,ACI 318-11,ACI 530-11 License To:SWENSON SAY FAGET Criteria Soil Data I Retained Height = 16.33 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil = 7.33 ft Equivalent Fluid Pressure Method Total Wall Height = 23.66 ft At-rest Heel Pressure = 57.0 psf/ft Top Support Height = 10.33 ft Passive Pressure 250.0 psf/ft 1 Soil Density 125.00 pcf Slope Behind Wal - 0.00 FootingjiSoil Frictior = 0.350 Height of Soil over Toe = 0.00 in Soil height to ignore for passive pressure = 12.00 in Thumbnail f I Surcharge Loads 1 LUniform Lateral Load Applied to Stem 0 Adjacent Footing Load I Surcharge Over Heel = 0.0 psf Lateral Load = 0.0#/ft Adjacent Footing Load = 0.0 lbs >>>Used To Resist Sliding&Overturning ...Height to ToF = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem I Load Type = Wind(W) Footing Type Line Load (Strength Level) Base Above/Below Soil = 0.0 ft Axial Dead Load = 660.0 lbs at Back of Wall Axial Live Load = 1,875.0 lbs Wind on Exposed Stem= 0.0 psf Axial Load Eccentricity = 0.0 in Poisson's Ratio - 0.300 Earth Pressure Seismic Load k Kb Soil Density Multiplier= 0.035 g Added seismic per unit area = 50.0 psf Stem Weight Seismic Load \Fp/WP -Weight Multiplier 0.000 g Added seismic per unit area = 0.0 psf Design Summary it Concrete Stem Construction I ii Total Bearing Load = 5,252 lbs Thickness = 8.00 in Fy = 60,000 psi ...resultant ecc. = 9.35 in Wall Weight = 100.0 psf Fc = 3,000 psi II Soil Pressure @ Toe = 2,248 psf OK Stem is FREE to rotate at top of footing Soil Pressure @ Heel = 2,248 psf OK Allowable = 2,500 psf Mmax Between Soil Pressure Less Than Allowable @ Top Support Top&Base @ Base of Wail ACI Factored @ Toe = 0 psf Stem OK Stem OK Shear NGI ACI Factored @ Heel = 12,084 psf Design Height Above Ftg = 10.33 ft 4.44 ft 0.00 ft Footing Shear @ Toe = 1.7 psi OK Rebar Size = # 6 # 7 # 6 Footing Shear @ Heel = 0.0 psi OK Rebar Spacing = 12.00 in 12.00 in 12.00 in Allowable = 75,0 psi Rebar Placed at = Edge Edge Center Reaction at Top = 4,633.4 lbs Rebar Depth 'd' = 5.50 in 6.00 in 4.00 in Reaction at Bottom = 4,727.5 lbs Design Data fb/FB+fa/Fa = 0.455 0.861 0.000 Sliding Calks Mu....Actual = 4,567.3 ft-# 12,583.4 ft-# 0.0ft.# Lateral Sliding Force - 4,727.5 lbs PAn*Phi Allowable = 10,033.3 ft-# 14,607.0 ft-# 7,063.3 ft-# Shear Force @ this height = 5,260.7 lbs 5,999.6 lbs Shear.....Actual = 79.71 psi 124.99 psi Vertical component of active lateral soil pressure IS Shear.....Allowable = 82.16 psi 82.16 psi NOT considered in the calculation of soil bearing Other Acceptable Sizes&Spacings: Toe:#5©18.00 in -or- Not req'd:Mu<phi*5*lambda*sgrt(f c)*Sm Load Factors Heel:#5©12.00 In -or- Not req'd:Mu<phi*5*lambda*sgrt(fc)*Sm Building Code IBC 2012,ACI Key: No key defined -or- No key defined Dead Load 1.200 Live Load 1.600 Earth,H 1.600 33 Wind,W 1.000 Seismic,E 1.000 I I I RetainPro(c)1987-2018, Build 11.18.07.15 License:KW-06052576 License To:SWENSON SAY FAGET Restrained Retaining Wail Code:IBC 2012,ACI 318 11,ACI 530-11 Concrete Stem Rebar Area Details I Top Support Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0.1959 in2/ft (4/3)*As: 0.2612 in2/ft Min Stem T&S Reinf Area 1.984 in2 I 200bd/fy:200(12X5.5)/60000; 0.0018bh:0.0018(12}(8): 0.22 in2/ft 0.1728 in2/ft Mn Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft Horizontal Reinforcing Options: One layer of: Two layers of: Required Area: 0.22 in2/ft #4@ 12.50 in #4@ 25.00 in I Provided Area: 0.44 in21ft 0.8941 in2lft #5@ 19.38 in #5@ 38.75 in Maximum Area: #6@ 27.50 in #6@ 55.00 in Mmax Between Ends Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0.4922 in2/ft I (4/3)*As: 0.6563 in2/ft Mn Stem T&S Reinf Area 1.131 in2 200bd/fy:200(12)(6)/60000: 0.24 in2/f# Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft I 0.0018bh:0.0018(12)(8): 0.1728 in2/ft Horizontal Reinforcing Options: One layer of: Two layers of: Required Area: 0.4922 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area: 0.6 in2lft #5@ 19.38 in #5©38.75 in IMaximum Area: 0.9754 in2/ft #6@ 27.50 In #6@ 55.00 in Base Support Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0 in2/ft I (413)'As: 0 in2/ft Min Stem T&S Reinf Area 0.853 in2 200bd/fy:200(12)(4)/60000: 0.16 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12X8): 0.1728 in2/ft Horizontal Reinforcing Options: One layer of: Two layers of: I Required Area: 0,1728 in2/ft #4©12.50 in #4@ 25.00 in Provided Area: 0.44 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area: 0.6503 in2/ft #6@ 27.50 In #6@` 55.00 in Footing Strengths Dimensions Footing Design Results Toe Width 4.67 ft ,,E. eei Heel Width = 0.67 Factored Pressure a 0 12,084 psf Total Footing Wid#f = 2.34 Mu':Upward = 216 0 ft-# Footing Thickness12.00 in Mu':Downward 251 0 ft-# Key Width 0.00 in Design -35 0 ft-# Key Depth = 0.00 in Actual 1-Way Shear = 1.70 0.00 psi I Key Distance from Toe a 0.00 ft Allow 1-Way Shear = 75.00 0.00 psi fc = 2,500 psi Fy = 60,000 psi Footing Concrete Density = 150.00 pcf Min footing T&S reinf Area 0.61 in2 Min.As% = 0.0018 Min footing T&S reinf Area per foot 0.26 in2 A Cover @ Top = 2.00 in @ Btm.= 3.00 in If one layer of horizontal bars: If two layers of horizontal bars: #4@ 9.26 in #40 18.52 in #5@ 14.35 in #5©28.70 in #6@ 20.37 in #6@ 40.74 in I I I 34 I I I RetainPro(c)1987-2016, Build 11.16.07.15 License:KW-06052576 Restrained Retaining Wall Code: IBC 2012,ACI 318-11,ACI 530-11 License To:SWENSON SAY FAGET Summary of Forces on Footing : Slab RESISTS sliding,stem is PINNED at footing l Forces acting on footing soil pressure (taking moments about front of footing to find eccentricity) 111 Surcharge Over Heel _ lbs ft ft-# Axial Dead Load on Stem = 2,535.Olbs 2.00 ft 5,078.5ft-# Soil Over Toe = lbs ft ft-# I Adjacent Footing Load = lbs ft ft4 Surcharge Over Toe = lbs ft ft-# Stem Weight = 2,366.2Ibs 2.00 ft 4,740.3ft4 Soil Over Heel = lbs 2.34 ft ft-# Footing Weight = 350.5lbs 1.17 ft 409.5ft-# Total Vertical Force = 5,251.7lbs Moment = 10,228.2ft-# Net Mom.at StemlFtg Interface= -4,092.5 ft-# Allow.Mom.@ Stem/Ftg Interface= 4,414.6 ft-# Allow.Mom.Exceeds Applied Mom.? Yes Therefore Uniform Soil Pressure= 2,247.5 psf Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. I I I I I I I 1 I I 35 i I IVii-7-, "Pt W1-6+._ 13It`:5sL"-4."--1-- 14-4a1,.+"-04 f 7't0t+.•s i .. 41-k- r'A 1.I t,,..1-.4, Y6drJ_ 4,11...c..)---,0"---s b �' o1' `!f JC-if cr 'Tt IN t- W E-t C. T oaf tii`h 4.-00...e.... * L t" .4- V,' 0 NI- w N N 0 0 I N •pi. - r333 .� .6c.r) a- `i• 33. 3 Z p'wo N 0101 .1.-,--, - tec75 e -e4 ai M+h- mac. a f N g v,k7i L.,-, ` `,iAr - 446,- a Lj o f ¢ o I ✓✓L.s /:-)G a n I J0 I, t- W Co ti,t r 74,4 * Lr,3.,..S L z.S 9 3 QI N I, m et,9‘Ss' tn 02) P f`C. t- I ,w 0 I a a N - - z 0 z VI - _ - _ - 7-ra4._t.2 vIa'Sr PROJECT DATE I Pial X �TRigS:iPIJRA�. 2J14- E1141::1E tri DESIGN ISHEET I 1 POL+LL Footing Design I Based on AC!318-11, IBC 2012, ASCE 7-10 Cal Dim> n`. Footing Type= E4' Allowable Soil Pressure 2500 PSF fc 3000 psi t / .�.f ��� Vii I B X Footing Criteria M B W t PDL PLL Col Dim Reinforcement ilt) ff.t) in (k) I) in (int EA WAY) 2.83 2.83. - 12 7:35 12.4 6" , 0.8773 ..#5 @ 12"oc Trans. Soil Pressure Check Pressure= 2.47 KSF <=Allowable,OK One-Way Shear Check I gs Trib Area d Vu dfVn (PSF) (SF) (in) (k) (k) 3.58 1.42443 10.94 5.10 30.52 oVn >Vu, OK Two-Way Shear Check Trib Area Vu bo B bo/d as Vc/(fcbod) cDVc (SF) (k) (in) (k) 6.02 21.53 67.76 0.5 6.19 40 4 121.8071 (Vn>Vu,OK Reinforcement Check Mu Rn p paross pmin Mt read Use Mt (k-ft) (psi) (in2) (in2) 6.87 22.54 0.0004 0.0003 0.0018 0.73 0.8773 Ast>Ast Req'd, OK 1 Concrete Strain a c Bt 0.608 0.715 0.043 >.004, OK Design Summary I Soil Pressure-- ;C)K;$;W: One-Way Shear-- SOK CSITYSEATTLE 2124 Third Ave,Suite 100,wattle.WA 98121 Two-Way Shear— OK TACOMA 934 Broadway,Suite 100,Tacoma,WA 98402 i Reinforcement-- C)K T 206.443. 6212 F 206. 443.4870 Concrete Strain— 'v.Cat. 1 I 37 i I I0..,`f- 06- Pt--q r..+f_. S,C.t c,M.,4., . 4,.,re ear.... N n4 i . 4---'"^"4,..- d" L/4.1.- .1...--11-4-4--..S..1...--11-4-4--..S. /1-6 0.. G ar-6 i M 4 • co ✓. CV p Ln N N OO r,�P p. 1 .AS r,E. tA-L.- - _. Irsi ry a `'' °' if r Cry/-� t 5`) ((, a�) kit_ m CO l JJ I — a z 41 b'V,,,, V W m n Q O LP I - _ - r > S G".12.-'1,,., Y/E-i2-r Q1a` a-�r d/trbt-.yam .tr a 1 F @ ry ry v CV CP G./k--.) 1,_.,,÷_....,L ,, •144.- S G) it eiS'"„a.,, 4-'4•.-T74..-1 ...6 IA. ,¢-..` a I a4 w F- I . iv‘ik 1ik 5 i 1 / GI--D t_ p.4.:5,tna•►'• t ed It, ...) ',Apr-r s f)et t--, 4.- . .'—Li 4., , c l $' c ,.> fi._6v ; N IG er'"S AA.>,/..rci.}-,v 4. e41-- S aM IL, XI" 4-4-c-17'1"."4" if/4-'1- /L -1 e sA, to p r / I " LI `} (I-) L- S1 2 p.-i-z- -1--- 2. C"2-') ` 17-c P- r'.)2,) =- tot„ ,,is... C } tS N I L c.y,) ri-S T— ^ 54-i-- 5#_6S.4-f v, ) ,. G,:' (1 y) = '0'y P‘-e"- '. C o (z)( )2.S t y 9 : 3 VI 9-P I .,..,r,4. `..s.r __ PROJECT DATE RROJ r.' &3RtJ�TiJRAL . ESIGN E8 I SHEET I I Retainer*(c)1987-2016, Build 11.16.07.15 License:KW-06052576 Restrained Retaining Wall Code: IBC 2012,ACI 318-11,ACI 530-11 License To:SWENSON SAY FAGET Criteria IISoil Data I weerwee Retained Height = 6.00 ft Allow Soil Bearing = 2,500.0 psf I Wall height above soil = 7.33ft Equivalent Fluid Pressure Method Total Wall Height = 13.33 ft At-rest Heel Pressure = 55.0 psf/ft 1 Top Support Height = 13.33 ft Passive Pressure = 250.0 psf/ft Soil Density - 125.00 pcf Slope Behind Wal = 0.00 Footing!ISoll Frictior = 0.350 Height of Soil over Toe = 0.00 in Soil height to Ignore for passive pressure = 12.00 in I Thumbnail � ��` I Surcharge Loads 1kUniformLateral Load Applied to Stem k Adjacent Footing Load I Surcharge Over Heel = 250.0 psfLateral Load = 0.0#ift Adjacent Footing Load = 0.0 lbs >>>Used To Resist Sliding&Overturning ...Height to Top = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf .,.Height to Bottorr = 0.00 ft Eccentricity = 0.00 in I Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem I Load Type = Wind(W) Footing Type Line Load (strength Level) Base Above/Below Soil = 0 0 ft Axial Dead Load = 450.0 lbs at Back of Wall Axial Live Load = 1,250.0 lbs Wind on Exposed Stem= 0.0 psf Axial Load Eccentricity = 0.0 in Poisson's Ratio = 0.300 1 Earth Pressure Seismic Load i K Soil Density Multiplier= 0.035 g Added seismic per unit area = 0.0 psf Stem Weight Seismic Load li Fp/WP Weight Multiplier = 0.200 g Added seismic per unit area - 0.0 psf Design Summary t Concrete Stem Construction I Total Bearing Load = 3,671 lbs Thickness = 8.00 in Fy = 60,000 psi ...resultant ecc. = 0.77 in Wall Weight = 100.0 psf fc = 3,000 psi Soil Pressure @ Toe = 2,448 psf OK Stem is FREE to rotate at top of footing Soil Pressure @ Heel = 2,448 psf OK 1 Allowable = 2,500 psf Mmax Between Soil Pressure Less Than Allowable r Top Support Top&Base @ Base of Wall ACI Factored @ Toe = 2,434 psf Stem OK Stem OK Stem OK ACI Factored @ Heel = 4,107 psf Design Height Above Ftp - 13.33 ft 4.23 ft 0.00 ft Footing Shear @ Toe = 0.5 psi OK Rebar Size - # 5 # 5 # 5 Footing Shear @ Heel = 8.7 psi OK Rebar Spacing = 12.00 in 12.00 in 12.00 in Allowable = 75.0 psi Rebar Placed at - Edge Center Center Reaction at Top - 296.1 lbs Rebar Depth 'd' = 5.50 in 4.00 in 4.00 in Reaction at Bottom - 1,820.4 lbs Design Data fb/FB+fa/Fa = 0.000 0.770 0.000 Sliding Caics Mu....Actual = 0.0 ft-# 3,969.4 ft-# 0.0 ft-# Lateral Sliding Force - 1,820.4 lbs Mn*Phi Allowable = 7,247.3 ft-# 5,154.8 ft-# 5,154.8ft-# I Shear Force @ this height = 475.3 lbs 2,164.7 lbs Shear Actual = 7.20 psi 45.14 psi Shear Allowable = 82.16 psi 82.16 psi I Vertical component of active lateral soil pressure IS NOT considered In the calculation of soil bearing Other Acceptable Sizes&Spacings: Toe:#5 @ 18,00 in -or- Not req'd:Mu<ph"r*5*lambda*sgrt(fc)*Sm Load Factors Heel:#5 @ 12.00 in -or- Not req'd:Mu<phi*5*lambda"sgrt(fc)*Sm Building Code IBC 2012,ACI Key: No key defined -or- No key defined Dead Load 1.200 Live Load 1.600 Earth,H 1.600 39 Wind,W 1.000 I Seismic,E 1.000 I I I RetainPro(c)1987-2016, Build 11.16.07.15 License:KW-06052576 License To:SWENSON SAY FAGET Restrained Retaining Wall Code:IBC 2012,ACI 318-19,ACI 530-11 Concrete Stem Rebar Area Details I Top Support Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0 in2/ft (4/3)•As: 0 in2/ft Min Stem T&S Reinf Area 2.559 in2 I 200bd/fy:200(12X5.5)/60000: 0.O018bh:0.0018(12X8): 0.22 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.1728 in2/ft Horizontal Reinforcing Options One layer of: Two layers of: Required Area: 0.1728 in2/ft #4@ 12.50 in #4@ 25.00 in I Provided Area: 0.31 in2Jft 0.8941 in2lft #5@ 19.38 in #5@ 38.75 in Maximum Area: #6@ 27.50 in #6@ 55.00 in IMmax Between Ends Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0.2396 in2Jft (4/3)*As: 0.3195 in2/ft Min Stem T&S Reinf Area 1.747 in2 200bd/fy:200(12X4)/60000: 0.16 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12X8): 0.1728 in2/ft-- Horizontal Reinforcing Options: I One layer of: Two layers of: Required Area: 0.2396 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area: 0.31 in2/ft #5@ 19.38 in #5@ 38.75 in IMaximum Area: 0.6503 in2/ft #6@ 27.50 in #6©55.00 in Base Support Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0 in2/ft I (4/3)*As: 200bd/fy:200(12X4)/60000: 0 in2/ft Min Stem T&S Reinf Area 0.812 in2 0.16 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12X8): 0.1728 in2Jft Horizontal Reinforcing Options: One layer of: Two layers of: I Required Area: 0.1728 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area: 0.31 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area: 0.6503 in2/ft #6@ 27.50 in #6@ 55.00 in IFooting Strengths&Dimensions 1 LFooting Design Results Toe Width = 0.42 ft 122 lee( Heel Width = 1.08 Factored Pressure = 2,434 4,107 psf I Total Footing Widtf = 1.50 Mu':Upward 228 338 ft# Footing Thickness 12.00 in Mu':Downward = 16 126 ft-# Key Width = 0.00 in Mu: Design = 213 -212 ft-# Key Depth = 0.00 in Actual 1-Way Shear = 0.51 8.69 psi I Key Distance from Toe = 0.00 ftAllow 1-Way Shear - 75.00 75.00 psi Pc = 2,500 psi Fy = 60,000 psi Footing Concrete Density = 150.00 pcf Min footing T&S reinf Area 0.39 in2 Min.As% = 0.0018 Min footing T&S reinf Area per foot 0.26 in2 itt I Cover @ Top = 2.00 in @ Btm.= 3.00 in If one layer of horizontal bars: If two layers of horizontal bars: #4@ 9.26 in #4@ 18.52 in #5@ 14.35 in #5@ 28.70 in #6@ 20.37 in #6@ 40.74 in I I I I 40 1 1 RetainPro(c)1987-2016, Build 11.16.07.15 License:KW-06052576 Restrained Retaining Wall Code: IBC 2012,AC1 318-11,ACI 530-11 License To:SWENSON SAY FAGET Summary of Forces on Footing : Slab RESISTS sliding,stem is PINNED at footing Forces acting on footing soil pressure (taking moments about front of footing to find eccentricity) Surcharge Over Heel = 103.3Ibs 1.29 ft 133.6ft-# Axial Dead Load on Stem = 1,700.0Ibs 0.75 ft 1,280.7ft-# Soil Over Toe = lbs ft ft-# Adjacent Footing Load = lbs ft ft-# Surcharge Over Toe = lbs ft ft•# Stem Weight = 1,333.01bs 0.75 ft 1,004.2ft-# Soil Over Heel = 310.01bs 1.29 ft 400.91t-# Footing Weight = 225.0Ibs 0.75 ft 168.8ft-# Total Vertical Force = 3,671.3lbs Moment = 2,988.2ft4 Net Mom.at Stem/Ftg Interface= -234.7 ft-# Allow.Mom.@ Stem/Ftg Interface= 3,221.7 ft-# Allow.Mom.Exceeds Applied Mom.? Yes Therefore Uniform Soil Pressure= 2,447.8 psf Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. I 1 1 1 1 I I 1 I I 41 111 I I I RetainPro(e)1987-2016, Build 11.16.07.15 License:KW-06052576 License To:SWENSON SAY FAGET Restrained Retaining Wall code: IBC 2012,ACI 318-11,AC1 530-11 Criteria 1 Soil Data I Retained Height = 6.00 ft Allow Soil Bearing = 2,500,0 psf Wall height above soil 7.33 ft Equivalent Fluid Pressure Method Total Wall Height = 13.33 ft At-rest Heel Pressure - 55.0 psf/ft Ill Top Support Height = 13.33 ft Passive Pressure = 250.0 psf/ft Soil Density = 125.00 pcf Slope Behind Wal = 0.00 FootingiiSail Frictior = 0.350 Height of Soil over Toe = 0.00 in Soil height to ignore Ifor passive pressure = 12,00 in I Thumbnail________________I Surcharge Loads 1 [uniform Lateral Load Applied to Stem iAdjacent Footing Load y i Surcharge Over Heel = 250,0 psfLateral Load - 0.0 ti/ft Adjacent Footing Load = 0.0 lbs >>>Used To Resist Sliding&Overturning ...Height to Top - 0,00 ft Footing Width = 0.00 ft I Surcharge Over Toe = 0.0 psf Height to Bolton = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist 0.00 ft Prude!Load Applied to Stem I Load Type = Wind(W) Footing Type Line Load (Strength Level) Base Above/Below Soil I Axial Dead Load 450.0 lbs at Hack of Wail 0'0 ft Axial Live Load = 1,250.0 lbs Wind on Exposed Stem= 0.0 psf Axial Load Eccentricity 0.0 in Poisson's Ratio 0.300 Earth Pressure Seismic Load I Kr, Soil Density Multiplier= 0.035 g Added seismic per unit area = 0.0 psf Stem Weight Seismic Load 4 Fp/Wp Weight Multiplier - 0.290 g Added seismic per unit area = 20.3 psf I Design Summary - y Concrete Stem Construction Total Bearing Load 3,671 lbs Thickness = 8.00 in Fy = 60,000 psi ...resultant ecc. = 0.77 in Wall Weight = 100.0 psf fc = 3,000 psi ISoil Pressure @Toe = 2,448 psf OK Stem is FREE to rotate at top of footing Soil Pressure @ Heel = 2,448 psf OK Allowable 2,500 psf Mmax Between Soil Pressure Less Than Allowable @ Top Support Top&Base @ Base of Wall ACI Factored @ Toe = 2,434 psf = Stem OK Stem OK Stem OK I ACI Factored @ Heel 4,107 psf Design Height Above Ftc 13.33 ft 4.23 ft 0.00 ft Footing Shear @Toe 0.5 psi OK Rebar Size # 5 # 5 # 5 Footing Shear @ Heel .. 8.7 psi OK Rebar Spacing - 12.00 in 12.00 in 12.00 in Allowable = 75.0 psi Rebar Placed at = Center Center Center I Reaction at Top = 296.1 lbs Reber Depth 'd' = 4.00 in 4,00 in 4.00 in Reaction at Bottom1,820.4 lbs pesign Data fb/FB+fa/Fa = 0.000 0.770 0.000 Sliding CaicsMu.,,.Actual = 0.0 ft-# 3,969.4 ft-# 0.Oft-# = Lateral Sliding Force1,820.4 lbs Mn*Phi Allowable 5,154.8 ft-# 5,154.8 ft-# 5,154.8 ft-# Shear Force @ this height = 475.3 lbs 2,164.7lbs Shear Actual 9.90 psi 45.10 psi Vertical component of active lateral soil pressure IS Shear Allowable = 82.16 psi 82.16 psi NOT considered in the calculation of soil bearing Other Acceptable Sizes&Spacings: Toe:#5 @ 18.00 in -or- Not req'd:Mu<phi*5*lambda*sgrt(fc)*Sm Load Factors Heel:#5 @ 12.00 in -or- Not req'd:Mu<phi*5*lambda*sgrt(fc)*Sm I Building Code IBC 2012,ACI Key: No key defined -or- No key defined Dead Load 1.200 Live Load 1.600 I Earth,H 1.600 42 Wind,W 1.000 Seismic,E 1.000 I I RetainPro(c)1987-2016, Build 11.16.07.15 License:KW-06052576 Restrained Retaining Wall Code: IBC 2012,ACI 318-11,ACI 530-11 License To:SWENSON SAY FAGET Concrete Stem Rebar Area Details Top Support Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0 in2/ft (4/3)*As: 0 in2/ft Min Stem T&S Reinf Area 2.559 in2 200bdlfy:200(12X4)/60000: 0.16 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in21ft 0.0018bh:0.0018(12X8): 0.1728 in2/ft Horizontal Reinforcing Options: One layer of: Two layers of: Required Area: 0.1728 in2lft #4@ 12.50 in #4@ 25.00 in Provided Area: 0.31 in2/ft #50 19.38 in #5@ 38.75 inj Maximum Area: 0.6503 in2/ft #6@ 27.50 in #6@ 55.00 in Mmax Between Ends Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0,2396 in2/ft I (4/3)*As: 0.3195 in2/ft Min Stem T&S Reinf Area 1.747 in2 200bd/fy:200(12X4)/60000: 0.16 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12X8): 0,1728 in2/ft Horizontal Reinforcing Options: One layer of: Two layers of: Required Area: 0.2396 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area: 0.31 in2/ft #5©19.38 in #5@ 38.75 in Maximum Area: 0.6503 in2lft #6@ 27.50 in #6@ 55.00 in Base Support Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0 in2/ft (4/3)*As: 0 in2/ft Min Stem T&S Reinf Area 0.812 in2 200bd/fy:200(12X4)/60000: 0.16 ln2/t Min Stem T&S Reinf Area per ft of stem Height:0,192 in2/ft 0.0018bh:0.0018(12)(8): 0.1728 1n2/ft Horizontal Reinforcing Options: One layer of: Two layers of: Required Area: 0.1728 in2/ft #4@ 12.50 in #44 25.00 in I Provided Area: 0.31 in2lft #5@ 19.38 in #5@ 38.75 in Maximum Area: 0.6503 in2/ft #6©27.50 in #6@ 55.00 in Footing Strengths&Dimensions Footing Design Results L I Toe Width = 0.42 ft Heel Width = 1.08 Factored Pressure = 2,434 4,107 psf Total Footing Widtl' = 1.50 Mu':Upward = 228 338 ft-# Footing Thickness = 12,00 in Mu':Downward = 16 126 ft-# Key Width = 0.00 in Mu: Design = 213 -212 ft-# Key Depth = 0.00 in Actual 1-Way Shear = 0.51 8.69 psi Key Distance from Toe = 0.00 ft Allow 1-Way Shear = 75.00 75.00 psi fc = 2,500 psi Fy = 60,000 psi Footing Concrete Density a 150.00 pcf Min footing T&S reinf Area 0.39 in2 Min.As% = 0.0018 Min footing T&S reinf Area per foot 0.26 in2 /ft Cover @ Top = 2.00 in ©Btm.= 3.00 in If one layer of horizontal bars: If two layers of horizontal bars: #4© 9.26 in #4@ 18.52 in #5@ 14.35 in #5@ 28.70 in #6@ 20.37 in #6@ 40.74 in I I I 43 i I I I RetainPro(c)1987-2016, Build 11.16.0115 License:KW-06052576 License To:SWENSON SAY FAGET Restrained Retaining Wail Code: IBC 2012,ACI 318-11,ACI 530-11 Summary of Forces on Footing : Slab RESISTS sliding,stem is PINNED at footing Forces acting on footing soil pressure (taking moments about front of footing to find eccentricity) Surcharge Over Heel - 103.3lbs 1.29 ft 133.6ft-# I Axial Dead Load on Stem _ 1,700.0Ibs 0.75 ft 1,280.7ft-# Soil Over Toe lbs ft ft-# Adjacent Footing Load lbs ft ft-# Surcharge Over Toe = lbs ft ft-# Stem Weight = 1,333.OIbs 0.75 ft 1,004.2ft-# lIl Soil Over Heel 1.29 ft 400.9ft-# Footing Weight = = 225.0Ebs 0.75 ft 168.8ft-# Total Vertical Force = 3,671.3lbs Moment = 2,988.2ft-# 1 Net Mom.at StemlFtg Interface= -234.7 ft-# Allow.Mom.@ StemlFtg Interface W 3,221.7 ft-# Allow.Mom.Exceeds Applied Mom.? Yes I Therefore Uniform Soil Pressure= 2,447.6 psf Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. I I I 1 I I I I I I 44 I I Retainer:(c) 2016 Build 11.16.07.15 License:KW-0805480S2S76 Restrained Retaining Wall Code:IBC 2012,ACI318-11,ACI530-11 I License To:SWENSON SAY FAGET Criteria I Soil Data I toriNemt Retained Height = 2.00 ft Allow Soil Bearing = 2,500.0 psf I Wall height above soil = 14.33 ft Equivalent Fluid Pressure Method Total Wall Height = 16.33 ft At-rest Heel Pressure - 55.0 psf/f# Top Support Height = 16.33 ft Passive Pressure 250.0 psf/ft Behind Wal = 0.00 FootiSoil�nSoil Frictior =sity = 10,350 25.00 pcf I Slope gll Height of Soil over Toe = 0.00 in Soil height to ignore for passive pressure = 12.00 in I t Thumbnail I Surcharge Loads 1Uniform Lateral Load Applied to Stem k Adjacent Footing Load I I Surcharge Over Heel = 0.0 psfLateral Load = 0.0#/ft Adjacent Footing Load - 0.0 lbs >>>Used To Resist Sliding&Overturning ...Height to Top = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ,,,Height to Bottorr = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ftI Axial Load Applied to Stem 4 Load Type = Wind(W) Footing Type Line Load -. (strength Level) Base Above/Below Soil 0 0 ft Axial Dead Load = 450.0 lbs at Back of Wall -- Axial Live Load = 1,250.0 lbs Wind on Exposed Stern= 0.0 psf Axial Load Eccentricity = 2.5 in Poisson's Ratio = 0.300 1 [Earth Pressure Seismic Load ii Kh Soil Density Multiplier= 0.035 g Added seismic per unit area - 6.1 psf Stem Weight Seismic Load 1 Fp/WP r,Weight Multiplier 0.290 g Added seismic per unit area - 9.9 psf I Design Summary Mai.=Stem Construction 111 Total Bearing Load = 2,966 lbs Thickness = 8.00 in f m = 1,900 psi Short Term Factor = 1.000 I...resultant ecc. = 0.48 in Wall Weight = 49.0 psf Fs = 32,000 psi Equiv.Solid Thick.= 4.600 in Soil Pressure @Toa = 1,483 psf OK Stem is FREE to rotate at top of footing n Ratio (Es/Em) = 16.959 Soil Pressure @ Heel = 1,483 psf OK Block Type = Medium Weight I Allowable = 2,500 psi Design Method=ASO Mmax Between Soil Pressure Less Than Allowable Partial Grouting @ Top Support Top&Base G'Base of Wall ACI Factored @ Toe = 1,785 psf Stem OK Stem OK Stem OK AC1 Factored @ Heel = 2,274 psf Design Height Above Ftc = 16.33 ft 1.18 ft 0.00 ft Footing Shear @ Toe - 11.1 psi OK Rebar Size = # 5 # 5 # 5 I Footing Shear @ Heel = 10.0 psi Ol< Rebar Spacing = 48.00 in 48.00 In 48.00 in Allowable = 75.0 psi Rebar Placed at = Center Center Center Reaction at Top = 25.9 lbs Rebar Depth 'd' = 3.75 in 3.75 In 3.75 in I Reaction at Bottom - 232.8 lbs Design Data fb/FB+fa/Fa = 0.492 0.065 0.000 Sliding Caics Moment....Actua = 354.2 ft-# 46.8 ft-# 0.0 ft-# Lateral Sliding Force - 232.8 lbs Moment.....Allowable = 719.7 ft-# 719.7 ft-# 719.7 ft-# Shear Force @ this height = 26.9 lbs 95.3 lbs Met - 15.85 in2 15-85 in2 Shear Actual - 1,70 psi 6.01 psi Shear Allowable = 49.29 psi 87.43 psi I Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing Other Acceptable Sizes&Spacings: Toe:#5 @ 18,00 in -or- Not req'd:Mu<phi*5*lambda*sgrt(f crSm Load Factors Heel:#5 @ 12,00 in -or- Not req'd:Mu<phi*5*lambda*sgrt(fc)*Sm Building Code IBC 2012,ACI Key: No key defined -or- No key defined Dead Load 1.200 Live Load 1.600 Earth,H 1.600 45 Wind,W 1.000 I Seismic,E 1.000 I I I RetainPro(c)1987-2016, Build 11.16.07,15 License:KW-06052576 License To:SWENSON SAY FAGET Restrained Retaining Wall Code: IBC 2012,ACI 318-11,ACI 530-11 Footing Strengths&Dimensions $ L.ooting Design Results -11e, = _ Toe Width 0.67 ft Toe eel Heel Width1.33 Factored Pressure 1,785 2,274 psf Total Footing Widtl- = 2.00 Mu':Upward = 649 760 ft-# III Footing Thickness = 12.00 in Mu':Downward 63 165 ft-# Key Width 0,00 in Mu: Des€gn 586 -595 ft-# Key Depth 0.00 in Actual 1-Way Shear = 11.08 9.97 psi Key Distance from Toe = 0.00 ft Allow 1-Way Shear = 75.00 75.00 psi I f'c = 2,500 psi Fy = 60,000 psi Footing Concrete Density = 150.00 pcf Min footing T&S reinf Area 0.52 int Min.As% = 0.0018 Min footing T&S reinf Area per foot 0.26 in2 ift Cover @ Top = 2.00 in ©Btm.= 3.00 in If one layer of horizontal bars: If two layers of horizontal bars: I #4@ 9.26 in #4@ 18.52 in #5@ 14.35 in #5@ 28.70 in #6@ 20.37 in #6@ 40.74 in Summary of Forces on Footing : Slab RESISTS sliding,stem is PINNED at footing 0 I Forces acting on footing soil pressure (taking moments about front of footing to find eccentricity) Surcharge Over Heel _ lbs ft ft-# I Axial Dead Load on Stem = 1,700.0Ibs 1.00 ft 1,705.7114 Soil Over Toe lbs ft ft-# Adjacent Footing Loadlbs ft ft-# Surcharge Over Toe = lbs ft ft-# Stem Weight = 800.2lbs 1.00 ft 802.8ft-# Soil Over Heel 165.Slbs 1.67 ft 276,71t4 Footing Weight300.0lbs 1.00 ft 300,Oft-# Total Vertical Force = 2,966.0Ibs Moment = 3,085.2ft-# I Net Mom.at Stem/Ftg Interface= -119.2 ft-# Allow.Mom.@ StemiFtg Interface= 719.7 ft-# Allow.Mom.Exceeds Applied Mom.? Yes ITherefore Uniform Soil Pressure= 1,483.0 psf Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. I I 1 I I I 1 46 I I RetainPro(C)1987-2016, Build 11.16.07.15 License:KW-06052576 Restrained Retaining Wall Code: IBC 2012,ACI 318-11,ACI 530-11 License To:SWENSON SAY FAGET Criteria I Soil Data inn'geitalld Retained Height = 2.00 ft Allow Soil Bearing = 2,500.0 psf I Wall height above soil = 14.33 ft Equivalent Fluid Pressure Method Total Wall Height - 16.33 ft At-rest Heel Pressure = 55.0 psf/ft A Passive Pressure = 250.0 psf/ft Top Support Height = 16.33 ft1 Soil Density - 126.00 pcf Slope Behind Wal 0.00 FootingiISoil Frictior = 0.350 Height of Soil over Toe = 0.00 in Soil height to ignore for passive pressure = 12.00 in I IThumbnail 1 Surcharge Loads I Uniform Lateral Load Applied to Stem 0 Adjacent Footing Load I I Surcharge Over Heel = 0.0 psf Lateral Load = 25.0#!ft Adjacent Footing Load = 0.0 lbs >>>Used To Resist Sliding&Overturning ...Height to Top = 16.33 ft Footing Width - 0.00 ft Surcharge Over Toe = 0.0 psf ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in I Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft Axial Load Applied to Stem I Load Type = Wind(W) Footing Type Line Load (Strength Level) Base Above/Below Soil Axial Dead Load - 450.0 lbs at Back of Wall 0.0 ft Axial Live Load = 1,250.0 lbs Wind on Exposed Stern= 0.0 psf Axial Load Eccentricity = 2.5 in Poisson's Ratio = 0.300 1 [Ea _._. I Earth Pressure Seismic Load t Kh Soil Density Multiplier= 0.035 g Added seismic per unit area = 0.0 psf Stem Weight Seismic Load Fpl WP Weight Multiplier = 0.290 g Added seismic per unit area - 0.0 psf Desi n Summary 1 Masonry Stem Construction I Total Bearing Load = 2,966 lbs Thickness = 8.00 in fm - 1,900 psi Short Term Factor = 1.000 ...resultant eco. = 0.48 in Wall Weight = 49.0 psf Fs - 32,000 psi Equiv.Solid Thick.= 4.600 in Soil Pressure @ Toe = 1,483 psf OK Stem is FREE to rotate at top of footing n Ratio (Es/Em) = 16.959 Soil Pressure©Heel = 1,483 psf OK Block Type = Medium Weight I Allowable = 2,500 psf Design Method=ASO Mmax Between Soil Pressure Less Than Allowable Partial Grouting @ Top Support Top&Base @ Base of Wall ACI Factored @ Toe = 1,785 psf Stem OK Stem OK Stem OK ACI Factored @Heel = 2,274 psf Design Height Above Ftg = 16.33 ft 7.15 ft 0.00 ft Footing Shear @ Toe = 11.1 psi OK Rebar Size = # 5 # 5 # 5 I Footing Shear @ Heel = 10.0 psi OK Rebar Spacing = 48.00 in 48.00 in 48.00 in Allowable - 75.0 psi Rebar Placed at = Center Center Center Reaction at Top = 229.3 lbs Rebar Depth 'd' = 3.75 in 3.75 in 3.75 in Reaction at Bottom = 425.4 lbs Design Data fb1FB+fa/Fa = 0.492 0.966 0.000 Sliding Calci Moment....Actua = 354.2 ft4 695.1 ft-# 0.0ft-# Lateral Sliding Force = 425.4 lbs Moment Allowable - 719.7 ft-# 719.7 ft-# 719.7 ft-# Shear Force @ this height = 231.9 lbs 287.9 lbs Anet = 15.85 in2 15.85 in2 Shear Actual = 14.63 psi 18.17 psi Shear Allowable = 49.29 psi 87.43 psi Vertical component of active lateral soil pressure IS NOT considered in the calculation of soil bearing Other Acceptable Sizes&Spacings: Toe:#5 @ 18.00 in -or- Not req'd:Mu<phi*51ambda*sgrt(f c)*Sm Load Factors Heel:#5 @ 12.00 in -or- Not req'd:Mu<phi*5*lambda*sgrt(f'c)*Sm I Building Code IBC 2012,ACI Key: No key defined -or- No key defined Dead Load 1.200 Live Load 1.600 Earth,H 1.600 47 Wind,W 1.000 1 Seismic,E 1.000 I I I RetainPro(c)1987-2016, Build 11.16.07.15 License:KW-06052576 License To:SWENSON SAY FAGET Restrained Retaining Wali Code; IBC 2012,ACI 31$-11,ACI 530-11 i�Footing Strengths&Dimensions 4 Footing Design Results tgl 1 Toe Width = 0.67 ftItzt Heel Width 1.33 Factored Pressure = 1,785 2,274 psf Total Footing Widtt = 2.00 Mu':Upward = 649 760 ft-# I Footing Thickness = 12.00 in Mu':Downward = 63 165 ft-# Key Width 0.00 in Mu: Design 586 -595 ft-# Key Depth 0.00 in Actual 1-Way Shear = 11.08 9.97 psi Key Distance from Toe = 0.00 ft Allow 1-Way Shear = 75.00 75.00 psi I fc = 2,500 psi Fy = 60,000 psi Footing Concrete Density = 150.00 pot Min footing T&S reinf Area 0.52 in2 Min.As% 0.0018 Min footing T&S reinf Area per foot 0.26 in2 ift Cover @ Top = 2.00 in @ Btm.= 3.00 in If one layer of horizontal bars: If two layers of horizontal bars: I #4@ 9.26 in #4@ 18.52 in #5@ 14.35 in #5@ 28.70 in #6@ 20.37 in #6@ 40,74 in Summary of Forces on Footing : Slab RESISTS sliding,stem is PINNED at footing i I Forces acting on footing soil pressure (taking moments about front of footing to find eccentricity) Surcharge Over Heel = lbs ft ft-# I Axial Dead Load on Stem = 1,700.01bs 1.00 ft 1,705.7ft# Soil Over Toe lbs ft ft-# Adjacent Footing Loadlbs ft ft-# Surcharge Over Toe = lbs ft ft-# Stem Weight = 800.2lbs 1.00 ft 802.8ft-# I Soil Over Heel165.8Ibs 1.67 ft 276.7ft-# Footing Weight = = 300.0lbs 1.00 ft 300.Oft-# Total Vertical Force = 2,966.0lbs Moment = 3,085.2ft-# I Net Mom.at Stem/Ftg Interface= -119.2 ft-# Allow.Mom.@Stem/Ftg Interface= 719.7 ft-# Allow.Mom.Exceeds Applied Mom.? Yes I Therefore Uniform Soil Pressure= 1,483.0 psf Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. I I 1 I I I I 48 I Masonry Lintel Desi n — 7'- v sPr 9-.4 I Wall Properties I Width 7:625in Depth 7.625'in fm 1900 psi 1 Wind/Seismic increase 1.33 Grout Spacing Solid Grouted Equivalent Thickness 7.6 Fs 32000 psi Es= 29000 ksi Em= 1710 ksi Moment Steel M= 7.119`k-ft As Req'd= 0.39 inA2 No.of Bars ; 2 I Bar Size #5 As 0.62 inA2 p = 0.0107 n= 17.0 k= 0.63 j= 0.79 Fb 633 Msteel= -A k-ft Mmasonry= k-ft I I I I I I 1 0/.....C\ SEATTLE 2124 Third Ave,Suite 100,Sectile,wA 98129 Date: 7/31/2016 TACOMA 93A Broadway,Suite 700,Tacoma,WA 98402 Project#: 02257-2015-03 Offte: 266.443.6212 Design: RJA Fax: 206.443.4870 Sheet: 49 i j 111 Masonry Lintel Design Wall Properties Width 7.625in Depth 24 in fm 1900 psi Wind/Seismic Increase 1 Grout Spacing Solid Grouted Equivalent Thickness 7.6 Fs 32000 psi ' Es= 29000:ksi Em= 1710 ksi Moment Steel M= 25.8 k-ft ' As Req'd= 0.45 inA2 No. of Bars 2 Bar Size #5 :.:....... As 0.62 inA2 p = 0.0034 n= 17.0 k= 0.34 I i= 0.89 Fb= 633 Msteel= k-ft Mmasonry= k-ft I s�nttt fw 7AGOMA ztx44 ErobzwAeveSteoTseccau omea,WWAA 998t8420t2 Date: 8/1/2016 I Project#: 02257-2015-03 Office: 206.443.612 Design: RJA Fax' 206 443.4870 Sheet: 50 I I N ,t i49 V..1 ""C.-rCa"j ip 11 • • co. .. •,:r. 2- ..- r" P i 4.-4-‘..>--. 4 w/ .I,„,v ' W'"-„4 r-lz-'6 N N 0 0 1*" °'-' 1-s 4451Z tra....°t-.'6 / ,E./.s. ---tc. o-dr- , ,' --1.-"( I N ,q, 0 C' . . , : *A1 :". , e-5 6, )/Z....s .. -- 6 so T-..• ,E.,, 0 ..,.,,2 . .. • • 0 0 • .- . cl 4- C7—7-5 ( I.—..5) ,; ' . O , ..,.,.. .5 ''‘P . P A.- :2"7, 75 4 • • > ro h•6:-1 I N Cr. . . . . ,J,416 '4:: ' 0, -7. 5 .1 3) L_ 7-0 . ' • 0 2 4 0 41 4 ' 1111 I.• . . . . . . . . . . . . • . E 111 o . ,.., vi . 41 a) . . . . . . Zs I c cv ,._ tr, cr, . . . . . . ' . .. . . . . . I- 111 1 0 .. . 4 u. I u) • ' . Z 0 0 . . . Z UI I . . . . I . . ' . . . . I . . . . . . . . . • ' I I S7- -,.....- DATE PROJECT 0 SETNRGUINCETUERRAINLe -DESIGN 51 1 SHEET I 1 IPROJECT : 5T®ls-rxve:5tt" PAGE : CLIENT : DESIGN BY arf. JOB NO. : DATE REVIEW BY : Alto ableYSfres$Veslgn ofi A"8"$-bnrylBe Ming UtalttBasec )Ae_1 3:0 031 BC 06,? t INPUT DATA&DESIGN SUMMARY pi ISPECIAL INSPECTION(0=NO, 1=YES) . 1 Yes a �' r TYPE OF MASONRY( 1=CMU,2=BRICK) 1 CMU 1 -, Egall V2 \� F::1 \> Mz MASONRY STRENGTH fm 1.9 :ksi \ xz (pt j t) arrear Moment IREBAR YIELD STRESS fy 64 ksi SERVICE GRAVITY LOAD P = 10390 lbs/ft 0 i \\SERVICE LATERAL LOAD w1 = 70 ,plf/ft Ml I SERVICE PARAPET LOAD w2 = 0 plf/ft THICKNESS OF WALL t 8 " in ' PARAPET HEIGHT h = 0.25 ft OP ,, - V / 1 WALL HEIGHT h = 16,33 wt {pit/ft} Shear Moment ECCENTRICITY e ;0 .."in WALL VERT.REINF.(A$„) 2 # 6 @ 4• , in o.c.(at each face) IANALYSIS [THE WALL DESIGN IS ADEQUATE.) REINF.AREA AT EACH SIDE AS = 1.32 in2 MODULAR RATIO n = 16.96 I EFFECTIVE DEPTH(ACI, 1.13.3.5) d = 5.51 in bw 12.00 in REINFORCEMENT RATIO p = 0.0200 WIDTH OF SECTIONALLOWABLE STRESS FACTOR SF = 1.000 EFFECTIVE THICKNESS to = 7.63 in THE NEUTRAL AXIS DEPTH FACTOR IS MASONRY ELASTICITY MODULUS Em = 1710 ksi STEEL ELASTICITY MODULUS ES 29000 ksi k=V2 pn+(pn)2 -pn = 4.5514 THE ALLOWABLE STRESS DUE TO FLEXURE IS THE ALLOWABLE REINF.STRESS DUE TO FLEXURE IS 111 F =(SF)(0.33 f f,)= 627 psi Fs=(1.33,v;,,d g.u4fl+«00)(24000 or 20000)= 24000 psi THE DISTANCE FROM BOTTOM TO M,IS THE GOVERNING MOMENTS AND AXIAL FORCES ARE S= h+h (h+hp)_ Pe = 8.2 ft M,= 1.05 Pe+w'(h2-h2p) = 2449 ft-lbs/ft 2h hw1 2w}h2_ 2 _ - I P,=P+(wall weight) = 11119 lbs/ft THE GOVERNING SHEAR FORCES ARE w2h p (h+hp) wi Pe 2 M2 = 2 = 0 ft-Ibsfft VI=(h+hp)lvl - 2h + h 571 lbs/ft 11 Ip2=P+(wall weight) = 10412 lbs/ft V 2=hwl—V 1 = 572 lbs/ft THE GOVERNING SHEAR STRESS IN MASONRY IS ' V =h w2 = 0 lbs/ft RMAX(VI , V 2 , V3) p - f = = 6.24 psi v I _. _ .� te�Jw DETERMINE THE REGION FOR FLEXURE AND AXIAL LOAD(MDG Tab 12.2.1,Fig 12.2-12&13,page 12-25). Mite M t to _ 1 M ( te Pd 6d Pd \2d 3� Pd \2d 3 1,Wali is in compression and not cracked. 2.Wail is cracked but steel is in compression. 3.Wall is cracked and steel is in tension. REGION 3 APPLICABLE FOR(M1,P1} IREGION 1 APPLICABLE FOR(M2,P2) 52 I (canted) CHECK REGION 1 CAPACITY 42 4905 ft-lbs/ft > M1 [Not applicable] L. to Mm=-6—Fb—I' 6 = 4980 ft-lbs/ft > M2 [Satisfactory] CHECK REGION 2 CAPACITY 2P2 2622 ft-lbs i ft > M1 [Not applicable] M,77=1'to- 2 3bwFb 2510 ft-lbs/ft > M2 [Not applicable] CHECK REGION 3 CAPACITY(The moment maybe limited by either the masonry compression or steel tension,MDG page 12-25). l 1 kd " tee / kd "to kd\� 111 M,,,=MIN —b„1(dFb d-- —P d-- , AFS d -- 4-P --.__ 2 \ 31 2, \ 3 , .2 3 , 2710 ft-lbs I ft > M1 [Satisfactory] i .{ 2809 ft-lbs/ft > M2 [Not applicable] THE ALLOWABLE SHEAR STRESS IS GIVEN BY I F,_(SF)MIN( If,,, , 50) = 43,589 psi > fv [Satisfactory] Technical References: I 1."Masonry Designers'Guide,Third Edition"(MDG-3),The Masonry Society,2001. I I I I I I I I I 1 53 1 I Ifr 0 40 e.•t-o. 4L 411#-N N 0 r-- „.-.,... ,-7,1 --3- ...0 1 . 'I CO 'I' N O Lf) N N O 0 ...- III . . N CO CO < < 111 ,I, . - —— i7.5 ....k A v, i o c5 P o I 7 3 2- e-0.. ( .,-- ) > >.; ,...t 3 , • I 1 . /2-1 ''' IA- (5 /)(lVi /17`) •%. 2`1 61/eq' ...,. ,..z -"--- 2 ...5 .. t 4 cc) NE CT1 . . . . I g 2 F-0 <0 la cc . /1 I • • (4 H .4 .. I ., A .- T — Yis. — 0.--1 ''• 4' / / ,- . 111111111111' t'.J A ........... ..... .... I ) . 1 1.1,)2... 1....4... cL, .. ., v., ra-) I --P PI-0‘/,b0...• (.',F) 4 x 2-.=' • ” 1.t tt.(4/21- 0 2."'.td- e.) 1:42- . t- Au . 0 .1 a IL a in z o in z ui in . . I . . 1 . . . . . . . ruin-co i.,,,,if erpr- PROJECT DATE I FROJ # 0 gRatfZIRANI.G DESIGN 54 I SHEET - --- I Iel-rid-4 4 1... I 6 4,,s.1 e...A../ _ ns Ti- Li) Cr) ., . °-.'sAft v.4-1-.1 wX.- ite--. I( J.- :5 rn : I o m o LI., N N 0 0 (PL'Alt-0) App..): 14...71-1__ f; 01.41-i2-- ro vs.,4--t- *il I ,-, /.,./-s- 46 00.4.4.,,,-,b,,,, (O' cc co v‘sli- w/ a :3 5 . , . 1...P5,2,_. k&- .1:5 ,z®2 5,AAL-c-.4 i-i,... AAA---,A- c_rcex:,c s 4-1_, i-8 -0 . . Vd 0 0 0 I; .S310# (...L.L.;.") .< fi 1 I 0.1 j, Vt, 5 t 7/0.,1- = t3T L'-- .,,... to ...7 p N cn fr—k-k- in-r .L t.e. • '3S t - &_ - 7-42'I J 4 -i 2 A4 '1.- ce3erf ( tiv .3.1) ,L ' ir9 I" "i ,...0 u L../ u,,- s-Ciz.5 ) ( -f-=)(1. 1.• $3)(i. hi) : tc;(7 14- . P 0 I T ...-VP * S G.N I 2.-,...- 14,04-17-- i_ t, ,2-4--- c--n_ ---1.-4,245.- 0,Ie.-, (1.> c ....,, I 54, I 41 ,S.P.e_.,au:- t5)6 p.sAi--t- 4 ie.....c.t L.Ni c., - ,,, ,,, (i) . . e...AA‘.,) . .1...v1/4.1; • . ' I- 4 q-44-4- 1-4. ,' ' •. . • ' . ' , - - it 41 I . 0 in Z I t--,- e c..,0-s4..e2vi-;-,v.t. i I • ,e,.... , Gs , I Psd g' i. 1-1 (55) (11!"> )(4=.5.) ' • ?1:3`14. • --00. * 5v tvt,„._ v ---r pi- (.0 iii-5 0—a-/;-- o Li fr*- , , . I I. . 111 T.,.11- PROJECT DATE ENGIETRINILG CTESIGN 59 111 SHEET I 1 project ,Storquest by RJA >hee,no. I 0/TRUCTURAL location SW#17 dote 7/27/2016 arwc client Magellan Arch iob no. 02257-2015-03 Masonry Shear Wall Design in Accordance with 2009 IBC and Adi 530-08 Section 3.3.6 Input Wall Data Reinforcement Input fn,,. 1.9 ksi Vert.rebar size(#) 5 I fY_ 60 ksi ....spacing 48 in(8,16,24,32,40 or 48) H„= 16.33 ft ....no.bars/spacing 1 (1 or 2) L„,= 910 in Nom.Thickness= 8 in(6,8,10 or 12) Horiz.rebar size(#) 5 (4,5,or 6) Solid Grouting? 0 (yes=1,no=0) ....spacing 48 in(8,16,24,32,40 or 48) Concrete or Clay? 1 (1=Concrete,2=Clay) no. bars/spacing 2 (1 or 2) Max unbraced height= 16.33 ft Sds= 0.72 Wall Weight= 52 psf ISeismic Design Category= D Equiv.Solid Thick.= 3.39 in Stack Bond? 0 (yes=1,no=0) Loading Input i I 4000 3500 ""�.., - Lateral Forces(kips) ISeismic or Wind?1 1 I(Seismic=1,Wind=2} _ 3000V1= 196 kips @ 16.3 ft . 2500 V2= 0 kips @ 0 ft '� 2000 . _............._ _ V3= 0 kips @ 0 ft 10 I V4= 0 kips @ 0 ft 1000 V5= 0 kips @ 0 ,ft soo 0 Iv I Gravity Line Loads 0.0 10000.0 20000.0 30000.0 40000.0 50000.0 4411 Wall Weight=7847.1 plf "(k-ft) Dead Load,wok.= 268 pif ILive Load,wu_= 600 Off1 = 1 Note: All Load Cases must fall Snow Load,ws�_� 0 pif f2= 0.2 within the curve to be adequate 111 Gravity Point Loads kips) Dead 1 Snow ! f2 I Live j fi 1W Seismic P1 = 6.72 0 0.2 25 1 0 @ 16 ft I P2= 6.72 0 0.2 25 1 0 @ 26 ft P3= 0 0 0 0 0 0 @ 0 ft P4= 0 0 0 0 0 0 @ 0 ft Ps= 0 0 0 0 0 0 @ 0 ft I Adjacent Wall Dead Loads DLI= 0 kips @ 10 ft I DL2= 0 kips @ 0 ft DL3= 0 kips @ 0 ft DL4= 0 kips @ 0 ft IMaximum Out-of Plane Vertical Steel Ratio= 0.376 in`/ft OK V corresponding to 1.25*Mn= OK Maximum In-Plane Vertical Steel Ratio= 1.162 in2/ft OK I As Actual= 0.077 int/ft Shear: p,,,t„and Spacing Requirements Vu= 196 kips pven+phi(min)OK Smax(Vert) OK On= 643.8 kips OK Pvert(min)OK Smax(Herz) OK I +Vs= 278 kips PhorzOrb}OK Min vert=1l2 har+z OK (Wm= 394.9 Boundary Element Check(AC!3.3.6.5.1): Not Required I 38 P(kip) I 25000— fs=0 ,-' fs=0 J •\ f X / I • f 1 t l fs=0.5fy /// (Pmax)\t /(Pmax) \\ fs=0.5fy 1 .--„,/ _ -„,, - / ^ I / / fs=0 fs=0 / t \ \ / 1 I fs=0.5 / r fs=0.5fy , 8 x 840 in ' I \ \ f ,„/ \ Code:ACI 318-14 `\ \ // \ \ / Units: English (` — ,�' \\ Run axis:About X-axis `\ ;' Run option: Investigation \ \, \\\ �, 1 Slenderness: Not considered I '` ..�' Column type: Structural -250000 250000 I (Pmin) (Pmin) Mx(k-ft) Bars:ASTM A615 I Date:08/01/16 -5000-- Time:09:54:40 1 spColumn v5.00. Licensed to: Swenson Say Faget, Inc.. License ID:65163-1051525-4-20EB4-22EB2 I File: h:tusers\randersonl,,-projectslmagellanlstorquest self storagelcalcslcmu conc designlshearwall 11.col Project:Storquest I Column:11 Engineer: RJA fc=4 ksi fy =60 ksi Ag =6720 inA2 72#5 bars I Ec=3605 ksi Es =29000 ksi As =22.32 in"2 rho =0.33% fc=3.4 ksi e_,yt=0.00206897 in/in Xo =0.00 in lx =3.95136e+008 in"4 e_u = 0.003 in/in Yo =0.00 in ly =35840 inA4 Betal =0.85 Min clear spacing=-0.62 in Clear cover=3.68 in I Confinement:Tied phi(a) =0.8, phi(b)=0.9, phi(c)=0.65 1 57 IISTRUCTUREPOINT - spColumn v5.00 (TM) Page 1 Licensed to: Swenson Say Faget, Inc.. License ID: 65163-1051525-4-20EB4-22EB2 08/01/15 h:\users\randerson\_projects\magellan\storquest self storage\calcs\cmu cone de...\shearwall 11.col 09;54 AM II II I000000 0 00 00 00 00000 000000 00 00006 QO 00 OO O 0000000000 O 00000 I 00 0 00 00 00 00 00 00 00 00 00 QO 00 00 00 00 00 00 00 00 00 Oo 00 00 00 00 00 00 00 00000 00 60 00 00 00 00 00 OQ 00 00 OQ 00 00 00 000000 00 00 00 00 00 00 00 00 00 00 - 00 o 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00000 00 000600 000oo 000 00000 0 00 60 00 00 00 (TM) ==a= II v5.00 (TM) Computer program for the Strength Design of Reinforced Concrete Sections f Copyright 0 1988-2015, STRUCTUREPOINT, LLC. All rights reserved ___= IILicensee stated above acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the II correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design 11 or engineering documents prepared in connection with the use of the spColumn program. II II I II I i I 58 II ......... STRUCTUREPOINT - spcolumn v5.00 (TM) Page 2 IILicensed to: Swenson Say Faget, Inc.. License ID: 65163-1051525-4-20EB4-22EB2 08/01/16 h:\users\randerson\_,projects\magellan\storquest self storage\calcs\cmu cone de. ..\shearwall 11.col 09:54 AM General Information: File Name: h:\users\randerson\_projects\magellan\storquest self storage\calcs\cm.. .\shearwall 11.col Project: Storquest Column: 11 Engineer: RIA IICode: ACI 318-14 Units: English Run Option: Investigation Slenderness: Not considered Run Axis: X-axis Column Type: Structural Material Properties II Concrete: Standard Steel: Standard f'c = 4 ksi fy = 60 ksi Ec = 3605 ksi Es = 29000 ksi fc = 3.4 ksi Eps_yt = 0.00206897 in/in II Eps_u = 0.003 in/in Betel = 0.85 Section: II Rectangular: Width = 8 in Depth = 840 in Gross section area, Ag = 6720 in"2 IIIx = 3.95136e+008 in^4 Iy = 35840 in"4 rx = 242.487 in ry = 2.3094 in Xo = 0 in Yo = 0 in Reinforcement: II Bar Set: ASTM A615 Size Diam (in) Area (in"2) Size Diam (in) Area (in"2) Size Diam (in) Area (in'"2) # 3 0.38 0.11 # 4 0.50 0.20 # 5 0.63 0.31 II # 6 0.75 0.44 # 7 0.88 0.60 # 8 1.00 0.79 # 9 1.13 1.00 # 10 1.27 1.27 # 11 1.41 1.56 # 14 1.69 2.25 # 18 2.26 4.00 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. , phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 Layout: Rectangular IIPattern: All Sides Equal (Cover to longitudinal reinforcement) Total steel area: As = 22.32 in"2 at rho = 0.33% (Note: rho a 0.50%) Minimum clear spacing = -0.62 in 72 #5 Cover = 3.68 in Factored Loads and Moments with Corresponding Capacities: II ....... Pu Mux PhiMnx PhiMn/MuNAdepth Dt depth eps„t Phi No. kip k-ft k-ft in in II1 160.00 13684.00 46608.85 3.406 35.29 836.01 0.06807 0.900 *** End of output *** 1 1 1 1 II 59 ACI 318 Special Concrete Shearwall Design P4 IInput Information fc 4000 `rpsi Vertical Reinforcement #5 1 @ 12 _l CTR ! >1fi 33ft Horizontal Reinforcement! .'##5r @ , 112 ; . C' RIhw= lw= I 70 ft Wall Ultimate Shear Load,Vu=i 838 "k tw 8 in Wall Ultimate Axial Load,Pu ' 160 �k fy= I 60000 i psi Wall Ultimate Moment,Mu=1 136841 k—ft Top of Wall Inelastic Displ.,du=i ,0.20:,in IACI 21.9.2-Reinforcement pl _J 0.0032 pl,min= ! 0.0025 pt= 0.0032 J pt,min= ; 0.0025 IICheck ACI 21.9.2.1 Min Longitudinal Reinforcement Ratio OK Check ACI 21.9.2.1 Min Transverse Reinforcement Ratio 1OK Check ACI 21.9.2.1 Maximum Bar Spacing !OK_ ReinforcementCheck ACI 21.9.2.2 Two OK _ I Check ACI 21.9.4.3 Horizontal Curtains To Vertical Reinforcement Ratio ^-- —j-- Check AC121.9.4-Shear Strength I Acv= f 6720 iIn1 —__ 1 1546.2 ;kips (AC121.9.4.1) a= 3.0 4tDVn mox- iVn max 2040.0 !kips (AC1 21.9.4.4) Check ACI 21.9.4.1 and 21.9.4.4 Shearwall Shear Strength OK I ACI 21 9 5 Design for Flexure and Axial Loads (1)Mn 43286"k ft (See PCA COL Output) '4715-n' I 1700:k (See PCA COL Output) I Check ACI Chapter 10 Shearwall Moment Stren_gih � ;OK Check ACI Chapter 10 Shearwall Axial Strength ;OK ACI 21.9.6-$oundary Elements of Structural Walls earns l'° 6 e I No Special Boundary Element Required earns have et,vr so,tawae hoots on aapoa8e ar GOMM c= F 35,29" in (Use PCA COI or other analysis) ed,exansan 7 8d,x 3In- R.,s Vertical Reinforcing _9sev_^fir IIUse B.E.Vert Reinforcement: x: Check ACI 21.9.6.5 Tie Requirement No Ties Required ' fill 11111 f - 1" A, ! � ill �.� 11111M1111111 xr 8,1 The d4nenefon xi from aehtselne to oent,ANe Mlle lege Is not to armed 14 Inches.The ami Is,used a momeon 21.21s taken es the lamest ve&ta or X. I I I I Storauest 8/1/2016 I Date r, SWEf MN SAY FAGOT ConcSW A sTAUC7UHAL A1 ENGINEERING£O0PbeATl4N Proj.No. Seattle:2324T11W Avenue•Suite 100•Seattle•WA 98121 RJA Tet:208.943.6212 fax: 208.443•'4870 60 Design I Tacoma:939 Broadway•suite 108•Tacoma•WA 90402 ATE 259.284.9970 Fox 283.284.9471 Sheet z... Title: 14.11"."1 .P4.Se&p,--.1 Joh.# 0. . . 4,10. p 7 osonr, Dow 8:24PM, 26.A.ft:ip. / 1.< PestilOon: c ..-... z 0 Scope.: '5 4 RAY:. ..1.39003 r4163":40406Tagneggi4tering14°"Zunre Rigid Diaphragm Torsional Analysis L Page 1 1 lictardeewtalthiallerts I ' II Desthiption 1(..3etieral Information 11 I V.V.Fotfs 8hear 038.30 k Min,..),(iNxis Ecc 5.00 ig) X Axis,center offtilass 103.25 It. X.XAXIs'Shear 838.30 k Min.Y.MS Eoc. -0.00 i.A. V)1..)4.C..enter.of Mass 102.20 ft ...Shears ore applied on each axis separately. Max X Dimension 219.00ft I ',Max V'Dimension 180.00ft INall' Data ILabel Thickness 1.strtgth Height 'Wall Xcg Wall yeg Walt Angie Wall End E In ft ft ft .fl deg CCW Fixity ... 1 1,000 70.000 10.000 20.000 45.000 90.0 Fix-Pin 1:0 I 2 1.000 10.000 10.000 25.000 80.000- 0.0 Fix-Pin 1.0 3 1.000 20.000 10.900 30_000 90000. 90.0 Fix-Pin 1.0 4 1.000 .20.000 10.000 30.000 120.000' 90.0 Fix-Pin 1.0 5 .1.900 10.000 10.000. 25.000. 130.000 0,0 Fix-Plit 1.0 I 6 1.000 50.000 10.000 20.990 155.060. 000 Fix-Pin 1.0 7 1.000 130.000 10.000 65.000 180,000 0.0 Fix-Pin 1.0 8 1.000 60400 10.000. 170.000 180.000. 0.0 Fix-Pin 1.0 9 1.000 30:000 10.000 200.000 165.090 90.0 11x-Pin 1.0 . ... , 10 1.000 -10.001) 10.000 206.000 150000' 0.0 Fix-Pin 1.0 11. 1.000 10.000 10.000 210.000 115.000 99.0 Fix-Phi 1.0 12 1.000 20,609 10.000 200.000 80.000. OA Flx.Pirt 1;0 I 13 1.000 26.090 10.000 -190.000 67.500 .90.0 Fix-Phi 1,6 14 1.000 10.000 10.000 195.000' 55.000' 0.0 Fix-Pln 1.0 15 ixoo ia. pa, . 10.000 165.000 40.090' 410 Fix-Pin 1.0 I 16 1.000 16.000 10,000 137.000 45.000 04 Fix-Pin 1.0 17 1.000 65.000 10.000 07,500 40.900 04 Fix-Per 1.0 18 1;000 30:000 10,000 66.000: 2-0.000- 00:0 Fix-Pin tfi 19 1.000 11.600 10400. 56.090' 1.0.000 04 Fix4:111. 11) I .20. 1:000 21.000 10.000 30.000 10.000 04 FIX-Pin 1.0 . . Calculated'Wall.rotted 111 . „ . Load.i.ocation for Maximum Paves Direct Shears it Torsional Shears.k Final, Mak. ,pt F. I LabelWall Shear . ., .:K. f1 V I-0119th Thick, Length 7.44* k 1 -8.244 0.000 200.816 0.000 7.522. 0.-000 W•0' 208.338 ii 11 C° I 2 0400 29011 ,111.269 &boo 4.114. 400 41.,312 3 -6.244 0.000 42.900 0.000 1,4o4 MOM' 44.304 4 -614.4 0.000 .42.000 0.000 1,404, 0.000 44.304 5 0400 -14;311 -10,260 0.000 0.076 -0.000. 4040 .,..s. A -0.,244 0.000 139.425 9;000 0;43, 4000 14464$400 7 7 0.000 41.3-11 -332491. 0 .409 18,318 . -0.001 - ' . ' ......ti 432.461 8 0.000 -14..31 i -148:567 0.600. .8.409 8406 440.567 a 14.76a 6.600 15.040 0600 8.596' tittio 114.536 -2..2.1,I, I 10 0:000 -11.311 -10.259 0.000 0.278 0.000 40.259 11 14.756 0.000 200.816 ct000 24.981 -0.000 . 220.707 .3-142,46 12 0.009 -29.311 47.428 0.000 -4.060, 0.001 .,414469 I 13. 1.4.756 0,000 59.411* 0.000 .0460. ,0400 65,580 14 0400 -29,311 .40.259 0.000 4.797 0:000 42.026 15. blititi -2.0.311 .-16.260 0.606 ,2,186 0.000 A2.419 16- 0.000 .29311 .25.935 0.000 -5.129 0.000 .-.1"!.064 17 0.000 -29.311 461.014 0.000 .34.086 '04300 aS 4 -1i004 4341.0: 61 i Title: 5r—r tegrt.1-1 Job# Dsgnr: Date: 8:24PM, 26 JUL 16 Description: Scope: Rev seoom 841883-KW-MOMS%Ver 2 cEe''�O°!r ineeriRigid Diaphragm Torsional Analysis Page 2 ng soaware figard_ecke Calculations Description 18 -6.244 0.000 75.940 0.000 1.224 0.000 77.165 19 0.000 -29.311 -40.330 0.000 -11.577 -0.000 -51.908 20 0.000 29.391 -40.330 0.000 -11.577 -0.000 -81.908 ` Summary X Distance to Center a igidity 98.994 ft ControllingEccentricities&Forces from Applied Y-Y Shear t�P ' Y Distance to Center of Rigidity 122,511 ft Xcm+(Min%*MaxX)-X-cr = 14.756ft Torsion= 12,369.06 k-ft Xcm-(Min%*MaxX)-X-cr = -6.244 ft Torsion= -5,234.34 k-ft X Accidental Eccentricity 10.500 ft Controlling Eccentricities&Forces from Applied X-X Shear Y Accidental Eccentricity 9.000 ft Ycm+(Min%*MaxY)-V-cr = -11.311 ft Torsion= -9,482.14 k-ft Ycm-(Mat%*MaxY)-Y-c r = -29.311 ft Torsion= -24,571.54 k-ft 1 1 i 1 1 1 1 1 62 I I jc.r w't 1145(cot...) I I I e I 7 tb I 1 i of I (� ,., C.R::'(98.99,122:51 di I + M.:(10325,102:30) I I 1 (I.') I 1 I 1 1 61 Qf`1 Y' I 63 ......... ... ...... I I ' Swenson Say Faget STRUCTURAL ENGINEERING ' 2124 Third Ave,Suite 100 Seattle,WA 98121 0 206.443.6212 934 Broadway,Suite 100 ' Tacoma,WA 98402 O 253.284.9470 November 2,2016 _ .. ' Magellan Architects Attn: Dirk McCulloch 8383 158th Ave NE,#280 Redmond,WA 98052 RE: Storquest Self Storage,Tigard,OR Structural Plan Review Comment Response We are in receipt of the permit comments provided by Rogers Engineering and have responded to the SSF structural ' items as follows: ' SSF Structural Engineering 26. Calculation page 22 specifies#6 bars at 12"o.c.for the basement slab. Plan note 4,sheet S2.1 shows#5 bars. ' Provide clarification.OSSC Sec.107.1 • See attached supplemental calculation page 22(S).The required area of reinforcing to resist maximum buoyancy forces on the slab is#5 @ 12"oc. ' 27. Calculation page 30 indicates NG for the wall top and bottom reinforcing. Provide clarification.OSSC Sec.1604.2 • See attached supplemental calculation 30(S).The Retainpro output neglects reinforcing across the shear plan when calculating the allowable shear force.Calculation 30(S)shows that#5 @ 12"oc provide sufficient shear-friction resistance at the top and bottom of the basement walls. 28. Calculation pages 30 and 33 show footing heel and toe pressure as 2248 psf for the eccentrically loaded footing.Calculation pages 31 and 34 show the factored heel pressure over 12 ksf and no toe pressure.Clarify the significant difference between the factored and unfactored pressures.OSSC Sec.1604.4 • Page 7 of the geotechnical report by Geodesign provides an allowable bearing pressure of 2500 psf ' which is greater than the 2248 psf pressure from the design output.Typical basement walls are designed with restraint from the slab-on-grade and elevated composite floor deck and are therefore considered simply supported(pinned-pinned)walls.Therefore no moment is required to be transferred ' through the footing and force distribution may be considered uniform.A 12ksf factored pressure would be required for the footing design if fixity had been provided. 29. Calculation pages 30 and 33 show#6 bars 12"o.c.for the top and bottom bars.Detail 12/S3.2 shows#5 bars. ' OSSC Sec.107.1 • See attached supplemental calculations 30(S)and 33(S).#5 @ 12"oc is sufficient for shear friction. I Storquest Page 2 November 2,2016 30. Provide calculations showing how the retaining wall reaction of 5461 plf is resisted by the floor diaphragm and resisting walls.OSSC Sec.1604.9 • Kiwi II is responsible for the design of the composite first floor deck and will be providing a response to this comment. 31. Provide calculations for the#5 bars shown in detail 12/S3.2 at the outside face and specify position of the bars. OSSC Sec.1604.4 • See attached supplemental calculations 30(S)and 33(S).The#5 @ 12"oc near the outside face of the wall is provided to as negative moment reinforcing.A 1-1/2"clear dimension to the reinforcing has been added to detail 12/S3.2. 32. The footing width in calculation page 31 does not appear to match the plans.Provide clarification. OSSC Sec. 107.1 , • The plans have been updated on gridline 22 to show a 1'-8"toe dimension to match calculations. 33. Calculation page 33 indicates the wall base shear NG. Provide clarification.OSSC Sec.1604.2 • See supplemental calculation 30(S)with shear friction justification of footing-to-wall dowels. 34. Calculation page 38 references a spreadsheet for lintel designs. Provide clarification.OSSC Sec.1604.4 • Page 49 of the calculations was out of order and should have followed page 38. Page 49 provides the design for the masonry lintel.Page 49 has been attached for your reference. 35. Where is the retaining wall evaluated on calculation pages 39-44 located?OSSC Sec.107.1 • Calculation pages 39-44 are for the typical 13'-4"1-story wall on gridline A between gridlines 8 and 14. 36. Calculation page 54 specifies(8)#bars at 2"o.c.Where is this specified in the plans?OSSC Sec.107.1 • See revised calculation 54(S)as well as supplemental calculations S-1 through S-3.The design utilizes base fixity to resolve a portion of the load at the stair locations into the footing as well as horizontal reinforcing at the inside face of the wall for the horizontal span support of the balance of the load. 37. Provide calculations showing how the lateral load at each end of the horizontal beam evaluated on calculation I page 54 will be resisted.OSSC Sec.1604.9 • See the previous response and supplemental calculations S-4 and S-5.The foundation plan S2.1 has been updated accordingly to correspond to the revised calculations. 38. Provide calculations for the retaining wall at grid 14.OSSC Sec.1604.4 • The typical basement wall design(original calculations pages 27-35)is structurally acceptable for the retaining wall along gridline 14. Lateral restraint is provided at the slab-on-grade and first floor per detail ' 3/S3.2.See previous response for shear-friction justification. 39. Provide calculations for the retaining wall at grid P,18-20 with beam reactions.OSSC Sec.1604.4 • See supplemental calculations S-6 through S-11.We have updated our plans to increase the footing size as well as increasing the vertical bars in the tied concrete columns per detail 5/S3.2. 40. Calculation page 55 analyzes loads based on R=3.5 vs R=5.0.The analysis by KIWI II used R=5.0.Provide clarification.OSSC Sec.1604.4 • See attached the updated KIWI II analysis(5-15 to S-18).The maximum shear force to an individual wall based on KIWI's rigid diaphragm analysis with R=5.0 is 211 kip at wall#11.The original design conservatively applied a shear force of 838 kips to this wall.By inspection the existing wall design is structurally acceptable. 41. Provide calculations for the flush wall columns as shown in detail 2/D4.OSSC Sec.1604.4 1 • See attached supplemental calculations S-12 through S-14 providing justification for both the maximum 1 SEATTLE 2124 Third Ave,Suite 100,Seattle,WA 98121 0 206.443.6212 CiA=G TACOMA 934 Broadway,Suite 100,Tacoma,WA 98402 0 253.284.9470 Storquest Page 3 November 2, 2016 beam bearing on the CMU wall as well as a review of the wall to support the distributed point load. ' Detail 10/S4.1 has been added to the plan set. 42. Provide calculations for the wall to deck connection as shown in detail 12/53.2.ASCE 7-10 Sec.12.11.2 • See supplemental calculation 30(5)for shear friction justification of the#5 dowel©12"oc at the wall to deck connection. Detail 12/S3.2 has been updated to identify a minimum#5 continuous horizontal distribution reinforcement in the slab. 43. Verify concrete reveals shown on sheet A3.30 do not adversely affect the design or minimum cover.OSSC Sec. 1604.2 • We understand that concrete reveals have been value engineered out of the design. 44. The diaphragm analysis on calculation pages 61 and 62 does not match the analysis by KIWI II. Provide clarification.OSSC Sec.1604.4 • See attached updated diaphragm analysis calculations by KIWI II.See response to comment#40 pertaining to the updated design shear forces tributary to shearwalls. 45. Provide lateral load calculations for the masonry elevator shafts.OSSC Sec.1604.9 • Since masonry elevator shaft walls provide minimal lateral resistance due to their relative stiffness, shear loads to these walls were omitted from the rigid diaphragm analysis by KIWI II.The original calculations provided a design for the most heavily stressed masonry shearwall and set this reinforcing as the typical masonry wall reinforcing.Therefore,the design of the elevator shaft walls is acceptable by inspection SSF Structural Engineering-Site Structures 46. Calculation pages 2 and 4 appear to specify toe and key reinforcing.Clarify how this corresponds to 4/52.1. OSSC Sec.107.1 • Detail 4/S2.1 has been revised to include#4 @ 12"oc key reinforcing at the 4'-0"tall wall as required per calculations pages 2 and 4. 47. Calculation pages 6 and 8 appear to specify toe reinforcing.Clarify how this corresponds to 4/S2.1. OSSC Sec. 107.1 • Toe reinforcing is provided to meet the requirements of pages 6 and 8(#5 @ 12"oc). Note that the 1 • typical vertical reinforcing is hooked in the footing to provide toe reinforcement.A note has been added to detail 4/S2.1 to clarify. ' 48. Calculation pages 10 and 12 appear to specify toe reinforcing and key reinforcing does not appear to match the schedule. Provide clarification.OSSC Sec.107.1 • Toe reinforcing is provided to meet the requirements of pages 10 and 12.See other acceptable reinforcing sizes listed.#5 @ 12"oc toe reinforcing is an acceptable size and spacing.Detail 4/S2.1 was revised to note#5 @ 12"oc key reinforcing. g 49. Calculation pages 14 and 16 appear to specify toe reinforcing and key reinforcing does not appear to match the schedule.Provide clarification.OSSC Sec.107.1 • Toe reinforcing is provided to meet the requirements of pages 14 and 16.#7 @ 12"oc toe reinforcing is an acceptable size and spacing. Detail 4/S2.1 was revised to note#5 @ 12"oc key reinforcing. 50. Calculation pages 17 and 19 specify#4 bars at the edge of the wall. Detail 8/S2.1 shows#5 bars centered. Provide revised calculations.OSSC Sec.1604.4 I I SEATTLE 2124 Third Ave,Su to 100,Seattle,WA 98121 0 206.443.6212 orn ENG MEEFRiNfa TACOMA 934 Broadway,Suite 100,Tacoma,WA 98402 0 253.284.9470 Storquest Page 4 November 2,2016 • See revised calculations sheets 17 through 20 attached.#5©12"oc vertical reinforcing at the center of the wall is acceptable. All revisions to the plans have been clouded.We trust that this response letter and revised plans adequately addresses your structural concerns.Please let us know if you have any questions regarding this response. Best, Ryan Anderson, PE Project Manager renderson dssfenaineer s.com 1 I 1 1 I I I I I 1 SEATTLE 2124 Third Ave,Suite 100,Seattle,WA 98121 0 206.443.6212 ssf qi ee: -.e m FY:7=G TACOMA 934 Broadway,Suite 100,Tacoma,WA 98402 0 253.284.9470 I 133H5 I (EJNDIS3Q OP11�I39�91OAt ivaruantus MVO1D31021d I '9 S3 ' -4-....-7.,1 C" 5 v -iv", , '- r.1 1't'-1,+:4 r 0 - Viii,/ ,rte •V maw-, a9`0 '?i h ) 5 I y 2 v Arr >7ja p` —.4cG+1 y,wr .r-}/ 'ari^,d€vo?r ..t=., tpd •z nII 04zx d di,5 A--1,1k,,,)5 ` '-t Iry Vol C1r-°r / <3 S-v 0"1"-",.42 - , -.-0 ti., _ .re-y -.44i vi/ -1 ,if Q • in I o fiD 1 M 14 - 5 " CJS .z Ld 2 Io i' S Lie- e D m n> ( j avsd4., .J1 = 5-6. — 1.4"Z a 45,-.4 0- Il a. a -P'1:4li5 _ C 5.Z,2 4=, _ - - S4- /0co 0073 as « A.1 G 5•c�, r . ./.+11-17:4 -d1= zev -0,,,,,1 Lu CM -4.,1'4" 1 - -1:.1 -t' .'='Vw/i4/ 1 O N I I 01.1,---) Pi-'z d.-"7- .."1"- Np.... Pkc,6-- f- ).-- ,p a- avr ..i.- i"'-4-'4— c2-A-1---7": -i- ,,, I AJP:-.4.t_0 a...7-S A 4.1&,..,f, ,•r N L 0 re, 0 ,.,-, r.. ,-4 --'• Ak.--44-4-. A 71‘,44- . le---44 4.-ri D Af*/ et.A. r2-4,p.....,,e p,e_c_I 0...ie.,. 2 oi I cr, 0, ‹ < LJ'S4- 5 4, /2-'..._. 4,4 P.-- P-,C...e.6S-0 ,1--' 1.4.4..-4.,, 2'.:::! I --- -' 0 0 0 0 c) s z I # V.1 ,-. el, 75 c),3))( et', apo) (a 6) u. 1 r S-p-i= 47 tr,v, > a 3 D 'A //11 AA 04 4. 'Sr /14 II) i.., 41 P i 7 132PS+ C3') ,41'D.r. ,--• ',,;' N > 1 i' 4 est q? roil 1,. 4v ‘ ,•1 0. 9-5 (47' z.f14--)4 r Li 3 z '''' 17 ulIA:„ „IQ I 4 '9' 7-5 (1(4'4:)) A-c._ = 57.io' , / 'd., E I 0 u . a, .E-A. 4-6o v 4_ fc:.4._ 5 it 4.- ftz!c.-tr a A....) c, c I u., /2,,i e ..... IC.r-Cgs'm 7 CD.. .6.0-61 J $0,..4.,,o A. 4- gt V A '•• s--37 = 1,- I sw + v, /hat = i---t-vpt /x4 , 11 1,,1-14- pe le p c, s 3 ,...., 7-nt z 0 UI 2 :I I I I I PROJECT DA I E gd‘l 1:THRGYlg ig:It -nesirTni 3:0(5) I SHEET I ISwenson Say Faget Title Storgpest Page:30N 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 24 OCT 2016 I Seattle,WA 98121 Description.,.. Basement Wait-Gridline 22+Traffic Surcharge This Wall in File:H:\Userstranderson\ Projects\Magellan\Storquest Self Storage\Calcslstorquest wall RetainPro(c)1987-2016, Build 11.16.07.15 License:KW-06052576 License To:SWENSON SAY FAGET Restrained Retaining Wall Code: IBC 2012,ACI 318-11,ACJ 530-11 Criteria I Soil Data ' Retained Height = 16.33 ft Allow Soil Bearing = 2,500.0 psf Wall height above soil7.33 ft Equivalent Fluid Pressure Method Total Wall Height = 23,66 ft At-rest Heel Pressure - 57.0 psf/ft I Top Support Height = 10.33 ft Passive Pressure _ 250.0 psf/ft Soil Density 125.00 p0 Slope Behind Wal 0.00 Footing(iSoil Frictior = 0.350 ,����,, , Height of Soil over Toe = 0.00 in Soil height to ignore Ifor passive pressure = 12.00 in ' Thumbnail LSurcharge Loads Lateral Load Applied to Stem Adjacent Footing Load II Surcharge Over Heel = 250.0 psf Lateral Load = 0.0#/ft Adjacent Footing Load - 0.0 lbs >>>Used To Resist Sliding&Overturning ...Height to Top = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf Height to Batton. = 0.00 ft = 0.00 in 0.00 ft Used for Sliding&Overturning Wall Eccentricityto Fig CL Dist Axial Load Applied to Stem Load Type = Wind(W) Footing Type Line Load (strength Level) Base Above/Below Soil IAxial Dead Load = 660.0 lbs at Back of Wall - 0.0 ft Axial Live Load 1,875.0 lbs Wind on Exposed Stern= 0.0 psf Axial Load Eccentricity = 0.0 in Poisson's Ratio 0.300 Earth Pressure Seismic Load 4 Kh Soil Density Multiplier = 0.035 g Added seismic per unit area = 0.0 psf Stem Weight Seismic Load 1 Fp/Wp Weight Multiplier - 0.200 g Added seismic per unit area = 0.0 psf Design Summary Concrete Stem Construction Total Bearing Load lbs Thickness = 8.00 in Fy = 60,000 psi resultant ecc, 9.34 in Wall Weight = 100.0 psf ft = 3,000 psi Soil Pressure @Toe = 2,248 psf OK Stem is FREE to rotate at top of footing Soil Pressure @ Heel = 2,248 psf OK Allowable = 2,500 psf Mmax Between Soil Pressure Less Than AllowabletT Top Support Ta &Base @ Base of Wall Top ACI Factored @ Toe = 0 psf S :ar Stem OK Shear NG! ACI Factored @ Heel - 12,016 psf Design Height Above FtE = 10.33 ft 4.36 ft 0.00 ft FootingShear Toe = 1.7psi @ - OK - Rebar Size - # 5 # 7 # 5 Footing Shear @Heef 0.3 psi OK Rebar Spacing - 12.00 in 12.00 in 12.00 in Allowable = 75.0 psi Rebar Placed at = Edge Edge Center I Reaction at Top = 5,461.3 lbs Rebar Depth 'd' = 5.50 in 6.00 in 4.00 in Reaction at Bottom = 5,060.7 lbs Design Data fb/FB+fa/Fa = 0.906 0.900 0.000 Sliding Caics Mu....Actual = 6,563.7 ft-# 13,152,3 ft-# 0.0 ft-# Lateral Sliding Force - 5,060.7 lbs I Mn*Phi Allowable - 7,247.3 ft-# 14,607.0 ft-# 5,154.8ft# Shear Force @this height = •- = 6,379,6 lbs Shear.....Actual = 91.43 psi 132.91 psi I Vertical component of active lateral soil pressure IS Shear Allowable = 82.16 psi 82.16 psi NOT considered in the calculation of soil bearing Other Acceptable Sizes&Spacings: Toe:#5 @ 18.00 in -or- Not req'd:Mu<phi*5*lambda*sgrt(fc)*Sm Load Factors - Heel:#5 @ 12.00 in -or- Not req'd:Mu<phi*5*lambda*sgrt(rc)*Sm Building Code Dead Load 18C 2012,ACI 1.200 Key: No key defined -or- No key defined Live Load 1.600 Earth,H 1.600 Wind,W 1.000 Seismic,E 1.000 Swenson Say Faget et Title Ston est Page:33( I qNS} 2124 3rd Ave Suite 100 Job#: Dsgnr. RJA Date: 24 OCT 2016 Seattle,WA 98121 Description.... Basement Wall-Gridline 22+Seismic I This Wall in File:H:1Users\randersont ProjectstMagellan\Storquest Self Storage\Calcs\storquest wall Retainero(c)1967-2016, Build 11.16.07.15 License:KW-06052576 Restrained Retaining Wall Code:IBC 2012,AC€318-11,ACi 530-11 License To:SWENSON SAY FAGET Criteria 1Soil Data I Retained Height = 16.33 ft Allow Soil Bearing = 2,500.0 psf I Wall height above soil = 7.33 ft Equivalent Fluid Pressure Method Total Wall Height = 23.66 ft At-rest Heel Pressure - 57.0 psf/ft Top Support Height 10.33 ft Passive Pressure 250.0 psf/ft I Soil Density = 125.00 pcf Slope Behind Wal 0.00 FootingfISoil Frictior = 0.350 lase ae .e ; Height of Soil over Toe = 0.00 in Soil height to ignore for passive pressure = 12.00 in I Thumbnail I _- � dApplied to Stem.^ Adjacent Footing Load I Surcharge Loads � t Uniform Lateral Load Surcharge Over Heel 0.0 psf Lateral Load = 0.0#/ft Adjacent Footing Load = 0.0 lbs >>>Used To Resist Sliding&Overturning Height to Top = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf ,,.Height to Bottorr = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft I Axial Load Applied to Stem I Load Type = Wind(W)L Footing Type Line Load (Strength Level) Base Above/Below Soil Axial Dead Load = 660.0 lbs at Back of Wall = 0.0 ft Axial Live Load = 1,875.0 lbs Wind on Exposed Stem= 0.0 psf I Axial Load Eccentricity = 0.0 in Poisson's Ratio = 0.300 Earth Pressure Seismic Load 0 Kh Soil Density Multiplier= 0.035 g Added seismic per unit area = 50.0 psf Stem Weight Seismic Load I Fp I WP Weight Multiplier = 0.000 g Added seismic per unit area = 0.0 psf ' Design Summary I Concrete Stem Construction I Total Bearing Load = 5,252 lbs Thickness = 8.00 in Fy = 60,000 psi I ...resultant ecc. = 9.35 in Wall Weight = 100,0 psf f'c = 4,000 psi Soil Pressure @Toe = 2,248 psf OK Stem is FREE to rotate at top of footing Soil Pressure @ Heel = 2,248 psf OK Allowable = 2,500 psf Mmax Between Soil Pressure Less Than Allowable @ Top Support Top&Base Base of Wall ACI Factored @Toe = 0 psf t •' Stem OK Shear NG! ACi Factored @ Heel - 12,084 psf Design Height Above Ftu = 10.33 ft 4.44 ft 0.00 ft I Footing Shear @ Toe = 1.7 psi OK Rebar Size = # 5 # 7 # 5 Footing Shear @ Heel = 0.0 psi OK Rebar Spacing = 12.00 in 12.00 in 12.001n Allowable = 75.0 psi Rebar Placed at = Edge Edge Center Reaction at Top = 4,633.4 lbs Rebar Depth 'd' = 5.50 in 6.00 in 4.00 in Reaction at Bottom = 4,727.5 lbs Design Data fb/FS+fa/Fa = 0.621 0.839 0.000 Sliding Cafes Mu....Actual = 4,567.3 ft-# 12,583.4 ft-# 0.0ft-# Lateral Sliding Force = 4,727.5 lbs Mn*Phi Allowable = 7,353.6 ft-it 15,005.3 ft-# 5,261.1 ft-# Shear Force @ this height = 5,999.6 lbs I Shear Actual = 79.71 psi 124.99 psi Vertical component of active lateral soil pressure IS ShearAllowable = 94.87 psi 94.87 psi I NOT considered in the calculation of soil bearing Other Acceptable Sizes&Spacings: Toe:#5 @ 18.00 in -or- Not req'd:Mu<phi*5*lambda*sgrt(fc)*Sm Load Factors Heel:#5 @ 12.00 in -or- Not req'd:Mu<phi*5*lambda*sgrt(Pc)*Sm Building Code IBC 2012,ACI Key: No key defined -or- No key defined Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.000 I Seismic,E 1.000 Masonry Lintel Design — _Lr» .spy4 Wall Properties Width 7.625 in Depth 7.625 in fm 1900 psi 1 Wind/Seismic Increase 1.33 Grout Spacing Solid Grouted Equivalent Thickness 7.6 Fs 32000 psi Es= 29000 ksi Em= 1710 ksi Moment Steel M= 7.119 k-ft As Req'd= 4.39 inA2 No.of Bars 2 Bar Size #5 As 0.62 inA2 P = 0.0107 n= 17.0 k= 0.63 = 0.79 Fb= 633 Msteel= k-ft Mmasonry= k-ft w 1 1 I 1 I 5EAg E 2424 Third Ave.Suite too,Seattle,WA 96424 Date: 7/31/2016 ' :..axmasw TACE�V4A 834 Broadway,Suite too,Tacoma,WA 98402 Project#: 02257-2015-03 Ofilm : 206 443 6212 Design: RJA Pax: 206.443.4870 Sheet: 1 1 '5r41 fa-. 1,"d4."14.,•.^ 444.S.?6 t J I NQ 1 T 0 4 • ^ 3 CI1 CI Z n s i If Z.5 N- N 00 w 01 rN ,,. fA•p el ii 'I A in � _. f\\.\ ,\ j4e7,r} j m :v�a m` 1 Nc-, / esr. W 1FMK = I4 . 2-1 w E - r/�,r.J,C/L.� 0..,rP.�r or u ' v,f ) gi52 /'^ c►�, = t -► = .� x s` -)( fit, 3 �, Tr �6'44 0I v .> y2-: �aL vie-- t.-.,,L,--e-2_ q''y tr. ti-c_Ti v Hca to !4,". o,,-. , )1,./2-4,- s V!!a-i4. `""a* •- /..:-..f r x, -^4, -at. r+....e PvTia"r `-a rased. o lr ree-ot 4 0 b:V"(..,4 v-0/ W.4-c-C.„ 1.4 0/2.4 -vr,i 1}-L r 1 a aIt4.1_, I•k:z. (/ryr, 1,e.... 5 '}) 15. 3> - 1.33 _ -93vP+.,C NZ 0 0 I M„ s. "3> C 1 PI) 'As = ' .11 w' r z L=0 I ,L�. 3Z• q (22...-____) I yR+6 j ` 5.- LI c $.51 ) i• 5Z-, z/r` r --•>. t*-"-- Ccr G, L' 144'4' /iae..r . (tJ4b4= i` � PROJECT DATE Po.i.n L1RUCTURA1. 4,7 A- EP9G6NEER11dG DESIGN SHEET I 4 Swenson Say Faget Title Storquest Tigard Page 54 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 25 OCT 2016 Seattle,WA 98121 Description.... IBasement Wall at Stair-Base Fixity This Wall in File:H:\Users\randersoni_Projects\Magellan\Storquest Self Storage\Calcs\storquest wall I RetainPro(c)1987-2016, Build 11.16.07.15 License To:SWENSON SAY FAGET se:KW-06052516 Cantilevered Retaining Wall Code: IBC 2015,AG!318-14,ACi 530-13 Criteria 0 !Son Data I Retained Height = 9.33 ft Allow Soil Bearing 2,500.0 psf Wall height above soil 0.00 ft lent Fluid Pressure Method Slope Behind Wall = 0 Active Heel Pressure = 57.0 psf/ft Height of Sod over Toe = 0.00 in Passive Pressure = 250.0 psf/ft I Water height over heel = 0.0 ft Soil Density,Heel - 125.00 pcf Soil Density,Toe - 0.00 pcf FootingllSoil Friction - 0.350 I Soil height to ignore for passive pressure - 12.00 in Surcharge Loads 0 [ Lateral Load Applied to Stem ` [Adjacent Footing Load Surcharge Over Heel = 0.0 psf Lateral Load = 0.0#/Et Adjacent Footing Load 0.0 lbs Used To Resist Sliding&Overturning Height to To - 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 ,..Height to Bottom - 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wail to Ft CL Dist = 0.00 ft I Axiall Load Applied to Ste Load Type = Wind(W) 9 Sten-T-1� (Service Level) Footing Type Line Load Base Above/Below Soil Axial Dead Load = 0.0 lbs Wind on Exposed Stem= 0.0 psf at Back of Wall - 0.0 ft Axial Live Load = 0.0 lbs (Service Level) Poisson's Ratio = 0.300 I l Axial Load Eccentricity = 0.0 in Design Summary 1 LStem Construction I Bottom Stem OK Wall Stability Ratios Design Height Above Ftc ft= 0.00 Overturning = 1.51 OK Wail Material Above"Ht" = Concrete Slab Resists All Sliding i Design Method = LRFD Thickness = 10.00 Total Bearing Load _ 4,152 lbs Rebar Size - # 6 ...resultant ecc. - 20.41 in Rebar Spacing = 12,00 I Soil Pressure @ Toe = 1,787 psf OK Rebar Placed at = Edge Soil Pressure @ Heel 0 psf OK Design Data fb/F6+fa/Fa = 0.867 Allowable = 2,500 psf Total Force @ Section I Soil Pressure Less Than Allowable Service Level lbs= ACI.Factored @ Toe 2,501 psf ACi Factored @ Heel 0 psf Strength Level lbs= 3,969.4 Footing Shear @ Toe - 21.5 psi OK Moment...Actual Footing Shear @ Heel = 9.4 psi OK Service Level ft-#= II Strength Level ft-#= 12,344.9 •+t-^ if-IL'= Allowable 75.0 psi Sliding Calcs Moment Allowable = 14,240.8 0C-- Al,,,,. Lateral Sliding Force = 3,446.4 lbs. Service Level psi= I Strength Level psi= 43.4 Shear.....Allowable psi= 82.2 Anet(Masonry) tn2= Rebar Depth 'd' In= 7.63 I Masonry Data t'm psi= Fs psi= Solid Grouting = I Vertical component of active lateral soil pressure IS Modular Ratio'n' _ NOT considered in the calculation of soil bearing Wall Weight psf= 125.0 Load Factors Short Term Factor Building Code IBC 2015,ACi Equiv.Solid Thick. = I Dead Load 1.200 Masonry Block Type = Medium Weight Live Load 1.600 Masonry Design Method == ASD Earth,H 1.600 Concrete Data Wind,W 1.000 Pc psi= 3,000.0 I Seismic,E 1.000 Fy psi= 60,000.0 Swenson Say Faget Title Storqpest Tigard Page$12 I 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 25 OCT 2016 Seattle,WA 98121 Description.... Basement Wall at Stair-Base Fixity I This Wail in File:Fi:\Userslranderson1 Projects\Magellan\Storquest Self StoragelCalcststorquest wail RetainPro(c)1987.2016, Build 11.16.07.15 I License:KW-06052576 Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 License To:SWENSON SAY FAGET Concrete Stem Rebar Area Details Bottom Stem Vertical Reinforcing Horizontal Reinforcing I As(based on applied moment): 0.3755 in2ift (4/3)*As: 0.5006 in2/ft Min Stem T&S Reinf Area 2.239 in2 200bd/fy:200(12x7.625)/60000: 0.305 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.240 in2/ft I 0.0018bh:0.0018(12)(10): 0.216 in2/ft Horizontal Reinforcing Options: One layer of: Two layers of: Required Area: 0.3755 in2/ft #4@ 10.00 in #4©20.00 in Provided Area: 0.44 in2fft #5@ 15.50 in #5@ 31.00 in I Maximum Area: 1.2395 ln2/ft #6@ 22.00 in #6@ 44.00 in Footing Dimensions&Strengths I Footing Design Results Toe Width = 4.50 ft Toe Heel Heel Width = 2.00 Factored Pressure = 2,501 0 psf Total Footing Width = 6.50 Mu':Upward = 17,151 0 ft-# Footing Thickness = 20.00 in Mu':Downward = 3,038 1,157 ft-# Mu: Design = 14,114 1,157 ft-# I Key Width = 0.00 in Actual 1-Way Shear = 21.47 9.44 psi Key Depth = 0,00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #6 @ 12.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = None Spec'd Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ 8tm= 3.00 in Toe: #4@ 5.56 in,#5@ 8.61 in,#6©12.22 in,#7@ 16.67 in,#8@ 21.94 in,#9@ 27. Heel:Not req`d:Mu<phi*5*lambda*sgrt(fc)*Sm I Key: No key defined Min footing T&S reinf Area 2.81 in2 Min footing T&S reinf Area per foot 0.43 in2 /ft If one layer of horizontal bars: If two layers of horizontal bars: #4@ 5.56 in #4@ 11.11 in #5@ 8.61 in #5@ 17.22 in #6@ 12.22 in #6@ 24.44 in Summary of Overturning&Resisting Forces&Moments t OVERTURNING RESISTING Force Distance Moment Force Distance Moment item lbs ft ft-# lbs ft ft-# Heel Active Pressure = 3,446.4 3.67 12,633.0 Soil Over Heel = 1,360.6 5.92 8,050.4 Surcharge over Heel = Sloped Soil Over Heel = Surcharge Over Toe = Surcharge Over Heel = Adjacent Footing Load = Adjacent Footing Load = I Added Lateral Load = Axial Dead Load on Stem= Load @ Stem Above Soil= *Axial Live Load on Stem = = Soil Over Toe = Surcharge Over Toe = Total 3,446.4 O.T.M. 12,633.0 Stem Weight(s) = 1,166,3 4.92 5,734.1 Earth @ Stem Transitions= Footing Weight = 1,625.0 3.25 5,281.3 Resisting/Overturning Ratio = 1.51\/ Key Weight = Vertical Loads used for Soil Pressure= 4,151.9 lbs Vert.Component = I Totals 4,151.9 lbs R.M. 19,065.7 *Axial live load NOT included in total displayed,or used for overturning resistance,but is included for soil pressure calculation. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS NOT considered in the caicuiation of Overturning Resistance. III I - Swenson Say Faget g Title Storg4tes#Tigard Page-V-3 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 25 OCT 2018 ' Seattle,WA 98121 Description.... Basement Wall at Stair-Base Fixity This Wall in File:H:\Users\randersonl_Projects\Magellan\Storquest Self Storage\Calcslstorquest wall Retainpro(c)1987-2016, Build 11.16.07.15 License:KW-06052576 License To:SWENSON SAY FAGET Cantilevered Retaining Wall Code: IBC 2015,ACI 318-14,ACI 530-13 Tilt Horizontal Deflection at Top of Wal(due to settlement of soil (Deflection due to wall bending not considered) ' Soil Spring Reaction Modulus 250.0 pci Horizontal Defl l Top of Wall(approximate only) 0.071 in The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil. 1 1 IID.3NS H i.EJ`1ISCJ 0N12133NIDN3 . TdiAl2R2t.1.S 0 ��r�a 1bQ 1D3roaa C71/1,"r?o 1! -45'1^ -Z/ca-1 s .._.. --re_ / f 5 Ic+t r� 11 5 , ,e = -"lis'' air ' toa I Z -,r I ,-i -r4-,.t incv ..,-:( -7a-,: ?--7 I (-2 ,I7(--t '41.-2 (-1/a.,2 .0 '7 '..,.,. , c-i i L< a-,1 1,Z 5 -7 ` tv 4' ... m r I (9)(C.) -,(9)(C.) -,3'Q 4 Z .8.L - 1/4,, N -s-'Z.t c- 1- '/+ 41X- i* (1) 4 bb. • c-7') 54.-'I 01)4' , r I Fa. a l- 4=24 -6, � /14 (. sc<a)2 51- 9 '"w IH r$" -J,-.4 bi'P S 41 ,-.0.775.-90 D -ir'-°-44-,4" 4?+1 V-4 ..t..1 ..I -k► 7`110-V 47-0^,m./-fry-2-vs-, a c • E co ' co n D o ,D m -il rVI A. 1 in z 643>I N thi r� i ^ ) . r"'1 L co 4, 4. H A Co oN rS-E 1 - .-io>.1 v rye/ r I'd 5 -1-'4-'4-'4 -')'-b'1,--ie.4 I ii.04 ")1 4V-1 I I r'- #2.. e aArc- ,,..'4. w.4-“. Vco [o 8F Us : 20 .9 _ ( 2.9- /i5) 6 9)'/2- _ j ,,, y t4- 00 N V.., - 1- 6 (1`Y ,`!) 31, 0. ' o lir,...: ta in g2 co 7, n e /1"1ar 1 o /+ ns a ft-A,-C-4. ®/e` ‘,...-4-•c.-t.... I I 2s. AA, c 1. 6. (125. `t) 2 c3r1)tw I usa C) - ,, . 1 . 5� in 1. C5) # T rs-=T 4-.s 3 i. 5, — 1- E 0 V N 0 */.10% .t d' / (40°4 )(ti' )( s) ate, . , .-- �Ie.- n . i-- ' 9 ), i Co . ./ (5) s, is,„?,.. L-„✓e..., I . u. N Z 0 a I w i I I PROJECT DATE ST1RElCTURa�L A-74 KGt�/�ER�h�BCw DES'6N 5-5_ I SHEET Swenson Say Faget Title Storquest Page: 5*Gab 1 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 25 OCT 2016 Seattle,WA 98121 Description.... 1 Basement Wall-Gridline P This Wall in File:H:\Userslranderson\ Projects1Magellan\Storquest Self Storage\Calcs\storquest wall RetainPro(c)1987-2016, Build 11.16.07.15 I License:KW-06052576 Restrained Retaining Wall Code:IBC 2012,ACI 318-11,ACI 530-11 License To:SWENSON SAY FAGET I Criteria I [Soil Data I ,,,.. Retained Height - 10.33 ft Allow Soil Bearing = 2,500.0 psf Wail height above soil = 0.00 ft Equivalent Fluid Pressure Method Total Wall Height = 10.33 ft At-rest Heel Pressure = 57.0 psf/ft Top Support Height = 10.33 ft Passive Pressure = 250.0 psf/ft I Soil Density = 125.00 poi Slope Behind Wal = 0.00 FootingljSoil Frictior = 0.350 Height of Soil over Toe = 0.00 in Soil height to ignore for passive pressure = 12.00 in I r^4.e t2k ham-' K .-- I Q W`t ,, g1 ,00. s�EfS)///c% ` I.-a-irk.`�d° Thumbnail I Surcharge Loads _ [Uniform Lateral Load Applied to Stem Adjacent Footing Load I smai Surcharge Over Heel = 0.0 psf Lateral Load = 0.0#/ft Adjacent Footing Load = 0.0 lbs >>>Used To Resist Sliding&Overturning ...Height to Top = 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 psf Used for Sliding&Overturning Wall to Ftg CL Dist - 0,00 ft .,,Height to Bottorr = 0.00 ft Eccentricity = 0.00 in I I Axial Load Applied to Stem Load Type = Wind(W) Footing Type Line Load (strength Levet) Base Above/Below Soil Axial Dead Load = 1,880.0 lbs at Back of Wall 0.0 ft Axial Live Load 3,060.0 lbs Wind on Exposed Stem= 0.0 psf I Axial Load Eccentricity = 0.0 in Poisson's Ratio 0.300 Earth Pressure Seismic Load 0 Kh Soil Density Multiplier= 0.035 g Added seismic per unit area = 0.0 psf Stem Weight Seismic Load 1 Fp/WP Weight Multiplier = 0.000 g Added seismic per unit area = 0.0 psf I liwesign_Summary i Concrete Stem Construction Total Bearing Load = 8,297 lbs Thickness = 8.00 in Fy = 60,000 psi I ...resultant ecc. - 1.82 in Wall Weight = 100.0 psf f c = 4,000 psi Soil Pressure @ Toe = 2,492 psf OK Stem is FREE to rotate at top of footing Soil Pressure @ Heel = 2,492 psf OK I Allowable = 2,500 psf Mmax Between Soil Pressure Less Than Allowable @ Top Support Top&Base @ Base of Wall ACI Factored @ Toe = 2,438 psf Stem OK Stem OK Stem OK ACI Factored @ Heel - 4,277 psf Design Height Above Ftt = 10.33 ft 4.40 ft 0.00 ft I Footing Shear @ Toe = 12.8 psi OK Rebar Size = # 5 # 7 # 5 Footing Shear @ Heel = 26.7 psi OK Rebar Spacing = 12.00 in 12.00 in 12.00 in Allowable - 75.0 psi Rebar Placed at = Edge Edge Center Reaction at Top = 1,012.7 lbs Rebar Depth 'd` = 5.50 in 6.00 in 4.00 in I Reaction at Bottom = 2,644.8 lbs Design Data fb/FB+fa/Fa = 0.000 0.430 0.000 Sliding Calcs Mu....Actual = 0.0 ft-# 6,449.0 ft-# 0.0ft-# Lateral Sliding Force = 2,644.8 lbs * = I Mn Phi Allowable7,353.6 ft-# 15,005.3 ft-# 5,261.1 ft-# Shear Force @ this height = 1,622.0 lbs 3,244.0 lbs Shear Actual = 24.58 psi 67.58 psi Vertical component of active lateral soil pressure IS Shear Allowable = 94.87 psi 94.87 psi I NOT considered in the calculation of soil bearing Other Acceptable Sizes&Spacings: Toe:#5 @ 18.00 in -or- Not req'd:Mu<phi*5"1ambda*sgrt(f c)`Sm Load Factors Heel:#5 @ 12.00 in -or- Not req'd:Mu<phi*5*lambda*sgrt(f c)*Sm I Building Code IBC 2012,ACI Key: No key defined -or- No key defined Dead Load 1.200 Live Load 1.600 Earth,H 1.600 Wind,W 1.000 I Seismic,E 1.000 I Swenson Say Faget Title Star pest Page: 5- ? q 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 25 OCT zu16 I Seattle,WA 98121 Description.... Basement Wall-Gridline P This Wall in File:H:1Userstrandersonl_ProjectstMagellan\Storquest Self StoragelCalcslstorquest wall I RetainPro(c)1987-2016, Build 11.16.07.15 License:KW-06052576 License To:SWENSON SAY FAGET Restrained Retaining Wall Code: ISG 2012,ACi 318-11,AGI 530-11 Concrete Stem Rebar Area Details I Top Support Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0 in2/ft (4/3)*As: 0 in2/ft Min Stem T&S Reinf Area 1.983 in2 I 200bd/fy:200(12)(5.5)/60000: 0.0018bh:0.0018(12)(8): 0.22 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.1728 in2/ft Horizontal Reinforcing Options: One layer of: Two layers of: Required Area: 0.1728 in2/ft #4@ 12.50 in #4@ 25.00 in I Provided Area: 0.31 in2/ft #5@ 19.38 In #5@ 38.75 in Maximum Area: 1.1921 in2/ft #6@ 27.50 in #6@ 55.00 in Mmax Between Ends Vertical Reinforcing Horizontal Reinforcing I As(based on applied moment): 0.2523 in2/ft (4/3)#As: 0.3363 in2/ft Min Stem T&S Reinf Area 1.139 in2 200bd/fy:200(12X6)/60000: 0.24 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12X8): 0.1728 in2/ft Horizontal Reinforcing Options: I One layer of: Two layers of: Required Area: 0.2523 in2fft #4@ 12.50 in #4@ 25.00 in Provided Area: 0.6 in2/ft #5@ 19.38 in #5@ 38.75 in IMaximum Area: 1.3005 in2/ft #6@ 27.50 In #6@ 55.00 in Base Support Vertical Reinforcing Horizontal Reinforcing As(based on applied moment): 0 in2/ft I (4/3)*As: 204bdlfy:200(12)(4)/60000: 0 in2/ft Min Stem T&S Reinf Area 0.844 in2 0.16 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12X8): 0.1728 in2/ft Horizontal Reinforcing Options: One layer of: Two layers of: I Required Area: 0.172$in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area: 0.31 in2/ft #5@ 19.38 in #5@ 38.75 in Maximum Area: 0.867 in2/ft #6@ 27.50 in #6@ 55.00 in I 1 Footing Strengths&Dimensions I W Footing Design Results Toe Width = 1.25 ft Toe *fes' Heel Width = 2.08 Factored Pressure = 2,438 4,277 psf ' Total Footing Width = 3.33 Mu':Upward - 2,085 3,952 ft-# Footing Thickness = 12.00 in Mu':Downward = 141. 1,727 ft-# Key Width = 0.00 in Mu: Design1,944 -2,225 ft-# Key Depth = 0.00 in Actual 1-Way Shear = 12.79 26.75 psi I Key Distance from Toe = 0.00 ft Allow 1-Way Shear = 75.00 75.00 psi fc = 2,500 psi Fy = 60,000 psi Footing Concrete Density = 150.00 pcf Min footing T&S relnf Area 0.86 in2 Min.As% = 0.0018 Min footing T&S reinf Area per foot 0.26 in2 ift I Cover @ Top = 2.00 in @ Btm.= 3.00 in If one layer of horizontal bars: if two layers of horizontal bars: #4@ 9.26 in #4@ 18.52 in #5@ 14.35 in #5@ 28.70 in #6@ 20.37 in #6@ 40.74 in I I I Swenson Say Faget Title Storgpest Page: 5" S I 2124 3rd Ave Suite 100 Job#: Dsgnr: RJA Date: 25 OCT 2016 Seattle,WA 98121 Description.... Basement Wall-Gridline P I This Wall in File:H:Users\randersonlProjects\Magellan\Storquest Self Storage\Calcs\storquest wall RetainPro(c)1987-2016, Build 11.16.07.15 License:KW-06052576 Restrained Retaining Wall Code:IBC 2012,ACI 318-11,ACI 530-11 I License To:SWENSON SAY FAGET Summary of Forces on Footing : Slab RESISTS sliding,stem is PINNED at footing Forces acting on footing soil pressure I (taking moments about front of footing to find eccentricity) Surcharge Over Heel - lbs ft ft-# Axial Dead Load on Stem = 4,940.O1bs 1.58 ft 7,821.7ft-# Soil Over Toe = lbs ft ft-# I Adjacent Footing Load = lbs ft ft-# Surcharge Over Toe = lbs ft ft-# Stem Weight = 1,033.O1bs 1.58 ft 1,635.6ft-# Soil Over Heel = 1,825.01bs 2.62 ft 4,787.5ft-# I Footing Weight = 499.5tbs 1.67 ft 8331.7ft# Total Vertical Force = 8,297.51bs Moment = 15,076.4ft-# Net Mom.at StemlFtg Interface= -1,261.1 ft-# I Allow.Mom.@ Stem/Ftg Interface= 3,288.2 ft-# Allow.Mom.Exceeds Applied Mom.? Yes Therefore Uniform Soil Pressure= 2,491.7 psf Vertical component of active lateral soil pressure IS NOT considered in I the calculation of Sliding Resistance. I I I I I I I I I I S P(kip) 450 1 , 0 0 /—\ 1 xI / — \ fs=0 /7 ..\ fs=0 I 0 0 v (Pmax) (Pmax) / \ r \ / /" / r" I fs=0.5fy,rj' ,/' l fs=0.5fy n fs=0 fs=0 r • I ` ti 10x10in 1 ` ," fs=0.5fy \ \fs=0.5fy Code:ACI 318-11 \ \ Units: English l \ \. J/ // i / / Run axis:About X-axis \�; 4 Jf:::/ \ — 4 ,'/ IRun option: Investigation �`��. 6 // Slenderness: Not considered i 1 1 I -60 \ so :::::;turat 7 Mx(k-ft) ` '� I (Pmin) (Pmin) Date: 11/01/16 -100 ITime: 10:03:34 I ' spColumn v5.00. Licensed to:Swenson Say Faget, Inc.. License ID:65163-1051525-4-20EB4-22EB2 File:h:luserslrandersonl projectstmagerlanlstorquest self storage\permit response\grid p col.col IProject:Storquest Column: Cl Engineer: RJA Ifc=4 ksi fy =60 ksi Ag= 100 inA2 4#5 bars Ec=3605 ksi Es =29000 ksi As = 1.24 inA2 rho = 1.24% fc= 3.4 ksi e yt=0.00206897 in/in Xo =0.00 in lx= 833.333 inA4 111 e_u =0.003 in/in Yo =0.00 in ly= 833.333 inA4 Betel =0.85 Min clear spacing =5.75 in Clear cover= 1.50 in I Confinement:Tied phi(a)=0.8, phi(b)=0.9, phi(c)=0.65 I I STRUCTUREPOINT - spColumn v5.00 .(TM) Page '3•' S-1'0 I Licensed to: Swenson Say Faget, Inc.. License ID: 65163-1051525-4-20EB4-22EB2 11/01/16 ' h:\users\randerson\projects\magellan\storquest self storage\permit response\grid p col.col 10:00 AM General Information: II File Name: h:\users\randerson\_projects\magellan\storquest self storage\permit res. ..\grid p col.col Project: Storquest Column: Cl Engineer: ILIA I Code: ACI 318-11 Units: English Run Option: Investigation Slenderness: Not considered Run Axis: X-axis Column Type: Structural I Material Properties: ' Concrete: Standard Steel: Standard f'c = 4 ksi fy = 60 ksi Sc = 3605 ksi Es = 29000 ksi fc = 3.4 ksi Eps_yt = 0,00206897 in/in II Eps_u = 0.003 in/in Betal = 0.85 Section: IIRectangular: Width = 10 in ✓ Depth = 10 in ,/ Gross section area, Ag = 100 in"2 Ix = 833.333 in"4 Iy = 833.333 in"4 IIrx = 2.88675 in ry = 2.88675 in Xo = 0 in Yo = 0 in Reinforcement: Bar Set: ASTM A615 IISize Diam (in) Area (in"2) Size Diam (in) Area (in"2) Size Diam (in) Area (in"2) # 3 0.38 0.11 # 4 0.50 0.20 # 5 0.63 0.31 # 6 0.75 0.44 # 7 0.88 0.60 # 8 1.00 0.79 II # 9 1.13 1.00 # 10 1.27 1.27 # 11 1.41 1.56 # 14 1.69 2.25 # 18 2.26 4.00 Confinement: Tied; #3 ties with #10 bars, #4 with larger bars. phi(a) = 0.8, phi(b) = 0.9, phi(c) = 0.65 II Layout: Rectangular Pattern: All Sides Equal (Cover to longitudinal reinforcement) Total steel area: a =24-12s"2 at rho = 1.24% Minimum clear spacing = 5.75 in II 4 #5 Cover = 1.5 in Service Loads: r A 1 Load Axial Load Mx a^ Top Mx 4' Bat My go Top My S Dot II No. Case kip k-ft k-ft k-ft k-ft 1 Dead 18.77 0.00 0.00 0.00 0.00 Live 30.631 0,00 0.00 0.00 0.00 IIWind 0.00 0.00 0.00 0.00 0.00 EQ 0.00 0.00 0.00 0.00 0.00 Snow 0.00 0.00 0.00 0,00 0.00 Sustained Load Factors: II Load Factor Case (%) Dead 100 IILive 0 Wind 0 EQ 0 Snow 0 II Load Combinations: Ui = 1.400*Dead + 0.000*Live + 0.000*Wind + 0.000*EarthQuake + 0.000*Snow U2 = 1.200*Dead + 1,600*Live + 0.000*Wind + 0.000*EarthQuake + 0.500*Snow IIU3 = 1.200*Dead + 1.000*Live + 0.000*Wind + 0.000*EarthQuake + 1.600*Snow U4 = 1.200*Dead + 0.000*Live + 0.800*Wind + 0.000*EarthQuake + 1.600*Snow U5 = 1.200*Dead + 1.000*Live + 1,600*Wind + 0.000*EarthQuake + 0.500*Snow U6 = 0.900+Dead + 0.000*Live + 1.600*Wind + 0.000*EarthQuake + 0.000*Snow U7 = 1.200*Dead + 0.000*Live - 0.800*Wind + 0.000*EarthQuake + 1.600*snow II U8 = 1.200*Dead + 1.000*Live - 1.600*Wind + 0.000*EarthQuake + 0.500*Snow 11 IISTRUCTUREPOINT - speolumn v5.00 (TM) Page �j'' Licensed to: Swenson Say Paget, Inc. , License ID: 65163-1051525-4-20E134-22E8211/01/16 h:\users\randerson\projects\magellan\storquest self storage\permit response\grid p col.col 11 10:00 AM I U9 = 0.900*Dead + 0.000*Live - 1.600*wind + 0.000*EarthQuake + 0,000*Snow 1310 = 1.200*Dead + 1.000*Live + 0.000*Wind + 1.000*EarthQuake + 0.200*Snow U11 = 0.900*Dead + 0.000*Live + 0.000*Wind + 1.000*EarthQuake + 0.000*Snow U12 = 1.200*Dead + 1.000*Live + 0.000*Wind - 1.000*EarthQuake + 0.200*Snow U13 = 0.900*Dead + 0.000*Live-* 0.000=*wind - 1.000*EarthQuake + 0.000*Snow Factored Loads and Moments with Corresponding-Capaccities: II NOTE: Each loading combination includes the following cases: First line - at column top IISecond line - at column bottom Load Pu Mux PhiMnx PhiMn/Mu NA depth Dt depth eps_t Phi No. Combo kip k-ft k-ft in in 1 1 131 26.28 0.00 28.96 999.999 2.07 8.19 0.00888 0.900 II 2 26.28 -0.00 28.96 999.999 2.07 8.19 0.00888 0,900 3 1 132 71.53 0.00 37.43 999.999 3.49 8.19 0.00404 0.818 4 71.53 -0.00 37.43 999.999 3.49 8.19 0.00404 0.818 5 1 U3 53.15 0.00 35.74 999.999 2.76 8.19 0.00589 0.900 I 6 53.15 -0.00 35.74 999.999 2.76 8.19 0.00589 0.900 7 1 134 22.52 0.00 27.95 999.999 1.99 8.19 0.00935 0.900 8 22.52 0.00 27,95 999.999 1.99 8.19 0.00935 0.900 9 1 U5 53.15 0.00 35.74 999.999 2.76 8.19 0.00589 0.900 10 53.15 -0.00 35.74 999.999 2.76 8.19 0.00589 0.900 I 11 1 U6 16.89 0.00 26.41 999.999 1.88 8.19 0.01010 0.900 12 16.89 -0.00 26.41 999.999 1.88 8.19 0.01010 0.900 13 1 U7 22.52 0.00 27.95 999.999 1.99 8.19 0.00935 0.900 14 22.52 -0.00 27.95 999.999 1.99 8.19 0.00935 0.900 15 1 U8 53.15 0.00 35.74 999.999 2.76 8.19 0.00589 0.900 II 16 53.15 -0.00 35.74 999.999 2.76 8.19 0.00589 0.900 17 1 139 16.89 0.00 26.41 999.999 1.88 8.19 0.01010 0.900 18 16.89 -0.00 26.41 999.999 1.88 8.19 0.01010 0.900 19 1 1710 53.15 0.00 35.74 999.999 2.76 8.19 0.00589 0.900 20 53.15 -0.00 35.74 999.999 2.76 8.19 0.00589 0.900 I 21 1 1311 16.89 0.00 26.41 999.999 1.88 8.19 0.01010 0.900 22 16.89 -0.00 26.41 999.999 1.88 8.19 0.01010 0.900 23 1 U12 53.15 0.00 35.74 999.999 2.76 8.19 0.00589 0.900 24 53.15 -0.00 35.74 999.999 2.76 8,19 0.00589 0.900 25 1 U13 16.89 0.00 26.41 999.999 1.88 8.19 0.01010 0.900 I 26 16.89 -0.00 26.41 999.999 1.88 8.19 0.01010 0.900 *** End of output *** I II II 1 II I II II 1 1 I O n 6."-c-7`c N = 1. 3(A- c", ,r w I /2-A-01-G.T`i c.WL!=2) I s coI 0 til N CV 0 0 e .7- (G, -$/2 . - 5/2_. .. i? ) " N 1 fV p rn V AA , `J °� rn oboo Ln vl 3 W o M J Q F I 21344. Z 12- 4- tr z 2 E I 0 al o zt•3/(v 7- l3 = 31-1esi z o•s3f'-It 4a7os I it L-74kA P,5'r2IS07-t0 T) -T c,v 4.4— ii/z.. A, 13 ,3312, 00,6,7.' c LL 4 7-ovr ,sr L-- 4-P- LI-,-t 7-t7 1 1 + Z Cis ,67-/Is) = '5-.. '-7-' Itn 0 / Z a ht t t-t r ` 2• r ` ,f./•( 7- = • 7-7- u-`1= + I 1 L 1,, 4,5 ,s p + )• 214,;:. L p, cob 0,1-1 ws,,f , 6 tci..t= Ms - 5( /'( t> i- o �i, SL-. 4-- 0,-t-S (D, }<=) ' v' - 2•; 'fu.t-}' /12-é --- ,.-'a Si=r A.1`T1-c-1 ''-.L /3 N+-'4--y Ae,5, I PROJECT DATE SE4IRGUCErNii PRUJ.# -• " DESIGN 5 z ' SHEET I I ICriteria Mmax= n . 0 Kip*feet Height= ,".2`16:33'ft 195.96 in I Axial Load P= 2.77-Kip/feet nominal width=< 8.inches equivalent thickness= 7.6 inches pm= , ;1900;psi actual thickness= 7.625 I fy='.. .. . 60_ksi r= 2.19 in d= 3.8125 inches h/r= 89.47945 CMU or Clay= crnu I Grout Spacing= solid--.inches Wind/Seismic? .Yes Steel Grade= 60 Fs= 32000 psi I Axial&Flexural Capacity Fa= 365.2521 > fa= 30.37281 psi OK fb= 0 psi IFb=0.45f`m= 1111.5 > fa+fb= 30.37281 psi OK Bending in Wall I Ms= 0.971038 k*ft >Mmax? OK Mm= 0.75647 k*ft >Mmax? t}K I Steel Steel 1 or 2 layers Bar size Spacing As I l'':.''''.'1..'. , h'.., 1 .�.. 5i 4 _. .. D4fi0.0775 p= 0.00085 n= 16.95906 I k= 0.155972 j= 0.948009 I I I I I ISwenson Say Faget 4-i 3 2124 3rd Ave Suite 100 10/25/2016 I Seattle,WA 98121 I Criteria I Mmax= Kip*feet Height 163ft 195.96 in Axial Load P -:„234';Kip/feet I nominal width 8 inches equivalent thickness= 7.6 inches #`m '...,•21,.....--PPP-',psi actual thickness= 7.625 fy _ _ksi r= 2.19 in I d= 3.8125 inches h/r= 89.47945 CMU or Clay cmu Grout Spacing= so11d inches Wind/Seismic? yes, Steel Grade 60Fs= 32000 psi I Axial&Flexural Capacity I Fa= 365.2521 > fa= 25.65789 psi OK fb= 625.9322 psi Fb=0.45#'m= 1111.5 > fa+fb= 651.5901 psi C?K I Bending in Wall Ms= 0.971038 k*ft >Mmax? OK I Mm= 0.75647 k*ft >Mmax? OK Steel Steel 1 or 2 layers Bar sip ze Sacing As 1 x 5 , `>. . ,, ,,48.' 0.0775 p= 0.00085 n= 16.95906 k= 0.155972 I j= 0.948009 I I 1 I I Swenson Say Faget .-kkt I 2124 3rd Ave Suite 100 10/25/2016 Seattle,WA 98121 I I Title: Job# Dsgnr: Date: 4:01 PM, 28 OCT 16 IDescription: Scope: cy: 580003 User:580198.V�5.8.0, Nov 2tX1s Page 1 014 ^ ENERCALCEngirwri software Rigid Diaphragm Torsional Analysis , ,-ear+:c E ations Description revised yZ_- 5 IGeneral information Y-Y Axis Shear 497.50 k Min.X Axis Ecc 5.00 °k X Axis Center of Mass 103,25 ft I X-X Axis Shear 497.50 k shears are applied on each axis separately Min.Y Axis Ecc 5.00 °10 Y Axis Center of Mass 102.20 ft Max X Dimension 210.00 ft Max I Dimension 180.00 ft I Wall Data Label Thickness Length Height , Walt Xcg Wall Ycg Wail Angle Wall End E -11 in ft ft ft ft deg CCW Fixity I i 7.625 70.000 16.000 20.000 45.000 90.0 Fix-Pin 1,710.0 2 7.625 10.000 16.000 25.000 80.000 0.0 Fix-Pin 1,710.0 3 7.625 20.000 16,000 30.000 90.000 90.0 Fix-Pin 1,710.0 4 7.625 20.000 16.000 30.000 120.000 90.0 Fix-Pin 1,710.0 I 5 7.625 10.000 16.000 25.000 130.000 0.0 Fix-Pin 1,710.0 6 7.625 50.000 16.000 20.000 155.000 90.0 Fix-Pin 1,710,0 7 7.625 70,000 16.000 35.000 180.000 0.0 Fix-Pin 3,605.0 Ia 7.625 60.000 13.000 170.000 180,000 0.0 Fix-Pin 3,605.0 9 7.625 30.000 13.000 200.000 165.000 90,0 Fix-Pin 3,605.0 10 7.625 10.000 13.000 205.000 150.000 0.0 Fix-Pin 3,605.0 11 7.625 70.000 13.000 210.000 115.000 90.0 Fix-Pin 3,605.0 12 7.625 10.000 13,000 205.000 80.000 0.0 Fix-Pin 3,605.0 13 7.825 25.000 13.000 190.000 67.500 90.0 Fix-Pin 1,710.0 14 7.625 10.000 13.000 195.000 55.000 0.0 Fix-Pin 1,710.0 I 15 7.625 10.000 13,000 165.000 40.000 0.0 Fix-Pal 1,710.0 16 7.625 16.000 13.000 137.000 45.000 0.0 Fix-Pin 1,710.0 17 7.625 65.000 13.000 97.500 40.000 0.0 Fix-PM 1,710.0 I 18 7.825 30.000 16.000 85.000 25,000 90.0 Fix-Pin 1,710.0 19 7,625 21.000 16.000 55.000 10.000 0.0 Fix-Pin 1,710.0 20 7:625 21.000 16.000 30.000 10.000 0.0 Fix-Pin 1,710.0 21 7.625 60.000 13.000 100.000 180.000 0.0 Fix-Fix 3,605.0 1 22 7.625 10.000 13.000 195.000 80.000 0.0 Fix-Pin 1,710.0 L Catcuiated Wall Forcesli Load Location for Maximum Forces ILabel Direct Shears k Torsional Shears k Final Max. Wall Shear X ft Y Length Thick Length Thick k 1 -47.1$5 0.000 79.446 0.000 36.295 0.035 115.741 2 0.000 -54.916 -1.782 0.000 -0.758 -0.006 -2.640 iii I 3 -47.185 0,000 12.436 0.000 5.208 0.006 17.644 4 47.185 0.000 12.436 0.000 5208 0.003 17.644 5 0.000 -54.916 -1.782 0.000 -0.202 -0.006 -1.983 6 -47.185 0.000 53.014 • 0.000 24.219 5.002 77,234 111 7 0.000 -36.916 -118.860 0.000 15.914 -0.059 -118.880 8 0.000 -36.916 -126.331 0,000 16.914 0.027 -126.331 9 -47.185 0.000 74.222 0.000 -16.981 -0.010 74.222 I10 0.000 -36.916 -6.334 0.000 0.050 0.010 -6.334 cry*'"---0'11 -47.185 0.000 211.409 0.000 -56.421 0.044 211.409 12 0.000 -54.916 -6.334 0.000 -2.695 0.014 8.029 I 13 -47.185 0.000 26.733 0.000 -5.098 0.018 26.733 14 0.000 -84.916 -3.004 0.000 1.748 0.006 -4.752 18 0,000 -54.916 -3.004 0.000 -2.029 0.003 -5.034 I 5.,45 ....._.................._. Title: Job# I Dsgnr: Date: 4:01PM, 28 OCT 16 Description: Scope: Rev: 5i3 Page 2 I I u -0 versaa,A oe Rigid Diaphragm Torsional Analysis (c)1983 ENENERGAI C Englneerfng aetNtg Software Tigard eerCatcul8lions Description revised 16 0.000 -54.916 -8.557 0.000 -5.512 -0.000 -14.069 Gp.A.ul-41.17 0.000 -54.916 -65.562 0.000 -44.280 -0.029 -109.842 18 -47.185 0.000 25.677 0.000 7.329 0.018 33.007 19 0.000 -54.916 -9.711 0.000 -8.379 -0.010 -18.090 I 20 0,000 -54.916 -9.711 0.000 -8.379 -0.013 -18.090 21 0.000 -36.916 -132.953 0.000 17.801 -0.142 -132.953 22 0.000 -54.916 -3.004 0.000 -1.278 0.006 -4.283 III II Summary imil X Distance to enter o Rigidity 139.935 ft Controlling Eccentricities&Forces from Applied VA/Shear Y Distance to Center of Rigidity 148,116 ft Xcm+(Min%*MaxX)-X-cr = -26.185ft Torsion= -13,027.26 k-ft Xcm-(Min%*MaxX)-X-cr = -47.185 ft Torsion= -23,474.76 k-ft X Accidental Eccentricity 10.500 ft Controlling Eccentricities&Forces from Applied X-X Shear Y Accidental Eccentricity 9.000 ft Ycm+(Min%*MaxY)-Y-cr =_ -36.916ft Torsion= -18.365.88 k tt Ycm-(Min%*MaxY)-Y-cr A. -54.916 ft Torsion= -27,320.88 k-ft I I I 1 Il I I 1 I I I I I CR.:(139,93,148.11)a_ 5 )1 111 C.M.;(10325,102/0) 1 47; It to ii IS• 11 ' 1 tigard ground floor shearwalls unit I wall length shear shear label ft kips pif 1 70 115.741 1653 I 2 10 -2.54 -254 3 20 17.644 882 4 20 17.644 882 5 10 -1.983 -198 6 50 77.234 1545 I 7 70 -118.86 -1698 8 60 -126.331 -2106 9 30 74.222 2474 10 10 -6.334 -633 11 70 211.409 3020—tit PI 12 10 -9.029 -903 13 25. 26.733 1069 14 10 -4.752 -475 15 10 -5.034 -503 16 16 -14.069 -879 17 65 -109.842 -1690 18 30 33.007 1100 I 19 21 -18.09 -861 20 21 -18.09 -861 I 21 60 -132.953 -2216 22 10 -4.283 -428 I I I I I I I S-ff I tSwenson SayFaget 9 Title Retaining Wall Schedule Page:17 rev 2124 3rd Ave Suite 100 Job#: Dsgnr JR Date: 1 NOV 2016 Seattle,WA 98121 Description.... I6'-0"Retaining Wail wl Slab This Wall in File:1-1_1Users\randerson\_Projects\MageilanlStorquest Self Storage\Retaining Wall Packa RetainPro(c)1987.2016, Build 11.16.07.15 License:KW-06052576 License To:SWENSON SAY FAGET Cantilevered Retaining Walt Code: IBC 2012,ACI 3113-11,ACI 530-11 Criteria I Soil Data t., Retained Height = 6.00 ft Allow Soft Bearing 2,000.0 psf Wall height above sod 0.00 ft Equivalent Fluid Pressure Method Active Heel Pressure = 35.0 psf/ft Slope Behind Wall - 0,00 Height of Soil over Toe = 6.00 in Passive Pressure = 350.0 psf/ft I Water height over heel = 0.0 ft Soil Density,Heel = 125.00 pcf Soil Density,Toe 0.00 pcf FootingilSoil Friction = 0.450 I Soil height to ignore _ �`e for passive pressure 12.00 in {urcharge Loads Lateral Load Applied to Stem i Adjacent Footing Load I Surcharge Over Heel = 0.0 psf Lateral Load 0.0#(ft Adjacent Footing Load = 0.0 lbs Used To Resist Sliding&Overturning Height to To 0.00 ft Footing Width 0.00 ft Surcharge Over Toe = 0.0 ...Height to Bottom = 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning Wall to Ftg CL Dist = 0.00 ft I Axial Load Applied to Stem Load Type = Wind{W} Footing Type Line Load (service Level) Base Above/Below Sod Axial Dead Load - 0.0 lbs Wind on Exposed Stem= 0.0 psf at Back of Wall - 0.0 ft Axial Live Load - 0.0 lbs (Service Level) Poisson's Ratio = 0.300 Axial Load Eccentricity w 0.0 in IDesign Summary Stem Construction Bottom Stem OK Wall Stability Ratios Design Height Above Ftg ft= 0,00 Overturning - 1.73 OK Wall Material Above"Ht" = Concrete Slab Resists All Sliding I Design Method - LRFD Thickness - 8.00 Total Bearing Load = 1,326 lbs Rebar Size = # 5 ...resultant ecc. = 7.77 in Rebar Spacing = 12.00 I Soil Pressure @ Toe =Soil Pressure @Heel 869 psf OK 0 psf OK Rebar Placed at Design = Center Data fb/FB - Allowable = 2,000 +fa/Fa - 0.39a psf Total Force cj Section Soil Pressure Less Than Allowable Service Level Ibs= I ACI Factored @ Toe 1,216 psf Ser th Level Momlbs= 1,008.0 ACI Factored @ Heel 0 psf Moment....Actual Footing Shear @ Toe = 13.7 psi OK Service Level ft-#= Footing Shear @ Heel .- 4.8 psi OK Strength Level =ft-#= 2,016.0 = 75,0 psi Sliding Gales Moment Allowable5,069.7 Lateral Sliding Force = 817.2 lbs Service Level psi I Strength Level psi= 21.0 Shear Allowable psi= 75.0 Met(Masonry) in2= Rebar Depth 'd' in= 4.00 I Masonry Data fm psi= Fs psi= Solid Grouting = I Vertical component of active lateral soil pressure IS Modular Ratio'n' = NOT considered in the calculation of soil bearing Wall Weight psf 100.0 Load Factors Short Term Factor = Building Code IBC 2012,ACI Equiv.Solid Thick. - I Dead Load 1.200 Masonry Block Type = Medium Weight Live Load 1.600 Masonry Design Method = ASD Earth,H 1.600 Concrete Data Wind,W 1.000 Pc psi= 2,500.0 ISeismic,E 1.000 Fy psi= 60,000.0 I Swenson Say Faget Title Retaining Wall Schedule Page:18 rev I 2124 3rd Ave Suite 100 Job#: Dsgnr: JR Date: 1 NOV 2016 Seattle,WA 98121 Description.... 6'-0"Retaining Wall w/Slab I This Wall in File:H:\liserstranderson\_Projects\Magellan\Storquest Self Storage\Retaining Wall Packa RetainPro(c)1987-2016, Build 11.16.07,15 License:KW-06052576 Cantilevered Retaining Wall Code: IBC 2012,ACI 318-11,ACI530-11 I License To:SWENSON SAY FAGET Concrete Stem Rebar Area Details Bottom Stem Vertical Reinforcing Horizontal Reinforcing ' As(based on applied moment): 0.1217 in2/ft (4/3)*As: 0.1623 in2/ft Min Stem T&S Reinf Area 1.152 in2 200bd/fy:200(12)(4)/60000: 0.16 in2/ft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft 0.0018bh:0.0018(12)(8): 0.1728 in2/ft Horizontal Reinforcing Options: I One layer of: Two layers of: Required Area: 0.16 in2/ft #4@ 12.50 in #4@ 25.00 in Provided Area .__.. 0.31 in2/ft #5@ 19.38 in #5©38.75 in I Maximum Area: 0.5419 in2/ft #6@ 27.50 in #6©55.00 in Footing Dimensions &Strengths r Footing Design Results Toe Width = 2.25 ft Toe Heel t Heel Width = 1.08 Factored Pressure = 1,216 0 psf Total Footing Width = 3.33 Mu':Upward = 2,322 0 ft-# Footing Thickness = 10.00 in Mu':Downward = 570 90 ft-# Mu: Design = 1,753 90 ft-# Key Width = 0.00 in Actual 1-Way Shear = 13.71 4.78 psi I Key Depth = 0.00 In Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe 0.00 ft Toe Reinforcing = #5 @ 12.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = None Spec'd Footing Concrete Density = 150.00 pcf Key Reinforcing = None Spec'd I Min.As% - 0.0018 Other Acceptable Sizes&Spacings Cover @ Top 2.00 @ 8tm- 3.00 in Toe: #4©11.11 in,#5@ 17.22 in,#6@ 24.44 in,#7@ 33.33 in,#8@ 43.89 in,#9©5 Heel:Not req'd:Mu<phi*5*lambda*sgrt(fc)*Sm Key: No key defined Min footing T&S reinf Area 0.72 in2 Min footing T&S reinf Area per foot 0.22 in2 At If one layer of horizontal bars: If two layers of horizontal bars: #4@ 11.11 in #4@ 22.22 in I #5@ 17.22 in #5@ 34.44 in #6@ 24.44 in #6@ 48.89 in Summary of Overturning&Resisting Forces&Moments OVERTURNING RESISTING Force Distance Moment Force Distance Moment Item lbs ft ft-# Das ft ft-# Heel Active Pressure = 817.2 2.28 1,861.3 Soil Over Heel = 310.0 3.12 968.2 I Surcharge over Heel = Sloped Soil Over Heel = Surcharge Over Toe = Surcharge Over Heel = Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load = Axial Dead Load on Stem= Load @ Stem Above Soil= *Axial Live Load on Stem = Soil Over Toe = 1.13 Surcharge Over Toe = Total 817.2 O.T.M. 1,861.3 Stem Weight(s) = 600.0 2.58 1,550.0 I Earth @ Stem Transitions= = Footing Weight = 416.3 1.67 693.1 Resisting/Overturning Ratio = 1.73 Key Weight = Vertical Loads used for Soil Pressure= 1,326.3 lbs Vert.Component __ Total: 1,326.3 lbs R.M.= 3,211.3 *Axial live load NOT Included in total displayed or used for overturning resistance,but is included for soil pressure calculation. Vertical component of active lateral soil pressure IS NOT considered in I the calculation of Sliding Resistance. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance. I Swenson SayFaget ge Title Retaining Wall Schedule Page: 19 rev 2124 3rd Ave Suite 100 Job#: Dsgnr: JR Date: 1 NOV 2016 Seattle,WA 98121 Description.... I &'-0"Retaining Wall wf Slab,w/Seismic This Wall in File:H:\Users1randerson\-ProjectslMagellan\Storquest Self Storage\Retaining Wall Packa RetainPro(c)1987-2016, Build 11,16.07.15 I License:KW-06052576 Cantilevered Retaining Wall Code: IBC 2012,ACI 318-11,ACi 530-11 License To:SWENSON SAY FAGET Criteria I 1Soil Data Retained Height = 6.00 ft Allow Soil Bearing = 2,667.0 psf Wait height above soil 0.00 ft Equivalent Fluid Pressure Method Active Heel Pressure = 35,0 psf/ft Slope Behind Wall - 0.00 Height of Soil over Toe = 6.00 in Passive Pressure = 3500 psflft I Water height over heel = 0.0 ft Soil Density,Heei = 125.40 pcf Soil Density,Toe = 0.00 pcf .t Footingpoil Friction - 0.450 I Soil height to ignore � ,, {z for passive pressure = 12.00 in Surcharge Loads111Lateral Load Applied to SteM-11 Adjacent Footing Load I Surcharge Over Heel = 0.0 psf Lateral Load _ 0.0#/ft Adjacent Footing Load 0.4 lbs Used To Resist Sliding&Overturning Height to To - 0.00 ft Footing Width = 0.00 ft Surcharge Over Toe = 0.0 ...Height to Bottom - 0.00 ft Eccentricity = 0.00 in Used for Sliding&Overturning I Load Type = Wind W Wall to Ftg CL Dist - 0.00 ft Axial Load Applied to Stem (Service evel) Footing Type Base Above/Below Soil Line Load Axial Dead Load = 0.0 lbs Wind on Exposed Stem= 0.0 psf at Back of Wall = 0.0 ft Axial Live Load = 0.0 ibs (Service Level) Poisson's Ratio - 0.300 Axial Load Eccentricity = 0.0 in I Earth Pressure Seismic Load 0 Method :Uniform Uniform Seismic Force = 47.833 ' I Used = 7.000 Total Seismic Force = 326.861 (Multiplier used on soil density) Design Summary IStem Construction I Bottom Ratios Stem OK Wall Stability _ Design Height Above Ftp, ft= 0.00 I Overturning 1,22 Ratio<1.51 Wail Material Above"Ht" = Concrete Slab Resists All Sliding 1 Design Method = LRFD Thickness = 8.00 Total Bearing Load = 1,326 lbs Rebar Size = # 5 I ...resultant ecc. = 14.84 in Rebar Spacing 12.00 Soil Pressure Q Toe 2,064 psf OK Rebar Placed at = Center Soil Pressure @ Heel = 0 psf OK Design Data fb/FB+fa/Fa = 0.567 I Allowable 2.667 psf Total Force •Section Soil Pressure Less Than Allowable= Service Level lbs= ACl Factored @Tae2,889 psf Strength Level lbs= 1,295.0 ACI Factored @ Heel - 0 psf Footing Shear @ Toe 18.3 psi OK Moment....Actuaf III -- Footing Shear @Heei Allowable = 4.8 si OK 75.0 psi Service Level ft-#= p Strength Level ft-#= 2,877.0 Sliding Coles Moment Allowable = 5,069,7 Lateral Sliding Force = 1,046.0 lbs I Service Level psi= Strength Level psi= 27.0 Shear Allowable psi= 75.0 Anet(Masonry) in2= Rebar Depth 'd' in= 4.00 Masonry Data I fm psi= Fs psi= I Vertical component of active lateral soil pressure IS Solid Grouting Modular Ratio'n' NOT considered in the calculation of soil bearing Wall Weight = psf= 100.0 Load Factors Short Term Factor - II Building Code IBC 2012,ACI Equiv.Solid Thick. = Dead Load 1.200 Masonry Block Type = Medium Weight Live Load 1.600 Masonry Design Method = ASD Earth,H 1.600 Concrete Data I Wind,W Seismic,E 1.000 fc psi= 2,500.0 1.000 FY psi= 60,000.0 , Swenson Say Faget Title Retaining Wall Schedule Page:20 rev I 2124 3rd Ave Suite 900 Job#: Dsgnr: JR Date: 1 NOV 2016 Seattle,WA 98121 Description.,.. 6'-0"Retaining Wall w/Slab,w/Seismic I This Wall in File:H:\Userslrandersonl_Projects\Magellan\Storquest Self StoragetRetalning Wall Packa RetainLicense icense: W 1987-2016,052576 Build 11.16.07.15 License:Kw•o6052576 Cantilevered Retaining Wall Code: IBC 2012,AC1318-11,AC1530-11 License To:SWENSON SAY FAGET Concrete Stem Rebar Area Details Bottom Stem Vertical Reinforcing Horizontal Reinforcing I As(based on applied moment): 0.1737 in2lft (4/3)*As: 0.2316 in2lft Min Stem T&S Reinf Area 1.152 in2 200bd/fy:200(12X4)/60000: 0.16 in2lft Min Stem T&S Reinf Area per ft of stem Height:0.192 in2/ft I 0.0018bh:0.0018(12)(8): 0.1728 in2/ft Horizontal Reinforcing Options: ----------= One layer of: Two layers of: Required Area: 0.1737 in2/ft #4@ 12.50 in #4@ 25,00 in Provided Area: 0.31 in2/ft #5@ 19.38 in #5©38.75 in I Maximum Area: 0.5419 in2/ft #6©27.50 in #6@ 55.00 in [Footing Dimensions&Strengths 1Footing Design Resultsli Toe Width = 2.25 ft 191 Heel I Heel Width - = 1.08 Factored Pressure = 2,889 0 psf Total Footing Width = 3.33 Mu':Upward - 3,382 0 ft-# Footing Thickness - 10.00 in Mu':Downward = 570 90 ft-# Mu: Design = 2,813 90 ft-# Key Width = 0.00 in Actual 1-Way Shear = 18.33 4.82 psi I Key Depth = 0.00 in Allow 1-Way Shear = 75.00 75.00 psi Key Distance from Toe = 0.00 ft Toe Reinforcing = #5 @ 12.00 in fc = 2,500 psi Fy = 60,000 psi Heel Reinforcing = None Spec'd Footing Concrete Density = 150.00 pcf Key Reinforcing It. None Spec'd Min.As% = 0.0018 Other Acceptable Sizes&Spacings 111 Cover @ Top 2.00 @ Btm.= 3.00 in Toe: #4@ 11.11 in,#5@ 17.22 in,#6@ 24.44 in,#7@ 33.33 in,#8@ 43.89 in,#9@ 5 Heel:Not req'd:Mu<phi*5*lambda*sgrt(fc)*Sm Key, No key defined I Min footing T&S rein#Area 0.72 in2 Mtn footing T&S reinf Area per foot 0.22 in2 /ft If one layer of horizontal bars: If two layers of horizontal bars: I #4©11.11 in #4@ 22.22 in #5@ 17.22 in #5@ 34.44 in #6@ 24.44 in #6@ 48.89 in Summary of Overturning&Resisting Forces&Moments OVERTURNING RESISTING..... t Force Distance Moment Force Distance Moment Item lbs ft ft-# lbs ft ft-# Heel Active Pressure = 817.2 2.28 1,861.3 Soil Over Heel = 310.0 3.12 968.2 I Surcharge over Feel - Sloped Soil Over Heel = Surcharge Over Toe = Surcharge Over Heel = Adjacent Footing Load = Adjacent Footing Load = Added Lateral Load = Axial Dead Load on Stem= I Load @ Stem Above Soil= *Axial Live Load on Stem Seismic Earth Load = 228.8 3.42 781.7 Soil Over Toe - 1.13 Surcharge Over Toe = Total 1,046.0 O.T.M. 2,643.0 Stem Weight(s) = 600.0 2.58 1,550.0 I Earth @ Stern Transitions= = = Footing Weight = 416.3 1.67 693.1 Resisting/Overturning Ratio = 1.22 Key Weight = I Vertical Loads used for Soil Pressure 1,326.3 lbs Vert.Component = Totals 1,326.3 lbs R.M.= 3,211.3 If seismic is included,the OTM and sliding ratios *Axial live load NOT included in total displayed or used for overturning be 1.1 per section 1807.2.3 of IBC 2009 or IBC 201 resistance,but is included for soil pressure calculation. Vertical component of active lateral soil pressure IS NOT considered in the calculation of Sliding Resistance_ Vertical component of active lateral soil pressure IS NOT considered in the calculation of Overturning Resistance. 1 I I0 Swenson Say Faget STRUCTURAL ENGINEERING 2124 Third Ave,Suite 100 I Seattle,WA 98121 O 206.443.6212 I 934 Broadway,Suite 100 Tacoma,WA 98402 O 253.284.9470 November 17,2016 5_} c Magellan Architects IAttn:Dirk McCulloch 8383 158th Ave NE,#280 IRedmond,WA 98052 RE: Storquest Self Storage,Tigard,OR I Structural Plan Review Comment Response#2 We are in receipt of the second round of permit comments provided by Rogers Engineering and have responded to the ISSF structural items as follows: I SSF Structural Engineering 28. Calculation page 22 specifies#6 bars at 12"o.c.for the basement slab.Plan note 4,sheet S2.1 shows#5 bars. I Provide clarification.OSSC Sec.107.1 • See attached supplemental calculation page 22(S).The required area of reinforcing to resist maximum buoyancy forces on the slab is#5©12"oc. i. The factored pressures are application of ACI factors for design of the footings.Other retaining wall calculations provided do not have such a dramatic change from unfactored to factored pressures. RetainPro was contracted for clarification but would not comment since your office is l the licensed user. 1. See attached comment response calculation.The 12 ksf factored heel pressure is correct based on an eccentricity of 9.34"and a factored load of 7052 plf.This is a Irestrained wall and RetainPro calculates the bearing pressure assuming a uniform distribution over the width of the footing.We agree with this approach and have I provided a supplemental calculation for the footing to wall dowel reinforcing resolving the eccentric load resulting from this force distribution. 36. Calculation page 54 specifies(8)#bars at 2"o.c.Where is this specified in the plans?OSSC Sec.107.1 I a. See revised calculation 54(5)as well as supplemental calculations 5-1 through S-3.The design utilizes base fixity to resolve a portion of the load at the stair locations into the footing as well as horizontal reinforcing at the inside face of the wall for the horizontal span support of the balance of the load. Ii. Where are results of the analysis shown on the plans?Provide deflection calculations for the horizontal span for evaluation of compatibility with the cantilever wall design. 1. The results of the analysis are shown in detail 12/S3.2,"Footing @ Stair."An additional I Storquest Page 2 November 17,2016 I FEM analysis was completed using Visual Analysis to confirm the adequacy of this I design.VA output is attached. 37. Provide calculations showing how the lateral load at each end of the horizontal beam evaluated on calculation page 54 will be resisted.OSSC Sec.1604.9 a. See the previous response and supplemental calculations S-4 and S-5.The foundation plan S2.1 has I been updated accordingly to correspond to the revised calculations. i. Calculation page S-4 shows#7 vertical wall reinforcing.Where is this shown on the plans? 1. See typical wall section 12/S3.2. 39. Provide calculations for the retaining wall at grid P,18-20 with beam reactions.OSSC Sec.1604.4 a. See supplemental calculations S-6 through S-11.We have updated our plans to increase the footing size as well as increasing the vertical bars in the tied concrete columns per detail 5/S3.2. i. Calculation page S-6 shows#7 vertical bars.Where is this shown on the plans? 1. See typical wall section 12/S3.2. I 42. Provide calculations for the wall to deck connection as shown in detail 12/S3.2.ASCE 7-10 Sec.12.11.2 a. See supplemental calculation 30(S)for shear friction justification of the#5 dowel @ 12"oc at the wall to deck connection. Detail 12/S3.2 has been updated to identify a minimum#5 continuous horizontal I distribution reinforcement in the slab. i. Is a#5 horizontal bar required at level 2(detail 12/S3.2)? 1. Yes.A#5 horizontal bar has been added to detail 12/S3.2 at level 2. I 45. Provide lateral load calculations for the masonry elevator shafts.OSSC Sec.1604.9 a. Since masonry elevator shaft walls provide minimal lateral resistance due to their relative stiffness, shear loads to these walls were omitted from the rigid diaphragm analysis by KIWI II.The original calculations provided a design for the most heavily stressed masonry shearwall and set this reinforcing as the typical masonry wall reinforcing.Therefore,the design of the elevator shaft walls is acceptable by inspection. I i. Clarify construction of the elevator shafts.Sheet D5 appears to show full height masonry construction.Details 1/A4.40 show the masonry terminating at the second floor and first floor respectively. II 1. We understand that elevator shafts will be full height masonry construction.A note has been added to sheet S2.2 clarifying construction and wall bracing to floors and roof. I SSF Structural Engineering-Site Structures 46. Calculation pages 2 and 4 appear to specify toe and key reinforcing.Clarify how this corresponds to 4/S2.1. I OSSC Sec.107.1 a. Detail 4/S2.1 has been revised to include#4 @ 12"oc key reinforcing at the 4'-0"tall wall as required per I calculations pages 2 and 4. i. The calculations show acceptable toe reinforcing as#4 @ 11.11 inch spacing. I 1. Retaining wall schedule 4/S2.1 has been revised to indicate#5412"oc vertical and toe reinforcing in the 4'-0"tall wall section. 48. Calculation pages 10 and 12 appear to specify toe reinforcing and key reinforcing does not appear to match the I schedule. Provide clarification.OSSC Sec.107.1 a. Toe reinforcing is provided to meet the requirements of pages 10 and 12.See other acceptable I SEATTLE 2124 Third Ave,Suite 100,Seattle,WA 98121 0 206.443.6212 STRUCTURAL I ENGINEERING TACOMA 934 Broadway,Suite 100,Tacoma,WA 98402 0 253.284.9474 Storquest Page 3 November 17,2016 reinforcing sizes listed.#5©12"oc toe reinforcing is an acceptable size and spacing.Detail 4/S2.1 was revised to note#5 @ 12"oc key reinforcing. i. Calculation page 12 shows acceptable toe reinforcing as#5©9.57 inch spacing. 1. Retaining wall schedule 4/S2.1 has been revised to indicate#6©12"oc vertical and toe reinforcing in the 8'-0"tall wall section. All revisions to the plans have been clouded.We trust that this response letter and revised plans adequately addresses your structural concerns.Please let us know if you have any questions regarding this response. Best, r Ryan Anderson, PE Project Manager randerson4ssfenoineersicorn r r r r r I r r r SEATTLE 2124 Third Ave,Suite 100,Seattle,WA 98121 0 206.443.6212ssf .:ncyrieers_corn rENGINEERING TACOMA 934 Broadway,Suite 100,Tacoma,WA 98402 0 253.284.9470 I ) (t. d- Ft4t Carps 4.p... .,4 R ('J ,0 tit N ;it 00 L t.. = 1 ted` 5 IP441- N Fits al- - r2.(ia.5)(z,3-1) : 351 .1 g I 3/4 4.-9-41 PS A S25 ZP a V1L O p f',_, .2- 1. 2_ ( (4,4,01. 23.46+ g.5) 1.- I, 6 ( 1c5.9.5) z ?-cz.5 2_ u-,, r, a a , 12, , c. lid-t= ✓ J a IA 1 EI5252 a v a c co t 4.^-,-.1 1-7,,. -7--,,—,c.. s-' L---A .L_ C a,-+l""i ,,]`l :,i',...) j,'t I—' '•JC -k24 rn•^e4S () G,d.M. s.fa I _i 11-1" I'11.) ; '.n52-(1.3`)4 = 5, 1-tq'�' } d P-1 3 f,5 _ 4,/v/ 1 las 7 a - e:7 -0-i Limn? -_ 3I 0, 25(0-.)(3) ©.gam � cs �� I eg.,50 �3-,5 ( ; C. 3 '. ter, .-.-, I:, 0/Z..Kp`: cq,s. --,b, S00 L. f:14.91.5 %.9i.4.< q l31-'d-£.. it.,F tiv4-S-t.. c...-0✓T)6./L1-G�`.$ I A-JD` -a "0/1•4'.-1- I " 0/1• '-r •Sr.gt.<2 cp..3/t-'r 7`,.....t241 PROJECT DATE IC s GNE�RtaG -- PROJ # ra-S t DESIGN SHEET I I Project: Stair Wall Check Ryan Anderson, SWENSON SAY FAGET November 16, 2016 I H:\Users\randerson\_Projects\Magellan\Storquest Self Storage\Permit Response\ Design Groups I Group/Mesh Elements Unity Design Shape Design Material Overstrength Specification Mesh1 (Auto) 16 0.957 NA Mesh1 (Auto) No Mesh1 (Auto) I Equation Load Combinations Load Case Cases Equation .9D+Di 1 0.90D .2D+.5L+Lpa+.5S+Di 2 1.20D+0.50L Il 1.2D+1.6L+.2Di+.5S 2 1.20D+ 1.60E 1.4D+.9 H 1 1.40D I Model Summary Structure Type: Space Frame 25 Nodes, and 124 Degrees of Freedom 16 Plate Elements I The model is linear. The model will have 124 unique mode shapes. The size of the model is: 0 ft,in the X direction I 15.33 ft, in the Y direction 19 ft, in the Z direction Nodal Extreme Displacements INode DX DY DZ in in in N002 -NA- -NA- 0.000(37) I N002 -NA- -NA- NA- -NA- 0.001 0.000(12) N007 NA (37) 0.000(12) N007 -NA- 0.000(12) 0.000(37) N008 -NA- -0.001 (37) 0.000(12) I N008 -NA- 0.000 (12)0.001 (37) 0.000(37) N009 NA 0.000(12) N009 -NA- 0.000(12) 0.000(37) N010 -NA- -0.001 (37) 0.000(12) I N010 -NA- 0.000(12) 0.000(37) N011 -NA- -NA- 0.000(37) N011 -NA- -NA- 0.000(12) N012 -0.153(36) -0.000(37) 0.000(12) lN012 0.000( 1) 0.000(12) 0.000(37) N013 -0.266(36) -0.001 (37) 0.000(12) N013 0.000( 1) 0.000(12) 0.000(37) ' N014 -NA- -NA- 0.000(37) N014 -NA- -NA- 0.000(12) N015 -0.045(36) -0.000(37) 0.000(12) N015 0.000( 1) 0.000(12) 0.000(37) I N016 -NA- 0.000(12) 0.000(37) N016 -NA- -0.000 (37) 0.000(12) N017 -0.111 (36) -0.000(37) 0.000(12) N017 0.000( 1) 0.000(12) 0.000(37) I N018 -0.061 (36) -0.000(37) 0.000(12) N018 0.000( 1) 0.000(12) 0.000(37) N019 -0.156(36) -0.001 (37) 0.000(12) N019 0.000( 1) 0.000(12) 0.000(37) I N020 -NA- -0.001 (37) 0.000(12) N020 -NA- 0.000(12) 0.000(37) N021 -0.190(36) -0.001 (37) 0.000(12) N021 0.000( 1) 0.000(12) 0.000(37) I Page 1 VisualAnalysis 12.00.0017(www.iesweb.com) I Project: Stair Wall Check I Ryan Anderson, SWENSON SAY FAGET November 16, 2016 H:\Users\randerson\_Projects\Magellan\Storquest Self Storage\Permit Response\ N022 -0.217(36) -0.001 (37) 0.000(12) N022 0.000( 1) 0.000 (12) 0.000(37) N023 -NA- -NA- 0.000(37) N023 -NA- -NA- 0.000(12) N024 -0.045(36) -0.000(37) 0.000(12) N024 0.000( 1) 0.000(12) 0.000(37) N025 -0.111 (36) -0.000(37) 0.000(12) N025 0.000( 1) 0.000(12) 0.000(37) N026 -NA- 0.000(12) 0.000(37) N026 -NA- -0.000(37) 0.000(12) N027 -0.156(36) -0.001 (37) 0.000(12) I N027 0.000( 1) 0.000(12) 0.000(37) N028 -0.190(36) -0.001 (37) 0.000(12) N028 0.000( 1) 0.000(12) 0.000(37) N029 -NA- -0.001 (37) 0.000(12) I N029 -NA- 0.000(12) 0.000(37) Nodal Supports Node Fix DX Fix DY Fix DZ Fix RX Fix RY Fix RZ I N001 Yes Yes Yes Yes Yes Yes N002 Yes Yes No No No Yes N007 Yes No No No No No N008 Yes No No No No No N009 Yes No No No No No NO10 Yes No No No No No NO11 Yes Yes No No No Yes I N014 Yes Yes No No No Yes N016 Yes No No No No No N020 Yes No No No No No N023 Yes Yes No No No Yes I N026 Yes No No No No No N029 Yes No No No No No Project Settings I Building Code Load Combinations: ASCE 7-10 LRFD Vertical Direction:Y, Ground Elevation =0.00 ft I Occupancy Category: Il Seismic Data(For load combination generation): Spectral Acceleration(SDS)=0.150 Seismic Design Category:A I Overstrength Omega0:X=2.5,Z=2.5 Seismic Redundancy Rho:X=1, Z=1 Model Summary I Structure Type: Space Frame 25 Nodes, and 124 Degrees of Freedom 16 Plate Elements The model is linear. The model will have 124 unique mode shapes. The size of the model is: 0 ft, in the X direction 15.33 ft, in the Y direction I 19 ft, in the Z direction Plate Local Forces (Extreme Rows Only) I Plate Material Result Case Name Location Mx My Mxy Vx Vy ft-K/ft ft-K/ft ft-K/ft K/ft K/ft S001.1.1.1.2 User Defined 1.2D+1.6L+.2Di+.5S N009 3.435 0.782 -5.610 1.987 -2.838 Page 2 I VisualAnalysis 12.00.0017(www.iesweb.com) I Project: Stair Wall Check I Ryan Anderson, SWENSON SAY FAGET November 16, 2016 H:\Users\randerson\_Projects\Magellan\Storquest Self Storage\Permit Response\ S001.1.1.1.2 User Defined 1.2D+1.6L+.2Di+.5S N016 2.637 2.242 -6.612 0.902 -2.838 S001.1.2.1.2 User Defined 1.2D+1.6L+.2Di+.5S N008 4.975 0.723 -2.267 4.282 -0.941 S001.1.2.2.2 User Defined 1.2D+1.6L+.2Di+.5S N013 13.832 2.039 -0.857 1.593 -0.732 I S001.2.1.1.1 User Defined 1.2D+1.6L+.2Di+.5S N011 -3.012 -18.434 -1.086 1.033 8.566 S001.2.1.2.2 User Defined 1.2D+1.6L+.2Di+.5S N026 2.672 2.202 6.617 -0.915 -2.795 S001.2.2.1.1 User Defined 1.2D+1.6L+.2Di+.5S N022 11.687 6.270 1.082 -0.767 0.267 I S001.2.2.2.2 User Defined 1.2D+1.6L+.2Di+.5S N007 4.975 0.721 2.267 -4.282 -0.939 I 1 I I I I I I I I I 1 I I Page 3 VisualAnalysis 12.00.0017(www.iesweb.com) I 1 1 r 1 1 i 1 1 1 i 1 1 1 1 1 1 1 I Project: Stair Wall Check Ryan Anderson, SWENSON SAY FAGET November 16, 2016 IH:\Users\randerson\_Projects\Magellan\Storquest Self Storage\Permit Response\ Design Mesh Results IDesign Mesh: Mesh1 (Auto)Wall/Slab flexural checks only, per ACI318-08 I Designed As: 10.000 in thick. Material: User Defined DESIGN DETAILS: I Thickness: 10.000 in fc=4.000 Ksi, Fy=60.000 Ksi Top x Bars: #6 @ 4.00 in O.C.,As Provided = 1.320 in^2/ft Top y Bars: #7 @ 12.00 in O.C.,As Provided =0.600 in'2/ft Bottom x Bars: #4 @ 12.00 in O.C.,As Provided=0.200 in^2/ft I Bottom y Bars: #6 @ 12.00 in O.C.,As Provided =0.440 in^2/ft ' +Mx Check Plate Result Demand Capacity+Mx Code Unity Details +Mx Name Case ft-K/ft ft-Mt Ref. Check S001.1.2.2.2 1.2D+1.6L+.2Di+.5S 12.683 42.497 ACI 13.5.1 0.30 OK As-Req'd/ft=0.359 in^2, d =8.125 in, phi=0.900 I +My Check Plate Result Demand Capacity+My Code Unity Details +My I Name Case ft-K/ft ft-K/ft Ref. Check S001.1.2.2.1 1.2D+1.6L+.2Di+.5S 5.457 18.553 ACI 13.5.1 0.29 OK As-Req'd/ft=0.180 in^2, d =7.313 in, phi=0.900 I -Mx Check Plate Result Demand Capacity-Mx Code Unity Details -Mx I Name Case ft-K/ft ft-K/ft Ref. Check S001.2.1.1.1 1.2D+1.6L+.2Di+.5S -0.781 7.293 ACI 13.5.1 0.11 OK As-Req'd/ft=0.028 in^2, d =8.250 in, phi=0.900 -My Check Plate Result Demand Capacity-My Code Unity Details -My Name Case ft-K/ft ft-K/ft Ref. Check S001.2.1.1.1 1.2D+1.6L+.2Di+.5S -12.548 14.457 ACI 13.5.1 0.87 OK As-Req'd/ft=0.380 in^2, d =7.625 in, phi=0.900 Shear Check I Plate Result Demand Capacity Shear Code Unity Details Shear Name Case K/ft K/ft Ref. Check S001.2.1.1.1 1.2D+1.6L+.2Di+.5S 7.965 8.325 ACI 13.6.8.5/11.2 0.96 OK d= 7.313 in I I Page 1 VisualAnalysis 12.00.0017(www.iesweb.com) Swenson Say Faget STRUCTURAL ENGINEERING 2124 Third Ave,Suite 100 Seattle,WA 98121 O 206.443.6212 934 Broadway,Suite 100 Tacoma,WA 98402 O 253.284.9470 December 28,2016 Magellan Architects Attn:Dirk McCulloch ' 8383 158th Ave NE,#280 Redmond,WA 98052 RE: Storquest Self Storage,Tigard,OR Structural Plan Review Comment Response#3 We are in receipt of the third round of permit comments provided by Rogers Engineering and have responded to the SSF structural items as follows: SSF Structural Engineering 51. Provide verification that the foundation acceptable design is due to the increased vertical and lateral loads resulting from increased slab depths. • Revised vertical and lateral loads have been reviewed and the current foundation design is acceptable without modification. Find attached supplemental calculations from KIWI II comparing current and previous gravity loads.Note that the previous loads did not include the load combination reduction for snow+live load nor the 20%live load reduction for multiple loaded floors.As noted in response#1,the original lateral design used more conservative lateral loads on the most heavily loaded masonry and concrete shearwalls(196k and 838k respectively),and the revised lateral loads do not exceed these values. 45. Provide lateral load calculations for the masonry elevator shafts.OSSC Sec.1604.9 a. Since masonry elevator shaft walls provide minimal lateral resistance due to their relative stiffness, shear loads to these walls were omitted from the rigid diaphragm analysis by KIWI II.The original calculations provided a design for the most heavily stressed masonry shearwall and set this reinforcing as the typical masonry wall reinforcing.Therefore,the design of the elevator shaft walls is acceptable by inspection. i. Clarify construction of the elevator shafts.Sheet D5 appears to show full height masonry construction.Details 1/A4.40 show the masonry terminating at the second floor and first floor respectively. 1. We understand that elevator shafts will be full height masonry construction.A note has been added to sheet S2.2 clarifying construction and wall bracing to floors and roof. IStorquest Page 2 December 28,2016 a. Calculation pages 114 and 116 by KIWI II show lateral loads attributed to the I masonry stair and elevator walls.Provide calculations for the masonry walls, including overturning analysis.From calculations provided it appears that the roof diaphragm supports the upper portion of the masonry stair and elevator I construction.The second level wall analysis appears to utilize the stair and elevator masonry walls to resist forces from the third level floor diaphragm. Information does not appear to have been provided regarding forces at the I second level or first level(basement area)with respect to the masonry construction.Clarify the intended design. i. The roof provides out of plane bracing of the masonry walls. Lateral Iloads tributary to the masonry shaftwalls are negligible at the flexible roof diaphragm where the seismic mass is low and loads are distributed based on tributary areas with closely spaced adjacent Ilight-gage shearwalls.Tributary lateral loads from the 2nd floor diaphragm are also negligible due to the low relative stiffness of I these shaft walls to the long,uninterrupted exterior walls. Note that the rigid diaphragm analysis for the main floor walls neglects the presence of these relatively flexible shaftwalls.Therefore,the only I significant lateral loads occur at the 3rd floor rigid diaphragm.From KIWI II's calculations,the maximum load to an interior shaft wall is 35 kips at the 15'long wall number 103.See attached wall and footing Icalculations for the design of the masonry shearwall. Note that we have revised our general structural notes to indicate solid grouted walls at interior shaftwalls with#5©24"oc vertical reinforcing.We I have also revised shaftwall footings on sheets S2.1 and S2.2 to require 3'-4"wide footings. IAll revisions to the plans have been clouded.We trust that this response letter and revised plans adequately addresses your structural concerns.Please let us know if you have any questions regarding this response. I Best, 474%.— ' Ryan Anderson,PE,SE I Project Manager r nds r_on v _fend ee s.c I I I 4§Ty SEATTLE 2124 Third Ave,Suite 100,Seattle,WA 98121 0 206.443.6212 E STRUCTURAL RNA TACOMA 934 Broadway,Suite 100,Tacoma,WA 98402 4 253.284.9470 STORQUEST TIGARD FLOOR TYPICAL DESIGN LOADS: OREGON LL = 20•PSF FLL = 125•PSF SL:= LL ORIGINAL ' DL= 6.PSF FDL= 42•PSF TYPICAL CORRIDOR POST AT BOTTOM OF FOUR STORY TR:= 10•FT L:= 3.75•FT SNOW1 := SL•TR•L SNOW1 = 750 LB DEAD1 := (DL + FDL•3)•TR•L DEAD1 = 4950 LB 1 LIVE1 := (FLL•3)•TR•L LIVE1 = 14062.5 LB TYPICAL POST AT ENDWALL OF FOUR STORY,10 FT TR:= 5-FT L:= 2.5•FT SNOW2:= SL•TR•L SNOW2= 250 LB 1 DEAD2 := (DL + FDL•3)•TR•L DEAD2 = 1650 LB 2 LIVE2 := (FLL•3)•TR•L LIVE2 = 4687.5 LB TYPICAL POST AT FOUR STORY,2.5 FT TRIB TR:= 10•FT L:= 2.5.FT ' SNOW3:= SL•TR•L SNOW3 = 500 LB DEAD3 := (DL + FDL•3)•TR•L DEAD3 = 3300 LB 3 ' LIVE3 := (FLL•3)•TR•L LIVE3 = 9375 LB I ISTORQUEST TIGARD FLOOR TYPICAL DESIGN LOADS: FDL:= 48•PSF OREGON ILL = 20•PSF FLL = 125•PSF SL:= LL REVISED DL = 6•PSF FDL= 48•PSF ITYPICAL CORRIDOR POST M BOTTOM OF FOUR STORY TR:= 10•FT L:= 3.75-FT I SNOW1 R:= SL•TR•L SNOW1 R= 750 LB SNOW1 = 750 LB DEAD1 R:= (DL+ FDL•3)•TR•L DEAD1 R= 5625 LB DEAD1 =4950 LB 1 ILIVE1R:= (FLL•.8.3)-TRW LIVE1R = 11250 LB LIVE1 = 14062.5 LB TOTALS(NEW) SNOW1R+ DEAD1R+ LIVE1R= 17625 LB ITOTALS(OLD) SNOW1 + DEAD1 + LIVE1 = 19762.5 LB I TYPICAL POST AT ENDWALL OF FOUR STORY,10 FT TR:-- 5.FT L:= 2.5-FT ISNOW2R:= SL•TR•L SNOW2R= 250 LB SNOW2 = 250 LB DEAD2R:_ (DL+ FDL-3)•TR•L DEAD2R= 1875 LB DEAD2 = 1650 LB 2 I LIVE2R:= (FLL•.8.3)•TR-L LIVE2R= 3750 LB LIVE2 =4687.5 LB TOTALS(NEW) SNOW2R+ DEAD2R+ LIVE2R= 5875 LB II TOTALS(OLD) SNOW2+ DEAD2 + LIVE2 = 6587.5 LB TYPICAL POST AT FOUR STORY,2.5 FT TRIB TR:= 10•FT L:= 2.5-FT I SNOW3R:= SL•TR•L SNOW3R= 500 LB SNOW3 = 500 LB I DEAD3R:= (DL+ FDL•3)•TR•L DEAD3R= 3750 LB DEAD3 = 3300 LB 3 LIVE3R:_ (FLL•.8.3)•TR•L LIVE3R= 7500 LB LIVE3 = 9375 LB ' TOTALS(NEW) SNOW3R+ DEAD3R+ LIVE3R= 11750 LB TOTALS(OLD) SNOW3+ DEAD3 + LIVE3 = 13175 LB 1 NOTE ALL LOADS ABOVE LESS FOR NEW LOADS WITH CODE ALLOWED REDUCTION IPER IBC 1607.10.2, item 1 THEREFORE ORIGINAL FOUNDATION DESIGN OK I project Storquest by RJA sheet no. location Elevator Shaft Wall date 12/28/2016 I eING client Magellan Arch job no. 02257-2015-03 Masonry Shear Wall Design in Accordance with 2014 OSSC I Input Wall Data Reinforcement Input fm. 1.9 ksi Vert. rebar size (#) 5 fy= 60 ksi ....spacing 24 in(8,16,24,32,40 or 48) Hv= 51.33 ft ....no.bars/spacing 1 (1 or 2) I Lv,= 180 in Nom.Thickness= 8 in (6,8,10 or 12) Horiz. rebar size (#) 5 (4,5,or 6) Solid Grouting? 1 (yes=1, no=0) ....spacing 48 in(8,16,24,32,40 or 48) I Concrete or Clay? 1 (1=Concrete,2=Clay) ....no.bars/spacing 2 (1 or 2) Max unbraced height= 13.33 ft Sds= 0.608 Wall Weight= 91 psf 1 Seismic Design Category= D Equiv.Solid Thick. = 7.625 in I Stack Bond? 0 (yes=1, no=0) Loading Input I 1800 1600 Lateral Forces(kips) 1400 111111. iiiiim�'' Seismic or Wind?I 1 (Seismic=1,Wind=2) 1.63: 1200 I V,= 35.04 kips @ 34 ft 1000 IIV2= 0 kips @ _ 0 ft . 800 V3= 0 kips @ 0 ft 600400 MIIIM V4= 0 kips @ 0 ft 200 I V5= 0 kips @ 0 ft o 0.0 500. 1000 1500 2000 2500 3000 3500 4000 Gravity Line Loads 0 .0 .0 .0 .0 .0 .0 .0 I Wall Weight= 4665 plf fMn(k-ft) Dead Load,wo(.= 0 plf Live Load,wLL= 0 plf 11 = 1 Note: All Load Cases must fall I Snow Load,wsL= 0 plf f2= 0.2 within the curve to be adequate I Gravity Point Loads(kips) Dead Snow f2 Live f, Seismic I Pt= 0 0 0 0 0 0 @ 0 ft P2= 0 0 0 0 0 0 @ 0 ft I P3= 0 0 0 0 0 0 @ 0 ft P4= 0 0 0 0 0 0 @ 0 ft P5= 0 0 0 0 0 0 @ 0 ft Adjacent Wall Dead Loads I I DL, = 0 kips @ 10 ft DL2= 0 kips @ 0 ft I DU= 0 kips @ 0 ft DL4= 0 kips @ 0 ft Maximum Out-of Plane Vertical Steel Ratio= 0.3359 in2/ft OK V corresponding to 1.25*Mn= OK I Maximum In-Plane Vertical Steel Ratio= 0.5586 in2/ft OK As Actual = 0.1534 int/ft Shear: p min and Spacing Requirements I Vu= 35.04 kips pve,t+phot(min) OK Smax(vert) OK eVn= 175.7 kips OK pvert(min) OK Smax(Harz) OK 4Vs= 54 kips ph.(min) OK Minvert=l/2 horiz OK I 4Vm= 121.7 Boundary Element Check(ACI 3.3.6.5.1): Not Required I I Project: Storquest Tigard Date: 12/28/2016 Soil Design Criteria(allowable) I Soil Bearing Pressure,o 2500 psf 1/3 increase= 3333 psf Coefficient of Soil Friction,µ 0.35 Lateral Bearing Resistance,p 300 pcf Overburden 110 pcf IFooting Dimensions Components Length of Footing,B 17.00 ft Width of Footing,W 3:33`ft Allowable I Thickness of Footing,t 12 in Depth below grade,D 1.00 ft Po+PL= 88.7 k Area,A 56.6 ft2 0.9 Po= 76.2 k Section Modulus,S 160 ft3 Ms= 258 k-ft I Footing Loads Gravity L P,erc 8 k 14ti 1 Povetturden 6 k Po 70 k 1li_11It D PL 4 k t Rotel 89 B ' I 14 Seismic M 4338 k-in V. 35 k Bearing Stress(allowable) Pd+PI I q 1-6 ksf Footing size: Pd+PI+EC? I e=M/P= 2.9ft qmax'= 3.18 ksf B I e= 5.8 ok qmin'= partial uplift ksf Footing size: ressure Distribution,a= 16.8 ft P I 0.9 Pd+1-EQ (assumes symmetry about center of footing) e=M/P= 3.4 ft k e > gmax'= 2.99 ksf B/e= 5.0 ok a I gmin'= partial uplift ksf Footing size: ,,, , ressure Distribution,a= 15.3 ft Resistance to Sliding(allowable)-At this time p, is not removed from seismic loads. I Lateral Force Lateral Load= 25 k Resistance due to: I Soil Friction,0.9 Pdµ= 27 k Lateral Bearing= 1.5 k Total Resistance= 28 k,no sliding occurs I Remaining Lateral Force= 0 k Required Additional Dead Load= 0 not required I I 1 1 0 I I , 1 Supplemental Structural Calculations For: I Storquest Self Storage 1 12740 SW Pacific Highway Tigard, OR 97223 I I I I Go PROFtofo sc?ia". ". I I ., th,...- ,431, °LAZE 1 EWIRAIION DAM 12/31/20171 1 Prepared for: Magellan Architects I Job #: 02257-2015-03 I Date: February 2, 2017 I I SEATTLE 2124 Third Ave,Suite 144,Seattle,WA 98121 0 206.443.6212 `s`'`�`"',"`,o TACOMA '34 roadway,Suite 100,Tacoma,WA 98402 0 253.284.9470 I I IG - _ 4H-1- r l 4--r- ,.6 S d -, t a 0 rv -.1 0 0 I Fp C. 0,/2.2( - ) /a•2 pfr -.. A-5,,cs Fr, ; i a, Z (cam, '9) _ 7, f f',v ni T I At!' y t 47,.../444tiN Ai: N - Az-A k liS ri,1,61Y/21-6.0-% "--/ c L4Sd.Ly SP S 1F.1::,,r'1-t.,6N0' g 2 +�'' hit.-&1-44,/ 3 _ L 4-.. Ta h`1-p/- �-'4L 3 u' " '(--- At 41, to 4/4/6/Y4Te:.4"k r + ' ' - / LC-'-''- ill--F r Gv4-i-t_ CSS )41vV/ a Gi-c-z- ) - — -4 xIC.010. `194/1-41-60-1 rie-01-f-`.5//6-23 S, ss c t=v2t ry a,,,r oil s(*4r--r- y...fi.s,.L Z IA,w► f -y-r c-S) , a fy t '... /7o4-), L- ' ( 93,,..._ra✓ Z..A i=s.-2. 44-_ 1./0-,5,...p .?^‘ a P=02— F'5.st 1 P-1- IQL-44,-+.E. itD '2— i'I2-t-L I0 'i'j CJ I0) C) -J lid th Z 0 I N Z c) N r I i ) s 7azs•t2-t .5/: l- I 7 -i 3 PR�JE-CT DATE Is�ettacrcaR�t -PPC7.J..14-,r-Ar ENGINEERINfs L�FS GN 5-i 5HEET I J c'16/'1-,:-r WA-L-L_ G it-; 4-c. - r-,air,,, sL st.1,e.. I CV 0 ,i v l rpi S7,1.r ie.. : / V/ .t G.q r.-r 1 vi.A k./ -LL r -6V 2-4, irH2 f ('32,'-10• `?S -1 Hlt.tt r21= 0:• -: s l/ //C zv-i, .,) 1-34.'-2yhl1 ,,, ir. ~r (1m 49 ^°� 12"1: I k t2 '-g" 1 s P o ( c::,'- -r /3-if k '`' Fes- r�Ay, .� n I � C sly t s�r-� [M f&.2. oar 0E- over .) ams -tr (2 .srlZ4r�73 n• ryI } W Q fu` F i} 'yA`a Fc-a- 1p'-�" ,. .1.-4-Z. F sf r -,,ter - o I F 1t.. - t2 IL-r t�t r , F w Vc.: .�.o - 1 c 1a� s c sf - r 4,2 ? may i$,Z i „:„, t P S lam ,ec l 0t .4.) pc-r- '534,1g. I t, w Iti 1'`-' " C'4- 5 atz.ityrL_ 4.-0 . 74._„,4_44.:°- "sr= , 1- As/0 0 u. $ c,...)Teo..i .�.z �..�u-s /�3 d- t �, �3 Y I�sR�c f ✓� a I G 0 `i ti„i_ t- to`f fS ke-chsr1.6c,,_ 0 II w L . 1.,-,.b C,1i-o.. ,t`!6 is-- t„d"t, .--, .Sao 2-1 "..,4 v4:0„-j-1 (2) r3,2 a< ,la")�. + (7-) 4t 6 v -✓fir 4;1- 14 e-q I (3 y rr-1/2/64- x10,....1, N0/2., 4. s.�-'rtt e,.Avet--yore` 5iy1-fr 14 )C. /1-44-4 i'rr4-afs,4-4, ,,,-/ 5..v--, 2 ""1', 1 c ` T%P k 1-t-C ' t- w, t. •••s s T4.0 rt L., 1+T cl- L o v-4/t t7i-4 1-12_ N"epA-O. T7Z o4 N-0.5,4J - ) col\ Stun- s7 _ PROJECT DATE 0 STRUCTURAL/1 2�A ENGINEERINGnEI(iN ' S-2- SHEET I I project Storquest by RJA sheet"O ISTRUCTURAL location North Stair Shaft Wall#103 dote 1117/2017 ' ....5 dent Magellan Arch job no 02257-2015-03 I Masonry Shear Wall Design in Accordance with 2014 OSSC Input Wall Data Reinforcement input f m= 1.9 ksi Vert.rebar size(#) 5 f1. 60 ksi ....spacing 24 in(8,16,24,32,40 or 48) I Hw,= 32.5 ft n©.bars/spacing 1 (1 or 2) LW= 180 in Nom.Thickness= 8 in(6,8,10 or 12) Horiz.rebar size(#) 5 (4,5,or 6) I Solid Grouting? 1 (yes=1 no=0) spacing 1 (1=Concrete,2=Clay) 48 in(8,16,24,32,40 or 48) Concrete or Clay? .....no.bars/spacing 2 (1 or 2) Max unbraced height= 12.5 ft Sds= 0.608 Wall Weight= 91 psf I Seismic Design Category= D Equiv.Solid Thick.= 7.625 in Stack Bond? 0 (yes=1,no=0) Loading input I 1800 1600 Lateral Forces(kips) 1400 I Seismic or Wind? 1 (Seismic=1,Wind=2) V1= 1.03 kips @ 27.7 ft 1200 - — —.- 1000 __ V2= 1.34 kips @ 16.6 ft c goo — V3= 1.11 kips @ 5.16 ft $ 600 I V4= 35 kips @ 10.3 ft 400 V5= 0 kips @ 0 ft 200 off • IGravity Line Loads 0.0 1000.0 2000.0 3000.0 4000.0 Wall Weight= 2953 plf +oma„(k-ft) Dead Load,woL= 0 plf I Live Load,WLL= 0 plf Snow Load,ws�= 0 pIt fl = 1 Note: Ail Load Cases must fall f2= 0.2 within the curve to be adequate Gra Point Loads kI.s___________ I Dead Snow ® Live ® Seismic —_ P1= 0 0 0 0 0 0 @ 0 P2= 0 0 0 0 0 0 © 0 ft IP3= Q 0 0 0 0 0 @ 0 ft P4= 0 0 0 0 0 0 @ 0 ft P5= 0 0 0 0 0 0 @ 0 ft I Adjacent Wall Dead Loads DLI = 0 kips @ 0 ft DL2= 0 kips @ 0 ft D13= 0 kips @ 0 ft DL4= 0 kips @ 0 ft Plane Vertical Steel Ratio= 0.364 left I Maximum Out-ofOK V corresponding to 1.25"M„= OK Maximum In-Plane Vertical Steel Ratio= 2.733 in2/ft OK As Actual= 0.153 in2/ft IShear: p,,,t„and Spacing Requirements Vu= 38.48 kips p„,+pn,,,,(min)OK S111e(rye)OK 4Vn= 192.3 kips OK pert(min)OK Smax(H„)OK I +Vs= 54 kips +Vm= 138.3 p (min)OK Min ven=1l2 noriz OK Boundary Element Check(ACI 3.3.6.5A): Not Required ..--.-_----. I I Masonry Shearwall Design 103 Wall Properties I Thickness 8 in Length 15 ft Height of Wail 10.8 ft -----> "/. _ 1-°(Z?•?)t).3(4n-4.' 4 1.1 (5 .2.).f356o.3) I f m 1900 psi ‘Ar.or 3 g,S Wind/Seismic Increase 1.33 I Grout Spacing Solid Grouted Equivalent Thickness 7.6 Fs 32000 psi Es= 29000 ksi I Em= 1710 ksi Loading Shear 38.5 kips Design Shear 57.75 kips Shear Stresses 111 M/Vd 0.76 Fv= 93.8 psi ' fv= ''''.-T77 psi f Min. Design Reinf. 0.128 inA2 p = 0.00140 Pmin= 0.0007 Min. Reinf. 0.128 inA2 Moment Steel M= 415.8 k-ft`1 No.of Bars 2 Bar Size As 0.88 inA2 p = 0.0007 I n= 17.0 k= 0.15 j= 0.95 I Fb= 633.3333333 Msteel= k-ft ',11.1111 Mmasonry= k-ft,/ I 0 aucruwu. sr . 1 2124 Third menus.mite 100.Seattle.WA 98121 Date: 1/17/2017 wwwswensonsayfagelcom Project#: Office 206.443.6212 Design: RJA Fax 206.443.4870 Sheet: S - I I Project: Storquest Tigard-Wall 103 5 .5 Date: 1/17/2017 Soil Design Criteria(allowable) I Soil Bearing Pressure,a 2500 psf 1/3 increase= 3333 psf Coefficient of Soil Friction,µ 0.35 Lateral Bearing Resistance,p 300 pcf Overburden 110 pcf IFooting Dimensions Components Length of Footing,B 19.00 ft Width of Footing,W 3.83 ft Allowable Thickness of Footing,t 12 in I Depth below grade,D 1.00 ft PD+PL= 92.9 k Area,A 72.8 ft2 0.9 Po= 80.0 k Section Modulus,S 230 ft3 MS= 416 k-ft I Footing Loads Gravity L P.of 11 k ------_-._. >I N 1 P0 , ,, 8 k PD 70k _ 111....-...7D P� 4`k t P,otai 93 I Seismic B Mu 6985 k-in vu 57.8 k IBearing Stress(allowable) Pd+PI q'= 1.3 ksf II ' Footing size: Pd+PI+EQ e=M/P= 4.5 ft I gmax'= 3.22 ksf B I e= 4.2 ok qmin'= partial uplift ksf Footing size: IIIIMIIII Pressure Distribution,a= 15.1 ft I 0.9 Pd+1-EQ (assumes symmetry about center of footing) e=M/P= 5.2ft < e y qmax'= 3.24 ksf B/e= 3.7 ok a I qmin'= partial uplift ksf Footing size: Pressure Distribution,a= 12.9 ft Resistance to Sliding(allowable)-At this time p,is not removed from seismic loads. I Lateral Force Lateral Load= 41 k Resistance due to: Soil Friction,0.9 Pdµ= 28 k ILateral Bearing= 1.7 k Total Resistance= 30 k,sliding occurs I Remaining Lateral Force= 12 k Required Additional Dead Load= 37 k,use adjacent footings to provide lateral resistance I I I acro+ Storquest by RJA sheet no. location North Stair Shaft Wall#105 dote 1/17/2017(00e� ctienr Magellan Arch lob no. 02257-2015-03 Masonry Shear Wall Design In Accordance with 2014 OSSC input Wall Data Reinforcement Input fm. 1.9 ksi Vert.rebar size(#) 5 fy= 60 ksi ....spacing 24 in(8,16,24,32,40 or48) HW= 32.5 ft ....no.bars/spacing 1 (1 or 2) III LW= 120 in Nom.Thickness= 8 in(6,8,10 or 12) Horiz.rebar size(#) 5 (4,5,or 6) Solid Grouting? 1 (yes=1,no=0) ....spacing 32 in(8,16,24,32,40 or 48) 111Concrete or Clay? 1 (1=Concrete,2=Clay) ....no.bars/spacing 2 (1 or 2) Max unbraced height= 12.5 ft Sdg= 0.608 Wall Weight= 93 psf Seismic Design Category= ID Equiv.Solid Thick.= 7.625 in I Stack Bond? 0 (yes=1,no=0) Loading input 1 1200 Lateral Forces(kips) 1000 Seismic or Wind?I 1 (Seismic=1,Wind=2) _ 50o - Vi = 0.68 kips @ 27.7 ft a V2= 0.89 kips @ 16.6 ft 000 V3= 0.73 kips @ 5.16 ft 400 V4= 15.8 kips @ 10.3 ft V5= 0 kips @ 0 ft o 0 -1------<? — 0.0 500.0 1000.0 1500.0 2000.0 I Gravity Line Loads Wall Weight= 3009 plf ►„(k-ft) Dead Load,wpL= 0 Of \.. •0 _ Live Load,wLL= 0 Of 11 = 1 Note: All Load Cases must fall Snow Load,w51,= 0 plf 12= 0.2 within the curve to be adequate Gravity Point Loads(kips) Dead Snow f2 ( Live I fi ( Seismic I I Pi = 0 0 0 0 0 0 @ 0 ft P2= 0 0 0 0 0 0 @ 0 ft P3= 0 0 0 0 0 0 @ 0 ft I P4= 0 0 0 0 0 0 @ 0 ft P5= 0 0 0 0 0 0 @ 0 ft Adjacent Wall Dead Loads I DLi = 0 kips @ 0 ft DL2= 0 kips @ 0 ft DL3= 0 kips @ 0 ft I DL4= 0 kips @ 0 ft Maximum Out-of Plane Vertical Steel Ratio= 0.364 in`/ft OK V corresponding to 1.25"M„= OK I Maximum In-Plane Vertical Steel Ratio= 0.603 in2/ft OK As Actual= 0.153 in2/ft Shear: p min and Spacing Requirements 111 Vu= 18.1 kips pv�t+ph=(min)OK Smax wart) OK rpVn= 127.6 kips OK Avert(min) OK Smax(Holz)OK +Vs= 53.38 kips p (m1n) OK Min vert=1/2 hertz OK I ¢Vm= 77.81 Boundary Element Check(ACI 3.3.6.5.1): Not Required I I MasonryShe atwai!1 Design 105 I Wall Properties Thickness 8 in I Length 10 ft Height of Wall 11.1 ft —o M 7-or fm 1900 psi N/r.=r I Wind/Seismic Increase 1.33 Grout Spacing Solid Grouted Equivalent Thickness 7.6 Fs 32000 psi I Es= 29000 ksi Em= 1710 ksi Loading I Shear 18.1 kips p Design Shear 27.15 kips IShear Stresses I MNd 1.21 Fv= 87.0 psi ✓ fv= -Z7y-`,:.psi ✓ Min. Design Reinf. 0.093 inA2 Ip = 0.00102 pain= 0.0007 Min. Reinf. 0.093 inA2 IMoment Steel I M= 200.91 k-ft r No.of Bars 2 Bar Size #6 As 0.88 inA2 I P = 0.0011 n= 17.0 k= 0.19 Ii= 0.94 Fb= 633.3333333 Msteel= _____________k-ft ✓ Mmasonry= k-ft ,./ 1 eucrt� I srter. ray 2124 Third Avenue.Suite 100 Seattle.WA 98121 Date: 1/17/2017 I www.swenson sayiaget.eom oProject#: Office 206.44s : szlz Design: RJA Fax 20&.443.4870 Sheet: .5-'I I Project:Storquest Tigard-Wall 105 I Date: 1/17/2017 5 - e Soil Design Criteria(allowable) Soil Bearing Pressure,6 2500 psf 1/3 increase= 3333 psf I Coefficient of Soil Friction,µ 0.35 Lateral Bearing Resistance,p• 300 pcf Overburden 110 pcf Footing Dimensions Components Length of Footing,8 14.00 ft Width of Footing,W 3.83 ft Allowable Thickness of Footing,t 12 In Depth below grade,D 1.00 ft Pp+Pt= 64.9 k Area,A 53.6 ft2 0.9 Pp= 54.8 k Section Modulus,S 125 ft3 M,= 201 k-ft Footing Loads I Gravity t L P 8 k I� Poverb rden 6 k I Pp 47 k III-III t D P1 4 k t Pwtai 65 r Seismic l B Mt, 3375 k-in V 27.15 k Bearing Stress(allowable) I Pd+PI q`= 1.2 ksf Footing size: , I Pd+PI+EQ e=M/P= 3.1 ft qmax'= 2.89 ksf B/e= 4.5 ok qmin'= partial uplift ksf Footing size: NM=Pressure Distribution,a= 11.7 ft El 0.9 Pd+/-EQ (assumes symmetry about center of footing) K I e=M/P= 3.7 ft qmax'= 2.86 ksf B/e= 3.8 ok a qmin'= partial uplift ksf Footing size: Pressure Distribution,a= 10.0 ft Resistance to Sliding(allowable)-At this time p,is not removed from seismic loads. Lateral Force I Lateral Load= 19 k Resistance due to: Soil Friction,0.9 Pd u= 19 k Lateral Bearing= 1.7 k I Total Resistance= 21 k,no sliding occurs Remaining Lateral Force= 0 k I Required Additional Dead Load= 0 not required I I I GMS t1-,....-r LA./,,-,t_ [.rTi.lZ -L - S£ J tF sri-rre._. 0 d 7* 'T4►7 . R- v 1,4 w G or rl(..,e wr_re. 4.4./4-44- IAV 2--"'A ye...4c ; q rn 7 I '7 ^V V � (2 - ) 11 1 /Za�a� . :ti O O N (0'-a') E i11} a 4'`° �``'�- ( 1yE 42 7.41^-.sA 2 "- o I j. � '1 - 1"C.pL ��^r�h'��-4v�'•t., o�T' car t�f�c� � _ -.,�?oQ-Ti�'C� - LJR'-j / c' /�c-/L � jT,Ct� r✓ a n ' J0 �� L_==.23/Z . /-j-,.-1-12- j4-L- ‘2-e__,4 < O IA 04 In i.,/4-6-L % F *SO gw P4 rt I^r 14r I"t,Z / [�/ m C A r r 6 (2- L,.•1-1. ` u. ' in a Z In I z6 ` �- tel'! p�L J` J P ' k r - IA-r L-1 :. v,/ , (3 c•G/15)/0- 7 -.. z, 1 1 -,--it- --- PiA0-', # K G7 le, 49t wit-- I S,..•q-,S G--, LI lb Lim L.ic,5 g•u:- I 5 roR-0vel.r,,- _ FROJtt_i DA-E I STRUCTURAL d..*_e6. ENGINEERING DE'iGn S 9 I SHIT I project Storquest by RJA :neer». ((! location South Stair Shaft Wall#95 dote 1/17/2017 5-)G' I/ client Magellan Arch loo no. 02257-2015-03 Masonry Shear Wall Design in Accordance with 2014 OSSC Input Wall Data Reinforcement Input I fm- 1.9 ksi Veil.rebar size(#) 5 fY= 60 ksi ....spacing 24 in(8,16,24,32,40 or 48) r I w= 23.5 ft ....no.bars/spacing 1 (1 or 2) L,,,,= 240 in Nom.Thickness= 8 in(6,8,10 or 12) Horiz.rebar size(#) 5 (4,5,or 6) Solid Grouting? 1 (yes=1,no=0) ....spacing 32 in(8,16,24,32,40 or 48) Concrete or Clay? 1 (1=Concrete,2=Clay) ....no.bars/spacing 2 (1 or 2) Max unbraced height= 13.17 ft Sds= 0.608 Wall Weight= 93 psf Seismic Design Category= D Equiv.Solid Thick.= 7.625 in r Stack Bond? 0 (yes=1,no=0) Loadinq Input 2500 - r Lateral Forces(kips) 2000 - s Seismic or Wind?I 1 (Seismic=1,Wind=2) 1 Vt = 1.87 kips @ 16.9 ft Q. 1500 x V2= 1.46 kips @ 5.17 ft of woo V3= 56.6 kips @ 10.3 ft V4= 0 kips @ 0 ft soo __.. _ I Vs= 0 kips @ 0 ft 0 Gravity Line Loads 0.0 2000.0 4000.0 6000.0 8000.0 +M"(k-ft) r Wall Weight= 2.176 plf Dead Load,wm.= 0 plf Live Load,wu.= 0 plf f1 = 1 Note: All Load Cases must fall Snow Load,wsi.= 0 plf f2= 0.2 within the curve to be adequate Gravi Point Loads ki•s r Dead Snow ® Live Mill Seismic -_ Pt = 0 0 0 0 0 0 @ 0 ft P2= 0 0 0 0 0 0 @ 0 ft P3= 0 0 0 0 0 0 @ 0 • I P4= 0 0 0 0 0 0 @ 0 ft Ps= 0 0 0 0 0 0 @ 0 ft Adjacent Wall Dead Loads r DL1= 0 kips @ 0 ft DL2= 0 kips @ 0 ft r DL3= 0 kips @ 0 ft DL4= 0 kips @ 0 ft Maximum Out-of Plane Vertical Steel Ratio= 0.377 in`fit OK V corresponding to 1.25°Mn= OK I Maximum In-Plane Vertical Steel Ratio= 2.78 int/ft OK As Actual= 0.153 in2/ft Shear: p min and Spacing Requirements r Vu= 59.93 kips Avert+phi(min)OK Sem Ned) OK tpVn= 313.5 kips OK laved(min)OK Smax(Hort)OK (Vs= 108.6 kips phorz(mint OK Min vert=1/2 noriz OK 4 V ' m= 204.8 Boundary Element Check(ACI 3.3.6.5.1): Not Required I Masonry Shearwall Design 95 Wall Properties Thickness 8 in Length 20 ft Height of Wall 10:4 ft fm 1900 psi Wind/Seismic Increase 1.33_ Grout Spacing Solid Grouted Equivalent Thickness 7.6 Fs 32000 psi Es= 29000 ksi Em = 1710 ksi Loading Shear 59.93 kips Design Shear 89.895 kips Shear Stresses ' M/Vd 0.54 Fv= 100.2 psi fv= _;psi Min. Design Reinf. 0.147 inA2 ' p = 0.00161 P min= 0.0007 ' Min. Reinf. 0.147 inA2 Moment Steel ' M= 623.272 k-ft No.of Bars 2 Bar Size #6 As 0.88 inA2 I p = 0.0005 n= 17.0 k= 0.13 j= 0.96 Fb= 633.3333333 Msteel= _____________k-ft ' Mmasonry= k-ft STRUCTURAL 2124 Third Avenue.Suite 100.Seattle.WA 98121 Date: 1/17/2017 www.mensonsayfaget.cam Project#: Office: 208.443.6212 Design: RJA Fax 208.443 4870 Sheet: - 1 ill Project.Storquest Tigard-Wall 95 .S -)Z ' Date: 1/17/2017 Soil Design Criteria(allowable) Soil Bearing Pressure,a 2500 psf 1/3 increase= 3333 psf I Coefficient of Soil Friction,µ 0:35 Lateral Bearing Resistance,p 300 pcf Overburden 110 pcf Footing Dimensions Components 1 Length of Footing,B 24.00 ft Width of Footing,W 3.83 ft Allowable Thickness of Footing,t 12 in Depth below grade,D 1.00ft Pa+PL= 94.9 k Area,A 91.9 ft2 0.9 Po= 81.8 k Section Modulus,S 368 ft3 M,= 623 k-ft Footing Loads GravityL P„ {K 14k 4 Poverburdeav 10 k Po 67k I11 III $ D A PL 4 k t Pm� 95 r Seismic It B M„ 10470 k-in V. 89.9 k Bearing Stress(allowable) I Pd+Pt q'= 1.0 ksf I Footing size: ?: Pd+PI+EQ e=M/P= 6.6 ft I gmax'= 3.04 ksf B/e= 3.7 ok qmin'= partial uplift ksf Footing size: Pressure Distribution,a= 16.3 ft L e I 0.9 Pd+1-EQ (assumes symmetry about center of footing) e=M/P= 7.6 ft > gmax'= 3.25 ksf B/e= 3.2 ok a qmin'= partial uplift ksf I Footing size: 1111.11.11Pressure Distribution,a= 13.1 ft Resistance to Sliding(allowable)-At this time p,is not removed from seismic loads. Lateral Force Lateral Load= 64 k Resistance due to: Soil Friction,0.9 Pd jt= 29 k Lateral Bearing= 1.7 k I Total Resistance= 30 k,sliding occurs Remaining Lateral Force= 34 k Required Additional Dead Load= 107 k,use adjacent footings to provide lateral resistance I I I prolect Storquest by RJA sheet I 0/STRUCTURAL tocotton South Stair Shaft Wall#96 dote 1/17/2017 5•/, wG client Magellan Arch lob no. 02257-2015-03 I Masonry Shear Wall Design in Accordance with 2014 OSSC input Wall Data Reinforcement Input f m= 1.9 ksi Vert.rebar size(#) 5 U f a 60 ksi ....spacing 24 in(8,16,24,32,40 or 48) W= 23.5 ft no.bars/spacing 1 (1 or 2) Lv = 72 in Nom.Thickness= 8 in(6,8,10 or 12) Horiz.rebar size(#) 5 (4,5,or 6) I Solid Grouting? 1 (yes=1,no=0) ....spacing 32 in(8,16,24,32,40 or 48} Concrete or Clay? 1 (1=Concrete,2=Clay) no. bars/spacing 2 (1 or 2) Max unbraced height= 13.17 ft Sds= 0.608 Wall Weight= 93 psf I Seismic Design Category= D Equiv.Solid Thick.= 7.625 in Stack Bond? 0 (yes=1,no=0) Loading Input r 700 Lateral Forces(kips) 600 __ I Seismic or Wind?f 1 ((Seismic=1,Wind=2) 500 V,= 0.57 kips @ 16.9 ft a 400 V2= 0.44 kips @ 5.17 ft 300 a ' V3= 4.8 kips @ 10.3 ft '0 200 ._. Va= 0 kips @ 0 ft 100 V5= 0 kips @ 0 ft 0g • I 0.0 200.0 400.0 600.0 800.0 ................„,..o''): Gravity Line Loads Wali Weight= 2176 plf $M (k-ft) Dead Load,woi„= 0 plf I Live Load,wu.= 0 plf 11 = 1 Note: All Load Cases must fall Snow Load,wsi= 0 plf f2= 0.2 within the curve to be adequate Gravity Point Loads(kips) I Dead Snow J.. f2 Live _V ft Seismic I 1 P1 = 0 0 0 0 0 0 @ 0 ft P2= 0 0 0 0 0 0 @ 0 ft IP3= 0 0 0 0 0 0 @ 0 ft P4= 0 0 0 0 0 0 @ 0 ft P5= 0 0 0 0 0 0 @ 0 ft IAdjacent Wall Dead Loads DLI = 0 kips @ 0 ft il ' DL2= 0 kips @ 0 ft DL3= 0 kips @ 0 ft DL4= 0 kips @ 0 ft IMaximum Out-of Plane Vertical Steel Ratio= 0.377 in`/ft OK V corresponding to 1.25"Mn= OK Maximum In-Plane Vertical Steel Ratio= 0.624 in21ft OK As Actual= 0.153 in2/ft IShear: p min and Spacing Requirements Vu= 5.81 kips Pvert+phorz(min) OK Smax(vent OK 4Vn= 76.58 kips OK Pvert(min) OK Smax(Hota)OK I4Ns= 31.29 kips Phoa(min)OK Min vert=1t2 hotiz OK �Vrn= 45.69 Boundary Element Check(ACI 3.3.6,5.1): Not Required I I I Masonry Shearwall Design 96 Wall Properties I Thickness 8 in Length 6 ft I Height of Wall 10.6 ft fm 1900 psi Wind/Seismic Increase 1.33 I Grout Spacing Solid Grouted' Equivalent Thickness 7.6 Fs 32000 psi Es= 29000 ksi I Em = 1710 ksi Loading I Shear 5.81 kips Design Shear 8.715 kips Shear Stresses I MNd 2.05 I Fv= 87.0 psi fv= Z=K psi Min. Design Reinf. 0.053 inA2 p = 0.00058 I Amin= 0.0007 Min. Reinf. 0.064 inA2 Moment Steel I M= 61.586 k-ft I No.of Bars 2 Bar Size #6 As 0.88 inA2 p = 0.0019 I n= 17.0 k= 0.25 1= 0.92 I Fb= 633.3333333 Msteel= k-ft Mmasonry= k-ft I livENCIMEERING 0 I 2124 Third Avenue.Suite 100.Seattle.WA 98121 Date: 1/17/2017 wnvw.swansonsayfagatcom Project#: I Office. 206.448.6212 Design: RJA Fax 206.4414870 Sheet: 5.1i I I I Project: Storquest Tigard-Wall 96R Date: 1/17/2017 Soil Design Criteria(allowable) I Soil Bearing Pressure,a 2500 psf 1/3 increase= 3333 psf Coefficient of Soil Friction.µ 0.35 Lateral Bearing Resistance,p 300 pcf Overburden 110 pcf Footing Dimensions ons .._.�, Components Length of Footing,B 10.00 ft Width of Footing,W 3.83 ft Allowable I Thickness of Footing.t: 12 in Depth below grade,D 1.00 ft PD+P1= 34.0 k Area,A 38.3 ft2 0.9 PD= 27.0 k Section Modulus,S 64 ft3 M,= 62 k-ft I Footing Loads Gravity L Pueu 6 k It >i I Poverburden 4k Po 20'k 111-==111 D Pl. ¢k P,ote, 34 I Seismic Ir B >I M„ 1034 k-in Vu 8.7i:k IBearing Stress(allowable) Pd+Pi q'= 0.9 ksf IFooting size: II Pd+PI+EQ I e=M/P= 1.8 ft gmax'= 1.85 ksf B/e= 5.5 ok gmin'= partial uplift ksf Footing size: imi.Pressure Distribution,a= 9.6 ft Ie 0.9 Pd+1-EQ (assumes symmetry about center of footing) e=M/P= 2.3ft < qmax'= 1.73 ksf B/e 4.4 ak a I gmin'= partial ift ksf upl Footing size: Pressure Distribution,a= 8.2 ft Resistance to Sliding(allowable)-At this time p,is not removed from seismic loads. I Lateral Force Lateral Load= 6 k Resistance due to: Soil Friction,0.9 Pd ii= 9 k ILateral Bearing= 1.7 k Total Resistance= 11 k,no sliding occurs IRemaining Lateral Force= 0 k Required Additional Dead Load= 0 not required I I I b-.'r-0P= - t°z---4,----Z_ v,,,i 4-1.4— (2_,v t,;_‘-‘0 C) 0--k-7--A,24 o2_ S 7-1-//t I ) Lio Ai" cit- 7-12-1-� - t+ U /S' - w.-..� ^^ 44-A- ✓NS--PP r 5 P A- = 2'' 0 s ^ 0 0 1SMcL • ,... .`t (a.4,.o VA. ir-13 = 2..-. , `i P./t d F 1.4. te .` ( . 7-) = 1t/• 3PSA I15 158 vy m C>g I Q +'7 n 1-• v,i�,�,4, ( 7)(let ( w_. ) vi CV vc am, o.7, 4. 0 2 t S./..5,-- . Q I 4 sip -1-0, to s- t 0,1 g E I O w n 0 IA../ a l tm I `/S •3 i 3-25 PL1= I r III Mt I2,7-5 ( 2_ )2/8si11• Zs �' IL Cr 4=-4 Mme/? , 6 .©45j .) l=t-✓L. o u) 1"12-cb‘ds.OA (om) eta tyo2ii- 72) ret- pi,./2- I I I I OPROJECT DATE F(?��jvJ. .STRUCTURAL _..... N4 _..... GIP EERIPIG �NG DESIGNI SHEET I IMasonry Horizontal Beam at Stair IWall Properties Width 7.625 in Depth; 15,625 in I d 3.81;in f m 1900 psi Wind/Seismic Increase 1.33 I Grout Spacing Solid Grouted Equivalent Thickness 7.6 Fs 32000 psi Es= 29000 ksi IEm = 1710 ksi IMoment Steel M= 11.25 k-ft As Req`d= 0.30 inA2 No. of Bars 2 Bar Size #6 As 0,88 inA2 I p = n= 0.0303 17.0 k= 1.14 I j= 0.62 Fb= 633 Msteel= sip. k-ft Mmasonry= 4 k-ft I I I I I *sTRucTuRALxau��Na 2124 Thud Avenue.Suite 100.Seattle.WA 98121 Date: 1/17/2017 I www swensonsayfagetcom Project#: Office: 206.443.6212 Design: RJ fax 208.443.4870 Design: -!A I KIWI II CONSTRUCTION Project Title: A R 28177 KELLER ROAD Engineer: Project ID: I MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art r@Dkiwicoistructian.con Printed:7 DEC 2018,3:5SPM Torsional Analysis of Rigid DiaphragmFile-CAU IALEON4-1.KIW 3OCUME-1ENERCA.iU ardec6 I ENERCALC,INC.t9t23 2616d1a.16 10 31.Ver6.16.10.31 Lic.#;-KW06006193 -- _ _ - ' _. ;- __, < - _ ; Licensee KIWI II CONSTRUCTION Description. 2ND LEVEL WALLS,R ANALYSIS SUMMARY Maximum shear forces applied to resisting element.Eccentricity with respect to Center of Rotation Maximum Shear along Member Y Axis Maximum Shear along Member X Axis Resisting Element Load An.le X-Ecc ft Y-Ecc ft Shear Force (k) Load An!le X-Ecc ft Y-Ecc ft Shear Force(k) 85 90 13.76 3.04 3.503 0 3.26 11.54 0.000 I 87 90 13.76 3.04 3.575 0 3.26 11.54 0.000 88 180 3.26 11.54 11.029 270 13.76 3.04 0.000 89 180 3.26 11.54 8.579 90 13.76 3.04 0.000 I 90 0 3.26 11.54 15.397 90 13.76 3.04 0.000 91 0 3.26 11.54 16.028 90 13.76 3.04 0.000 92 0 3.26 11.54 16.028 270 13.76 3.04 0.000 93 0 3.26 11.54 16.715 270 13.76 3.04 0.000 I 94 0 3.26 11.54 16.715 90 13.76 3.04 0.000 95 180 3.26 11.54 56.578 270 13.76 3.04 0.231 96 270 13.76 3.04 4.777 180 3.26 11.54 0.069 I 97 0 3.26 11.54 15.031 270 13.76 3.04 0.106 98 270 13.76 3.04 14.949 0 3.26 11.54 0.105 99 0 3.26 11.54 14.767 270 13.76 3.04 0.106 I 100 90 13.76 3.04 14.687 180 3.26 11.54 0.108 101 180 3.26 11.54 15214 90 13.76 3.04 0.105 102 90 13.76 3.04 15.002 180 3.26 11.54 0.108 103 90 13.76 3.04 35.047 180 3.26 11.54 0.163 I 104 180 3.26 11.54 15.240 90 13.76 3:04 0,113 105 180 3.26 11.54 15.769 90 13.76 3.04 0.113 Layout of Resisting Elements Legend: l i Detsled Wall X Datum Center of Rigidity • Center of Mass () Accidental eccentricity application boundary 2 1 8 '2/3/41'918178 11011121 415117f 3 ii II I 57,8'":: .1.2:3. 5¢888¢901 1 4 ,� -# ,5.6 7 1 0 3 5 4 - 1 r3 rAtt.-4V 3I -� U 344-4-,ki0-1 2. }i�� '1• do i 03 it,j4at i tit rti I 07 H-- STq-it2 5 - - 105 J-- xis I 1 5 ) 1 -7, 71 ) 1al) Iv's„ i. 5 z 9Z' + i7. $' 5) = 13P. Lk` I 1 ' 7 i i74:'il i '3 w sec 1 i?- ('3) fr-35, 5 = 7Li,c,Pe- 114 u I -Z WALL WALL DIRECT UNIT 12/7/2016 WALL WALL DIRECT UNIT NUMBER LENGTH SHEAR SHEAR NUMBER LENGTH SHEAR SHEAR I ;. FT KIPS PLF FT KIPS PLF 1 140 35.36 253 45 20 3.31 166 2 200 50.9 255 - V\Ri X (""r1-- 46 20 3.23 162 I 3 15 2.33 155 47 20 3.16 158 4 40 9.33 233 48 20 3.09 155 5 125 3034 244 49 20 3.07 154 I 6 30 5.83 194 50 20 3.14 157 7 40 9.54 239 51 20 3.21 161 8 20 3.63 182 52 20 3.28 164 I 9 20 3.57 179 53 20 3.35 168 10 20 3.51 176 54 20 3.43 172 11 20 3.45 173 55 20 3.5 175 I12 20 3.39 170 56 20 3.57 179 13 20 3.34 167 57 20 3.52 176 I 14 20 3.4 170 58 20 3.45 173 15 20 3.46 173 59 20 3.38 169 16 20 3.52 176 60 20 3.31 166 I 17 20 3.58 179 61 20 3.23 162 18 20 3.64 182 62 20 3.16 158 19 20 3.7 185 63 20 3.09 155 20 20 3.77 189 64 20 3.07 154 21 70 16.34 233 65 20 3.14 157 22 15 2.12 141 66 20 3.21 161 I 23 15 2.07 138 67 20 3.28 164 24 15 2.03 135 68 20 3.35 168 25 15 1.98 132 69 20 3.43 172 I 26 15 1.94 129 70 20 3.5 175 27 15 1.92 128 71 20 3.57 179 28 15 1.97 131 72 20 3.59 180 I29 15 2.01 134 73 20 3.52 176 30 15 2.06 137 74 20 3.45 173 31 15 2.1 140 75 20 3.38 169 I32 15 2.15 143 76 20 3.31 166 33 15 2.19 146 77 20 3.23 162 34 30 6.01 200 78 20 3.16 158 I35 30 5.89 196 79 20 3.09 155 36 30 5.76 192 80 20 3.07 154 37 30 5.64 188 81 20 3.14 157 I 38 30 5.51 184 82 20 3.21 161 39 30 5.39 180 83 20 3.28 164 I 40 30 5.34 178 84 20 3.35 168 41 30 5.47 182 85 20 3.43 172 42 30 5.6 187 86 20 3.5 175 I 43 30 5.72 191 87 20 3.57 179 44 30 6.1 203 88 50 11.02 220 I 115 I WALL WALL DIRECT UNIT I NUMBER LENGTH SHEAR SHEAR FT KIPS PLF 89 40 8.57 214 90 70 15.39 220 91 70 16.02 229 I 92 70 16.02 229 93 70 16.71 239 94 70 16.71 239 I 595 20 56.57 2829 MP X CM V 3 �2 36 6 4.77 795 17 10 15.03 1503 I98 r�. �TbF 10 14.94 1494 0V• 1 99 10 14.76 1476 1 X00 10 14.68 1468 I A f,A,V 101 10 15.21 1521 ,102 10 15 1500 tiog- li 103 15 35.04 2336 I retie_ 104 10 15.24 1524 .,105 10 15.76 1576 I I I I I I I I I 116 I WILAILIZAIIIMIIIIIIINa N.Stair Wall Wt 105 84 PSL 10 x 10 50 plf R=I 500 '1b ow1-; 71-'pif j R1=1 -2340!lbs L 20 ft M 2 5 ibs w2 : 71 plf I R2=r 5 594 'ibs b ' O in Fb 406 ;psi L1= 13.33 ft j I M+=1 - lb-ft ` I I d • 1125 Fv- 17 psi L2 32.50 ft Jr___________ M-; 37,497 1Ib-ft E . 1300 ksi ! d= - _s 1 fl.33;in X=1 6.67 ft Fb j 2,700 psi Cv-_ 1.0Q's1.0a.L !/J 720 n=.!. - lbs € Fv= 48 :psi 4- b=i 10.00 in Aspan (0.803) in liti I d 10.00 in I span/ (199}j E_j 1,000`,ksi 31.29'in Gv 0.91' !cant/ 25 w1 I w2 t p N.Srtair Wall Wt 103 82 PSL 10 x 10 R1,, Li 1 R2 L2 w1 `107 plf jibs R1= 3526 X I w2=7 107 plfR2= 8 430 fibs L1- 13.33 'ft M+= itb ft L2`• 32.50 h M-=' 56,509 ilb-ft N.Stair Fp13 105 85 PSL 10 x 10 X-I6:67 ;ft ' ( Fb= 4,069 psi w1=' - ;OfR1- -12244!lbs s I P E- lbs I Fv= 73 I. w2= plf R2=1 28,044Ilbs b 10.00 in dspan=i {9_210) m L1= 13.33 'ft M+_� - lb-ft dr-i 10.00 in !span/ (132 -± )* L2=' 10.33 'ft M= 163,214 lb-ft I E 1_ 1,000 ksi Acant=! 4715 J 17in X 6.67 ft Fb- 11,751 psi Cv= 0,91; , Icant/i P-r15,800 ;lbs b=t 10.00 in Fv= 237 Ipsi F Aspan=j (3.759 in W1 w2 , p d= 10.00 lin T 1 span/i; (43) I E= 1,000 jksi I 6,cant=� 27(43) R1 L1 ��R2 L2 Cv=1 1.001 I cant/ 9 ,--tw1 ' w2 t P N.Stair Fp13 103 83 PSL 10 x 10 w1=: - plf R1= -271231Ibs R1 Li R2 L2 w2=I - 'pit R2=t 62,123 ;lbs I L1=! 13.33 ft M+= Ib-ft L2= 10.33 •ft M-= 361,550 Ib-ft S.Stair Wall Wt 95 86 PSL 10 x 10 X 1 6,67 ft Fb=" 26,032 .psi wi 142 ;plf R1= -1242i1bs P ; 35,000 `lbs Fv=I 525 ,psi w2=J 142 1plf R2=1 6,898 ,lbs I b=y 10.00 .in f ©span=I (8.326)in L1=` 16.33 ft { M+ - Ib ft d 10.00 in 1 span/ (19) L2 _; 23 50 ft M-, 39,210 :Ib-ft r 1 E_I 1,060 ksi I scant 61.08 Iin X= 8.17 ;ft Fb 2,823 psi Cv= _� 1.00 l cantlf 4' ` `—� P `Ibs , � Fv= 52 i psi I b= 10.00 in i dspan i {1.082}in w1 w2 P d-s 10.00 in IA span/` (181)! E ` 1 000 Iksi scant 0 37 in I R1 2, L1 1 L2 CY I 094, I cant/; 28 { w1 w2 P 1 IR1 Li +R2 L2 I Project: Storquest Tigard Date: 01/27/17 I SEATTLE 2124 Third Ave,Suite 100,Seattle,WA 98121411,/....inw,criti Project#: TACOMA 934 Broadway,Suite 100,Tacoma,WA 98402 Design: RJA ww.ssfengineers,com w I Office: 206.443.0212 - -. fax: 208.443,4870 Sheet: I S.Stair Fp13 95 B7 PSL 10 x 10 wl=, - plfR1 ; -35804,lbs I w2=j - plf i R2=, 92 404 .lbs L1=;., 16.33 ft i ! M+= alb-ft L2=. 10.33 ,ft M-=, 584,678 Ib-ft km- 8.17 ft Fb= 42,097 psi P=1 56,600 ,lbs Fv= 849 ,psi b=i 10.00 in espan= (20.207);in d=I. 10.00 ini 1 span/j (10) I E 1 1,000 ksi � scant=_ 111 30 .in Cv_� 0.98• I cant/; 2 ; wi w2 t P R1 f L1 R2 L2 .I' - -I• I S.Stair Wall Wt 96 B8 PSL 10 x 10 w1=1 43 .pIf R1=i -376lbs --- w2=1 43, plf R2=1 2,089 Ilbs L1= 16.33 ft M+=( - 1lb-ft L2rI 23.50 1ft ' L M-=1 11,873 1b-ft X=1 8.17 .ft Fb . 855 .psi -. r - l I P lbs I Fv—; 16 'psi b=1,- 10.00 in 1 p (0.328)Iin d= 10.00 4in I I span/ (598)j E=i 1,000 ksi 1 scant= 617 in Cv= 0.94 I cant/; 91 I w1 w2 P R1 j, Li -R2 L2 _ X • S.Stair Fp13 96 B9 PSL 10 x 10 1 w1 - plf R1=! -30361tbs w2=1 pif 1 R2=1 7,836 ,lbs Ll=i 16.33 ft M+= iIb-ft I L2=' 10.33 ft M-1 49,584 'lb-ft X=1 8.17 ft I Fb=1 3,570 psi P 4.800 lbs Fv_L 72 ,psi b=, 10.00 in Aspan=I (1 714)in I d=1 .,in t span( (114) E=: 1,000 ksi ! 1 Acant= 9.44 ,in Cv=, 0.981 , I cant/1 26 w1_ w2 P 1 R1 + Li R2 L2 1 I Project: Storquest Tigard Date: 01/27/17 0SEATTLE 2124 Third Ave,Suite 100,Seattle,WA 98121 Project#: I e tea` TACOMA 934 Broadway,Suite 100,Tacoma,WA 98402 -_-.- _.. -_... ---. 2124 Third Avenue.Suite 100.Seattle.WA 98121 Design: RGC www.swensonsayfaget.com Office. 206.443.6212 I Fax: 206.443.4870 Sheet: