Loading...
Plans (15) 1 KIWI II CONSTRUCTION 81191161 (111-b y 1 1 28177 KELLER ROAD MURRIETA,CA 92563 4 PRO (877)465-4942 1/17/17, 1 `' G e$.- (951)301-8975 2�2�17 - ► i ,• ` (951)301-4096 FAX -v 13 + FE 1• I AI TN:ART LEON CC STRUCTURAL CALCULATIONS FOR *OREGON b ISTORQUEST ,�"',L 2Q. 12740 S.W. PACIFIC AVE. `"N WH Tigard, OR 97223 IDESIGN LOADS(PER"2012"IBC,2014 OSSC): EOM ALMA 6. GROUND SNOW LOAD.., GL:= 20-PSF H:= 35-FT IROOF LIVE LOAD.........,.. LL:= 20•PSF FLOOR LIVE LOAD FLL:= 125•PSF ROOF DEAD LOAD......... DL:= 4-PSF FLOOR DEAD LOAD.,..._.... FDL:=48-PSF IWIND LOADING ci 120 MPH,EXPOSURE B FROM (ASCE7-10) 0.6 FACTOR FOR ASD HORIZONTAL(TRANSVERSE) HT:-= 17.6-PSF HT= 17.6-PSF I VERTICAL(ROOF UPLIFT) VD:_ -13•PSF Vu=-13•PSF ISEISMIC LOADING I:= 1.0 f s r / - ) ' v �i ss:= .97 MAX.GROUND MOTION City Of Tigard S1 := .42 MAX.GROUND MOTION �"` A•.!r•v-d Plans Fa:- .94 SITE COEFFICIENT SITE CLASS L-' BY�in�i�4 ��� Fy:= 2.4 SITE COEFFICIENT Date , 111 SMS:= Fa'SS SMS= 0.912 SM1 F S1SM1 1 c 2 ISDS=_ 3'SMs SDS= 0.608 SDI -'SM1 SDI = 0.672 R:= 5.0 RESPONSE MODIFICATION COEFF.(ASCE7-10 TABLE 12,2-1) OFFICE COPY SPECIAL REINFORCED MASONRY SHEAR WALLS ISEISMIC DESIGN CA 1'EGORY D ISEISMIC FACTOR FOR BUILDING SOS Cs:= R Cs= 0.122 (ASCE7-10 12.8-2) Csmin:_ .044•SDS-I Csmin= 0.027 (ASCE7-10 12.8-5) I I SOILS FOUNDATION AND MASONRY DESIGN BY OTHERS. SEISMIC PARAMETER PER GEOTECHNICAL REPORT BY GEODESIGN,INC.PROJECT:WILLIAMWG-1-0 1 DATED 5/19/16. I I 1 1 ASCE 7-10 TIGARD MAIN WIND FORCE RESISTING SYSTEM: ENCLOSED CATEGORY II EXPOSURE B V:= 120 MPH h:= 35.FT WALLS Kd:= .85 TABLE 26.64 Kzt:= 1.0 SECTION 26.8.2 Kh := .73 TABLE 27.34 Kz:= Kh I GCpi:= -.18 PER FIGURE 26.11-1 G:= .85 SECTION 26.9.4 Cpw:= .8 WINDWARD Cp FIGURE 27.4-1 WALLS Cpl:= -.5 LEEWARD Cp FIGURE 27.4-1 WALLS ' Cp:= Cpw-Cpl Cp= 1.3 qz:= .00256.Kz•Kzt•Kd•V2 qz=22.874 EQ.27.3-1 ' p:= gz•PSF•(GCp-GCpi) p=29.393•PSF EQ 27.4-1 p..6= 17.636•PSF ROOF FIGURE 27.4-1 ROOF Cpl := .9 AT EDGE Cp2:_ .5 NEXT AREA IN Cp3:_ .3 AT INTERIOR AREA p1 := gz•PSF•(G•Cp1 - GCpi) p1 =21.616•PSF p1•.6 = 12.97PSF p2:= gz•PSF•(G•Cp2 - GCpi) p2= 13.839•PSF f ' p3:= gz•PSF•(G•Cp3 -GCpi) p3=9.95•PSF PARAPETS SECTION 27.4.5 WINDWARD Pp:= 1.5•p Pp=44.09•PSF Pp•,6 =26.454•PSF LEEWARD Pn:= -1.0-p Pn=-29.393•PSF )' OVERHANGS: SECTION 27.4.4 Cpoh:= .8 pOH := p1 -r gz•PSF•(G•Cpoh) pOH =37.17•PSF I 1 2 COMPONENTS AND CLADDING: CHAPTER 30 PART 1,SECTION 30.4 WALLS FIGURE 30.4-1 NOPE VALUES MAY BE REDUCED 10% WHEN SLOPE IS LESS THAN 10 DEGREES ADJ:_ .9 GCpc:= -1.4•ADJ GCpc=-1.26 AT CORNERS GCpint:_ -1.1.ADJ GCpint=-0.99 AT INTERIOR REGIONS pc:= gz•PSF•(GCpc+ GCpi) pc=-32.939.PSF pint:= gz•PSF•(GCpint+ GCpi) pint=-26.763•PSF ROOF FIGURE 30.4-2A 10 SF GCper:= -2.8 AT CORNERS GCper:= -1.8 AT EAVES GCpintr:= -1.0 AT INTERIOR per:= gz•PSF•(GCper+ GCpi) per=-68.165-PSF per:= gz•PSF•(GCper+ GCpi) per=-45.291•PSF Ipintr:= gz•PSF.(GCpintr+ GCpi) pintr=-26.991 PSF ROOF FIGURE 30.4-2A50 SF GCper:= -1.6 AT CORNERS GCper:= -1.3 ATEAVES GCpintr:= -.95 AT INTERIOR per5:= gz•PSF•(GCper+ GCpi) per5=-40.716•PSF per5:= gz•PSF•(GCper+ GCpi) per5=-33.854•PSF pintr5:= qz.PSF.(GCpintr+ GCpipintr5=-25.848•PSF ROOF FIGURE 30.4-2A 100 SF GCper:= -1.1 AT CORNERS GCper:= -1.1 AT EAVES GCpintr:= -.9 ATINTERIOR pcr:= qz•PSF ( p GCpi)cr+ GC i) p cr=-29.279•PSF per:= qz•PSF•(GCper+ GCpi) per=-29.279.PSF pintr gz•PSF•(GCpintr+GCpi) pintr=--24.704•PSF 1 3 3 11 PARAPETS: SECTION 30.9 TEAR AWAY FROM ROOF TABLE30.4-2A P1 := 28•PSF P2:= 28•PSF VALUES FOR 10 SF GCper:= -2.8 AT CORNERS I GCper:= -1.8 AT EAVES per:= gz•PSF•(GCper+ GCpi) per=-68.165•PSF 1 per:= qz.PSF.(GCper+ GCpi) per=-45.291•PSF p1 := pint+ pint p1 =-53.525•PSF PUSH INTO ROOF P5:= 28•PSF P7:= 64.4•PSF GCper:= -2.8 AT CORNERS GCper:= -1.8 AT EAVES I p1 := pint+ per p1 =--72.053•PSF 1 OVERHANGS: CORNERS Pohc:= 1.15•per5 Pohc=-46.823•PSF Pohc•.6=-28.094 PSF Psc:= pc Psc=-32.939 PSF Psc•.6=-19.763•PSF EAVES Pah := per5 Poh=-33.854•PSF Poh•.6 =-20.312•PSF Pse= pint Pse=-26.763•PSF Pse•.6 =-16.058•PSF I I I I I 4 STRUCTURAL CALCULATIONS FOR 5 FT X 10 FT GRID IDESIGN LOADS: LL:= 20•PSF DL:= 4.PSF WIND LOADING @ 120 MPH,EXPOSURE B x:= .6 1 VERTICAL(ROOFUPLIFT) Vu:= -25.8•PSF•X Vu=-15.48•PSF Pu:= Vu I MATERIAL SPECIFICATIONS: STEEL -Fy=50 KSI BOLTS -A-307 QUALITY SCREWS-#12 TEK(UNLESS NOTED OTHERWISE) ROOF DECK DESIGN: USE 24 GAGE ULTRA-DEK PER MANUFACTURER'S TABLE ISEE ATTACHED PURLIN DESIGN: L:= 10.FT ROOF DECK TO SPANS'BETWEEN PURLINS THEREFORE... W:= 5•FT•(DL+ LL) + 2•PLF W= 122•PLF L2 Mr:= W•1—0 Mr= 1220•FT•LB Wu:= 5•FT•(--Pu -2•PSF) -2•PLF Wu=65.4•PLF L2 Mu:= Wu•10 Mu =654•FT•LB USE'Z' 4" X 2 1/2" X 16 GA.PURLINS Sx:= .71.CI d:= 4.1N Iy:= 1.08.1N4 fb:= Mr fb=20619.718•PSI < Fb=30000PSI OK Sx 5 I I Cb:= 1 K:= .65 USING CONTINUITY ly Cbbir-ir•E•d•— 2 Fe:= Fe=47316.359•PSI C3.1.2.1-15 Fy:= 50•KSI L2•K•Sx•2 2.78-Fy= 139000•PSI .56-Fy=28000-PSI I THEREFORE Fbup:= Fe Fbup=47316.359-PSI C3.1.2.1-4 PER AISI DESIGN MANUAL Fbu:= if(Fbup<Fy,Fbup-.6,Fy-.6) I fbu:= Mu fbu = 11053.521•PSI < Fbu=28389.815-PSI Sx I T DESIGN CONTINUITY SPLICE: Mr= 1220•FT•LB USE 3#12 TEKS 18"APART Ma:= 619•LB•3.1.5-FT Ma=2785.5-FT-LB Mr =0.438 OK Ma POST DESIGN: P:= W•10•FT P = 1220-LB • USE 'C' 4" X 2.5" X 16 GA. UP TO 14 FT TALL SEE ATTACHED 1 POST TO PURIM CONNECTION DESIGN: P = 1220-LB USE(3)#12 TEKS Pa:= 619.3•LB Pa= 1857-LB =0.657 OK Pa POST TO BASE AT CONCRETE SLAB 111 Pup:= (Wu)•10•FT Pup=654-LB USE(3)#12 TEKS AT BASE PLATE TO POST AND (2) 114"4 x 1.625" EMBED.TITEN HD AT BASE ANGLE TO SLAB Pupa:= 1200-.6-LB WITH SPECIAL INSPECTION Pupa=720-LB PER ICC ESR 2713 ATTACHED OK I 6 6 "1 II {� , DESIGN LOADS: �O (j 6 �' e:: 0 C',,`R•- t.../ � �, r_" A-1z. fA ROOF LIVE LOAD: LL:= 20.PSF 4"RIGID INSULATION: RI := 1.55•.3333•PSF b"V.B.INSULATION: VB:= .8-.5.PSF ROOF MEMBRANE: RM:= 1•PSF IROOF DEAD LOAD(20 GA): DL:= 2.04.PSF TOTAL DEAD LOAD: TD:= RI +VB+ RM + DL+ 2.043•PSF TD=6•PSF I IDESIGN ROOF DECK: USE 22 GA. B-DECK FOR 10 FT SPANS I SEE MANUFACTURER'S TABLE ATTACHED DESIGN TOP TRACK: Iw:= (TD+ LL)•10•FT w=259.996•PLF w (5.33•FT)2 M= 10 M =738.62-FT-LB ISxreqM 30000•PSI Sxreq-0.295.CI I USE 4.125" X 3"X 12 GA. TRACK TO SPAN UP TO 5'-4" BETWEEN STUDS Sx:= .465 Ci OK DESIGN POSTS AT ROOF LEVEL: P:= w ^5•FT P - 1299.981 LB USE'C'4"X2,5"X16 GAGE UP TO 11,5 FT TALL,BRACED AT MIDHEIGHT I Pall:= 5215 LB SEE ATTACHED I DESIGN FOR 10'BEAM SPAN AT LARGE DOORS: w:= 10•FT•(LL+TD) co=259.996•PLF CO M := (10•FT)2 8 M =3249.952•FT•LB I Sxreq:= M Sxreq= 1.3•C l 30000.PSI IUSE 'C' 8"X2.5"X16GA. Sx:= (1.694).CI Sx= 1.694•CI OK DESIGN CONNECTION: 111 R:= w•5•FT R= 1299.981•LB Vail:= 619•LB PER ICBG 2196 I • R — =2.1 Vail IUSE(4)#12 TEKS AT EACH BEAM TO STUD CONNECTION DOUBLE EACH STUD AT BEAM LOCATIONS 1 1 I /Bp/ Il I SECTIONAL PR OPERTY DETERMINATION FOR SECTIONAL PROPERI"YDETERMINATION FOR Ap=4.IN Ap =4•IN III Bp.2.5•IN Bp=2.5•IN Cp=0.773•IN Cp=0.773.1N I t=0.059.1N t=0.059•IN R=0.188•IN R=0.188•IN A=0.586•SI Ad:= A•2 Ad = 1.173IN2 Ix= 1.559•IN4 Ixd:- Ix•2 lxd=3.119IN4 Sx=0.78•CI Sxd:= Sx•2 Sxd= 1.559IN3 rx= 1.631.1N rx= 1.631•IN ly=0.532•IN4 lyd:= (ly+ A•xb2).2 lyd=2.055 IN4 Sy=0.337•CI Syd:= Bp Syd=0.822 IN3 ry=0.953•IN m= 1.383•IN ryd:=1Ad cl ryd= 1.3241N I xb=0.919•IN J =0.001.IN4 Jd=0.001 IN4 Cw=2.244-IN6 Cwd =8.067IN6 j =2.936•IN rOd:=I Ixd2+ lyd2 rOd -3.73510 x0=—2.302•1N r0 =2.978.1N I Ma:= Sx•Fy•.6 Mad:= Sxd•Fy•.6 Ma= 1949.313•FT•LB Mad= 3898.627•FT•LB I I 8 1 I SINGLE POST DESIGN IFIND ALLOWABLE AXIAL LOAD FOR"C" 'C' Ap=4•1N X Bp=2.5•1N X 16 GA. AIS.I MANUAL Fy=50000•PSI ID:= Ap B:= Bp d:= Cp Rx:= rx Ry:= ry IRO:= r0 XO:= x0 Iy:= 14.FT Ix:= 14•FT G:= 11300•KSI K:= 1.0 IFIND ALLOWABLE STRESS FOR SECTION • 2 • •Fel :_ fl F 1 2 Fel =9363.642•PSI • K Y Rv Irr2•E ' sex:= flex=27437.708•PSI (K. lx)2 I 1 Rx T 2 6t:= • G•I + W at=5930.237•PSI I _A•RO2 - (K.102 _ X02 p:= 1 -- (3=0.402 R02 1 Fe2:_ ---•[(0-ex+a-t) •-Vj(flex+ a-t)2-4•0•a•ex•ft] I2 (3 Fe2=5202.613•PSI f Fel =9363.642•PSI SECTION C4 Fe:= Fe2 Fn:= Fe2 F _ Xc:= Fn Xc =3.1 <1.5 I .877 Fn:_ •Fy2 Xe2 Fn 65$�c Fy IFn=895.406•PSI FIND EFFECTIVE AREA(Ae) 2 FLANGES: dL:= d- R-t d=0.773.1N Fn:= if/Xc < 1.5,.658xc •Fy .877 Fy { ) act 1 3 t4 Fn=4562.691•PSI Is:= dL •12 Is=0.001•1N Iwrf:= B -2•R-2•t wrf=2.007.1N d — =0.385 < 0.8 S := 128• E B4.2 Fn S = 102.923 > wf t- = 34.017 > S•.328=33.759 . 1 9 1 THEREFORE — wf 1 10 115. t + 5 •t4,399• i - .328 .t4 n:= IfS <t, 3 2 - - la:- if S <—, 1 t _ \\ S i1 _ A S J - - d=0.7731N k1 := 4.82-5.(-1]•/ n Is + .43 k1 =8865.899 �Iaj TABLEB4.2 !I k2:= 3.57+ .43 k2 =4 k:= if(k2 <k1 ,k2,k1) ",1 2 12 Fcr:= k• E Fcr=92165.502•PSI 12.0 - .32) I Fn <.673 := Fcr X=0.222 .22 1 -- pf:= pf=0.05 111 THEREFORE FLANGES ARE FULLY EFFECTIVE Wf:_ (wf•pf) WEB: ww:= D-2•R-2•t 72.E 2 4 Fcr:= k• � Fcr=30185.03•PSl 12.(1 - .32) ww X:= Fn X=0.389 <.673 Fcr X=0.389 <.673 THEREFORE WEB FULLY EFFECTIVE 1 .22 1 -- pw:= xX pw= 1.117 i Ww:= (ww•pw) LIPS: dL=0.526•IN I 2 / 2 k:- .43 Fcr:= k• l. I Fcr= 143970.944•PSI 12. 1 - .32/ X:= Fn X=0.178 <.673 Fcr X=0.178 <.673 I THEREFORE LIPS ARE FULLY EFFECTIVE Ae:= A Ae=0.586•SI A=0.5861N2 I DETERMINATION OF Pa ly= 1681N pn:= Ae•Fn I Pa:= pn Sic Pa= 1486 LB BRACED IN WEAK AXIS AT iy= 1681N 10 I II KIWI II CONSTRUCTION I 28177 KELLER ROAD MURRIETA,CA 92563 (877)465-4942 (951)301-8975 I (951)301-4096FAX ATTN:ART LEON,ART@KI WICONSTRUCTION,COM JOB NAME: 111 SIMPLE BEAM SPAN DESIGN LOADS: I ROOF LIVE LOAD RLL:= 20•PSF ROOF DEAD LOAD RDL 4•PSF IMATERIAL SPECIFICATIONS: STEEL -Fy—50 KSI BOLTS -A-307 QUALITY lSCREWS-412 TEKS MOMENT: L:= 10.FT Iw:= (RLL + RDL)•10•FT+ 5•PLF w=245•PLF - 2 M:= w•8 M 3062.5•FT•LB • I SECTION MODULUS REQUIRED: M 1 , Sxreq:= 30 KSI Sxreq = 1.225IN3 MOMENT OF INERTIA REQUIRED: I5.w•L4 Ixreq:= L Ixreq=2.803IN4 384.E•--- 1 180 USE 'C' 8"X2.5"X16 GAGE BEAM ISx:= 1.694.1N3 Sx= 1.694IN3 IDESIGN CONNECTIONS: R:= w L R= 1225 LB 2 IUSE MINIMUM(3)/112 TEKS AT EACH END Ran:= 619•LB•3 Ralf= 1857 LB 1 I I 1 11 DESIGN FLOOR DECK: 'I USE 18 GA. 2W COMPOSITE DECK WITH1:-F CONCRETE FLOOR SEE MANUFACTURER'S TABLE ATTACHED )ESIGN TOP TRACK: w:= (ELL+ FDL)-10-FT w=1730.PLF I w.(2.5.FT)2 M:= 10 M= 1081.25•FT•LB Sxreq:= M Sxreq=0.433-CI 30000•PSI USE 4.125" X 3" X 12 GA.TRACK TO SPAN 2`-6" BETWEEN STUDS sx:= .465-CI OK DESIGN FOR 5'BEAM SPAN AT HALL: I w:= 10•FT-(FDL+ FLL) w= 1730•PLF M:= (5.33-FT)2 w M=6143.425-FT-LB I 8 M Sxreq:_ Sxreq=2.457•CI 30000•PSI USE DOUBLE 'C' 6"X2.5"X16GA. Sx:= (1.155.2+ .465).CI Sx=2.775•CI OK DESIGN CONNECTION: a R:= w•2.667•FT R=4613.91•LB Van:= 619•LB PER ICBG 2196 1 R — =7.454 Vall USE(4)#12 TEKS AT EACH BEAM TO STUD CONNECTION DOUBLE EACH STUD AT BEAM LOCATIONS DESIGN FOR 10'BEAM SPAN AT DOORS: II w:= 10-FT-(FDL+ FLL) w= 1730-PLF I M:= (10•FT)2• M=21625-FT-LB 111 Sxreq:= M Sxreq=8.65•CI 30000•PSI USE DOUBLE 'C' 10"X2.5"X12GA. Sx:= (4.663.2).CI Sx=9.326•CI OK DESIGN CONNECTION: R:- w•5•FT R=8650•LB Vali:= 619-LB PER ICBG 2196 -RR = 13.974 Val( 111 USE(8)#12 TEKS AT EACH BEAM TO STUD CONNECTION DOUBLE EACH STUD AT BEAM LOCATIONS NOTE AT CONTINUOUS BEAM SPAN TWICE AS MANY CONNECTORS WILL BE REQUIRED USE DOUBLE 4"X12 GAGE POSTS AT 10 FT SPANI5UPPORTS 1 I ISECTIONAL PROPERTY DETERMINATION FOR `U'41/8X3X12GA. I Ap=4,125.1N IBp = 3•IN Cp=0•IN I t=0.105•IN R=0.094•IN I A= 1.028•SI Ix=3.015.1N4 I Sx= 1.462•CI rx= 1.713.1N !y=0.982.1N4 Sy=0.465.C1 I ry=0.978•1N m = 1222•IN I xb =0.888.IN J =3.778 x 10 3•IN4 I Cw=2.811•1N6 A j =2.913.IN Ix0 =-2.11•IN r0 =2.888.1N I I I 1 3 I I 13 I DESIGN STUDS(SUPPORTING THIRD FLOOR): Iii Pmax:= (LL•0+ TD)•5•FT•10•FT+ (FDL+ FLL)•2.5•FT•10-FT LOAD COMBINATION 16-9 Pmax =4525-LB Pmax:= (LL-.75+ TD)•5.FT•10•FT+ (FDL+ FLL•.75)-2.5.FT•10•FT LOAD COMBINATION 16-11 Pmax= 4493.75-LB USER•"X2.5"X16GA.STUD BRACED AT MIDHEIGHTI Pail:= 6603.LB Pmax = 0.681 OK Pall DESIGN STUDS(SUPPORTING SECOND FLOOR): Pmax:= (LL-0+ TD)-5•FT•10•FT+ (FDL+ FLL•.8)-2.5•FT•10-FT•2 LOAD COMBINATION 16-9 Pmax=7600-LB LIVE LOAD REDUCTION PER IBC 1607.10.2 ITEM 1 Pmax2:= (LL.75+ TD)•5.FT-10•FT+ (FDL+ FLL-.75•.8)•2.5-FT•10•FT-2 LOAD COMBINATION 16-11 Pmax2 = 7100-LB USE 6"X2.5"X16GA. STUD BRACED AT THIRDHEIGHTS AT 13 FT TALL Pmax BRACE AT QUARTER POINTS AT 16 FT TALL Pall:= 8767-LB = 0.867 OK Pall Pa1116:= 8553.LB ii DESIGN FOR 5'BEAM SPAN AT HALLS: w:= 10•FT-(FDL+ FLL•.8)•2 w= 2960-PLF LIVE LOAD REDUCTION PER IBC 1607.10.2 ITEM 1 M:= 5.33 ) FT 2 M= 10511.293•FT•LB ( 8 Sxreq:= M Sxreq= 4.205-C1 i;1 30000-PSI USE DOUBLE 'C' 8"X2.5"X14GA. Sx:= (2.101.2+ .465)•CI Sx=4.667-CI OK DESIGN CONNECTION: 5.33 R:= w• 2 •FT R— 7888.4-LB 111 Vali:= 619-LB PER ICBG 2196 R= 12.744 I Vail USE(8)#12 TEKS AT EACH BEAM TO STUD CONNECTION DOUBLE EACH STUD AT BEAM LOCATIONS I 1 I 14 I IDESIGN STUDS(SUPPORTING GROUND FLOOR): IPmax:= (LL•0+ TD)•5•FT•10•FT+ (FDL+ FLL•.8)•2.5•FT•10•FT•3 LOAD COMBINATION 16 9 Pmax 11300•LB LIVE LOAD REDUCTION PER IBC 1607.10.2 ITEM Pmax2:= (LL•.75+ TD)•5•FT•10•FT+ (FDL+ FLL•.8•.75)•2.5•FT•10•FT.3 LOAD COMBINATION 16-11 I Pmax2= 10175•LB IUSE 6"X2.5"X14GA. STUD BRACED AT MIDHEIGHTS Pall := 11986.LB Pmax =0.943 OK 1 Pall DESIGN FOR 5'BEAM SPAN AT HALLS: I w:= 10.FT•(FDL+ FLL)•3 w=5190•PLF M := (5,33•FT)2.8•-•-) M = 18430,274•FT•LB IM 30000.PSI 300 Sxreq:= Sxreq= 7.372•Cl IUSE DOUBLE 'C' 10"X2.5"X12GA. Sx:= (4.66.2)•CI Sx=9.32•C1 OK DESIGN CONNECTION: U 5.33 R:= w• 2 •FT R= 13831.35•LB Vall := 619.LB PER ICBO2196 IR --- =22.345 Vail IUSE(1 2)#12 TEKS AT EACH BEAM TO STUD CONNECTION DOUBLE EACH STUD AT BEAM LOCATIONS I 1 I I I 1 15 1 i 1, SINGLE POST DESIGN FIND ALLOWABLE AXIAL LOAD FOR"C" 'C' Ap =4.1N X Bp=2.5.I N X 16 GA. AISI MANUAL I Fy=50000.PSI U:= Ap B:= Bp d:= Cp I Rx:= rx Ry:= ry RO:= r0 XO:= x0 I Iy:= 5•FT Ix:= 10•FT G:= 11300.KSI K:= 1.0 FIND ALLOWABLE STRESS FOR SECTION 1 2 Fel :_ E Fel =73410.955,PSI (K. 1Y 12 I Rv/ 2 vex E 2 vex=53777.907 PSI lx K Rx �2.E•Cw I vt:- 1 • G•J + vt=36380.114•PSI A R02 _ (K•ly)2 — z _ r 0, 1 _ XO (3=0.402 R02 I Fe2:= 1 .[(vex+ al) -J(crex+ 01)2 -4•(3•vex•vt] 2p Fe2=24344.548.PSI Fel =73410.955•PSISECTION C4 Fe:= Fe2 Fn:= Fe2 Xc:= Fn Xc = 1.433 <1.5 .877 I Fn:= •Fy �o Xc2 Fn:_ .658 Xc Fn=21165.748•PSI I FIND EFFECTIVE AREA(Ae) 2 .877 Fn:= if Xc < 1.5,.658x° •Fy, F y FLANGES: dL:_ (d- R- t) d=0.773•IN X 2 c t 4 Fn=21165.748•PSI Is dL3•— Is=0.001•IN 12 wf:= B-2•R-2•t wf=2.007•IN d =0.385 < 0.8 wfI S:= 1.28• E B4.2 Fn I S =47.786 > wf =34.017 > S•.328= 15.674 t 16 ''I I THEREFORE I - - // wf A - -/ wv -3 / wf 1 1\ la:= if S < , 115• t + 5 44,399. t _.328 .14 n:= if S <t, 3' 2) i _ t \L S Jl _ S - S / m _ it nd=0.773 IN is\I k1 := J 4.82-5•( )] (lai + .43 kl = 5.118 wfTABLE B4.2 k2:= 3.57+ .43 k2 -4 1 k:= if(k2 <k1 ,k2,k1) 2 \2 Fcr:= k. (� E •� Fcr=92165.502•PSI I 121 - .32) X t Fn =0.479 <.673 I Fcr 1 _ .22 THEREFORE FLANGES ARE FULLY EFFECTIVE Pt X pt= 1.129 Wf:= (` f.pf) WEB: ww:= D-2•R-2•t m2•E t \2 Fcr:= k• •( Fcr=30185.03.PSI 12.(1 - .32) i / EnX:= X=0.837 <.673 - Fcr = X 0.837 <.673 ITHEREFORE WEB FULLY EFFECTIVE 1 - .22 X pw:- X pw=0.88 • Ww:= (ww•pw) ILIPS: dL=0.5264N 2 \2 k:= .43 E Fcr:= k• •�dL Fcr= 143970.944•PSI I 121 - .32 X Fn X=0.383 <.673 V! Fcr ' X=0.383 <.673 THEREFORE LIPS ARE FULLY EFFECTIVE I Ae:= A-(1 - pw)•ww•t Ae=0.562•SI A=0.5861N2 DETERMINATION OF Pa ly=601N Ipn:= Ae•Fn S2c:= 1.8 Pa = pn IPa-6603 LB BRACED IN WEAK AXIS AT ly-601N I 17 • 1 ] : /Bp/ II SECTIONAL PROPERTY DETERMINATION FOR SECTIONAL PROPERTY DETERMINATION FOR ?1 q =6.IN 1 AP-6•iN P Bp=2.5.IN Bp=2.5•IN Cp=0.773-IN Cp=0.773•IN 1 t =0.059•IN t-0.059.IN R=0.188•IN R=0.188.1N 1 A=0.704-SI Ad:= A-2 Ad = 1.4091N2 Ix=3.971•IN4 lxd:= Ix.2 Ixd=7.943IN4 Sx= 1.324•CI Sxd:= Sx•2 Sxd=2.6481N3 �x=2.375•IN rx=2.375•IN 1 ly=0.615-IN4 lyd:= (ly+A•xb2)-2 Iyd=2.0551N4 Sy=0.355•CI Syd;= d B Bp =0.8221N3 1 P ry= 0.935.IN m= 1.247•IN ryd:=j Ad Aci d = 1.208 I N 1 xb=0.765•IN J =0.001•IN4 Jd=0.0021N4 6 6 I Cw=4.923-IN Cwd = 18.231 IN j =3.513•IN rOd;=4 Ixd2 + Iyd2 rOd=8.2041N4 '' x0 =-2.012•IN r0 =3.25•IN 1 Ma:= Sx.Fy-.6 Mad:= Sxd-Fy•.6 Ma=3309.382-FT-LB Mad-6618.764•FT•LB I 18 'I I , SINGLE POST DESIGN IFIND ALLOWABLE AXIAL LOAD FOR"C" `C' Ap=6•I N X Bp=2.5•I N X16 GA. AISI MANUAL Fy=50000•PSI ID:- Ap B:= Bp d:= Cp Rx:= rx Ry:= ry 1 RO:= r0 XO:= x0 iy;= 5•FT Ix:= 13•FT G:= 11300•KSI K:= 1.0 IFIN D ALLOWABLE STRESS FOR SECTION 2 I Fel := '� 2 Fel =70640.317•PSl K• ly 1 RVI I �2 E rex:= rex=67458.569•PSI (K Jx ,2_ I _ Rx_ — 2•E• w rt:= 1 • G•J + 2rt=54766.176•PSI I _A•R02 - (K•ly) X02 p:= 1 3=0.617 I R02 Fe2:= -•[(rex+rt) - , (rex+ rt)2-4•I3•rex•rt I 2.0 Fe2= 37213.032,PSI I Fel = 70640.317.PSI SECTION C4 Fe:= Fe2 Fn := Fe2 Xc:- Fy Xc = 1.159 <I.5 Fn 1 Fn:= .877F y2 Xc2 Fn:= .658�c .Fy IFn =28492.826•PSI FIND EFFECTIVE AREA(Ae) t 2 FLANGES: di.:= (d- R- t) d=0.773.IN Fn:= If Xc < 1.5,.658�c .Fy 877•Fy s Xc2 i Is:= dL3• t Is=0.001.IN4 Fn =28492.826•PSI 12 I wf:= B -2-R-2-t wf=2.007•IN d — =0.385 < 0.8 wf S= 1.28 jB4.2 wf I S=41,186 Fn > =34.017 > S•.328= 13.509 t 1 19 THEREFORE 1 -3 2, wf t 4 t 4 n:= ifs < , 3 2� ' la:= if S <—, 115• — + 5 •t ,399• — - .328 .t Ili t � S 11 _W S J _ _ d=0.773 IN I:ill n I k1 := 04.82--5•(�\l •�la) + .43 k1 =3.603 TABLE B4.2 i `a k2:= 3.57+ .43 k2=4 k:= If(k2 <k1 ,k2,k1) I 11.2•E ( t I 2 Fcr:= k. Fcr= 83027.713.PSI 12. 1 - .32) wf I i X:_ Fn X=0.586 <.673 22 Fcr 1 X I pf:- pf= 1.066 THEREFORE FLANGES ARE FULLY EFFECTIVE X Wf:= (wf•pf) 1 WEB: ww:= D-2.R-2•t7E2.E t N2 i. Fcr:= k •1 — Fcr= 11027.769•PSI I 12•(1 - .32) ww11 1 : Fn = = 1.607 <.673 Fcr 1 X= 1.607 <.673 , I THEREFORE WEB FULLY EFFECTIVE I .22 , s 1 -- pw:= a pw=0.537 1 X Ww:= (ww•pw) 1 LIPS: dL=0,526•IN 11 2 f 2 k:_ .43 Fcr:= k E . I Fcr= 143970.944•PSI 1 1 12.(1 - .32) 1' J Fn <.673 X:= F—cr X=0.445 X=0.445 <.673 II THEREFORE LIPS ARE FULLY EFFECTIVE I Ae:= A-(1 - pw)•ww•t 1]1� Ae=0.554.SI A=0.704IN2 DETERMINATION OF Pa ly=601N I pn:= Ae•Fn 1, Stc:= 1.8 11 pn Pa:= — Stc 1 Pa=8767 LB BRACED IN WEAK AXIS AT ly=601N 1I I 20 i, I SINGLE POST DESIGN IFIND ALLOWABLE AXIAL LOAD FOR"C'" 'C Ap=6•I N X Bp=2.5•I N X 16 GA. AISI MANUAL 0:= Ap B:= Bp d:- C P Fy=50000•PSI Rx:= rx Ry:= ry IRO:= r0 XO:= x0 ly:= 4-FT lx:= 16-FT G:= 11300•KSI K:= 1,0 FIND ALLOWABLE STRESS FOR SECTION 2 E Fel :_ Fel = 110375.495•PSI I (K. • Iy}2 RV1 I �2E aex:= ( Ix \2 (Tex=44533,196•PSI \ K.—x j I 1 Tr2•E•Cw at:- • G.J + at=84873.769.PSI I _A•R02 - (K•ly)2 X02 13= 1 -- j3=0.617 I R02 Fe2:= •[(aex+ 6t) --v (hex+ 6t)2 -4•(3•sex•6t] I 2•0 Fe2=35067.511.PSI Fel = 110375.495.PSI SECTION C4 I Fe:= Fe2 Fn:= Fe2 Xc:= j F� Xc = 1.194 <1.5 It .877 Fn:_ . •FY 2 Xc2 Fn:_ .658Xe •Fy I FIND EFFECTIVE AREA(Ae) Fn =27529.139•PSI 2 II FLANGES: di.:_ (d- R-t) d=0.773•IN Fn:= if Xc <1.5,.658>1/4c •Fy .877 Fy Xc2 i Is:= dL3 Is=0.Q01.1N4 Fn=27529.139 PSI 12 Iwf:= B -2•R-2.t wf=2.007•IN d — =0.385 < 0.8 wf S := 1.28• - B4.2 z � Fn I S=41.901 > wf =34.017 > S•,328 - 13.744 •t 1 21 THEREFORE — — ( wf 1 1 ) I la:= if S < wf, 115• t + 5 •t4,399• --- -.328 .t t _ \\ S ii _ _� S / _ _ II d=0.773IN k1 [4.82-5• •(.1 n + .43 k1 =3.743 �wf�_ TABLE B4.2 1 k2 := 3.57+ .43 k2=4 k:= if(k2 < k1 ,k2,k1) IT 2.E ( t \2 Fcr:= k. — Fcr=86244.275•PSI I 12.(1 - .32) \wf/ X:=I F— X c =0.565 <.673 .22 1 -- pf:= X pf= 1.081 THEREFORE FLANGES ARE FULLY EFFECTIVE Wf:= (wf•pf) WEB: ww:= D-2.R-2•t 2 2 I Fcr:= k. E � � Fcr= I1454.994•PSI 12.(1 - .32) ww X:= Fn X= 1.55 <.673 I Fcr X= 1.55 <.673 THEREFORE WEB FULLY EFFECTIVE I .22 1 -- 1 pw;= pw=0.554 Ww:_ (ww•pw) LIPS: dL=0.526•IN II �2•E r t • 2 k 43 Fcr:= k. . Fcr= 143970.944.PSI 12.(1 - .32} t I Fn <.673 Fcr X:= X=0.437 X=0.437 <.673 THEREFORE LIPS ARE FULLY EFFECTIVE III Ae := A - (1 -pw)•ww•t ' Ae =0.559.SI A=0.7041N2 DETERMINATION OF Pa ly 48 IN pn:= Ae.Fn I SZc:= 1.8 131-.1 ` Pa. SZc Pa =8553 LB BRACED IN WEAK AXIS AC ly=481N I 22 1 I I ] -% 1A.rBf 1 ISECTIONAL PROPERTY DETERMINATION FOR SECTIONAL PROPERTY DETERMINATION FOR Ap=6•IN Ap=6•IN Bp=2.5•IN Bp=2.5•IN I Cp=0.8•IN Cp=0.8•IN t=0.07•IN t=0.07.IN IR=0.188•IN R=0.188•IN A=0.836•SI Ad:= A.2 Ad= 1.671IN2 ' Ix=4.687•IN4 Ixd:= lx-2 lxd=9.373IN4 Sx= 1.562•CI Sxd:= Sx•2 Sxd=3.124IN3 I •x=2.368-IN rx=2.368•IN ly=0.729.IN4 lyd:= (ly+A•xb2).2 lyd= 2.442IN4 ISy=0.421.CI Syd:= -id Syd=0.9771N3 ry=0.934•IN p n i I m= 1.253.1N ryd:=i Iyd Ad ryd = 1,2091N xb=0.767•IN 1 J =0.001.IN4 Jd=0,0031N4 Cw= 5.87$ IN6 Cwd =21.5781N6 - 1 j =3.504•IN rOd:_\/Ixd2+ lyd2 rod=9.68610 x0=-2.02•IN Ir0 =3.25•IN Ma:= Sx•Fy•.6 Mad:= Sxd•Fy•.6 Ma = 3905.575•FT•LB Mad= 7811.15•FT•LB 4€ 1 l Mas:= Sx•Fy•.6.1.33 Mads:= Sxd•Fy•.6.1.33 IMas=5194.415.FT.LB Mads= 10388.829•FT•LB 1 23 SINGLE POST DESIGN ' FIND ALLOWABLE AXIAL LOAD FOR"C" 'C' Ap=6.1NX Bp=2.5•INX 14 GA, AISI MANUAL Fy=50000•PSI D:= Ap B := Bp d:= Cp I Rx:= rx Ry:= ry 1 RO:= r0 XO:= x0 Iy:= 5.FT Ix 10•FT G:= 11300•KSI K:= 1.0 FINDALLOWABLE STRESS FOR SECTION 1 2 •F Fel = Fel =70543.867•PSI ( I 2 ', tK Rv/ 7C2•E crex o-ex= 113395.431.PS! I Ix\2 �K Rx 1 2 _._ 1 6t:= 1 • G•J + E Cw 0-t=55614.628.PSI A•R02 (K.Iy)2 - p:_ 1 - X02 (3=0.614 R02 Fe2:= 1 .L(aex+Qt) -V (flex+at)2 -4•p•vex•crt] z•p I Fe2=44506.178.PSI • Fel =70543.867•PS! SECTION C4 • Fe:= Fe2 Fn:= Fe2 Fy Xc:= Fn Xc = 1.06 <1.5 Fn:= .877•Fy 2 Xe2 Fn:= .658X° .Fy En=31243.364•PSI I FIND EFFECTIVE AREA(Ae) 2 877 \ Fn:_ if Xc < 1.5,.658X° -Fy, •Fy FLANGES: dL:= (d- R--t) d=0.8.INXc2 1 Is:= dL3•- Is=0.001-IN4 Fn=31243.364•PS1 12 wf:= B-2•R-2-t wf= 1.985•IN ' d —wf =0.403 < 0.8 ' E 5:= 1.28 — B4.2 Fn S =39.332 > wf =28.357 > S•.328= 12.901 t 24 , I THEREFORE - ( wf \\ 7 wf _3 1 1 la:= if S < 115• t + 5 •t4,399 t - .328 44 n:= if�S < I _ t S t 3 2� d1 �Is\ d=0.81N '� k1 :- 4.82- 5. — k1 • — + .43 -3.98 C ,_ \Ia) I TABLE B4.2 k2:= 3.57+ .43 k2 =4 Ik:- if(k2 <k1 ,k2,k1) 71.2E ( t \2 Fcr:= k• l Fcr= 131968.489.PSI I 12.(1 - _32) ` 4) X 1 Fn Fcr X=0.487 <.673 .22 1 X THEREFORE FLANGES ARE FULLY EFFECTIVE pf X pf 1 126 I • WEB: ww:= D-2.R-2•t �2 E t \2 Wf:_ (wf..pf) Fcr:= k• •1 — Fcr= 17283.751.PSI 12. 1 -- .32 IX:= Fn X= 1.344 <.673 Fcr X= 1.344 <.673 ITHEREFORE WEB NOT FULLY EFFECTIVE 1 22 -- X I pw:= pw=0.622 Ww:= (ww•pw) I LIPS: dL=0.542•I N k:_ .43 71.2.E " t 2 Fcr:= k• — I Fcr= 190881.647.PSI I 12.(1 - .32) \dL/ X:= Fn X_0.405 <.673 Fcr I X=0.405 <.673 THEREFORE LIPS ARE FULLY EFFECTIVE I Ae:= A-t•(1 - pw)•ww Ae=0.691•SI A=0.836IN2 DETERMINATION OF Pa ly=60 IN Ipn:= Ae•Fn I • Sic:= 1.8 Pa:= p n Slc IPa= 11986 LB BRACED IN WEAK AXIS AT ly=60IN I 25 i S P KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: i' 951-301-8975 fax 951-301-4096 arts kiwiconstruction.com Printed:7 DEC 2016,1:37PM File=C:1UserstALEON-I.K(W1000UME-11ENER 1V(gard.ec6 I Steel Beaty ENERCALC,INC.1983.2016,Build:6.16.1031 Ver61610.31 I Lie.#;KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 27 FT,r i 3 CODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi s Bending Axis: Major Axis Bending i D(0.541 L00.2 1)1.251010.2) ,�, 1 9 span=27.0 n W18x40 I Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D=0.0540, Lr=0.020, L=0.1250, S=0.020 ksf, Tributary Width=10.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.853: 1 Maximum Shear Stress Ratio= 0.219 : 1 W18x40 'I Section used for this Section used for this span W18x40span Ma:Applied 166.759 k-ft Va:Applied 24.705 k Mn/Omega:Allowable 195.609 k-ft VnlOmega:Allowable 112.770 k , Load Combination +D+L+H Load Combination +D+L+H jI Location of maximum on span 13.500ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 I Maximum Deflection Max Downward Transient Deflection 0.846 in Ratio= 382>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 9 Max Downward Total Deflection 1.239 in Ratio= 262>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240,0 I Overall Maximum Deflections i Load Combination Span Max."-"Dell Location in Span Load Combination Max."+Defl Location in Span 1 -10+L+H 1 1.2386 13.577 0.0000 0.000 Vertical Reactions Support notation:Far left Is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 24.705 24.705 Overall MINimum 2.700 2.700 +D+H 7.830 7.830 {i +D+L+H 24.705 24.705 +D+Lr+H 10.530 10.530 +D+S+H 10.530 10.530 +D+0.750L1+0.750L+H 22.511 22.511 +D+0.750L+0.750S+H 22.511 22.511 I +D+0.60W+H 7.830 7.830 + +D+0.70E+H 7.830 7.830 +D+0.750Lr+0.750L+0.450W+H 22.511 22.511 .+D+0.750L+0.750S+0.450W+H 22.511 22.511 4D+0.750L+0.750S+0.5250E+H 22.511 22.511 I. +0.60D+0.60W+0.60H 4.698 4.698 +0.60D+0.70E+0.60H 4.698 4.698 D Only 7.830 7.830 Lr Only 2.700 2.700 L Only 16.875 16.875 S Only 2.700 2.700 W Only E Only 26 1 s KIWI II CONSTRUCTION Project Title: I 28177 KELLER ROAD Engineer; Project ID: MURRIETA,CA 92563 Project Descr. 951-301-8975 fax 951-301-4096 Iart@kiwiconstruction.com Printed:7 DEC 2018,1:38PM Q. Beam Ale=C5UsersALEON-I.KIWIDOCUME-1IENERCA.-lttigard.ec6 ENERCALC,INC.1963 2016,nuild:616.10 31,Ver.6.16.10.31 Lic.#:KW06006193 Licensee KIWI II CONSTRUCTION Description: 40 FT,r ICODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 I Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi I Bending Axis: Major Axis Bending I - 0(0.541 Lr(0 2 L17.25(5(0 2) t - ; _ , _ _ - _ _ - 14 Span 40.00 IW24x76 n IApplied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading- Uniform Load: D 0.0540, Lr-0,020, L-0.1250, S=0.020 ksf, Tributary Width=10.0 ft DESIGN SUMMARY Design OK I Maximum Bending Stress Ratio = 0.748: 1 Maximum Shear Stress Ratio= 0.177 : 1 Section used for this span W24x76 Section used for this span W24x76 Ma:Applied 373.200 k-ft Va:Applied 37.320 k Mn/Omega:Allowable 499.002 k-ft VnlOmega:Allowable 210.320 k I Load Combination +D+L+H Load Combination +p+t+H Location of maximum on span 20.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span 4 1 Span#where maximum occurs Span 41 Maximum Deflection I Max Downward Transient Deflection 1.186 in Ratio= 404>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 1.773 in Ratio= 271 >=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 I Overall Maximum Deflections Load Combination Span Max.""Defl Location in Span Load Combination Max."+"Deg Location in Span +D+L41 1 1.7730 20.114 0.0000 0.000 I Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 37.320 37.320 4 Overall MINimum 4.000 4.000 I ' +0+1-i 12.320 12.320 +D+1+11 37.320 37.320 -1D+Lr+H 16.320 16.320 +D+S+H 16.320 16.320 +D+0,750Lr+0.750L+H 34.070 34,070I +0+0.750L+0.750S+H 34,070 34.070 +0+0.60W+1112.320 12.320 +D+0.70E+H 12.320 12.320 +D+0.750L1+0.750L+0,450W+H 34,070 34.070 +D+0.750L+0.750S+0.450W+H 34.070 34.070 I +0+0,750L+0.750S+0.5250E+11 34.070 34.070 4 +0.60D+0.60W+0.60H 7.392 7.392 +0.600+0.70E+0.60H 7.392 7.392 0 Only 12.320 12.320 Lr Only 4.000 4.000 L Only 25.000 25.000 S Only 4.000 4.000 W Only IE Only 27 I KIWI 11 CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: I MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art()kiwiconstruction.com - Panted 7 DEC 2015,1;39PM I File=C:lUserstALEON-1.KINMOCUME SIENERCA 1ttigani.ec8 Steel Beam ENERCALC,INC.1983-2016,Build 61fi 10 31 Ver 61610.31 Lic.#:KW-06006193 Licensee KIWI II CONSTRUCTION Description: 15 FT,SUPPORTING ONE FLOOR AND ROOF,r CODE REFERENCES I Calculations per RISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties I Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending f 010.405)Lt)0.15 1;10.9375)540.15) 1•• w12x14 Is', Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D=0.0540, Lr=0.020, L=0.1250, S=0.020 ksf, Tributary Width=7.50 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.879: 1 Maximum Shear Stress Ratio= 0.238 : 1 Section used for this span W12x14 Section used for this span W12x14 Ma:Applied 38.152 k-ft Va:Applied 10.174 k Mn/Omega:Allowable 43.413 k-ft Vn/Omega:Allowable 42.754 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 7.500ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.417 in Ratio= 431>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.604 in Ratio= 298>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 t Overall Maximum Deflections - Load Combination Span Max."2'Defl Location in Span Load Combination Max."+"Doll Location in Span +D+L+H 1 0.6041 7.543 0.0000 0.000 Vertical Reaction s Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 10.174 10.174 Overall MINimum 1.125 1.125 +D+H 3.143 3.143 +D+L+H 10.174 10.174 +D+Lr+H 4.268 4.268 +D+S+H 4.268 4.268 +D+0.750Lr+0.750L+H 9.260 9.260 +D+0.750L+0.750S+H 9.260 9.260 +D+0.60W+H 3.143 3.143 +D+0.70E+H 3.143 3.143 +0+0.750L1+0.7501.+0.450W+H 9.260 9.260 +D+0.750L+0.750S+0.450W+H 9.260 9.260 +D+0.7501+0.750S+0.5250E+11 9,260 9.260 +0.60D+0.60W+0.60H 1.886 1.886 +0.60D+0.70E+0.60H 1.886 1.886 D Only 3.143 3.143 _ Lr Only 1.125 1.125 L Only 7.031 7.031 S Only 1.125 1.125 W Only E Only 28 I KIWI II CONSTRUCTION Project Title: I 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 ' art@kiwiconstruction.com Printed.lr1£c2016,r:arvra Steel Beam FI =CtUserslALE0N-1.KIWIDOCUME-1IENERCA.-11tigard.ec6 ENERCALC,INC.1983-2016,Bulld:6.16.10.31,Ver.6.16,10.31 Lic.#: KW06006193 Licensee:KIWI II CONSTRUCTION Description: 22 FT,SUPPORTING TWO FLOORS AND ROOF,r ICODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi I Bending Axis: Major Axis Bending 011.02)Lr(0.2)1(2.5)510,21 I t:' -1-- :', -'''' , : ''' - ,-,,. . :: 'r, ' ' :',.. :.'-:'::-.1',_ '':' ' _ ': - ',,, ' , -' :" - ': -_.-‘ El:_: : ', -''..:::' ' :IS::7_, -.7- span=2.00 I wlax4e 1 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Uniform Load: D=0.1020, Lr=0.020, L=0.250, S=0.020 ksf, Tributary Width=10,0 ft DESIGN SUMMARY ` Design OK Maximum BendingStress Ratio = 0.953: 1 Maximum Shear Stress Ratio I = 0.346 1 Section used for this span W1$x4ii Section used for this span W18X4fi Ma:Applied 215.743k-ft Va:Applied 39.226 k Mn/Omega:Allowable 226,297 k-ft Vn/Omega:Allowable 130.320 k I Load Combination +p+L+H Load Combination +D+L+H Location of maximum on span 11.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.641 in Ratio= 411> 360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.914 in Ratio= 289>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 I Overall Maximum Deflections Load Combination Span Max."-a Dell Location in Span Load Combination Max."+Deli Location in Span +1/+L+H 1 0.9144 11.063 0.0000 0.000 Vertical Reactions _ Support notation:Far left is#1 Values in KIPS I Load Combination Support 1 Support 2 Overall MAXimum 39.226 39.226 Overall MINimum 2.200 2.200 +D+H 11.726 11.726 +D+L+H 39.226 39.226 +O+Lr+H 13.926 13.926 +D+S+H 13.926 13.926 +D+0.750Lr+0.750L+H 34.001 34.001 I +D+0.750L+0.750S+H 34.001 34.001 +D+0.60W+H 11.726 11.726 +D+0.70E+H 11.726 11.726 +0+0.750Lr+0.7501+0.450W4l 34.001 34.001 +D+0.7501.+0.750S+0.450W4l 34.001 34.001 I +D+0.750L+0.750S+0.5250E+H 34.001 34.001 +9.60D+0.60W+0,6011 7.036 7.036 +0.60D+0.70E+0.60H 7.036 7-036 D Only 11.726 11.726 li Lr Only 2.200 2.200 ,° L Only 27.500 27.500 S Only 2.200 2.200 W Only E Only 29 I KIWI li CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Protect Descr: I 951-301-8975 fax 951-301-4096 art(a?kiwiconstruction.com Printed.7 DEC 2016,x51PM II File=C\Users)ALE0N-1.K1W1DOCUME-11ENERCA 1tLgard,ec6 Steel Beam ENERCALC,INC.1983-2016,Build:6.16.10 31 Ver 81fi 10.31 Lic.#:KW-06006193 Licensee KIWI II CONSTRUCTION Description 30 FT,rd CODE REFERENCES _ I Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties I Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 011.021 Lr(O.)L(2)610.21. + * F.i, k -. _ - Span=30.00 :t�J c� � W24x68 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading ' ' Uniform Load: D=0.1020, Lr=0.020, L=0.20, S=0,020 ksf, Tributary Width=10.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.787: 1 Maximum Shear Stress Ratio= 0.235 : 1 Section used for this span W24x68 Section used for this span W24x68 Ma:Applied 347.400 k-ft Va:Applied 46.320 k Mn l Omega:Allowable 441.617 k-ft VnlOmega:Allowable 196.710 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 15.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.690 in Ratio= 521>=360 Max Upward Transient Deflection 0,000 in Ratio= 0<360 1 Max Downward Total Deflection 1.065 in Ratio= 338>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections I Load Combination Span Max."-'Doll Location in Span Load Combination Max."+Defl Location in Span +0+L+H 1 1.0653 15.086 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 I Overall MAXimum 46.320 46.320 Overall MINimum 3.000 3.000 +D+li 16.320 16.320 +D+L+H 46.320 46.320 I +D+Lr+H 19.320 19.320 +0+341 19.320 19.320 +0+0.750Lr+0.750L+H 41.070 41.070 +D+0.750L+0.750S+H 41.070 41.070 +D+0.60W41 16.320 16.320 +0+0.70E+H 16.320 16.320 +1+0.750Lr+0.750L+0.450W+H 41.070 41.070 +0+0.750L+0.750S+0.450W+H 41.070 41.070 +0+0.750L+0.750S+0.5250E+14 41,070 41.070 , +0,60D+0.60W+0.60H 9.792 9.792 -+0.600+0.70E+0.60H 9.792 9.792 D Only 16.320 16.320 LrOnly 3.000 3.000 LOnly 30.000 30.000 S Only 3.000 3.000 ., W Only E Only 30 , ' I KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction,com Printed:7 DEC 2616,3.31PM I Steel Beam File=C:4Users\ALEON-1.KIW OCUME-11ENERCA-1ltigatd.ec6 ENERCALC,INC.19632016,em1d:6.16.10.31.Ver.6.36.10.31 Lic.#:KW-06006193 Licensee:KIWI 0 CONSTRUCTION j Description: 12 FT JACK,rd CODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 I Material Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(i632)L/3)L(30)5(3) O(16 32(Lf3)LI33)5(3) '.1: i Span=13.08 ,. 01943 F. IApplied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load(s)for Span Number 1 Point Load: D=16.320, Lr=3.0, L=30.0, S=3.0 k @ 1.50 ft Point Load: D=16.320, Lr=3.0, L=30.0, S=3.0 k @ 11.50 ft DESIGN SUMMARY Design OK •; Maximum Bending Stress Ratio = 0.554: 1 Maximum Shear Stress Ratio= 0.432 : 1 Section used for this span C15x33.9 Section used for this span Cl5x33.9 Ma:Applied 70.196 k-ft Va:Applied 46.540 k Mn/Omega:Allowable 126.747 k-ft Vn/Omega:Allowable 107.784 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum an span 6.500ft Location of maximum on span 0.000 ft 1 Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 I Maximum Deflection Max Downward Transient Deflection 0.178 in Ratio= 878>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<380 Max Downward Total Deflection 0.277 in Ratio= 564>=240. flection ,. Overall Maximum Deflections 0.000 in Ratio= 0<240.0 Load Combination Span Max."-P Deft Location in Span Load Combination Max,"+'Dell Location in Span +D+L+H 1 0.2765 6.537 0.0000 0.000 ' Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 46.540 46.540 I Overall MINimum 3.000 3.000 +D+H 16.540 16.540 +D+L+H 46.540 46.540 +D+Lr+H 19.540 19.540 I +D+S+H 19.540 19.544 +D+0.750Lr+0.750L+H 41.290 41.290 +D+0.750L+0.750S+H 41.290 41.290 +D+0.60W+H 16.540 16.540 +D+0.70E+H 16.540 16.540 I +p+0.750Lr+0.750L+0.450W+H 41.290 41.290 +D+0.750L+0.750S+0.450W+H 41.290 41.290 +D+0.750L+0.750S+0.5250E+H 41.290 41.290 +0.600+0.60W+0.66H 9.924 9.924 i I +0.60D+0.70E+0.60H 9.924 9.924 D Only 16.540 16.540 Lr Only 3.000 3.000 L Only 30.000 30.000 • S Only 3.000 3.000 31 I KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr. I 951-301-8975 fax 951-301-4096 artgokiwiconstruction.com Printed 7 DEG 2016,1:54PM I Steel Beath F+le=C:4Users\ALEON-t.KIVIDOCUME-14ENERCA ittigard,ec6 ENERCALC,INC.198.3.2016,BuiId:6.16.10 31 Ver 616.10.31 Lic.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 50 FT JACK,r CODE REFERENCES I Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties I Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending t i ors 531 Lrt0.3�us 75)S{0 3) M I Span 50.0 0 W40xt67 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading I Uniform Load: 0=0.1020, Lr=0.020, L=0.250, S=0.020 ksf, Tributary Width=15.0 ft _DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.984: 1 Maximum Shear Stress Ratio= 0.271 : 1 I Section used for this span W40x167 Section used for this span W40x167 Ma:Applied 1,702.188 k ft Va:Applied 136.175 k Mn/Omega:Allowable 1,729.042 k-ft Vn/Omega:Allowable 501.80 k Load Combination +D+L+H Load Combination +D-FL-FH Location of maximum on span 25.000ff Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 1.571 in Ratio= 381>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 2.287 in Ratio= 262>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections I Load Combination Span Max."-"Deft Location in Span Load Combination Max."+"Dell Location in Span +0+L+11 1 2.2874 25.143 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Lo t2 Load Combination Support 1 Support 2 Overall MAXimum 136.175 136.175 Overall MiNimum 7.500 7.500 +041 42.425 42.425 +D+L+H 136.175 136.175 +D+Lr+H 49.925 49.925 +D+S+H 49.925 49.925 +D+0.750Lr+0.750L+H 118.363 118,363 +D+0.750L+0.750S+H 118.363 118.363 I+0+0.60W+14 42.425 42.425 +D+0.70E+H 42.425 42.425 +D+0.750Lr+0.750L+0.450W+H 118.363 118.363 +0+0.754L+0,750S+0.450W41 118.363 118.363 +0+0.750L+0.750S+0.5250E+H 118.363 118.363 +0.60D+0.60W+0,60H 25.455 25.455 +0.60D+0.70E+0.60H 25.455 25.455 D Only 42.425 42.425 Lr Only 7,500 7.500 L Only 93.750 93.750 S Only 7.500 7.500 W Only E Only 32 ' I I.• KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRI ETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Printed'7DEC 2015,1:58PM Steel Beam fife=C;Ulsers1ALEON-1,KBAIDOCUME-I1ENERCA-litigard.ec6 ENERCALC,INC.1983-2016,Build:6.16.10.31,Ver:6.16.10.31 Lic.#:KW-06006193 Licensee KIWI II CONSTRUCTION Description: 10 FT,r II CODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 IMaterial Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi I Bending Axis: Major Axis Bending __ ...1515_ ...___ ------------- V. i D(-1.0211-r(04.11.(21 5(0.21 it ., ISpan-10.08 W12x14 i Applied Loads Service loads entered.Load Factors will be applied for calculations. • I Beam self weight calculated and added to loading Uniform Load: D=0.1020, Lr=0.020, L=0.20, S=0.020 ksf, Tributary Width=10.0 ft DESIGN SUMMARY Design OK 3 Maximum Bending Stress Ratio = 0.874: 1 Maximum Shear Stress Ratio= 0.355 : 1 Section used for this span WI2x14 Section used for this span W1 2x14 Ma:Applied 37.925 k-ft Va:Applied 15.170 k Mn!Omega:Allowable 43.413k-ft Vn/Omega:Allowable 42.754 k I Load Combination +p+L+t{ Load Combination +111-L1-1-1Location of maximum on span 5.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.176 in Ratio= 682>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.267 in Ratio= 450>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 I Overall Maximum Deflections Load Combination Span Max."-"Deft Location In Span Load Combination Max."+"Deb Location in Span +D+L41 1 0.2669 5.029 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 15.170 15.170 Overall MiNimum 1.000 1.000 +D+H 5.170 5.170 i I +D+L+H 15.170 15.170 +D+Lr+H 6.170 6.170 +D+S+H 6.170 6.170 +D+0.750Lr+0.750L+H 13.420 13.420 I +0+0.750L+0.7505+H 13.420 13.420 +D+O.60W+H 5.170 5.170 +0+070E+H 5.170 5.170 +0+0.750Lr+0.750L+0.450W4I 13.420 13.420 +0+0.750L+0.7505+0.450W+H 13.420 13.420 - III +D+0.750L+0.750S+0.5250E41 13.420 13.420 +0.60D+0.60W+0.60H 3.102 3.102 , +0.60D+0.70E+0.60H 3.102 3.102 D Only 5.170 5.170 I Lr Only 1.000 1.000 L Only 10.000 10.000 S Only 1.000 1.000 - W Only IE Only 33 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID; MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 arta(),kiwiconstruction.com Printed 7DEC 20)6.3:58PM File=C:WserstALE0 N-1.KiwIDOCUME-t 1ENERGA-lltigard.ec6 Steel Beath ENERCALC,INC.1383-2016,auild.6.16.10.31,Ver:6.16.10.31 Lic.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 12 FT JACK,interior,r CODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties Analysis Method: Allowable Strength Design Fy;Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(5.17)UI)L(125).8(i) M , 1 .;. Span=t2.Oft MC12xI0.8 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load(s)for Span Number 1 Point Load: D=5.170, Lr=1.0, L=12.50, S=1.0k@1.0ft Point Load: D=5.170, Lr=1.0, L.12.50, S=1.Ok@11.0ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.617: 1 Maximum Shear Stress Ratio= 0.433 : 1 Section used for this span MC12x10.6 Section used for this span MCI2x10.6 Ma:Applied 17.861 k-ft Va:Applied 17.734 k i Mn/Omega:Allowable 28.942 k-ft Vn/Omega:Allowable 40.958 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 6.000ft Location of maximum on span 12.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0.241 in Ratio= 596>-360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.344 in Ratio= 418>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections Load Combination Span Max."-"Bet Location in Span Load Combination Max."+"Defl Location in Span +0+L+H 1 0.3444 6.034 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 17.734 17.734 Overall MINimum 1,000 1.000 +D+H 5.234 5.234 +D+L+H 17.734 17.734 +D+Lr+H 6.234 6.234 +D+S+H 6.234 6.234 +0+0.750L1+0.750L+H 15.359 15.359 +0+0.750L+0.750S+H 15.359 15.359 +D+0,60W+H 5.234 5.234 +D+0.70E+H 5.234 5.234 +D+0.750Lr+0.750L+0.450W+H 15.359 15.359 +D+0.750L+0.750S+0.450W+H 15.359 15.359 +D+0.750L+0.750S+0.5250E+H 15.359 15.359 -- +0.60D+0.60W+0.60H 3.140 3.140 +0.60D+0.70E+0.60H 3.140 3.140 ' D Only 5.234 5.234 Lr Only 1.000 1.000 L Only 12.500 12.500 S Only 1.000 1.000 34 I KIWI II CONSTRUCTION Project Title: I 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 1 art(R,kiwicanstruction.com Printed:7DEC 2616, 1:56PM Steel Beam. File=.C:1UsersWLE(7N-1.KIWkDOCUME-11ENERCA-1Vtigard.ec6 ENERCALC,INC.19832016,Buiid:6.16.10.31,Ver:6.16.10.31 Lic.#:KW-06006193 Licensee:;KIWI II CONSTRUCTION Description: 10 FT basement,r ICODE REFERENCES Calculations per AISC 360-10,IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 IMaterial Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi I Bending Axis Major Axis Bending DO 5)Lr{a.24,t.(3 75)Sfo.2) I ;,q t I Span=16.00 i W12x22 I Applied Loads Service toads entered.Load Factors will be applied for calculations.Beam self weight calculated and added to loading Uniform Load: 0=0.150, Lr=0.020, L=0.3750, S=0.020 ksf, Tributary Width=10.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.901: 1 Maximum Shear Stress Ratio= 0.412 : 1 Section used for this span W12x22 Section used for this span WI 2x22 Ma:Applied 65.900 k-ft Va:Applied 26.360 k i Mn/Omega;Allowable 73.104 k-ft VntOmega:Allowable 63.960 k i I Load Combination +D+L+N Load Combination +p+L+H Location of maximum on span 5.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 I Maximum Deflection I Max Downward Transient Deflection 0.187 in Ratio= 640>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.263 in Ratio= 456>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 1 I Overall Maximum Deflections Load Combination Span Max."-"Defl Location in Span Load Combination Max.°+"Deft Location in Span +0+L+H 1 0.2634 5.029 0.0000 0.000 1 I Vertical Reactions Support notation:Far left is#1 Values in KIPS • Load Combination Support 1 Support 2 I Overall MAXimum 26.360 26.360 i Overall MINimum 1.000 1.000 +D+H 7.610 7.610 1 I +O+L+H 26.360 8.610 26.360 +p+Lr+H 8.610 +D+S+H 8.610 8.610 1 +D+0.750Lr+0.750L+H 22.423 22.423 _ I +D+o.75oL+0.750S+H 22.423 22.423 +D+0.60W+H 7.610 7.610 +D+0.74E+H 7.610 7.610 1. l. +D+0.750Lr+0.7501+0.450W+H 22.423 22.423 +D+0.750L+0.750S+0.450W+1-1 22.423 22.423 I +0+0,7501+0.750S+0.5250E+H 22.423 22.423 +0.60D+0.60W+0.60H 4.566 4.566 +0.60D+0.70E+0.60H 4.566 4.566 D Only 7.610 7.610 I Lr Only 1.000 1.000 L Only 18.750 18.750 S Only 1.000 1,000 W Only IE Only 35 KIWI II CONSTRUCTION i STRUCTURAL CALCULATIONS FOR LATERAL DESIGN LOADS: ROOF LIVE LOAD: LL:= 25•PSF ROOF DEAD LOAD: DL:= 6•PSF II FLOOR LIVE LOAD: FLL:= 125•PSF FLOOR DEAD LOAD: FDL:= 48•PSF I WIND LOADING: HORIZONTAL(TRANSVERSE) HT:= 17.6•PSF HT= 17.6•PSF 1 Pw:= HT H3:= 10-FT H2:= 10•FT I H1 := 10•FT V:- .122 V= 0.122I h3:= H1 + H2+ H3 h2:= H1 + H2 h1 := H1 1 LATERAL DESIGN: TOTAL BUILDING HEIGHT IS h3 = 30•FT WIND Pw= 17.6•PSF I ww3= Pw•H3 + Pw•5•FT•2.25.1 ww3= 286•PLF 2 IIww2:= (H2)•Pw ww2= 176•PLF 0.}w1:= H1•Pw ww1= 176•PLF I SEISMIC A3:= 31725•FT2 BUILDING IS W:= 140•FT WIDE A2:= 31725•FT2 I TRIBUTARY WIDTH IS 10` Al := 31574•FT2 w3RD:= DL-W+ (10+ l0)•PSF•H3 2 1 2 j - w3RD= 90.629 PLF - w2ND:= [(FDL+ 125•PSF•.25)•W+ (10 + 10) PSF H2.2]' C w2ND= 1001.707•PLF i w1ST:= [(FDL+ 125•PSF-.25)•W+ (84 + 84).PSF•Hl•2)• V w1 ST= 1259.65•PLF I 36 1 I IREDISTRIBUTE, (w3RD+ w2ND+ w1ST)•w3RD•h3 iiw3:_ II w3RD•h3+ w2ND•h2+ w1ST•h1 w3= 180.9•PLF Iw2:= (w3RD+ w2ND+ w 1 ST)•w2ND•h2 w3RD•h3+ w2ND•h2 + w1ST•h1 • Iw2= 1332.976•PLF (w3RD+ w2ND+ w1ST)•w1ST•h1 w1:= w3RD•h3 + w2ND•h2+ w1ST•h1 Iw1 = 838.111.PLF I SHEAR TO WALL AT 3RD FLOOR IS... L:= W-- 35•FT OF SHEARWALL IWIND L= 105•FT C(ww3) 10•FT1 v3w:= L v3w= 27.238•PLF I SEISMIC I vas: v(w3)•10•FT] L J vas= 17.229.PLFii 3C 111 USE 26GA. METAL SHEARWALLS WITH (7) FASTENERS AT EACH PANEL SPANNING 5'-0"AND 0 SIDELAP FASTENERS van=105 PLF I CHECK OVERTURNING AI'LOW EAVE,20 FT WALL Hsw:= 14.FT Lsw:= 20•FT Mot:= v3w•Hsw•Lsw Mot= 7626.667.FT•LB I UP:= Mot Lsw UP= 381.333 LB IUSE(2)1/4"TI'TEN IID ANCHORS Ta114s:= 900•LB•.7 Tail4s= 630 LB • Tall4w:= 1200•LB•.6 Tail4w=720 LB I I DESIGN DRAG STRUT SPLICE WIND SEISMIC Ii T:= v3w•10•FT T=272.381 LB Ts:= v3s•10.FT•2.5 Ts— 430.714 LB N:= Ts 619.LB N= 0.696 USE(2)#12 SCREWS AT SPLICES 1 37 I SHEAR TO WALL,AT 2ND FLOOR IS... L:= W•-- 25•FT OF SHEARWALL, WIND [(ww3+ ww2)•10•FT] v2w:= IL L v2w= 40.174•PLF I SEISMIC r(w3+ w2)•10•FT] I v2s:- L L v2s= 131.641.PLF USE 26GA. METAL SHEARWALLS WITH (7) FASTENERS PER PANEL SPANNING 2'-6" AND 0 SIDELAP FASTENERS vatl=249 PLF II WIND [(ww3+ ww2) v2w:= W v2w= 3.3•PSF SEISMIC v2s;- ^(w3+ w2)] W v2s= 14.813•PSF LAT3:= v2s•A2 LAT3= 343054.931 LB SEE RIGID ANALYSIS I CHECK OVERTURNING AT LOW EAVE,10 FT WALL Hsw:= 10•FT Lsw:= 10•FT Mot:- 255•PLF•Hsw•Lsw Mot= 25500•FT•LB Mr:= 10•FT•FDL•.6•Lsw2•.5 Mot- Mr UP:= UP= 1110LB Mr= 14400•FT•LB Lsw USE 1/2"THRUB OLT AND S/LTF201IOLD DOWNS AT SHEARWALL ENDS Tall:= 1200•LB UNIT SHEAR AT 1ST FLOOR,GROSS MASS: SHEAR TO WALL Al' 1 S'I'FLOOR IS... WIND II 1(ww2+ ww3+ I wwl)_ v2w:= W v2w- 4.557,PSF SEISMIC + w1) i v2s:_ [[(w2 w3+W v2s= 16.8•PSF A:= 31574•FT2 LATERALAT SECOND FLOOR REVISED FOR REDUCED FI.,OOR AREA OVER DRIVE LAT2:= v2s•A LAT2= 530439.978 LB SEE ATTACHED RIGID DIAPHRAGM ANALYSIS FOR TI IIS LEVEL I SEE SSF ENGINEERING ANALYSIS FOR CMU WALL SHEARS SHEAR TRANSFER FROM DECK TO WALLS,MAX IS WALL#1 II vmax:= 3220.LB USE MINIMUM#4 BARS AT 8"0/C Vail:= 60000-PSI•.4 .1963•lN2 Vall= 4711.2 LB >> vmax= 3220 LB `' SEE DETAIL 6 SHEET DI,TYPICAL AT ALL DECK TO CMU LOCATIONS il „ 38 1 III Title: Job# Dsgnr: Date: 4;21 PM, 7 DEC 16 IDescription: Scope: Rev 580003 I User KW-0606193 Ver 5.8.0,1-Nov-2086 Rigid Diaphragm Torsional Analysis Pae 1 (c}1983-2006 ENERCALC Engineering Software t� ard ecw Calcculalrons g Description revised, r { General Information Y-Y Axis Shear x l X-X Axis Shear 5 0.4 40 k Min.V Axis Ecce 5.00., % denier ie Mass u,1 X Axis Center of M 103.25 ft I 5.00 % Y Axis Center of Mass 102.20 ft 30 Shears are applied on each axis separately MaxX Dimension 210.00 ft Max Y Dimension 180.00 ft Wall Data I Label Thickness Length Height Wal Xcg 9 g l Wall Ycg Wall Angie Wail End E in ft ft ft ft deg CCW Fixity Ii 7.625 70.000 16.000 20.000 45.000 90.0 Fix Pin Fix-Pin 1,710.0 2 7.625 10.000 16.000 25.000 80.000 0.0 1,710.0 3 7.625 20.000 16.000 30.000 90.000 90.0 Fix-Pin 1,710.0 4 7.625 20.000 16.000 30.000 120.000 90.0 Fix-Pin 1,710.0 I 5 7.625 10,000 16.000 25.000 130.000 0.0 Fix Pin 1,710.0 6 7.625 50.000 16.000 20.000 155.000 90.0 Fix-Pin 1,710.0 7 7.625 70,000 16,000 35.000 180.000 0.0 Fix-Pin 3,605.0 Ia 7.625 60.000 13.000 170.000 180.000 0.0 Fix Pin Fix Pin 3,605.0 9 7.625 30.000 13.000 200.000165.000 90.0 3,605.0 10 7.625 10.000 13.000 205.000 150.000 0.0 Fix-Pin 3,605.0 11 7.625 70.000 13.000 210.000 115.000 90.0 Fix-Pin 3,605.0 12 7.625 10.000 13.000 205.000 80.000 0.0 Fix-Pin 3,605.0 13 7.625 25.000 13.000 190.000 67.500 90.0 Fix-Pin 1,710.0 14 7.625 10.000 13.000 195.000 55.000 0.0 Fix-Pin 1,710.0 I 15 7.625 10.000 13.000 165.000 40.000 0.0 Fix-Pin 1,710.0 16 7.625 16.000 13.000 137.000 45.000 0.0 Fix-Pin 1,710-0 17 7.625 65.000 13.000 97.500 40.000 0.0 Fix-Pin 1,710.0 18 7.625 30.000 16.000 65.000 25.000 90.0 Fix-Pin 1,710.0 s} I 19 7.625 21.000 16.000 55.000 10.000 0.0 Fix Pin 1,710.0 20 7.625 21.000 16.000 30.000 10.000 0.0 Fix-Pin 1,710.0 21 7.625 60.000 13.000 100.000 180.000 0.0 Fix-Fix 3,605.0 22 7,625 10.000 13.000 195.000 80.000 0.0 Fix-Pin 1,710.0 Calculated Wall Forces , Label Load Location for Maximum Forces Direct Shears k Torsional Shears k Final Max. Wall Shear ft V Length Thick Length Thick k 47.185 0.000 84.700 0.000 38.695 0.037 123.395 2 0.000 -54.916 -1.899 0.000 -0.808 -0.007 -2.708 I 3 -47.185 0,000 13.259 0.000 5.552 0.006 18.811 4 47.185 0.000 13.259 0.000 5.552 0.003 18.811 5 0.000 -54.916 -1.899 0.000 -0.215 -0.007 -2.114 6 -47.185 0.000 56.520 0.000 25.821 -0.002 82.341 I 7 0.000 36,916 -126.721 0.000 16.967 -0.063 -126.721 8 0.000 36.916 134.686 0.000 18.033 0.029 -134.686 9 -47.185 0.000 79.130 0.000 -18.104 -0.010 79.130 10 0.000 -36.916 -6.753 0.000 0.053 0.010 -6.753 11111 -47.185 0.000 225.389 0.000 -60.153 0.047 225.389 12 0.000 -54.916 -6.753 0.000 -2.873 0.015 -9.626 I 13 -47.185 0.000 28.501 0.000 -5.435 0.019 28.501 14 0.000 -54.916 -3.203 0.000 -1.863 0.006 -5.066 15 0.000 -54.916 -3.203 0.000 -2.163 0.003 -5.367 I 39 Title: Job# Dsgnr: Date: 4:21 PM, 7 DEC 16 Description: !� Scope: Rev 580003 Page 2 User KW-0606193 Ver 5.8.0,1-Nov-2006 Ri id Diaphragm Torsional Analysis (01983-2008 ENERCALC Engineering Software Ifgard ecw:Cakulations _.- Description revised, r 16 0.000 -54.916 -9.123 0.000 -5.877 -0.001 -15.000 ' 17 0.000 -54.916 -69.898 0.000 -47.208 -0.031 -117.105 18 -47.185 0.000 27.375 0.000 7.814 0.019 35.189 19 0.000 -54.916 -10.354 0.000 -8.933 -0.011 -19.287 20 0.000 -54.916 -10.354 0.000 -8.933 -0.014 -19.287 21 0.000 -36.916 -141.745 0.000 18.978 -0.152 -141.745 22 0.000 -54.916 -3.203 0.000 -1.363 0.006 -4.566 ,111 10. Summary X Distance to Center of Rigidity 139.935 ft Controlling Eccentricities&Forces from Applied Y-Y Shear Y Distance to Center of Rigidity 148.116 ft Xcm+(Min%*MaxX)-X-cr = -26.185 ft Torsion= -13,888.76 k-ft Xcm-(Min%*MaxX)-X-cr = -47.185 ft Torsion= -25,027.16 k-ft X Accidental Eccentricity 10.500 ft Controlling Eccentricities&Forces from Applied X-X Shear Y Accidental Eccentricity 9.000 ft Ycm+(Min%*MaxY)-Y-cr = -36.916 ft Torsion= -19,580.42 k-ft Ycm-(Min%*MaxY)-Y-cr = -54.916ft Torsion= -29,127.62 k-ft I li I I ii 1 1 ilI I I 40 s I WALL WALL DIRECT UNIT FIRST FLOOR NUMBER LENGTH SHEAR SHEAR 12/7/2016 FT KIPS PLF 111 1 70 123.395 1763 2 10 -2.708 -271 I 3 20 18.811 941 4 20 18.811 941 5 10 -2.114 -211 I 6 50 82.341 1647 7 70 -126.721 -1810 8 60 -134.686 -2245 I 9 30 79.13 2638 10 10 -6.753 -675 11 70 225.389 3220 I12 10 -9.626 -963 13 25 28.501 1140 14 10 -5.066 -507 I15 10 -5.367 -537 16 16 -15 -938 17 65 -117.105 -1802 I 18 30 35.189 1173 19 21 -19.287 -918 20 21 -19.287 -918 I (` 21 60 -141.745 -2362 22 10 -4.566 -457 I '7 z t g I i/ C.R.:(139.93.148.11) I° 1 5Ir. I' . C.M.:003 25,102.20) 0 I z 13 14 IL , I "I F------- , to 1 I 41 3 r 1 i i i SHEAR OF COMPOSITE DECK USING 2.5"CONCRETE COVER WITH SHEAR STEEL: f c:= 3000 Ii vc:= 1.24PSI vc= 65.727-PSI DIA:= .192-IN 6 GAGE WIRE I Vmax:= vc+ 4.4• •PSI Vmax= 306.725-PSI 1926.3.1 I 2 Av:_ DIA Av= 0.0291N2 d := 2.5.1N s:= 4-IN 1911.5.2 fy:= 60000•PSI 4 Vs:= Av fy Vs= 1737.175•LB 1911.5.6.2 I Vc:= s•d•vc Vc= 657.267•LB 4:= .85 1909.3.2.3 r Vu:= 4•(Vs+ Vc) Vu= 2035.276•LB < Vm:= Vmax•d•s Vm= 3067.246•LB Il vu:= 4300•PLF•s•1.4 vu= 2006.667 LB < Vu= 2035.276 LB OR Vm= 3067.246 LB ,, r THERFORE USE 4x4-616 W.W.M. in 2.5 concrete cover, 3000 psi :r MAX UNIT SHEAR PER ANALYSIS IS P:= 3571•PLF r I SHEAR TRANSFER AT BLOCK WALL TO COMPOSITE DECK V:= P III1.4 IS STRENGTH FACTOR, 1.25 IS PER 12.3.3.4 Avreq:= V 1.4 1.25 Avreq= 0.204 11\12 THEREFORE USE#4 AT 8" 0/C OR#5 AT 16" 0/C I 60000•PSI•.85•.6 FT PER 11.6.4 OF ACI 318-11 I 2 2 II 3068 IN = 0.23 IN2 > Avreq = 0.204• 16 FT Iz FACTOR FOR 16" 0/C SPACING I I 42 1 I ' KIWI II CONSTRUCTION STRUCTURAL CALCULATIONS FOR ILATERAL Le, %) DESIGN LOADS: I ROOF LIVE LOAD: LL:= 25-PSF ROOF DEAD LOAD: DL:= 6.PSF FLOOR LIVE LOAD: FLL:= 125•PSF I FLOOR DEAD LOAD: FDL:=48•PSF WIND LOADING: I HORIZONTAL(TRANSVERSE) HT= 17.6•PSF HT= 17.6•PSF I Pw:= HT l H3:= 10•FT H2:= 10•FT H1 := 10•FT I V:= .122 V= 0.122 h3 := H1 + H2 + H3 h2:= H1 + H2 I h1 := H1 LATERAL DESIGN: TOTAL BUILDING HEIGHT IS h3= 30•FT IWIND Pw= 17.6.PSF ww3. Pw.—3 + Pw•5•FT•2.25.1 ww3=286•PLF t ww2:= (H2)•Pw ww2= 176•PLF I wwl := H1.Pw wwl= 176•PLF SEISMIC A3:= 25315-FT2 IBUILDING IS W:= 210•FT WIDE A2:= 25315•FT2 TRIBUTARY WIDTH IS 10' Al 23985•FT2 w3RD:= DL•W+ (10+ l0)•PSF•H3•2 • V 2 _ 1.4� ' w3RD= 127.229•PLF w2ND:= [(FDL+ 125•PSF•,25)•W+ (10+ 10)•PSF•H2.2]- 1.4 ' w2ND= 1485-132•PLF w1ST:= [(FDL+ l25•PSF•.25)-W+ (84+ 84)•PSF•H1.2]• V - 1.4 I w 1ST= 1743.075-PLF I 43 I REDISTRIBUTE 1 (w3RD+ w2ND+ w1 ST)•w3RD,h3 w3:= w3RD•h3+ w2ND•h2+ w1ST•h1 I w3= 251.367•PLF (w3RD+ w2ND+ w1 ST)•w2ND•h2 w2:= w3RD•h3+ w2ND•h2+ w1ST•h1 w2= 1956.13•PLF 1 (w3RD+ w2ND+ w1ST)•w1ST•hi w1 :- w3RD•h3+ w2ND•h2+ w1ST•h1 w 1 = 1147.939•PLF I SHEAR TO WALL AT 3RD FLOOR IS.,, L:= W-40•FT OF SHEARWALL WIND L= 170•FT (ww3).30.FT v3w:_- L v3w- 50.471•PLF 11 '1 SEISMIC (w3)•30•FT 111 vas:= L vas- 44.359•PLF USE26GA. METALSHEARWALLS WITH (7) FASTENERS AT EACH PANEL •'''''''1 SPANNING 51-•0"AND 0 SIDELAP FASTENERS vatl=105 PLF CHECK OVERTURNING AT LOW EAVE,20 FT WALL Hsw:= 14•FT Lsw:= 20•FT €1 Mot:= v3w•Hsw•Lsw Mot= 14131.765•FT•LB UP:= Mot UP= 706.588 LB ' Lsw i USE S/LTT20 HOLD DOWNS Tall:= 1200•LB I';, I DEAD:= (DL+ FDL)•.6.5•FT•10.FT DEAD= 1620 LB 1 DESIGN DRAG STRUT SPLICE(PURLIN) WIND SEISMIC T:= v3w•10•FT T= 504.706 LB Ts:- v3s•10•FT•2.5 Ts- 1108.973 LB 1 N:= Ts N= 1.792 USE(2)#12 SCREWS AT SPLICES,MIN. 619-LB 1 44 i1 I1 I i I SEE RIGID ANALYSIS FOR 2ND FLOOR SI-IEARWALLS 1 I I IUNIT SHEAR AT 1ST FLOOR,SEE REGID ANALYSIS ATTACHED I I I 1 II i 1 i I I I . a I 1 145 1 1 r I 1 111.11mill ar Metal Roof and Wall Systems ENGINEERING ultra-deli ® I Ultra-Dek® PANEL I 24" Coverage ,I' 24" 4. I, 1 i \_.___________,_____1 3" l' I SECTION PROPERTIES I NEGATIVE BENDING POSITIVE BENS PANEL Fy WEIGHT Ixe Sxe Maxo Ixe i`—. Sxe AJlaxo GAUGE (KSI) (PSF) (lN.4JFT.) (IN.31FT.) (KIP-IN.) --, • (IN.4/FT.) N. ' (KIP IN.) f 26 50 1.02 0.1158 0.0835 2.4997 0.22020...1.0.!,,..._ 2.6987 24 50 1.23 0.1350 0.0951 2.8,/gr' k 0.i `" ,, 3.4524 22 50 1.56 0.1837 0.1332 3.g , I 1. '4 4.5020 NOTES: .. 1. All calculations for the properties of Ultra Delco panels ar Gl if d i 09 •ance with the 2001 edition of the North American Specification For Design Of Cold •fril,st St c if 7f it== • 2. Ixe is for deflection determination. -y : 3. Sxe is for Bendln• .- x ,- 4. Maxo i •' able ief do•i;: •iTaa 5. All va`a�.ikfo 1 igefooc- •tar, ; elwnol 't-c- 4- ,Ea. I r The Engineering data contained herein is for the expressed use of customers and design professionals.Along with this data, it is recommended that the design professional have a copy of the most current version of the North American Specification for the !IIr Design of Cold-Formed Steel Structural Members published by the American Iron and Steel Institute to facilitate design.This Specification contains the design criteria for cold-formed steel components.Along with the Specification,the designer should ref- erence the most current building code applicable to the project jobsite in order to determine environmental loads. If further infor- mation or guidance regarding cold-formed design practices is desired, please contact the manufacturer. SUBJECT TO CHANGE WITHOUT NOTICE AUGUST 31,2005 visit www.mbci.com for current information 46 '' I :` w ; ' s .. o Metal Roof mrd Wall Systems I ultra-deli® ENGINEERING I Ultra-Dek® PANEL tL 24" Coverage I 24" - 1 3" ALLOWABLE UNIFORM LOADS IN POUNDS PER SQUARE FOOT I 28 Gauge(Fy=50 KSI) SPAN LOAD SPAN IN FEET TYPE TYPE 2.5 3.0 3.5 4.0 4.5 Ast 5.0 i, 5.5 ISINGLE LIVE LOAD 146.9 122A 104.9 91.8 81 - 59,5 2-SPAN LIVE LOAD 146.9 122.4 104.9 91.8 81.6 55.1 I 3-SPAN LIVE LOAD 146.9 122.4 104.9 , -a.8 t-.;; c,t 1, 66,8 4 SPAN LIVE LOAD 148.9 122.4 104.9 1 . 64.3 24 Gauge(Fy=50 KSI) 11. m I SPAN LOAD S•iNk EE-5r Y TYPE TYPE 2.5 a ar- 5.5 SINGLE LIVE LOAD 204.0 t f.--V 17� ` w, '4 45.7 �z 127.5 113.3 92.1 76.1 I 2-SPAN JAE LOAM, 28111-ia AI oF�* 145.7 v 118.7 93.8 75.9 62.8 3-SPAN LO,1:3----•, i s i'L°a 145.7 127.5 113.3 94.9 78.4 4-SPAN A,¢„`" • I;- 20 170.0 145.7 127.5 109.4 88.6 732 I 22 qau D4 .: 50 4 ' fV r L ' SPAN IN FEET e N Un 2.5 3.0 3.5 40 4.5 5.0 5.5 Sta LIVE LOAD 296.9 247.5 212.1 185.6 1482 120.1 992 2-SPAN LIVE LOAD 296.9 247.5 2121 166.2 131.3 106.3 87.9 I 3-SPAN LIVE LOAD 296.9 247.5 212.1 185.6 164.1 132.9 109.9 4-SPAN LIVE LOAD 296.9 247.5 2121 186.6 152.3 124.1 102.6 NOTES: 1. Allowable loads are based on uniform span lengths and Fy=50 ksi. 2. LIVE LOAD is limited by bending,shear,combined shear&bending. 3. Above loads consider a maximum deflection ratio of U180. 4. The weight of the panel has not been deducted from the allowable loads. I5. THE ABOVE LOADS ARE NOT FOR USE WHEN DESIGNING PANELS TO RESIST WIND UPLIFT. 6. Please contact manufacturer or manufacturer's website for most current allowable wind uplift loads. 7. The use of any accessories Including but not limited to clips,fasteners,and support plates(eave,backup,rake,etc.)other than those provided by the manufacturer may damage panels,void all warranties and will void all engineering data. 8. This material is subject to change without notice. Please contact the manufacturer for most current data. The engineering data contained herein is for the expressed use of customers and design professionals.Along with this data,itis recommended that the design professional have a copy of the most current version of the North American Specification for the Design of Cold-Formed Steel Structural Members published by the American Iron and Steel Institute to facilitate design.This Specification contains the design criteria for cold-formed steel components.Along with the I Specification,the designer should reference the most current building code applicable to the project jobsite in order to determine environmental loads.If fur- ther information or guidance regarding cold-formed design practices is desired.Please contact the manufacturer. AUGUST 31,2005 SUBJECT TO CHANGE WITHOUT NOTICE visit www.mbci.com for current information I 47 i Page 15 of 174 IAPMO UES Evaluation Report No. 0217 Expires: 11/2015 Issued: 11/2011 TABLE 7-ALLOWABLE UNIFORM LOADS(psf) FOR VERCO STEEL DECK PANELS WITHOUT CONCRETE FILLt2.3 ur z Q SPAN(ft-in.) w 2,-0„ s,-0„ 4_0„ 5,,0„ 5-s.. 6,_0r 6•-6,. 7.-tr 7,-6" 8,-0„ B'_6' 9.-0., W_6° 10,-0„ 11,-0x, 12•-0„ 113 U PLBTM-36&HSB*-36 and PLBTM&B FORMLOKTM Stress 300 300 220 141 116 98 83 72 63 55 49 43 39 35 29 24 22 .1J360 ' •++ 287 X121 62r` 47 36P W;28 23. 8 5' tiI 13: 11 9 6m L/240 ••• Na 182 93 70 54 42 34 28 23 19 16 14 12 9 7 U180M•4 •t4. 4t+_.,1:241 93,.'y'72.,'xoOF.,4.5 t etilqatocoufiliggiotmatAN Stress 300 300 288 184 152 128 109 94 82 72 64 57 51 46 38 32 i'f { l T .•' c"a'w,11 5 1f,°k Z 3 7 y,e. .F l h 20 U360 tct •+• ;15a 77 58 �� 35 �. 23 �� 16 4� 1'1 1Q 7 �' L/240 •N a•• 225 115 86 67 52 42 34 28 23 20 17 14 11 8 LI180 } •. •+4 t.s _X153 X115;;x_89 10 56.,: ``15r 37. 31s' 6„ t22 19•..14 r>IA z Stress 300 300 300 251 208 174 149 128 112 98 87 78 70 63 52 44 18 t,/36.Rn..3 4+! •..r,;207,.106..79Y. 610. 48.,..,39 3'1 4126 22 ,v.18. 15„x. =13 10 . 8. ' L/240 ••• ••• ••• 159 119 92 72 58 47 39 32 27 23 20 15 11 R 11 80 -►.. •4•..`n••s 21 g 15 = 122,. 9 G7 63 .52„'438 ' 6 . 31y, . .. 0.WW Stress 300 300 300 300 264 222 189 163 142 125 110 99 88 80 66 55 16 6fk.., +fiii,ry+4± 461.01184,..100��r7706102Wwkw33.. gimo, := � .,�7.. . � ol �t0<1 L/240 • •+• ••• ••• 200 150 116 91 73 59 49 41 34 29 25 19 14 1J18 .,•4S....4+. +44.i' 67,,200 1 ..121 i 1 7' ,79`i 65 t. .54' ;46 lef.33. .,25, -19 Stress 300 300 235 150 124 104 89 77 67 59 52 46 42 38 31 26 22 Lt360g .•+4 +tt ••+ 44 122.:::X94? .7.4 56: 48k `,40 330 p28 24' 0 ' 95,'. X12,,i L/240 ••a ••a +++ ••a ••• ••• •+• •+• •++ ••• 49 42 35 30 23 18 1.1.'180. •.• ,,.+,++ :t•ta,4++, •4+.m ++•.. +++ r.+44 •+4. ..;+4f..!++ +++.,. •t„t.,.•4t-...3,0_ 23,';3 Stress 300 300 296 190 157 132 112 97 84 74 66 59 53 47 39 33 20 1/36 4t! F•*4, +•t , •.4 146_` '3 S9 ° 71 58J 48 40 Y 3 2.8 24 18 X14 L/240 •a• ••• ••• •a. ••• ••. •.+ •a• ••• 71 59 50 43 37 27 21 s.1/180 ,4•t,, •4+. t4+�,f,4.ig:4+t +++.w.t4t.r,..t•t..,.,4+ ft+.r4+4,. ni.•+4m,+4• 4:ici,,,37,.,26 O Stress 300 300 300 265 219 184 157 135 118 103 92 82 73 66 55 46 L/36 ` •1+:, •+ t+t`` "258 104''s 149 117 x'94; 7t t 63 53ltf44 : 38 r'`.32 24 -` 19„1 18 L/240 •4+ 44+ ++4 ••• 44+ ••+ +++ +a• 115 94 79 66 56 48 36 28 /180 •w ... •t+f'm•t+ . 4.4 _•++, .+4+ ++. +t .444_._+t 1 1 • .4 ,;+++,.1'64U ..'�48 Y 37 Stress 300 300 300 300 271 228 194 167 146 128 113 101 91 82 68 57 16 U 4•+ ++4 `•t. +t 241 1 6 1x46. 117;,. 95y''78 65 ,55 47z40 - 30 ,231 L/240 ••• ••• .•• ••• +•• a+ •aa +++ 143 118 98 83 70 60 45 35 L1'18t1gN+744+.y:.{i.., .A.i tGt4....+++ i4Ev.t•t*i4igkt•4 N+ °++a> Ad 6atiN6 Stress 300 300 294 188 155 131 111 96 84 73 65 58 52 47 39 33 I 22 . 1 6 ._..ta4 4.4 247. 12-7,„WWg73..,,. 83 N. `16" 3 x.. 31 . `26 .2`2 1$;, ,16 . :! .:` „l L/240 ••• +•• +•• ++• 143 110 86 69 56 46 39 33 28 24 18 14 e, �r xas i • - �-.r � ytwX r� ,u^ � . 1'80 tt+ +++ •+• +4. f+t N• ►+ 92 75 fit 52� 43 37 32 24 18 Stress 300 300 300 237 196 165 140 121 105 93 82 73 66 59 49 41 1J36a ,i •,.•y++ 2.8r .x152 1'1.55. 68, ,. 691?$56.: 45 3`7 31 26 22,4 �r19 .,14,.r; ,.11 20 L/240 ••• ••• ••+ 229 172 132 104 83 68 56 47 39 33 29 21 i7 0. 1J180 4.4 t+t ' +ft +4+ 1++ 4+t 139 1T11 90 74 62 52 44 38 29 22 1 ' Stress 300 300 300 300 274 230 196 169 147 129 115 102 92 83 68 57 18 U360 4t:+ '+4+ 4•• x'292 1521 1;17 92' `,74, 60. r4"9 4'1 ' 35 29 '25 19os15 L/240 ••• ••• +1+ +++ 228 175 138 110 90 74 62 52 44 38 28 22 4180 tot •4t ++t 14+ tt+ •t4 +184 147 120 99 82 69 59 50 ,, 3:8 29r Stress 300 300 300 300 300 285 243 209 182 160 142 127 114 103 85 71 , "51 w 16 1.!360 •s. +1!•'"` 4• �251 < 189' 145 a •114 92> 74 :61 a3 37 31 t 24 18'I L/240 4•4 +0 ++4 •1+ 283 218 172 137 112 92 77 65 55 47 35 27 x180. . • r.. _4.1;'`..+4: 0:t,.., 1a,+ RN...,'229 183 14,9..-.:;123..,,x.162,.. $6..,,7 ., 63 47..,i ,36 Aii See Page 22 for footnotes. (continued) 48 A, 111111 11M111 M E N - - 1 I EN N M MS 1 r NE - EN INN T En NOTES: , / Section properties and allowable are computed in accordance i with AISI North American Specification,2007 edition x I x Ix and ly are for deflection determination ..),,T, S.and Sy are for bending Material is either ASTM A653-06 Gr.55 or A1011-04 HSLAS Gr.55 CI-1 az Fy=55 ksi Fu=70ksi Y DIMENSIONAL PROPERTIES ALLOWABLES AXIS X-X ' AXIS Y-Y D x 31 x62 Thickness Weight Area Lip Positive Negative Va I Positive Negative Rx r S, Section Name Gage x € Y Ry [n (in) 4) Ona) (in) (in) (lb/ft) Gn) $n) (&ft) {k-ft) Odin) (int fn� Cin (n 3.5x1.5Z16 3.5 x 1.5 x 1.5 16 0.059 1.592 0.4680.911 1.321 1.321 3.659 0.876 0.481 0.481 1.367 0.444 0.197 0.974 3.5x1.5Z14 3.5x 1.5 x 1.5 14 0.070 1.889 _ 0.556 v 0.930 1.608 1.608 4.310 1.029 0.586 0.586 1.361 0.530 0.246 0.977 3.5x1.5Z13 3.5x 1.5 x1.5 13 0.085 2.294 0.675 0.956 1.934 1.934 5.180 1.233 0.705 _ 0,705 1.352 0.649 0213 0.981 m 3.5x1.5Z12 3.5x 1_5x 1.5 12 0.105 2.834 0.833 0.990 2.347 2.347 6.313 1.497 0.855 0.855 1.340 0.812 0.389 0.987 4.04.5216 4.0 x 3,125 x 3.375 16 0.059 2.395 0.704 0.911 2.110 , 2.105 3.842 2.003 0.769 0.787 1.687 2.580 0.483 1.914 4.0X3.5Z14 4.0 x 3.125 x 3.375 14 - 0.070 2.841 0.836 0.930 2.577 _ 2.579 _ 5.031 2.360 0.939 0.940 1.681 3.075 0.564 1.918 4.04.5Z13 4.0 x 3.125 x 3,375 13 0.085 3,460 1.015 0.956 3.221 3.241 6.057 2.838 Y 1.174 1.181 1.672 3.756 0.692 1.924 4.0x3.5212 4,0 x 3.125 x 3.375 12 0.105 4262 1253 0.990 _ 4.325 4.240 7.396 3.460 1,575 1.545 1.662 4.677 0.990 1.932 4.0x3.0Z16 4.0 x 2.625 x2.875 16 0.059 2.194 0.645 0.911 2.044 2.044 _ 3.842 1.774 0.745 0.745 _ 1.658 1.724 0.415 1.635 4.0x3.0Z14 4.0 x 2.625 x 2.875 14 0.070 2.603 0.766 0.930 2.472 2.484 5.031 2.090 0,901 0.905 1.652 2.056 0.480 1.639 4,0x3.0213 4.0 x 2.625 x 2.875 13 0.085 3.161 0.930 _ 0.956 3.224 3.115 6.057 2.512 1.175 1.135 1.644 2.513 0.668 1.644 4.0x3.0212 4.0 x 2.625 x2.875 12 0.105 3.905 1.148 0.990 4.110 4.111 7.396 3,062 1.498 _ 1.498 1.633 3.131 0.927 1.651 4.0x2.5216 4.0 x 2.125 x 2.375 16 0.059 1.994 0.586 0.911 1.943 1.956 3.842 1.5447 0.70805 0.71267 1.6231 1.0797 024437 1.357 4.0x2.5214 4.0 x 2.125 x 2.375 14 0.070 2.365 0.696 0.930 2.414 2.401 5.031 1.819 0279 0.875 _ 1.517 1.288 0.434 1.361 4.0x2.5Z13 4.0 x 2.125 x 2.375 13 0.085 2.872 0.845 0.956 2.928 2,928 6.057 2.186 1.067 1.067 1.609 1.576 0.549 1.366 4.0x2.5Z12 4.0 x 2.125 x 2.375 12 0.105 3.548 1.043 0.990 3.567 3.568 7.396 2.663 1.300 1.300 1.598 1.965 0.682 1.372 Revision Date;September 23,2010 1 of 7 Y H NOTES: - Section properties and allowable are computed in accordance with AISI North American Specification,2007 edition Ix and ly are for deflection determination x n11-7 x IISe and Sy are for bending Material is either ASTM A653-06 Gr. 55 or A1011-04 HSLAS Gr. 55 Cl-1 il _j Fy=55ksi Fu=70ksi Y . DIMENSIONAL PROPERTIES ALLOWABLES AXIS X-X AXIS Y-Y D x S Thickness Weight Area Lip Ma Va Ix Sxe Rx ly Sve Ry Section Name (in) Gage (in) (Ibfft) (int) (in) (k-ft) (kips) (in4) (in3) (in) fn4) (in3) (in) 0 4.0x2.0C16 4.0 x 2.0 16 0.059 1.793 0.527 0/73 1.808 3.842 1.331 0.659 1.588 0.314 0.239 0.772 4.0x2.0C14 4.0 x 2.0 14 0.070 2.127 0.626 0.800 2.147 5.031 1.564 0.782 1.581 0.371 0.290 0.770 4.0x2.0C13 4.0 x 2.0 13 0.085 2.583 0.760 0.836 2.574 6.057 1.876 0.938 1.571 0.449 0.358 0.768 4.0x2_0C12 4.0 x 2.0 12 0.105 3.191 0.938 0.885 3.125 7.396 2.278 1.139 1.558 0.550 0.445 0.766 4.0x2.5C16 4.0 x 2.5 16 0.059 1.994 0.586 0.773 1.847 3.842 1.560 0.673 1.631 0.533 0.329 0.953 4.0x2.5C14 4.0 x 2.5 14 0.070 2.365 - 0.696 0.800 2.278 5.031 1.835 0.830 1.624 0.630 0.399 0.952 4.0x2.5C13 4.0 x 2.5 13 0.085 2.872 - 0.845 0.836 - 2.962 6.057 2.201 1.079 1.614 0.763 0.495 0.950 4.0x2.5C12 4.0 x 2.5 12 0.105 3.548 1.043 0.885 3.672 7.396 2.676 1.338 1.601 0.938 0.617 0.948 5.0x2.5C16 5.0 x 2.5 16 0.059 2.194 - 0.645 0.773 2.480 3.842 2.604 - 0.904 2.009 0.578 0.332 0.946 5.0x2.5014 5.0 x 2.5 14 0.070 2.603 0.766 0.800 3.050 5.409 3.069 1.111 2,002 0.684 0.403 0.945 5.0x2.5C13 5.0 x 2.5 13 0.085 3.161 0.930 0.836 3.964 7.810 3.693 1.445 1.993 0.829 0.502 0.944 5.0x2.5C12 5.0 x 2.5 12 0.105 3.905 1.148 0.885 4.946 9.561 4.505 1.802 _ 1,981 1.020 0.635 0.942 6.0x2.5016 6.0 x 2.5 16 0.059 2.395 0.704 0.773 3.170 3.319 3.971 1.155 2.375 0.616 0.334 0.935 6.0x2.5C14 6.0 x 2.5 14 0.070 _ 2.841 0.836 0.800 3.889 5.409 4.687 1.417 2.368 0.729 0.406 0.934 6.0x2.5C13 6.0 x 2.5 13 0,085 3.450 1.015 0.836 5.048 7.975 5.649 1.839 2.360 0.884 0.506 0.933 6.0x2.5C12 6.0 x 2.5 12 0.105 4.262 1.253 - 0.885 6.321 11.727 6.909 2.303 2.348 1.088 0.642 0.932 Revision Date: September 23rd,2010 1 of 7 N E NS MN MN EN IIIIII all M I MS I MN RN EN E IIIII IIIII N Y a NOTES: Section properties and allowable are computed in accordance with AISI North American Specification,2007 edition lx and ly are for deflection determination Il_i -. x Se and Sy are for bending Material is either ASTM A653-06 Gr. 55 or A1011-04 HSLAS Gr. 55 CI-1 Fy=55ksi Fu=70ksi Y DIMENSIONAL PROPERTIES ALLOWABLES AXIS X-X AXIS Y-Y D x B Thickness Weight Area LipMa Va 3 S Section Name {in) Cage (in) (Ib (in /ft} (in2) x Rx Iv S„ R ) (in) (k-ft) (kips) (in') , (in3) (in) (in4) (in3) (in) 7.0x3.0016 7.0 x 3.0 16 0.059 2.796 0,822 0.773 4.088 2.809 6.401 1.489 2.790 1.004 0.437 1.105 a, 7.0x3.0C14 7.0 x 3.0 14 0.070 3.317 - 0.976 0.800 4.995 4.707 7.562 1 1.820 2.784 1.190 0.533 1.105 7.0x3.0C13 7.0 x 3.0 13 0.085 4.028 1.185 _ 0.836 6.310 7.975 9.129 2.299 2.776 1.445 0.667 1.104 7.0x3.0C12 7.0 x 3.0 12 0.105 - 4.976 1.463 0.885 _ 8.389 12.170 11.187 3.057 2.765 1.782 0.849 1.104 7.0x4.0C16 7.0 x 4.0 16 0.059 3.197 _ 0.940 0.773 4.157 2.809 7.822 1.515 2.884 2.017 0.671 1,465 7.0x4.0C14 7.0 x 4.0 14 0.070 - 3.793 1.116 0.800 5.300 4.707 9.243 1.931 2.878 2394 0.819 1.465 7.0x4.0C13 7.0 x 4,0 13 0.085 4.606 1.355 0.836 6.768 7.975 11.161 2.466 2.870 2.907 1.027 1.465 7.0x4.0C12 7.0 x 4.0 12 0.105 5.690 1.6730.885 9.005 11.603 13.683 3.281 2.860 3.591 1.319 1.465 8.0x2.5C16 8.0 x 2.5 16 0.059 2.796 0.822 ._ 0.773 4.649 _ 2.435 _7.791 _ 1.694 3.078 0.675 0,336 0.906 8.0x2.5C14 8.0 x 2.5 14 0.070 3.317 0.976 0.800 5.766 4.078 9.210 _ 2.101 3.072 0.800 0.409 0.906 8.0x2.5C13 8.0 x 2.5 13 0.085 4.028 1.185 0.836 7.452 7.330 11.126 2.715 3.065 0.970 0.512 0.905 8.0x2.5C12 8.0x2.5 12 0.105 4.976 1.463 0.885 9.365 12.170 13.649 3.412 3.054 1.196 0.650 0.904 8.0x3.0C16 8.0 X 3.0 16 0.059 2.997 0.881 _ 0.773 4.732 2.435 8.721 1.724 3.146 1.048 0.438 1.090 8.0x3.0C14 8.0 x 3.0 14 0.070 3.555 _ 1.046 0.800 6.000 4.078 10.310 2.186 3.140 1.243 0.534 1.090 8.0x3.0C13 8.0 x 3.0 13 0.085 4.317 1.270 _ 0.836 7.564 7.330 12.457 2.756 3.132 1.509 0.669 1.090 8.0x3.0C12 8.0 x 3.0 12 0.105 5.333 1.568 0.885 10.030 12.170 15.285 3.655 3.122 1.862 0.854 1.090 Revision Date:September 23rd,2010 3 of 7 Y NOTES: B (II-1 Section properties and allowable are computed in accordance with AISI North American Specification,2007 edition Ix and ly are for deflection determination x o I x Se and Sr are for bending Material is either ASTM A653-06 Gr.55 or A1011-04 HSLAS Gr. 55 CI-1 Fy=55 ksi Fu=70ksi r DIMENSIONAL PROPERTIES ALLOWABLESAXES X-X AXIS Y-Y D x B Thickness Weight Area Lip Ma Va Ix S. ' Rx ly Sy® Ry Section Name (in) Gage (in) (Ib/ft) (int) (in) (k-ft) (kips) (in°k , _(in3) (in) (in) (in3) (in) 10.0x2.0C16 10.0 x 2.0 16 0.059 2.997 0.881 0.773 5.459 1.922 11.798 1.989 3.659 0.419 0.245 0.690 N 10.0x2.0C14 10.0 x 2.0 14 0.070 3.555 1.046 0.800 6.789 3.218 13.958 2.474 3.654 0.497 0.298 0.689 10.0x2.0C13 10.0 x 2.0 13 0.085 4.317 1.270 0.836 8.581 5.780 16.884 3.127 3.647 0.602 0.372 0.689 10.0x2.0012 10.0 x2.0 12 0.105 _ 5.333 1.568 0.885 11.029 10.941 20.745 4.019 3.637 0.741 0.471 0.687 10.0x2.5C16 10.0 x 2.5 16 0.059 3.197 0.940 0.773! 5.740 1.922 13.256 2.091 3.755 0.719 0.337 0.875 10.0x2.5014 10.0 x 2.5 14 0.070 3.793 1.116 0.800 7.650 3.218 15.684 2.788 3.750 0.853 0.411 0.874 10.0x2.5C13 10.0 x 2.5 13 0.085 4.606 1.355 _ 0.836 10.172 5.780 18.973 3.706 3.742 1.035 0.514 0.874 10.0x2.5C12 10.0 x 2.5 12 0.105 5.690 1.673 0.885 12.798 10.941 23.316 4.663 3.733 1.277 0.655 0.874 10.0x3.0C16 10.0 x 3.0 16 0.059 3.398 0.999 0.773 5.871 1.922 14.713- 2.139 3.837 1.120 0.439 1.059 10.0x3.0C14 10.0 x 3.0 14 0.070 4.031 1.186 0.800 7.756 3.218 17.410 2.826 3.832 1.330 0.537 1.059 10.0x3.0C13 10.0 x 3.0 13 0.085 4.895 1.440 0.836 10.313 5.780 21.062 3.758 _ 3.825 1.615 0.673 1.059 10.0x3.0C12 10.0 x 3.0 12 0.105 6.047 1.778 0.885 13.606 10.941 25.886 4.957 3.815 1.995 0.860 1.059 10.0x3.5C16 10.0 x 3.5 16 0.059 3.598 1.058 0.773 5.946 1.922 16.171 2.166 3.909 1.633 0.552 1.242 10.0x3.5C14 10.0 x 3.5 14 0.070 4.269 1.256 0.800 7.873 3.218 19.135 2.869 3.904 1.939 0.675 1.243 10.0x3.5C13 10.0 x 3.5 13 0.085 5.184 1.525 0.836 10.699 5.780 23.151 3.898 3.897 2.356 0.848 1.243 10.0x3.5C12 10.0 x 3.5 12 , 0.105 6.404 1.883 0.865 13.880 10.941 28.456 5.057 3.887 2,912 1.085 1.243 Revision Date: September 23rd,2010 5 of 7 EMI.._....- .. E 111111 M N 11111 E MI 1 E M M_.. M 1111 M 11111 N NM I Ea, ICC EVALUATION I ` SERVICE Most Widely Accepted and Trusted ICC-ES Evaluation Report ESR-1385* 1 Reissued February 1, 2014 This report is subject to renewal February 1, 2016. I www.icc-es,orq 1 (800)423-6587 1 (562) 699-0543 A Subsidiary of the international Code Council® DIVISION:04 00 00—MASONRY diameters, while the Long Thread Kwik Bolt 3 has a thread I Section:04 05 18.16--Masonry Anchors length greater than three bolt diameters. The tapered mandrel has an increasing diameter toward the anchor REPORT HOLDER: base, and is enclosed by a three-section wedge that freely moves around the mandrel. In the vertical direction, the I HILTI,INC. wedge movement is restrained by the mandrel taper at the 5400 SOUTH 122ND EAST AVENUE bottom and by a collar at the top of the mandrel. When the TULSA,OKLAHOMA 74146 anchor nut is tightened, the wedge is forced against the I (800)879-8000 wall of the predrilled hole to provide anchorage. www.us.hilti.com HiltiTechEnq(u?.us.hilti.com 3.2 Fully Grouted CMU Masonry: Fully grouted CMU masonry must comply with Chapter 21 I EVALUATION SUBJECT: of the IBC. The compressive strength of masonry must be at least 1,500 psi (10.3 MPa) at the time of anchor KWIK BOLT 3 MASONRY ANCHORS installation. The concrete masonry must be fully grouted, and constructed from the following materials: 1.0 EVALUATION SCOPE I Compliance with the following codes: 3.2.1 Concrete Masonry Units (CMUs): Fully grouted concrete masonry walls must be constructed from ■ 2012,2009 and 2006 International Building Code®(IBC) minimum Type I, Grade N, lightweight, medium-weight or ® normal-weight concrete masonry units (CMUs) conforming I ■ 2012, 2009 and 2006 International Residential Code® to ASTM C90 (IBC). The minimum allowable nominal size (IRC) of the CMU is 8 inches (203 mm) wide by 8 inches Property evaluated: (203 mm)high by 16 inches(406 mm)long. IStructural 3.2.2 Grout: The masonry units must be fully grouted 2.0 USES with grout complying with Section 2103.13 of the 2012 IBC, Section 2103.12 of the 2009 and 2006 IBC, or Section The Kwik Bolt 3 (KB3) Masonry Anchor is used to resist R609.1.1 of the IRC, as applicable.Alternatively, the grout ' static, wind, and earthquake tension and shear loads in must have a minimum compressive strength, when tested untracked, fully grouted concrete masonry unit (CMU) in accordance with ASTM C1019, equal to its specified construction. The anchor system is an alternative to cast- strength, but not less than 2,000 psi(13.8 MPa). in-place anchors described in Section 2.1.4 of TMS 402/ 3.2.3 Mortar: Mortar must be Type N, S or M, prepared IACI 530/ ASCE 5 as referenced in Section 2107 of the in accordance with Section 2103.9 of the 2012 IBC, IBC. The anchor systems may also be used where an Section 2103.8 of the 2009 and 2006 IBC, or Section R607 engineered design is submitted in accordance with Section of the IRC, as applicable. R301.1.3 of the IRC. 4.0 DESIGN AND INSTALLATION I 3.0 DESCRIPTION 3.1 Kwik Bolt 3: 4.1 Design: Minimum embedment depth, edge distance, and spacing The Kwik Bolt 3 expansion anchors consist of a stud, requirements are set forth in Table 2. Allowable stress wedge, nut, and washer. The stud is manufactured from I carbon material. The carbon steel Kwik Bolt 3 anchors and 3.Allowable loads for Kwik Bolt 3 anchors subjected to have a 5 }gym (0.0002 inch) zinc plating. The anchor is design tension and shear loads are as noted in Tables 2 I illustrated in Figure 1 of this report. combined shear and tension forces are determined by the following equation: The wedges for the carbon steel anchors are made from (ps/pt)sra+(14/1/2)5/3<1 carbon steel,except for all 1/4-inch(6.4 mm) lengths,which have AISI 316 stainless steel wedges. All carbon steel where: components are zinc-plated. The stud consists of a high- ' strength rod threaded at one end. The standard Kwik Bolt PS = Applied service tension load(lbf or N). 3 has a thread length equal to or less than three bolt Pt = Allowable service tension load (lbf or N). *Revised March 2014 ICC-G'S Evahtation Reports are not to be consinredas representing aesthetics or any other attributes not specifically addressed,nor are they to be construed as an e-rrdorsetnent of the subject r fthe report or a recomtrrendatiorr for its use.There is no warranty by ICC Evaluation Service,LLC,express or implied,as ANSI to(my finding or other matter in this report,or as to any product covered by the report. 53 " I Copyright®2014 Page 1 of 4 , ESR-1385 I Most Widely Accepted and Trusted Page 2 of 4 Vs = Applied service shear load(lbf or N). 5.6 When using the basic load combinations in Vi = Allowable service shear load(lbf or N). accordance with IBC Section 1605.3.1, allowable loads are not permitted to be increased for wind or 4.2 Installation Requirements: earthquake loading. When using the alternative basic Kwik Bolt 3 must be installed in holes drilled into the base load combinations in 2009 and 2006 IBC Section material using carbide-tipped masonry drill bits complying 1605.3.2 that include wind or seismic loads, the I with ANSI B212.15-1994. The nominal drill bit diameter allowable shear and tension loads for anchors are must be equal to that of the anchor. The drilled hole must permitted to be increased by 33'l percent. exceed the depth of anchor embedment by at least one Alternatively, the basic load combinations may be anchor diameter to permit over-driving of anchors and to reduced by a factor of 0.75 when using IBC Section provide a dust collection area. The anchor must be 1605.3.2. For the 2012 IBC, the allowable loads or hammered into the predrilled hole until at least six threads load combinations may not be adjusted. are below the fixture surface. The nut must be tightened 5.7 Where not otherwise prohibited in the applicable against the washer until the torque values specified in code, anchors are permitted for use with fire- Table 1 are attained. resistance-rated construction provided that at least 4.3 Special Inspection: one of the following conditions is fulfilled: Special inspection under the IBC and IRC must be • Anchors are used to resist wind or seismic forces I provided in accordance with Sections 1704 and 1705 of only. the IBC. Under the IBC, additional requirements as set • Anchors that support fire-resistance-rated forth in Sections 1705 and 1706 must be observed, where construction or gravity load—bearing structural applicable. The code official must receive a report,from an elements are within a fire-resistance-rated I approved special inspector, that includes the following envelope or a fire-resistance-rated membrane, details: are protected by approved fire-resistance-rated 1. Anchor description, including the anchor product name, materials, or have been evaluated for resistance to nominal anchor and bolt diameters,and anchor length. fire exposure in accordance with recognized I 2. Hole description, including verification of drill bit standards. compliance with ANSI 8212.15-1994. • Anchors are used to support nonstructural 3. Installation description, including verification of elements. ' masonry compressive strength and verification of 5.8 Use of carbon steel Kwik Bolt 3 anchors must be anchor installation and location (spacing and edge limited to dry,interior locations. distance) in accordance with Hilti's published installation instructions and this report. 5.9 Special inspection must be provided in accordance ' with Section 4.3 of this report. 5.0 CONDITIONS OF USE 5.10 Anchors are manufactured by Hilti, Inc., The Kwik Bolt 3 Masonry Anchors described in this report Feldkircherstrasse 100, Schaan, Liechtenstein; and are suitable alternatives to what is specified in, those Hilti Operaciones de Mexico S.A., Matamoros, codes listed in Section 1.0 of this report, subject to the Tamaulipas, Mexico, under a quality control program following conditions: with inspections conducted by ICC-ES. 5.1 Anchor sizes, dimensions, and installation must 6.0 EVIDENCE SUBMITTED '' comply with this report and Hilti's published installation instructions. Data in accordance with the ICC-ES Acceptance Criteria for Expansion Anchors in Masonry Elements (AC01), 5.2 Allowable tension and shear loads must be as noted approved May 2012 (editorially revised August 2013), in Tables 2 and 3 of this report. including seismic tests, reduced spacing tests and reduced : 5.3 Calculations and details demonstrating compliance edge distance tests. with this report must be submitted to the code official 7.0 IDENTIFICATION for approval The anchors must be identified in the field by dimensional 5.4 The use of anchors must be limited to installation in characteristics and packaging. The packaging label untracked fully grouted CMU masonry. Cracking : indicates the manufacturer's name(Hilti, Inc.)and address, occurs when ft > fr due to service loads or the size and type of anchor, and the ICC-ES report number deformations. (ESR-1385). A length identification code letter is stamped 5.5 Design of Kwik Bolt 3 Masonry Anchors installed in on the threaded end of the bolt. The length identification fully grouted CMU masonry to resist dead, live, wind system is described in Table 4. and earthquake load applications must be in accordance with Section 4.1. II 54 ', IESR-1385 I Most Widely Accepted and Trusted Page 3 of 4 TABLE 1—INSTALLATION SPECIFICATIONS' ISETTING DETAILS ANCHOR SIZE 1/4 Inch 3/8 inch '/2 inch 5/8 inch 3/4 inch Drill bit size=anchor diameter(inches) 1/4 3/8 1/2 5/6 3/4 I Wedge clearance hole(inches) 51,8 '!te 9/te "/,8 "/18 Anchor length(minimax.)(inches) 1'/4 41/2 2'/8 7 2'/4 7 31/2 10 6 12 Thread length std./long thread length(inches) 3/4 3 '/& 55/8 1114 43/4 11/2 7 1'/2 6 I Installation: Torque guide values Carbon steel:Min.Embedment 4 15 25 65 120 (ft-Ib)in Carbon steel:Std.Embedment 4 15 25 65 120 concrete masonry I Min.base material thickness(inches) 3 inches or 1.5 x embedment depth,whichever is greater For SI:1 inch=25.4 mm,1 ft-lbf=1.356 N-m. 'Installation torques are applicable for all anchors installations unless noted otherwise in this report. ITABLE 2—ALLOWABLE TENSION AND SHEAR VALUES FOR HILTI KWIK BOLT 3 CARBON A ON STEEL ANCHORS INSTALLED IN THE FACE SHELLS OF FULLY GROUTED CMU MASONRY WALLS(in pounds)''2.34 I ANCHOR DIAMETER EMBEDMENT DEPTH' MINIMUM DISTANCE TENSION SHEAR (Inch) (inches) FROM EDGE OF WALL& IBC/IRC IBC/IRC I (inches) 4 121 304 114 IJa 12 121 304 I 2 4 432 432 342 12 342 154 4 257 589 I 3/8 12 273 751 21/2 4 626 764 12 626 1,054 2,/a 4 502 664 I 1/2 12 533 1,171 31/2 4 724 840 12724 1,853 I 4 651 710 5/& 12 692 r 1,732 4 4 994 743 I 31/4 12 1,035 2,123 4 829 627 3/4 12 829 2,508 = I 43/8 4 1,316 657 12 1,368 2,627 For SI:1 inch=25.4 mm,1 lb=4.45 N. I 'Values valid for anchors installed in face shells of Type 1,Grade N,lightweight,medium-weight,or normal-weight concrete masonry units conforming to ASTM C90.The masonry units must be fully grouted with coarse grout conforming to 2012 IBC Section 2103.13,or 2009 and 2006 IBC Section 2103.12.Mortar must comply with 2012 IBC Section 2103.9,or 2009 and 2006 IBC Section 2103.8.Masonry compressive strength must be at least 1,500 psi at the time of anchor installation. ZAnchors must be installed a minimum of 13/8 inches from any vertical mortar joint in accordance with Figure 2. - I 3Anchor locations are limited to one per masonry cell with a minimum spacing of 8 inches on center. 4Allowable loads or applied loads may be modified in accordance with Section 5.6 of this report for the 2009 and 2006 IBC,due to short-term wind or seismic loads. 5Embedment depth must be measured from the outside face of the concrete masonry unit. $For intermediate edge distances,allowable loads may be determined by linearly interpolating between the allowable loads at the two J. I j tabulated edge distances. - I 55 ESR-1385 I Most Widely Accepted and Trusted Page 4 of 4 I TABLE 3—ALLOWABLE TENSION AND SHEAR VALUES FOR HILTI KWIK BOLT 3 CARBON STEEL ANCHORS INSTALLED IN TOP OF FULLY GROUTED CMU MASONRY WALLS(in pounds)1'2'3'4 ANCHOR EMBEDMENT TENSION SHEAR DIAMETER DEPTH° Perpendicular to Wall Parallel to Wall (inch) (inches) IBC/IRC IBC/IRC IBC/IRC 1/2 3 517 249 491 5/8 31/2 682 249 491 For SI: 1 inch=25.4 mm,1 lb=4.45 N. I'Values valid for anchors installed into top cells of Type 1,Grade N,lightweight,medium-weight,or normal-weight concrete masonry units conforming to ASTM C90.The masonry units must be fully grouted with coarse grout conforming to 2012 IBC Section 2103.13,or 2009 and 2006 IBC Section 2103.12.Mortar must comply with 2012 IBC Section 2103.9,or 2009 and 2006 IBC Section 2103.8.Masonry compressive strength must be at least 1,500 psi at the time of anchor installation. 2Anchors must be installed a minimum of 1314 inches from edge of the block. 3Anchor locations must be limited to one per masonry cell with a minimum spacing of 8 inches on center. 4Allowable loads or applied loads may be modified in accordance with Section 5.6 of this report for the 2009 and 2006 IBC,due to short-term wind or seismic loads. I BEmbedment depth is measured from the top edge of the concrete masonry unit. TABLE 4—LENGTH IDENTIFICATION CODES I STAMP ON ANCHOR A BCDEF GH I JK LMNOPQRS T UVWXY Z Length of From 11/2 2 2'/2 3 3'/2 4 4112 5 5'/2 6 61/2 7 71/2 8 81/2 9 91/2 10 11 12 13 14 15 16 17 18 Anchor Up to but not 2 21/2 3 31/2 4 41i2 5 51/2 6 6'/2 7 71/2 8 81/2 9 91/2 10 11 12 13 14 15 16 17 18 18 I (inches) including For SI:1 inch=25.4 mm. I I 11 II-- Nut Anchor Installation Is Restricted to Non-Shaded Areas r ,-- . Washer ''' ZO I }/ n Or A ----Thread Area i i 40 d,_ , I, 1 /'/ 44 Anchor Body o0 /i n I 0�, rn a I Triple _ / ncmten UTr p e ortar Joint l 3!8• Masonry hit Mandrel — Segmented l-iia• (Grouted) Wedge Area FIGURE 1--KWIK BOLT 3 FIGURE 2—ACCEPTANCE LOCATIONS(NONSHADED AREAS)FOR I HILTI KWIK BOLT3 ANCHORS IN GROUT-FILLED CONCRETE MASONRY ANCHORS I I 56 I EZ ICC EVALUATION ..., SERVICE Most Widely Accepted and Trusted ICC-ES Evaluation Report ESR-1917* IReissued May 2015 This report is subject to renewal May 2017. I www.icc-es.orq I (800)423-6587 I (562) 699-0543 A Subsidiary of the International Code Council' DIVISION:03 00 00—CONCRETE The 318-inch-, 1/2-inch-, 5/e-inch- and 3/4-inch diameter 1 I Section: 03 16 00—Concrete Anchors (9.5 mm, 12.7 mm and 15.9 mm) carbon steel KB-TZ anchors may be installed in the soffit of cracked and DIVISION: 05 00 00—METALS uncracked normal-weight or sand-lightweight concrete over Section: 05 05 19—Post-Installed Concrete Anchors metal deck having a minimum specified compressive I REPORT HOLDER: strength, PG, of 3,000 psi (20.7 MPa) [minimum of 24 MPa is required under ADIBC Appendix L, Section 5.1.1]. HILTI,INC. The anchoring system complies with anchors as Ivn described in Section 1909 of the 2012 IBC and Section 5400 SOUTH 122 EAST AVENUE 1912 of the 2009 and 2006 IBC. The anchoringsystem is TULSA,OKLAHOMA 74146 an alternative to cast-in-place anchors described in (800)879-8000 Section1908 of the 2012 IBC and Section 1911 of the 2009 www.us.hilti.com and 2006 IBC. The anchors mayalso be used where an HiltiTechEn�t�wus.hilti.com engineered design is submitted in accordance with Section EVALUATION SUBJECT: R301.1,3 of the IRC, A 3.0 DESCRIPTION I HILTi KWIK BOLT TZ CARBON AND STAINLESS STEEL 3.1 KB-TZ: 3 ANCHORS IN CRACKED AND UNCRACKED CONCRETE KB-TZ anchors are torque-controlled, mechanical . 1.0 EVALUATION SCOPE expansion anchors. KB-TZ anchors consist of a stud 111 Compliance with the following codes: (anchor body), wedge (expansion elements), nut, and washer. The anchor (carbon steel version) is illustrated in ■ 2012,2009 and 2006 international Building Codee(IBC) Figure 1. The stud is manufactured from carbon steel or ■ 2012, 2009 and 2006 International Residential Code AISI Type 304 or Type 316 stainless steel materials. q (IRC) Carbon steel KB-TZ anchors have a minimum 5 pm (0.0002 inch)zinc plating. The expansion elements for the t ■ 2013 Abu Dhabi International Building Code(ADIBC)t carbon and stainless steel KB-TZ anchors are fabricated 1The ADIBC is based on the 2009 IBC.2009 IBC code sections referenced from Type 316 stainless steel.The hex nut for carbon steel } 1 in this report are the same sections in the AMC. conforms to ASTM A563-04, Grade A, and the hex nut for Property evaluated: stainless steel conforms to ASTM F594. II Structural The anchor body is comprised of a high-strength rod I 2.0 USES threaded at one end and a tapered mandrel at the otherii end. The tapered mandrel is enclosed by a three-section The Milli Kwik Bolt TZ anchor (KB-TZ) is used to resist expansion element which freely moves around the static, wind, and seismic tension and shear loads in mandrel. The expansion element movement is restrained I cracked and uncracked normal-weight concrete and sand- by the mandrel taper and by a collar. The anchor is lightweight concrete having a specified compressive installed in a predrilled hole with a hammer. When torque strength, t', of 2,500 psi to 8,500 psi (17.2 MPa to is applied to the nut of the installed anchor,the mandrel is 58.6 MPa) [minimum of 24 MPa is required under ADIBC drawn into the expansion element, which is in turn I Appendix L,Section 5.1.1]. expanded against the wall of the drilled hole. The 3/8-inch- and 1/2-inch-diameter (9.5 mm and 3.2 Concrete: 12.7 mm) carbon steel KB-TZ anchors may be installed in Normal-weight and sand-lightweight concrete must the topside of cracked and uncracked normal-weight or conform to Sections 1903 and 1905 of the IBC. I sand-lightweight concrete filled steel deck having a 3.3 Steel Deck Panels: minimum member thickness, hmin,deck, as noted in Table 6 of this report and a specified compressive strength, fc, of Steel deck panels must be in accordance with the 3,000 psi to 8,500 psi(20.7 MPa to 58.6 MPa)[minimum of configuration in Figures 5A, 5B, 5C and 5D and have a I24 MPa is required under ADIBC Appendix L, Section minimum base steel thickness of 0.035 inch (0.899 mm). 5.1.1]. Steel must comply with ASTM A653/A653M SS Grade 33 "Corrected May 2015 I lf:C-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed,nor are they to be construed as an endorsement of the subject of the report or a recommendation for its use.There is no warranty by ICC Evaluation Service,1,LC,erpres,or implied,as s ANSI to anyfending or other matter in this report,or as to any product covered by the report. man, Copyright Q 2015 Page 1 of 13 I 57 ESR-1917 I Most Widely Accepted and Trusted Page 2 of 13 I and have a minimum yield strength of 33,000 psi t� (N, MPa) (228 MPa). N ` =N t�,fp,cr 17,2 4.0 DESIGN AND INSTALLATION In regions where analysis indicates no cracking in I 4.1 Strength Design: accordance with ACI 318 D.5.3.6, the nominal pullout strength in tension may be calculated in accordance with 4.1.1 General: Design strength of anchors complying with the following equation: I the 2012 IBC as well as Section R301.1.3 of the 2012 IRC, must be determined in accordance with ACI 318-11Nptl =Npun450O (Ib, psi) (Eq-2) Appendix D and this report. Design strength of anchors complying with the 2009 IBC I and Section R301.1.3 of the 2009 IRC must be determined Np f, =Np j1 t (N, MPa) in accordance with ACI 318-08 Appendix D and this report. unc' Design strength of anchors complying with the 2006 Where values for Np,c,or Np,uncr are not provided in Table I IBC and Section R301.1.3 of the 2006 IRC must be in 3 or Table 4, the pullout strength in tension need not be accordance with ACI 318-05 Appendix D and this report. evaluated. The nominal pullout strength in cracked concrete of the Design parameters provided in Tables 3, 4, 5 and 6 of this report are based on the 2012 IBC (ACI 318-11) unless carbon steel KB TZ installed in the steel of sand- deck noted otherwise in Sections 4.1.1 through 4.1.12.The lightweight or normal weight concrete on steel deck floor strength of anchors comply with ACI 318 and roof assemblies, as shown in Figures 5A and 5B, is strength except design required in ACI must Dmpl given in Table 5. In accordance with ACI 318 D.5.3.2, the nominal pullout strength in cracked concrete must be Strength reduction factors, A as given in ACI 318-11 calculated in accordance with Eq-1, whereby the value of D.4.3 and noted in Tables 3 and 4 of this report, must be Np,deck.c, must be substituted for Np,cr and the value of used for load combinations calculated in accordance with 3,000 psi (20.7 MPa) must be substituted for the value of Section 1605.2 of the IBC and Section 9.2 of ACI 318. 2,500 psi (17.2 MPa) in the denominator. In regions where I Strength reduction factors, 0, as given in ACI 318-11 1.4,4 analysis indicates no cracking in accordance with ACI 318 must be used for load combinations calculated in 5.3.6, the nominal strength in uncracked concrete must be accordance with ACI 318 Appendix C. An example calculated according to Eq-2, whereby the value of calculation in accordance with the 2012 IBC is provided in Np,deck,uncr must be substituted for Np,ulcr and the value of I Figure 7. The value of f'c used in the calculations must be 3,000 psi (20.7 MPa) must be substituted for the value of limited to a maximum of 8,000 psi (55.2 MPa), in 2,500 psi (17.2 MPa) in the denominator. The use of accordance with ACI 318-11 D.3.7. stainless steel KB-TZ anchors installed in the soffit of concrete on steel deck assemblies is beyond the scope of I 4.1.2 Requirements for Static Steel Strength in this report. Tension:The nominal static steel strength, Nsa,of a single anchor in tension must be calculated in accordance with 4.1.5 Requirements for Static Steel Strength in Shear: ACI 318 D.5.1.2. The resulting Nsa values are provided in The nominal steel strength in shear, Vsa,of a single anchor Tables 3 and 4 of this report. Strength reduction factors in accordance with ACI 318 D.6.1.2 is given in Table 3 and corresponding to ductile steel elements may be used. Table 4 of this report and must be used in lieu of the values derived by calculation from ACI 318-11, Eq. D-29. 4.1.3 Requirements for Static Concrete Breakout The shear strength Vsa,deck of the carbon-steel KB-TZ as Strength in Tension: The nominal concrete breakout governed by steel failure of the KB-TZ installed in the soffit , strength of a single anchor or group of anchors in tension, of sand-lightweight or normal-weight concrete on steel Ncb or Ncb9, respectively, must be calculated in accordance deck floor and roof assemblies, as shown in Figures 5A, with ACI 318 D.5.2, with modifications as described in this 5B and 5C,is given in Table 5. section. The basic concrete breakout strength in tension, 4.1.6 Requirements for Static Concrete Breakout t Nb, must be calculated in accordance with ACI 318 Strength in Shear: The nominal concrete breakout D,5.2.2, using the values of het and kcr as given in Tables strength of a single anchor or group of anchors in shear, 3, 4 and 6. The nominal concrete breakout strength in Vcb or Vcbg, respectively, must be calculated in accordance tension in regions where analysis indicates no cracking in with ACI 318 D.6.2, with modifications as described in this I accordance with ACI 318 D.5.2.6 must be calculated with section.The basic concrete breakout strength, Vb,must be ku„c,as given in Tables 3 and 4 and with rP'c,N=1.0. calculated in accordance with ACI 318 D.6.2.2 based on For carbon steel KB-TZ anchors installed in the soffit of the values provided in Tables 3 and 4.The value of fo used sand-lightweight or normal-weight concrete on steel deck in ACI 318 Eq. D-24 must be taken as no greater than the floor and roof assemblies,as shown in Figures 5A,5B and lesser of het or 8d8. 5C, calculation of the concrete breakout strength is not For carbon steel KB-TZ anchors installed in the soffit of required. sand-lightweight or normal-weight concrete on steel deck 4.1.4 Requirements for Static Pullout Strength in floor and roof assemblies, as shown in Figures 5A, 5B and Tension: The nominal pullout strength of a single anchor 5C, calculation of the concrete breakout strength in shear in accordance with ACI 318 D.5.3.1 and D.5.3.2 in cracked is not required. and uncracked concrete, Np,cr and Np,u„c,, respectively, is 4.1.7 Requirements for Static Concrete Pryout given in Tables 3 and 4. For all design cases (Pc,p= 1.0. In Strength in Shear: The nominal concrete pryout strength accordance with ACI 318 D.5.3, the nominal pullout of a single anchor or group of anchors, Vcp or Vim, strength in cracked concrete may be calculated in respectively, must be calculated in accordance with AC1 accordance with the following equation: 318 D.6.3, modified by using the value of kcp provided in I' Tables 3 and 4 of this report and the value of No or Nag as NP./, =Np.cr•_NI1 o (lb,psi) (Eq-1) calculated in Section 4.1.3 of this report. 58 ESR-1917 I Most Widely Accepted and Trusted Page 3 of 13 I For carbon steel KB-TZ anchors installed in the soffit of For carbon steel KB-TZ anchors installed in the soffit of Isand-lightweight or normal-weight concrete over profile sand-lightweight or normal weight concrete over profilesteel deck floor and roof assemblies, as shown in Figures steel deck floor and roof assemblies, the anchors must be I 5A, 5B, and 5C, calculation of the concrete pry-out installed in accordance with Figure 5A, 58 and 5C and strength in accordance with ACI 318 0.6.3 is not required. shall have an axial spacing along the flute equal to the I' 4.1.8 Requirements for Seismic Design: greater of 3he,or 1.5 times the flute width. 4.1.8.1 General: For load combinations including seismic, 4.1.11 Requirements for Critical Edge Distance: In 1 the design must be performed in accordance with ACI 318 applications where c<cat and supplemental reinforcement ' D.3.3. For the 2012 IBC,Section 1905.1.9 shall be omitted, to control splitting of the concrete is not present, the Modifications to ACI 318 D.3.3 shall be applied under concrete breakout strength in tension for untracked j Section 1908.1.9 of the 2009 IBC, or Section 1908.1.16 of concrete, calculated in accordance with ACI 318 D.5.2, the 2006 IBC. The nominal steel strength and the nominal must be further multiplied by the factor Pcp,N as given by concrete breakout strength for anchors in tension, and the Eq-1: nominal concrete breakout strength and pryout strength for __ c anchors in shear, must be calculated in accordance with �`spry cat (Eq-3) ACI 318 D.5 and 0.6, respectively, taking into account the whereby the factor Pcp,N need not be taken as less I corresponding values given in Tables 3, 4 and 5 of this report. The anchors may be installed in Seismic Design than 1.5her . For all other cases, 4'cpN = 1.0. In lieu of Categories A through F of the IBC. The anchors comply using ACI 318 D.8.6, values of cat must comply with with ACI 318 D.1 as ductile steel elements and must be Table 3 or Table 4 and values of cac,deck must comply with 111 designed in accordance with ACI 318-11 D.3.3.4, D.3.3.5, Table 6. D.3.3.6 or 0.3.3.7,ACI 318-08 D.3.3.4, D.3.3.5 or D.3.3.6, or ACI 318-05 D.3.3.4 or D.3.3.5,as applicable. 4.1.12 Sand-lightweight Concrete: For ACI 318-11 and 4.1.8.2 Seismic Tension: The nominal steel strength 318-08, when anchors are used in sand-lightweight and nominal concrete breakout strength for anchors in concrete, the modification factor or respectively, for tension must be calculated in accordance with ACI 318 concrete breakout strength must bee taken as 0.6 innlieu of D.5.1 and ACI 318 0.5.2, as described in Sections 4.1.2 ACI 318-11 D.3.6 (2012 IBC) or ACI 318-08 0.3.4 (2009 and 4.1.3 of this report. In accordance with ACI 318 IBC). In addition the pullout strength Nps, Npuns,and Np,eq I 0.5.3.2, the appropriate pullout strength in tension for must be multiplied by 0.6,as applicable. seismic loads, Np,eq, described in Table 4 or ltitpdeck,or For AC! 318 Q5, the values Nb, N N Np,eq p, , and Vb described in Table 5 must be used in lieu of Np, as determined in accordance with this report must be Iapplicable. The value of Np,eq or Np,deckcr may be adjusted multiplied by 0.6,in lieu of ACI 318 D.3.4. by calculation for concrete strength in accordance with Eq-1 and Section 4.1.4 whereby the value of Np masks,must For carbon steel KB-TZ anchors installed in the soffit of be substituted for Nps, and the value of 3,000 psi sand lightweight concrete-filled steel deck and floor and (20.7 MPa) must be substituted for the value of 2,500 psi roof assemblies, this reduction is not required. Values are I (17.2 MPa) in the denominator. If no values for Np,eq are given in Table 3 or Table 4, the static design strength presented in Table 5 and installation details are show in Figures 5A,5B and 5C. values govern. 4.2 Allowable Stress Design(ASD): 4.1.8.3 Seismic Shear: The nominal concrete breakout 4.2.1 General: Design values for use with allowable strength and pryout strength in shear must be calculated in stress design (working stress design) load combinations accordance with ACI 318 D.6.2 and D.6.3, as described in calculated in accordance with Section 1605.3 of the IBC, Sections 4.1.6 and 4.1.7 of this report. In accordance with must be established as follows: I ACI 318 D.6.1.2, the appropriate value for nominal steel strength for seismic loads, Vsa,eQ described in Table 3 and , Nn Table 4 or Vsa dTanowabreASD - eck described in Table 5 must be used in lieu a , of Vsa, as applicable. I 4.1.9 Requirements for Interaction of Tensile and Va!lowabre,asD - Vn Shear Forces: For anchors or groups of anchors that are a subject to the effects of combined tension and shear where: forces, the design must be performed in accordance with AC[318 D.7. Tauowable,aso - Allowable tension load(lbf or kN). 5 4,1.10 Requirements for Minimum Member Thickness, Vallowabe,ASD - Allowable shear load(lbf or kN). Minimum Anchor Spacing and Minimum Edge Distance: In lieu of ACI 318 D.8.1 and D.8.3,values of smn ON,' = Lowest design strength of an anchor and cmrn as given in Tables 3 and 4 of this report must be or anchor group in tension as used. In lieu of ACI 318 D,8.5, minimum member determined in accordance with ACI thicknesses hmin as given in Tables 3 and 4 of this report 318 D.4.1, and 2009 IBC Section must be used. Additional combinations for minimum edge 1908.1.9 or 2006 IBC Section distance, cmrn, and spacing, smin, may be derived by linear 1908.1.16,as applicable(Ibf or N). interpolation between the given boundary values as 04 = Lowest design strength of an anchor described in Figure 4. 9 9 or anchor group in shear as I For carbon steel KB-TZ anchors installed on the top of determined in accordance with ACI normal-weight or sand-lightweight concrete over profile 318 D.4,1, and 2009 IBC Section steel deck floor and roof assemblies, the anchor must be 1908.1.9 or 2006 IBC Section r installed in accordance with Table 6 and Figure 50. 1908.1.16, as applicable(lbf or N). I 59 ESR-1917 I Most Widely Accepted and Trusted Page 4 of 13 a = Conversion factor calculated as a 5.1 Anchor sizes, dimensions, minimum embedment weighted average of the load factors depths and other installation parameters are as set for the controlling load combination. In forth in this report. addition, a must include all applicable 5.2 The anchors must be installed in accordance with the factors to account for nonductile manufacturer's published instructions and this report. failure modes and required over- In case of conflict,this report governs. strength. 5.3 Anchors must be limited to use in cracked and The requirements for member thickness, edge distance uncracked normal-weight concrete and sand- and spacing, described in this report, must apply. An lightweight concrete having a specified compressive example of allowable stress design values for illustrative strength, Pc, of 2,500 psi to 8,500 psi (17.2 MPa to purposes in shown in Table 7. 58.6 MPa) [minimum of 24 MPa is required under 4.2.2 Interaction of Tensile and Shear Forces: The ADIBC Appendix L, Section 5.1.1], and cracked and interaction must be calculated and consistent with ACI 318 uncracked normal-weight or sand-lightweight concrete D.7 as follows: over metal deck having a minimum specified For shear loads Vappfied< 0•2Vallowable,ASD, the full allowable compressive strength, ft , of 3,000 psi (20.7 MPa) load in tension must be permitted. [minimum of 24 MPa is required under ADIBC Appendix L,Section 5.11]. For tension loads Tapprled 0.2TallowableASD,the full allowable 5.4 The values of fc used for calculation purposes must load in shear must be permitted. not exceed 8,000 psi(55.1 MPa). For all other cases: 5.5 Strength design values must be established in Tapprred + Vapplied <1.2 (Eq-4) accordance with Section 4.1 of this report, Tatiowable,ASD vallowable,ASD 5.6 Allowable design values are established in 4.3 Installation: accordance with Section 4.2. Installation parameters are provided in Tables 1 and 6 and 5.7 Anchor spacing and edge distance as well as Figures 2, 5A, 5B, 5C and 5D. Anchor locations must minimum member thickness must comply with Tables comply with this report and plans and specifications 3,4,and 6,and Figures 4, 5A,5B,5C and 5D. approved by the code official. The Hilti KB-TZ must be 5.8 Prior installation, calculations and installed in accordance with manufacturer's published demonstrating to compliance with this report must detailss instructions and this report. In case of conflict, this report submitted to the code official.wThe calculationsrtm and governs.Anchors must be installed in holes drilled into the details must be prepared a registered concrete using carbide-tipped masonry drill bits complying details professional where required byby the statutesstereddesign gn isg ANSI Table 1.994. Theostalmum drilledduholand depth risdiction in which the project is to be constructed. is given in Table 1. Prior to installation, dust and debris j must be removed from the drilled hole to enable installation 5.9 Since an ICC-ES acceptance criteria for evaluating to the stated embedment depth. The anchor must be data to determine the performance of expansion hammered into the predrilled hole until Nem is achieved. anchors subjected to fatigue or shock loading is The nut must be tightened against the washer until the unavailable at this time, the use of these anchors torque values specified in Table 1 are achieved. For under such conditions is beyond the scope of this installation in the soffit of concrete on steel deck report. assemblies, the hole diameter in the steel deck not 5.10Anchors may be installed in regions of concrete occurred exceed the diameter of the hole in the concrete by more where cracking hasor where analysis than 1/a inch (3.2 mm). For member thickness and edge indicates cracking may occur (ft f,), subject to the distance restrictions for installations into the soffit of conditions of this report. concrete on steel deck assemblies, see Figures 5A, 5B and 5C. 6.11 Anchors may be used to resist short-term loading due 4.4 Special Inspection: to wind or seismic forces in locations designated as Seismic Design Categories A through F of the IBC, Periodic special inspection is required in accordance with subject to the conditions of this report. Section 1705.1.1 and Table 1705.3 of the 2012 IBC, or 5.12 Where not otherwise prohibited in the code, KB TZ SectiSection 1704.15 of the 2009 IBC and Table 1704.4 or anchors are permitted for use with fire-resistance- specialon 1704.13tomustof the 2006keIBC, asapplicable. The rated construction provided that at least one of the inspector make periodic inspections during following conditions is fulfilled: anchor installation to verify anchor type, anchor dimensions,concrete type,concrete compressive strength, • Anchors are used to resist wind or seismic forces anchor spacing, edge distances, concrete member only. thickness, tightening torque, hole dimensions, anchor that support a fire-resistance-rated envelope tt a fire- resistance-rated membrane and embedment and adherence to the manufacturer's printed oAnchors installation instructions. The special inspector must be p present as often as required in accordance with the protected by approved fire-resistance- rated "statement of special inspection."Under the IBC,additional materials, or have been evaluated for resistance to requirements as set forth in Sections 1705, 1706 and 1707 fire exposure in accordance with recognized must be observed,where applicable. standards. 5.0 CONDITIONS OF USE • Anchors are used to support nonstructural elements. The Hilti KB-TZ anchors described in this report comply with the codes listed in Section 1.0 of this report,subject to 5.13 Use of zinc-coated carbon steel anchors is limited to the following conditions: dry,interior locations. 60 III ESR-1917 J Most Widely Accepted and Trusted Page 5 of 13 • 5,14 Use of anchors made of stainless steel as specified in 6.2 Quality-control documentation. this report are permitted for exterior exposure and 7 0 IDENTIFICATION damp environments. l 5.15 Use of anchors made of stainless steel as specified in The anchors are identified by packaging labeled with the 1 #his report are permitted#or con#act with preservative- manufacturer's name (Hilti, Inc.) and contact information,• treated and fire-retardant-treated wood. anchor name, anchor size, and evaluation report number (ESR-1917). The anchors have the letters KB-TZ -i 5.16 Anchors are manufactured by Hilti AG under an embossed on the anchor stud and four notches approved quality-control program with inspections by embossed into the anchor head, and these are visible after IICC-ES. installation for verification. 6.0 EVIDENCE SUBMITTED 6.1 Data in accordance with the ICC-ES Acceptance I Criteria for Mechanical Anchors in Concrete Elements (AC193),dated March 2012(ACI 355.2-07). 1 { TABLE 1—SETTING INFORMATION(CARBON STEEL AND STAINLESS STEEL ANCHORS) I SETTING Nominal anchor diameter(in.) INFORMATION Symbol Units 3/3 112 54 3/4 I Anchor Q.D. da In. 0.375 0.5 0.625 0.75 (da)2 (mm) (9.5) (12.7) (15.9) (19.1) Nominal bit , 1 diameter do in. /6 /2 5/e 3/4 Effective min. In. 2 2 31/4 31/6 4 33/4 43/4 embedment ha (mm) (51) (51) (83) (79) (102) (95) (121) "'ominal in. 25/16 23/6 35/6 34/16 47/16 45/16 59/18 I nbedment boom (mm) (59) (60) (91) (91) (113) (110) (142) In. 23/4 25/6 4 33/4 43/4 41/2 53/4 Min.hole depth ho II (mm) (67) (67) (102) (95) (121) (114) (146) Min.thickness of in 1/4 3/4 1/4 3l6 3/4 1l6 1516 fastened parte t (mm} (6) (19) (6) (9) (19) (3) (41) Required ft-lb 25 40 60 110 Installation torque T"S` (Nm) (34) (54} (81} (149} Min.dia.of hole da In. 7/16 8/i6 11!16 13/16 in fastened part (mm) (11.1) (14.3) (17.5) (20.6) ; I Standard anchor In. 3 33/4 5 33/4 4112 51/2 7 4314 6 81/2 10 51/2 8 10 lengths fancn (mm) (76) (95) (127) (95) (114) (140) (178) (121) (152) (216) (254) (140) (203) (254) 1 i Threaded length In. 7/6 15/6 27/6 15/6 23/6 3316 47/6 11/2 23/4 51/4 63/4 11/2 4 6 (incl.dog point) two.' (mm) (22) (41) (73) (41) (60) (86) (124) (38) (70) (133) (171) (38) (102) (152) Unthreaded In. 21/6 21/6 31/4 4 ! length e°"'nr (mm) (54) (54) (83) (102) I II 1The minimum thickness of the fastened part is based on use of the anchor at minimum embedment and is controlled by the length of thread.If a thinner fastening thickness is required,increase the anchor embedment to suit. 2The notation in parenthesis is for the 2006 IBC. I 1 I I 61 ESR-1917 I Most Widely Accepted and Trusted Page 6 of 13 1 UNC thread mandrel `, n ..I� ' dog point expansion aollarwasher hex nut I element bolt FIGURE 1—HILTI CARBON STEEL KWIK BOLT TZ(KB-TZ) 1 Iii / I /'thread ' AI land) ` '•,' `'` tunthr :- r da het hnom ho �i I S V I FIGURE 2—KB-TZ INSTALLED TABLE 2—LENGTH IDENTIFICATION SYSTEM(CARBON STEEL AND STAINLESS STEEL ANCHORS) Il Length ID marking A BCDEF GH I JK L MN OPQR S T U VW on bolt head Length of From 1 % 2 2% 3 3% 4 4% 5 5% 6 6% 7 7% 8 81/2 9 9'/2 10 11 12 13 14 15 anchor, Up to but P.ch not 2 2% 3 3% 4 4% 5 5% 6 6% 7 7% 8 8% 9 9% 10 11 12 13 14 15 16 (inches) including _ _ �.F I 1; , I FIGURE 3—BOLT HEAD WITH LENGTH IDENTIFICATION CODE AND KB-TZ HEAD NOTCH EMBOSSMENT 62 1 IESR-1917 I Most Widely Accepted and Trusted Page 7 of 13 TABLE 3-DESIGN INFORMATION,CARBON STEEL KB-TZ0 DESIGN INFORMATION Symbol Units 3 Nominal anchor diameter /8 f2 f8 314 Anchor O.O. de{da) in. 0.375 0.5 0.625 0.75 (mm) (9.5) (12.7) (15.9) (19.1) �' in, 2 2 33/4 31/8 4 33/4 43/4 in Effective m .embedment' he, (mm) (51) (51) (83) (79) (102) (95) (121) Min.member thickness2 Noin. 4 5 4 6 6 8 5 6 8 6 8 8 (mm) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) (203) Critical edge distance ca in. - 4 5'/z 41/2 7'/z 6 6'/2 83/4 63/4 10 8 9 (mm) (111) (102) (140) (114) (191) (152) (165) (222) (171) (254) (203) (229) In. 23/4 23/4 2318 33/4 33/4 43/4 43/4 Crniri Min,edge distance fors? (mm) (64) (70 60 92 83 121 105) in. 5 53/4 53/4 6'/3 D 57! 101/2 8'/D (mm) (127) (146) (146) (156) (149) (267) (225) in. 23/4 23/4 23/4 31/2 3 5 4 S mm (mm) (64) (70) (60) (89) (76) (127) (102) Min.anchor spacing far c s In. 3'/e 41/e 3'/2 43/4 43/4 9'12 73/4 (mm) (92) (105) (89) (121) (108) (241) (197) in. 23/4 25/8 4 33/4 43/4 43/4 53/4 Mtn.hole depth in concrete hB (mm) (67) (67) (102) (98) (121) (117) (146) Mtn.specified yield strength fY Ib/in2100,000 84,800 84,800 84,800 1 (N/mm2) (690) (585) (585) (585) 111 Mtn.specified ult.strength f„a I�n2 125,000 106,000 106,000 106,000 (N/mm2) (862) (731) (731) (731) Int 0.052 0.101 0.162 0.237 Effective tensile stress area Ase.N (mm2} (33.6) (65.0) (104.6) (152.8) Steel strength in tension NSB lb 6,500 10,705 17,170 25,120 (kN) (28.9) (47.6) (76.4) (111.8) 13,675 lb 3,595 5,495 8,090 Steel strength in shear l/44 (kN) (16.0) (24.4) (36.0) (60.8) Steel strength in shear,seismic' 1/44,44 lb 2,255 5,495 7,600 11,745 (kN) (10.0) (24.4) (33.8) (52.2) Pullout strength uncracked lb 2,515 5,515 9,145 8,280 10,680 concrete4 Av.uD„ (kN) (11.2) NA (24.5) NA (40.7) (36.8) (47.5) Pullout strength cracked concrete" N,,,„ lb 2,270 NA 4,915 NA NA NA NA (kN) (10.1) (21.9) IA Anchor category5 1 Effectiveness factor k„D„uncracked concrete 24 $ Effectiveness factor k„cracked concretes 17 4`o.nr kBnu7kc,7 1.0 • Coefficient for pryout strength,k5, 1.0 2.0 Strength reduction factor 4 for tension,steel failure 0.75 modes Strength reduction factor f for shear,steel failure modes' 0.65 11. Strength reduction 0 factor for tension,concrete failure modes or pullout,Condition 85 0.65 i Strength reduction¢factor for shear,concrete failure 4.70 modes,Condition B8 Axial stiffness in service load A., Ib/in. 700,000 range50 A- lb/in. 500,000 I For SI:1 inch=25.4 mm,1 Ibf=4.45 N,1 psi=0.006895 MPa. For pound-inch units:1 mm=0.03937 inches. 'See Fig.2. 2For sand-lightweight or normal-weight concrete over metal deck,see Figures 5A,513,5C and 5D and Tables 5 and 6. II 3See Section 4.1.8 of this report. 4For all design cases iP,p=1.0.NA(not applicable)denotes that this value does not control for design.See Section 4.1.4 of this report. I 5See ACI 316-11 D.4.3. 'See ACI 318 0.5.2.2. ?For all design cases iP a=1.0.The appropriate effectiveness factor for cracked concrete(k„)or uncracked concrete(k,,,,„)must be used. The KB-TZ is a ductile steel element as defined by ACI 318 D.1. 5For use with the load combinations of ACI 318 Section 9.2.Condition B applies where supplementary reinforcement in conformance with ACI 318-11 D.4.3 is not provided,or where pullout or pryout strength governs.For cases where the presence of supplementary reinforcement can be verified,the strength reduction factors associated with Condition A may be used. i0Mean values shown,actual stiffness may vary considerably depending on concrete strength,loading and geometry of application. I 63 ESR-1917 I Most Widely Accepted and Trusted Page 8 of 13 TABLE 4-DESIGN INFORMATION,STAINLESS STEEL KB-TZ DESIGN INFORMATION Symbol Units '/e 112 Nominal anchor diameS�B 'f4 I in. 0.375 0.5 0.625 0.75 Anchor O.D. do(do) (mm) (9.5) (12.7) (15,9) (19.1) Effective m€n.embedment) h,r in. 2 2 311, 3118 4 3314 43/a (mm) (51) (51) (83) (79) (102) (95) (121) in. 4 5 4 6 6 8 5 6 8 6 8 8 Min.member thickness hRB° (mm) (102) (127) (102) (152) (152) (203) (127) (152) (203) (152) (203) (203) I in. 41/4 31/4 55/2 41/2 71/2 6 7 81/a 6 10 7 9 Critical edge distance c,c (mm) (111) (98) (140) (114) (191) (152) (178) (225) (152) (254) (178) (229) in. 21/2 27/8 21/8 31/4 2-3/8 41/4 4 c"" (mm) (64) (73) (54) (83) (60) (108) (102) Min.edge distance in 5 53/4 51/4 51/2 51/2 10 81/2I for s' (mm) (127) (146) (133) (140) (140) (254) (216) in. 21/4 25/8 2 23/4 2118 5 4 s""" (mm) (57) (73) (51) (70) (60) (127) (102) Min.anchor spacing in. 31/2 41/2 31/4 41/8 4'/4 91/2 7 for C 2 (mm) (89) (114) (83) (105) (108) (241) (178) in. 21/4 2518 4 31/4 43/4 41/2 53/4 Min.hole depth in concrete h, (mm) (67) (67) (102) (98) (121) (117) (146) Ib/in2 92,000 92,000 92,000 76,125 Min.specified yield strength fy (N/mm2) (634) (634) (634) (525) lbrn2 115,000 115,000 115,000 101,500 Min.specified ult.Strength fig. (N/mm2) (793) (793) (793) (700) 1 int 0.052 0.101 0.162 0.237 Effective tensile stress area A,,,,x (mm2) (33.6) (65.0) (104.6) (152.8) lb 5,968 11,554 17,880 24,055 Seel strength in tension NSe (kN) (26.6) (51.7) (82.9) (107.0) I lb 4,720 6,880 9,870 15,711 Steel strength in shear VA. (kN) (21.0) (30.6) (43.9) (69.9) Putout strength in tension, lb 2,735 NA NA NA seismic2 N°�9 (kN) NA (12.2) I Ib 2,825 6,880 9,350 12,890 Steel strength in shear,seismic2 Vsa.e¢ (kN) (12.6) (30.6) (41.6) (57.3) Pullout strength uncracked lb 2,630NA 5,760 NA NA 12,040 concrete' Ny' (kN) (11.7) (25.6) (53.6) Pullout strength cracked lb 2,340 3,180NA 5,840 8,110 NA 111 concreteNp,W (kN) (10.4) (14,1) NA (26.0) (36.1) Anchor category' 1 2 1 Effectiveness factor k,,,,,,uncracked concrete 24 Effectiveness factor k,,,cracked concretes 17 24 17 1 17 17 24 17 e 1.0 �'qx=kuna�km Strength reduction factor 0for tension,steel failure 0.75 1' modes' Strength reduction factor ig for shear,steel failure modes' 0.65 Strength reduction d factor for tension,concrete failure 0.65 0.55 0.65 modes,Condition 08 Coefficient for pryout strength,k,, 1.0 2.0 Strength reduction 0 factor for shear,concrete failure 0.70 modes,Condition Ba Axial stiffness in service load /f„k, Ib/in. 120,000 ranges ft, lb/in. 90,000 For Si:1 inch=25,4 mm,1 lbf=4.45 N,1 psi=0.006895 MPa For pound-inch units:1 mm=0.03937 inches. I 'See Fig.2. 2See Section 4.1.8 of this report.NA(not applicable)denotes that this value does not control for design. 'For all design cases 1P0,=1.0.NA(not applicable)denotes that this value does not control for design.See Section 4.1.4 of this report. "See ACI 318-11 D.4.3. I 'See ACI 318 0,5.2.2. 8For all design cases W,x=1.0.The appropriate effectiveness factor for cracked concrete(k)or uncracked concrete(k,,,,4,)must be used. 'The KB-TZ is a ductile steel element as defined by ACI 318 0.1. 8For use with the load combinations of ACt 318 Section 9.2.Condition 0 applies where supplementary reinforcement in conformance with ACt 318-11 D.4.3 is not provided,or where pullout or pryout strength governs.For cases where the presence of supplementary reinforcement can be verified,the strength reduction factors associated with Condition A may be used. 9Mean values shown,actual stiffness may vary considerably depending on concrete strength,loading and geometry of application. 64 ', ESR-1911 I Most Widely Accepted and Trusted1.4 Page 9 of 13 114 I F Sdes#On tdesign - C v min a Cmin at s>- uf IIii dig - I Sdesign Smin at C I �, flii�e . p hZhmm I I F I I I I I 0 �f Cdesign edge distance c FIGURE 4-INTERPOLATION OF MINIMUM EDGE DISTANCE AND ANCHOR SPACING TABLE 5-HILTI KWIK BOLT TZ(KB-TZ)CARBON STEEL ANCHORS TENSION AND SHEAR DESIGN DATA FOR INSTALLATION IN THE SOFFIT OF CONCRETE-FILLED PROFILE STEEL DECK ASSEMBLIESi'67'e DESIGN INFORMATION Symbol Units , 1 Anchor Diameters 3 Effective Embedment Depth her in. 2 2 31/4 31/8 4 331-0 Minimum Hole Depth ho in. 2518 25/8 4 31/4 43/4 41/2 I Loads According to Figure 5A Pullout Resistance,untracked No,deck,unc Ib 2,060 2,060 3,695 2,825 6,555 4,255 conc,'ate Pullout Resistance,cracked concrete 8 Npdeek,cr lb 1,460 1,460 2,620 2,000 4,645 3,170 I Steel Strength in Shear' VSsdaek lb 2,130 3,000 4,945 4,600 6,040 6,190 Steel Strength in Shear,Seismic8 Vsa,deck,eq lb 1,340 3,000 4,945 4,320 5,675 5,315 Loads According to Figure 5B Pullout Resistance,uncracked lb 2,010 2,010 3,695 2,825 5,210 4,255 I concrete 5 NP.deck.unct Pullout Resistance,cracked concrete 8 Np,deq,,� lb 1,425 1,425 2,620 2,000 3,875 3170 Steel Strength in Shear' Vsa,deek lb 2,060 2,060 4,065 4,600 5,615 6,190 1 Steel Strength in Shear,Seismic Vsa,deck,eq lb 1,340 1,460 4,065 4,320 5,275 5,315 Loads According to Figure 5C Pullout Resistance,uncracked N deck„„,. lb 1,845 1,865 3,375 4,065 ` concrete P Pullout Resistance,cracked concrete 8 Nv.deck,cr lb 1,660 1,325 3,005 2,885 V Steel Strength in Shear' Vsa,deck lb 2,845 2,585 3,945 4,705 teit.4 Steel Strength in Shear,Seismic" Vsa,deck,eq lb 1,790 2,585 3,945 4,420 1 Installations must comply with Sections 4.1.10 and 4.3 and Figures 5A,5B and 5C of this report. 1 2 The values for 41,in tension ands in shear can be found in Table 3 of this report. 3 The characteristic pullout resistance for concrete compressive strengths greater than 3,000 psi may be increased by multiplying the value in the table by(f'e/3000)1(2 for psi or(f'e/20.7)1/2 for MPa[minimum of 24 MPa is required under ADIBC Appendix L,Section 5.1.1]. 4 Evaluation of concrete breakout capacity in accordance with ACI 318 D.5.2,D.6.2,and D.6.3 is not required for anchors installed in the deck soffit. I 8The values listed must be used in accordance with Section 4.1.4 of this report. 6The values listed must be used in accordance with Sections 4.1.4 and 4.1.8.2 of this report. 7The values listed must be used in accordance with Section 4.1.5 of this report. 8The values listed must be used in accordance with Section 4.1.8.3 of this report.Values are applicable to both static 111 and seismic load combinations. I I 65 ESR-19171 Most Widely Accepted and Trusted Page 10 of 13 111 TABLE 6—HILTI KWIK BOLT TZ(KB-TZ)CARBON STEEL ANCHORS SETTING INFORMATION FOR INSTALLATION ON THE TOP OF CONCRETE-FILLED PROFILE STEEL DECK ASSEMBLIES ACCORDING TO FIGURE 501'27 Nominal anchor diameter 0 DESIGN INFORMATION Symbol Units• a/8 ii Effective Embedment Depth her in. 2 2 Nominal Embedment Depth hrrom in. 25/18 23/8 Minimum Hole Depth tr8 in. 25/8 25/e Minimum concrete thickness5 hmk,,daek in. 31/4 31/4 Critical edge distance Cac,deck,Mp In. 41/2 6 Minimum edge distance Cmtn,decgtup in. 3 41/2 Minimum spacing Smrn,dack.1Op in• 4 61/2 1 Required Installation Torque Tins, ft-lb 25 40 "installation must comply with Sections 4.1.10 and 4.3 and Figure 5D of this report. 2For all other anchor diameters and embedment depths refer to Table 3 and 4 for applicable values of hm;",c88,and s... III 3Design capacity shall be based on calculations according to values in Table 3 and 4 of this report. 4Applicable for 3'/4-in<_hmr,,8e88<4-in.For h88d"cl z 4-inch use setting information in Table 3 of this report. 5Minimum concrete thickness refers to concrete thickness above upper flute.See Figure 5D. I 8 f I 1 j J Mitt 3000 PSIRORMALORSAHD a£ { N, i ti LIGHTWEIGHTCOtiCR£T£ !fir ,14111::;:,,';:'::.:1'::' {S{ uppEA m r FLUTE (VALLEYI MIN 20 GAUGE STEL W DECK uu I MINA-112' 1 1 MIN 4-112' ` 1 i MIN.12-rYP. I LOWER FLUTE OFFSET TYP. FIGURE 5A—INSTALLATION IN THE SOFFIT OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIES' 'Anchors may be placed in the upper or lower flute of the steel deck profile provided the minimum hole clearance is satisfied. I Minimum 5/8"Typical I Min.2-1/2"for 3/8,1/2 and 5/8x3 1/$ T Min.3,000 psi Normal-weight y or Lightweight Concrete . Min.3-1/4�for 5/Bx4 1. and 3/4x3-3/4, I. I rr Upper , Max.3" I Flute j Min imum t -' (Valley) - 20 Gauge 14, Min, !! i r Mn. Steel W-Deck 3-7/8" 3-7/8" 111�._Lower Mn, 12"Typical ;i . Flute Min.1" •- 4_ y i (Ridge) FIGURE 5B—INSTALLATION IN THE SOFFIT OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIES' II 'Anchors may be placed in the upper or lower flute of the steel deck profile provided the minimum hole clearance is satisfied. 1 66 I IESR-1917 I Most Widely Accepted and Trusted Page 11 of 13 111 k, t I 1 ;. ..4:i l',1 x 1 .. . : . . •' , , „ MIN.3,000 PSI NORMAL OR SAND- ; LIGHTWEIGHT CONCRETE f ._ ,.1N ._ k!., UPPER {' FLUTE t. 1t,L [ , III (VALLEY) MIN ! 1 v' 1 ` . MIN.20 GUAGE 1-314' 1 1 1 MIN 3-112'' STEEL W HECK ;MIN.2-112' 314'MIN, ' MIN 6'"P.,._.. – LOWER FLUTE (RIDGE) FIGURE SC—INSTALLATION IN THE SOFFIT OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIES–B DECK" 'Anchors may be placed in the upper or lower flute of the steel deck profile provided the minimum hole clearance is satisfied.Anchors in the lower flute may be Installed with a maximum 1/s-inch offset in either direction from the center of the flute.The offset distance may be I increased proportionally for profiles with lower flute widths greater than those shown provided the minimum lower flute edge distance is also satisfied. 2Anchors may be placed in the upper flute of the steel deck profiles in accordance with Figure 56 provided the concrete thickness above the upper iflute is minimum 31/4-inch and the minimum hole clearance of 518-inch is satisfied. 1 __ . .; r , . • . , • , ;., ., . 3 I.- MIN.3,000 PSI NORMAL OR SAND- - f LIGHTWEIGHTCONCRETE Z} 1 m; UPPER "`f 4- L 'I i, FLUTE -. 1 MIN j € z . (VALLEY) ` i L ..... MIN.20 GUAGE ,,- I STEEL W BECK 1-3l4" ( +MIN 3-112 1MIN.2-1/2'1 MIN 6'TYP I LOWER FLUTE ii, (RIDGE) FIGURE SD—INSTALLATION ON THE TOP OF CONCRETE OVER METAL DECK FLOOR AND ROOF ASSEMBLIES''' 'Refer to Table 6 for setting information for anchors in to the top of concrete over metal deck. 2Applicable for 31/4-in s h„k,<4-in.For hmtn a 4-inch use setting information in Table 3 of this report. ITABLE 7—EXAMPLE ALLOWABLE STRESS DESIGN VALUES FOR ILLUSTRATIVE PURPOSES Allowable tension(Ibf) I Carbon Steel Stainless Steel Nominal Anchor f =2,500 psi diameter(in.) Embedment depth(in.) ICarbon Steel Stainless Steel 3/8 2 1,105 1,155 2 1,490 1,260 Iiiz 31/4 2,420 2,530 3tla 2,910 2,910 518 4 4,015 4,215 1 314 33/4 3,635 3,825 43/4 4,690 5,290 For SI:1 Ibf=4.45 N, 1 psi=0.00689 MPa 1 psi=0.00689 MPa. 1 inch=25.4 mm. 'Single anchors with static tension load only. 2Concrete determined to remain uncracked for the life of the anchorage. 3Load combinations from ACI 318 Section 9.2(no seismic loading), 430%dead load and 70%live load,controlling load combination 1.2D+1.6 L. it 5Calculation of the weighted average for a=0.3*1.2+0.7*1.6=1.48. 8f'c=2,500 psi(normal weight concrete). 'Cat=022 Z cac 8h tin* 9Values are for Condition B where supplementary reinforcement in accordance with ACI 318-11 D.4.3 is not provided 1 67 ESR-1917 I Most lMdely Accepted and Trusted Page 12 of 13 II 1 „alko I 1.Hammer drill a hole to the same nominal 2.Clean hole. diameter as the Kwik Bolt TZ. The hole depth must equal the anchor embedment listed in Table 1.The fixture may be used as a drilling template to ensure proper anchor location. d � n 2i ri-V31_§,!,,,,,,,,,, -.4r F > �` {FI_ ',ills 11' fi.LI �11 'r -,. II ? is 1 1 4 F a r I'"{ `,i a 1 3,Drive the Kwik Bolt TZ into the hole using 4.Tighten the nut to the required a hammer. The anchor must be driven installation torque, until the nominal embedment is achieved. FIGURE 6-INSTALLATION INSTRUCTIONS 1 I a I I I I 1 68 1 IESR-1917 I Most Widely Accepted and Trusted Page 13 of 13 I Given: A V--- To„,,,-4-A Two 1!2-inch carbon steel KB-TZ anchors under static tension AM load as shown. 4!' r' �T"- 1.5 hr id=3.25 in. r Normal weight concrete,ro=3,000 psi I Z No supplementary reinforcement(Condition B per ACE 318-11 . 0.4.3 c) - :. n ------1,7--:---- s=6" IAssume cracked concrete since no other information is available, 1.5 he/ Needed: Using Allowable Stress Design(ASD)calculate the 1 I allowable tension load for this configuration. L 1.5 her c=4' «.! A-A Calculation per ACI 318-11 Appendix D and this report. Code Ref. Report Ref. IStep 1.Calculate steel capacity: ON =qinA4 =0.75 x 2 x 0.101 x 106,000=16,059 lb D.5.1.2 §4.1.2 Check whether ff,8 is not greater than 1,9fya and 125,000 psi. D,4.3 a Table 3 Step 2.Calculate concrete breakout strength of anchor in tension: Y cba "' AN c Vec,NrYed,N c,N cP' D,5.2.1 §4.1.3 Nco Step 2a.Verify minimum member thickness,spacing and edge distance: I hm„=6 in.<_6 in, .'. OEC gram 2.375,5.75 slope= 2.375-5.75 3.5-2.375 =-3.0 D.8 Table 3 IFig.4 t i For e,.„=4inIi 2.375 controls 3.5,2.375 saw,=5.75-[(2.375-4.0)(-3.0)[=0.875<2.375 i n<6 in.•.ok 0.875 miii_ 4 Crain i 1 Step 2b.For AN check 1.5h.,=1.5{3.25}=4.88 in>c 3.Ohe,=3(3.25)=9.75 In>s D.5.2.1 Table 3 ii I Step 2c.Calculate A No and RNA for the anchorage: ANka=91d1=9 x(3.25)2=95.1in_2 1 1.5.2.1 Table 3 u IAN,=(1.She f+c)(311,1+s)_[1.5 x(3.25)+4][3 x(3.25)+61=139.810.2<2ANCe ..ok f. Step 2d,Determine Wec,N: eN=0 1Yec,N=1.0 D.5.2.4 - 11 Step 2e.Calculate Nb:Nb=kc,.XQghp j=17 x 1.0 x 3,000 x 3.251.5=5,456 lb D.5.2.2 Table 3 Step 21.Calculate modification factor for edge distance: W =0.7+0,3 4 =0.95 ed,N1 .5(3,25) D.5.2.5 Table 3 1 Step 2g.Calculate modification factor for cracked concrete: 1,g,,Ar=1.00(cracked concrete) D.5.2.6 Table 3 Step 2h,Calculate modification factor for splitting: w,,N=1.00(cracked concrete) §4.1.10 Table 3 134.8 Step 2i.Calculate¢Nog:0 Nog=0.65 x --x 1.00 x 0.95 x 1.00 x 5,456=4,952 lb D.5.2.1 §4.1.3 Q.4.3 e} Table 3 s Step 3,Check pullout strength:Table 3,0 nNg,,,rc=0.65 x 2 x 5,515 lb x s'°00=7,852 lb>4,952 .'.OK D.5.3.2 §4.1.4 asou D.4.3 c) Table 3 Step 4.Controlling strength:0 Nog=4,952 lb<¢nN„<Os:. 0Nzbg controls D.4.1.2 Table 3 Step 5.To convert to ASD,assume U=1.2D+1.6L: Tegb„= 3,3464' . - §4.2 1.48952= lb - IF. FIGURE 7-EXAMPLE CALCULATION Iii 1 69 I =M;I:1 www,hilti.us Profis Anchor 2.5.2 Company: KIWI Il CONSTRUCTION Page: 1 Specifier: ART LEON Project: TYPICAL 1/2"X2"TW Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos.No.: 112"X2"EMBED Phone I Fax: 951-301-8975 1951-301-4096 Date: 4/21/2015 E-Mail: art@kiwiconstruction.com Specifier's comments:MAX.TENSION 1 Input data II 4. f '- Anchor type and diameter: Kwik Bolt TZ-Cs 1/2(2) i Effective embedment depth: her=2.000 in.,hea,=2.375 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2013 15/1/2015 Proof: Design method ACI 318/AC193 Stand-off installation: eb=0.000 in.(no stand-off);t=0.060 in. Anchor plate: lx x la,x t=3.000 in.x 3.000 in.x 0.060 in.;(Recommended plate thickness:not calculated) ll Profile: no profile Base material: cracked concrete,3000,fb.=3000 psi;h=4.000 in. Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) no Geometry[in.]&Loading[lb,in.lb] Z II o111o I c co s PI x� r 6. '� ®� I Input data and results must be checked for agreement with the existing conditions and for ptausibiliffy;„,, `` PROFfS Anchor(c)2003-2009 Hilti AG,FL-9494 Schoen Hilti is a registered Trademark of Hili AG'Schaan !, I I0IILET I www.hilti.us Profis Anchor 2,5.2 Company: KIWI II CONSTRUCTION Page: 2 pecifier: ART LEON Project: TYPICAL 1/2"X2"TW I .address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos.No.: 1/2"X2"EMBED Phone I Fax: 951-301-8975 I 951-301-4096 Date: 4/21/2015 E-Mail: art@kiwiconstruction.com I2 Proof I Utilization (Governing Cases) Design values[Ib] Utilization Loading Proof Load Capacity N t pv[%] Status I Tension Concrete Breakout Strength 1710 1712 100/- OK Shear - II Loading a j. Utilization p"[lo]- Status Combined tension and shear loads ilisi 1 3 Warnings • Please consider all details and hints/warnings given in the detailed report! IFastening meets the design criteria! 4 Remarks; Your Cooperation Duties I • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. I Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific it application. 1 • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or Iprograms,arising from a culpable breach of duty by you. ,l I I I I I I Input data and results must be checked for agreement with the existing conditions and for plauslbilitt}y{l I PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hint is a registered Trademark of Hite r&1 Schaan i I FLILi'TI www.hilti.usProfis Anchor 2.5.3 Company: KIWI II CONSTRUCTION Page: 1 pecifier: ART LEON Project: TYPICAL 1/2"X2"VS Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos.No.: 1/2"X2"EMBED Phone I Fax: 951-301-8975 I 951-301-4096 Date: 6/11/2015 E-Mail: art@kiwiconstruction.com Specifier's comments:MAX.TENSION 1 Input data "',t Anchor type and diameter: Kwik Boit TZ-CS 1/2(2) ,� �tiog.i..1.0110.10somionsystrvii .t,,, d,• Effective embedment depth: hef=2.000 in.,ha",,,=2.375 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2013 1 5/1/2015 Proof: Design method ACI 318/AC 193 Stand-off installation: eb=0.000 in.(no stand-off);t=0.060 in. Anchor plate: lx x ly x t=3.000 in.x 3.000 in.x 0.060 in.;(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,3000,fe'=3000 psi;h=4.000 in. Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(D.3.3.6) Geometry[in.]&Loading[Ib,in.lb] z i 1 Ot r 4 co o -- N L J1_cc 'Y HY f ~ O ' v � ''' ^9' �. b; �� .y: 1 x a t'-''''''6 lj. 3 .'Yid V •`X Input data and results must be checked for agreement with the existing conditions and for ptausibilityl, PROFIS Anchor(c)2003-2009 Hihi AG,FL-9494 Schaan Hilti is a registered Trademark of Hiki'(G Schaan I FIIL6TI Iwww.hilti.us Profis Anchor 2.5.3 Company: KIWI II CONSTRUCTION Page: 2 'pecifier: ART LEON Project: TYPICAL 1/2"X2"VS I Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pas.No.: 1/2"X2"EMBED Phone I Fax: 951-301-8975 i 951-301-4096 Date: 6/11/2015 E-Mail: art@kiwiconstruction.com I2 Proof I Utilization (Governing Cases) Design values ilb] Utilization Loading Proof Load Capacity pi/]y„[%] Status I Tension - - - -/- Shear Pryout Strength 690 691 -/100 OK I Loading �v Utilization No[°/a] Status Combined tension and shear loads - - 1 3 Warnings • Please consider all details and hints/warnings given in the detailed report! IFastening meets the design criteria! 4 Remarks; Your Cooperation Duties I • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. I Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. I • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case • by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or Iprograms,arising from a culpable breach of duty by you. I I I I 1 •t. I Input data and results must be checked for agreement with the existing conditions and(or plausibility I PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilli is a registered Trademark of Hilti AO Schaan I ■116T1 www.hilti.us Profis Anchor 2.52 Company: KIWI II CONSTRUCTION Page: 1 pecifier: ART LEON Project: TYPICAL 1/2"X2"VW Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos.No.: 1/2"X2"EMBED Phone I Fax: 951-301-8975 1951-301-4096 Date: 4/21/2015 E-Mail: art@kiwiconstruction.com Specifier's comments:MAX.SHEAR 9 Input data 1 Anchor type and diameter: Kwik Bolt TZ-CS 112(2) Effective embedment depth: hat=2.000 in.,h„om=2.375 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 5/1/2013 15/1/2015 Proof: Design method ACI 318/AC193 III Stand-off installation: eb=0.000 in.(no stand-off);t=0.060 in. Anchor plate: I,,x ly x t=3.000 in.x 3.000 in.x 0.060 in.;(Recommended plate thickness:not calculated) Profile: no profile Base material: cracked concrete,3000,fc'=3000 psi;h=4.000 in. Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) no Geometry jln.j&Loading[Ib,in.Ib] I z I of I ci.)0 I ..,.--..t:-'! L,-,.-- .;......, , 0 o ,--w- III t ,l'iNxf i a or tt7 W -vk° - .� '�",gym . , . _< ,fig ..j I .x .1 '. X I Input data and results must be checked for agreement with the existing conditions and for plausibllrlyJ1 PROFIS Anchor(c}2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti A(;Schaan I IMI'L , Iwww,hilti.us Profis Anchor 2.5.2 Company: KIWI II CONSTRUCTION Page: 2 pecifier: ART LEON Project: TYPICAL 1/2"X2"VW I Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Poe.No.: 1/2"X2"EMBED Phone I Fax: 951-301-8975 1951-301-4096 Date: 4/21/2015 E-Mail: art@kiwiconstruction.com I 2 Proof I Utilization (Governing Cases) Design values[Ib] Utilization Loading Proof Load Capacity [{,t I j,[%] Status I Tension .. - - -/- - Shear Pryout Strength 1800 1844 /98 OK I Loading PN �v i; Utilizationv[°14] Status Combined tension and shear loads - - a 1 3 Warnings • Please consider all details and hints/warnings given in the detailed report) '; IFastening meets the design criteria! 4 Remarks; Your Cooperation Duties I • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using a the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to 0 compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret normsFi and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. I • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by HIM on a regular basis. If you do not use , the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hifti Website. Hilti will not be liable for consequences,such as the recovery of lost or damaged data or I programs,arising from a culpable breach of duty by you. I I I I . I Input dela and results Must be checked for agreement with the existing conditions and for plausibililyk i PROFIS Anchor(c)2003-2009 Huth AG,FL-9494 Schrum Huh is a registered Trademark of HMI WSchaan 1 =MD www.hilti.us Profis Anchor 2.6.4 Company: KIWI II CONSTRUCTION Page: 1 'pecifier: ART LEON Project: TYPICAL 112"X2"TS Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos.No.: 1/2"X2"EMBED Phone I Fax: 951-301-8975 I 951-301-4096 Date: 4/21/2016 E-Mail: art@kiwiconstruction.com Specifier's comments:MAX.TENSION 1 Input data Anchor type and diameter: Kwik Bolt TZ-CS 1/2(2) )i o- p Effective embedment depth: her=2.000 in.,hnom=2.375 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued I Valid: 10/1/2015 15/1/2017 Proof: Design method ACI 318/AC193 Stand-off installation: eh=0.000 in.(no stand-off);t=0.060 in. Anchor plate: lx x 1,x t=3.000 in.x 3.000 in.x 0.060 in.;(Recommended plate thickness:not calculated Profile: no profile Base material: cracked concrete,3000,f:=3000 psi;h=4.000 in. Reinforcement: tension:condition B,shear:condition B;no supplemental splitting reinforcement present edge reinforcement:none or<No.4 bar Seismic loads(cat.C,D,E,or F) yes(D.3.3.6) Geometry[in.]&Loading[lb,in.lb] Z I gt III co 111 I Qj 111 iy\ `"Y 5 • 1� X Input data and results must be checked for agreement with the existing conditions and for ptausibility+t PROM Anchor(c)2003-2009 Hilts AG,FL-9494 Schaan Hilts is a registered Trademark of Hilti/(t Schaan I 1 www.hitti.usPrafis Anchor 2.6.4 Company: KIWI II CONSTRUCTION Page: 2 ,pecifier: ART LEON Project: TYPICAL 1/2"X2'TS .Address: 28177 KELLER ROAD MURRIETA,CA 92563 Sub-Project I Pos.No.: 1/2"X2"EMBED Phone I Fax: 951-301-8975 1951-301-4096 Date: 4/21/2016 E-Mail: art@kiwiconstruction.com I 2 Proof I Utilization (Governing Cases) Design values[Ib] Utilization Loading Proof Load Capacity fliq/pv[%] Status I Tension Concrete Breakout Strength 640 642- 100/- OK Shear I LoadingRv Utilization�nt,v[%] Status Combined tension and shear loads 13N - I3 Warnings • Please consider all details and hints/warnings given in the detailed report! IFastening meets the design criteria! 4 Remarks;Your Cooperation Duties I • Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles,formulas and security regulations in accordance with Hilti's technical directions and operating,mounting and assembly instructions,etc.,that must be strictly complied with by the user. All figures contained therein are average figures,and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore,you bear the sole responsibility for the absence of errors,the completeness and the relevance of the data to be put in by you. Moreover,you bear sole responsibility for having the results of the calculation checked and cleared by an expert,particularly with regard to I compliance with applicable norms and permits,prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors,the correctness and the relevance of the results or suitability for a specific application. I • You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular,you must arrange for the regular backup of programs and data and,if applicable,carry out the updates of the Software offered by Hilti on a regular basis.If you do not use the AutoUpdate function of the Software,you must ensure that you are using the current and thus up-to-date version of the Software in each case by carrying out manual updates via the Hilti Website, Hilti will not be liable for consequences,such as the recovery of lost or damaged data or Iprograms,arising from a culpable breach of duty by you. I • I r I - I _ Input data and results must be checked for agreement with the existing conditions and for plausibi!ify! PROFIS Anchor(c)2003-2009 Hilti AG,FL-9494 Schaan Hilti is a registered Trademark of Hilti AtX Schaan I ES ICC EVALUATION `„r, SERVICE Most Widely Accepted and Trusted I ICC-ES Evaluation Report ESR-2196* Reissued October 2013 1 This report is subject to renewal October 2015. www.icc-es.orq I (800)423-6587 I (562) 699-0543 A Subsidiary of the International Code Council® 1 DIVISION:05 00 00—METALS screws, or in collated plastic strips. See Figures 1 through Section: 05 05 23—Metal Fastenings 11 for depictions of the screws described in Sections 3.2 through 3.12,respectively. DIVISION:06 00 00—WOOD, PLASTICS AND 3.2 HWH and HHWH Self-drilling Screws: COMPOSITES Section: 06 05 23—Wood, Plastic,and Composite The#8,#10,#12 and 1/4-inch HWH and HHWH self-drilling I Fastenings screws comply with ASTM C1513 and SAE J78 and have Hex Washer or High Hex Washer head styles.The 1/4-inch DIVISION:09 00 00—FINISHES HWH screws have a larger diameter than #14 screws Section: 09 22 16.23—Fasteners complying with ASME 618.6.4, and may be used where I #14 self-drilling tapping screws are specified. The screws REPORT HOLDER: have an electroplated zinc coating or a proprietary coating, as indicated in Table 1A. HILTI,INC. 3.3 HWH Self-piercing Screws: I 5400 SOUTH 122ND EAST AVENUE TULSA,OKLAHOMA 74146 The #8 and #10 HWH self-piercing screws comply with (800)879-8000 ASTM C1513 and have a Hex Washer head style. The www.us.hilti.com screws have an electroplated zinc coating or a proprietary HNATechnicalServicesi,'a.hilti.com coating,as indicated in Table 1A. 3.4 PPH Self-drilling Screws: EVALUATION SUBJECT: The #8 and #10 PPH self-drilling screws comply with HILTI SELF-DRILLING AND SELF-PIERCING SCREWS ASTM C1513 and SAE J78 and have a Phillips Pan head I style. The screws have an electroplated zinc coating as 1.0 EVALUATION SCOPE indicated in Table 1A. Compliance with the following codes: 3.5 PPFH SD Framer Self-drilling Screws: 1 ■ 2012,2009 and 2006 International Building Code®(IBC) The #7 PPFH SD Framer self drilling screws comply with the material and performance requirements of ASTM • 2012 and 2009 International Residential Code®(IRC) C1513. The dimensions of the screws comply with the ' Property evaluated: manufacturer's quality documentation. The screws have a Phillips Pan Framing head style and have an electroplated Structural zinc coating or a proprietary phosphated coating, as 2.0 USES indicated in Table 1A. I 3.6 PBH SD Self-drilling Drywall Screws: The Hilti Self-drilling and Self-piercing Screws are used to connect cold-formed steel members together and to The #6 PBH SD and #8 PBH SD self-drilling screws connect gypsum wall board, wood or other building comply with ASTM C954.The screws have a Phillips Bugle materials to cold-formed steel. The screws are used head style and have an electroplated zinc coating, a in engineered connections of cold-formed steel and proprietary duplex coating or a proprietary phosphated connections prescribed by the code for cold-formed steel coating,as indicated in Table 18. framing and for sheathing to steel connections. 3.7 PBH S Self-piercing Drywall Screws: I 3.0 DESCRIPTION The #6 PBH S self-piercing screws comply with ASTM 3.1 General: C1002, Type S. The screws have a Phillips Bugle head style and have an electroplated zinc coating or a The Hilti Self-drilling and Self-piercing Screws are tapping proprietary phosphated coating,as indicated in Table 16. 1 screws, case-hardened from carbon steel conforming to 3.8 PWH SD CMT BD Self-drilling Drywall Screws: ASTM A510, Grade 1018 to 1022.Table 1 provides screw designations, sizes and descriptions of head styles, point The#8 PWH SD CMT BD self-drilling screws comply with styles, drilling/piercing ranges, length of load bearing area ASTM C954. The screws have a Phillips Wafer head styleI and coatings. Screws are supplied in boxes of individual and have a proprietary coating as indicated in Table 16. *Revised December 2014 1 ICC-ES Evaluation Reports are not to be construed as representing aesthetics or any other attributes not specifically addressed,nor are they to be construed i- ANSI as an endorsement of the.subject of the report or a recommendation for its use,There is no warranty by ICC Evaluation Service,LLC,express or implied,as let to any finding or other matter in this report,or as to any product covered by the report. 78 Copyright©2014 Page 1 of 9 ESR-2196 I Most Widely Accepted and Trusted Page 2 of 10 3.9 PTH SD Framer Self-drilling Screws: screws described in Sections 3.2, 3.4, 3.5, 3.9, 3.10, 3.11 The #10 PTH self-drilling screws have a Phillips Truss and 3.12, respectively, and the HWH self piercing screws head style and, except for the number of threads per described in Section 3.3, are recognized for use in inch, comply with ASTM C1513. The screws have an engineered connections of cold-formed steel light-framed electroplated zinc coating as indicated in Table 1A. construction. I 3.10 PPCH SD Framer Self-drilling Screws: For the self-drilling screws, design of the connections must comply with Section E4 of AISI S100 (AISI - NAS The#10 PPCH SD Framer self-drilling screws comply with under the 2006 IBC), using the nominal and allowable ASTM 01513. The screws have a Phillips Pancake head fastener tension and shear strengths for the screws,shown I style and an electroplated zinc coating as indicated in in Table 5. Allowable connection strengths for use in Table 1A. Allowable Strength Design (ASD) for pull-out, pull-over, 3.11 TPCH SD Framer Self-drilling Screws: and shear (bearing) capacity for common sheet steel thicknesses are provided in Tables 2, 3 and 4, 111 The#12 TPCH SD Framer self-drilling screws comply with respectively, based upon calculations in accordance with ASTM C1513. The screws have a Torx Pancake head AISI S100(AISI-NAS under the 2006 IBC). style and an electroplated zinc coating as indicated in Table 1A. For the self-piercing screws, design of connections must comply with Section E4 of AISI S100 (AISI - NAS under 3.12 PFTH SD Framer Self-drilling Screws: the 2006 IBC), using the nominal and allowable fastener The#10 PFTH SD Framer self-drilling screws comply with tension and shear strengths for the screws, shown in ASTM C1513. The screws have a Phillips Flat Truss head Table 5. Allowable connection strengths for use in style and an electroplated zinc coating as indicated in Allowable Strength Design (ASD) for pull-over capacity for Table 1A. common sheet steel thicknesses are provided in Table 3, based upon calculations in accordance with AISI S100 3.13 Cold-formed Steel: (AIS[ - NAS under the 2006 IBC). Allowable connection Cold-formed steel material must comply with Section A2 of strengths for use in Allowable Strength Design (ASD) for AISI S100. pull-out and shear (bearing) capacity for common sheet 4.0 DESIGN AND INSTALLATION steel thicknesses are provided in Tables 2 and 4, respectively, based upon results of testing in accordance 4.1 Design: with AISI S905, 4.1.1 General: Screw thread length and point style must Instructions on how to calculate connection design be selected on the basis of thickness of the fastened strengths for use in Load and Resistance Factor Design material and thickness of the supporting steel,respectively, (LRFD)are found in the footnotes of Tables 2,3 and 4. For based on the length of load bearing area (see Figure 12) connections subject to tension, the least of the allowable and drilling/piercing capacity given in Table 1. pull-out, pullover, and tension fastener strength of screws When tested for corrosion resistance in accordance with found in Tables 2, 3, and 5, respectively, must be used for ASTM B117, screws with coatings described in Table 1 design. For connections subject to shear, the lesser of the met the minimum requirement listed in ASTM F1941, as allowable shear (bearing) and fastener strength found in required by ASTM C1513, with no white corrosion after Tables 4 and 5, respectively, must be used for design. Connections subject to combined tension and shear three hours and no red rust after 12 hours. loading must be designed in accordance with Section E4.5 I 4.1.2 Prescriptive Design: of AISI S100. 4.1.2.1 Hilti HWH & HHWH, PPH, PTH SD Framer, The values in Tables 2,3 and 4 are based on a minimum PPCH SD Framer, TPCH SD Framer and PFTH SD spacing between the centers of fasteners of three times Framer Screws (Sections 3.2, 3.3, 3.4, 3.9, 3.10, 3.11 the diameter of the screw, and a minimum distance from I and 3.12 respectively): These screws are recognized for use where ASTM C1513 screws of the same size and type the center of a fastener to the edge of any connected part of 1.5 times the diameter of the screw. Minimum edge (self-drilling and/or self-piercing) are prescribed in the IRC distance when connecting cold-formed framing members and in the AISI Standards referenced in 2012 IBC Section must be three times the diameter of the screw, in I 2211 (2009 and 2006 IBC Section 2210). accordance with Section D1.5 of AISI S200 {AIS! General 4.1.2,2 Hilti PBH SD and PWH SD CMT BD Screws for 2006 IBC). Under the 2009 and 2006 [BC, when the (Sections 3.6 and 3.8, respectively): These screws are distance to the end of the connected part is parallel to the recognized for use in fastening gypsum board to cold- line of the applied force, the allowable connection shear i I farmed steel framing 0.033 inch to 0.112 inch (0.8 to strength determined in accordance with Section E4.3.2 of 2.8 mm) thick, in accordance with IBC Section 2506 and Appendix A of AISI S100(AISI-NAS under the 2006 IBC) _ IRC Section R702.3.6.They are also recognized for use in must be considered. Connected members must be attaching gypsum board sheathing to cold-formed steel checked for rupture in accordance with Section E5 of AISI I framing as prescribed in Section C2.2.3 of AISI S213, S100. which is referenced in 2012 IBC Section 2211.6 (2009 4.2 Installation: IBC Section 2210.6; Section C2.2.3 of AISI-Lateral, Installation of the Hilti Self-drilling and Self-piercing Screws referenced in 2006 IBC Section 2210.5). must be in accordance with the manufacturer's published 4.1.2.3 Hilti PBH S Screws(Section 3.7): These screws installation instructions and this report. The manufacturer's are recognized for use in fastening gypsum board to cold- published installation instructions must be available at the formed steel framing less than 0.033 inch (0.8 mm) thick, jobsite at all times during installation. in accordance with IBC Section 2506 and IRC Section The screws must be installed perpendicular to the work R702.3.6. surface using a variable speed screw driving tool set to 4.1.3 Engineered Design: The Hilti HWH, HHWH, PPH, not exceed 2,500 rpm. The screw must penetrate through PPFH SD Framer, PTH SD Framer, PPCH SD Framer, 79 the supporting steel with a minimum of three threads I TPCH SD Framer and PFTH SD Framer self-drilling protruding past the back side of the supporting steel. ESR-2196 I Most Widely Accepted and Trusted Page 3 of 10 5.0 CONDITIONS OF USE 5.4 Drawings and calculations verifying compliance with The Hilti Self-drilling and Self-piercing Screws described in this report and the applicable code must be submitted I this report comply with, or are suitable alternatives to what to the code official for approval. The drawings and is specified in, those codes listed in Section 1.0 of this calculations are to be prepared by a registered design report,subject to the following conditions: professional when required by the statutes of the jurisdiction in which the project is to be constructed. 5.1 Fasteners must be installed in accordance with the manufacturer's published installation instructions 5.5 The rust-inhibitive (corrosion-resistant) coating on the and this report. If there is a conflict between the screws must be suitable for the intended use, as manufacturer's published installation instructions and determined by the registered design professional. this report,this report governs. 6.0 EVIDENCE SUBMITTED I 5.2 The allowable loads specified in Section 4.1 are not to Data in accordance with the ICC-ES Acceptance Criteria be increased when the fasteners are used to resist for Tapping Screw Fasteners(AC118),dated June 2012. wind or seismic forces. I 5.3 The utilization of the nominal strength values 7.0 IDENTIFICATION contained in this evaluation report, for the design Hilti Self-drilling and Self-piercing Screws are marked with of cold-formed steel diaphragms, is outside the an "H" on the top of the heads, as shown in Figures 1 scope of this report. Diaphragms constructed using through 11. Packages of Hilti Self-drilling and Self-piercing i1 the Hilti self-drilling or self-piercing screws must be Screws are labeled with the report holder's name recognized in a current ICC-ES evaluation report (Hilti, Inc.), the fastener type and size, and the evaluation based upon the ICC-ES Acceptance Criteria for Steel report number(ESR-2196). Deck Roof and Floor Systems(AC43). I TABLE 1A-HILTI SELF-DRILLING AND SELF-PIERCING STEEL-TO-STEEL SCREWS(ASTM C1513) I DRILLING! LENGTH NOMINAL PIERCING NOMINAL NOMINAL DRILL OF LOAD DESIGNATION DESCRIPTION DIAMETER SCREW HEADi HEAD POINT CAPACITY BEARING COATING2 LENGTH STYLE (Inch) AREA° (Size-TPI) (Inch) (inch) DIAMETER (Number) Min. Max. (inch) S-MD 10-16 X 518 HWH#3 #10-16 0.190 5/3 HWH 0.399 3 0.110 0.175 0.187 Zinc-2 S-MD 10-16 X 3/4 HWH#3 #10-16 0.190 3/4 HWH 0.399 3 0.110 0.175 0.375 Zinc-2 • S-MD 10-16 X314 HHWH#3 #10-16 0.190 3/4 HHWH 0.399 3 0.110 0.175 0.375 Zinc-2 S-MD 10-16 X 1 HWH#3 #10-16 0.190 1 HWH 0.399 3 0.110 0.175 0.625 Zinc-2 S-MD 10-16 X11/4 HWH#3 #10-16 0.190 11/4 HWH 0.399 3 0.110 0.175 0.875 Zinc-2 S-MD 10-16 X 1'/2 HWH#3 #10-16 0.190 1'12 HWH 0.399 3 0.110 0.175 1.125 Zinc-2 S-MD 12-14 X 3/4 HWH#3 #12-14 0.216 3/4 HWH 0.415 3 0.110 0.210 0.313 Zinc-2 S-MD 12-14 X 1 HWH#3 #12-14 0.216 1 HWH 0.415 3 0.110 0.210 0.562 Zinc-2 1 S-MD 12-14 X11/2 HWH#3 #12-14 0.216 1'/2 HWH 0.415 3 0.110 0.210 1.062 Zinc-2 S-MD 12-14 X 2 HWH#3 #12-14 0,216 2 HWH 0.415 3 0.110 0.210 1.562 Zinc-2 W S-MD 1/4-14 X3/4 HHWH#3 1/4-14 0.250 3/4 HHWH 0.500 3 0.110 0.220 0.313 Zinc-2 S-MD1/4-14 X 1 HHWH#3 1/4-14 0.250 1 HHWH 0.500 3 0.110 0.220 0.562 Zinc-2 S-MD 1/4-14 X 11/2 HHWH#3 1/4-14 0.250 11/2 HHWH 0.500 3 0.110 0.220 1,062 Zinc-2 S-MD 1/4-14 X 2 HHWH#3 '/4-14 0.250 2 HHWH 0.500 3 0.110 0.220 1.562 Zinc-2 S-MD 10-16 X 5/8 PPH#3 #10-16 0.190 5/8 PPH 0.364 3 0.110 0,175 0.313 Zinc-2 1 S-MD 10-16 X 3/4 PPH#3 #10-16 0.190 3/4 PPH 0.364 3 0,110 0.175 0.375 Zinc-2 S-MD 10-16 X 1 PPH#3 #10-16 0.190 1 PPH 0.364 3 0.110 0.175 0.500 Zinc-2 S-MD 12-24 X"/8 HWH#4 #12-24 0.216 '!e HWH 0.415 4 0,175 0.250 0.375 Zinc-2 S-MD 12-24 X 11/4 HWH#4 #12-24 0.216 11/4 HWH 0,415 4 0.175 0.250 0.625 Zinc-2 , S-MD 12-24 X 11/4 HWH#5 #12-24 0.216 11/4 HWH 0.415 5 0.250 0.500 0.437 Zinc-2 S-MD 10-16 X 1/4 HWH#3 Kwik-Cote #10-16 0.190 5/8 HWH 0.399 3 0.110 0.175 0.187 Kwik-Cote S-MD 10-16 X3/4 HWH#3 Kwik-Cote #10-16 0.190 314 HWH 0.399 3 0,110 0.175 0.375 Kwik-Cote , S-MD 10-16 X 3/4 HHWH#3 Kwik-Cote #10-16 0.190 3/4 HHWH 0.399 3 0.110 0.175 0.375 Kwik-Cote S-MD 10-16 X 1 HWH#3 Kwik-Cote #10-16 0.190 1 HWH 0.399 3 0.110 0.175 0.625 Kwik-Cote S-MD 12-14 X 3/4 HWH#3 Kwik-Cote #12-14 0.216 3/4 HWH 0.415 3 0.110 0.210 0.313 Kwik-Cote S-MD 12-14 X1 HWH#3 Kwik-Cote #12-14 0.216 1 HWH 0.415 3 0.110 0.210 0.562 Kwik-Cote S-MD 12-14 X11/4 HWH#3 Kwik-Cote #12-14 0.216 1'/4 HWH 0.415 3 0.110 0.210 0.813 Kwik-Cote S-MD 12-14 X11/2 HWH#3 Kwik-Cote #12-14 0.216 11/2 HWH 0.415 3 0.110 0.210 1.062 Kwik-Cote S-MD 12-14 X 2 HWH#3 Kwik-Cote #12-14 0.216 2 HWH 0.415 3 0.110 0,210 1.562 Kwik-Cote S-MD 12-24 X11/4 HWH#5 Kwik Cote #12-24 0.218 1'/4 HWH 0.415 5 0.250 0.500 0.437 Kwik-Cote S-MD 12-24 X 11/4 HWH#5 Kwik Cote with #12-24 0.218 t'14 HWH 0.415 5 0.250 0.500 0.313 Kwik-Cote Bonded Washer 80 r ESR-2196 I Most Widely Accepted and Trusted Page 4 of 10 ITABLE 1A--HILTI SELF-DRILLING AND SELF-PIERCING STEEL-TO-STEEL SCREWS(ASTM C1513)(Continued) DRILLING/ LENGTH NOMINAL PIERCING DESCRIPTION NOMINAL SCREW HEAD NOMINAL DRILL CAPACITY OF LOAD DESIGNATION (Size-TPI) DIAMETER LENGTH° STYLE' HEAD POINT BEARING COATING2 (inch) (inch) DIAMETER (Number) (inch) AREA° Min. Max. (inch) v S-MD 12-24 X 2 HWH#5 Kwik Cote #12-24 0.216 2 HWH 0.415 5 0.250 0.500 1.187 Kwik-Cote 111 S-MD 12-24 X 3 HWH#5 Kwik Cote #12-24 0.216 3 HWH 0.415 5 0.250 0.500 2.187 Kwik-Cote S-MD 10-16 X 3/4 M HHWH3 Collated #10-16 0.190 3/4 HHWH 0.399 3 0,110 0,175 0,375 Zinc-2 S-MD 10-16 X 3/4 HHWH3 KC M Collated #10-16 0.190 3/4 HHWH 0,399 3 0.110 0,175 0,375 Kwik-Cote S-MD 12-24 X'/8 M HWH4 Collated #12-24 0.216 7/8 HWH 0.399 4 0.175 0.250 0.375 Zinc-2 IS-MD 10-16 X'/8 HHWH Pilot Point #10-16 0.190 to HHWH 0.399 1 0.028 0.120 0.188 Zinc-2 S-MD 12-14 X 1 HHWH Pilot Point #12-14 0.216 1 HHWH 0.415 1 0.028 0.120 0.375 Zinc-2 S-SLC 02 M HWH #12-14 0.216 1 HWH 0,415 1 0.028 0.120 0.375 Zinc-2 IS-MD 4-14 X'4 HWH Pilot Point Kwik Seal1l4-14 0.250 '4 HWH 0.415 1 0.028 0,140 0.313 Kwik-Cote S-MD 8-18X'12 HWH#2 #8-18 0.164 1/2 HWH 0.335 2 0.035 0.100 0.125 Zinc-2 S-MD 8-18 X 3/4 HWH#2 #8-18 0,164 3/4 HWH 0.335 2 0.035 0.100 0.375 Zinc-2 S-MD 8-15X'/2 PPH#2 #8-18 0.184 112 PPH 0.311 2 0.035 0.100 0.125 Zinc-2 IS-MD 8-18 X 3/4 PPH#2 #8-18 0.184 3/4 PPH 0.311 2 0.035 0,100 0.375 Zinc-2 S-MD 10-16X'!2 HWH#2 #10-16 0.190 1/2 HWH 0,399 2 0.035 0.110 0.188 Zinc-2 S-MD 10-16 X'14 HWH#2 #10-16 0.190 3/4 HWH 0.399 2 0.035 0.110 0.313 Zinc-2 IS-MD 10-16 X 1 HWH#2 #10-16 0.190 1 HWH 0.399 2 0.035 0.110 0.500 Zinc-2 S-MD 12-14 x 3/4 HWH#3 Kwik Seal #12-14 0.216 3/4 HWH 0.415 3 0.110 0,210 0.125 Kwik-Cote S-MD 12-14 x 1 HWH#3 Kwik Seal #12-14 0.216 1 HWH 0.415 3 0.110 0.210 0.375 Kwik-Cote S-MD 12-14 X 11/4 HWH#3 Kwik Seal #12-14 0.216 11/4 HWH 0.415 3 0.110 0.210 0.625 Kwik-Cote IS-MD 12-14 X 1'/2 HWH#3 Kwik Seal #12-14 0.216 1'/2 HWH 0.415 3 0.110 0.210 0.875 Kwik-Cote S-MD 12-14 X 2 HWH#3 Kwik Seal #12-14 0.216 2 HWH 0.415 3 0.110 0.210 1,375 Kwik-Cote S-MD 1/4-14 X 3/4 HWH#3 Kwik Seal '/4-14 0.250 314 HWH 0.500 3 0.110 0.220 0.125 Kwik-Cote S-MD'/4-14 x 1 HWH#3 Kwik Seal 1t4-14 0.250 1 HWH 0.500 3 0.110 0.220 0.375 Kwik-Cote I S-MD 4/4-14 X 11/2 HWH#3 Kwik Seal 1/4-14 0.250 11/2 HWH 0.500 3 0.110 0.220 0.875 Kwik-Cote 7 X'1,8 PPFH SD Framer #7-18 0.151 '/i8 PPFH 0.303 2 0.035 0.100 0.063 BP 7 X'/78 PPFH SD Framer Zinc #7-18 0.151 '/18 PPFH 0.303 2 0.035 0.100 0.063 Zinc-2 I S-DD 10-18 X 3/4 PTH#3 #10-18 0.190 3/4 PTH 0.433 3 0.110 0.175 0.375 Zinc-2 S-DR 10-16 X 518 PPCH#3 #10-16 0.190 818 PPCH 0.409 3 0.110 0.175 0.313 Zinc-2 S-DO 10-12 X 3/4 PFTH#3 #10-12 0.190 3/4 PFTH 0.364 3 0.110 0.175 0.375 Zinc-2 I S-DD 12-14 X 1 TPCH#3 #12-14 0.216 1 TPCH 0.409 3 0.110 0.210 0.500 Zinc-2 S-MS 8-18X'/2 HWH #8-185 0.164 't2 HWH 0.315 piercing 0.015 0.072 0.072 Zinc-2 S-MS 10-12 X 3/4 HWH #10-12S 0.190 3/4 HWH 0.399 piercing e 0,018 0.098 0.100 Zinc-2 I •• I • I 1 81 = ESR-2196 I Most Widely Accepted and Trusted Page 5 of 10 I TABLE 1B-HILTI SELF-DRILLING(ASTM C954)AND SELF-PIERCING(ASTM C1002)DRYWALL SCREWS I DRILLING! LENGTH NOMINAL PIERCING NOMINAL NOMINAL DRILL CAPACITY OF LOAD z DESCRIPTION SCREW HEAD DESIGNATION a DIAMETER a HEAD POINT BEARING COATING2 (inch) LENGTH STYLE DIAMETER (Number) (inch) AREA4 (inch) Min. Max. (inch) 1 6 X 1 PBH SD #6-19 0.138 1 PBH 0.322 1 0.033 0.112 0.625 DGP 6 X 1 PBH SD #6-20 0.138 1 PER 0,322 1 0.033 0.112 0.625 DGP I 8 X 1 PBH SD Zinc #6-19 0.138 1 PER 0.322 1 0.033 0.112 0.625 Zinc-2 6 X 1 PER SD Zinc #6-20 4.138 1 PBH 0.322 1 0.033 0.112 0.625 Zinc-2 6 X 11/8 PBH S #6-9S 0.138 11/8 PSH 0.322 Self- 0.023 0.033 0.750 DGP piercing 6 X 11/8 PEN S Collated #6-9S 0.138 11/8 PBH 0.322 Self- PBH 0.033 0.750 DGP piercing 6 X 11/8 PER SO #8-19 0.138 11/8 PBH 0.322 1 0.033 0.112 0.750 DGP I 6 X 1118 PBH SD #6-20 0.138 11/8 PBH 0.322 1 0.033 0.112 0.750 DGP 6 X11/8 PBH SD Zinc #6-19 0.138 11/8 PBH 0.322 1 0.033 0.112 0.750 Zinc-2 I 6 X11/8 PBH SD Zinc #8-20 0.138 11/8 PBH 0.322 1 0.033 0.112 0.750 Zinc-2 1 . 6 X 11/8 PBH SD Zinc Collated #6-20 0.138 11/8 PER 0.322 1 0.033 0.088 0.750 Zinc-3 6 X11/4 PSH S #6-95 0.138 11/4 PER 0.322 Self- 0.023 0.033 0.875 DGP 1 piercing 8 X 11/4 PBH S Collated #6 PB -9S 0.138 11/4 H 0.322 Self-piercing 0.023 0.033 0.875 DGP 1 8 X 11/4 PBH SD #6-19 0.138 11/4 PBH 0.322 1 0.033 0.112 0.875 DGP 6 X 11/4 PBH SD #6-20 0.138 11/4 PER 0.322 1 0,033 0.112 0.875 DGP Y 9, 6 X 11/4 PBH SD Collated #6-20 0.138 11/4 PBH 0.322 1 0.033 0.088 0.875 DGP 1 6 X 11/4 PBH SD Zinc #8-19 0.138 11/4 PBH 0.322 1 0.033 0.112 0.875 Zinc-2 6 X 11/4 PBH SD Zinc #6-20 0.138 11/4 PER 0.322 1 0,033 0.112 0.875 Zinc-2 6 X11/4 PBH SD Zinc Collated #6-20 0.138 11/4 PBH 0,322 1 0.033 0,088 0.875 Zinc-3 8 X 11/4 PBH SD CRC #6-20 0.138 11/4 PBH 0,322 1 0,033 0.112 0.875 CRC 6 X11/4 PBH SD CRC Collated #6-20 0.138 11/4 PBH 0.322 1 0.033 0.112 0.875 CRC ,! 6 X 15/8 P8H S #6-95 0.138 15/8 PBH 0.322 Self- 0.023 0.033 1.250 DGP piercing 6 X 15(8 PBH S Collated #6-9S 0.138 15/8 PBH 0.322 piercing 0.023 0.033 1.250 DGP 6 X 15/8 PBH SD #6-19 0.136 151a PBH 0.322 1 0.033 0.112 1.250 DGP 6 X 15/8 PBH SD #6-20 0.138 15/8 PER 0,322 1 0.033 0.112 1.250 DSP 6 X 15/8 PBH SD Collated #6-20 0.138 16/8 PER 0.322 1 0.033 0.088 1.250 DGP 6 X 15/6 P8H SD Zinc #6-19 0.138 15/8 PBH 0.322 1 0.033 0.112 1.250 Zinc-2 ' 6 X 15/8 P1311P1311SD Zinc #6-20 0.138 15/8 PBH 0.322 1 0.033 0.112 1.250 Zinc-2 1 6 X 15/8 PBH SD Zinc Collated #6-20 0.138 16/8 PBH 0.322 1 0.033 0.088 1.250 Zinc-3 6 X 17/8 PBH SD #6-19 0.138 17/8 PBH 0.322 1 0.033 0.112 1,500 DGP 6 X 1718 PBH SD #6-20 0,138 17/8 PBH 0,322 1 0.033 r0.112 1.500 DGP 6 X 1'/e PBH SD Zinc #6-19 0.138 17/6 PBH 0.322 1 0.033 0.112 1.500 Zinc-2 6 X 17/e PBH SD Zinc #6-20 0.138 17/8 PEH 0.322 1 0.033 0.112 1.500 Zinc-2 I f 6 X 11/8 PBH SD CRC #6-20 0.138 17/8 PBH 0.322 1 0,033 0.112 1.500 CRC 6 X 2 MN S #6-98 0.138 2 PBH 0.322 Self- 0.023 0.033 1.625 DGP piercing 6 X 2 P8H S Collated #6-9S 0.138 2 PBH 0.322 Self- 0.023 0.033 1.625 DGP piercing 6 X 2 PBH SD Collated #8-20 0.138 2 8T8H 0.322 1 0.033 0.088 1.625 DGP - ..1 1 IESR-2196 I Most Widely Accepted and Trusted Page 6 of 10 DRILLING! LENGTH I NOMINAL NOMINAL NOMINAL DRILL NT PIERCING OF LOAD DESCRIPTION SCREW HEAD CAPACITY DESIGNATION (Size-7PI)a DIAMETER LENGTH" STYLE' DIAMETER (Numlber) BEARING COATING' (inch) (inch) Min. Max. (inch) I6 X 2 PBH SD Zinc #6-20 0.138 2 PBH 0.322 1 0.033 0.088 1.625 Zinc-3 6 X 2 PBH SD Zinc Collated #6-20 0.138 2 P91-1 0.322 1 0.033 0.088 1.625 Zinc-3 I 8 X 2318 PBH SD #8-18 0.164 2318 P8H 0.330 1 0.033 0.112 2.000 BP 8 X 23(8 PBH SD Zinc #8-18 0.164 2318 P8H 0.330 1 0.033 0.112 2.000 Zinc-2 8 X 25/8 PBH SD #8-18 0.164 25/a PBH 0.330 1 0.033 0.112 2.250 BP I8 X 25/8 PBH SD Zinc #8-18 0.164 25/8 PBH 0.330 1 0.033 0.112 2.250 Zinc-2 8 X 3 PBH SD #8-18 0.164 3 PBH 0.330 1 0.033 0.112 2.625 BP I 8 X 3 PM SD Zinc #8-18 0.164 3 PBH 0.330 1 0.033 0.112 2.625 Zinc-2 8 X 1'14 PWH SD CMT BD #8-18 0.164 11/4 PWH 0.421 1 0.033 0.112 0.875 Tufcoat 8 X 15/8 PWH SD CMT BD #8-18 0.164 15/8 PWH 0.421 1 0.330 0.112 1.250 Tufcoat IFor SI; 1 inch=25.4 mm. 'Refer to Section 3.0 and Figures 1 through 11 for head configuration abbreviations. • • 2For coating abbreviations,BP=Black phosphated per EN ISO 3892;DGP=Dark Grey phosphate per EN ISO 3892;Zinc-2=EN/ISO 4042 1 A3F;Zinc-3=electroplated zinc coating,Cr3+passivated;Kwik-Cote=Proprietary organic zinc coating;CRC=Proprietary Duplex Coating; Tufcoat=Tufcoat forest green similar to ISO 10683. 3An'S'in the thread designation indicates a double thread. Listed thread pitch is for one thread only. 'Refer to Figure 12 for nominal screw length(L)and load bearing area(LBA)description. 'i TABLE 2-ALLOWABLE TENSILE PULL-OUT LOADS(PNorlO),pounds-force''2'" I Steel F.=45 ksi Applied Factor of Safety,0=3.0 Nominal Design thickness of member not in contact with the screw head(in.) Screw Diameter Description (in) 0.015 0.018 0.024 0.030 0.036 0.048 0.060 0.075 0.090 0.105 0.135 I Self-drilling Screws for Steel-to-Steel Connections6 #7-18 0.151 69 92 116 144 173 202 260 I #8-16 0.164 - - 75 100 125 157 188 220 282 - #10-12 #10-16 0.19087 116 145 182 218 254 327 #10-18 #12-14 0.216 - - - - 99 132 165 207 248 289 373 I #12-24 1/4-14 0.250 - 115 153 191 239 287 333 430 Self-piercing Screws for Steel-to-Steel Connections6 #8-18S 0.164 37 49 68 86 109 - - - - - - I #10-12S 0.190 44 53 77 102 117 150 For SI; 1 inch=25.4 mm,1 lbf=4.4 N,1 ksi=6.89 MPa. 'For tension connections,the lower of the allowable pull-out,pullover,and tension fastener strength of screw found in Tables 2,3,and 5, respectively must be used for design. I 2Unless otherwise noted,load values are based upon calculations in accordance with Section E4 of AISI S100.ANSI/ASME standard screw diameters were used in the calculations and are listed in the tables. 3The allowable pull-out capacity for intermediate member thicknesses can be determined by interpolating within the table. 4To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD N factor of 0.5. I 5For F„?65 ksi steel,multiply values by 1.44. 6Load values are based on testing in accordance with AIS/S905. - 1 1 83 1 ESR-2196 I Most Widely Accepted and Trusted Page 7 of 10 TABLE 3—ALLOWABLE TENSILE PULL-OVER LOADS(PNovlfl),FOR HILT!ASTM C1513 SCREWS,pounds-force1'2'3,4'5 Steel F„=45 ksi Applied Factor of Safety,0=3,0 Washer or Design thickness of member in contact with the screw head(in.) Screw Head • Description Diameter 0.015 0.018 0.024 0.030 0.036 0.048 0.060 0.075 0,090 0.105 0.135 (in.) Hex Washer Head(HWH)or High Hex Washer Head(HHWH) #8-188 0,315 106 128 170 #8-18 0.335 113 136 181 225 271 363 453 567 680 790 1020 #10-16 0.399 135 162 215 268 323 430 540 673 807 943 1210 #10-126II #12-140.415 140 168 224 279 337 447 580 700 840 980 1260 #12-24 '/4-14 0.500 169 203 270 336 407 540 677 843 1010 1180 1520 Phillips Pan Head(PPH) 111 #8-18 0.311 105 126 168 210 252 336 420 525 630 735 945 #10-16 0.364 123 147 197 246 295 393 491 614 737 860 1106 Phillips Truss Head(PTH) #10-18 0.433 146 175 234 292 351 468 585 731 877 1023 1315 Phillips Pan Framing Head(PPFH) #7-18 0.303 102 123 164 205 245 327 409 511 614 716 920 Phillips Pancake Head(PPCH) #10-16 0.409 138 166 221 276 331 442 552 690 828 966 1242 Torx Pancake Head(TPCH) #12-14 .0409 138 166 221 276 331 442 552 690 828 966 1242 Phillips Flat Truss Head(PFTH) #10-12 0.364 123 147 197 246 295 393 491 614 737 860 1106 For SI: 1 inch=25.4 mm,1 Ibf=4.4 N, 1 ksi=6.89 MPa. 'For tension connections,the lower of the allowable pull-out,pullover,and tension fastener strength of screw found in Tables 2,3,and 5, respectively must be used for design. 2Load values are based upon calculations in accordance with Section E4 of AISI S100.ANSI/ASME standard screw head diameters were used in the calculations and are listed in the tables. 3The allowable pull-over capacity for intermediate member thicknesses can be determined by interpolating within the table. 4To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD 4)factor of 0.5. 5For F„>_65 ksi steel,multiply values by 1.44. I I I 1 I I I 84 1 IESR-2196 I Most Widely Accepted and Trusted Page 8 of 10 I TABLE 4A-ALLOWABLE SHEAR(BEARING)CAPACITY OF STEEL-TO-STEEL CONNECTIONS USING HILTI ASTM C1513 SELF-DRILLING SCREWS,pounds-force''2'3'4'6 Steel F„=46 ksi Applied Factor of Safety,C)=3.0 Design Nominal thickness of Design thickness of member not in contact with the screw head(in.) Screw Diameter member in Description (in.) contact with screw head, 0.036 0.048 0.060 0,075 0.090 0.105 0.136 (In.) 0.036 167 220 220 220 220 220 220 0.048 167 257 294 294 294 294 294 I 0.060 167 257 360 367 367 367 367 #7-18 0.151 0.075 167 257 360 459 459 459 459 0.090 167 257 360 459 550 550 550 I 0.105 187 257 360 459 550 642 642 0.135 167 257 360 459 550 842 826 0.036 174 239 239 239 239 239 239 I 0.048 174 268 319 319 319 319 319 0.060 174 268 373 400 400 400 400 #8-18 0.164 0.075 174 268 373 497 497 497 497 0.090 174 268 373 497 597 597 597 0.105 174 288 373 497 597 697 697 0.135 174 268 373 497 597 897 897 0.036 188 277 277 277 277 277 277 I0.048 188 289 370 370 370 370 370 #10-12 0,060 188 289 403 463 463 463 463 #10-16 0.190 0.075 188 289 403 563 577 577 577 #10-18I 0.090 188 289 403 563 693 693 693 0.105 188 289 403 563 693 807 807 0.135 188 289 403 563 693 807 1040 I 0.036 200 309 315 315 315 315 315 0.048 200 308 420 420 420 420 420 #12-14 0.060 200 308 430 523 523 523 523 I 0.216 0.075 200 308 430 600 657 857 857 0.090 200 308 430 600 787 787 787 0.105 200 308 430 600 787 920 920 I 0.135 200 308 430 600 787 920 1180 0.036 215 340 363 363 363 363 363 0.048 215 331 467 487 487 487 487 0.060 215 331 463 607 607 607 607 1/4-14 0.250 0.075 215 331 463 647 760 760 760 0.090 215 331 463 647 850 910 910 0.105 215 331 463 647 850 1060 1060 I0.135 215 331 463 647 850 1060 1370 I I I 85 ESR-2196 i Most Widely Accepted and Trusted Page 9 of 10 TABLE 4B—ALLOWABLE SHEAR(BEARING)CAPACITY OF STEEL-TO-STEEL CONNECTIONS USING IIIHILTI ASTM 01513 SELF-PIERCING SCREWS,pounds-force''' Steel F„=45 ksi Applied Factor of Safety,II=3,0 Design Design thickness of member not in contact with the screw head(in.) Nominal thickness of i9 Screw Diameter member in Descriptiontin) contact with screw head, 0.015 0.018 0.024 0.030 0,036 0.048 0..0101 5 73 87 105 107 107 - 0.018 79 90 113 113 113 - #8-18S 0.164 0.024 81 90 149 158 158 - 0,030 82 117 149 186 186 - 0.036 106 114 184 236 287 - 0.018 - 77 125 152 173 173 ii 0.024 - 77 137 191 220 253 #10-12S 0.190 0.030 - 109 167 228 255 309 0.036 - 121 167 228 298 373 0.048 - 121 191 241 298 444 For SI: 1 inch=25.4 mm,1 lbf=4.4 N, 1 ksi=6.89 MPa. 1The lower of the allowable shear(bearing)and the allowable fastener shear strength found in Tables 4 and 5,respectively must be used for design. 2Load values in Table 4A are based upon calculations in accordance with Section E4 of AISI S100.ANSI/ASME standard screw diameters were used in the calculations and are listed in the tables 3The allowable bearing capacity for other member thicknesses can be determined by interpolating within the table. • °To calculate LRFD values,multiply values in table by the ASD safety factor of 3.0 and multiply again with the LRFD 4)factor of 0.5. 8For F„>_65 ksi steel,multiply values by 1.44. 6Load values in Table 4B are based on testing in accordance with AISI S905. TABLE 5—FASTENER STRENGTH OF SCREW NOMINAL FASTENER STRENGTH ALLOWABLE FASTENER STRENGTH' SCREW DIAMETER DETERMINED BY TESTING DESCRIPTION (in.) Tension,Pm Shear,P. Tension(Pali])' Shear(Pss/0)2'3 (Ibf) (lbf) (Ibf) (lbf) #7-18 PPFH 0.151 1000 890 335 295 #8-18 HWH,PPH 0.164 1000 1170 335 390 • #8-18S HWH 0.164 1915 1570 640 525 #10-12 PFTH 0.190 2170 1645 720 550 #10-12S HWH 0.190 1915 1905 640 635 #10-16 HWH,HHWH,PPH,PPCH 0.190 1370 1215 455 405 #10-18 PTH 0.190 1390 1845 465 615 ' #12-14 HWH,TPCH 0.216 2325 1880 775 625 #12-24 HWH 0.216 3900 2285 1300 760 1/4-14 HWH 0.250 4580 2440 1525 815 . For SI:1 inch=25.4 mm, 1 lbf=4.4 N,1 ksi=6.89 MPa. 1For tension connections,the lower of the allowable pull-out,pullover,and tension fastener strength of screw found in Tables 2,3,and 5, respectively must be used for design. 2For shear connections,the lower of the allowable shear(bearing)and the allowable fastener shear strength found in Tables 4 and 5, respectively must be used for design. 3See Section 4.1.3 for fastener spacing and end distance requirements. °To calculate LRFD values,multiply the nominal fastener strengths by the LRFD 0 factor of 0.5. 86 ',1 IESR-2196 I Most Widely Accepted and Trusted Page 10 of 10 r . frO Intir"""Irwk (70‘ '--- 1 A • N, Y .111411.' FIGURE 1-HEX WASHER HEAD(HWH)AND HIGH HEX WASHER FIGURE 2-HEX WASHER HEAD(HWH) I HEAD(HHWH)SELF-DRILLING SCREW SELF-PIERCING SCREW Ia VUI II',1'U,1',1! -----w (+11 I I FIGURE 3-PHILLIPS PAN HEAD(PPH) FIGURE 4-PHILLIPS PAN FRAMING HEAD(PPFH) SELF-DRILLING SCREW SELF-DRILLING SCREW I 10$0,000 =- iA4 U\Ot Ottate,�,� FIGURE 5-PHILLIPS BUGLE HEAD(PBH) FIGURE 6-PHILLIPS BUGLE HEAD(PBH) I SELF-DRILLING SCREW SELF-PIERCING SCREW Ii _ r rH 11OLCRAMMitHiii\ \** ' I FIGURE 7-PHILLIPS WAFER HEAD(PWH) FIGURE 8-PHILLIPS TRUSS HEAD(PTH) SELF-DRILLING SCREW SELF-DRILLING SCREW 1 a 1i1A1141I�► ; , Il A ttlt, IFIGURE 9-PHILLIPS PANCAKE HEAD(PPCH) FIGURE 10-TORX PANCAKE HEAD(TPCH) SELF-DRILLING SCREW SELF-DRILLING SCREW I Q isol i FIGURE 11-PHILLIPS FLAT TRUSS HEAD(PFTH) I SELF-DRILLING SCREW i flat-."11110VOMItti4 VI.II7. 9111%‘‘‘",\‘11111 LBAmi LBA L I.. __► L -01 rFIGURE 12-DESCRIPTION OF NOMINAL SCREW LENGTH(L)AND LOAD BEARING AREA(LBA) 1 87 i ESR-2409 I Most Widely Accepted and Trusted Page 9 of 14 It TABLE 6—U-PANEL SECTION PROPERTIES1'2'3 Base Metal DECK Weight Thickness Positive Positive Negative Negative TYPE Gauge (psf) (in) S(In3) I(In4) S(In3) I(in4) 29 0.68 0.0139 0.0294 0.0170 0.0260 0.0117 U-PANEL 26 0.89 0.0183 0.0436 0.0243 0.0382 0.0163 24 1.13 0,0232 0.0592 0.0323 0.0539 0.0220 For SI: 1 inch=25.4 mm,1 foot=304.8 mm,1 psi=6894 Pa, 1 psf=47.88 Pa. Table Notes: I/ 'Tabulated values are based on a 1-foot-wide section, 2Properties are based on 75 percent of 80,000 psi yield strength. (Tensile strength=82,000psi) I 3A11 section properties are net values. 1' 6 31" 2 2' 2 36" FIGURE 3—U-PANEL PROFILE • SCREW FASTENER PATTERNS TO SUPPORT BEAMS it . . i I 4 FASTENER PATTERN 11 Z 7 FASTENER PATTERN SIDE LAP DETAIL I SIDE EAP FASTENERS SIDE LAP FASTENERS BETWEEN SUPPORTS BETWEEN SUPPORTS J FIGURE 4—INVERTED U-PANEL ATTACHMENT DETAILS !Ill 88 1 IESR-2409 I Most Widely Accepted and Trusted Page 10 of 14 TABLE 7—ALLOWABLE DIAPHRAGM SHEAR CAPACITY(q)AND FLEXIBILITY FACTOR(F)FOR 1 INVERTED U-PANEL WITH SELF DRILLING FASTENERS(2-SPAN CONDITION)1'2''4'8''7,8 GAUGE SIDELAP FASTENER SPAN ATTACHMENT PATTERN 2'-0" 3'_0" 4'-0" 5'-0" 6'-0" 7'-0" 8'-0" I None 4 q 187 >142 112,... 89 73 54 41 F 541 368 284 235 204 183 168 I @ 24"o.c 4 q X213 180 ; 158 105 73 54 41 F 538 364 278 226 192 168 149 0 19 q 2 ') , 165 105 73 54 41 @ 18"o.c 4 F 538 364 276 225 190 166 147 I @ 12"o.c 4 q 231. 4.0,04:, 165 105 73 54 41 F 538 362 275 223 188 164 145 29 I None 7 q .2$4 , 12 a 162 105 73 54 41 F 80 60 51 47 45 44 44 @ 24"o.c 7 q 334 263 165 105 73 54 41 F 79 58 47 42 38 35 33 I @ 18"o.c 7 q 6. 278 165 105 73 54 41 F 79 57 47 41 37 34 32 @ 12"o.c 7 qA.i4691 293 165 105 73 54 41 F 79 57 46 39 35 32 30 None 4 q -R?46, , 186-. il.Af..n .v116.,,,: 97 81 62 F 276 191 150 127 113 103 97 I @ 24"o.c 4 q ,280 287 _.20ti 158 110 81 62 F 274 187 144 119 102 90 81 @ 18"o.c 4 q .289 ,251 225 158 110 81 62 F 273 187 143 118 100 88 79 @ 12"o.c 4 q ,.,,x304 .274..,.:: 247 158 110 81 62 26 F 273 186 142 116 99 86 77 1 None 7 q 388 .279.. 215 158 110 81 62 F 44 35 31 30 30 30 31 q @ 24"o.c 7 ,,,,„,01,-,!,,,,,-;,,,,t, 346 , 247 158 110 81 62 IF 43 33 28 25 24 23 22 @ 18"o.c 7 q 456 367 . 247 158 110 81 62 F 43 32 27 25 23 22 21 @ 12'o.c 7 q 465 405 247 158 110 81 62 F 42 32 27 24 22 20 19 I I 1 1 I , I 89 . ESR-2409 I Most Widely Accepted and Trusted Page 11 of 14 I TABLE 7—ALLOWABLE DIAPHRAGM SHEAR CAPACITY(q)AND FLEXIBILITY FACTOR(F)FOR INVERTED U-PANEL WITH SELF DRILLING FASTENERS(3-SPAN CONDITION)12'34,es>7,e (Continued) SIDELAP FASTENER SPAN I GAUGE ATTACHMENT PATTERN 2'-D" 3'-0" 4'-0" 3'-0" 6'-0" T-0" 8' 0" None 4 q :174 . . „y 29 , _101 ,«.,.'4'8:1?.;,,-,- $1 66 54 41 F 330 229 181 154 137 126 119 q ,47:0;;;4..,:;i:ArTliii 150 105 73 54 41 @ 24"o.c 4 F 328 224 173 142 122 108 97 @ 18"0.c 4 q 242)A462s:ii i64 105 73 54 41 F 327 224 172 141 120 106 95 @ 12"a.c 4 q liagfeA,M193m. 165 105 73 54 41 1 F 327 222 170 139 118 104 93 29 9 Agiiii iiii4IN 146 105 73 54 41 None 7 F 54 43 39 37 37 38 39 @ 24"a.c 7 q :;,.412,V; ;2443' 165 105 73 54 41 F 52 40 34 31 29 28 27 q antilil 261 165 105 73 54 41 @ 18"o.c 7 F 52 39 33 30 28 26 25 3 qs0 291 165 105 73 54 41 @ 12"o.c 7 F 51 39 32 29 26 25 23 I None 4 q ,..:'729 ,,174>y. .:: 133..,:.1. $".._ 88,.r.; 75 62 F 171 122 99 87 80 76 74 @ 24"o.c T 4 q 0408 „�2 ., ; 1. ..". 158 110 81 62 I F 169 117 92 77 67 60 55 qZ' 8 „ 74Q","".. 216 158 110 81 62 I,.. F 168 117 91 76 66 58 53 @ 12"o.c 4 q V295 2$55 F 246 158 110 81 62 F 168 115 90 74 64 56 51 26 q �.. _r.,,3 , 2r 13 X83 153 110 81 62 None 7 F 31 26 25 26 27 28 30 q kifttii, 322,. 247 158 110 81 62 @ 24"a.c 7 F 30 24 22 20 20 19 19 @ 18"o.c 7 q ,,-429ig:,,,.;i404g. 247 158 110 81 62 111 F 29 24 21 19 19 18 18 @ 12"o.c 7 9 i'AO.Ci. 384 247 158 110 81 62 F 29 23 20 18 17 16 16 I I I M 90 11 i IESR-2409 I Most Widely Accepted and Trusted Page 12 of 14 TABLE 7—ALLOWABLE DIAPHRAGM SHEAR CAPACITY(q)AND FLEXIBILITY FACTOR(F)FOR I INVERTED U-PANEL WITH SELF DRILLING FASTENERS3 4-SPAN CONDITION 1'2',$5'87'8 ( ) (Continued) SIDELAP FASTENER SPAN GAUGE ATTACHMENT PATTERN 2'-0" 3'-fl" 4'-0" 5'-fl" 6'-0" 7'-0" 8'-0" INone 4 q ;16. r 123:_ „; 96 77 64 54 41 F 226 160 130 113 104 98 95 @ 24"a c 4 q :198 ,,,,*:,166 146 105 73 54 41 IF 223 155 121 101 87 78 71 @ 18"o.c 4 q •Q7 ,;,178,. 160 105 73 54 41 F 222 154 119 99 86 76 69 I @ 12"o.c 4 q 2fi �r$8 x; 165 105 73 54 41 F 222 152 118 97 84 74 66 29 None 7 q TAOCillW074 105735441 ' F 33 34 35 37 q :48,0 � 2 165 105 73 54 41 @ 24"o.c 7 F 39 31 28 26 25 24 24 I @ 18"o.c 7 q - 4 -2gg 165 105 73 54 41 F 38 31 27 25 24 23 22 a @ 12"o.c 7 q , 0 '' 283 165 105 73 54 41 F 38 30 26 23 22 21 20 None 4 q .`.2't9 ., .�.:i.0 r,i,, 12 ... :f1 84 tr. 72 62 I W F 119 87 74 67 64 62 63 j I @ 24'o.c 4 q1,-4,0k=4415 .X192,,, 158 110 81 62 F 116 82 66 56 50 45 42 @ 18"0.c 4 q447,26:„2;k41 W 210 158 110 81 62 F 116 81 65 55 48 43 40 @ 12"o.c 4 q -291 .26�i_., 242 158 110 81 62 I F 115 80 63 53 46 41 38 I 26 None 7 q *130:... k. 37 182.,, 145 110 81 62 F 24 22 22 24 25 27 29 I @ 24"0.0 7 q 396 sttv.w,A, 247 158 110 81 62 F 23 20 18 18 18 17 17 3 @ i 8"o.c 7 q 414 . 3 j-_ 247 158 4 110 81 62 F 23 19 18 17 16 16 16 I @ 12"a c 7 q , ,44$ ; 373 247 158 110 81 62 F 22 18 17 16 15 15 14 For SI:1 inch=25.4 mm,1 foot=304.8 mm,1 plf=14.594 N/m,1 psf=47.88 Pa. I Table Notes: 1q=Allowable diaphragm shear in pounds per lineal foot. j 2F=Flexibility Factor: The average micro-inches a diaphragm web will deflect in a span of 1 foot under a shear of 1 round per foot. I Panels are attached with#12 self-drilling TEKS Screws manufactured by ITW Buildex with a minimum 0.211 inch diameter to intermediate and end supports as shown in Figure 5. '#12 self-drilling TEKS Screws manufactured by ITW Buildex with a minimum 0.211 inch diameter to be used for panel sidelap attachments. I The spacing of screws,at,in feet,fastening to diaphragm perimeter members parallel to the panel must be: at = 17,500 t/q where: t=thickness of deck in inch q = required diaphragm shear (Allowable Stress Design) at shear transfer,in plf I °For wind loading,values may be multiplied by a factor of 1.25. 'Panels must be attached to structural framing with a minimum thickness of 3/16 inch. °Fasteners have a minimum 1/2"diameter washer with a minimum 0.06 inch thickness. 1 I 91 i ';I Page 38 of 174 IAPMO UES Evaluation Report No. 0217 i Expires: 11/2015 Issued: 11/2011 11 TABLE 12-ALLOWABLE SUPERIMPOSED LOADS(psf)AND ALLOWABLE DIAPHRAGM SHEAR STRENGTH, q(pif), FOR PLW2TM-36 FORMLOKTM &W2-36 FORMLOKTM DECK PANELS WITH CONCRETE FILL1'2.3.4.&6 1 TOTAL NO.OF DECK SLAB DECK SPANS&MAX DEPTHDACE UNSHORED III &CONC. CLEAR SPANS SPAN(ft-in.) TYPE (ft-in.) 6%0" 7'•0" 7.6" 8'-0" 8,,6" 9'-0" 9'-6" 10,-0" 10'-6" 11•-0" 11'-6" 12•-0" 12'-6" 13'-0" 14'-0" 1: 7'-9" 337 261 2321172152135s A, 20 s 1 96; �85r z76 70 C63 i 57 X19 ' 2: 9'-0" 337 261 232 209 189 171 U1290040,War F "78 70 68• 57 46 ; 22 3: 9'-2" 337 261 232 209 189 17112 ` 107 96 T 78 '70 ;WAR 7 46% 1 q-3 welds 1674 1635 1619 1606 1594 1583 1573 1565 1557 1550 1543 1537 1532 1527 1518 q-4 welds 1834 1762 1734 1708 1686 1667 1649 1633 1619 1606 1594 1583 1573 1563 1547,01 I 1: 8'-6" 377 292 260 234 211 115539 125 1,12 10't 91. 62 75 68 5 i 1 2: 9'-8" 377 292 260 234 211 192 175 `120 912 10 91 82i75 60 55 ; ; 21 3: 10'-0" 377 292 260 234 211 192 175 161 1112 FfornierOompokilKt401 q-3 welds 1680 1637 1620 1605 1592 1580 1570 1560 1552 1544 1537 1530 1524 1519 1509 11 q-4 welds 1867 1788 1756 1729 1704 1683 1663 1646 1630 1616 1602 1590 1579 1569 1551 I 1; 9'-3" 400 324 288 259 234 2131154, 42 fy�' 8 16 -10 55 a 86 F,-�79 r£�I 5 2: 10'-3" 400 324 288 259 234 213 195 179!128s 11' 05 96 86 79 65 20 3: 10-8" 400 324 288 259 234 213 195 179 1651 C`16.� 05 9 ' '7$ ' 65 II 4" q-3 welds 1689 1643 1624 1608 1593 1580 1569 1559 1549 1541 1533 1526 15191513 1503 j Normal q-4 welds 1902 1816 1781 1751 1725 1701 1680 1661 1643 1628 1613 1600 1588 1577 1557 j Weight 1: 10'-0" 400 389 347 311 275 242 214 190 1 1.86 "146 1 121 110.E 99 81 (145 pcf) 2: 11'-5" 400 389 347 311 275 242 214 190 169 152 33 .121 `110 t 99 81 .l 19 3: 11'-10" 400 389 347 311 275 242 214 190 169 152 136 12'( q.10 , 99 8'1 q-3 welds 1714 1659 1637 1618 1602 1587 1573 1561 1550 1540 1531 1523 1515 1508 1496 € q-4 welds 1977 1877 1836 1801 1770 1742 1718 1696 1675 1657 1640 1625 1611 1598 1575 1: 10'-5". 400 400 386 335 293 258 229 203 1 181 162 4:146 13.1 X11 185 8�4 l 1 2: 12'-3" 400 400 386 335 293 258 229 203 181 162 146 131 )1$ 10 84 1 ' 18 3: 12'-5" 400 400 386 335 293 258 229 203 181 162 146 131 118 :105 f 84 r? q-3 welds 1739 1678 1653 1632 1613 1596 1581 1568 1556 1545 1534 1525 1517 1509 1495 1 q-4 welds 2044 1931 1886 1847 1812 1781 1753 1729 1706 1686 1667 1650 1634 1619 1593 111 1: 11'-2" 400 400 396 356 322 292 261 233 208 187 11 1871157,. 143 x131 116 t,93 2: 13'-i 1" 400 400 396 356 322 292 261 233 208 187 168 148 131 116 '9,3 16 3: 13'-1" 400 400 396 356 322 292 261 233 208 187 168 148 131 1161, 11 4.0 1� q-3 welds 1809 4733 1702 1675 1652 1631 1612 1595 1580 1566 1553 1541 1531 1521 1503 1 q-4 welds 2212 2071 2015 1965 1922 1883 1848 1817 1789 1763 1740 1718 1698 1680 1647 1: 7'-5" 380 2941220 ;194 .171 152 1.e1 1 168. 97'iIM78 70 63 1 2: 8'-7" 380 294 262 235 213152` 1 1 1 108 97�` 87 78 1.04•071 22 3: 8'-9" 380 294 262 235 213 "152 135,.`121 a108Ar§397 ._ 87 '7$ 0� 63 51 ';, 11 q-3 welds 1913 1874 1858 1845 1833 1822 1812 1804 1796 1789 1782 1777 1771 1766 1757 1 q-4 welds 2073 2001 1973 1947 1925 1906 1888 1872 1858 1845 1833 1822 1812 1802 1786 1: 8'-1" 400 329 293 26311,96 ,174 15x6 140 125 ,113. 102 9 `t 3 X75 62 1 111 �,^r' b f l., � ,7K n^ J NL 2: 9'-3" 400 329 293 263 238 2161 156,. 140 425 1`'13 ''102 92 $8 ?15 62 '# 21 3: 9'-6" 400 329 293 263 238 216 1981 140 r 1 �r 113,�Y102r' 92`' 183�.',75 ..,.6`2 I 41/2" q-3 welds 1919 1876 1859 1844 1831 1819 1809 1799 1791 1783 1776 1769 1763 1758 1748 ' Normal q-4 welds 2106 2027 1995 1968 1943 1922 1902 1885 1869 1855 1842 1829 1818 1808 1790 Weight 1: 6'-9" 400 364 324 291 263 1 198; 1 "159 143 '1307'17 106 97 '88"' 73 1 (145 pcf) 2: 9'-10" 400 364 324 291 263 239 2191159 X1143 '130 11'70 106 97 88 73 O 20 3: 10'-2" 400 364 324 291 263 239 219 2011143? '130v�117' 1}6 . 97� 88.,,�73 a q-3 welds 1928 1882 1863 1847 1832 1819 1808 1798 1788 1780 1772 1765 1758 1752 1742 q-4 welds 2141 2055 2020 1990 1964 1940 1919 1900 1882 1867 1853 1839 1827 1816 1796 1: 9'-7" 400 400 389 349 316 287 262 1 199. i 180 n163 ;149 1136 124 113 95 2: 10'-11" 400 400 389 349 316 287 262 241 222 1 163 149 136 ' '1'24 95 1,113 19 3: 11'-4" 400 400 389 349 316 287 262 241 222 2061149 136,,61 4: 113,,,,95,.1 q-3 welds 1953 1898 1877 1857 1841 1826 1812 1800 1789 1779 1770 1762 1754 1747 1735 q-4 welds 2216 2116 2075 2040 2009 1982 1957 1935 1915 1896 1880 1864 1850 1837 1814 ,11 ee Page 43 for footnotes. (continued) 1 92 , N Ho!downs and Tension Ties 1 SIMPSON I S/LTT r S/DTT and HTT Tension Ties I ! 5tio«gTie The HIT is a single-piece formed tension tie—no rivets, w I and a 4-ply formed seat.No washers are required. (�__3ya`_a .( S/DTT2Z tension tie is suitable for lighter duty hold-down —� --- , .., :-: . applications on single or back-to-back studs,and installed I easily with#14 self drilling screws. ' • ° ! The HTT,S/DTT and S/LTT Tension Ties are ideal for retrofit �V • ° ° or new construction projects.They provide high strength, `,°!45mm post-pour,concrete-to-steel connections. , ® '• f •-0 IIIMaterial:HTT-111 mil(11ga) fl N I S/DTT2Z-68 mil(14ga) j °° ){ • 76mm S/LTT20B—Strap:97 mit(12ga);Plate:229 mil(3ga) l )" • Washer t Finish:HTT S/LTT—Galvanized;S/DTT2Z—ZMAX® not coating � I� required Installation: ' ` / , �11i\1/+ rte' �' f' ' a'`m. • Use all specified fasteners. - f )3o! I • Use the specified number of type of screws to attach HTT5 S/DTTZZ (HTT4 similar) S the strap portion to the steel stud.Bolt the base to the (/) wall or foundation with a suitable anchor;see table forr,it the required bolt diameter. j ti_l ) ft I . S/DTT2Z requires a standard cut washer(included) o���i ", Load Transfer be installed between the nut and the seat. l� +� � �l Plate Washer o.l not required •(j) • Do not install S/LTT20B raised off of the bottom track.• See SB and SSTB Anchor Bolts on pages 108-111 .,,6-t-..1:60°111 T stall FITT5 SlL7T20 I for anchorae at ° Installation F g options. f a kir o as a Holdown • SanchoreS ole and tAT- P adhesive products for ` 1 ' ICodes:See page 11 for Code Report Reference Key Chart. ;l 'i 1 NN Dimensions(fa.) Fasteners Stud ASO(lbs.) LRFD(lbs.) Member Nominal o Model Anchor Bolt Deflection Deflection Tension L ado bode. W W H Diameter' Stud Thickness Tension Tension Ref. Fasteners' mil{ga.) Loyd at ASD sr LRFD (lbs.) (in.} Load' mad Load' SILTT20 2 20 1Y 34 8-#10 33(20 gal 1200 0.125 1890 0.250 4625 0 33(20 ga) 1570 0.138 2200 0.250 4265 g) a S/DTT2Z 14 61%4s i91& 14 8-4114 43(18 ga) 1685 0.151 2355 0.250 5570 I 2-33(2-20 ga)`' 1735 0.153 2430 0,250 5735 IP1, 33(20 ga) 3180 0.104 4770 0.187 8215 L2, 0 HTT4 2/ 12% 1% % 18-#10 F4 2-33(2-20 ga) 4395 0.125 6675 0.250 11835 I 43(18 ga) 4240 0.125 6505 0.250 11585 ID H€T5 214 16 135 ya 26 #10 2-43(2-18 ga) 4670. 0.125 697Q 0.250 12195li 1-54(116 ga) 4150 0.125' 6425 0.250 12365 • Iin,These products are available with additional corrosion protection,Additional products on this page may also be avatable with this option.Check with Simpson Strong Tie for detats. 1.The Designer shall specify the foundation anchor material type,embedment and configuration. 2.Stud design by Specifier.Tabulated loads are based on a minimum stud thickness for fastener connection. I3.Deflection at ASD or LRFD includes fastener ship,holdown deformation and anchor rod elongation for holdowns installed up to 4"above top of concrete.Holdowns may be Installed raised,up to 18°above top of concrete, with no load reduction provided that additional elongation of the anchor rad is accounted for.See bottom of page 114 for installation detail. 4.The Nominal Tension Load is based on the tested average ultimate(peak)load and is provided for design in I accordance with section C5 of AISI 5213 that requires a tension tie to have a nominal strength to resist the lesser of the amplified seismic load or the maximum force the system can deliver. 5.See pages 65 through 81 for more information on Simpson Strong-Tie fasteners. 115 1 93 j- "ASCE710S.xls°Program 11 CIk7 Version 1-1 1 SNOW LOADING ANALYSIS Per ASCE 7-10 Code for Buildings with Flat or Low Slope Roofs(<=5 deg.or 1 in./ft.) for Balanced Snow,Drift,and Rain-on-Snow Surcharge Loadings Job Name: STORQUEST TIGARD,OR Subject: EAVE PARAPETS,30 FT LONG 1 Job No: Originator: ART LEON j Checker: 1 1 Input Data: Building Risk Category= II Table 1.5-1,page 2 Ground Snow Load, pg= 20.00 psi Figure 7-1,pages 34-35 and Table 7-1,page 30 Length of High Roof, Lu= 0.10 it. Length of Roof Upwind of the Snow Drift s Length of Low Roof, LL= 140.00 ft. Length of Roof Downwind of the Snow Drift , . Dist.from Eave to Ridge,W= 140.00 ft. Horizontal Distance from Eave to Ridge ill Type of Roof= Monoslope Type of Roof=Monoslope,Gable,or Hip 1 Obstruction Height,ho= 7.00 ft_ High High Roof-Low Roof Elevations 1 Roof Slope,S= 0.50 in./ft. S=Rise per foot of Run Exposure Factor,Ce= 1.00 Table 7-2,page 30 I Thermal Factor,Ct= 1.00 Table 7-3,page 30 Results: Roof Angle,6= 2.3859 deg. 8=ATAN(S/12) '' Importance Factor,Is= 1.00 Table 1.5-2,page 5 Snow Density,y= 16.60 pci y=0.13*pg+14<=30 (Eqn.7.7-1,page 33) Flat Roof Snow Load,pi 1= 14.00 psf pf=0.7*Ce*Ct*Is*pg (Eqn.7.3-1,page 29) I *Min. Roof Snow Load,pm= 20.00 psf pm=pg*Is for pg<=20, pm=20*Is for pg>20 i Balanced Snow Load Ht., hb= 0.84 ft. hb=pf(use)/y (Section 7.1,page 29) Clear Height, hc= 6.16 ft. tic=ho-hb>=0 (Section 7.1,page 29) l Leeward Drift Height,hdL= 1.44 ft. hdL=0.43*Lu^1/3*(pg+10)^1/4-1.5, with Lu>=25' (Figure 7-9) Windward Drift Height,hdw= 2.79 ft. hdw=0.75*(0.43*LL^1/3*(pg+10)^1/4-1.5), with LL>=25' Max. Drift Height,hd(max)= 2.79 ft. hd(max)=maximum of:(hdL or hdw) Ratio,hclhb= 7.30 If hc/hb>=0.2,then snow drifts are required to be applied I' Drift Length,w= 11.18 ft- If hd(max)<=hc:w=4*hd(max), if hd(max)>hc:w=4*hd(max)^2/hc '' Design Drift Height,hd= 2.79 ft. If hd(max)<=hc: hd=hd(max), if hd(max)>hc: hd=hc Drift Length,w(max)= 49.25 ft. w(max)<=8*hc Drift Length,w(use)= 11.18 ft. w(use)=minimum of: w or w(max) Wt.of Drift at High End,pd= 46.38 psf pd=hd*y (maximum value) 1 Wt.of Drift at Low End,pde= 0.00 psf pde=0,as Low Roof Length(LL)>=w(max) I Rain-on-Snow Surch.,prs= 5.00 psi prs=5.0 psf when 0<pg<=20 and 0<W/50) (Sect.7.10) Balanced Snow Load,pf(bal)= 19.00 psf pf(bal)=pf+prs **Total Snow Load, p(totai)= 65.38 psf p(total)=pf(bal)+pd I *Note:Minimum flat roof snow I load,pm,need not be used in I combination with snow drift. i Wind i 1 t Lu=0.1' 7 '4( i z. (Length of High Roof) pd=46.38 psf Surcharge Load I he=6.16` Due to Drifting I hd= 2.79' i ho=7' v v v v r r r Rain-on-Snow Surch. 111:"....„..7:„.77„,,-7 ** r V V V - V V r °, r V V V V ni hb=0.84' V •+ yr v y v v v r ++ v wpf=19 psf Balanced Snow Load - ** w(use)=1118'(drift)_, I Note:Rain-on-snow surcharge need not be combined with _ LL=140' ? snow drift for total load (Length of Low Roof) 1 Configuration of Snow Drift on Lower Roof ,' .i 1 of 1 11/1/2016 7:27 PM I 94 III I "ASCE710S.xls"Program 1 Version 1.1 SNOW LOADING ANALYSIS 1 I Per ASCE 7-10 Code for Buildings with Flat or Low Slope Roofs(<=5 deg.or 1 in./ft.) j for Balanced Snow,Drift,and Rain-on-Snow Surcharge Loadings Job Name: STORQUEST TIGARD,OR Subject: GRID 22 I Job No: Originator: ART LEON Checker: I I ' Input Data: BuildingRisk Category eg ry= II Table 1.5-1, page 2 Ground Snow Load,pg= 20.00 psf Figure 7-1,pages 34-35 and Table 7-1,page 30 ' Length of High Roof, Lu= 0.10 ft. Length of Roof Upwind of the Snow Drift Length of Low Roof, LL= 210.00 ft. Length of Roof Downwind of the Snow Drift Dist. from Eave to Ridge,W= 210.00 ft. Horizontal Distance from Eave to Ridge Type of Roof= Monoslope Type of Roof=Monoslope, Gable, or Hip ' Obstruction Height,ho= 4.50 tL High Roof-Low Roof Elevations Roof Slope,S= 0.50 inuft. S=Rise per foot of Run Exposure Factor, Ce= 1.00 Table 7-2,page 30 .... . .. ........... Thermal Factor,Ci= 1.00 Table 7-3,page 30 I Results: Roof Angle,0= 2.3859 deg. 0=ATAN(S/12) Importance Factor,Is= 1.00 Table 1.5-2,page 5 I Snow Density,y= 16.60 pct Flat Roof Snow Load,pf= 14.00 psf y=0.13*pg+14<=30 (Eqn.7.7-1, page 33) pf=0,7*Ce*Ct*Is*pg (Eqn. 7.3-1, page 29) "Min. Roof Snow Load,pm= 20.00 psi pm=pg*Is for pg<=20, pm=20*Is for pg>20 Balanced Snow Load Ht„hb= 0.84 ft. hb=pf(use)/y (Section 7.1,page 29) I Clear Height, he= 3.66 ft. he=he hb>=0 (Section 7.1, page 29) Leeward Drift Height,hdL= 1.44 ft. hdL=0.43*L01/3*(pg+10)^1/4-1.5, with Lu>=25' (Figure 7-9) Windward Drift Height,hdw= 3.36 ft. hdw=0.75*(0.43*LL^1/3*(pg+10)^1/4-1.5), with LL>=25' Max. Drift Height, hd(max)= 3.36 ft, hd(max)=maximum of:(hdL or hdw) Ratio, hc/hb= 4.34 If hc/hb>=0.2,then snow drifts are required to be applied Drift Length,w= 13.44 ft_ If hd(max)<=hc:w=4*hd(max), if hd(max)>hc:w=4*hd(max)^2/hc Design Drift Height, hd= 3.36 ft. If hd(max)<=hc: hd=hd(max), if hd(max)>hc: hd=hc Drift Length,w(max)= 29.25 ft. w(max)<=8*he IDrift Length,w(use)= 13.44 ft. W(use)=minimum of: w or w(max) Wt.of Drift at High End,pd= 55.80 psi pd=hd*y (maximum value) Wt.of Drift at Low End,pde= 0.00 psf pde=0,as Low Roof Length(LL)>=w(max) Rain-on-Snow Surch„prs= 5.00 psf prs=5.0 psf when 0<pg<=20 and 9<W/50) (Sect.7.10) I Balanced Snow Load,pf(bei)= 19.00 psf Mal)=pf+prs **Total Snow Load,p{total)= 74.80 psf p(total)=pf(bai)+pd *N ote_Mfrrtmum ttroof snow load pm need;hot be used rn Icombination With snowdriftEind Lu=0.1' >IZ ...(Length of High Roof) Ipd=55.8 psf Surcharge Load hc=3.66' Due to Drifting I hd* 33 .36' ho=4.5' y r V r Y Rain-on-Snow Surch. v r y V v w r y v v v y v y hb= 0.84' iv v y r ' ' t ., v , . ' v v „ Pf=19 psf ' ' Balanced Snow Load *Note;Rain on snow surcharge-, wtusq)=13.44'(drift) need not be combined with LL=210' snow dna for total food. ` (Length of Low Roof) I Configuration of Snow Drift on Lower Roof 1 1 of 1 11/1/2016 7:57 PM 1 95 1 I KIWI II CONSTRUCTION '' 28177 KELLER ROAD MURRIETA,CA92563 (877)465-4942 I (951)301-8975 (951)301-4096 FAX ATTN:ART LEON,ART@KIWIC KIWIC ONSTRUCTION.COfM I STRUCTURAL CALCULATIONS FOR I INTERPOLATING SNOW DRIFT I INTERPOLATION 30 FT EAVE PARAPETS BAL:= 19 GRID A 5 FT AWAY I X1 := 0 X2:= 11.18 DISTANCE FROM PARAPET Xl X2 X3 III Y1 Y2 Y3 Y1 := 46.38 Y2:= 0 DRIFT LOAD X3:= 5 31 X3 Y3A •(Y2-Y1)1 + Y1 X2-X1 '' i Y3A=25.638 Y3A•5= 128.188 IO FT AWAY I X3:= 10 - ' Y3A:= X3 X1 •(Y2- Y1) + Y1 _X2 -X1 _ #' a Y3A=4.895 INTERPOLATION 4.5 FT END PARAPETS BAL:= 19 GRID 22I 5 FT AWAY X1 := 0 X2:= 13.44 DISTANCE FROM PARAPET XI X2= X3 11 YI Y2 Y3 Y1 := 55.8 Y2:= 0 DRIFT LOAD • X3:= 5rJ 5er- - - � r- t - IY3A:= _X2 -X1 •(Y2-Y1)- + Y1 6' CAL i„jv � �} Y3A=35.041 Y3A•5= 175.205 1 10 FT AWAY X3:= 10 I X3-X1 Y3A:= •(Y2-Y1) +Y1 1 X2-X1 Y3A= 14.282 96 1 I Title: Job# Dsgnr: Date: 7:41PM, 1 NOV 16 Description Scope: I Rev: 580010 ..�.- p - -_..- ---- User:KW-OF>06193,Ver 580,1-Nov-2006 Multi-Span Steed Beath Page 1 (41983-2006 EMERCALC Engineering Software tfgard.ecw:Caltsaalions , Description 1 t1` ' l ' c>tc t r-4 .) A , C-7 t;t l I General Information Code Ref:AISC 9th ASD,1997 UBC,2003 IBC,2003 NFPA 5000 Fy-Yield Stress 36.00 ksi Load Duration Factor 1.00 I Spans Considered Continuous Over Supports Span Information i Description I Span ft 10.00 10.00 10.00 Steel Section End Fixity Pin-Pin pin-Pin Pin-Pin Unbraced Length ft 0.00 0.00 0.00 Loads Live Load Used This Span? Yes Yes Yes Dead Load k/ft 0.020 0.020 0.020 Live Load k/ft 0.095 0.095 0.095 I Dead Load k/ft Live Load klftI 0.128 0.128 0.128 Start ft End ft 10.000 10.000 10.000 IResults Mmax @ Cntr k-ft 1.94 0.61 1.94 , @X= ft 4.00 5.00 6.00 tt n. Max @ Left End k-ft 0.00 -2.43 -2.43 ` J I Max @ Right End k-ft -2.43 -2.43 0.00 f 1 til fb:Actual psi 0.0 0.0 0.0 ' 00... ea tt( t to Fb:Allowable psi 0.0 0.0 0.0 ^ 1tSel Bending OK Bending OK Bending OK a 4 } fv:Actual psi 0.0 0.0 0.0 {- } T Fv:Allowable psi 0.0 0.0 0.0 Reactions& Deflections I Shear @ Left k 0.97 1.21 1.46 Shear @Right k 1.46 1.21 0.97 Reactions... 0.08 0.22 0.22 I DL @ Left k 0.89 2.45 2.45 LL @ Left k 0.97 2.67 2.67 Total @Left k 0.22 0.22 0.08 DL @ Right k 2.45 2.45 0.89 LL @ Right k 2.67 2.67 0.97 I Total @ Right k 0.000 0.000 0.000 Max.Deflection in 0.00 0.00 0.000 0.00 @ X= ft 0.0 0.0 0.0 Span/Deflection Ratio Query Values Location ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Shear k 0.97 1.21 1.46 0.00 0.00 0.00 0.00 0.00 I Moment k-ft 0.00 -2.43 -2.43 0.00 0.00 0.00 0.00 0.00 Max.Deflection in ##.f### fk#.flitit# ##.; # 0.0000 0.0000 0.0000 0.0000 0.0000 I I 1 97 Title: Job# 0 Dsgnr: Date: 7:49PM, 1 NOV 16 Description: I Scope Rev 580010 -- - Page 1 User KW-0606193,Ver 5801Nov 2006 Multi-Span Steel Beam {c}1983 2006 ENERCALC Engineering Software tigard.ecvrCalculationsI Description B-DECK SPANNING 5 FT, EAVE PARAPETS (-1 General Information Code Ref:RISC 9th ASD, 1997 UBC,2003 IBC,2003 NFPA 5000 Fy-Yield Stress 36.00 ksi Load Duration Factor 1.00 Spans Considered Continuous Over Supports I Span Information Description Span ft 5.00 5.00 5.00 1 Steel Section End Fixity Pin-Pin Phi-Pin Pin-Pin Unbraced Length ft 0.00 0.00 0.00 Loads Live Load Used This Span? Yes Yes Yes Dead Load k/ft 0.004 0.004 0.004 Live Load k/ft 0.019 0.019 0.019 Dead Load k/ft I Live Load k/ft 0.046 0.046 0.046 Start ft End ft 5.000 5.000 5.000 Results I Mmax @ Cntr k-ft 0.14 0.04 0.14 ti y @ X= ft 2.00 2.50 3.00 -� { C it Max @ Left End k-ft 0.00 -0.17 -0.17 \-1 o = '� Max @ Right End k-ft -0.17 -0.17 0.00 � a 0 ' tb:Actual psi 0.0 0.0 0.0 Fb:Allowable psi 0,0 0.0 0.0 (E.(-..C- Bending .0y Bending OK Bending OK Bending OK')4 f l f fv:Actual psi 0.0 0.0 0.0 G A iFv:Allowable psi 0.0 0.0 0.0 Reactions& Deflections Shear @ Left kI 0,14 0.17 0.21 Shear @ Right kI 0.21 0.17 0.14 Reactions... 0.01 0.02 0.02 DL @ Left k 0.13 0.36 0.36 I LL @ Left k 0.14 0.38 0.38 Total @ Left k 0,02 0.02 0.01 DL @ Right k 0.36 0.36 0.13 LL @ Right k 0.38 0.38 0.14 Total @ Right k 0.000 0.000 0.000 1 Max.Deflection in 0.00 0.00 0.00 @ X= ft 0.0 0,0 0.0 Span/Deflection Ratio IQuery Values _ I Location ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Shear k 0.14 0.17 0.21 0.00 0.00 0.00 0.00 0.00 Moment k-ft 0.00 -0.17 -0.17 0.00 0.00 0.00 0.00 0.00 Max.Deflection in ##.#### ##.1$### ##.#### 0.0000 0.0000 0.0000 0.0000 0.0000 I I 1 98 I Title: Job# Dsgnr: Date: 8:05PM, 1 NOV 16 IDescription: Scope: Rev 580010 - - -_ I User.KW-0600193,Vet 5.8 0,1-Nov-2006 Multi-Span Steel Beam Page 1 (c)1983-2006 ENERCALC Engineering Software tigard.ecw:Calculetions Description 5 FT IN AT END PARAPET, GRID 22 General Information Code Ref:AISC 9th ASD,1997 UBC,2003 IBC,2003 NFPA 5000 f. Fy-Yield Stress 36.00 ksi Load Duration Factor 1.00 Spans Considered Continuous Over Supports Span Information Description -- I Span ft 10.00 10.00 10.00 Steel Section End Fixity Rin-Pin Pin-Pin Pin-Pin Unbraced Length ft 0.00 0.00 0.00 I Loads Live Load Used This Span? Yes Yes Yes Dead Load k/ft 0.020 0.020 0.020 Live Load k/ft, 0.095 0.095 0.095 I Dead Load k/ft Live Load k/ft ft 0.175 0.175 0.175 Start End ft 10.000 10.000 10.000 I Results Mmax @ Cntr k-ft 2.32 0.72 2.32 I% '" ti 00 6.00 Max @Left End k-ft 0.00 2.90 -2.90 � - a\ A .1 I Max @ Right End k-ft -2.90 -2.90 0.00 t fb:Actual psi 0.0 0.0 0.0 } - es 0 Fb:Allowable psi 0.0 0.0 0.0 �. Bending OK Bending OK Bending OK .- I fv:Actual psi, 0.0 0.0 0.0 Fv:Allowable psi 0.0 0.00.0 i Reactions& Deflections I - - Shear @Left k� 1.16 1.45 1 74 Shear @ Right k 1.74 1.45 1.16 Reactions... 0.08 0.22 0.22 DL @ Left k 1,08 2.97 2.97 I LL @ Left k 1.16 3.19 3.19 Total @ Left k 0,22 0.22 0.08 DL @ Right k 2.97 2.97 1.08 LL @ Right k 3.19 3.19 1.16 Total @ Right k 0.000 0.000 0.000 Max.Deflection in 0.00 0.00 0.00 @ X= ft 0.0 0.0 0.0 Span/Deflection Ratio IQuery Values _- - -_- Location ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Shear k 1.16 1.45 1.74 0.00 0.00 0.00 0.00 0.00 Moment k-ft 0.00 -2.90 -2.90 0.00 0.00 0.00 0.00 0.00 I Max.Deflection in ##.#t### ##.#### ##.##It# 0.0000 0.0000 0.0000 0.0000 0.0000 I I I 99 Title: Job I Dsgnr: Date: 8:26PM, 1 NOV 16 Description: Scope: Rev 580010 -_ -_-- User Kw-0606193,Ver 5.8.0,1-Nov-2006 Multi-Span Steel Beam1 kgardeavPagea1 I (c}1983-2006 ENERCALC Engineering Software Description ENDWALL PARAPET AT GRID 20 General Information Code Ref:A(SC 9th ASD,1997 UBC,2003 IBC,2003 NEPA 5000 1 Fy-Yield Stress 36.00 ksi Load Duration Factor 1.00 Spans Considered Continuous Over Supports ' Span Information Description Span ft 10.00 10.00 10.00 1 Steel Section End Fixity Pin-Pin Pin-Pin Pin-Pin Unbraced Length ft 0.00 0.00 0.00 [LoadsismaiEsszimilimo- Live Load Used This Span? Yes Yes Yes Dead Load k/ft 0,020 0.020 0.020 Live Load k/ft 0.095 0.095 0.095 DL @ Left k/ft DL @ Right k/ft LL @ Left k/ft 0.175 0.072 LL @ Right k/ft 0.072 Start ft End ft 10.000 3.440 Results Mmax @ Cntr k-ft 2.10 0.06 0.99 t • @ X= ft 4.00 5.80 5.87 4 61 00 C,, . Max @ Left End k-ft 0.00 -2.00 -0.97 \ C Max @ Right End k-ft -2-00 -0.97 0.00 , fb:Actual psi 0.0 0.0 0.0P'C) Itw Fb:Allowable psi 0.0 0.0 0.0 Bending OK Bending OK Bending OK fv:Actual psi 0.0 0.0 0.0 Fv:Allowable psi 0.0 0.0 0.0 Reactions& Deflections Shear @ Left k 1.08 0.79 0.67 Shear @ Right ki 1.31 0.49 0.48 I Reactions... 0.08 0.22 0,22 DL @ Left k 1.00 1.87 0.94 LL @ Left k 1.08 2.09 1.16 Total @ Left k 0.22 0.22 0.08 DL @ Right k 1.87 0.94 0.40 LL @ Right k 2.09 1,16 0.48 Total @ Right k 0.000 0.000 0.000 Max,Deflection in 0.00 0.00 0.00 @X= ft 0.0 0.0 0.0 Span/Deflection Ratio Query Values Location ft 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Shear k 1.08 0.79 0.67 0.00 0.00 0.00 0.00 0.00 I Moment k-ft 0.00 -2.00 -0.97 0.00 0.00 0.00 0.00 0.00 Max-Deflection in I ##.#### 44.#### ##.#### 0.0000 0.0000 0.0000 0.0000 0.0000 II 100 I f;.....„ ,,-,,_ ',-,e1, 1 rt TM , 4-?, , 1, P tj r 1_-_,.),---1 -' ,3....J Q I - (f-'1') 43 6 i --- -- I 1Y Deep Roof Deck IPrimer Painted or Galvanized im PLB-36 Deck used with PunchLok II System HSB-36 Deck used with TSWs, BPs or Screws IDimensions I . ;=&,"\I 1 3;14 1 1 t t ' ' ' t 611 I -%,-.. , I, I 13/4,, 36" PLB-36 or HSB-36 HSB-36-SS HSB-30 NESTABLE I \_Jfki -----Vr— ---"A. 1----- Standard Interlocking Screw Fastened Overlapping Sidelap I Sidelap Sidelap Available 30"Wide (Special Order)6 Igrk Weight and Section Properties Weight id for Moment Allowable Reactions per ft of Width(Ib)due to Web Crippling Deflection One Flange Loading Two Flange Loading I Gage Galv Painted Single Multi +s ,...s Span Span elf eff End Bearing Length Interior Bearing Length End Bearing Length Interior Bearing Length (pat) (psf) (in.4/ft) (in.4/ft) (in.3/ft) (in.3/ft) 2' 3" 4" 3,. 4" 2" 3" 4" 3" 4" 22 1.9 1.8 0.177 0.192 0.176 0.188 935 1076 1163 1559 1671 962 1078 1150 1935 2084 I20 2.3 2.2 0.219 0.231 0.230 0.237 1301 1492 1609 2190 2340 1413 1576 1675 2744 2947 18 2.9 2.8 0.302 0.306 0.314 0.331 2181 2484 2667 3714 3950 2551 2823 2987 4713 5038 16 3.5 3.4 0.381 0.381 0.399 0.410 3265 3699 3955 5607 5938 4018 4422 4660 7168 7631 Notes: 1.Section properties are based on Fy=50,000 psi. 2. Id is for deflection due to uniform loads. I3.Seff(+or-)is the effective section modulus. 4.Multiply tabulated deck values listed above by the following adjustment factors to obtain acoustical deck section properties: _, ,.., —,^6r,r• , ,-- , . ,-,,„,,„ ,..,.,,----.-r Trt,,,,,,,,,,—,-,ssura r,-,...x, „7:orwr., ..-.,-. ,,avAlv,,,ca 1d for Moment Allowable Reactions per ft of Width(Ib) Deflection One Flange Loading Deck Type Single Multi _,e I Span Span -e'eff -Seff End Bearing Interior Bearing a-Acoustical 0.98 0.98 0.97 0.97 1.00 0.76 I ,, 5.Allowable(ASD)reactions are based on web crippling, per AISI 6100 Section C3.4,where Ow= 1.70 for end bearing and 1.75 for interior bearing. Nominal reactions may be determined by multiplying the table values by 0, RFD reactions may be determined by multiplying nominal reactions by Ow=0.90 for end reactions and 0.85 for interior reactions. 6, Diaphragm values for HSB-30 Nestable are outside the scope of Verco's Evaluation Report. I , I 26 i,..i VR4 I VERO()DECK/Rh,INC. www.vercodeck.com Y al NOTES: ,/-----1� Section properties and allowable are computed in accordance with AISI North American Specification,2007 edition x Ii x lx and ly are for deflection determination S.,and Sy are for bending i..-� ` Material is either ASTM.4653-06 Gr.55 or.49011-04 HSLA5 Gr.55 CI-1 82 Fy=5Sksi Fu=70 ksi DIMENSIONAL PROPERTIES ALLOWABLES AXIS X-X AXIS Y-Y ' Positive Negative Positive Negative D x El x132 Thickness Weight Area Lip Va 1x Rx ly Sy, Ry Section Name COage (in) (1b/ft) Cn2) On) Ma Ma (bps) a II C? (k ft) (k rt) _ Vin) Cn3) Orn (in) Cn°) (n3) On) 8.0x3.5Z16 8.0 x 3.125 x 3.375 16 0.059 , 3.197 0.940 0.911 5.016 5.049 2.435` 9.620 1.828 1.840 3.199 2.581 0.493 1.657 8.0x3.8214 8.0 x 3.125 x 3.375 14 0.070 3.793 1.116 0.930 s 6.412 6.394 4.078 11.378 s 2.336 2.330 3.194 3.076 s 0,575 1.661 8.03.5113 8.0 x 3.125 x 3.375 13 0.085 4.606 1.355 _ 0.956 7.987 7.999 7.330 13.758 2.910 2.915 3.187 3.759 0.703 1.666 0 8.0x3.5212 6.0 x 3.125 x 3.375 12 - 0.105 5.690 1.673 _ 0.990 10.565 10350 12.170 16.898 3.850 3.771 3.178 4.680 0.995 1.672 8.0x3.0Z16 s 8.0 x 2.825 x 2.875 16 0.059 2.997 - 0.881 0.911 4.985 5.041 _ 2.435 8.690 1.816 _ 1.837 3.140 1.725 0.418 1.399 8.0x3.0Z14 8.0 x 2.625 x 2.875 14 0.070 3.555 1.046 _ 0.930 6.186 6.184 4.078 10.278 2254 2.253 3.135 2.057 0.484 1.403 8.0x3.0213 8.0 x 2.625 x 2275 13 . 0.085 _ 4.317 1.270 0.956 7.992 7313 7.330 12.426 _ 2.912 - 2.810 3.128 2.514 0.667 1.407 8.0x3.0212 6.0 x 2.625 x 2.875 12 0.105 5.333 1.568 0.990 10.301 10.350 _12.170 15261 3.753 3.771 3.119 3.133 0.922 1.413 8.0x2.5216 8.0 x 2.125 x 2.375 _ 16 0.059 2.796 0.8220.911 4.909 4.932 2.435 7.759 1.789 1.797 3.072 1.081 0.344 1.146 8.0)2.5214 8.0 x 2.125 x 2.375 14 s.._ 0.070 3.317 0.976 . 0.930 6.103 6.006 4.078 9.177 2.224 2.189 3.067 1.289 0.432 1.150 8.0x2.5213 8.0 x 2.125 x 2.375 ' 13 0.085 4.028 1.185 0.956 7.480 7.479 7.330 11.095 2.725 2.725 3.060 1.577 0.546 1.154 8.0x2.5212 8.0 x 2.125 x 2.375 12 0.105 4.976 1.463 0.990 9.185 9.186 12.170 13.624 3347 3.347 3.051 1.967 0.678 1.160 9.0x3.5Z16 9.0 x 3.125 x 3,375 16 0.059 3.398 0.999 0.911 5.630 5.659 2.148 12.625_ 2.051 2.062 3.555 2.581 0.494 1.607 9.0x3.5214 9.0 x 3.125 x 3.375 14 0.070 4.031 1.186 0.930 7.353 7.440 _3.597_ 14.939 2.679 2.711 3.550 3.077 0.577 1.611 9.0x3.5213 9.0 x 3.125 x 3.375 13 0.085 4.895 1.440 0.956 9.385 9.392 6.463 18.075 3.419 _ 3.422 3.543 3.759 0.705 1.616 9.0x3.5212 9.0 x 3.125 x 3.375 12 0.105 6.047 1.778 0.990 12.376 12.127 12.170 22217 4.509 4.419 3.535 4.680 0.996 1.622 Revision Date:September 23,2010 4 of 7 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: I MURRIETA,CA 92563 Project Descr. 951-301-8975 fax 951-301-4096 artankiwiconstruction.com 'anted:7DEC 2010,3:58PM Torsional Analysis of Rigid Diaphragm Fila=CAUser ALEaN-1.Kiw,DocuMe-11ENERCA-M igariec6 ENERCALC,INC.1983-2016 Build:6.16.10.31,Ver:6.16.10.31 Lic.#:KW-06006193 Licensee ,KIWI II CONSTRUCTION' Description: 2ND LEVEL WALLS,R • 1 General Information Calculations per IBC 2012,CBC 2013,ASCE 7-1 Applied Lateral Force 343.0 k Center of Shear Application: • Additional Orthogonal Force k Distance from'X'datum point 103.40 ft I 92.0 ft Maximum Load Used for Analysis: 343.0 k Distance from"Y"datum point Note: This load is the vector resolved from the above Accidental Torsion values per ASCE 7-05 12.8.4.2 Ecc.as%of Maximum Dimension 5.00 % two entries and will be applied to the system of I elements at angular increments. Maximum Dimensions: Along"X"Axis 210.0 ft Load Orientation Angular Increment 90.0 deg Along"Y"Axis 170.0 ft Load Location Angular Increment 15.0 deg I Center of Rigidity Location (calculated)... "X"dist.from Datum 106.656 ft "Y"dist.from Datum 88.960 ft I Accidental Eccentricity+1-from"X"Coord.of Load Application: 10.50 ft Accidental Eccentricity+1-from"Y"Coord.of Load Application: 8.50 ft Wall Information Label: 1 X Wall C.G.Location 0 ft Wall Length 140 ft I Y Wall C.G.Location 100 ft Wall Height 10 ft Wall Deflections{stiffness}for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.8491E-007 in Wall Fixity Fix-Pin ft -Bending 29500 Mpsi Along Member X Dir 2.0333E+001 in E-Shear 11800 Mpsi I Label: 2 X Wall C.G.Location 100 ft Wall Length 200 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 170 ft Wall Height 10 ft Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 2.6851 E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+001 in E-Shear 11800 Mpsi I Label: 3 X Wall C.G.Location 200 ft Wall Length 15 ft Y Wall C.G.Location 162 ft Wall Height 14 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi I Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi Label: 4 X Wall C.G.Location 210 ft Wall Length 40 ft Y Wall C.G.Location 105 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in I Along Member Y Dir 1.4496E-006 in Wall Fixity Fix-Pin E Bending 29500 Mpsi 11800 Mpsi Along Member X Dir 7.1167E+4Q1 in E-Shear Label; 5 X Wall C.G.Location 110 ft Wail Length 125 ft • Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 30 ft Wall Height 10 ft Wall Angle CCW 0 deg Wall Thickness 0.019 in I Along Member Y Dir 4.3184E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 2.2773E+001 in E-Shear 11800 Mpsi • Label: 6 X Wall C.G.Location 65 ft Wall Length 30 ft Y Wall C.G.Location 15 ft Wall Height 10 ft I Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix Pin E-Bending 29500 Mpsi AIon�Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 7 X Wall C.G.Location 40 ft Wall Length 40 ft I Y Wail G.G.Location O ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 1.44E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 7.1167E+001 in E-Shear 11800 Mpsi Label: 8 X Wall C.G.Location 10 ft Wall Length 20 ft :. I Y Wall C.G.Location 40 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member V Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi I I 103 I KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr. I 951-301-8975 fax 951-301-4096 artRkiwiconstruction.com Noted.7 DEC Zee,3 58PM File=C:lUsarst0.iWN-1.KIWIDOCUME-11ENERCA-lllig�d.ec6 Torsional Analysts of Rigid Diaphragm ENERCALCINC.1983-2016,Bu11d:6.161031,Ver:6.161031 Lic.#: KW-06006193 Licensee;KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R Wall Information I Label: 9 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 50 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in I Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 10 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 60 ft Wall Height 10 ft I Wall Deflections(Stiffness)for 1.0 kip load: Wail Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 11 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C,G.Location 70 ft Wall Height 10 ft I Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 12 X Wall C.G.Location 10 ft Wall Length 20 ft I Y Wall C.G.Location 80 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle COW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 13 X Wall C.G.Location 10 ft Wall Length 20 ft I Y Wall C.G.Location 90 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi I Label: 14 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 100 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi I Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 15 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 110 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle COW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi I Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 16 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member V Dir 3,5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 17 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 130 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 18 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C,G.Location 140 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle COW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in -_ E-Shear _ 11800 Mpsi Label: 19 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 150 ft Wail Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear _11800 Mpsi Label: 20 X Wall C.G.Location 10 ft Wall Length 20 ft Y Wall C.G.Location 160 ft Wall Height 10 ft r Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in _E_Shear - 11800 Mpsi 104 ' I KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: I MURRIETA,CA 92563 Project Dew:951-301-8975 fax 951-301-4096 ' art@kiwiconstruction.com Punted 7DEC 2Dle,358P Torsional Analysis of Rigid Diaphragm Ele=c:WsersWLEON-1.Kcunse-,IENERCA-1Nigd.ec6 ENERCALC,INC.1983-2016,BM:6.16.10.31,Ver.6.16.10.31 Lic,#:KW-06006193 Licensee';KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R Wall Information ) Label: 21 X Wall CO.. Location 30 ft Wall Length 70 ft Wall Deflections(Stiffness)for 1.0 kip lead: Y Wall C.G.Location 55 ft Wall Height 10 ft Alon Member Y Dir Wall Angle CCW 90 deg Wall Thickness 0.019 in 9 7,8543E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 4.0667E+0Q1 in E-Shear 11800 Mpsi Label: 22 X Wall C.G.Location 60 ft Wall Length 15 ft I Wail Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 37 ft Wall Height 10 ft AlongllMember Y Dir Wall Angle CCW 90 deg Walt Thickness 0.019 in 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi Label: 23 X Wall C.G.Location 70 ft Wall Length 15 ft I Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix -Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi I Label: 24 X Wall G.G.Location 80 ft Wall Length 15 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi I Label: 25 X Wall C.G.Location 90 fit Wall Length 15 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in i= Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi ' I Along Member X Dir 1.8978E+002 in E 11800 Mpsi i' -Shear Label: 26 X Wall C.G.Location 10 ft Wall Length 15 ft Il Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in 1. Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi I Along Member X Dir 1,8978E+002 in E-Shear 11800 Mpsi Label: 27 X Wall C.G.Location 110 ft Wall Length 15 ft Walt Deflections(Stiffness)for to kip load: Y Wall C.G.Location 37 ft Wall Height 10 ft Along Member Y Dir 5.6828E-006 in Wall Angle CCW 90 deg Wall Thickness 0.019 in I Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E Shear 11800 Mpsi I' Label: 28 X Wall C.G.Location 120 ft Wall Length 15 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 37 ft Wall Height 14 ft I Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E Bending 29500 Mpsi Along Member X Dir 1.8978E-1-002 in E-Shear 11800 Mpsi Label: 29 X Wall C.G.Location 130 ft Wall Length 15 ft Wall Deflections(Stiffness)for 1,0 kip load: Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+02 in E-Shear 11800 Mpsi Label: 30 X Wall C.G.Location 140 ft Wall Length 15 ft I Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Qtr 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi Label: 31 X Wall C.G.Location 150 ft Wall Length 15 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 37 ft Wall Height 10 ft AlongMember Y Dir Wall Angle CCW 90 deg Wall Thickness 0.019 in 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear11800 Mpsi _ I Label: 32 X Wall C.G.Location 160 ft Wall Length 15 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 5.6828E-06 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi I 105 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descc I 951-301-8975 fax 951-301-4096 art a(?.kiwiconstruction.com Piloted 7 DEC 201G,3 58PM Torsional Analysis of Rigid Diaphragm Fly= sINC 1 83-016 BulE 11ENERGAer:6.l6.10.31 ' ENERCALC,lNG.19B3-2016,Bu�7d 61S 10.31,Ver:6.1610.31 Lic.#: KW-06006193 Licensee.KIWI It CONSTRUCTION Description: 2ND LEVEL WALLS,R Wall Information ' Label: 33 X Wall C.G.Location 170 ft Wall Length 15 ft Y Wall C.G.Location 37 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in I Along Member Y Dir 5.6828E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.8978E+002 in E-Shear 11800 Mpsi Label: 34 X Wall C.G.Location 50 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft I Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0,019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 35 X Wall C,G.Location 60 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft I Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 36 X Wall C.G.Location 70 ft Wall Length 3011 I Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 37 X Wall C.G.Location 80 ft Wall Length 30 ft I Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi I Label: 38 X Wall C.G.Location 90 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi I Label: 39 X Wall C.G.Location 100 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi I Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 40 X Wall C.G.Location 110 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in I Along Member Y Dir 2.0484E-006 in Wail Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 41 X Wall C.G.Location 120 ft Wall Length 30 ft Y Wall C.O.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 42 X Wall C.G.Location 130 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft I Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi Label: 43 X Wall C.G.Location 140 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in _ E-Shear 11800 Mpsi Label: 44 X Wall C.G.Location 170 ft Wall Length 30 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 2.0484E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 9.4890E+001 in E-Shear 11800 Mpsi 141 i 106 iiia I KIWI II CONSTRUCTION Project Title: III 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: fax 951-301-4096 I art@kiwiconstcuction.com Printed_7 DEC 2096.3.58PM Torsional Analysis of Rigid Diaphragm Fite=C:4UsersIALEON-1.KIMPOCUME--11ENERCA-Ntigard.eC6 ENERCALC,INC.1983-2016,Buitdfi.16.10.31,Vet6.16.10.31 Lic.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R IWall Information Label: 45 X Wall C.G.Location 70 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E Shear 11800 Mpsi Label: 46 X Wall C.G.Location 80 ft Wall Length 20 ft I Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E- 2 in E-Shear 11800 Mpsi Label: 47 X Wall C.G.Location 90 ft Wall Length 20 ft I Wall Deflections(Stiffness)for 1,0 kip load: Y Wall C.G.Location 95 ft Wall Height 1a ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E 006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi il II Label: 48 X Wall C.G.Location 100 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Anile CCW 90 deg Wall Thickness 0.019 in Along Member V Dir 3,5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 49 X Wall C.G.Location 110 ft Wall Length 20 ft , Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi I Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 50 X Wall C.G.Location 120 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft .j Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in IAlong Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi 11800 Mpsi Along Member X Dir 1.4233E+002 in E-Shear Label: 51 X Wall G.G.Location 130 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in 11 Along Member Y Dir Along Member X Dir 3,5682E-006 in Wall Fixity Fix Pin E Bending E-Shear 29500 Mpsi 1.4233E+002in 11800 Mpsi !j Label: 52 X Wall C.G.Location 140 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 53 X Wall C.G.Location 150 ft Wall Length 20 ft 111 Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3,5682E-006 in Wall Fixity Fix-Pin E Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 54 X Wall C.G.Location 160 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall G.G.Location 95 ft Wall Height 10 ft Wall Angle e CCW 90 d Wall Thickness 0.019 in Ie9 Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E Bending 29500 Mpsi Along Member X Dir 1,4233E+1)a2 in E-Shear 11800 Mpsi I Label: 55 X Wall C.G.Location 170 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip toad: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi - I Label; 56 X Wall C.G.Location 180 ft Wall Length 20 ft Y Wall C.G.Location 95 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle COW 90 AlongMember Y Dir g deg Wall Thickness 0.019 in 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi IAlong Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi I 107 I KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art{a)kiwiconstruction.com Printed 7 DEC 2010,3 RPM Torsional Anal SIS of RI Id Dia hra Ilii File=C:lUserstALEON-1.KIwlDOCUME-1\ENERCA-lltigerd.ec6 I y9 P g ENERCALC,INC.1983-2016,Build:6.16,10.31,Voce 1610.31 Lic.#:KW-06006193 Licensee:`KIWI ll CONSTRUCTION Description: 2ND LEVEL WALLS,R Wall Information I Label: 57 X Wall C.G.Location 40 ft Wail Length 20 ft Wall Deflections(Stiffness)for 1.0 kipload: Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 58 X Wall C.G.Location 50 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1,0 kip load: Wall Angle COW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-008 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 59 X Wall C.G.Location 60 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 60 X Wall G.G.Location 70 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kipload: Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 61 X Wall C.G.Location 80 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle COW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 62 X Wall C.G.Location 90 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kipload: Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in • Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 63 X Wall C.G.Location 100 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+02 in E-Shear 11800 Mpsi Label: 64 X Wall C.G.Location 110 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-06 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+02 in E Shear 11800 Mpsi Label: 65 X Wall C.G.Location 120 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 66 X Wall C.G.Location 130 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kipload: Y Wall C.G.Location 120 ft Wall Height 10 in Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 67 X Wall C.G.Location 140 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kipload: Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in ;i Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+02 in E-Shear 11800 Mpsi Label: 68 X Wall C.G.Location 150 ft Wall Length 20 ft Y Wall C.G.Location 120 ft Wall Height 10 ft f Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+402 in E Shear 11800 Mpsi 108 I I KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr. 951-301-8975 fax 951-301-4096 i ' art((7�,kiwiconstruction.com Frheaa:70EC2016,3 66P Torsional Analysis of Rigid Diaphragm File=C:lUsersVILEON-1.KIWt00CUME-11ENERCA-ltligard.ec6 ENERCALC,INC.1983-2016,Bv8d:6.16.10.31,Vec6.16.10.31 Lic.#:KW-06006193 Licensee::KIWI II CONSTRUCTION' Description: 2ND LEVEL WALLS,R IWall Information Label: 69 X Wall C.G.Location 160 ft Wall Length 20 ft • Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 70 X Wall C.G.Location 170 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip toad: Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along MemberY Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+402 in E-Shear 11800 Mpsi Label: 71 X Wall C.G.Location 180 ft Wall Length 20 ft I Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsit. Label 72 X Wall C.G.Location 30 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi II Label: 73 X Wall C.G.Location 40 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load; Y Walt G.G.Location 145 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi I Label Along Member74 X Dir 1.4233E+002 in E-Shear 11800 Mpsi : X Wall C.G.Location 50 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall G.G.Location 145 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in IXAlong Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 75 Wall C.G.Location 60 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in 111 Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 76 X Wall C.G.Location 70 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 145 ft Wal(Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+0p2 in E-Shear 11800 Mpsi Label: 77 X Wall C.G.Location 80 ft Wall Length 20 ft III Wali Deflections(Stiffness)for 1.0 kip load: Y Wait C.G.Location 145 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 0,019 in Along Member Y Dir 3.5682E 006 in Wall Fixity Fix-Pin E Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 78 X Wall C.G.Location 90 ft Wall Length 20 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall G.G.Location Wall Angle CCW 90 deg 10 ft Wail Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix Fin145 ft Wall Height E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear_ 11800 Mpsi I Label: 79 X Wall C.G.Location 100 ft Walt Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle COW 90 deg Wall Thickness 0.019 in F. Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear11800 Mpsi Label: 80 X Wall C.G.Location 110 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi I Along Member X Dir 1.4233E+002 in _ E-Shear 11800 Mpsi I 109 • KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer; Project ID: MURRIETA,CA 92563 Project Descr: 11I 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Panted.7 DEC 2016,3 56PM Torsional Analysis of Rigid Diaphragm File=CEUserslALEON-1.KIW1o000ME-11ENERCA111gard.ec6 ENERCALC,INC.1983-2016,Build 6.16.1031,Vnr:6.161031 Lic.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R Wall Information 1 Label: 81 X Wall C.G.Location 120 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 82 X Wall C.G.Location 130 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in I Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi • Along Member X Dir 1,4233E+002 in E-Shear 11800 Mpsi Label: 83 X Wall C.G.Location 140 ft Wall Length 20 ft Y Wall G.G.Location 145 ft Wall Height 10 ft111 Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 84 X Wall C.G.Location 150 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft1 Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle COW 90 deg Wall Thickness 0.019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 85 X Wall C.G.Location 160 ft Wall Length 20 ft in Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in Along Member V Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 86 X Wall C.G.Location 170 ft Wall Length 20 ft I Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0,019 in Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 87 X Wall C.G.Location 180 ft Wall Length 20 ft Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 0.019 in i 1 Along Member Y Dir 3.5682E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 1.4233E+002 in E-Shear 11800 Mpsi Label: 88 X Wall C.G.Location 75 ft Wall Length 50 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in 1 Along Member Y Dir 1.1276E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi _Along Member X Dir 5.6934E+001 in E-Shear 11800 Mpsi Label: 89 X Wall C.G.Location 130 ft Wail Length 40 ft Wall Deflections(Stiffness)for 1.0 kipload: Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Angle CCW 0 deg Wall Thickness 0.019 in I Along Member Y Dir 1.4496E-006 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 7.1167E+001_in_ E-Shear 11800 Mpsi • Label: 90 X Wall C.G.Location 145 ft Wall Length 70 ft Y Wall G.G.Location 97 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in i 111 Along Member Y Dir 7.8543E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 4.0667E+001 in � -, ____.._._. W_.__ME- _ 11800Mpsi , Label: 91 X Wall C.G.Location 145 ft Wall Length 70 ft Y Wall C.G.Location 120 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in r Along Member Y Dir 7.8543E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 4.0667E+001 in E-Shear 11800 Mpsi C. Label: 92 X Wall C.G.Location 65 ft Wall Length 70 ft j Y Wall C.G.Location 120 ft Wall Height 10 ft ; Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 0.019 in Along Member Y Dir 7.8543E-007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 4.0667E+001 in E-Shear 11800 Mpsi ' 110 1 1 I KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: fax 951-301-4096 art(o7kiwiconstruction.com Primed 7DEG 2016,3;58pM Torsional Anal Sts +,f Ri id Dia hra m File=C:(Users&ALEON--1.KHNCUME-1lENERCA-1ltigard.ec6 y g p g ENERCALC,INC.1983.2016,13u1Id:6.16.10.31,Ver:6.16.10.31 Lie.#:KW-06006193 Licensee KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R IWall Information Label: 93 X Wall C.G.Location 65 ft Wall Length 70 ft 1 alWall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 145 ft Wall Height 10 ft Wall Angle CCW 0 deg Wall Thickness 0.019 in AlongI Member Y Dir 7.8543E 007 in Wall Fixity Fix-Pin E-Bending 29500 Mpsi Along Member X Dir 4,0667E+QQ1 in E Shear 11800 Mpsi Label: 94 X Wall C.G.Location 145 ft Wall Length 70 ft I Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location Wall Angle CCW 145 ft Wall Height Q deg Wall Thickness 0.019 in Along Member Y Dir 7.8543E-007 in Wall Fixity Fix Pin F 10 ft Bending 29500 Mpsi Along Member X Dir 4.0667E+001 in E-Shear 11800 Mpsi Label: 95 X Wall C.G.Location 10 ft Wall Length 20 ft P Y Wall C.G.Location 30 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 7.625 in Along Member Y Dir 2,3315E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 5.7921 E-005 in E-Shear 450 Mpsi Label: 96 X Wall C.G.Location 20 ft Wall Length 6 ft _ Y Wall C.G.Location 23 ft Wall Height 10 ft Walt Deflections(Stiffness)far 1.0 kip load: Wall Angle CCW 90 deg Wail Thickness 7,625 in Along Member Y Dir 2.7417E-006 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along_Member X Dir 1.9307E-004 in E-Shear 450 Mpsi I Label: 97 X Wall C.G.Location 50 ft Wall Length 10 ft Y Wall C.G.Location 105 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix-Pin F-Bending 1125 Mpsi Along Member X Dir 1.1584E-004 in E-Shear 450 Mpsi Label: 98 X Wall C.G.Location 55 ft Wall Length 10 ft Y Wall C.G.Location 100 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 1.1584E-004 in E-Shear 450 Mpsi Label: 99 X Wall C.G,Location 50 ft Wall Length 10 ft Y Wall C.G.Location 95 ft Wall Height 10 ft • Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 7.625 in 1 Along Member Y Dir Along Member X Dir 8.16Q3F 007 in Wall Fixity Fix-Pin E-Bending E-Shear 1125 Mpsi 1.1584E-004 in 450 Mpsi , Label; 100 X Wall C.G.Location 150 ft Wall Length 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Y Wall C.G.Location 61 ft Wall Height 10 ft Wall Angle CCW 90 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi I - Along Member X Dir 1.1584E-004 in F-Shear 450 Mpsi Label: 101 X Wall C.G.Location 155 ft Wall Length 10 ft I Wall Deflections{Stiffness}for 1.0 kip load: Y Wall C.G.Location Wall Anile CCW 0 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix Pinfib ft Wall Height E 10 ft Bending 1125 Mpsi Along Member X Dir 1.1584E-004 in E-Shear 450 Mpsi Label: 102 X Wall C.G.Location 160 ft Wall Length 10 ft Y Wall C.G.Location 61 ft Wall Height 10 ft I Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 1.1584E-004 in E-Shear 450 Mpsi I Label: 103 X Wall C.G.Location 190 ft Wall Length 15 ft Y Wall C.G.Location 57 ft Wall Height 10 ft Wall Defections(Stiffness)for 1.0 kip load: Wall Angle CCW 90 deg Wall Thickness 7.625 in Along Member Y Dir 3.7131E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 7.7228E-005 in E-Shear 450 Mpsi Label: 104 X Wall C.G.Location 195 ft Wall Length 10 ft Y Wall C.G.Location 65 ft Wall Height 10 ft Wall Deflections(Stiffness)for 1.0 kip load: Wall Angle CCW 0 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi IAlong Member X Dir _ 1.1584E-004 in E-Shear 450 Mpsi 1 111 j i KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: I MURRIETA,CA 92563 Project Descr: � 951-301-8975 fax 951-301-4096 I arf(o)kiwiconstruction.cam Printed:7DEC 201n,3:58PM Torsional Analysis of Rigid Diaphragm File C:lUserst4LEON-1.KIMDOCUME-11ENERCA--111igard.ec6 ENERCALC.INC 1983-2016,Bulld.6.16.10.31,Vec6.16.10.31 Lie.#:KW-06006193 Licensee:;KIWI II CONSTRUCTION I Description: 2ND LEVEL WALLS,R 1 Wall Information I Label: 105 X Wail C.G.Location 195 ft Wall Length 10 ft for 1,0 kipload: Y Wall C.G.Location 45 ft Wall Height 10 ft 1 Wall Deflections (Stiffness) Wall Angle CCW 0 deg Wall Thickness 7.625 in Along Member Y Dir 8.1603E-007 in Wall Fixity Fix-Pin E-Bending 1125 Mpsi Along Member X Dir 1.1584E-004 in E-Shear _450 Mpsi ANALYSIS SUMMARY Maximum shear forces applied to resisting elements.Eccentricity with respect to Center of Rotation i Maximum Shear along Member Y Axis Maximum Shear along Member X Axis Resisting Element Load Angle X-Ecc(ft) Y-Ecc(ft) Shear Force (k) Load Angle X-Ecc(ft) Y-Ecc(ft) Shear Force (k) 1 ��.. 270 13,76 3.04 35.366 0 3.26 11.54 0.000 1 2 0 3.26 11.54 50.901 270 13.76 3.04 0.000 3 90 13.76 3.04 2.335 0 3.26 11.54 0.000 4 90 13.76 3.04 9.332 0 3.26 11.54 0.000 5 180 3.26 11.54 30.547 90 13.76 3.04 0.000 1 6 270 13.76 3.04 5.830 180 3.26 11.54 0.000 1 7 180 3.26 11.54 9.546 270 13.76 3.04 0.000 8 180 3.26 11.54 3.636 270 13.76 3.04 0.000 9 180 3.26 11.54 3.576 270 13.76 3.04 0.000 1 10 180 3,26 11.54 3.516 270 13.76 3.04 0.000 1 11 180 3.26 11.54 3.455 270 13,76 3.04 0,000 12 180 3.26 11.54 3.395 270 13.76 3.04 0.000 13 0 3.26 11.54 3.347 270 13.76 3.04 0.000 j 14 0 3.26 11.54 3.407 270 13.76 3.04 0.000 )!) 15 0 3.26 11.54 3.468 270 13.76 3.04 0.000 f 16 0 3.26 11.54 3.528 270 13.76 3.04 0.000 17 0 3.26 11.54 3,589 270 13.76 3.04 0.000 ! 18 0 3.26 11.54 3.649 270 13.76 3.04 0.000 19 0 3.26 11.54 3.709 270 13.76 3.04 0.000 1 20 0 3.26 11.54 3.770 270 13.76 3.04 0.000 21 270 13.76 3.04 16.349 180 3.26 11.54 0.000 i 22 270 13.76 3.04 2.124 180 3.26 11.54 0.000 23 270 13,76 3,04 2.079 180 3.26 11.54 0.000 . 24 270 13.76 3.04 2,034 180 3.26 11.54 0.000 25 270 13.76 3,04 1.988 180 3.26 11.54 0.000 �' 26 270 13.76 3.04 1.943 180 3.26 11.54 0.000 1 27 90 13.76 3.04 1.928 180 3.26 11.54 0.000 28 90 13.76 3.04 1.973 180 3.26 11.54 0.000 29 90 13.76 3.04 2.019 180 3.26 11.54 0.000 30 90 13.76 3.04 2.064 180 3.26 11.54 0.000 31 90 13.76 3.04 2.109 180 3.26 11.54 0.000 ,11 32 90 13.76 3.04 2.154 180 3.26 11.54 0.000 33 90 13.76 3.04 2.199 180 3.26 11.54 0.000 i1 34 270 13.76 3.04 6.018 180 3.26 11.54 0.000 35 270 13,76 3.04 5.892 180 3.26 11.54 0.000 36 270 13.76 3.04 5.767 180 3.26 11.54 0.000 37 270 13.76 3.04 5.641 180 3.26 11.54 0.000 II 38 270 13.76 3.04 5.516 180 3.26 11.54 0.000 39 270 13.76 3.04 5.390 180 3.26 11.54 0.000 40 90 13.76 3.04 5.349 180 3.26 11.54 0.000 E1 112 )' I KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: I MURRI ETA,CA 92563 Project Descr. 951-301-8975 fax 951-301-4096 I art@kiwiconstruction,com Printed 7DEC 2018,3.58PM Torsional Analysis of Rigid Diaphragm File=C:luserslALEON-1.KIw1DOCUME-1 ENERCA-ntigard.ec6 ENERCALC,INC,1983-2016,8uild.6.16.10.31,Ver.6.16,10.31 tic.#: KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R 1 ANALYSIS SUMMARY Maximum shear forces applied to resisting elements.Eccentricity with respect to Center of Rotation Maximum Shear along Member Y Axis Maximum Shear along Member X Axis Resisting Element Load Angle X-Ecc(ft) Y-Ecc(ft) Shear Force (k) Load Angle X-Ecc(ft) Y-Ecc(ft) Shear Force(k) I41 90 13.76 3.04 5.474 180 3.26 11.54 0.00042 90 13.76 3.04 5.600 180 3.26 11.54 0.000 43 90 13.76 3.04 5.725 180 3.26 11.54 0.000 I 44 90 13.76 3.04 6.102 180 3.26 11.54 0.000 45 270 13.76 3.04 3.311 0 3.26 11.54 0.000 46 270 1316 3.04 3.239 0 3.26 11.54 0.000 47 270 13.76 3.04 3.167 0 3.26 11,54 0.000 48 270 13.76 3.04 3.095 0 3.26 11.54 0.000 49 90 13.76 3.04 3.071 0 3,26 11,54 0.000 50 90 13.76 3.04 3.143 0 3.26 11.54 0.000 51 90 13.76 3.04 3.215 0 3.26 11.54 0.000 I 52 90 13.76 3.04 3.287 0 3.26 11.54 0.000 53 90 13.76 3.04 3.359 0 3.26 11.54 0.000 54 90 13.76 3.04 3.431 0 3.26 11.54 0.000 55 90 13.76 3.04 3.503 0 3.26 11.54 0.000 56 90 13.76 3.04 3.575 0 3.26 11.54 0.000 57 270 13.76 3.04 3.527 0 3.26 1t54 0.000 I ' 58 270 13.76 3.04 3.455 0 3.26 11.54 0.000 59 270 13.76 3.04 3.383 0 3.26 11.54 0.000 -1,60 270 13.76 3.04 3.311 0 3.26 11.54 0.000 61 270 13.76 3.04 3.239 0 3.26 11.54 0.000 I 62 270 13.76 3.04 3.167 0 3.26 11.54 0.000 63 270 13.76 3.04 3,095 0 3.26 11,54 0.000 64 90 13.76 3.04 3.071 0 3.26 11.54 0.000 65 9t} 13.76 3.04 3,143 0 3.26 11.54 0.000 66 90 13.76 3.04 3.215 0 3.26 11.54 0.000 67 90 13.76 3.04 3.287 0 3.26 11.54 0.000 I68 90 13.76 3.04 3.359 0 3.26 11.54 0.000 69 90 13.76 3.04 3.431 0 3.26 11.54 0.000 70 90 13.76 3.04 3.503 0 3.26 11.54 0.000 71 90 13.76 3.04 3.575 0 3.26 11.54 0.000 I 72 270 13.76 3.04 3.599 0 3.26 11.54 0.0001 73 270 13.76 3.04 3.527 0 3,26 11.54 0.000 74 270 13.76 3.04 3.455 0 3.26 11.54 0.000 I75 270 13.76 3.04 3.383 0 3.26 11.54 0.000 76 270 13.76 3.04 3.311 0 3.26 11.54 0.000 77 270 13.76 3.04 3.239 0 3.26 11.54 0.000 78 270 13.76 3.04 3.167 0 3.26 11.54 0.000 I79 270 13.76 3.04 3.095 0 3.26 11.54 0.000 80 90 13.76 3.04 3.071 0 3.26 11.54 0.000 81 90 13.76 3.04 3.143 0 3.26 11.54 0.000 - I82 90 13.76 3.04 3.215 0 3.26 11.54 0.000 83 90 13.76 3.04 3.287 0 3.26 11.54 0.000 84 90 13.76 3.04 3.359 0 3.26 11.54 0.000 85 90 13.76 3.04 3.431 0 3.26 11.54 0.000 I 113 z I KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Printed'.7 DEC 2018.3:58PM F, =C1UsersIALEONAKIWID000ME-11ENERCA-iUigard.ec6Torsional Analysis of Rigid Diaphragm ENERCALC,INC 1963-2016,Build:6.16.10.31,Ver.616.10.31 Lic.#: KW-06006193 Licensee:KIWI II CONSTRUCTION Description: 2ND LEVEL WALLS,R ANALYSIS SUMMARY Maximum shear forces applied to resisting elements.Eccentricity with respect to Center of Rotation 1 Maximum Shear along Member Y Axis Maximum Shear along Member X Axis Resisting Element Load Angle X-Ecc ft) Y-Ecc ft Shear Force(k) Load An+le X-Ecc ft Y-Ecc ft Shear Force (k) 86 90 13.76 3.04 3.503 0 3.26 11.54 0.000 87 90 13.76 3.04 3.575 0 3.26 11.54 0.000 88 180 3.26 11,54 11.029 270 13.76 3.04 0.000 89 180 3.26 11.54 8.579 90 13.76 3.04 0.000 ii 90 0 3.26 11.54 15.397 90 13.76 3.04 0.000 II 91 0 3.26 11.54 16.028 90 13.76 3.04 0.000 92 0 3.26 11.54 16.028 270 13.76 3.04 0.000 93 0 3.26 11.54 16.715 270 13.76 3.04 0.000 94 0 3.26 11.54 16.715 90 13.76 3.04 0.000 95 180 3.26 11.54 56.578 270 13.76 3.04 0.231 96 270 13.76 3.04 4.777 180 3.26 11.54 0.069 97 0 3.26 11,54 15.031 270 13,76 3.04 0.106 98 270 13.76 3.04 14.949 0 3.26 11.54 0.105 99 0 3.26 11.54 14.767 270 13.76 3.04 0.106 100 90 13.76 3.04 14.687 180 3.26 11.54 0.108II 101 180 3.26 11.54 15.214 90 13.76 3.04 0.105 102 90 13.76 3.04 15.002 180 3.26 11.54 0.108 103 90 13.76 3.04 35.047 180 3.26 11.54 0.163 104 180 3.26 11.54 15.240 90 13.76 3.04 0.113 105 180 326 11.54 15.769 90 13.76 3.04 0.113 Layout of Resisting Elements Legend: I I Defined Wall X Datum Center of Rigidity Center of Mass C=) Accidental eccentricity application boundary 2 r l I I I 3� 8 214374 161'718149i01112191341516i7I 6 57€,8 L910 1L 6314 ik5i661318I9140 1 1 5 1 q 9 45116117,- - •1 .24.3.' .5.6 4 2 34x548.:7:819,0 1 9 1 8 2 4 10f iO3 1 e Ii05 95 1 5 96 x76 • • I i 114 I WALL WALL DIRECT UNIT 12/7/2016 WALL WALL DIRECT UNIT NUMBER LENGTH SHEAR SHEAR NUMBER LENGTH SHEAR SHEAR I FT KIPS PLF FT KIPS PLF 1 140 35.36 253 45 20 3.31 166 2 200 50.9 255 .- ! \A') ("L 46 20 3.23 162 I 3 15 2.33 155 47 20 3.16 158 4 40 9.33 233 48 20 3.09 155 5 125 30.54 244 49 20 3.07 154 I 6 30 5.83 194 50 20 3.14 157 7 40 9.54 239 51 20 3.21 161 8 20 3.63 182 52 20 3.28 164 I 9 20 3.57 179 53 20 3.35 168 10 20 3.51 176 54 20 3.43 172 11 20 3.45 173 55 20 3.5 175 I12 20 3.39 170 56 20 3.57 179 13 20 3.34 167 57 20 3.52 176 14 20 3.4 170 58 20 3.45 173 1 15 20 3.46 173 59 20 3.38 169 16 20 3.52 176 60 20 3.31 166 17 20 3.58 179 61 20 323 162 I18 20 3.64 182 62 20 3.16 158 19 20 3.7 185 63 20 3.09 155 20 20 3.77 189 64 20 3.07 154 I 21 70 16.34 233 65 20 3.14 157 22 15 2.12 141 66 20 3.21 161 23 15 2 07 138 67 20 3.28 164 24 15 2.03 135 68 20 3.35 168 25 15 1.98 132 69 20 3.43 172 26 15 1.94 129 70 20 3.5 175 27 15 1.92 128 71 20 3.57 179 28 15 1.97 131 72 20 3.59 180 I 29 15 2.01 134 73 20 3.52 176 30 15 2.06 137 74 20 3.45 173 31 15 2.1 140 75 20 3.38 169 111 32 15 2.15 143 76 20 3.31 166 33 15 2.19 146 77 20 3.23 162 34 30 6.01 200 78 20 3.16 158 I35 30 5.89 196 79 20 3.09 155 36 30 5.76 192 80 20 3.07 154 37 30 5.64 188 81 20 3.14 157 38 30 5.51 184 82 20 3.21 161 39 30 5.39 180 83 20 3.28 164 40 30 5.34 178 84 20 3.35 168 I 41 30 5.47 182 85 20 3.43 172 42 30 5.6 187 86 20 3.5 175 43 30 5.72 191 87 20 3.57 179 I 44 30 6.1 203 88 50 11.02 220 1 115 I WALL WALL DIRECT UNIT I NUMBER LENGTH SHEAR SHEAR FT KIPS PLF 89 40 8.57 214 1 90 70 15.39 220 91 70 16.02 229 92 70 16.02 229 93 70 16.71 239 94 70 1671 239 95 20 56.57 2829 MAK C V 96 6 4.77 795 97 10 15.03 1503 98 10 14.94 1494 99 10 14.76 1476 100 10 14.68 1468 101 10 15.21 1521 102 10 15 1500 103 15 35.04 2336 1 104 10 15.24 1524 105 10 15.76 1576 -111 I I I I I I 1 I I 116 1 I 1 IcHEAR OF COMPOSITE DECK USING 2.5"CONCRETE COVER WITH SHEAR STEEL: fc:= 3000 vc:= 1.24Tc•PSI vc=65,727•PSI DIA:= ,192•IN 6 GAGE WIRE I Vmax:= vc+ 4.44fc•PSI Vniax=306.725•PSI 1926.3.1 2 At := rr•DIA Av=0.0291N2 d:= 2.S IN s:= 6•IN 1911.5 2 fy 60000•PSI 4 I !! Vs:= Av-fy Vs= 1737.175-LB 1911.5.6.2 111 Vc:= s•d•vc Vc= 985.901•LB := .85 1909.3.2.3 Vu:= 4q-(Vs+ Ye) Vu=2314.614LB < Vm:= Vmax-d-s Vm=4600.869•LB Va:= if(Vu <Vm,Vu,Vm) Ivu:= 3300•PLF•s•1.4 vu=2310 LB < Va=2314.614 LB ITHERFORE USE 6x6-616 W.W.M.AT SECOND FLOOR SLAB - I I 1 I I I I I I I 117 C Ci i0Z, V-7 i WIDE FLANGE BEAM CONNECTION: 40 FT SPAN,20 FT TRIBUTARY,10 FT WIDE I 11 P:= (DL+ LL+ FDL + FLL)•10•FT•20•FT P= 39400 LB MINIMUM WELD IS 24"OF 1/4"WELD BOTH SIDES OF PLATE Vail:= 900,-4-24•IN•2 VaII= 172800 LB >> P= 39400 LB OK 111 DESIGN FOR 4"MAX ECCENTRICITY PER DETAIL 8/D4 1 PER TABLE 7-7 THE FACTOR IS F:= 11.1 I SHEAR TO EACH BOLT IS � = 3549.55 LB << Vali:= 12600-LB OK ALL OTHER CONNECTIONS WILL BE DESIGNED IN SIMILAR FASHION AND WILL BE DETAILED IN HEAVY STEEL SHOP DRAWINGS ANDIII WILL BE DEFERRED SUB MITTALAS NOTED ON KS-1. I i I 1 I 1 I I ii l I 118 1 I KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-3014096 artAkiwiconstrucIion.com Printed 7 DEC 2015,1:52PM File=C:lUsersIALEON-1.KIWt)000ME IIENERCA lligard.ec6 Steel BeamENERCALC,INC.1983-2016,Build 6161031 Ver616.10.31 Lic.#:KW-06006193 Licensee:;KIWI II CONSTRUCTION Description: 12 FT JACK,r CODE REFERENCES II Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 Material Properties _ Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against lateral-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending D(11.726)L12.2)L(27.5)S(2 2) I ei Span=12.0 II C15x33.9 Applied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading Load(s)for Span Number 1 Point Load: D=11.726, Lr=2,20, L=27.50, S=2.20 k @ 4.0 ft DESIGN SUMMARY Design OK Maximum Bending Stress Ratio = 0.828: 1 Maximum Shear Stress Ratio= 0.245 : 1 Section used for this span C15x33.9 Section used for this span C15x33.9 Ma:Applied 104.996 k-ft Va:Applied 26.354 k Mn 1 Omega:Allowable 126.747 k-ft Vn/Omega:Allowable 107.784 k Load Combination +D+L+H Load Combination +D+L+H Location of maximum on span 4.011 ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection Max Downward Transient Deflection 0,162 in Ratio= 889>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 0.233 in Ratio= 619>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 Overall Maximum Deflections I Load Combination Span Max."-"Defl Location in Span Load Combination Max."+"Defl Location in Span +D+L+H 1 0.2326 5.486 0.0000 0.000 Vertical Reactions Support notation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MAXimum 26.354 13.279 Overall MINimum 1.467 0.733 +D+H 8.021 4.112 +D+L+H 26.354 13.279 +D+Lr+H 9.487 4.845 +D+S+H 9.487 4.845 I +0+0,75411+0.7501+H 22.871 11.537 +D+0.750L+0.750S+H 22.871 11.537 +D+0.60W+H 8.021 4.112 +D+0.70E+11 8.021 4.112 +D+0.750Lr+0.7501-0.450W+H 22.871 11.537 +D+0.7501+0.750S+0.450W+H 22.871 11.537 +D+0.7501+0.750S+0.5250E+11 22.871 11.537 +0,600+0.60W+0.60H 4.812 2.467 +0.600+0.70E+0.60H 4.812 2.467 0 Only 8.021 4.112 Lr Only 1.467 0.733 III 1 Only 18.333 9.167 S Only 1.467 0.733 W Only 120 1 IW18X46 TO C15X33.9 P:= (7.137+ 1,467+ 18.333)•1000•LB P =26937 LB P I V:= 2627•LB N:_ - V N= 10.254 THEREFORE USE 12 BOLTS ICHECK OTHER END P := (3.67+ .733+ 9.167).1000-LB P = 13570 LB 1 V:= 2627•LB N:= V N=5.166 THEREFORE USE 6 BOLTS 1 1 I r I1 I II 1 1 I I iil{ I I I I I 1 121 1 ITEM 20 BLADE STRUCTURE: Pw:= 32.9•PSF•.6 Pw= 19.74•PSF WORST CASE AT TOP EXTENDS 4 FT PAST BUILDING: L:= 4•FT Pw•14•FT•L2 M:= 2 M = 2210.88•FT•LB Sxreq:= M Sxreq= 0.961 IN3 6"X6"X3/16"TUBE STEEL OK 46000•PSI•.6 CHECK CONNECTION AT BASE HAIRPINS AROUND 5/8"THRU BOLTS 23"APART PER DETAIL 5/KS9 r Mr:= 30681B-23•IN Mr= 5880.333•FT.LB >> M = 2210.88•FT•LB OK LESSOR WINGS IN OTHER AREAS OK BY COMPARISON ITEM 22 1 LEDGER ANCHORAGE TO CMU WALLS FOR GRAVITY LOADS 111 P := (FDL+ FLL)•5•FT•2•FT P= 1730 LB Val!:= 2123.LB PER ICC ESR 1385 CHECK LEDGER IN BENDING BETWEEN ANCHORS (FDL+ ELL)•5•FT•(2•FT) 2 -i M.= M = 432.5•FT-LB 8 4X4 X1/4 ANGLE Sx:= 1.03•IN 3 M OK fb:_ — fb= 5038.835 PSI << Fb:= 36000-PSI-.6 Fb= 21600 PSI Sx I I I 122 I CHECK CONCRETE DECK FOR BEARING LOAD OF 5461 PLF I CONSERVATIVELY CHECK ONLY CONCRETE TOPPING FOR AXIAL LOAD: IlA= 2•IN•12•IN A=24IN2 IP:= 5461-LB P fa:= — fa=227.542.PSI COMPOSITE DECK IS 3000 PSI A faf:= fa-1.6 faf=364.067.PSI I Fa:= .85.3000-PSI = >> . Fa 2550•PS! faf=364.067 PSI OK ICHECK SHEAR ON REBAR AT DECK TO WALL IN I'ERSECTION PER I 21S3.2: #5 BARS AT 12"0/C IN SHEAR Vail := .4.60000 PSI .3068 IN2 Vali =7363.2 LB > P =5461 LB OK NOTE THIS ISA FULL BASEMENT WITH EQUAL AND OPPOSITE FORCES ONTHE OPPOSITE SIDES I CHECK COMBINED BENDING AND AXIAL ON COMPOSITE DECK:. IAc:= 4.1 N•7.I N Ac=281N2 CONSERVATIVELY USE TRAPEZOIDAL SECTION As:= .048•I N.9.25.I N As=0.4441N2 AREA OF 18 GAGE DECK FOR PORTION OF SECTION I USE EQUIVALENT TRAPEZOIDAL SECTION IN ATTACHED ANALYSIS WITH(4)#3 BARS WITH 5461#LOAD THE MEMBER IS 30.1%STRESSED 1 PER VERCO TABLE ALLOWABLE LIVE LOAD ON DECK IS 203 PSF WITH BOTH AXIAL AND BENDING THE COMBINED STRESS IS.... I 125 — + .301 =0.917 < 1.0 OK 203 INOTE OVER 2"OF THE 2"TOPPING NOT USED IN ANALYSIS WHICH WILL DECREASE OVERALL STRESS EVEN MORE THEREFORE THIS IS ASIMPLIFIED YET CONSERVATIVE DESIGN 1 2 ' z. 4 o ifLA e,1 I I 1 123 AA4)0 KIWI II CONSTRUCTION Project Title: 28177 KELLER ROAD Engineer: Project ID: MURRIETA,CA 92563 Project Descr: I 951-301-8975 fax 951-301-4096 art@kiwiconstruction.com Printed:31 OCT 2016,11.17AM Concrete Column File=C:tUsersALEON-1JOt 0OCUME-1IENERCA^fltigard.ec6 ' ENERCALC,INC.19632016,au ld:6.16.6.7,Ver.6.16.6.7 Lic.#:KW-06006193 Licensee:KIWI II CONSTRUCTION Description: —None-- Code References I Calculations per ACI 318-11,IBC 2012, CBC 2013,ASCE 7-10 Load Combinations Used:ASCE 7-10 General Information Pc:Concrete 28 day strength = 3.0 ksi Overall Column Height = 10.0 ft E_ = 3,122.0 ksi End Fixity Top&Bottom Pinned Density = 150.0 pcf Brace condition for deflection(buckling)along columns: P = 0.850 X-X(width)axis: I fy-Main Rebar = 60.0 ksi Unbraced Length for X-X Axis buckling=10 ft,K=1.0 E-Main Rebar = 29,000.0 ksi Y-Y(depth)axis: Allow.Reinforcing Limits ASTMA615 Bars Used Fully braced against buckling along Y-Y Axis Min.Reinf. = 1.0% Max.Reint. = 8.0% Column Cross Section Column Dimensions: Top Width=5.0in,Bottom Width=9.0in, 'r I Height=4.0in,Top Offset=2.0in,Column Edge to Rebar Edge Cover=1,0in 0#3 4163 el\ , Column Reinforcing: general x In I Rebar Sizes&Locations Total bars= 4 X&Y distances measured from lower-left comer. Bar Size X Y Bar Size X Y Bar Size X Y Bar Size X Y # in in # in in # in in # in in #3 6.000 3.000 #3 3.000 3.000 #3 7.500 1.000 #3 1.500 1.0000 Applied Loads Entered loads are factored per load combinations specified by user. Column self weight not internally calculated I AXIAL LOADS... Axial Load at 10.0 ft above base,H=5.461 k DESIGN SUMMARY Load Combination +1.40D+1.6011 Maximum SERVICE Load Reactions.. Location of max.above base 9.933 ft Top along Y-Y 0.0 k Bottom along Y-Y 0.0 k Maximum Stress Ratio 0.301:1 Top along X-X 0.0k Bottom along X-X 0.0 k Ratio=(PuA2+MuA2)A.5/(PhiPnA2+PhiMnA2)A.5 Pu= 8.738 k cp *Pn= 28.641 kI Mu-x= 0.7857 k-ft (P *Mn-x= -2.623 k-ft Maximum SERVICE Load Deflections... Along Y-Y 0.0 in at 0,0 ft above base Mu-y= 0.0 k-ft (P"Mn-y= 0.0 k-ft for load combination: Mu Angle= 0.0 deg Along X-X 0.0in at 0.011 above base I Mu at Angle= 0.7857 k-ft cpMn at Angle= 2.638 k-ft for load combination: Pn&Mn values located at Pu-Mu vector intersection with capacity curve I Column Capacities... General Section Information.(p = 0,650 0to =0.850 0 = 0.80 Pnmax:Nominal Max.Compressive Axial Capacity 96.678 k p :%Reinforcing 1.571 !o Rebar!o Ok Pnmin:Nominal Min.Tension Axial Capacity -26.40 k Reinforcing Area 0.440 in 2 cp Pn,max:Usable Compressive Axial Capacity 50.273 k Concrete Area 28.0 inA2 cp Pn,min:Usable Tension Axial Capacity -17.160 k I I - +, . ,0c 1----- . 17 4' It ° f, C) I 2 124 I KIWI II CONSTRUCTION Project Title: I 28177 KELLER ROAD Engineer. Project ID: MURRIETA,CA 92563 Project Descr: 951-301-8975 fax 951-301-4096 I art@kiwiconstruction.com Printed:7 DCC 20t6,4:42PM Steel Beam File-C;lDsersl4LEON-1,KMADOCUME-1IENERCA 11tigard.ec6 ENERCALC,1NC.1983 2016,Build:6.16.10.31,Ver:6.16.10.31 Lic.#:KW-06006193 Licensee KIWI II CONSTRUCTION Description: 30 FT,r ICODE REFERENCES Calculations per AISC 360-10, IBC 2012,ASCE 7-10 Load Combination Set:ASCE 7-10 IMaterial Properties Analysis Method: Allowable Strength Design Fy:Steel Yield: 50.0 ksi Beam Bracing: Beam is Fully Braced against later-torsional buckling E:Modulus: 29,000.0 ksi Bending Axis: Major Axis Bending 010.251 ta-(0.051 U0.0254 S(0.051 1 i i + i i Span=30.0 11 d IW16x36 U IIIApplied Loads Service loads entered.Load Factors will be applied for calculations. Beam self weight calculated and added to loading_ Uniform Load: D=0.10, Lr=0.020, L=0.250, S-0.020 ksf, Tributary Width=2.50 ft DESIGN SUMMARY _ Design OK Maximum Bending Stress Ratio = 0.642: 1 Maximum Shear Stress Ratio= 0.146 : 1 Section used for this span W16x36 Section used for this span W16x36 Ma:Applied 102.488 k-ft Va:Applied 13.665 k Mn 7 Omega:Allowable 159.681 k-ft VntOmega:Allowable 93.810 k - I Load Combination Location of maximum on span +D+L+H Load Combination +D+L+H 15.000ft Location of maximum on span 0.000 ft Span#where maximum occurs Span#1 Span#where maximum occurs Span#1 Maximum Deflection I Max Downward Transient Deflection 0.880 in Ratio= 408>=360 Max Upward Transient Deflection 0.000 in Ratio= 0<360 Max Downward Total Deflection 1.284 in Ratio= 280>=240. Max Upward Total Deflection 0.000 in Ratio= 0<240.0 ':. I I Overall Maximum Deflections ,. Load Combination Span Max.a"Defi Location in Span Load Combination Max."+"Defi Location in Span :, +D+L+H 1 1.2838 15.086 0.0000 0.000 ' Vertical Reactions Support natation:Far left is#1 Values in KIPS Load Combination Support 1 Support 2 Overall MA>cimum 13,665 13.665 Overall MINimum 0.750 0.750 +D+H 4.290 4.290 l +D+L+H 13.665 5.040 13.665 +D+{r+H 5.040 +-D+S+H 5.040 5.040 +D+0.750Lr+0.750L+H 11.884 11.884 +D+0.750L+0.750S+H 11.884 11.884 I +D+0.60W+H 4.290 4.290 +0+0.70E+H 4.290 4.290 +D+0.750Lr+0.750L+0.450W+H 11.884 11.884 +D+0.750L+0.750S+0.450W+1-1 11.884 11.884 I +D+0.7501.+0.750S+0,5250E+H 11.884 11.884 +0.60D+0,60W+0,60H 2.574 2,574 +0.60D+0.70E+0.60H 2.574 2.574 s 0 Only 4.290 4.290 I Lr Only 0.750 0.750 L Only 9.375 9.375 S Only 0.750 0,750 W Only E Only 125 i 0 • tigard ground floor shearwalls unit wall length shear shear label ft kips plf �` 1 70 115.741 1653 3! 2 10 -2.54 -882 254 WI- 5 (6 ti-;--r61-- 1 3 20 17.644 4 20 17.644 882 ]Ill 5 10 -1.983 -198 i ij GI 1 \ . 6 50 77.234 1545 0 7 70 -118.86 -1698 ' 8 60 -126.331 -2106 9 30 74.222 2474 10 10 -6.334 -633 11 70 211.409 3020 - ,4 12 10 -9.029 -903 111 13 25 26.733 1069 14 10 -4.752 -475 15 10 -5.034 -503 1 16 16 -14.069 -879 17 65 -109.842 -1690 18 30 33.007 1100 1 19 21 -18.09 -861 20 21 -18.09 -861 21 60 -132.953 -2216 22 10 -4.283 -428 I I I I I I I I 126 1 i I , STRUCTURAL CALCULATIONS FOR 29 GA.STRUCTURAL SHEAR WALLS • FROM EXAMPLES SUPPLIED IN THE STEEL DECK INSTITUTES "DIAPHRAGM DESIGN MANUAL,3rd edition"THE FOLLOWING SH.EARWALLIS 1 ANALYZED FOR STRENGTH. STRENGTH DESIGN: I #OF EDGE FASTENERS = ne:= 7 #OF STITCH FASTENERS= ns := 0 #OF GIRTS BETWEEN END= np:= 1 ns I PANEL LENGTHS(MIN.) = L:= 10 FT a:_ SUPPORT SPACINGS Lv 5•FT np+ 1 TEK DIAMETER#12 = d:= .2111.1 N I PANEL GAUGE _ t:= .0139 !N STEEL STRENGTH - Fy:= 60.KSI PANEL DEPTH = D:= .8125•1N IMATERIAL: D=0.813•IN t=0.014•IN Fy=60.KSI CONNECTIONS: ne=7 #12 TEKS AT EACH PANEL TO POSTS, IAND n=0 AT SIDELAPS BETWEEN POSTS. d= 0.211•IN Lv=S•FT CONNECTION STRENGTH: 1IN3 Qf:= 1.25 •Fy•t•(1•KSI -0.005.Fy) eq 4.5-1 KIPS Qf= 0.73-KIPS SIDELAP STRENGTH: I KIPS Qs:= 115 Si •d t eq 4.5-2 Qs =0.337•KIPS I Qs l { as:= Q—f defined in section 2.2 Ias=0.462 D Lv 12 3 240•IN2./ I X=0.856 > 0.7 ias=0 NUMBER OF STITCH FASTENERS ' ns-as=0 * SUMXe:= (6+ 6+ 12+ 12 + 18+ 18)•INI * SUMXe=72•IN W:= 36•IN SUMXe a1 := al =2 W I 127 l 2-7 I np= 1 a2:= a1 ne=7 L= 10•FT Su := (2•a1 + np•a2+ ne)•Qf Su =948.675•PLF EQ.2.2-2 2 L1 SUMXe2:= 2.(62 + 122+ 182)•IN2 SUMXe2 = 1008•IN * SUMXp2 := SUMXe2 2•np•SUMXp2 +4•SUMXe2 QfL 2.2 4 Su2:= 2.(X- 1) + ns•as+ W2 EQ. Su2 =319.595•PLF 1 1 - 111B:= ns•as+ —.(2•np•SUMXp2 +4•SUMXe2) W B =4.667 I ne N:= W I 2 B 2 Su3:= N •Qf EQ.2.2-5 (L2•N2) + B2 ne=7 #I2 TEKS AT EACH PANEL TO POSTS, AND n=0 AT SIDELAPS BETWEEN POSTS. Su =948.675•PLF Su2 = 319.595•PLF Sufi := if(Su <Su2,Su,Su2) Su3=333.937•PLF Suf:= if(Sufi <Su3,Sufi ,Su3) :' USING A FACTOR OF SAFETY OF 2.5 SufIS:= — 2.5 S = 128•PLF I I 1 I 1 128 1 STRUCTURAL CALCULATIONS FOR 26 GA.STRUCTURAL SHEAR WALLS • I • FROM EXAMPLES SUPPLIED IN THE STEEL DECK INSTITUTES "DIAPHRAGM DESIGN MANUAL,3rd edition"THE FOLLOWING SHEARWALL IS IANALYZED FOR STRENGTH. STRENGTH DESIGN: I #OF EDGE FASTENERS = ne:= 7 #OF STITCH FASTENERS= ns:= 0 #OF GIRTS BETWEEN END= np:= 3 I PANEL LENGTHS(MIN.) = L:= 10 FT n:_ ns SUPPORT SPACINGS Lv:= 2.5•FT np+ 1 TEK DIAMETER#12 = d:= .2111•IN I PANEL GAUGE 26 GA. t:= .019-1N STEEL STRENGTH , Fy:_ 60.KSI PANEL DEPTH = D:= .8125.1N IMATERIAL: D=0.813.IN t=0.019•IN Fy=60.KSI CONNECTIONS: ne=7 #12 TEKS AT EACH PANEL TO POSTS, AND n=0 AT SIDELAPS BETWEEN POSTS. d=0.211.1N Lv=2.5.FT CONNECTION STRENGTH: Qf:= 1.25• II1\13 Fy t (1•KS! -0.005 Fy) eq 4.5-1 KIPS Qf=0.998•KIPS SIDELAP STRENGTH: I KIPS Qs:= 115 SI d•t eq 4.5-2 I Qs =0.461•KIPS QS:= Qs defined in section 2.2 Qf Icxs=0.462 ID.- 12 Lv ii3 il I 240.1N —2 X=0.939 X0.7 ii ns=0 NUMBER OF STITCH FASTENERS I ns•as =0 * SUMXe:= (6+ 6+ 12+ 12+ 18+ 18)•IN I * SUMXe=72•IN W:= 36•IN SUMXe a1 :- al =2 W 129 1 np=3 a2:= a1 ne=7 L= 10•FT Su := (2•a1 + np•a2+ ne) Qf Su = 1695.75.PLF EQ.2.2-2 111 SUMXe2 := 242 + 122+ 182).1N2 SUMXe2 = 1008•IN2 SUMXp2:= SUMXe2 2.np•SUMXp2 +4•SUMXe2 Qf Su2 E 2•(X- 1) + ns + 2 •L Q.2.2-4 4 Su2=763.584•PLF ', B:= ns•as+ 12•(2•np•SUMXp2 +4•SUMXe2)� 111 W B =7.778 ne N: W `1 I N2-132 Su3 •Qf EQ.2.2-5 (L2.N2) + B2 1 ne=7 #12 TEKS AT EACH PANEL TO POSTS, AND n=0 AT SIDELAPS BETWEEN POSTS. Su= 1695.75 PLF Su2=763.584.PLF Sufi := if(Su < Su2,Su,Su2) Su3=736,02•PLF Suf:= if(Suf1 <Su3,Sufi ,Su3) I USING A FACTOR OF SAFETY OF 2.5 Suf S:= - 2.5 S =294•PLF • 1 1 1 130 I STRUCTURAL CALCULATIONS FOR ' 22 GA.STRUCTURAL SHEAR WALLS FROM EXAMPLES SUPPLIED IN THE STEEL DECK INSTITUTES DIAPHRAGM DESIGN MANUAL,3rd edition"THE FOLLOWING SHEARWALLIS ,I ANALYZED FOR STRENGTH. STRENGTH DESIGN: I #OF EDGE FASTENERS = ne:= 7 #OF STITCH FASTENERS= ns:= 8 #OF GIRTS BETWEEN END= np:= 3 I PANEL LENGTHSMIN. = ns LENGTHS(MIN.) L 10 FT n • SUPPORT SPACINGS = Lv:= 2.5•FT np+ 1 • TEK DIAMETER#12 = d:= .2111-IN I PANEL GAUGE _ t:_ .029•IN STEEL STRENGTH = Fy;= 50.KSI PANEL DEPTH = D:= .8125.IN IMATERIAL: D=0.813.IN t=0.029•IN Fy=50.KSI CONNECTIONS: ne=7 #12 TEKS AT EACH PANEL TO POSTS, ' AND n=2 ATSIDELAPS BETWEEN POSTS. d=0.211-IN Lv=2.5•FT CONNECTION STRENGTH: I Qf:= 1.25. IN3 •Fy t•(1•KSI -0.005-Fy) eq 4.5-1 KIPS I Qf= 1.359•KIPS 1 SIDELAP STRENGTH: I Qs= 115 SIKIPS-d-t eq 4.5-2 i I Qs=0.704-KIPS Qs as:= Q—f defined in section 2.2 Ias=0,518 Lv I ?X:= 1 - �I D 12 3 1 ' 240•I N 2Ai t 1 X=0.95 > 0.7 Ins=8 NUMBER OF STITCH FASTENERS ns•as=4.143 SUMXe:= (6+ 6+ 12+ 12+ 18+ 18)-IN I * SUMXe= 72•IN W:= 36•IN SUMXe al := a1 =2 1 W 131 , I np=3 a2:= a1 ne=7 L= 10•FT I Su := (2•a.1 + np•a2+ ne)•Qf Su =2310.938•PLF EQ.2.2-2 L SUMXe2:= 2.(62 + 122 + 182)•1N2 SUMXe2= 1008.1N2 1 * SUMXp2:= SUMXe2 111 2•np•SUMXp2 +4•SUMXe2 Qf EQ.2.2-4 , Su2:= 2.(X- 1) + ns•as+ W2 . L Su2 = 1606.994•PLF I 1 B := ns•as + —2•(2•np•SUMXp2 + 4•SUMXe2) I W B = 11.921 ne N := W N2 B2 Su3:= }} •Qf EQ.2.2-5 (( I(L2•N2J + B2 ne=7 #12 TEKS AT EACH PANEL TO POSTS, AND n=2 ATSIDELAPS BETWEEN POSTS. Su =2310.938-PLF Su2 = 1606.994•PLF Sufi := if(Su <Su2,Su,Su2) Su3= 1443.079•PLF Suf:= if(Suf1 <Su3,Suf1 ,Su3) ' USING A FACTOR OF SAFETY OF 2.5 Suf I S:_ -- 2.5 5 =577.P LF I I I I I 132 1 I 11 SIMPSON Anchor DesignerT"^ Company: KIWI II CONSTRUCTION Date: 12t7l2016 Engineer: ART LEON Page: 1!4 Software, (} �n-�I� Project: I x ® Version 2.4.6025.20 Address: 28177 KELLER RD. t Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION.COM I 1.Proiect information Customer company: Project description: Customer contact name: Location: Customer e-mail: Fastening description: IComment: 2.Input Data&Anchor Parameters General Base Material I Design method:ACI 318-11 Units:Imperial units Concrete:Normal-weight Concrete thickness,h(inch):4.50 State:Cracked Anchor Information: Compressive strength,P.(psi):3000 Anchor type:Concrete screw 4kv:1.0 I Material:Carbon Steel Reinforcement condition:B tension,B shear Diameter(inch):0.250 Supplemental reinforcement:Not applicable Nominal Embedment depth(inch):1.625 Reinforcement provided at corners:No Effective Embedment depth,her(inch):1.190 Do not evaluate concrete breakout in tension:No I Code report:ICC-ES ESR-2713 Do not evaluate concrete breakout in shear:No Anchor category:t Ignore 6do requirement:Not applicable Anchor ductility:No Build-up grout pad:No tint'(inch):3.25 c„5(inch):3.00 Base Plate I Cmn(inch):1.50 Smin(inch):1.50 Length x Width x Thickness(inch):4.00 x 4.00 x 0.06 Load and Geometry Load factor source:ACI 318 Section 9.2 I Load combination:not set Seismic design:Yes Anchors subjected to sustained tension:Not applicable Z Ductility section for tension:0.3.3.4.2 not applicable Ductility section for shear:D.3.3.5.2 not applicable I ICo factor:not set Apply entire shear load at front row:No 900 lb Anchors only resisting wind and/or seismic loads:No I <Figure 1> 41) • ftlb IWAS � f� M11 ,-74: 4` >� ,- `- 0l e G Y • 0 lb 3� ,° {)ft-lb 1 '/ Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong=ria Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 wwwstrongtie.com •1 133 1 S[MPSON' Anchor Designer Company: ART II CONSTRUCTION Date: 12/7/2016 I • Engineer. ART LEON Page: 2/4 ��• Software �on�T�e Project: F : �, ;_ Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTIQN.CQtvl <Figure 2> M' § '.1''' 1 h L � � ItI 5 I • a • �5 t 5 6 FIFI Recommended Anchor Anchor Name:Titen fiDQ-114"R1 Titen HD,hnom:1.625"(41 mm) Code Report:ICC-ES ESR-2713 b; m riG I I Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. i Simpson Strong-TiO Company Inc. 595fi W.Las Positas Boulevard Pleasanton,CA 94588 Phone:525.550.900Q Fax:825.847.3879 mvwstrongtie.com 134 1 I SIMPSON Anchor Desi nerTM Company: KIWI II CONSTRUCTION Date: 12/7/2016 g Engineer: ART LEON Page: 3/4 ` Softwaretros -Tle Project: ' Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION.COM I 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, Nua(lb) Vuax(Ib) Vusy(lb) 1(Vuax)2+(Vv°v)2(lb) 450.0 0.0 0.0 0,0 II 2 450.0 0.0 0.0 0.0 Sum 900.0 0.0 0.0 0.0 Maximum concrete compression strain(°ka):0,00 <Figure 3> I Maximum concrete compression stress(psi):0 Resultant tension force(Ib):900 Resultant compression force(lb):0 Eccentricity of resultant tension forces in x-axis,e`rvx(Inch):0.00 Eccentricity of resultant tension forces in y-axis,e`Nv(inch):0.00 :! I 2 X j J 4.Steel Strength of Anchor in Tension(Sec.D.5.11 I Nse(lb) 0Nsa(Ib} 5195 0,65 3377 I 5.Concrete Breakout Strength of Anchor in Tension(Sec.D.5.21 g, Na=1(.20VfchatI-5(Eq.0-6) k ;ia Pa(psi) ha(in) Nb(Ib) l 17.0 1.00 3000 1.190 1209 i, I 0.750Ncbg=0.750(ANa/ANco)!4 ,NW`adNq/b,N'Pp.NNb(Sec.0.4.1 &Eq.0-4) Ark(int) At*.Cie) 'f�aN Tor Y'ap,N NaN {!b) ¢ 0.750N°bg{Ib} 19.88 12.74 1.000 1.000 1.00 1.000 1209 0.65 919 4 f 6I .Pullout Strength of Anchor in Tension(Sec.d.5.3) ' • 0.750Np=0.750'1',142LNa(f0/2,500)"(Sec.0.4.1,Eq.0-13&Code Report) 1 Y'°,r A a N,(lb) Po(psi) n of 0.750NP"{ib) I 1,0 1.00 1104 3000 0.50 0.65 590 1 i 1 I 1 1 I ) i I i I I i' 1 j I Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie.com I 135 I SIMPSON Anchor Designer TM Company: KIWI II CONSTRUCTION Date: 12/7/2016 I Engineer: ART LEON Page: 4!4 Software Project: - �' Address: 28177 KELLER RD. cgi yuk �,, � Version 2.4.6025.20 Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION.COM I I I 11.Results Interaction of Tensile and Shear Forces(Sec.D.71 Tension Factored Load,Nva(Ib) Design Strength,aN.(lb) Ratio Status Steel 450 3377 0.13 Pass Concrete breakout 900 919 0.98 Pass(Governs) Pullout 450 590 0.76 Pass 114"0 Titen HD,hnom:1.625"(41mm)meets the selected design criteria. j' 12.Warnings -Per designer input,the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination.Therefore the ductility requirements of D.3.3.4.3 for tension need not be satisfied—designer to verify. -Per designer input,the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination.Therefore the ductility requirements of 0.3.3.5.3 for shear need not be satisfied—designer to verify. -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. I I 1 Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560,9000 Fax:925,847.3871 www.strongtie.com :, 136 ii i I SIMPSON Anchor Desi nerTM Company: KIWI 11 CONSTRUCTION bate: 12/7/2416 Engineer: ART LEON Page: 1/4 1 no_ Software Project: '_ - -,, of Version 2.4.602520 Address: 28177 KELLi f2 RD. 1 Phone: 951-341-8975 E-mail: ART@KIWICONSTRUCTION.COM I 1.Project information Customer company: Project description: Customer contact name: Location: Customer a mail: Fastening description: Comment: I 2.Inuat Data&Anchor Parameters General Base Material I Design method:ACI 318-11 Concrete:Normal-weight Units:Imperial units Concrete thickness,h(inch):4.50 State:Cracked Anchor Information: Compressive strength,f�(psi): 3000 Anchor type:Concrete screw Wo,v:1.0 Material:Carbon Steel Reinforcement condition:B tension,B shear I Diameter(inch):0.250 Supplemental reinforcement:Not applicable Nominal Embedment depth(inch):1.625 Reinforcement provided at comers:No Effective Embedment depth,flet{inch):1.190 Do not evaluate concrete breakout in tension:No Code report:ICC-ES ESR-2713 Da not evaluate concrete breakout in sheat:No I Anchor cate,ory:1 Ignore Edo requirement:Not applicable Anchor ductility:No Build-up grout pad:No hex(inch):3.25 cep(inch):3.00 Base Plate Cron(inch}:1.50 Length X Width x Thickness(Inch):4.00 x 4.00 x 0.08 I Smin(inch):1.50 Load and Geometry Load factor source:ACI 318 Section 9.2 Load combination:not set Seismic design:Yes Anchors subjected to sustained tension:Not applicable Z Ductility section for tension:D.3.3.4.2 not applicable Ductility section for shear.D.3.3.5.2 not applicable Ds factor.not set Apply entire shear load at front row:No p lb I Anchors only resisting wind and/or seismic loads:No I <Figure 1> 0tlb I ,41300 1b -" r, . 0 lbI , y 0 ft-lb ;.--:::=4,,,,-_=--,- h 0 ft-lb - Input data and results must be checked for agreement with theme existing circumstances,the standards and guidelines must be checked for plausibilisty, Simpson Strong-Tie Company Inc, 5956 W.t as Positas Boulevard asanton,CA 94588 Phone:925.56 0.9000 Fax:925.847,3871 www.strongt e.com I 137 I SIMPSON Anchor Desi nerT"' Company: KIWI it CONSTRUCTION Date; 12/7/2016 1 g Engineer: ART LEON Page: 214 I Strort Tie' Software Project: Version 2.4.6025.20 Address: 28177 KELLER RD. I ' Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION.COM <Figure 2> I t. E '2.:z� { .n '�`��' `,', -ley f f i .4f��f � � ? If S I''''''',-,._.' .,__... :.: : ,,.-,i. ' ._. !,!:,-,-_,----..„-- j ' ,-_,,,,,,,,.; IF4,,:7'-E,''',.:-.',.,;;.1;::H,'.:"..-'::_--' ' li'l:;'-:.:-::::::':::::::'::.'1'''' '-- ' r 1 i . C t F Ib kt Recommended Anchor Anchor Name:Titen HDA-1!4"�Titen HD,hnom:1.625"(41mm) I I Code Report:ICG-ES ESR-2713 I I fa` ' � � :, SKr wk,,,,. a . � , • I IsirpInput data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be decked for plausibility. sonStron9:TieCompanV Inc. 5956 W.Las Pashas Boulevard Pleasanton.CA 94588 phone:925.5&0.9000 Fax.925 847.3871 wwwstrongtie cam 138 I I ISIMPSON` Anchor Desi nerTM Company: KIWI II CONSTRUCTION Date: 12/7/2016 software Engineer: ART LEON Page: 3/4 r p21rle Project: Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 — i E-mail: ARTIKIWICONSTRUCTION.COM t i I 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, N.(lb) Vox(Ib) Voy(Ib) i1(Vusx)2+(Vuay)2(lb) i 1 0.0 0.0 650.0 650.0 s I 2 0.0 0.0 650.0 650.0 Sum 0.0 0.0 1300.0 1300.0 Maximum concrete compression strain(%e):0.00 <Figure 3> i I Maximum concrete compression stress(psi):0 Resultant tension force(lb):0 Resultant compression force(lb):0 i Eccentricity of resultant tension forces in x-axis,e'Nx(inch):0.00 f Eccentricity of resultant tension forces in y-axis,e't,(inch):0,00 I Eccentricity of resultant shear forces in x-axis,e'vx(inch):0.00 Eccentricityof resultant shear forces in1 y-axis,e'vy(inch):0.00 X t I 1 1 1 I 1 1 I 4 8.Steel Strength of Anchor in Shear(Sec.D.6.1) t 1 I V.(Ib) tfa m r ft r.415Va(lb) 1695 1.0 0.60 1017 1 I Y 1 10.Concrete Pryout Strength of Anchor in Shear(Sec.D.6.31 0k/cm= kq,Ncbg^(kep(ANc/ANco)Yec,NYad,NYc.NYcn,NNb(Eq.D-41) kg, ANc(in2) A,v,,(in2) YeGN Yed.N Yc,N Ycp,N Nb(Ib) ¢V pg(Ib) I 1.0 19.88 12.74 1.000 1.000 1.000 1.000 1209 0.70 1320 t I 11.Results interaction of Tensile and Shear Forces(Sec.D,71 Shear Factored Load,V.(Ib) Design Strength,aV„(Ib) Ratio Status Steel 650 1017 0.64 Pass I Pryout 1300 1320 0.98 Pass(Governs) 1/4"0 Titan HD,hnom:1.625"(41mm)meets the selected design criteria. I , I Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5958 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.580.9000 Fax:925,847.3871 www,strongtie.com ., I 139 I SIMPSON Anchor Desi nerT"" Company: KIWI II CONSTRUCTION Date: 12/7/2016 , C g Engineer: ART LEON Page: 414 S1'ro ,eie Software Project; Version 2.4.6025.20 Address: 28177 KELLER RD. e Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION.COM 12.Warnings -Per designer input,the tensile component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor tensile force associated with the same load combination.Therefore the ductility requirements of D.3.3.4.3 for tension need not be satisfied—designer to verify. ' -Per designer input,the shear component of the strength-level earthquake force applied to anchors does not exceed 20 percent of the total factored anchor shear force associated with the same load combination.Therefore the ductility requirements of D.3.3.5.3 for shear need not be satisfied--designer to verify. -Designer must exercise own judgement to determine if this design Is suitable. • -Refer to manufacturer's product literature for hole cleaning and installation instructions. E'. • _i1 M r Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility, Simpson Strong-Tie Company Inc, 5956 W.Las Pashas Boulevard Pleasanton,CA 94588 Phone:925.580,9000 Fax:925.847.3871 www.strongtie.com 2 140 i 1 • 1 I ISIMPSON AnChar DesignerTM Company: KIWI i!CONSTRUCTION Date: 12/5/2016 • Engineer: ART LEON Aage: 14 L. Software to�fiYe Project. , ' w ;,® Version 2.4.6025.24 Address: 28177 YELLER RD. i Phone: 951-301-8975 E-mail: ART@K1WICONSTRUCTION.COM 1_Proiect information I Customer company: Project description: Customer contact name: Location: Customer e-mail: Fastening description: I IComment: 1 2.Input Data&Anchor Parameters General Base Material I Design method:ACl 318-11 Concrete:Normal-weight Units:Imperial units Concrete thickness,h(inch):4.50 _ State:Cracked 1 Anchor Information: Compressive strength,f�(psi):3000 Anchor type;Concrete screw Wz,v:1.0 Material:Carbon Steel Reinforcement condition:8 tension,B shear I Diameter(inch):0.250 Supplemental reinforcement:Nat applicable Al Nominal Embedment depth(inch):1.625 Reinforcement provided at corners:No Effective Embedment depth,her(inch):1,190 Do not evaluate concrete breakout in tension:No Cade report:ICC-ES ESR-2713 Do not evaluate concrete breakout in shear:No ii Anchor category:1 Ignore Edo requirement:Not applicable I Anchor ductility:No Build-up grout pad:No hm;�(inch):3.25 ca (inch):3.00 Base Plate I Cmm{Inch):1.50 Length x Width x Thickness(inch):4.00 x 4.00 x 0.06 Smirt(inch):1.50 Load and Geometry 4 Load factor source:ACI 318 Section 9.2 Load combination:not set t I Seismic design:No Anchors subjected to sustained tension:Not applicable Apply entire shear load at front row:No [1 • Anchors only resisting wind and/or seismic loads:No 1200 lb <Figure 1> ft-lb I 1.Y 0IbY I Y� • � g. 0 Ibilk 0 ft lb • 0 ft-lb I Input data and results must be checked far agreement with the existing circumstances,the standards and guidelines must be checked far plausibility. Simpson Strang-Tie Company lnc. 5956 W.Las Pashas Boulevard Pleasanton,CA 94588 Phone:925,560.9000 Fax 92 5.847.3871 www.strangtie.com I 141 1 I SIMPSON Anchor Desi nerT"' Company: KIWI!I CONSTRUCTION Date: 12/5/2016 I g Engineer: ART LEON page: 24 StrongT a Software Project: Version 2.4.6025.20 Address: 28177 KELLER RD. I.® Phone: 951301-8975 E-mail: ART@KlWICONSTRUCTION.COM <Figure 2> • III 1_ {s _ I s Ill Recommended Anchor Anchor Name:Titen HDA 114"4J Titen HD,hnom,1.625"(41mm} Cade Report:!CC ES ESR 2713 I I 1 I a , Input data and results must be checked for agreementwith the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-lie Company Inc. 5956 W Las Positas Boulevard Pleasanton,CA 94588 Phone:925.58fl.9000 Fax:925.847.3871 wwwstrongtie.com ' 142 I I SIMPSON Anchor Desi nerTM Company: KIWI II CONSTRUCTION Date: 12/5/2016 g Engineer: ART LEON Page: 3/4 Software Project: S�rp�lg-'fie i Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART@KIWICONSTRUCTION.COM I 3.Resulting Anchor Forces Anchor Tension load, Shear load x, Shear load y, Shear load combined, Nub(lb) Voaa(lb) Vuay(Ib) V(Vuaz)s+(Vuay)s(Ib) I 1 600.0 0.0 0.0 0.0 2 600.0 0.0 0,0 0.0 Sum 1200.0 0.0 0.0 0.0 Maximum concrete compression strain(%a):0.00 <Figure 3> I Maximum concrete compression stress(psi):0 Resultant tension force(Ib):1200 Resultant compression force(Ib):0 Eccentricity of resultant tension forces in x-axis,e'ss(inch):0.00 I Eccentricity of resultant tension forces in y-axis,e'Ny(Inch):0.00 01----.0.02 XV I 4.Steel Strength of Anchor in Tension(Sec.D.5.1) I Nsa(Ib) 0 ylNsa(Ib) 5195 0.65 3377 5.Concrete Breakout Strength of Anchor in Tension(Sec.0.5.2) Nb-kolia1f chaff''(Eq,D-6) k5 A. f.(psi) har(in) Ns(Ib) 17.0 1.00 3000 1.190 1209 I ONov=0(ANe/A,vw)Pea,N'Yed.NtP.,N Pop,NNs(Sec.D.4.1&Eq.D-4) Aft(in2) /two(in2) Yee,AI yedN Y'c,N Vice,N Nb(lb) 0 (6Ncbg(lb) 19.88 12.74 1.000 1.000 1.00 1.000 1209 0.65 1226 II6.Pullout Strength of Anchor in Tension(Sec.D.5.31 ON,,,,r 0.pAaNp(fs/2,500)"(Sec.D,4.1,Eq.D-13&Code Report) I I G,P .1.a k(Ib) f'c(psi) n SNF„(Ib) 1.0 1.00 1104 3000 0.50 0,65 786 I I ) I I I Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925360.9000 Fax:925.847.3871 www.strongtie.com I 143 SIMPSON Anchor Desi nerT"" Company: KIWI II CONSTRUCTION Date: 12/5/2016 ' g Engineer: ART LEON Page: 4/4 sj'e` Software Project: u �r. , Version 2.4.6025.20 Address: 28177 KELLER RD. Phone: 951-301-8975 E-mail: ART@KI WI CONSTRUCTION.COM 1 I I 11.Results Interaction of Tensile and Shear Forces(Sec,117) Tension Factored Load,Nw(lb) Design Strength,0N„(Ib) Ratio Status Steel 600 3377 0.18 Pass Concrete breakout 1200 1226 0.98 Pass(Governs) Pullout 600 786 0.76 Pass 1/4"0 Titen HD,hnom:1.625"(41mm)meets the selected design criteria. 12.Warnings • -Designer must exercise own judgement to determine if this design is suitable. -Refer to manufacturer's product literature for hole cleaning and installation instructions. I ii 1 I Input data and results must be checked for agreement with the existing circumstances,the standards and guidelines must be checked for plausibility. ,, Simpson Strong-Tie Company Inc. 5956 W.Las Positas Boulevard Pleasanton,CA 94588 Phone:925.560.9000 Fax:925.847.3871 www.strongtie_com a S 144 ' I ESR-2713 I Most Widely Accepted and Trusted Page 6 of 12 ITABLE 1—TITEN HDe,SCREW ANCHORS AND ROD HANGERS INSTALLATION INFORMATION' Nominal Anchor Diameter t Threaded Coupler Diameter(inch) Characteristic Symbol Units 1 a a 3/8 1 /8 /4 /a 12 /0 /+ Rod Hanger Rod Hanger Installation Information Nominal Diameter da(da)s in. '1+ 3/8 112 /8 3/4 3/8 3/8 I Drill Bit Diameter d8, in. 'li 3(e 'l2 5 /8 3/4 5!8 3/8 Minimum Baseplate Clearance d, in. 3/a 1/2 5/8 3/4- 7/ N/A3 N/A3 Hole Diameter2 I Maximum Installation Torque 7nsr.max ft-Ibf 24 50 65 100 150 50 50 Maximum impact Wrench Tft-Ibf ` 125 150 340 340 385 150 150 i. 515 Torque Rating 55'°"' Minimum Hole Depth ha, in. 1314 251a 23/4 3'/2 33/4 4'/2 41/3 6 6 63/4 23/4 3 ` „ Nominal Embedment Depth h,,,,, in. a 21/2 21/% 311+ 31/4 4 4 51/2 51/2 61/4 21/2 21/2 Effective Embedment Depth h,, in. 1.19 1.94 1.77 2.40 2.35 2.99 2.97 4.24 4.22 4.86 1.77 1.77 iii 5 9 1 1 3 3 8 11 11 < Critical Edge Distance c„ In. 3 6 2 As 3/a 3 l+s 4 lz 4!z 6 /8 ,,6 t8 7 118 2 /+a 2 t,e Minimum Edge Distance c,,, in. 1'/2 11/2 13/4 i Minimum Spacing sm,5 in. 1'/2, 11/2 3 Minimum Concrete + 1 1 831+ 10 4 4'Ii Thickness hm, m. 38/4 3!2 4 5 5 6!+ 6 8 12 i Anchor Data + Yield Strength fy, psi 100,000 97,000 Tensile Strength f,4, psi 125,000 110,000 I Minimum Tensile& Af 8 int 0.042 0.099 0.183 0. i Shear Stress Area 5e 276 0,414 0.099 0.099 Axial Stiffness in i I Service Load Range- /3,nc, lb/in. 202,000 715,000 Uncracked Concrete Axial Stiffness in Service Load Range- (3, twin. 173,000 345,000 Cracked Concrete For SI: 1 inch=25.4 mm,1 ft-ibf=1.356 N-m,1 psi=6.89 kPa,1 int=645 mm2,1 lb/in=0.175 N/mm. , 1 'The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACi 318-11 Appendix D,as applicable. I 2The clearance must comply with applicable code requirements for the connected element, 3The Titan HDA'Rod Hanger version is driven directly to the supporting member surface. 4TM,,,,,r applies to Installations using a calibrated torque wrench. 5For the 2006 IBC d,replaces d, 6AaeN=A.,,Y_A. I I I I I I 145 1 ESR-2713 I Most Widely Accepted and Trusted Page 7 of 12 TABLE 2-.TITEN He SCREW ANCHOR AND ROD HANGER CHARACTERISTIC TENSION STRENGTH DESIGN VALUES' / Nominal Anchor Diameter/Threaded Coupler Diameter(inch) Characteristic Symbol Units 1 3 , , 318 1/2 14 18 /2 !s ti Rod Hanger Rod Hanger Anchor Category 1,2 or 3 - 41 1 Nominal Embedment Depth hnom in. 1518 2'/2 21/2 31/4 31/4 4 4 51/2 51/2 61/4 21/2 21/2 Steel Strength in Tension(ACI 318-1417.4.1 or ACI 318-11 Section D.5.1) ii Tension Resistance of Steel N46 lbf 5195 10,890 20,130 ( 30,360 45,540 10,890 10,890 Strength Reduction Factor- 0.65 Steel Failure2 a Concrete Breakout Strength in Tension(ACI 318-14 17.4.2 or ACI 318 Section D.5.2) Effective Embedment Depth har in. 1.19 1.94 1.77 2.40 2.35 2.99 2.97 4.24 4.22 4.86 1.77 1.77 Critical Edge Distance c66 in. 3 6 211/16 35/6 36/18 41/2 41/2 6'/8 6'/6 75/16 2"/16 211/16 I Effectiveness Factor k 30 24 Uncracked Concrete Effectiveness Factor- k� - 17 Cracked Concrete Modification factor '1 ox 1.0 ii Strength Reduction Factor- Acb - 0.65 Concrete Breakout Failure' Pullout Strength in Tension(ACI 318-1417.4.3 or ACI 318-11 Section 0.5.3) Pullout Resistance Uncracked Concrete Np; lbf N/A4 N/A4 2,7001 N/A4 N/A4 NIA" N/A4 9,8105 N/A4 N/A" 2,0255 2,0255 (f,=2,500 psi) Pullout Resistance Cracked Concrete N .. Ibf N/A4 1,9055 1,2355 2,7005 N/A4 N/A4 3,0405 5,5705 6,0705 7,1955 1,2355 1,2355 (f'6=2,500 psi) Strength Reduction Factor- 0 65 Pullout Failures a Tension Strength for Seismic Applications(ACI 318-1417.2.3.3 or ACI 318-11 Section D.3.3.3) Nominal Pullout Strength for Seismic Loads N;aq lbf N/A4 19055 1,2355 2,7005 N/A°N/A4 3,0406 5,5705 6,0705 7,1955 1,2355 1,2355 (f'6=2,500 psi) III Strength Reduction Factor for Aas - 0 65 Pullout Failures 1 For SI: 1 inch=25.4 mm,1 ft-lbf=1.356 N-m,1 psi=6.89 kPa,1 in2=645 mm2,1 lb/in=0.175 N/mm. 1The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACI 318-11 Appendix 0,as applicable. 2The tabulated value of 4.applies when the load combinations of Section 1605.2 of the IBC,ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2 are used,as applicable.If the load combinations of ACI 318-11 Appendix C are used,the appropriate value of 0 must be determined in accordance with ACI 318 0.4.4(b),as applicable. °The tabulated values of fb applies when both the load combinations of Section 1605.2 of the IBC,ACI 318-14 Section 5.3 or ACi 318-11 Section 9.2,as applicable,are used and the requirements of ACI 318-11 D.4.3(c)for Condition B are met.Condition B applies where supplementary reinforcement is not provided in concrete.For Installations were complying reinforcement can be verified,the Xe,factors described in ACI 318-14 17.3.3(c)or ACI 318-11 0,4.3(c),as applicable,may be used for Condition A.If the load combinations of ACI 318 Appendix C are used,the appropriate value of 0 must be determined in accordance with ACI 318 0.4.4(c)for Condition B. 4As described in this report,N/A denotes that pullout resistance does not govern and does not need to be considered. 5The characteristic pullout resistance for greater compressive strengths may be increased by multiplying the tabular value by(r6/2.500f5. 6The tabulated values of 4 or 4q applies when both the load combinations of ACI 318-14 Section 5.3 or ACI 318-11 Section 9.2,as applicable, are used and the requirements of ACI 318-1113.4.3(c)for Condition B are met.Condition B applies where supplementary reinforcement is not provided in concrete.For installations were complying reinforcement can be verified,the 4 or oaq factors described in ACI 318-14 17.3.3(c)or ACI 318-11 D.4.3(c),as applicable,may be used for Condition A. If the load combinations of ACI 318 Appendix C are used,the appropriate value of 0 must be determined in accordance with ACI 318 0.4.4(c)for Condition B. I 146 1 I ESR-2713 I Most Widely Accepted and Trusted Page 8 of 12 ITABLE 3—TITEN HDe SCREW ANCHOR CHARACTERISTIC SHEAR STRENGTH DESIGN VALUES.' lip Characteristic Symbol Units Nominal Anchor Diameter(inch) 3/a '`2 5/11_ 3/4 IAnchor Category 1,2 or 3 - 1 Nominal Embedment Depth h„,,,„ in. X11/e 214 21/2 31/4 31/4 4 4 51/2 51/2 614 ISteel Strength in Shear(ACI 318-1417.5.1 or ACt 318-11 Section 0.6.1) Shear Resistance of Steel Va, Lbf 2,020 4,460 7,455 10,000 16,840 Strength Reduction Factor- I Steel Failure2 O. 0.60 Concrete Breakout Strength in Shear(ACI 318-14 17.5.2 or ACt 318-11 Section 0.6.2) Nominal Diameter da(d,)4' in. 0.25 0.375 0.500 0.625 0.750 Load Bearing Length I. in. 1.19 1.94 1.77 2.40 2.35 2.99 2.97 4.24 4.22 4.86 of Anchorin Shear I I Strength Reduction Factor Concrete Breakout Failure3 0`70 Concrete Pryout Strength in Shear(ACI 318-1417.5.3 or ACI 318-11 Section D.6.3) ) Coefficient fora 1.0 2.0 1 Pryout Strength Strength Reduction Factor- �tv Concrete Pryout Failure3 - 0.70 I Shear Strength for Seismic Applications(ACt 318-1417.2.3.3 or ACi 318-11 Section 1.3.3.3) Shear Resistance of Single 1 Anchor for Seismic Loads V a,,, Lbf 1,695 2,855 4,790 8,000 9,350 (f',=2,500 psi) i I Strength Reduction Factor- Steel Failure2 0.60 ' For SI: 1 inch=25.4mm,1 Ibf=4.45N. I 'The information presented in this table is to be used in conjunction with the design criteria of ACI 318-14 Chapter 17 or ACi 318-11 Appendix D,as applicable. 2The tabulated value of fta and O„,applies when the load combinations of Section 1605.2 of the IBC,AC1 318-14 Section 5.3 or ACI 318-11 Section 9.2,as applicable,are used.If the load combinations of ACt 318 Appendix C are used,the appropriate value of 0 must be determined I in accordance with ACI 318 D.4.4(b). 3 3The tabulated values of and�applies when both the load combinations of Section 1605.2 of the IBC AC1318-14 Section 5.3 or ACI 318- 11 Section 9.2 are used and the requirements of ACI 318-11 0.4.4(c)for Condition B are met.Condition B applies were supplementary reinforcement is not provided in concrete. For installations where complying reinforcement can be verified,the 0s.and 41,factors described in AC1 318-14 17.3.3(c)or AGI 318-11 0.4.3(c),as applicable,can be used for Condition A.If the load combinations of AC1318 Appendix C are used,the appropriate value of 400 must be determined in accordance with ACI 318 0.4.5(c)for Condition B. 4The notation in parenthesis is for the 2006 IBC. 1 I I i 1 I I i 9 1 I 3 1 t I 1 I 147 I I ESR-2713 I Most Widely Accepted and Trusted Page 12 of 12 I SAND-LIGHTWEIGHT CONCRETE OR NORMAL-WEIGHT CONCRETE OVER STEEL DECK hmin,deck=MIN.3V4' _ ' (MINIMUM 2,500 PSI) MIN ',/,`TYP. I ° n a. • •oo° •° vo °©a j :; •o ° ot7 ° • .6 aI • MIN.s UPPERI —MIN.1 Yz' MIN.13laMAX.'W(+1-)OFFSET la MIN.3Yz r': DECK I FROM CENTER OF LOWER -. MIN.2W-10-4 LOWER FLUTE 4.-- 4 MIN.6"TYP ` FLUTE I FIGURE 5—INSTALLATION OF 3/8-INCH DIAMETER ANCHORS IN THE TOPSIDE,AND"l.-INCH DIAMETER ANCHORS IN THE SOFFIT OF CONCRETE-FILLED PROFILE STEEL DECK FLOOR AND ROOF ASSEMBLIES II (1 in=25.4 mm) I SAND-LIGHTWEIGHT CONCRETE OR NORMAL-WEIGHT CONCRETE OVER STEEL DECK hmin,deck=MIN.2Ys° (MINIMUM 2,500 PSI) I N.r' o , . . 0 Ii • • r, 2•a o° •u • o ° • o° (:)ao •, • '•o • Q° ♦ o q °p o ° o • 0 0 • 0 O a • _ Qo 0 • o ° I FLUTE • `o • `a °• as p° UPPER oo MIN. ' 20 GAUGE STEEL MIN.1Y2° I MIN.T�Ia` i \ DECK r MIN.3Iz'—► Ls–MIN.2W n ' -- , ___ MIN.6°TYP LOWER FLUTE FIGURE 6 INSTALLATION OF'IA-INCH DIAMETER ANCHORS IN THE TOPSIDE OF CONCRETE-FILLED I PROFILE STEEL DECK FLOOR AND ROOF ASSEMBLIES (1 in=25.4 mm) I I I I 148 1 I ESR-2713 I Most Widely Accepted and Trusted Page 10 of 12 I TABLE 6—EXAMPLE TITEN HD®SCREW ANCHOR AND ROD HANGER ALLOWABLE STRESS DESIGN TENSION VALUES FOR ILLUSTRATIVE PURPOSESf'2,a'4,s,6,2,a,a,,o Nominal Anchor.: Nominal Embedment Effective Allowable Embedment Tension Load, Diameter,do Depth'h„„„ Depth,het N„/a (inches) (inches) (inches) (lbs) i 15/6 1.19 855 2'/a 1.94 1,424 I 'a 21J 1.77 1,185** 314 2.40 1,960 x 3'/4 2.35 1,900 4 2.99 2,725 I a(a 4 < 297 2,695 51/2 4.24 4,580 h 51/2 4.22 4,570 6'/4 4.86 5,645 I Design Assumptions: 1.Single Anchor. 2.Tension load only. 3.Concrete determined to remain uncracked for the life of the anchorage. 4.Load combinations from AC!318-14 Section 5.3 or ACI 318-11 Section 9.2,as applicable(no seismic loading). I 5.30%Dead Load(D)and 70%Live Load(L);Controlling load combination is 1.2 D+1.61 6.Calculation of a based on weighted average:a=1.20+1.6L=1.2(0.3)+1.6(0.7)=1.48 7.Normal weight concrete:f.`„=2500 psi 8.co=ca2>Cac II 9.h>_h„,;„ 10.Values are for Condition B(Supplementary reinforcement in accordance with ACI 318-14 17,3,3 or ACI 318-11 D.4.3,as applicable,is not provided). **Illustrative Procedure(reference Table 2 of this report): '/a'Titen HD with an Effective Embedment,her=1.77” I Step 1:Calculate Static Steel Strength in Tension per ACI 318-14 17.4.1 or AC!318-11 Section D.5.1,as applicable;,AN,.=0.65 x 10,890=7,078 lbs. Step 2:Calculate Static Concrete Breakout Strength in Tension per ACI 318-14 17,4.2 or ACI 318-11 Section D.5.2,as applicable; $tbN,5=0.65 x 2,826=1,837 lbs. Step 3:Calculate Static Pullout Strength in Tension per ACI 318-1417.4,3 or ACI 318-11 Section D.5.3,as applicable;OfpNp,„„q=0.65 x I 2,700=1,755 lbs. Step 4:The controlling value(from Steps 1,2 and 3 above)per ACI 318-14 Section 17.3.1 or ACI 318 Section D.4.1,as applicable;01‘1„_ 1,755 lbs. Step 5:Divide the controlling value by the conversion factor a per section 4.2.1 of this report: ITaae,�b1e,AS0=¢N„/a=1,7551 1.48=1,185 lbs. I TABLE 7—TITEN HD®SCREW ANCHOR AND ROD HANGER IDENTIFICATION INFORMATION Anchor Size Catalog Number 114” THDB25xxxxH '!a” THD37xxxxH '!z" THD50xxxxH ala" THD862xxxxH 314" THD75xxxxH I34"Rod Hanger THD37212RH _ 1/2"Rod Hanger THD50234RH I 1 I ( I 149 I ESR-2713 I Most Widely Accepted and Trusted Page 9 of 12 TABLE 4—TITEN HD°SCREW ANCHOR AND ROD HANGER CHARACTERISTIC TENSION AND SHEAR DESIGN VALUES FOR THE I SOFFIT OF CONCRETE-FILLED PROFILE STEEL DECK ASSEMBLiES1'S'8 Nominal Anchor Diameter I Threaded Coupler Di later(Inch) Lower Flute Upper Flute Charact•4'stic Symbol Units Figure 55 Figure 3 Fi• re 5 Figure 4 lb a/ {/s 3/a %'4 '/2 Rod 3/11 t/2 anger Hanger Minimum Hole Depth nor, In. 1/4 25/8 2'/8 23/4 21/2 23/4 3 13/4 25/8 21/8 2'12 I Nominal Embedment Depth h,a„, n. 1518 2'/2 1'/8 2'/2 3'12 2'/2 21/2 15ta 2112 1'/8 2 Effective Embedment Depth her in. 1.94 1.23 1 1.29 2.56 1.77 1.77 1.19 1.94 1.23 1.29 1 Pullout Resistance,Cracked z�- Npa4,ke� lbf 420 5 870 905 2040 870 870 655 1195 500 1700 Concrete Pullout Resistance,Uncracked Concrete a NAdeck,uncr lbf 995 75 825 '45 1295 2910 1430 1430 1555 2850 1095 2430 Steel Strength in Shear's VSa,da,k 14 1335 1745 2240 2395 2435 ,30 N/A N/A 2010 2420 4180 7145 Steel Strength In Shear,Seismic' V...>-„., Ibf 870 1135 1434 1533 1565 2846 + N/A 1305 1575 2676 4591 111 For SI: 1 inch=25.4mm,1 lbf=4., +. `installation must comply with ctions 3.4,4.1.9.1,4.3,5.4,and 5.10,and Figures 3,4 and 5 of this report. 2The values listed must be .ed in accordance with Section 4.1.4 and 4.1.8.2 of this report. 3The values listed must used in accordance with Section 4.1.4 of this report. 4The values listed m. be used in accordance with Section 4.1.5 and 4.1.8.3 of this report. 5The values for 4. reduction factor for pullout strength)can be found in Table 2 and the value for Osa(reduction factor for steel strength in shear)can b= ound in Table 3. 5The min' anchor spacing along the flute must be the greater of 3h,t or 1.5 times the flute width in accordance with Section 4.1.9.1 of this repo 7T+,-characteristic pull-out resistance for greater concrete compressive strengths shall be increased by multiplying the tabular value by (f,13,000 psi)e`5. I TABLE 5—TITEN He SCREW ANCHOR INSTALLATION INFORMATION IN THE TOPSIDE OF CONCRETE-FILLED PROFILE STEEL DECK FLOOR AND ROOF ASSEMBLiES1`2'14 Nominal Anchor Diameter(inch) Design Information Symbol Units 1/4 3/8 Figure 6 Figure 5 1 Effective Embedment Depth ha in. 1.19 1.77 Minimum Concrete Thickness5 hmk,,dk.k in. 21/2 31/4 Critical Edge Distance Cec,deckr,p in. 33/4 71/4 Minimum Edge Distance enno,dauctoe in. 3'/2 3 Minimum Spacing smur,decktop in. 31/2 3 1 For SI: 1 inch=25.4mm,1 Ibf=4.45N. 'Installation must comply with Sections 3.4,4.1.9.1,4.3,5.4,and 5.10,and Figures 5 and 6 of this report. 2Design capacity shall be based on calculations according to values in Tables 2 and 3 of this report. 3Minimum flute depth(distance from top of flute to bottom of flute)is 1+12-inch,see Figures 5 and 6. 4Steel deck thickness shall be minimum 20 gauge. 5Minimum concrete thickness(h04n,aeck)refers to concrete thickness above upper flute,see Figures 5 and 6. I I I 150 I IITiv1 _� or- R - I ., 4'l% in. TOTAL SLAB DEPTH Normal Weight Concrete j .. 1- I Maximum Unshored Clear Span(ft-in.) Concrete Properties L. Deck Number of Deck Spans Density Uniform Weight Uniform Volume Compressive Gage 1 2 3 (pcf) (psf) (yd3/100 ft2) Strength,f`c(psi) 22 7-5" 8'-7" 8'-9" 145 42.3 1.080 3000 1111 21 8'-1" 9'-3" 9'-6" Notes: 20 8'9" 9'-10" 10'_2" 1.Volumes and weights do not include allowance for deflection. 2.Weights are for concrete only and do not include weight of steel deck. 19 9'-7" 10'-11" 11-4" 3.Total slab depth is nominal depth from top of concrete to bottom of steel deck. I18 10'-0„ i1, .. 12.a,. p4trPr- . . y 16 10'8" 13'-6" 12'-8" Shoring is required for spans greater than those 4 -z. 3+ z ,--74- 11- 11.-- iiPS i=shown above. See Footnote 1 on page 51 for Irequired bearing. " Allowable Superimposed Loads(psf) II Deck Number of Span(ft-in.) Gage Deck Spans 6'-0" 7'-0" 7'-6" 8'-0" 8'-6" 9'-0 V-6" 10'4" 10'4" 11'4" 11'-6" 12'4" 12'-6" 13'-0 14%0" 1 380 294 1 220 194 171 152 135 121 108 97 87 78 70 63 51 22 2 380 294 262 235 213 152 135 121 108 97 87 78 70 63 51 I 3 380 294 262 235 213 152 135 121 108 97 87 78 70 63 51 1 400 329 293 263 ( 196 174 156 140 125 113 102 92 83 75 62 21 2 400 329 293 263 238 216 156 140 125 113 102 92 83 75 62 I 3 400 329 293 263 238 216 198 1 140 125 113 102 92 83 75 62 1 400 364 324 291 263 1 198 177 159 143 130 117 106 97 88 73 20 2 400 364 324 291 263 239 219 1 159 143 130 117 106 97 88 73 3 400 364 324 291 263 239 219 201 1 143 130 117 106 97 88 73 Ii 400 400 389 349 316 287 262 199 180 163 149 136 124 113 95 19 2 400 400 389 349 316 287 262 241 222 163 149 136 124 113 95 3 400 400 389 349 316 287 262 241 222 206 149 136 124 113 95 1 400 400 400 399 361 328 300 275 1211 192 176 161 147 135 115 I 18 2 400 400 400 399 361 328 300 275 254 235 210 1 161 147 135 115 3 400 400 400 399 361 328 300 275 254 235 210 185 147 135 115 1 400 400 400 397 359 327 298 274 253 1 191 174 159 146 134 114 16 2 400 400 400 397 359 327 298 274 253 234 217 197 179 160 114 1 3 400 400 400 397 359 327 298 274 253 234 217 197 179 1 134 114 See footnotes on page 51. Shoring required in shaded areas to right of heavy line. I Allowable Diaphragm Shear Strengths,q (pit)and Flexibility Factors, F(in./lb.x 106) Attachment Deck Span(ft-in.) Pattern Gage 6'-0" 7'-0" 7'-6" 8'-0" 8'4" 9'-0" 9'-6" 10'4" 10'-6" 11'4" 1V-6" 12-0" 12'4" 13'-0" 14'-0" I 22 q 1913 1874 1858 1845 1833 1822 1812 1804 1796 1789 1782 1777 1771 1766 1757 21 q 1919 1876 1859 1844 1831 1819 1809 1799 1791 1783 1776 1769 1763 1758 1748 36)3 20 q 1928 1882 1863 1847 1832 1819 1808 1798 1788 1780 1772 1765 1758 1752 1742 19 q 1953 1898 1877 1857 1841 1826 1812 1800 1789 1779 1770 1762 1754 1747 1735 I 18 q 1978 1917 1892 1871 1852 1835 1820 1807 1795 1784 1774 1764 1756 1748 1734 16 q 2048 1972 1941 1914 1891 1870 1851 1834 1819 1805 1792 1781 1770 1760 1742 22 q 2073 2001 1973 1947 1925 1906 1888 1872 1858 1845 1833 1822 1812 1802 1786 I 21 q 2106 2027 1995 1968 1943 1922 1902 1885 1869 1855 1842 1829 1818 1808 1790 3614 20 q 2141 2055 2020 1990 1964 1940 1919 1900 1882 1867 1853 1839 1827 1816 1796 19 q 2216 2116 2075 2040 2009 1982 1957 1935 1915 1896 1880 1864 1850 1837 1814 18 q 2283 2170 2125 2086 2051 2020 1992 1968 1945 1925 1906 1889 1873 1859 1833 1 16 q 2451 2310 2254 2204 2161 2122 2087 2056 2028 2002 1979 1957 1937 1919 1887 See footnotes on page 51. Iwww.vercodeck.com VERC6515ECKING, INC. VF5 .: 53 E �_ � i M 'I'M I orFOS. LOQ M 2 in. Deep FORMLOK Deck .-= Phosphatized/Painted or Galvanized .4...," :..;,,i„,,__ . r PLW2 FORMLOK used with PunchLok II System z m ,- -- W2 FORMLOK used with TSWs or BPs "--1-7:,::: ;4.---- n W2 FORMLOK-SS used with Screws 0,,---,v-,•::;;-' 1 Dimensions r t 5" 1 7" t t 12" 21/1 6I 15" � 36" I PLW2 or W2 FORMLOK W2 FORMLOK-SS 111 --\\ AI Standard Interlocking Screw Fastened Sidelap Sidelap Deck Weight and Section Properties r ....- - R_<. .. :, e, ,:', ..,.Y .-. __ -Ail ne Flange iLoadingionr ft of Width-Ib due toWeCrippling Weight Deflection Moment l� ( ) FlangeLoading GageGaly Painted Single Multi +Sell „gen End Bearing Interior Bearing End Bearing interior Bearing Span Span Length Length Length Length (psi) (psf) (in 4/ft) (in.41ft) (in 3/ft) (in.3/ft) 2" 3 4 4" 6" 2" 3" 4" 4" 6 22 1.8 1.7 0.346-1340 0.246 0256 412 475 527 793 911 405 454 495 956 1108 21 2.0 1.9 0.381 0.381 0.283 0.294 492 565 626 945 1084 499 557 607 1148 1329 20 2.1 2.0 0.422 0.422 0.323 0.333 577 661 732 1109 1269 602 671 729 1356 1566 19 2.4 2.3 0.503 0.503 0.405 0.415 765 874 966 1472 1678 836 928 1006 1818 2092 111 18 2.7 2.6 0.564 0.564 0.471 0.481 940 1071 1182 1808 2056 1058 1172 1268 2247 2580 16 3 3 3 2 0 7D7 D 707 0 623 0.638 1424 1613 1773 2738 3097 1697 1868 2013 3441 3931 Notes: 1.Section properties are based on Fy=50,000 psi. 2. Id is for deflection due to uniform loads. 3.Seff(+or-)is the effective section modulus. 4.Allowable(ASD)reactions are based on web crippling,per AISI 8100 Section C3.4,where O,,,=1.70 for end bearing and 1.75for interior bearing. Nominal reactions may be determined by multiplying the table values by Ow. LRFD reactions may be determined by multiplying nominal reactions by w=0.9 for end reactions and 0.85 for interior reactions. Attachment Patterns to Supports 36/3 ® ® I 36/4 ® 4 Note: ®indicates location of arc spot weld,power actuated fastener,or screw as indicated in the load tables. 50 =, VF5 VERCO DECkIliG,INC. www.vercodeck.com MIR IIIIII MIMI IIMII IIIIIII IIIIIII NMI MIN 11111111 IIIIIII NIB MI MI NMI NM Milt SIN all NMI ..,. kk* C\ Q•1 0" ....C Z rj C. M 2:1 1.1 I , Z> 15 Z -T) • T -.P r (... -t, 4:. 0 . . CP-15*, 5'-to4,1 1 ,....vt m . -1 tj 1 i F ...... ..o .a.. 4., . t..1 :,. ...,..1 ..jr. ,1 -.. . , .' • v Q rs3 in is . "P. 1, co X )1 ? !' Z4 Er C..".th c 0 1\ 1 9 ii -_1; r '1, 1 9 ..i` 1/1 (.., ln. 55 ix .....,—... ....., 4. 1Z:. 41 ifr 7, ,.... .T3 C''') ".......01 Z .., r „..„.., ....,. (3-- N 11 ,......, 0 ..., .....gz) ,....-, c".” .....015 „..,....,. V - ( D 41), PI CO Ill 0 RI-I ..... <- tv 1) • . I \.......,' ---...,., so k....0*” ' ... SWENSON SAY FAGET 0 ssferigineet s.c0re SEATTLE 2124 Third Ave,Suite 100,Seattle,WA 98121 I 0 206 443 6212 TACOMA 934 Broodway.Suite 100,Taconic),WA 98402 I 0 253 234 9470 KIWI II CONSTRUCTION I 28177.KELLER ROAD MURRIETA,CA92563 (877)465-4942 (951)301-8975 (951)301-4096 FAX ATTN:ART LEON STRUCTURAL CALCULATIONS FOR a ROOF ANCHORAGE III DESIGN LOADS ROOF DEAD LOAD......... DL:= 4•P S F CMU WALL DEAD LOAD Wp:= 84.PSF 8"CMU SOLID GROUTED I SEISMIC LOADING I := 1,0 Sips:_ .608 Sps=0.608 SD1 := .672 SDI =0.672 1 ANCHORAGE FORCE REQUIRED Lf:= 30 111 ka:= 1.0+ Lf ka = 1.3 ASCE 7-10 EQ. 12.11-2 • 100 Fp:= .4•Sps•ka Fp=0.316 ASCE 7-10 EQ. 12.11-1 1 H:= 17.5•FT P:= 5.833.FT PARAPET • ,111 CO:- ,H- P + PN•(Wp)•.7•Fp w=216.883.P LF FACTOR.7 FOR ALLOWABLE STRESS DESIGN 2 i PER DESIGN LOAD COMBINATION IN 2.4,1 w•48•IN =867.531.LB 5/8"X 5"EMBED EXPANSION ANCHORS,ICBG 1385 WITH SPECIAL INSPECTION,40"0/C Tallexp:= 870•LB Tallexp=870•LB > w•48•IN =867.531•LB •1 LEDGER BENDING L:= 10•FT H = 17.5•FT w=216.883•PLF I CA)•L2 M :- 8 M Sxreq :- 30000. _ 30000.PSI Sxreq = 1.084lN3 ,' USE 6"X16 GAGE'C'LEDGER Sx:= 1.155•IN3 SEE ATTACHED OK NOTE ABOVE LEDGER DESIGN INCLUDES ka FACTOR NOT REQUIRED FOR LEDGER,CONSERVATIVE .1 LARGER LEDGER AND HEADER OK BY COMPARISON II LEDGER ATTACHMENT TO DRAG STRUT: NI P:= w•10•FT P =2168.827 LB USE(4)ii 12 SCREWS TO DRAG STRUT (I Vali := 619 IBA Vail =2476 LB > P =2168.827 LB OK 154 1 I DEAD LOAD AND SEISMIC LOAD CALCULATIONS: 1/17/17 DESIGN FOR DEAD LOAD AT ROOF LEVEL: A2 =31725.FT2 STANDING SEAM ROOF DEAD LOAD SSDL := 1.23.PSF ' PURLIN DEAD LOADPLF PDL:= 3.2. PDL=0.64•PSF 5.FT PARTITION DEAD LOAD IWDL:= ,94•PSF t SPRINKLER DEAD LOAD SPDL := 1.PSF ' POST DEAD LOAD SDL:= 2. PLF SQL=0,4•PSF 5-FT TOTAL DEAD LOAD TDL:= SSDL+ PDL+ IWDL+ SPDL+ SDL TDL=4.21•PSF EXTERIOR WALL DEAD LOAD EWDL:- 3•PSF TWO METAL PANELS AND FRAMING TOTAL FOR EXTERIOR WALLS TEDL:= EWDL•10•FT 21 { 4•FT.2+ 180•FT•2+40.FT+ 30•FT) TEDL=25500 LB I CMU DEAD LOAD TRIBUTARY TO ROOF CMU:= (40•FT•2.7•FT+ 60•FT•7•FT+ 60.FT•19.FT)•84•PSF CMU= 178080 LB CMU =5.613.PSF A2 ROOF LEVEL TOTAL TOTALR:= TDL•A2+ TEDL+ CMU TOTALR=337142.25 LB I 1 I 1 of 5 • r DESIGN FOR DEAD LOAD AI'3RD FLOOR LEVEL: A3 =31725•FT2 CMU DEAD LOAD TRIBUTARY TO ROOF CMU:= (40•FT•2.10•FT+60•FT•10•FT+ 60•FT•10•FT)•84•PSF CMU= 168000 LB r r PER ATTACHED AREA CALCULATIONS THE CORRIDOR AREA FOR THE THIRD FLOOR IS...... AC3:= 8970•FT 2 STORAGE AREA MASS IS.... SMS3:= (A3-AC3)•125•PSF•.25 SMS3=711093.75 LB r FLOOR DECK MASS IS FDM3:= A3•(FDL+ 3•PSF) FDM3= 1617975 LB TOTAL3 CMU+ SMS3+ FDM3 TOTAL3=2497068.75 LB fr I I ' r r r r r 2 r i DESIGN FOR DEAD LOAD Al 2nd FLOOR LEVEL: A= 31574•FT2 1 CMU:= (40•FT•11.5.FT+ 40 FT•13.FT+ 60•FT.11.5.FT+ 60.FT•13•FT).84.PSF CMU=205800 LB CMU =6.772.PSF Al CMUE:= (130•FT•6.5FT + 90•FT.8•FT)•84•PSF CMUE = 131460 LB tCONCS := 150 FT•6.5•FT•100•PSF CONCS=97500 LB CONCT:= 70•FT•8.FT•100•PSF CONCT=56000 LB TOTAL:= CMU+ CMUE+ CONCS + CONCT TOTAL=490760 LB PER ATTACHED AREA CALCULATIONS THE CORRIDOR AREA FOR THE SECOND FLOOR IS AC2:— 7640•FT2 ' STORAGE AREA MASS IS.,,. SMS2:= (Al —AC2)•125•PSF•.25 SMS2= 710937.5 LB FLOOR DECK MASS IS FDM2:= Al-(FDL+ 3.PSF) FDM2 = 1549890 LB TOTAL2:= TOTAL + SMS2+ FOM2 TOTAL2=2751587.5 LB TOTAL FOR ALL FLOORS TOTALR+TOTAL3+TOTAL2 =5585798.5 LB SEISMIC LOAD ACCUMULATED TO BOTTOM LEVEL IS Vs= 0.122 -V S 1.4.(TOTALR+ TOTAL3+ TOTAL2) =486762.441 LB < 530400•LB USED IN ORIGINAL ANALYSIS THEREFORE ORIGINAL DESIGN OK PG 39 OF PREVIOUSLY SUBMITTED CALCULATIONS 1 r 3 t i 0 71 1 1 Qt3 1 1s \ 1 5--V Dv>Pi (CI . cool i c), c°b 1 O I 5 Cc . Qi, 007 01 . (<1i09 0S a , 00 I ` -51-1 i I VN I 0,, ,j, 1 i, Li luil -,}-4 5 - ,S 14 qo 4, I I ,40t}-f- 01-7- 4',5'3 f 0.C.S41 "$L k ..1 I i 1 PER SSF CALCULATIONS, MAXIMUM SHEAR TRANSFER AT SECOND FLOOR DECK IS DUE TO WALL 95 P:= 99300•LB L:= 20•FT ALLOWABLE UNIT SHEAR TRANSFER DIRECTLY TO DECK IS... vall:= 3300•PLF THEREFORE REMAINING SHEAR TO BE TRANSFERRED IS.... ' yr:= — vall yr= 1665.PLF L Pr:= vr•L Pr= 33300 LB USE LEDGER ANGLE TO TRANSFER LOAD TO DECK BEYOND WALL CONNECTION 1 Pr 2 Areq:= Areq= 1.542 INTHEREFORE USE L 4X4X1/4" 2 36000•PSI•.6 A:= 1.93•IN ' Aeff:—_ A— .25•1N•.75 IN Aeff = 1.742 IN2 > Areq= 1.542 IN2 OK Pr Lreq:_ — Lreq = 10.091•FT vall 1 THEREFORE EXTEND ANGLE AT LEAST 11 FT PAST WALL AND ATTACHED TO DECK WITH 1 #12 SCREWS AT 3" 0/C PER ICC ESR 2196 WITH 50 KSI 1.44 FACTOR FOR 18 GAGE DECK Valls Valls:= 308•LB•1.44 Valls= 443.52 LB = 1774.08•PLF > yr= 1665•PLF 3•IN WALL TO ANGLE ATTACHMENT FOR SHEAR TRANSFER, USE 5/8"X5.625" EMBED HY-70 ANCHORS AT 8" 0/C Vail:= 1590•LB Vall•2 = 2385 LB PER FOOT > yr= 1665•PLF 8 1 1 1 2 1 PER SSF CALCULATIONS, MAXIMUM SHEAR TRANSFER AT SECOND FLOOR DECK IS DUE TO WALL 103 ' P:= 70500•LB L:= 15.FT ALLOWABLE UNIT SHEAR TRANSFER DIRECTLY TO DECK IS... vall := 3300•PLF THEREFORE REMAINING SHEAR TO BE TRANSFERRED IS.... yr:= — – vall yr= 1400•PLF ' L Pr:= vr•L Pr= 21000 LB USE LEDGER ANGLE TO TRANSFER LOAD TO DECK BEYOND WALL CONNECTION Areq:= Pr Areq= 0.972 IN2 THEREFORE USE L 4X4X1/4" := 2 36000•PSI•.6 A 1.93•IN Aeff := A– .25•IN..75•IN Aeff = 1.742 IN2 > Areq= 0.972 IN2 OK ' Lreq:= Pr Lreq= 6.364•FT vall THEREFORE EXTEND ANGLE AT LEAST 11 FT PAST WALL AND ATTACHED TO DECK WITH #12 SCREWS AT 3" 0/C PER ICC ESR 2196 WITH 50 KSI 1.44 FACTOR FOR 18 GAGE DECK ' Valls Valls:= 308•LB•1.44 Valls= 443.52 LB = 1774.08•PLF > yr= 1400•PLF 3•IN WALL TO ANGLE ATTACHMENT FOR SHEAR TRANSFER, USE 5/8"X5.625" EMBED HY-70 ANCHORS AT 8" 0/C Vall:= 1590•LB Vali. 12 = 2385 LB PER FOOT > yr= 1400•PLF 8 1 3 IKIWI II CONSTRUCTION 28177 KELLER ROAD MURRIETA,CA92563 I (877)465-4942 (951)301-8975 (951)301-4096 FAX I ATTN:ART LEON,ART@KIWICONSTRUCTION.COM STRUCTURAL CALCULATIONS FOR IINTERPOLATING 5/8"ANCHOR LOAD, HY-70 IN CMU INTERPOLATION I5.625 INCHES EMBEDMENT IX1 4 X2 22.5 SPACING Xl X2 X3 YI - Y2 Y3 Y1 :_ .5.2615 Y2:- 2615 ALLOWABLE LOAD I X3:= 8 [X3-X1 I Y3A:= L X2 -X1 •(Y2 -Y1)1 4- Y1 r Y3A= 1590.203 Iii I iiI I I11 I I 1 4 u I ESR-2682 I Most Widely Accepted and Trusted lLI t " ' Y`7 D Page 7 of 15 TABLE 3A-ALLOWABLE ADHESIVE BOND TENSION LOADS FOR THREADED RODS AND REINFORCING BARS IN THE FACE OF 111 Anchor GROUT-FILLED CONCRETE MASONRY UNITS(POUNDS)1,2'7'8'9,11,12,13 Spacing4 Edge Distance' Diameter Embedment Load @ 3 cc,and Critical, Minimum, Critical, Minimum, (inches),or (inches) s s Load Reduction Load Reduction I cr nils 6 Ccr Cniis 6 Rebar Size s°r (inches) Factor at smin Factor at c n;n (inches) (inches) 3/e or No.3 331a 1240 13.5 4 0.70 12 4 0.80 1/2 or No.4 41/2 2035 18 4 0.70 20 4 0.76 I 5/ or No.5 55/8 63/4 2840 22.5 4 0.50 20 4 0.71 3/4 or No.6 3810 27 4 0.50 20 4 0.66 I TABLE 3B-ALLOWABLE ADHESIVE BOND SHEAR LOADS FOR THREADED RODS AND REINFORCING BARS IN THE FACE OF IGROUT-FILLED CONCRETE MASONRY UNITS(POUNDS)1'2,7,@,9,10,11,12,13 Spacingq Edge Distance' I Anchor Embedment Load Load Load Reduction Factor at cm;ne Diameter 3 @ Critical, Minimum, Critical, Minimum, (Inches) ccr and scr Reduction (inches) Se, s'""' Factor at c°r Cmin (inches) (inches) sm�e (inches) (inches) Load Load Parallel Perpendicular to Edge I318 or No.3 33/8 850 13,5 4 1.00 12 to Edge 4 0.88 1.00 1/2 or No.4 41/2 1495 18 4 1.00 12 4 0.49 1.00 '- ) 5/8 or No.5 5518 2615 22.5 4 0.50 20 4 0.40 0.78 3/4 or No.6 63/4 4090 27 4 0.50 20 4 0.26 0.60 For SI:1 inch=25.4 mm,1 Ibf=4.45 N,1 psi=6.89 kPa.I The following footnotes apply to both Tables 3A and 3B: 1 All values are for anchors installed in fully grouted concrete masonry with minimum masonry strength of 1500 psi.Concrete masonry units must be light-,medium-,or normal-weight conforming to ASTM C90.Allowable loads have been calculated using a safety factor of 5. 2 Anchors may be installed in any location in the face of the masonry wall(cell,web,joints).Anchors are limited to one per masonry cell. 3 Embedment depth is measured from the outside face of the concrete masonry unit. I 4 The critical spacing,ser,is the anchor spacing where full load values in the table may be used.The minimum spacing,s,,,,,,is the minimum anchor spacing for which values are available and installation is recommended.Spacing is measured from the center of one anchor to the center of an adjacent anchor. 5 The critical edge distance,ccr,is the edge distance where full load values in the table may be used.The minimum edge distance,c,,,;n,is the I minimum edge distance for which values are available and installation is permitted.Edge distance is measured from the center of the anchor to the closest edge(See Figure 2). a Load reduction factors are multiplicative;both spacing and edge distance load reduction factors must be considered. 7 Load values for anchors installed at less than sc,and car must be multiplied by the appropriate load reduction factor based on actual edge distance(c)or spacing(s). I a Linear interpolation of load values between minimum spacing(s,nn)and critical spacing(sir)and between minimum edge distance(cin)and critical edge distance(cc,..)is permitted. 9 Concrete masonry thickness must be equal to or greater than 1.5 times the anchor embedment depth.EXCEPTION:the 5/8-inch-and the 3/4- inch-diameter anchors and No.5 and No.6 reinforcing bars may be installed in minimum nominally 8-inch-thick concrete masonry. I 10When using the basic load combinations in accordance with IBC Section 1605.3.1,tabulated allowable loads must not be increased for seismic or wind loading.When using the alternative basic load combinations in the 2009 or 2006 IBC Section 1605.3.2 that include seismic or wind loads,tabulated allowable loads may be increased,or the alternative basic load combinations may be reduced according to Table 2.For the 2012 IBC,the allowable loads or load combinations must not be adjusted. t"Allowable loads must be the lesser of the adjusted masonry or bond values tabulated above and the steel values given in Table 10. I 12Tabulated allowable bond loads must be adjusted for increased base material temperatures in accordance with Figure 1,as applicable. 13For combined loading,see Section 4.1.2. ii I Ii I 5 3 ITitle: Job# Dsgnr: Date: 8:45AM, 31 JAN 17 IDescription: Scope: Rev' 580003 ' User'KW-0606193,Ver 5.8.0,1-Nov-2006 Page 1 (c)1983-2006 ENERCALC Engineering Software Rigid Diaphragm Torsional Analysis tigard.ecwPaeations Description revised, r5 General Information Y-Y Axis Shear 662.10 k Min.X Axis Ecc 5.00 % X Axis Center of Mass 103.25 ft I X-X Axis Shear 662.10 k Min.Y Axis Ecc 5.00 % Y Axis Center of Mass 102.20 ft Shears are applied on each axis separately Max X Dimension 210.00 ft Max Y Dimension 180.00ft I Wall Data 1 Label Thickness Length HeightWall Xcg Wall Ycg Wall Angle Wall End E in ft ft ft ft deg CCW Fixity Ii 7.625 70.000 16.000 20.000 45.000 90.0 Fix-Pin Fix-Pin 1,710.0 2 7.625 10.000 16.000 25.000 80.000 0.0 1,710.0 3 7.625 20.000 16.000 30.000 90.000 90.0 Fix-Pin 1,710.0 4 7.625 20.000 16.000 30.000 120.000 90.0 Fix-Pin 1,710.0 5 7.625 10.000 16.000 25.000 130.000 0.0 Fix-Pin 1,710.0 6 7.625 50.000 16.000 20.000 155.000 90.0 Fix-Pin 1,710.0 7 7.625 70.000 16.000 35.000 180.000 0.0 Fix-Pin 3,605.0 I 8 7.625 60.000 13.000 170.000 180.000 0.0 Fix-Pin Fix-Pin 3,605.0 9 7.625 30.000 13.000 200.000 165.000 90.0 3,605.0 10 7.625 10.000 13.000 205.000 150.000 0.0 Fix-Pin 3,605.0 11 7.625 70.000 13.000 210.000 115.000 90.0 Fix-Pin 3,605.0 I 12 7.625 10.000 13.000 205.000 80.000 0.0 Fix-Pin 3,605.0 13 7.625 25.000 13.000 190.000 67.500 90.0 Fix-Pin 1,710.0 14 7.625 10.000 13.000 195.000 55.000 0.0 Fix-Pin 1,710.0 I 15 7.625 10.000 13.000 165.000 40.000 0.0 Fix-Pin 1,710.0 16 7.625 16.000 13.000 137.000 45.000 0.0 Fix-Pin 1,710.0 17 7.625 65.000 13.000 97.500 40.000 0.0 Fix-Pin 1,710.0 18 7.625 30.000 16.000 65.000 25.000 90.0 Fix-Pin 1,710.0 I19 7.625 21.000 16.000 55.000 10.000 0.0 Fix-Pin 1,710.0 20 7.625 21.000 16.000 30.000 10.000 0.0 Fix-Pin 1,710.0 21 7.625 60.000 13.000 100.000 180.000 0.0 Fix-Fix 3,605.0 I22 7.625 10.000 13.000 195.000 80.000 0.0 Fix-Pin 1,710.0 Calculated Wall Forces Load Location for Maximum Forces Direct Shears k Torsional Shears k Final Max. I Label Wall Shear X ft Y Length Thick Length Thick k 1 -47.185 0.000 105.732 0.000 48.303 0.047 154.035 2 0.000 -54.916 -2.371 0.000 -1.009 -0.009 -3.380 I ' 3 -47.185 0.000 16.551 0.000 6.931 0.008 0.004 23.482 4 -47.185 0.000 16.551 0.000 6.931 23.482 5 0.000 -54.916 -2.371 0.000 -0.268 -0.009 -2.639 6 -47.185 0.000 70.554 0.000 32.232 -0.002 102.787 I 7 0.000 -36.916 -158.186 0.000 21.179 -0.078 -158.186 8 0.000 36.916 168.129 0.000 22.511 0.036 -168.129 9 -47.185 0.000 98.778 0.000 -22.600 -0.013 98.778 I 10 0.000 -36.916 -8.430 0.000 0.067 0.013 -8.430 11 47.185 0.000 281.354 0.000 -75.089 0.059 281.354 12 0.000 -54.916 -8.430 0.000 -3.587 0.019 -12.017 I 13 -47.185 0.000 35.578 0.000 -6.785 0.024 35.578 14 0.000 -54.916 -3.999 0.000 -2.326 0.008 -6.324 15 0.000 54.916 3.999 0.000 2.701 0.004 -6.699 6 I Title: Job# Dsgnr: Date: 8:45AM, 31 JAN 17 IDescription: Scope: I Rev: 580003 User:KW-0606193,Ver 5.8.0,1-Nov-2006Page 2 (c)1983-2006 ENERCALC Engineering Software Rigid Diaphragm Torsional Analysis tigard.ecw:Calculations Description revised, r5 I16 0.000 -54.916 -11.388 0.000 -7.336 -0.001 -18.724 17 0.000 -54.916 -87.253 0.000 -58.930 -0.039 -146.183 18 -47.185 0.000 34.173 0.000 9.754 0.024 43.927 I 19 0.000 -54.916 -12.924 0.000 -11.151 -0.013 -24.076 20 0.000 54.916 12.924 0.000 11.151 -0.017 -24.076 21 0.000 -36.916 -176.941 0.000 23.691 -0.189 -176.941 I 22 0.000 1 -54.916 -3.999 0.000 -1.701 0.008 -5.700 Summary X Distance to Center of Rigidity 139.935 ft Controlling Eccentricities&Forces from Applied Y-Y Shear I Y Distance to Center of Rigidity 148.116 ft Xcm+(Min%*MaxX)-X-cr = -26.185ft Torsion= -17,337.38 k-ft Xcm-(Min%*MaxX)-X-cr = -47.185ft Torsion= -31,241.48 k-ft X Accidental Eccentricity 10.500 ft Controlling Eccentricities&Forces from Applied X-X Shear Y Accidental Eccentricity 9.000 ft Ycm+(Min%*MaxY)-Y-cr = -36.916 ft Torsion= -24,442.30 k-ft IYcm-(Min%'MaxY)-Y-cr = -54.916ft Torsion= -36,360.10 k-ft I I I I I I I I I 7 I WALL WALL DIRECT UNIT FIRST FLOOR NUMBER LENGTH SHEAR SHEAR 1/31/2017 FT KIPS PLF I1 70 154.035 2201 2 10 -3.38 -338 I 3 20 23.482 1174 4 20 23.482 1174 5 10 -2.639 -264 I 6 50 102.787 2056 7 70 -158.186 -2260 8 60 -168.129 -2802 I 9 30 98.778 3293 10 10 -8.43 -843 11 70 281.354 4019 I 12 10 -12.017 -1202 13 25 35.578 1423 14 10 -6.324 -632 I 15 10 -6.699 -670 16 16 -18.724 -1170 17 65 -146.183 -2249 I18 30 43.927 1464 19 21 -24.076 -1146 20 21 -24.076 -1146 I21 60 -176.941 -2949 22 10 -5.7 -570 I I I I I I I I I 8 Address: „ _ . . Batting Dmsion Deferred Submittal '1"-mittalitilll Letter ,t ,, To: AP" vilf''40 Arl. _401.* , ,., I TE RECEIVED; DEPT: RIJILDNO DIVISION FROM: COMPANY: PRONE: RE. , Wet .,,,, Nuir'it't,.....* •Vitt ., a ..-,,,,,.-„,...,-;„ . 7- -1';'''l 7-I;ro'',-; 7-7,r , , ,7- .-:.--,-,-•,--:- • . - Argibliatirni Of i:Ofetitrre4 SibMittili: S . 4 ATTACHED 1 THE 111:11.1.4)1Ar401G DEFERRED 4a,InK. . , 1 • ,, . ,. ,,,, , , , ,, L , Niit4i. , 1;10tIc4sitialis, ittc;kosvect, Athiaittiil'' ' ,*4010.. 4w:be 1"14_ aittoti, .0 wibeid,, .4b,0400‘04014)std.,_ iy, that 2. tercornmillole' ' ' ' ' tithe thrill smtill*r.them and fixaitutt*la of,-tlul bidta official wois an ldi)11 .. ,, ' ' ' a'*vi*I'1imi61 1004 hedn'‘Ild ter he in Onfitot 0011(01"initnte to die desitio of -the*stet/Paid*4'1 d*?eignentsitinfe been—----—unlit, • • . 'linve Aim liw , ,1 ;'','' ttie Aeillied**Oita!Was*all not be illefl the design 181(/1°1t4I'llital 'the a$4014,60AVitt()**tit**/4074ent*Vii*CuIt141 cede Section 106.4(4.1 . . , ' P ye* 1 No pet . .474: Amount Due. De*mui Subuuttal-Fee: $ ...,; 4*$ 8i..11)4:led on v,Eduation:,!gir $ k ..„ Qthef: ' '4$ Total Foes Due: $ , . , 1(epiiiii Permit(pet.PE); C) Ycs l's,ic) . . .. I Applicant .Notifiocl: • . '. Thefie ' 'I and tvotiasviag feared plan isibirattal shall be an mutat eitirid to 65%of the lnidthrig based ontitofeevaination or tint particular portion or portions of the project nith a minimum$200.00 fee.This tee is in addition to the project plan inview fee based on the total project value. IsuneuligtvernistrsitusintalLetter-oeuxisilmitiAkc 04/!4/017 . , „, Site Addt.essa Buil i 1 $ ., Division N . Deferred Submittal Transmittal Letter TO:. , . ,,,,. 'Po kr if i;t‘4). L,-4474,k3 DATE itzein7ED. DEFT: BUILDING Divisioi FROM COMPANY: PHONE: .. RE e ..,,,- II". : ..tati,sp. 10 ro....,. iir9a...,.:, Itt , - valuasaa af Dafeermi submittal: $ ' ATTACHED Is,rin FOLLOWING DEFERRED SUBMITTAL ITEM: -, , , $01V DOCXIOThintO tit de*sodittbmittalititm**gdibessibmitbott*0-thelesistyrodde*ilAPIttf000tutlit tift)oinatlediaisel‘ok)obeltritc,kwIllfa old*mar,'tin*to the tAtildlogofSz1t4 with a alltaft°11 ia44*Catial that r ,the ileferteti sultastittal tikintitAtts have been felthtNtitt4 and been koind to he_itt getter&otolftilictialltx to the design of 11W1oSit4ing.The tft‘Otfo4t-$111*1110— 01 itOtttit' 81)011114AtPeifi01111,41U0s1 the detittiltt and litthotittat 62gtaa%eata have ha"- sOsteiltCrati hOr the builtilits niTaitiaL Orogen MrItOttnit4Isti^.41014,(rode Scow'100,$.4.2 ',--; ,,,,.. tiit• , ..',8.. ,..t.,.. 8, ,.. 18 . ,.. 8, . ... t.:'--z•ii,Lti..' .8' i z Y1 , iro,N. Pee DeaeriPticte, Wetted Stit, ittitf Po: $ Atittonal foe based on vslitiation:—OP $ Oiler. TotatFoos thie: $ Reptitit Pcmut Oot PE). cr Yes II NoDoile 141veliettlIt,N<Alfied: Date: Initials:\ ,11:::1 l The tiae f(rr ptomains and reviciiig i .4'' .4 PlalanitilninalShallt,eaninnCallitagaal 10 65%of tile bltiistileg based ' <at;be wthattimi of the iiertiiuthw portion tw portion of the project with a minimum$200.00 fee.This fee is in addition to the project plan review fee based at the total project vahte. i:tsuittru)sTorais‘ivaitaniaan.03ticr-odi4Soliallk4ve toivavrt , FOR OFFICE USE ONLY—SITE ADDRESS: This form is recognized by most building departments in the Tri-County area for transmitting information. Please complete this form when submitting information for plan review responses and revisions. This form and the information it provides helps the review process and response to your project. City of Tigard • COMMUNITY DEVELOPMENT DEPARTMENT ih Transmi l Letter etter 1 c,n R n 13125 SW Hall Blvd. • Tigard, Oregon 97223 • 503.718.2439 • www.tigard-or.gov TO: 61'„i DATE REC �t DEPT: BUILDING DIVISION HE "' FEB 9 2017 ED FROM: art( c C(//nr-A CITY OF TIGA 'U BUILDING DIVISION COMPANY: 47-464) Yr4,- - PHONE: By:A7 . • R160 ,A".._. , ao#,,j„)/(..,—(410?&) ite •. essermit Number) r roject name or su ibd"vision name and lot number) ATTACHED ARE THE FOLLOWING ITEMS: Copies: I Description: Copies: I Description: Additional set(s) of plans. Revisions: Cross section(s) and details. Wall bracing and/or lateral analysis. Floor/roof framing. Basement and retaining walls. h► Beam calculations. Engineer's calculations. Other(explain): REMARKS: FOR OFFIC USE ONLY Routed to Permit Technician: ate: ` f � Initia,:: Fees Due: ❑Yes o Fee Description: Amount ,0 ue: $ $ $ $ Special Instructions: Reprint Permit(per PE): 0 Yes ❑No 0 Done Applicant Notified: Date: Initials: I:\Building\Fonns\TransmittalLetter-Revisions 061316.doc TEL 425-885-4300 M9IIan - FAX 425-885-4303 8383 158th Ave.NE,#280 ARCHITECTS Redmond,WA 98052 magellanar hitects.com Transmittal To: DAN NELSON From: Dirk McCulloch Company: City of Tigard Community Development Pages: As noted below Address: 13125 SW Hall Blvd Date: 2/7/2017 Tigard,OR 97223 Phone: 503-718-2436 Project Name: Storouest Tigard CC: File Project Number: BUP2016-00261 (Ma no. 15-133) ❑ Mail ® Express Delivery ❑ Courier ❑ Fax ❑ Other ❑ Urgent ❑ For Approv ❑ For Review ❑ As Requested ❑ Please Reply RFP t)&. X12— - . k . -t)ELivour Quantity: Date: Description: 2 sets 07-06-17 Complete, full size plans sets reflecting all revisions developed during the structural review process 2 sets 07-06-17 Complete Calculations packages from SSF (foundation engineer) and Kiwi-II (metal building systems engineer) Comments: ft - - O.) , VJ al,l. - la.fi1 Um a t o -O c cs - �Cl� S -=�a-q-r-c- Privileged and Confidential Information:The information in this transmittal is intended only for the use of the recipient above named.Any wrongful review,dissemination,distribution or copying of this communication is strictly prohibited.If errors occur in transmission,or enclosures are not as noted,please notify us at once. G:\Projects-Current\15\15-133 StorQuest Tigard OR\Correspondence\City @017-02-07_TR_CityotTigard_DanNelson_PermitissuancePlanSets_StorQuestTigard_15-133.docs