Loading...
Specifications ,44 5 r,sofL --00s-c/o 7O67) SGcrTA ./c/S Pr 1/./ /GI OFFICE COPY §tR;_ 6975 SW SANDBURG ST#160 • • TIGARD,OR 97223 (971)371-1958 , STRUCTURAL;LLC j DEC 1, 2 ?O16 CITY OF TGAR9 BUILDING DIVISION STRUCTURAL CALCULATIONS Rankin Residence Underpinning 7080 SW Taylors Ferry Rd. Portland,OR 97223 Prepared for Terrafirma Foundation Systems i.e.Structural Job# S101-318 690 04,W Nk4, 731x76 40/ •REGON 10 OP %, c 21,201 RT W. V�►� EXPIRES:�•3o ZoAL Project: Rankin Residence Underpinning Sheet: 1 Client: Terrafirma Foundation Systems Date: 12/12/2016 Job#: S101-318 Revised: EfRJC"'z `Lr Subject: Structural Narrative and Design Criteria By: RWV STRUCTURAL NARRATIVE The purpose of the proposed underpinning work is to stabilize the strip footing at the garage on the southwest corner of the residence to improve the serviceability of the existing structure.This calculation package provides the engineering required to show conformance to all referenced codes for the underpinning system consisting of Foundation Supportworks model 288 helical piers.The system utilizes a bracket assembly and round steel tube sections augered into the earth to transfer loads from the structure to load bearing stratum below. It is notable that this work is voluntary in nature,and is not mandated by building code requirements. The remainder of the structure is beyond i.e.Structural's scope of work. There is no ICC-ES report currently approved for underpinning systems within seismic zone D,thus the entire underpinning system has been reviewed and analyzed as a fully engineered system complying with all current codes and stamped by a licensed design professional.Applicable requirements per the International Building Code 2012(IBC)including,deep foundation guidelines, load combinations,special inspection and testing requirements are included in this document.Bracket fabrication and welding is completed by Behlen Mfg.Co. in conformance to AWS D1.1.The Contractor's means and methods of installation are beyond the scope of these calculations. DESIGN CRITERIA Building Department: City of Tigard Building Codes: 2012 International Building Code(IBC) 2014 Oregon Structural Specialty Code(OSSC) Design Loads: Concrete Unit Weight 150 pcf 1st Floor Dead Load 15 psf Roof Dead Load 15 psf 1st Floor Live Load 40 psf Wall Dead Load 10 psf Snow Load 20 psf Governing Load Combinations: D+.75L+.75S D+L 1.2D+1.0L+1.6S Project: Rankin Residence Underpinning Sheet: 2 Client: Terrafirma Foundation Systems Date: 12/12/2016 Job#: S101-318 Revised: `_TRyf.Tu 'LL Subject: Helical Pier Loads By: RWV HELICAL PIER DESIGN-PIER 1 Dimensional Inputs: Loads: 1st Floor Tributary Width 4.5 ft Concrete Unit Weight 150 pcf Roof Tributary Width 6.0 ft 1st Floor Dead Load 15 psf Wall Height 9.0 ft Roof Dead Load 15 psf Stem Wall Height 14 in 1st Floor Live Load 40 psf Stem Wall Thickness 6 in Wall Dead Load 10 psf Footing Width 12 in Snow Load 20 psf Footing Thickness 10 in Length of Wall Supported 4.5 ft Roof Overhang 2.0 ft Line Loads: Pier Loads: 1st Floor Dead Load 68 plf Dead Load 2205 lb Roof Dead Load 120 plf Live Load 810 lb Wood Wall Dead Load 90 plf Snow Load 720 lb Foundation Dead Load 213 plf Design Load 3353 lb D+0.75L+0.75S 1st Floor Live Load 180 plf %Dead Load 66 % Snow Load 160 plf Helical Pier Type 1 Design Load= 3353 lb HELICAL PIER DESIGN-PIER 3 Dimensional Inputs: Loads: 1st Floor Tributary Width 1.0 ft Concrete Unit Weight 150 pcf Garage Tributary Width 3.0 ft 1st Floor Dead Load 15 psf Roof Tributary Width 2.0 ft Roof Dead Load 15 psf Wall Height 9.0 ft 1st Floor Live Load 40 psf Stem Wall Height 14 in Wall Dead Load 10 psf Stem Wall Thickness 6 in Snow Load 20 psf Footing Width 12 in Footing Thickness 10 in Length of Wall Supported 4.0 ft Roof Overhang 0.0 ft Line Loads: Pier Loads: 1st Floor Dead Load 15 plf Dead Load 1990 lb Garage Dead Load 150 plf Live Load 640 lb Roof Dead Load 30 plf Snow Load 160 lb Wood Wall Dead Load 90 plf Design Load 2630 lb D+L Foundation Dead Load 213 plf %Dead Load 76 % 1st Floor Live Load 40 plf Garage Live Load 120 plf Helical Pier Type 2 Snow Load 40 plf Design Load= 2630 lb Project: Rankin Residence Underpinning Sheet: 3 A ° Client: Terrafirma Foundation Systems Date: 12/12/2016 • • Job#: S101-318 Revised: `ifZ IfT_, Subject: Helical Pier Loads By: RWV HELICAL PIER DESIGN-PIER 4 Dimensional Inputs: Loads: 1st Floor Tributary Width 0.0 ft Concrete Unit Weight 150 pcf Garage Tributary Width 3.0 ft 1st Floor Dead Load 15 psf Roof Tributary Width 2.0 ft Roof Dead Load 15 psf Wall Height 9.0 ft 1st Floor Live Load 40 psf Stem Wall Height 14 in Wall Dead Load 10 psf Stem Wall Thickness 6 in Snow Load 20 psf Footing Width 12 in Footing Thickness 10 in Length of Wall Supported 6.0 ft Roof Overhang 2.0 ft Line Loads: Pier Loads: 1st Floor Dead Load 0 plf Dead Load 4965 lb Garage Dead Load 150 plf Live Load 720 lb Roof Dead Load 60 plf Snow Load 3000 lb Wood Wall Dead Load 90 plf Design Load 7965 lb D+S Foundation Dead Load 213 plf %Dead Load 62 % 1st Floor Live Load 0 plf Garage Live Load 120 plf Helical Pier Type 3 Snow Load 80 plf Design Load= 7965 lb Roof Beam Point Load: Length 18 ft Trib Width 14 ft Roof Dead Load 1890 lb Roof Snow Load 2520 lb HELICAL PIER DESIGN-PIER 5 Dimensional Inputs: Loads: 1st Floor Tributary Width 0.0 ft Concrete Unit Weight 150 pcf Garage Tributary Width 3.0 ft 1st Floor Dead Load 15 psf Roof Tributary Width 2.0 ft Roof Dead Load 15 psf Wall Height 12.0 ft 1st Floor Live Load 40 psf Stem Wall Height 14 in Wall Dead Load 10 psf Stem Wall Thickness 6 in Snow Load 20 psf Footing Width 12 in Footing Thickness 10 in Length of Wall Supported 6.0 ft Roof Overhang 2.0 ft Pier Loads: Line Loads: Dead Load 2100 lb 1st Floor Dead Load 0 plf Live Load 1200 lb Garage Dead Load 150 plf Snow Load 2125 lb Roof Dead Load 60 plf Design Load 4594 lb D+0.75L+0.75S Wood Wall Dead Load 120 plf %Dead Load 46 % Foundation Dead Load 213 plf 1st Floor Live Load 0 plf Helical Pier rime 4 Garage Live Load 120 plf Design Load= 4594 lb Snow Load 80 plf Project: Rankin Residence Underpinning Sheet: 4 • Client: Terrafirma Foundation Systems Date: 12/12/2016 • • Job#: S101-318 Revised: Subject: Existing Structure By: RWV CHECK EXISTING FOOTING Assumptions: Unreinforced fc=2500 psi Width of foundation beyond stem wall not considered. Location: Pier 1-2 span Section Properties: Stem Wall Thickness 6 in Stem Wall Height 14.00 in Footing Thickness 10 in d 14.00 in Total depth-2 inches ACI 318 22.4.7 b 6 in SX 196 in3 A 84 int Span 4.50 ft Demand: Dead Load 490 plf Live Load 180 plf Snow Load 160 plf Factored Load 1024 plf 1.2D+1.0L+1.6S Combo Mu 2.6 kip*ft Simple V„ 2.3 kips Simple Capacity: (1) 0.6 ACI 318 9.3.5 (I)Mn 2.8 Kip"ft ACI 318 Eq.22-2 D Vu 3.9 kips ACI 318 Eq.22-9 Demand/Capacity Ratios: Flexure 0.92 <1,therefore O.K. Shear 0.60 <1,therefore O.K. Project: Rankin Residence Underpinning Sheet: 5 Client: Terrafirma Foundation Systems Date: 12/12/2016 • • Job#: S101-318 Revised: Subject: Existing Structure By: RWV CHECK EXISTING FOOTING Assumptions: Unreinforced fc=2500 psi Width of foundation beyond stem wall not considered. Location: Pier 45 span Section Properties: Stem Wall Thickness 6 in Stem Wall Height 14.00 in Footing Thickness 10 in d 14.00 in Total depth-2 inches ACI 318 22.4.7 b 6 in SX 196 in3 A 84 int Span 5.00 ft Demand: Dead Load 543 plf Live Load 120 plf Snow Load 80 plf Factored Load 899 plf 1.2D+1.0L+1.6S Combo M„ 2.8 kip*ft Simple Vu 2.2 kips Simple Capacity: 0.6 ACI 318 9.3.5 2.8 Kip*ft ACI 318 Eq.22-2 0 Vu 3.9 kips ACI 318 Eq.22-9 Demand/Capacity Ratios: Flexure 1.00 <1,therefore O.K. Shear 0.58 <1,therefore O.K. Project: Rankin Residence Underpinning Sheet: 6 Client: Terrafirma Foundation Systems Date: Job#: S101-318 Revised: `-_"-- i,-_,' Subject: Helical Pier Sleeve and Pier Design By: RWV CHECK SLEEVE AND PIER FOR ECCENTRIC LOADING Design Approach: Determine eccentricity based on required area for concrete bearing. Resolve eccentricity at sleeve tube,assuming no moment is transferred to pier sections below. Assume sleeves resists flexure from eccentric loading and pier transfers all vertical load to the soil. Loads: Po 4965 Lb PL 720 Lb I A Bearing Area, Ps 3000 Lb ll. P ! Areq 11=0- .__ _._ Inputs: SII nl I-_k _ f a 2.75 in _ a 1`alL�lai A I — b 10 in (bracket width) 11=11- ' l 1L �l l beff 4.00 ft (Effective ftg. length, passive II c i h ;'! 1 R c 12 in d 30 in ll=.l ( 11 ": h 42 in 1'11 11, V ;i,Il. L ql D 3.5 in =11r-ti, h d 1 M II=1► f c 2500 psi ' q2 > ll�i7! :1 ' e - q 300 pcf (prescriptive passive t---- ' -,. P' k 30 in pressure w/increase per , d F 1 h 1 R 1 £", `'t,i7:17,40.: i. Check Concrete Bearing: Pe 11478 Lb 1.2D+1.0L+1.6Sz: ! D CD Pn 1381 psi -_ 3 ( q3 - AfeQ 8.31 in2 [._....____ f 0.83 in <<seat length,therefore OK Eccentric Moment: e 3.17 in (f/2+a) P 7965 Lb D+S M 2101 ft-Lb Project: Rankin Residence Underpinning Sheet: 7 Client: Terrafirma Foundation Systems Date: 12/12/2016 • ` Job#: S101-318 Revised: ,TPJ,'Ll' [ Subject: Helical Pier Sleeve and Pier Design By: RWV CHECK SLEEVE AND PIER FOR ECCENTRIC LOADING Loads: P 7965 Lb (see previous calculation) M 2101 ft-Lb (see previous calculation) 1.2D+1.0L+1.6S Sleeve Properties: OD 3.5 in ID 3.068 in t 0.216 in Design t 0.201 in 7%thickness loss for corrosion Design OD 3.470 ksi - ' P ; Bearing Area, 1 Fy 50 ksi I IC: 1 Areq _ S 1.59 in3 1f1 1;1 .11 a ' i =16 , Pier Properties: 17-11' '� 1 {�- OD 2.820 in 11. c -i Pf, ; R ID 2.548 in t I'AI: `' I Y IN :,,,,,A t 0.136 in I1=► jr Jt - Design t 0.126 in 7%thickness loss for corrosi 1 1#1j V tf1! q IA Design OD 2.801 ksi pi4ii, �' [ Fy 50 1, 1*1 I e :. , r 0.95 in li Il A 1.06 int I i d I R I �'. Axial Force on Pier: , Limier 36 in �7 F K 2 .fr '* k�� i ®` D KI/r 76 Fa 19.6 ksi (Table 4-22 AISC 13th Ed.) Pa 21 kips Pr/Pc 0.38 51,Therefore O.K. Flexure on Sleeve at Bracket: M 2101 ft-lb Ma 3978 ft-Lb M/Ma 0.5 51.0,Therefore O.K. Project: Rankin Residence Underpinning Sheet: 8 „' re Client: Terrafirma Foundation Systems Date: 12/12/2016 • + Job#: S101-318 Revised: ,:-F,1_, r,):. c Subjwect: Pier Bracket Design By: RWV CHECK FOUNDATION BRACKET 1)Check Grade B7 Threaded Rod: GI= 3/4 in Fy= 125 ksi e- n= 10 thread/in 4 , At= 0.334 m .� 5 1111611111 TA= 41.8 kip v ' 0 2)Check Weld At Stiffiners: ; , FExx= 70 ksi —`l iiii!ii1I'71Ii 3/16 in ____ _____ FLI Vn/Q= 27.8 kip Pmax= 21.4 kip 11 !I 3)Check Weld At Verticle Plate: TIL 'I R R=6.5/5*P= 0.77 R 0 lip FExx= 70 ksi i f• 5• IW= 5 in tW= 3/16 in WO= 27.8 kip 3i-D.D. Pmax= 21.4 kip * 4)Check Plate Shear and Bending: 5" O O M= 1.5 P '1'• V= P t= 0.375 in Fy= 36 ksi It 62" - -/ V.= 36.4 kip Ma= 28.4 kip / / N Setting Unity Equation Equal to 1: 1.5P/Ma+(p/Va)A2=1 Pmax= 15.5 kips < Controls 12" / #--/ / /2" 5)Check Cap Plate: Capacity to Demand Check: t= 1 in Capacity,Pmax= 15.5 kip Fy= 36 ksi Demand,P= 8.0 kip (see previous calculation) b= 5 in DCR= 0.51 <1,therefore O.K. M=P/2*1.5" 0.75 P Ma= 27 kip Pmax= 36 kip Project: Rankin Residence Underpinning Sheet: 9 Client: Terrafirma Foundation Systems Date: 12/12/2016 • • Job#: S101-318 Revised: Subject: Helical Pier Bearing Capacity Check By: RWV CHECK BEARING CAPACITY-INDIVIDUAL BEARING METHOD APPUED Loads: LOAD P 7965 Lb (see previous calculation) Soil Properties: Soil Type Medium Dense Silty Clay y 115 pcf c 1500 psf 0 32 degrees Helix Properties: D1 10 in D3 D2 12 in D3 0 in I 111 6 Al 79 in2 A2 113 in2 g A3 0 int a' Individual Bearing Method: Soil type Cohesive G4 0 Nq 20 Bearing factor to calculate N, x 40 N, 9 Bearing factor to calculate Qu Qu 7.4 kips D1 02u 10.6 kips Q3u 0.0 kips iiii, SQ„ 18 kips FS 2 Qa 9 kips >P,OK PRESSURE BULBS • Project: Rankin Residence Underpinning Sheet: 10 • Client: Terrafirma Foundation Systems Date: 12/12/2016 • • Job#: S101-318 Revised: Subject: Helical Pier Capacity Check By: RWV CHECK TORQUE ON SHAFT AND DETERMINE INSTALLATION PRESSURES: Loads: P 7965 Lb (see previous calculation) Torque Correlation Method: Shaft Type HP288 FS 2 Kt 9 ft (Empirical torque correlation factor) T 1770 ft-Lb Ta 7900 ft-Lb >T,OK Minimum Gauge Pressure: C 3 in2-ft(Gauge pressure to torque conversion factor) p 590 psi(Minimum installation torque pressure) Use 1000 psi minimum installation pressure CHECK HELICAL LEAD CAPACITY: P 7965 Lb Pa 65400 Lb DCR 0.12 <1,OK Helical Pile Capacities Summary default Ms%irtllum Toque tAlinulo Maximum"dimmable CorraiatIon Maximum Torque Correlated Mechanical Shaft C-.acl[iesN'r" Faotnrm Installation Soil capacity'sTl Axial Axial Torque + K4 x T Compression Tension ti (ft-lbs) (kips) (kIpa) (kips) laid* 10 6.50D 665.0"" 111511 20.s" 14 10,000 loos", 35.1'•'+ 6.500 30A _.. HP2115 9 7,900 71.1 HP349 13,005 91.D as 7", epi 1HP359 ME MOW 112.0 107.(i" 62.6 1 (1)-Gt»emed by AISG a1Kmeh'B otos*o swot 03,14'piA150)or 137Th it4A1751 Slate a bait m aa.ible sheer. (2)-Governed by bearing al the bot hetes. (3)-Cape-01 a;Walde a setsdated lotr6 n'steel'iidcneee due in cwrrsaian for black uncoated awl. Schediad lhlrsmess teepee are tot a period of 50 fin'and are at aeoordianee web ICC-ES A4:356. (4) Mineable ampresaan cape Lias aro based 4o continuo.*Wool eek cortfyatatere i!coin reidt SPT Maw amnia a 4. FIia elth eapOsad 4nbtaoad Hovels or plea planed in weaker or kid.oils sMtnd be evaluated on a case by case basis by the prevent engineer. (5)-Listed methJnirs caparstles Ora for Ike shall°fly. Syteem cailaddee should.alert not emceed the rely led bYgue- correlaled cacao)iy lie Ihoce leled its the resoentne bucket capealy lades. (5)-Lietad detaull K,rectors are widely aoortted minty standards. They are generally ealeOrvahw end are ianeehee will those listed in ICC S.S AC3M; Ste-specttk K,tatted Cat be delerri,rred fp a giver project wit,1ut-saltie feed tealkrl. (7)-Sell OPPPelle*IkaO are unennie uetut a K rneiehiurn inalallslion lomat Alnweble sal capeaty values are&SSaned by ovitNst the wimate agues by the appropriate inssir of ability(FOS). FOS Is most commonly taken e4 3q,Whoop a }Wm, r b..ror rocmay ha=envisioned mei ter istonn tan of the>roleed pre dragnet or es diciwed tet late,cane regshementa (a)-Square shah pies may be considered fps Corr,{won't epptiCaporta i't cot froliteS hat cfre'.,.!cent Centinwra Where aKOV(e s..in Wk.wis,5PT lava counts a 10. Ever it three higher strength cwt condtcm bottling onstream shams be considered,lalling into axosit die rrlrmdbr.and botenenl ec dnottes created by the entptere.