Loading...
Specifications I - t S7 RECEIVED 1 s265 54(J lie/ MAY 182016 CT EN,G I N E E'R I N GStructural Engineers CITY OFTIGARD 180 Nickerson Street Suite 302 Seattle, WA 98109 INC. 206.285.4512 (V) 206.285.0618 (F) BUILDING DIVISION #15238 Structural Calculations River Terrace PRo �1 I Ni,to Plan 5 1 w Elevation D !' � �REG�iNA Tigard, OR it% ( EGONc` , PleS 1.2 Design Criteria: 2012 IBC (ORSC, OSSC) 09/14/2015 ASCE 7-10 Wind Speed: 120(ULT); 93(ASD); Kzt=1 .0 Seismic: Ss=0.972, S1 =0.423, SDC=D Roof Snow Load = 25 psf Site Class = D, Bearing = 2000 psf Client: Polygon Northwest Company 109 East 13th Street, Suite 200 Vancouver, WA 98660-3229 Ph: 360.695.7700 Fax: 360.693.4442 Architect: Milbrandt Architects 25 Central Way, Suite 210 Kirkland, WA 98033 Ph: 425.454.7130 Fax: 425.646.0945 CT ENGINEERING 180 Nickerson St. INC Suite 302 Seattle,WA 98109 (206)2854512(V) (206)285-0618(F) Polygon Northwest Company Multiple locations in Tigard, OR DESIGN SUMMARY: The proposed project is to be single-family homes. We understand that these homes are to be constructed in multiple locations throughout Tigard, Oregon. Design parameters are as noted below: The structures are two-story wood-framed. Roof framing is primarily with pre-manufactured pitched chord wood trusses. Upper floor framing is primarily with pre-manufactured parallel chord wood trusses. Floor framing over crawlspace is primarily pre-manufactured wood joists. The foundations are to be conventional spread footings. Wind design is based on the ASCE 7-10 MWFRS (Envelope Procedure)for 120 mph ultimate wind speed, exposure category B, and with a Kzt value of 1.00. Lateral design is based on the ASCE 7-10"equivalent lateral force"procedure with Ss equal to or less than 1.10 and S1 equal to or less than 0.50 and with soil classification"D". Plywood or OSB shearwalls are the primary lateral force resisting system (R=6.5). . Foundations have been sized for Class 4 soils as defined in IBC 1806.2. Codes considered; 2012 IBC, and currently adopted ORSC and OSSC. SHEET TITLE: DEAD,LOAD SUMMARY CT PROJECT#: Elevation D ...... ......_............. ROOF Roofing` 3.5 psf Roofing future 0.0''psf 5/8"plywood(O.S.B.) 2.2 psf Trusses at 24"o.c. 4.0 psf Insulation 1.0'psf (1)5/8"gypsum ceiling 2.8 psf Misc./Mech.. = 1.5 psf ROOF DEAD LOAD 15.0 PSF FLOOR floor finish 4.0 psf NO gypsum concrete 0.0;'psf 3/4"plywood(O.S.B.) 2.7 psf joist at 12" 2.5 psf Insulation 1.0 psf (1) 1/2"gypsum ceiling 2.2 psf Misc. 2.6 psf FLOOR DEAD LOAD 15.0 PSF . 2x8 HDR 2x8 HE R 2x8 HDR 2x8 HCR 2x8 HER 3B.1O2 RB.2 RB.3 RB.4 RB.5 T. 0 1 I , N • I), 1 ,1,1 N di V,1 1 1= - C {L }- T - } = 1 . N T C/ ao ' ao cc 9 -- 1 =a N } W I ...1 to N O —...... - K ... ^.iii::: -I -c ........... ............................. ....... ............................... ........ . .,......... •••••••••••••••••••••••••••••••••••••• ® { cc . ....„:„...::,:::::.:.:. c . , c,1 = ::::::::::,,::::,::::,::„.. „..:„:„:„./..........,:„. ,.L 2 ..."•::§::::::03 o I ......_ sii......:iiiii.. ".: La I 1 ii:5 8 HDR x 2 2x ,..i.::::::::i;::•iii:::.':.::::::::::: ::::-::•:::::•:'....*.K::::::: .:' N :....+.:':.:.'='::::::::':::. - ''.,..:•",...:.*: •iii i:�i�':'iii:f::::::.:2:.:2:::........................ .................. Ir (2)2x8 HDR ND RB.12 (2)2x8 HDR O GT.d4 i RB 13 RP•11 (2)2xE HDR RB.10 PLAN 5D PLAN 5D Roof Framing Plan O1/4"=1'-,^ CT# 14051 2014.05.09 1/4" = 1' 0" (11x17) 0 . P6 T O >.< , II '1 1 —; ----) r r rr cliF l r- F I. i H 00 N I _, I R' � e� L , ._ _ I N L I ., L 1 1 mi" II ti i 4 .I ��_ ��r _ r F Ta 4.Tb W 400 19 , 4.Te 4. 0 © P LAN 5D PLAN 5D Top Floor Shear Plan 1/4"=1'-0" CT# 14051 2014.05.09 1/4" = 1'-0" (11x17) Ilibi e m 0 14 STHD14 1.Ma 4x10 HDR 1•Mb 3.5x9 GLB HDR 1.Mc 4x10 HDR 4x10 HDR 4x10 HDR 1.M. _ ,� B.1 i B.2i B.3 _ P.4 B.3 1: I / 1 i \.._../ I li �� 1 r, I 1 I is I c - - - {-------' ---T ---- I li.. —3 -I_S - I -----t'J 1 J --. r 1KC K 1 O 1 �� 1 1 1 I I 1 I 1 '! 1 I 1 I II C4 I i -F --3.5x I4� EAM1IG a_El r FB___ i 3.5x14 B, BFIL irigatn- QFj II H \- 1 ' . // - a - _ 4x1 D HDR ` 1 i B I` - i 4 IHDR -\ • 1 \STAIR / -1 , 'C Fir I STHD14 o I I, ST14 14------ ST-1014 i 1, AFRAMING/ to co X ' 1 1 4---__i _- THD \ / r N y -----0 I P4 \\/ i✓ w I I /\ I 1 I / \ I P4\ -i II / \ STHD14 \ I I \ STHD14 .,_. 3.5 BIG BLAI4 B 11 B.le 5.5x18 LiB HDR _ r - ; i I �.1 crars�-br...a ar arrrgrmars ar x ' M y� CI E q 1 ,. 1 1 - cf.� - I 'cS M C ----, II r- --- I't_ -fri _, 1 i cc 1 x 1 Fe el Ea X18. ' �_ II <o I S6.1 x • ❑ F4 '` 18 n ' �S-2x8 HDR v S6.1Cl 'x14"B G BEAM RI "�� 59.0 c!� :�1C:.0 ■ 5.5c165GLBH0RB._6i1����.m�+Ga �� . c�� - - II 0 :... ,,IW' s� F .)2x8 HDR 2)2x8 HDR�'2)2x8 HDR P3 STHD14 STHD14 / , c.. A/ M( & MONO TRUSSES P3 i Sj! ' STHD14 4.M, 24"O.C. 1 1 2x FRAMING I :======: 2x LEDGER a STHD14 @240,.C. e 341- n.a 1 y 4.Mc & 4.Md not used this elevation 5 ell S9.1 190 OPLAN 5 D PLAN 5D Main Floor Shear/Top Floor Framing 1/4"=1'-0" CT# 14051 2014.05.09 1/4" = 1'-0" (11x17) A ` -, 3' 4 0' 3"r 1-1'_3.1 \ T.O.S. 3112"CONC.SLAB it. -0'-71/2' �j - I-0'3-r—_ T.O.S. STHD74 STHD14--��� ... ............ ........................ ......................... ......................... .................... .......................... . .................. ........................... .......... .I..................... ;.1/2'.TJLFLOOR'JOISTS.Q.'.':.........INSTALL'SYSTEM.T.O.ALLOW...'.'::.'.•:.'.'.'.'.'.'.'.:.'.'.'.:. .'.':.':.:..':::.'..'.-:.'.'. :'.!. j:.':.'.'.':.:'.'.'.'.'.'.':.'.'.'.'.. 9:2"O.C.7YP.U.N.O........:.;. ADEQUATE.DRAINAGE AT'... '.'.'.'.'.'.'.'. :.'.'.'.'.':.' .'.'.'.'.'.'.'.-•...,. . ...................... . .................... �'.'I ..'. '.'.'.':.. .. 1....'.'.'.' +n..1_75x9: 'LVL•. '.' !.' I"1-0'1n-1:..':.'.!. ........... ............. .............. 2xfi PONY•N/ALL FOR•.:..... ............... ..... ........... ... . N......... .....8EARINC,W' ABOVE............ ........ .... :.'.':.':!n.:. ............ (JOIST......! 5.............................. .........'...'.'.'.'.'.'.'.'.:...'. .. I. DEP..TMABOVE"PONY.WAL'S:.'....'....... IWH i t �STHD14 STHD14�.}'. .'. ''.......::. ..:...:.:.:..':'.'.'.'.'.'.'..'.':'.'.'.'.'.'.-.'.'.'.':.'.�•.:'.'.':�::�:'.:'f. GI 4 T.O.S. P4 I........... o. 1:::...... •''.•...'::.'.'.'.'.'..':.'.".' �. .'I':.'.'.'.'.':.'.. 0."¢0'x:10".FTG...................1.75"WIDE LVLTO 'TCH''•i' ...'..'.'.'.'. /'(3)'EA.Way.'.':.'...I.. ::.'I JOIST DEPTH AB0 VE PON11. .I......, ..... ..... WALL. .;. p . .fir-....... . .......... 3112"CONC.SLAB I'.'.'.'.'.'.'. .'.'.'.'.'..'.'.'..'.'.'.'.':'.'.'.'.'..'..'.'.':.'.:'.'.io. ...;.......'...:. '........ SLAB SLOPES 3112" ;\H-1-0 1/2"I FROM BACK TO APRON I:...:: . -V-01/2'. �'.':..�. L............'.'.'.'.'.':.'.'.':.'. i t VERIFY GARAGE SLAB HEIGHT IL.......:........ . .... ` • ( WITH GRADING PLAN / 19-10' ............. / .I.................... ........../............ ................... An • ril --r T.O.S. STHD14 _T-61/2' Ali STHD14 3 .I::WAL.L•.'r.:.':.':::.':.:•:.'.'.".'.'.'.'.'.•::.:•.�.- I 18 1 31B"CONC SLAB D1 L. .: . _'_ . . .'.'. ... .'.'. .J. S6.1 P3 1 SLOPED DOWN ----__ ____ I 1/4:12 i,1 FillE1 nt ® or A W 11 _ 1\k—STHD14 STHD14 ® ot) SIM. PLAN 5D 2'-1'1 16'-3' 3 9'-21/2• 8f, 10'-61/2" j (....) PLAN SD a�-o Foundation Plan l'' 1/4"=1'-0" CT# 14051 2014.05.09 1/4" = l'-0" (11x17) CT Engineering Project Title: g 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MAR 2014 1126AM Mf LE 119AM m,FISI �rn ,itrElgiqr ' `t , ' ��r "z - ER G'" o oy1 a kom4 `hers 4ca '7'11A ANIVIPITO"°NPR ArtiatrarAWKagoillOwogogpvg . �K mak, ��,..,�»�M���e�a�:��a,�,x,�„� ��,rs,� ��.�*.�, .�.�diw.�, � � b , � .� 9�2�..� ��. 1 � �tc. �� '!�e �a3_, Lic.#:KW-06002997 Licensee:c.t.engineering`. Description 2nd floor wall Headers rWoodBeam DeSlgal TypicaPartal/Non Bearins Header(6'clear span max, 6'trib max.) �r Ar , � � _1- � � �e�MN3RCalclar6:nPeC20,1DBC 2 wGB,C203 C70 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Prll 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Design SummaryD 0.0750 S 0 125 Max fb/Fb Ratio = 0.476. 1 ._...- 1. -- :.,• !•.. ,-,-;-- -, -. ' - fb:Actual: 482.28 psi at 3.250 ft in Span#1 Fb:Allowable: 1,013.55 psi010 Load Comb: +D+S+H 0 - Max fv/FvRatio= 0.245: 1 fv:Actual: 36.76 psi at 0.000 ft in Span#1 6.50 N 2-2x6 Fv:Allowable: 150.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.041 in Downward Total 0.065 in Left Support 0.24 0.41 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.24 0.41 Live Load Deft Ratio 1913>360 Total Defl Ratio 1196 >180 Wood Beam D,e 1911,a`a Typical Full-width Bearing Header 4'clear span max 23'Tnb Max.) l �,�s € - ai r A. _ --4,'F z °Ca culations p 2012`NDS,IBC201 ;CBC 20,3 CE�71e4. ; BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Prll 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=23.0 ft Design Summar i"mss 0.5750 x' Max fb/Fb Ratio = 0.934. 1 tt fb:Actual: 948.44 psi at 2.125 ft in Span#1 Fb:Allowable: 1,015.94 psi4100 Load Comb: +D+S+H A A Max fv/FvRatio= 0.647: 1 fv:Actual: 97.08 psi at 3.655 ft in Span#1 4.250 a 2-2;0Fv:Allowable: 150.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.034 in Downward Total 0.055 in Left Support 0.73 1.22 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.73 1.22 Live Load Dell Ratio 1488>360 Total Deft Ratio 930 >180 Wood4B�am Deslg�n' Y�I *+a � tag �, l"�"i ` nl �..�R RR'Er c tlons�"er 201 tiPV BC 20W GBS 013,ASCE 710'. �§� �k.�i -, "� ,,.,�r:?�. 't � �>�b,�..,vim`_ �' Q��-u� �ap.�u.d.��z,rx _ ,.. et fr` t'� .,gin .�rir�,..��.�, _�r.� a�....�..�.�,re.., 9«sfi..:,c,�. ,_�a ,rc ..� ,. BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Prll 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Point: D=0.990, S=1.50 k @ 0.670 ft Design Summary . Max fb/Fb Ratio = 0.628• 1 •0 0750 S 0.1250 fb:Actual: 639.02 psi at 0.669 ft in Span#1 Fb:Allowable: 1,017.44 psi Load Comb: +D+S+H 4 A Max fv/FvRatio= 0.938: 1 fv:Actual: 140.63 psi at 0.000 ft in Span#1 2.750 n 2-2x6 Fv:Allowable: 150.00 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.008 in Downward Total 0.012 in Left Support 0.85 1.31 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.34 0.54 Live Load Defl Ratio 4381 >360 Total Defl Ratio 2655 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 prima 6 MAR 2014,1126AM � 1 lie Q1(4U51r 1fEn 140517 1 EC6 , Mulfiple Semple Beamf4f, ,•r :5e - 4 , EN.ERCALC,INC,1983-201,4 Build6,1,4:123Uer6141.23 Lic.#::KW-06002997 Licensee:c.t.:engineering` Description : Top Floor Framing Wood Beam Deslgn B.1 Calculations per 2012 NDS IBC 2012 CBC 2013,ASCE 7410', BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-PrIl 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,0.0 to 2.670 ft,Trib=3.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 4.250 ft,Trib=23.0 11 Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.990, S=1.650 k @ 2.670 ft Design Summary o 0.0, JaiLlj],.F1F Max fb/Fb Ratio = 0.795 1 o 0043 101 • fb:Actual: 983.60 psi at 2.663 ft in Span#1 si Load Comb:e +D+0.75: 1,237A50L+ 0.750S+H • Max fv/FvRatio= 0.588: 1 A A fv:Actual: 121.63 psi at 3.485 ft in Span#1 Fv:Allowable: 207.00 psi 4.25011,4x10 Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.024 in Downward Total 0.038 in Left Support 1.05 0.87 0.92 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.60 0.87 1.84 Live Load Defl Ratio 2120>360 Total Defl Ratio 1333>180 Wood Beam Deslgn B 2 Calculations a 2012 NDS,,BC,2012,CBG 2013 ASCE 7-10,' BEAM Size: 3.125x9,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2400 psi Fc-PrIl 1650 psi Fv 265 psi Ebend-xx 1800 ksi Density 32.21 pcf Fb-Compr 1850 psi Fc-Perp 650 psi Ft 1100 psi Eminbend-xx 930 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,2.670 to 6.50 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.560, S=0.9350 k @ 3.250 ft Design Summary Max fb/Fb Ratio = 0.792 1Q..a4 D(41 3, L( gra o�aro s'"° fb:Actual: 2,168.64 psi at 3.250 ft in Span#1 , 3 , Fb:Allowable: 2,738.45 psi Load Comb: +D+0.750L+0.750S+H • Max fv/FvRatio= 0.615: 1 fv:Actual: 187.53 psi at 5.763 ft in Span#1 Fv:Allowable: 304.75 psi 6.5011 3.125x9 Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S W all Downward L+Lr+S 0.119 in Downward Total 0.189 in Left Support 1.43 1.33 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.97 1.33 2.02 Live Load Defl Ratio 654 >360 Total Dell Ratio 412>180 Woad;Beam Design B.3'; s Calcul tions per 2012,NDSIBC 2012,CBC 2013,ASCE 7 10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-PrIl 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 kik 1.50 to 4.250 ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Point: D=0.560, S=0.9350 k @ 1.50 ft CT Engineering Project Title: Engineer: Project ID: 180 Nickerson,Suite 302 En g Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 6 MAR 2014 1128AM : " . " ". 44WI � Lr Ka "ei� w i � s sauf read -a 114 a 4m 1 iia Inultje ompjeBeamr r � ENagCA0Ne608310144u 51 23 6gNt4123n r � e , X , Lic.#::KW-06002997 - . - ;� � - � , �- � =- � :Licensee:c.t:engineering Design Summary Max fb/Fb Ratio = 0.681 • 1 . :":(..1'':,; TO. (v s tso) = fb:Actual: 842.88 psi at 1.941 ft in Span#1 -, 7:-,!...-.-24,-;:7,-,-,-- -,:,-:-4,-.:,,y,,,,,- Fb:Allowable: 1,237.45 psi Load Comb: +D+0.750L+0.750S+H Max fv/FvRatio= 0.502: 1 A fv:Actual: 103.92 psi at 0.000 ft in Span#1 4.250 n 4x10 Fv:Allowable: 207.00 psi Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.023 in Downward Total 0.036 in Left Support 1.17 0.87 1.12 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.34 0.87 1.40 Live Load Defl Ratio 2242>360 Total Defl Ratio 1411 >180 itikoo01Beam Des>tg� , B 4 t i . E .,,5: + i ,.,`, V,,.:.16,5-- T , oa*:::! ?7o7a- utatto p 20#7f0r.SIBC', P-fg:.BC2013,ASkCE7!1O BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Prll 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=23.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary Max fb/Fb Ratio = 0.578• 1 01414110141441121.0.4.1:35120.1.0 is fb:Actual: 715.19 psi at 2.125 ft in Span#1 Fb:Allowable: 1,237.45 psi ,_ . _. , �., _,..a a..�... Load Comb: +D+0.750L+0.750S+H • Max fv/FvRatio= 0.401: 1 A A fv:Actual: 83.02 psi at 3.485 ft in Span#1 ,sso a,.,o Fv:Allowable: 207.00 psi Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D I. Lr S W E LI Downward L+Lr+S 0.020 in Downward Total 0.031 in Left Support 1.23 0.87 1.22 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.23 0.87 1.22 Live Load Deli Ratio 2591 >360 Total Defl Ratio 1632>180 rY:60411,:ealfifbeilbliga3-.r6p-:)'tgleo ,r - . T: ,,?u-v,,, -.:,,F.,,,..-.v.',..;, :(:a1,9,04:Bons pe`2012 NDS�,IBG,J20i2,GBC20./1.$7,,,4,-.0-E,..7,404 BEAM Size: 2-2x8,Sawn Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Pr!! 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary 3411401-4!:04:4-t!,,-10.14,04 Max fb/Fb Ratio = 0.109. 1 ��11.001••=' . fb:Actual: 127.33 psi at 1.375 ft in Span#1 Fb:Allowable: 1,169.59 psi • Load Comb: +D+S+H • A Max fv/FvRatio= 0.092: 1 fv:Actual: 15.85 psi at 0.000 ft in Span#1 2750 it,2-2s8Fv:Allowable: 172.50 psi Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.002 in Downward Total 0.003 in Left Support 0.23 0.06 0.17 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.23 0.06 0.17 Live Load Defl Ratio 19147 >360 Total Defl Ratio 9430>180 1 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MAR 2014 1128AM Mton0e Simple Beam fi s x k p st _, , x , i31140;q-itEng1119051X tEC6 .ate s ,,,,,,....,, ..._ .,fi z , „:R aENgR,Pac,INC 1983-2014,BuRO:A.j4 123,Ver:4 ld t2-4;: Lic.#:KW=06002997 • Licensee:c.t.engineering Wood Beam zDeslgn B g s. ..__, �__ ._ �_. -... C "n , .d.,',"-':;'/)--, :''''.,� _ .,,K . �, ,Calculations per 2012-NDS°1BC2012 CBC 201:3 ASCE 7A0: BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Prll 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary Max fb/Fb Ratio = 0.520 1 ` = W.:..'A,=`•1i7 • fb:Actual: 606.14 psi at 3.000 ft in Span#1 Fb:Allowable: 1,165.07 psi ,,:t„:,-,,,,:, `:`,z 1• q�'V -, Load Comb: +D+S+H °� � Max fv/FvRatio= 0.283: 1 A A fv:Actual: 48.83 psi at 5.400 ft in Span#1 Fv:Allowable: 172.50 psi 6.0r 2-2x5 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.039 in Downward Total 0.079 in Left Support 0.51 0.12 0.38 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.51 0.12 0.38 Live Load Defl Ratio 1843>360 Total Defl Ratio 908>180 Wood Beam Deslgn; B.7 J , - .Z, ,., , r Calc#latwns ."er 2012:NDS IBC 2012 CBC 2013 ASCE 7-10 BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Prll 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=1.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,Trib=5.0 ft Unif Load: D=0.010 k/ft,Trib=8.0 ft Design Summary 3yy Max fb/Fb Ratio = 0.292. 1 i Rie Y+f�xbl • ± fb:Actual: 340.95 psi at 2250 ft in Span#1 Fb:Allowable: 1,167.23si p Load Comb: +D+S+H Max fv/FvRatio= 0.195: 1 A fv:Actual: 33.57 psi at 0.000 ft in Span#1 Fv:Allowable: 172.50 psi 4.508 2.20 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr s w E H Downward L+Lr+S 0.012 in Downward Total 0.025 in Left Support 0.38 0.09 0.28 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.38 0.09 0.28 Live Load Defl Ratio 4369>360 Total Defl Ratio 2152>180 Wood Beam Design 'B 8 � �,:�i �" Y x�'�,5` � a` ��x au ��.. �,��, �Asx..�,��*'.R... s '; �""T"��" e x -«�, �. : ," s.<� Z ,y Calculations per 2012 zNDgl.gC 2012,,CBC 201,3,ASCE 10 BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-PM 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary .0.2213 L 0.590 Max fb/Fb Ratio = 0.277. 1 ._ _•1_ I_ 30111ei. fb:Actual: 298.66 psi at 1.750 ft in Span#1 Fb:Allowable: 1,077.23 psi .om „ Load Comb: +D+L+H 0� Max fv/FvRatio= 0.205: 1 A A fv:Actual: 36.84 psi at 2.730 ft in Span#1 Fv:Allowable: 180.00 psi 3.50 R 4x10 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr s w E H Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Defl Ratio 7745>360 Total Defl Ratio 5633>180 CT Engineering Project Title: Project ID: 180 Nickerson,Suite 302 Engineer: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 6 MAR 2014 1128AM x�, �� � ..� '��� �� a I `�°'��1, �`a N �';���itFite„. 411�#O5�T t�En�tL14051T t'EC6�' ' b :3&s�Terre r4 s Til 1 " 14141 s ,T 145 C "C 1 �>,1983 2Q1 ujICI`�6,55t„ 1123 61CF5,111f S,§8 M It�ple S Imple Bearr� .,. • � o ,--", i;: � .4• -..Ne 4 Lic.# KW-06002997 Licensee c.t.engineering WoodhBeam Design B 9 s,i;� x �la�� hg� 1s�a-S,"r��W rA � �f � 5a �r, .cu.iaotrtsrP 2re1 . 2NS 3C_?0_2ugB0 13 ASCE7 10, BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Prll 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary02213 10.590 Max fb/Fb Ratio = 0.277; 1 . . fb:Actual: 298.66 psi at 1.750 ft in Span#13z_ raz3„ztl Fb:Allowable: 1,077.23 psi Load Comb: +D+L+H iii Ill Max fv/FvRatio= 0.205: 1 A A fv:Actual: 36.84 psi at 2.730 ft in Span#1 3.50 R 4010 Fv:Allowable: 180.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) o L Lr S W E H Downward L+Lr+S 0.005 in Downward Total 0.007 in Left Support 0.39 1.03 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.39 1.03 Live Load Deft Ratio 7745>360 Total Deft Ratio 5633 >180 Wosid Beam>Design B 10 - '°lre , Ty * x ,- r 4 gt GaicuiationsiperC;11400. 1BC 2012,, CBC 2013 AS6E57F10; BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Pril 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design SummaryD 0.2213 I.,.590 Max fb/Fb Ratio = 0.372. 1 fb:Actual: 766.31 psi at 3.000 ft in Span#1 Fb:Allowable: 2,062A0 psi .-.� Load Comb: +D+L+H • • Max fv/FvRatio= 0.295: 1 A A fv:Actual: 91.39 psi at 4.840 ft in Span#1 s.o rt,1.75x14 Fv:Allowable: 310.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S w E H Downward L+Lr+S 0.028 in Downward Total 0.038 in Left Support 0.66 1.77 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.66 1.77 Live Load Defl Ratio 2581 >360 Total Defl Ratio 1877 >180 i Wood Beam Design B 11 f 't5,� ,7 7 Te e' .- W p Caic lation p r 2012 NDP,IBC 2012,,CBC 2013 ASCE 7 10J BEAM Size: 1.75x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade:TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-Prll 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.750 ft Design Summary0 02213 L 0.590 Max fb/Fb Ratio = 0.198• 1 fb:Actual: 431.05 psi. at 2.250 ft in Span#1 Fb:Allowable: 2,180.79 psi ��-,� Load Comb: +D+L+H • • Max fv/FvRatio= 0.175: 1 A A fv:Actual: 54.39 psi at 0.000 ft in Span#1 4.50 a 1.75x14 Fv:Allowable: 310.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.009 in Downward Total 0.012 in Left Support 0.50 1.33 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.50 1.33 Live Load Defl Ratio 6120>360 Total Defl Ratio 4451 >180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MAR 2014 1128AM Ulultlpte Simple Beam f s Fid uIld651Z 23 Ve 61 1.23 ENE12C�4LC,INC,149832014 Bu7d0A44123 Ver614123„s' Lic.#:KW-06002997 Licensee:c.Gengineering ; Wood Beam Design z B.12 . ' � . Ca u a ions per,2012 NDS IBC 2012„CBC 2015 ASCE,?10 BEAM Size: 3.125x9,GLB, Fully Unbraced OR 3.125X10.5 Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-PM 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-:c< 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=14.0 ft Design Summary D0210 L 0.560 Max fb/Fb Ratio = 0.736. 1 fb:Actual: 1,752.18 psi at 4.000 ft in Span#1 Fti x Fb:Allowable: 2,379.75 psi Load Comb: +p+L+H � • Max fv/FvRatio= 0.504: 1 A A fv:Actual: 133.60 psi at 0.000 ft in Span#1 Fv:Allowable: 265.00 psi 8.0 ft 3.125x9 Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E FI Downward L+Lr+S 0.152 in Downward Total 0.209 in Left Support 0.84 2.24 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.84 2.24 Live Load Dell Ratio 632 >360 Total Defl Ratio 459>180 CT Engineering Project Title: Project ID: 180 Nickerson,Suite 302 Engineer: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MAR 2014 1205PM °�'T� ,° �ii .p a >M .` 3 '- 1 a ^r �1 . v 1 -.1 „, . b£ ,= m 0 File „Q tt405,1T 1, ,gr114N8, 11 sr, 'WWI�l rs a? p wa e,e m ,�-ltl�,a! I lad ge W t 1 DAPI jCALC,IRMAP3-2014 Pir d s1> 1 23r°ve'*itt t"��3:., Lic.#:KW-06002997 Licensee:c.t.engineering:, Description Top Floor Framing, Cont. Wooil4BeamD,eslgnh £ B 13 g r , 4` ,` r 4"" , lit t1,9P, ped 2012 NDS,IBC2012 CBC 2013,ASCE710 BEAM Size: 3.5x14,TimberStrand, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2,325.0 psi Fc-PrIl 2,050.0 psi Fv 310.0 psi Ebend-xx 1,550.0 ksi Density 32.210 pcf Fb-Compr 2,325.0 psi Fc-Perp 800.0 psi Ft 1,070.0 psi Eminbend-xx 787.82 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=8.0 ft Unif Load: D=0.0150, L=0.10 k/ft,Trib=5.0 ft Design Summary 618:911'.AM Max fb/Fb Ratio = 0.422; 1 fb:Actual: 962.10 psi at 4250 ft in Span#1 � 9 Fb:Allowable: 2280.40 psi �..�,... _ �`,_ m�� _��, � Load Comb: +D+L+H . IP Max fv/FvRatio= 0.310: 1 A A fv:Actual: 95.96 psi at 7.338 ft in Span#1 8.50 R 3.5214 Fv:Allowable: 310.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) 2 L Lr S W E H Downward L+Lr+S 0.078 in Downward Total 0.097 in Left Support 0.83 3.49 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.83 3.49 Live Load Dell Ratio 1306>360 Total Defl Ratio 1055>180 WOOd Bearly Deslgi ., " er� A gi �.� �< . ; e KnerAw � �<s«�?&00.1 �� . . m� �tfC��a ..._ ps,, p 12Nx5BC 02„CB,C 2.0 .CE 1 0 BEAM Size: 5.125x18,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DF Wood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-PrIl 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-xx 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=12.0 ft Design Summary Max fb/Fb Ratio = 0.634; 1 D 0.180 L 0.480 fb:Actual:Allowable: 2,366.89 6.89 p Load d Comb: 2 31 3+H at 10.125 ft in Span#1 --- - , Fbpsi Max fv/FvRatio= 0.350: 1 20.250 ft, 5.125x18 fv:Actual: 92.72 psi at 18.765 ft in Span#1 Fv:Allowable: 265.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.407 in Downward Total 0.560 in Left Support 1.82 4.86 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 1.82 4.86 Live Load Defl Ratio 596>360 Total Defl Ratio 433>180 0 '..*mri,Design- B 15 ,q A a �` " `- fiy a ... ? ?0, k. t 0 Calglt atTP iRC)�2032rNDS;SBC 2'.„012 CRC 20.13,ASCj X7710 i,','����� ��_.,. � �.>�. tip �_., BEAM Size: 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem Fir Wood Grade: No.2 Fb-Tension 850.0 psi Fc-Prll 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Design Summary .0.1425 0.380 :rs Max fb/Fb Ratio = 0.264. 1 fb:Actual: 268.39 psi at 1.500 ft in Span#1 m �, Fb:Allowable: 1,017.19 psiIIIEo Load Comb: +D+L+H A A Max fv/FvRatio= 0.216: 1 fv:Actual: 32.43 psi at 2.400 ft in Span#1 3.0 a z-z=a Fv:Allowable: 150.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.006 in Downward Total 0.008 in Left Support 0.21 0.57 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.21 0.57 Live Load Defl Ratio 6403>360 Total Defl Ratio 4657>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 6 MAR 2014,12:05PM Ntutflple Slrrtple Beam . �. x ct114051T 11Bogr1.4A8 33r1.Ecb . ^ ��: x- : 'i ENERCALC INC.1983-2014 Build 8,.14'1.23„Ver'614 1 23„.::Cc.i::KW-06002997 Licensee:c.t.engineering Wood Beam Deign 6:16 FS Calculations:per 2012 NDS;IBC 2012,CBC 2013,ASCE 7 10 BEAM Size: 5.125x16.5,GLB, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: DF/DFWood Grade: 24F-V4 Fb-Tension 2,400.0 psi Fc-Pr!' 1,650.0 psi Fv 265.0 psi Ebend-xx 1,800.0 ksi Density 32.210 pcf Fb-Compr 1,850.0 psi Fc-Perp 650.0 psi Ft 1,100.0 psi Eminbend-;o< 930.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Unif Load: D=0.0150, S=0.0250 k/ft,0.0 to 9.50 ft,Trib=2.0 ft Unif Load: D=0.0150, S=0.0250 k/ft,9.50 to 16.50 ft,Trib=22.0 ft Point: D=2.295, S=3.825 k @ 9.50 ft Design Summary Max fb/Fb Ratio = 0.887 1 D(0.030LS(0.050) �'��''�' .D(0.330)S(0.550), . fb:Actual: 2,412.56 psi' at 9.515 ft in Span#1 j � I • si Load Comb Fb:Allowable: +D2,7+0.758.980L+0.750S+H _ r Max fv/FvRatio= 0.538: 1 A S fv:Actual: 163.82 psi at 15.180 ft in Span#1 16.50 ft, 5.125x16.5 Fv:Allowable: 304.75 psi Load Comb: +D+0.750L+0.750S+H Max Deflections Max Reactions (k) D L. Lr S IN E H Downward L+Lr+S 0.476 in Downward Total 0.720 in Left Support 2.84 3.14 2.78 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 4.40 3.14 5.37 Live Load Defl Ratio 416>360 Total Defl Ratio 275>180 '-Wood Beam Design B 18 - rt Calculations per 2012 NDS,,IBC 2012,CBC 2013;ASCE 7-10 BEAM Size 2-2x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Hem FirWood Grade: No.2 Fb-Tension 850.0 psi Fc-Pal 1,300.0 psi Fv 150.0 psi Ebend-xx 1,300.0 ksi Density 27.70 pcf Fb-Compr 850.0 psi Fc-Perp 405.0 psi Ft 525.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, S=0.0250 k/ft,Trib=4.0 ft Design Summary 0 0.060 s 0.10 Max fb/Fb Ratio = 0.272. 1 m11.1. ,F fb:Actual: 27624 psi' at 2.750 ft in Span#1 � , Fb:Allowable: 1,014.63 psi �."" � � � �E � Load Comb: +D+S+H • • Max fv/FvRatio= 0.159: 1 A A fv:Actual: 23.87 psi at 0.000 ft in Span#1 Fv:Allowable: 150.00 psi 5.50 n,2-e0 Load Comb: +D+S+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.017 in Downward Total 0.027 in Left Support 0.17 0.28 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.17 0.28 Live Load Defl Ratio 3949 >360 Total Defl Ratio 2468 >180 CT Engineering Project Title: Engineer: Project ID: 180 Nickerson,Suite 302 En 9 Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed 6 MAR 2014,11:34AM r.'Y , ,»i, 1:�. .x z ns , a .lr'EXr prv� � r N ' ' ja'E E , :,,. ; > s Fe; t 11401T 1tt 014051T 6 " liMUlt1#®Je'.�'?IRi $eeltnr� ,,, ,, tart.-0` sim r ri ENEB C,INC 183>014•BU k 6 f{4'1,23,Ve'B 141143_ ^. .;y ea. _ pn t w ;u eV �da tak :' 4, >� .°mar FA,-,� um x 1 , �, 9 Lic.#:KW-06002997 Licensee:c.t.engineering Description D Middle Floor Framing 1 N od Beam\Deslgfl BB 1 ;400744rt i y t ' '44. , zmn,,^arr` , t�,.. 3, 3 r d <i �Calaut f ons peri,2012 ND,is,IBC�1012,,CBc 2013,ASCE?10; BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-PrIl 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, L=0.040 k/ft,Trib=3.750 ft Design Summarylim ., Max fb/Fb Ratio = 0.388• 1 fb:Actual: 417.98 psi at 2.125 ft in Span#1 Fb:Allowable: 1,076.59 psi . - s Load Comb: +D+L+H • • Max fv/FvRatio= 0.270: 1 A A fv:Actual:• 48.52 psi at 3.485 ft in Span#1 4.250 ft.4210 Fv:Allowable: 180.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W. E H Downward L+Lr+S 0.011 in Downward Total 0.015 in Left Support 0.45 1.19 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.45 1.19 Live Load Defl Ratio 4557 >360 Total Deft Ratio 3314>180 d r« '' ,Wood Beaim Det 1,14 ``1 . 4:41.r x. r ,,, B 3 ,I 7 +'AW, ,C,ialculations per t012 YVDS IB.C,120,12;,CBC 2013,S E 7 10,E BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Prll 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Unif Load: D=0.0150, L=0.040 k/ft,Trib=3.750 ft Design Summary 41e.'A6°a',5o4' Max fb/Fb Ratio = 0.775. 1 Y s fb:Actual: 833.08 psi at 3.000 ft in Span#1 Fb:Allowable: 1,075.07 psi Load Comb: +D+L+H Max fv/FvRatio= 0.444: 1 A A N:Actual: 79.91 psi at 5.240 ft in Span#1 6.0 rt,4x10 Fv:Allowable: 180.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr. 5. W E H Downward L+Lr+S 0.044 in Downward Total 0.061 in Left Support 0.63 1.68 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.63 1.68 Live Load Defl Ratio 1619 >360 Total Defl Ratio 1178>180 WEDe �gB3 d k't- f 4 , C lcta o er012NDlIBc40iGBC20TASCE7 10, BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-PrIl 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft 0.1538 1.0.410 Design Summary ��amommommomm>_n Max fb/Fb Ratio = 0.319. 1E ` fb:Actual: 343.09 psi at 2.250 ft in Span#1 Fb:Allowable: 1,076.38 psi Load Comb: +D+L+H 0 = Max fv/FvRatio= 0.215: 1 N:Actual:• 38.79 psi at 0.000 ft in Span#1 q.50 a 4610 Fv:Allowable: 180.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.010 in Downward Total 0.014 in Left Support 0.35 0.92 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.35 0.92 Live Load Defl Ratio 5244>360 Total Dell Ratio 3814>180 CT Engineering Project Title: 180 Nickerson,Suite 302 Engineer: Project ID: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: (206)285 0618 Printed:6 MAR 2014,11:34AM NlUltipte Simple,BeaI11 ''''''''''I''''''' '''"?`'"_ ENERCALC,!NC 1983.2074 Butld4614 23 Ver6141EC6 i:23 r W. � � ,.. �, �_.. .. x,.w: �� ..� � tip ,t�_r. ,x.. �_.. Lic.#:KW-06002997 = ' Licensee:c.t:`engineering ' Wood Beam Desi 9n B BBA --- �_ � - �` , Calculations per 2012:NDS,IBC 2012 CBC 2013,ASCE 7-10�" BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-PrIl 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 psi Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=10.250 ft Design Summary .0.1538 L 0.410 Max fb/Fb Ratio = 0.319. 1 �� ". Fbfb•Alluwable: 1,076.38 psi psi at 2.250 ft in Span#1 � Load Comb: +D+L+H 1111 4 Max fv/FvRatio= 0.215: 1 A A iv:Actual: 38.79 psi at 0.000 ft in Span#1 Fv:Allowable: 180.00 psi 4.5011,4x10 Load Comb: +D+L+H Max Deflections Max Reactions (k) j3 L Lr S W E H Downward L+Lr+S 0.010 in Downward Total 0.014 in Left Support 0.35 0.92 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.35 0.92 Live Load Defl Ratio 5244>360 Total Deft Ratio 3814>180 Woad Beam Design 'BB.-S---- •''''',t.",:--",'::"'2,, ,• 4•.,v-1, .a = ns per 201.2 N_DS IBC 2012 CBC 2013,ASCE 7-10; Calculatfo ,� BEAM Size: 6x8,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 875.0 psi Fc-PrIl 600.0 psi Fv 170.0 psi Ebend-xx 1,300.0 ksi Density 32.210 pcf Fb-Compr 875.0 psi Fc-Perp 625.0 psi Ft 425.0 psi Eminbend-xx 470.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=5.0 ft Design Summary Max fb/Fb Ratio = 0.624. 1 D(0.0750)L(0.20). ib:Actual: 544.50 psi at 4.125 ft in Span#1P.:::"---,-, �: �, ; ter ; ,� � Fb:Allowable: 873.27 psi et � � ` Load Comb: +D+L+H Max fv/FvRatio= 0.207: 1 A A iv:Actual: 35.20 psi at 0.000 ft in Span#1 8.250 e, 6x8 Fv:Allowable: 170.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) D L Lr S W E H Downward L+Lr+S 0.083 in Downward Total 0.115 in Left Support 0.31 0.83 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.31 0.83 Live Load Defl Ratio 1187>360 Total Defl Ratio 863>180 WOoO�M Beam Design BB.6 ,-,: Ca s,pe 012,CBC 2013 ASCE 7 10' � � , ,�.... =..��� � � ;c',-:773,74'--743--,�� �<.,. ,., Icufatton r2012NDS�IBC2 Size: 3.5x11.875,TimberStrand, FullyUnbraced Using Allowable Stress Design with IC 2012 Load Combinations,Major Axis Bending Wood Species: iLevel Truss Joist Wood Grade: TimberStrand LSL 1.55E Fb-Tension 2325 psi Fc-Prll 2050 psi Fv 310 psi Ebend-xx 1550 ksi Density 32.21 pcf Fb-Compr 2325 psi Fc-Perp 800 psi Ft 1070 psi Eminbend-xx 787.815 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Point: D=0.9160, L=2.440 k @ 1.250 ft Design Summary ,,,, M., Max fb/Fb Ratio = 0.591• 1 D 0.1425 L 0.380 fb:Actual: 1,345.70 psi at 4.373 ft in Span#1 >:>•tas��a��a�t� Fb:Allowable: 2,278.55 psiE • � � -- Load Comb: +D+L+H2 ..m� u � Max fv/FvRatio= 0.599: 1 • • - fv:Actual: 185.68 psi at 0.000 ft in Span#1 Fv:Allowable: 310.00 psi 10.330 ft.3.5x11.875 Load Comb: +D+L+H Max Deflections Max Reactions (k) 2 L Lr S W E H Downward L+Lr+S 0.175 in Downward Total 0.241 in Left Support 1.54 4.11 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.85 2.26 Live Load Defl Ratio 706>360 Total Defl Ratio 513>180 CT Engineering Project Title: Project ID: 180 Nickerson,Suite 302 Engineer: Seattle,WA 98109 Project Descr: (206)285 4512 Fax: Printed:6 MAR 2014,11:36AM (206)285 0618 , .,,.. uu zr,c ><; ,ca g s. +a ,G...^ y, .., •0"' "`#a 3 zv`C a xa ro #2 vfrok;w—E cfi,,, - ',-.-'1 11"et- lt-A 40517 T�C r;:. I.M i le 5i ply Beaini i `a ". r ' brei„ RSC C1NC 983-2014 Bund6+1411 ,E..»$'61 .x;23'"ix ...ens.a�. .:KW-0'` .s r..,z4r.r.^- .., .,, �,:.: � �.. Lic.#: KW-06002997 Licensee:c.t.:engineering Description D Crawispace Framing Wood BemDeslgn CB f l z ,, s7,, 5 s „�� Calculationsiper 2012 NDS,IBC 2012;CBC MAt---CE 7 10' BEAM Size: 4x10,Sawn, Fully Unbraced Using Allowable Stress Design with IBC 2012 Load Combinations,Major Axis Bending Wood Species: Douglas Fir-Larch Wood Grade: No.2 Fb-Tension 900.0 psi Fc-Prll 1,350.0 psi Fv 180.0 psi Ebend-xx 1,600.0 ksi Density 32.210 pcf Fb-Compr 900.0 psi Fc-Perp 625.0 pst Ft 575.0 psi Eminbend-xx 580.0 ksi Applied Loads Unif Load: D=0.0150, L=0.040 k/ft,Trib=9.50 ft Design Summary L 0L 0 38� rlMIIMI! Max fb/Fb Ratio = 0.823;1 ' } fb:Actual: 883.28 psi at 3.750 ft in Span#1 ..:z. .,_ m Fb:Allowable: 1,073.71 psi Load Comb: +D+L+H 0 A Max fv/FvRatio= 0.403: 1 fv:Actual: 72.63 psi at 0.000 ft in Span#1 7.50 R 4x10 Fv:Allowable: 180.00 psi Load Comb: +D+L+H Max Deflections Max Reactions (k) I.2 L Li S w E H Downward L+Lr+S 0.074 in Downward Total 0.101 in Left Support 0.53 1.43 Upward L+Lr+S 0.000 in Upward Total 0.000 in Right Support 0.53 1.43 Live Load Defl Ratio 1222>360 Total Defl Ratio 888>180 1 TJI JOISTS and RAFTERS Code Code 1 Code Suggest Suggest__Suggest Lplck__Lpick•. Lpick 1•Lpick Joist _ b _�- d_ _ Spa. LL DL M max V max EI L lb LL fv L TL240 L LL360 L max TL deft, 1 LL deft. L TL360 L LL480 L max :TL def. TL deb.LL deft»LL deft. size&Qrade�width(In.) depthLL_(1n) fp.J__ 1?__(ftt;_abs) (psl)-__-_Psi) .(L_ EL.... El (n•L--_..__�n:1__-_,.__-_S110 _i_Sip)______ ____(_ (ft.) ;A�n.), .._ratio pn.?.-_: ratio__ 9.5"TJI 110 1.75 9.5 19.2 40 15 2380 1220 1.40E+08 14.71 27.73 15.23 14.80 14.71 0.661 0.48 13.31 13.45 13.31 0,44360 0.321 495 9 _._ 1 ..�__:.__..J 110•_ 1.75 9.5•___16 40_.._._15_-_•- 2380 1220 1.40E+08__•_16.11__•_33.27•••_16.19 15.73 15.73_-•Y 0.721 0.52 14.14__•_• 14.29 14.14; 0.47 360 0.341 _•49595 9,5"TJI 110 1.75 9.5 12 40 15 2380 1220 1.40E+08 18.61 44.36 17.82 17.31 17.31 0.791 0.58 15.57 15.73 16.67 0.52 360 0.381 495 9.5'TJI 110 1.75 9.5 9.6 40 15 2380 1220 1.40E+08 20.80 55.45 19.19 18.64 18.64 0.851 0.62 16.77 16.94 16.77 0.56 360 0.411 495 9.5"TJI 110 1.75 9.5 19.2 40 10 2500 1220 1.57E+08 15.81 30.50 16.34 15.37 15.37 0.641 0.51 14.27 13.97" 13.97 0.44 384 0.351 480 9.5 TJI 110 1.75 ' 9.5 16 40 10 2500 1220 .1.57E+08 .17.32 36.60 17.36 16.34 16.34 0.68 0.54 .15.17 14 84 14.84 0.46 384 0.37 480 9.5"TJI 110 1.75 9,5 12 40 10 2500 1220 1,57E+081 20,00 48,80 19,11 17.98 17.98 0.75 0.60 L 16 69 16 34 16.34 0.51 384 0.411 480 9.5"TJI 110 1.75 9.5 9.6 40 10 2500 1220 1.57E+08 22.36 61.00 20.58 19.37 19.37 0.811 0.65 17.98 17.60 17.60 0.55 384 0.441 480 9.5 TJI 210 2.0625 9.5 19.2 40 10 3000 1330 1.87E+08 17.32 33.25 17.32 16.30 16.301 0.681 0.54 15.13 14.81 14.81 0.46 384 0.371 480 9.5"TJI 210 ._�._._�. ' = - . 25 9,5 16 `- 40 10 3000 1330 1.87E+08 18.97 39.90,' 18.40 17.32 17.32 0.72 0.58 16.08 1574 16,74 0.49 384 0.39 480 9.5 12 40 10 3000 1330 1.87E+08 21.91 53.20 20.26 19.06 19.06 0,79 0.64 17.70 17.32 17.32 0.54 384 0.43i 9 5'TJI 210 2.0625 480 9.5'_TJI 210 2.0625 -W 9.5 9.6 40 10 3000 13301 1.87E+08 24.49 66.50 21.82 20.53 20.53 0.861 0.68 19.06 18.66 18.66 0.58 384 0.471 480 9.5"TJI 230 2.3125 9.5 19.2 40 10 3330 1330 2.06E+08 18.25 33.25 17.89 16.83 16.83 0.701 0.56 15.63 15,29 ' 15.29 0.48 384 0.381 480 9.5"TJI 230 2.3125 9.5 16 40 10 3330 1330 2.06E+08 19.99 39.90 `19.01 17.89 17.89 0.75 0.60 16.60 16.25 16.25 0.51 384 '0.41 480 9.5"TJI 230 2.3125 9.5 12 40 10 3330 1330 2.06E+08 23.08 53.20 20.92 19.69 19.69 0.821 0.66 18.28 17.89, 17.89 0.56 384 0.451 480 9.5"_TJI 230 2.3125 9.5 9.6 40 10 3330 1330 2.06E+08 25.881-•- 66.50 22.54 21.21 21.21 0.88E 0.71 19.69 19.27 19.27 0.60384 384- 0.48i_ 480 - 11,875'TJI 110 1.75 11.875 19.2 40 10 3160 1560 2.67E+08 17.78 39.00 19.50 18.35 17.78 0..ift 0.54 17.04 16.67 16.67 0.52 384 0.421 480 11.875"TJI 110 1.75 :. 11.875 ,'16 40 ' 10 3160 S; 1560 2.67E+08 `'19.47 46.80 20.72 19.50 19.47 0.81 0.65 18.10 17.72:. 17.72. 0.55 384 0.44 480 11.875"TJI 110 1.75 11.875 12 40 10 316015601_2.67E+08 22.49 62.40 22.81 21.46 21.46 0.891 0.72 19.93 19.50 19.50 0.61 384 0.491 480 11.875"TJI 110 1.75 11.875 9.6 40 10 3160 1560 2.67E+08 25.14 78.00 24.57 23.12 23.12 0.961 0.77 �21.46 21.01 21.01 0.66 384 0.531 480 11.875"TJI 210 2.0625 11.8.75 19.2 40 10 3795 1655 3.15E+08 19.48 41.38 20.61 19.39 19.39 0.811 0.65 18.00 17.62 17.62 0.55 384 0.441 480 11.875"TJ1 11.875"TJI 210 2.06251 11.875 12 40 10 3795 1655 3.15E+08 24.64 66.20 _24.10 22.68 22.68 0.951 0.76 21.05 13 _ 8 6 20.61 .0.59 . 384 0.4752 ;u480 0 11.875 16 521.90 20.61 20.61 0.86 69 20.61 20.61 __0.64 __384__0.52 _480 11.875"TJI 210 2.0625 11.875 9.6 40 10 3795 1655 3.15E+08 27.55 82.75 25.96 24.43 24.43 1.021 0.81 22.68 22.20 22.201 0,69 384 0.551 480 ` "______. ._.,.,_____.i__._4.__ 11.875"TJI 230 2.3125 11.875 19.2 40 10 4215 1655 3.47E+08 20.53 41.38 21.28 20.03 20.03 0,831 0,67 18.59 18.20 18.20 0,57 384 0,45' 480 11,875"TJI 230 2.3125 11,875 . 16 .':40:' 10 4215 1655 ,3.47E+08 , 22.49 ;49.65 22.62. '21.28 21.28. 0.89 0.71 19.76' `19.34; 1934' 0.60 384 0.48 480 11.875"TJI 230 2.3125 11.875 12 40 101 4215 1655 3.47E+08 25.97 66.20 24.89 23,42 23.42 0.981 0.78 J21.74 21.28 21.28 0.67 384 0.531 480 11.875"TJI 230 2 3125 11.875 9,6 4 5 0 _._10 421 1655 3.47E+08 29.03 82.75 26.81 25.23 25.23 1.05 __.._0.84 23,42 -22.93 . 22.93 0.72 384 0.571 480 11.875"RFPI 400 2.0625 11.875 19.2 40 10 4315 1480 3.30E+08 20.77 37.00 20.93 19.69 19.69 0.821 0,66r 18.28~�17.89 17.89 0,56 384 0.45i 480 11.875"RFPI 400 2.0625 ' 11.875 16 ''40• 10 - 4315 1480..=3.30E+08 ,22.76 44:40 22.24 20.93.` 20.93 0.87 0.70 • 19.43 19.01'i", :19.01 0.59- 384 0.48 480 11.875"RFPI 431 1480 3.30E+08 26.28 59.20 24.4 23.03 23.031 961 0.771 0.521 480 11.875"RFPI 400) 2,06251 11.8751 9.61 401 10j 4315 14801 3.30E+081 29.381 74.001 26.37 24.811 24.81 1.031 0.831 23.031 22.54 - 22.54 0.70 38 20.93 20.93 0.65 4 0.56: 480 Page 1 D+L+S CT#14051-4015.2 Twln Creek I LOAD CASE (12-12) (BASED ON ANSI/AFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buektng Factor D+L+8 c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 Cf(Fb) Cf(Fc) 1997 NOS Cb (Vales) > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fe) Eq.3.7-1 NOS 3.9.2 Max.Wall duration duration factor factor use Stud Grade Wdth Depth Spacing Height Le/d Vert.Load Hor.Loa <.1.0 Load©Plate Cd(Fb)Cd(Fe) Cf Cf Cr Fb Fe perp Fc E Fb' Fe perp' Fe• Fee Pc fc tc/F'c lb Po/ In. In. In. S. pit psf plf (Fb) (Fe) psi psi psi psi psi psi psi psi psi psi psi Fb'•(14c/Fce) H-F Stud 1.5 3.5 16 7.7083 28.4 1730 0.9916 1893.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 966 515.42 441.22 439.37 1.00 0.00 0.000 H-F Stud 1.5 3.5 16 9 30.9 1340 0.9986 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1.200,000 854 506 986 378.09 340.90 340.32 1.00 0.00 0.000 H-F Stud 1.5 3.5 12 9 30.9 1785 0.9947 2657.8 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 508 966 378.09 340.80 340.00 1.00 0.00 0.000 H-F Stud 1.5 3.5 16 8.25 28.3 1550 0.9921 1993.4 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 508 966 449.95 39522 393.85 1.00 0.00 0.000 H-F Stud 1.5 3.5 12 825 28.3 2070 0.9953 2657.8 1.00 1.15 1.1 1.05 1.15 675 405 800 1,200,000 854 506 966 449.95 395.22 394.29 1.00 0.00 0.000 H-F Stud 1.5 3.5 8 8.25 28.3 3100 0.9921 3986.7 1.00 1.15 1.1 1.05 1.15 875 405 800 1.200,000 854 506 966 449.95 395.22 393.65 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 7.7083 26.4 1695 0.9952 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 515.42 431.52 430.48 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 9 30.9 1320 0.9944 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1.200,000 854 531 875.438 378.09 336.17 335.24 1.00 0.00 0.000 SPF Stud 1.5 3.5 12 9 30.9 1760 0.9944 2789.1 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 378.09 336.17 335.24 1.00 0.00 0.000 SPF Stud 1.5 3.5 16 8.25 28.3 1525 0.9957 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 449.95 388.13 387.30 1.00 0.00 0.000 SPF Stud 1.5 3.5 12 8.25 28.3 2030 0.9925 2789.1 1.00 1.15 1.1 1.05 1.15 875 425 725 1,200,000 854 531 875.438 449.95 388.13 386.67 1.00 0.00 0.000 SPF Stud 1.5 3.5 8 8.25 28.3 3050 0.9957 4183.8 1.00 1.15 1.1 1.05 1.15 675 425 725 ,1,200,000 854 531 875.438 449.95 388.13 387.30 1.00 0.00 0.000 H-F 02 1.5 5.5 16 7.7083 16.8 3132 0.2408 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 508 1644.5 1378.83 1031.58 508.18 0.49 0.00 0.000 H-F#2 1.5 5.5 16 9 19.8 3132 0.3652 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1.300,000 1,271 506 1644.5 1011.45 837.57 506.18 0.60 0.00 0.000 H-F#2 1.5 5.5 16 8.25 18.0 3132 02858 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 506 1644.5 1203.70 946.77 506.18 0.53 0.00 0.000 SPF#2 1.5 5.5 16 7.7083 18.8 3287 0.2737 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1484.89 1015.45 531.23 0.52 0.00 0.000 SPF#2 1.5 5.5 16 9 19.6 3287 0.3905 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1089.25 850.16 531.23 0.62 0.00 0.000 SPF#2 1.5 5.5 16 8.25 18.0 3287 0.3158 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 1296.30 945.38 531.23 0.56 0.00 0.000 SPF Stud 1.5 3.5 16 14.57 50.0 545 0 0.9913 2091.8 1.00 1.15 1.1 1.05 1.15 675 425 725 1,200,000 854 531 875.438 144.26 139.02 138.41 1.00 0.00 0.000 SPF#2 1.5 5.5 16 19 41.5 1450 0 0.9917 3287.1 1.00 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 1,308 531 1454.75 244.40 235.32 234.34 1.00 0.00 0.000 H-F#2 1.5 5.5 16 19 41.5 1360 0 0.9969 3132.4 1.00 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 1,271 506 1644.5 226.94 220.14 219.80 1.00 0.00 0.000 Page 1 D+L+W CT#14051-4015.2 Twin Creek I LOAD CASE (12-13) (BASED ON ANSI/AFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling Factor D+L+W c 0.80(Constant)> Section 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 Cf(Fb) Cf(Fc) 1997 NOS Cb (Varies) > Section 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fe) Eq.3.7-1 NOS 3.9.2 Max.Wali duration duration factor factor use Stud Grade Width Depth Sparing Height Le/d VerL Load Her.Load <.1.0 Load @ Plate Cd(Pb),Cd(Fc) Cf Cf Cr Fb Fc perp Fc E Fb' Fc perp' Fe• Fce Pc tc tc/F'c lb ib/ In. in. In. rt. pif psf pit (Fb) (Fe) psi psi psi psi psi psi psi psi psi psi psi Fb"(1-tc/Pce) H-F Stud 1.5 3.5 16 7.7083 26.4 1075 9.71 0.9951 1993.4 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 840 515,42 427.08 273.02 0.64 376.78 0.586 H-F Stud 1.5 3.5 16 9 30.9 755 8.46 0.9942 1993.4 1.60 1.00 1.1 1.05 1.15 875 405 800 1.200,000 1,368 506 840 378.09 333.99 191.75 0.57 447.52 0.865 H-F Stud 1.5 3.5 12 9 30.9 1140 8.46 0.9998 2657.8 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1.366 506 840 378.09 333.99 217.14 0.65 335.64 0.577 H-F Stud 1.5 3.5 16 8.25 28.3 970 8.13 0.9943 1993.4 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,368 506 840 449.95 384.87 246.35 0.64 361,37 0.585 H-F Stud 1.5 3.5 12 8.25 28.3 1425 8.13 0.9974 2657.8 1.60 1.00 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 840 449.95 384.87 271.43 0.71 271.03 0.500 H-F Stud 1.5 3.5 8 8.25 28.3 2355 8.13 0.9981 3986.7 1.60 1.00 1.1 1.05 1.15 875 405 800 1,200,000 1,366 506 840 449.95 384.87 299.05 0.78 180.69 0.394 SPF Stud 1.5 3.5 16 7.7083 26.4 1060 9.71 0.9971 2091.8 1.80 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 515.42 415.53 269.21 0.85 376.78 0.577 SPF Stud 1.5 3.5 18 9 30.9 700 8.48 0.9115 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1.200,000 1,368 531 781.25 378.09 328.30 177.78 0.54 447.52 0.818 SPF Stud 1.5 3.5 12 9 30.9 1125 8.46 0.9931 2789.1 1.80 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 378.09 328.30 214.29 0.65 335.64 0.567 SPF Stud 1.5 3.5 16 8.25 28.3 960 8.13 0.9970 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 761.25 449.95 376.35 243.81 0.65 361.37 0.577 SPF Stud 1.5 3,5 12 825 28.3 1405 8.13 0.9952 2789.1 1.60 1.00 1.1 1.05 1.15 675 425 725 1,200.000 1,366 531 761.25 449.95 376.35 267.62 0.71 271.03 0.490 SPF Stud 1.5 3.5 8 8.25 28.3 2320 8.13 0.9958 4183.8 1.80 , 1.00 1.1 1.05 1.15 675 425 725 1,200,000 1.366 531 761.25 449.95 378.35, 294.60 0.78 180.89 0.383 H-F#2 1.5 5.5 16 7.7083 18.8 3132 9.71 0.3909 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 1378.83 969.91 506.18 0.52 152.58 0.119 H-F#2 1.5 5.5 18 9 19.6 3132 8.48 0.5743 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1430 1011.45 804.50 508.18 0.63 181.23 0.178 1-1-F#2 1.5 5.5 16 825 18.0 3132 8.13 0.4411 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1.300,000 2,033 508 1430 1203.70 899.13 506.18 0.56 148.34 0.124 SPF#2 1.5 5.5 16 7.7083 16.8 3287 9.71 0.4327 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1265 1484.89 940.30 531.23 0.58 152.58 0.114 SPF#2 1.5 5,5 16 9 19.6 3287 8.46 0.6033 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1.400,000 2,093 531 1265 1089.25 806.08 531.23 0.86 181.23 0.169 SPF#2 1.5 5.5 16 8.25 18.0 3287 8.13 0.4790 3287.1 1.80 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1265 1296.30 884.89 531.23 0.60 146.34 0.118 SPF Stud 1.5 3.5 16 14.57 50.0 70 8.46 0.9957 2091.8 1.60 1.00 1.1 1.05 1.15 675 425 725 1.200,000 1.366 531 761.25 144.26 138.14 17.78 0.13 0#14t!#f# 0.979 SPF#2 1.5 5.5 18 19 41.5 860 9.71 0.9941 3287.1 1.60 1.00 1.3 1.10 1.15 875 425 1150 1,400,000 2.093 531 1265 244.40 233.80 108.67 0.46 927.02 0.786 H-F#2 1.5 5.5 16 19 41.5 600 9.71 0.9921 3132.4 1.60 1.00 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 508 1430 226.94 219.02 98.97 0.44 927.02 0.796 Page 2 ILL D+L+W+.5S CT#14051-4015.2 Twin Creek I LOAD CASE I (12.14) I (BASED ON ANSI/AF&PA NOS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling_Factor D+L+W+Sl2 e 0.30(Constant)> Section 3.7.1.5 Cr Cf(Fb) Cf(Fe) 1997 NDS KC0.30(Constant)> Section 3.7.1.5 Cdb Cd(Fc) Eq.3.7-1 Cbb (Varies > Section23.10 Bending Comp. Size Size Rep. (Pb)�) NOS 3.9.2 Max.Wall duration duration factor factor use Stud Grade VMdth Depth Spadng Height Laid Vert.Load Hor.Load <.1.0 Load @ Plate Cd(Fb)Cd(Fc) Cl Cf Cr Fb Fe perp Fc E Pb' Fe perp Fc FP c Ifc/F'c ibFb"(1ldclFce in. in. In. S. p0 psf pit (Pb) (Fe) psi psi psi psi psi psipsipsipsipsipsi ) hi-F Stud 1.5 3.5 16 7.7083 28.4 1095 9.71 0.9962 1993.4 1.60 1.15 1.1 1.05 1,15 675 405 800 1,200,000 1,366 506 968 515.42 441.22 278.10 0.63 376.78 0.599 H-F Stud 1.5 3.5 16 9 30.9 765 8.46 0.9988 1993.4 1.60 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1,366 506 986 378.09 340.90 194.29 0.57 447.52 0.674 14-F Stud 1.5 3.5 12 9 30.9 1150 8.46 0.9969 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 378.09 340.90 219.05 0.64 335.64 0.584 H-F Stud 1.5 3.5 16 8.25 28.3 985 8.13 0.9963 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 250.16 0.63 381.37 0.596 H-F Stud 1.5 3.5 12 8.25 28.3 1445 8.13 0.9959 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,368 506 966 449.95 395.22 275.24 0.70 271.03 0.511 H-F Stud 1.5 3.5 8 8.25 28.3 2390 8.13 0.9960 3986.7 1.60 1.15 1.1 1.05 1.15 675 405 800 1.200,000 1.386 508 988 449.95 395.22 303.49 0.77 180.69 0.406 SPF Stud 1.5 3.5 16 7.7083 26.4 1080 9.71 0.9935 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 274.29 0.64 376.78 0.589 SPF Stud 1.5 3.5 16 9 30.9 760 8.48 0.9988 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1.200,000 1.366 531 875.438 378.09 336.17 193.02 0.57 447.52 0.669 SPF Stud 1.5 3.5 12 8 30.9 1140 8.46 0.9944 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200.000 1,366 531 875.438 378.09 336.17 217.14 0.65 335.64 0.577 SPF Stud 1.5 3.5 16 8.25 28.3 975 8.13 0.9952 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449,95 388.13 247.62 0.64 361.37 0.588 SPF Stud 1.5 3.5 12 8.25 28.3 1430 8.13 0.9952 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 272.38 0.70 271.03 0.503 SPF Stud 1.5 3.5 8 825 28.3 2380 8.13 0.9922 4183.6 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1.366 531 875.438 449.95. 388.13 299.68 0.77 180.89 0.396 H-F#2 1.5 5.5 16 7.7083 16.8 3132 9.71 0.3593 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1378.83 1031.58 506.18 0.49 152.58 0.119 H-F#2 1.5 5.5 18 9 19.6 3132 8.46 0.5437 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1.300,000 2,033 506 1844.5 1011.45 837.57 508.18 0.80 181.23 0.178 H-F#2 1.5 5.5 16 8.25 18.0 3132 8.13 0.4100 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1.300,000 2.033 506 1644.5 1203.70 946.77 506.18 0.53 146.34 0.124 SPF#2 1.5 5.5 16 7.7083 16.8 3287 9.71 0.3872 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 152.58 0.114 SPF#2 1.5 5.5 16 9 19.6 3287 8.46 0.5595 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23, 0.62 181.23 SPF#2 1.5 5.5 16 8.25 18.0 3287 8.13 0.4342 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400 000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 146.34 0.1118 SPF Stud 1.5 3.5 16 14.57 50.0 70 8.46 0.8955 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 17.78 0.13##1#1#1 0.979 1454.75 .67 0.45 927.02 0.786 H-F#2 1.5 5.5 16 19 41.5 800 9.71 0.9901 3132.4 1.80 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 226.94 220.14 198 97 0.44 927.02 0.796 Page 3 D+L+S+.SW CT#14051-4015.2 Twin Creak I LOAD CASE I (12-15) I (BASED ON ANSI/AFBPA NOS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling Factor D+L+S+Wl2 e 0.80(Constant)> Section 3.7.1.5 KeE 0.30(Constant)> Section 3.7.1.5 --- Cr Cb (Vedas), > Section 2.3.10 Bending Comp. Size Size Rep. Cl(Pb) Cf(Fe) 1997 NDS P P Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NDS 3.92 Maz.Wall duration duration factor factor use Stud Grade Width Depth Spacing Height Le/d Vert.Load Hon.Load e.1.0 Load al Plate Cd(Fb)Cd(Fe) Cf Cl Cr Fb Fe perp Fc E Fb' Fc perp' Fc• Fce Pe fc IdF'c Ib fb/ In. in. In. 9. pif psf pit (Fb) (Fe) psi psi psi psi psi psi i psi psi H-F Stud 1.5 3.5 16 7.7083 26.4 1335 4.855 0.9935 1993.4 1.60 1.15 1.1 1,05 1.15 675 405 800 1,200,000 1,366 508 X966 515.42 441.22 339.05 0.77 188i .39 Fb'•(1-10.4 3 H-F Stud 1.5 3.5 16 9 30.9 970 4.23 0.9923 1993.4. 1.60 1.15 1.1 1.05 1.15 875 405 800 1,200,000 1.366 506 968 378.09 340.90 246.35 0.72 223.76 0.470 H-F Stud 1.5 3.5 12 9 30.9 1380 4.23 0.9976 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 966 378.09 340.90 282.86 0.77 167.82 0.403 H-F Stud 1.5 3.5 16 825 28.3 1195 4.085 0.9960 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 303.49 0.77 180.69 0.408 H-F Stud 1.5 3.5 12 8.25 28.3 1680 4.085 0.9990 2857.6 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 320.00 0.81 135.51 0.343 H-F Stud 1.5 3.5 8 8.25 28.3 2685 4.085 0.9999 3986.7 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 508 966 449.95 395.22 338.41 0.88 90.34 0.267 SPF Stud 1.5 3.5 16 7.7083 26.4 1315 4.855 0.9907 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 333.97 0.77 188.39 0.392 SPF Stud 1.5 3.5 16 9 30.9 965 4.23 0.9970 2091.8 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1.388 531 875.438 378.09 336.17 245.08 0.73 223.78 0.466 SPF Stud 1.5 3.5 12 9 30.9 1370 4.23 0.9990 2789.1 1.60 1.15 1.1 1.05 1.15 875 425 725 1,200,000 1,366 531 875.438 378.08 336.17 260.95 0.78 167.82 0.398 SPF Stud 1.5 3.5 16 8.25 28.3 1180 4.065 0.9922 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 299.68 0.77 180.69 0.396 SPF Stud 1.5 3.5 12 8.25 28.3 1660 4.085 0.9973 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875,438 449.95 388.13 316.19 0.81 135.51 0.334 SPF Stud 1.5 3.5 8 8.25 28.3 2630 4.065 0.9989 4183.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1.200,000 1,368 531 875.438 449.95 388.13 331.97 0.86 90.34 0.257 H-F#2 1.5 5.5 16 7.7083 18.8 3132 4.855 0.3001 3132.4 1.80 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1378.83 1031.58 506.18 0.49 76.29 0.059 H-F#2 1.5 5.5 16 9 19.8 3132 4.23 0.4544 3132.4 1.60 1.15 1.3 1,10 1.15 850 405 1300 1,300.000 2,033 506 16445 1011.45 837.57 506.18 0.60 90.81 0.089 H-F#2 1.5 5.5 16 8.25 18.0 3132 4.065 0.3479 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1203.70 946.77 506.18 0.53 73.17 0.062 SPF#2 1.5 5.5 16 7.7083 16.8 3287 4.855 0.3304 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.88 1015.45 531.23 0.52 76.29 0.057 SPF#2 1.5 5.5 16 9 19.6 3287 4.23 0.4750. 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23 0.62 90.61 0.085 SPF#2 1.5 5.5 16 8.25 18.0 3287 4.085 0.3750 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 73.17 0.059 SPF Stud 1.5 3.5 16 14.57 50.0 255 4.23 0.9959 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1.200,000 1,366 531 875.438 144.26 139.02 64.76 0.47 588.43 0.779 SPF#2 1.5 5.5 18 19 41.5 935 4.855 0.9925 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 244.40 235.32 151.11 0.64 463.51 0.580 H-F#2 1.5 5.5 18 19 41.5 865 4.855 0.9970 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2.033 506 1644.5 228.94 220.14 139.80 0.64 463.51 0.594 Page 4 M D.L+S+.7E CT#14051-4015.2 Twin Creek I LOAD CASE I (12-16) I (BASED ON ANSI/AFBPA NDS-1997) SEE SECTION: 2.3.1 2.3.1 2.3.1 3.7.1 3.7.1 Ke 1.00 Design Buckling Factor D+L+S+El1.4 c 0.80(Constant)> Seaton 3.7.1.5 Cr KcE 0.30(Constant)> Section 3.7.1.5 CI(Fb) Cf(Fc) 1997 NDS Cb (Varies) > Seaton 2.3.10 Bending Comp. Size Size Rep. Cd(Fb) Cb Cd(Fc) Eq.3.7-1 NDS 3.9.2 Max.Well duration duration factor factor use Stud Grade Width Depth Spacing Height Le/d Vert.Load Hor.Load <.1.0 Load @ Plate Cd(Fb)Cd(Fc) Cf Cf Cr Fb Fc perp Fe E Fb' Fc perp' Fc' Fce Fc fa fc/F'c Ib lb/ in. In. In. rt. plf psf pit (Fb) (Fc) psi psi psi psi psi psi psi psi psi psi psi Fb114c/Fce) H-F Stud 1.5 3.5 16 7.7083 26.4 1415 3.57 0.9983 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 515.42 441.22 359.37 0.81 138.53 0.335 H-F Stud 1.5 3.5 16 9 30.9 1010 3.57 0.9980 1993.4 1.80 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 968 378.09 340.90 256.51 0.75 188.85 0.430 H-F Stud 1.5 3.5 12 9 30.9 1420 3.57 0.9937 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1.366 506 966 378.09 340.90 270.48 0.79 141.63 0.364 H-F Stud 1.5 3.5 16 8.25 28.3 1225 3.57 0.9961 1993.4 1.60 1.15 1.1 1.05 1.15 675 405 800 1.200,000 1,366 506 966 449.95 395.22 311.11 0.79 158.68 0.376 H-F Stud 1.5 3.5 12 8.25 28.3 1710 3.57 0.9947 2657.8 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,366 506 966 449.95 395.22 325.71 0.82 119.01 0.315 H-F Stud 1.5 3.5 8 8.25 28.3 2700 3.57 0.9966 3986.7 1.60 1.15 1.1 1.05 1.15 675 405 800 1,200,000 1,368 506 966 449.95 395.22 342.88 0.87 79.34 0.244 SPF Stud 1.5 3.5 16 7.7083 26.4 1395 3.57 0.9984 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 515.42 431.52 354.29 0.82 138.53 0.324 SPF Stud 1.5 3.5 16 9 30.9 1000 3.57 0.9918 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,365 531 875.438 378.09 336.17 253.97 0.76 188.85 0.421 SPF Stud 1.5 3.5 12 9 30.9 1410 3.57 0.9962 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 375.09 336.17 268.57 0.80 141.63 0.358 SPF Stud 1.5 3.5 16 825 26.3 1210 3.57 0.9932 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 307.30 0.79 158.68 0.366 0.306 SSPF Stud 1.5 3.5 8.25 28.3 1690 3.57 0.9940 2789.1 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 449.95 388.13 321.90 0.83PF Stud 1.5 3.5 12 8 8.25 28.3 2870 3.57 0.9987 4183.6 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200 000 1.366 531 875.438 449.95 388.13 339.05 0.87 119.01 79.34 0.238 H-F#2 1.5 5.5 16 7.7083 16.8 3132 3.57 0.2844 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1378.83 1031.58 506.18 0.49 56.10 0.044 H-F#2 1.5 5.5 16 9 19.6 3132 3.57 0.4405 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 508 1844.5 1011.45 837.57 506.18 0.60 76.47 0.075 H-F#2 1.5 5.5 16 8.25 18.0 3132 3.57 0.3404 3132.4 1.60 1.15 1.3 1.10 1.15 850 405 1300 1,300,000 2,033 506 1644.5 1203.70 946.77 506.18 0.53 64.26 0.055 SPF#2 1.5 5.5 16 7.7083 16.8 3287 3.57 0.3154 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1484.89 1015.45 531.23 0.52 56.10 0.042 SPF#2 1.5 5.5 16 9 19.6 3287 3.57 0.4618 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1089.25 850.16 531.23 0.62 76.47 0.071 SPF#2 1.5 5.5 16 8.25 18.0 3287 3.57 0.3678 3287.1 1.60 1.15 1.3 1.10 1.15 875 425 1150 1,400,000 2,093 531 1454.75 1296.30 945.38 531.23 0.56 6428 0.052 SPF Stud 1.5 3.5 18 14.57 50.0 285 3.57 0.9981 2091.8 1.60 1.15 1.1 1.05 1.15 675 425 725 1,200,000 1,366 531 875.438 144.26 139.02 72.38 0.52 494.93 0.727 0 H-F#2 1.5 5.5 16 19 41.5 10201454.75 945 3.57 0.9939 3132.4 1.60 1.15 1.3 1 10 1 15 850 405 1300 1,300,000 2,033 506 1644.5 226.94 220.14 152.73 0.69 340.83 0.513 Page 5 • • ` 180 Nickerson St. C T .E N;.6-1. N E.'E -:R'.1-'.N G Q Suite 302 f �� I N 1 1 Seattle,WA Project: 98109 rre (206) Date: ,` ,j,�� ,n��Q{ (206)285-4512 JIM P;/-041.41 f" N IC.+XFAX: Client: Page Number: (206)285-0618 . 1i _ P ? it v •mt..4w1817 vAtu p - - i i.6vlof2- 3• ,- CLQ G1wp • 'ono;°FS C�,k�s 4- ► 5 :7, a ISG a Pv' C ►c 2 , { . • _ _ LI.-k55.5 „: 4 fy past: . i I i RZt 1 } lU= , . _ ...- L-. , 5i.vv • v - P iJvUtt . 7„ . . 1,17,%t, .--(,, p6 31 'fin _ Ir� ak: • _ f , • ,, ,.......•. -- .-., ._...::.. .-...•. c } l� cmc i S JZ ✓ .¢r ��757 7_, r 3 5`Z z. - e < y - ' , s p)" LABS a_., fo .b T < C w _ . 3 �f 3 , 1 _. • • �_ ©T •�w Wt. lit :� i� It Structural Engineers 180 Nickerson St. T i - Suite 302 /1u c WA iE Date: • Seattle, 98109 / Project: �..-_K_ ---- r i . _ . (206)285-3512 . PAX: Client: Page Number. (206)285-0618 ) , jag.,... A94170 P5r ' a4 • 5ov - c at Ka/1p ( /� (i-*' ) 1-2' Y 1 • W4 1 0,0 .. ewa:vaiuttg I= 3 r - ;- l co • ft& ‘ .Wzr- .(40 WO =-' 365 .....,... .... ...... ... ..... lop, Ap getweit . 1 14 0 t514 .rtp -0›. - 20-0-0 Oda, .L..... I9")PSr V - if. iii 1.0= grOW4r14"1 -00.C3.*-5"-- Crit> . le l5 .4 .- 4.5- its • o.. -7-ra- - . . , .. a .i (1 2- LL, . -Structural Engineers Design Maps Summary Report Page 1 of I 4" Design Maps Summary Report User-Specified Input Building Code Reference Document International Code (which2012 utilizes USGS hazard data Building available in 2008) Site Coordinates 45.43123°N, 122.77149°W Site Soil Classification Site Class D -"Stiff Soil" Risk Category I/II/III 1 (S Omir.„4.-,,:--p:,'- kT,,--- , -7.,-,i-,,-,--,...::).,-.7--,,,,. --- ih2f,-7.:,, ,,,,, --it-::--,,-,-,,, -1,,,,ii,li',--,11,7-7f-_,:y c,--, - 7 B averton _. . i ite ,' �,°,.__ T: CL ra f �®CIII� ?- z , m Farmington $ ��,` `"�w,��.., � � "'z'�� �t 3 � �y 3 '�- £ �t;7" " ems 4 ' � 1V11�#N>2lI�S1$ i Y a ' tl .fi : `ice('/' : f. .4 f:ci.oMk.��y.y.�"),�[�{ yg-,c�8' , " i } ��p V HI T,.,u F3 YF x'4i- ',I"' .,4. make�BWeg+D Y. '.'?..iL 9' ) NO 'Rr .4-91-;„;;',::,:'';''‘:,:,, €I �i in8 City Q hams" x e a fi ,' �.r:: n,. :; T tP:latint. 5 "'k ,F`Q" �.,. - _ est E � �MpQu .�Z�15 eda��.. . ,, �� �..�-. �. �._ . USGS-Provided Output Ss = 0.972 g SMS = 1.080 g S°S = 0.720 g Sl = 0.423 g SM: = 0.667 g S°, = 0.445 g For information on how the SS and Si values above have been calculated from probabilistic(risk-targeted)and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the"2009 NEHRP"building code reference document. NICER Response Spectrum Design Response Spectrum 0,28 1.10 0.80 0:39 0.72 0,22 O.si 0;77 0.56 Th 0,4C OI 0,12 H 0.55 0.40 0.44 0.32 0,23 0;24 0.22 0.16 0.11 0.08 0.00 0;00 0.00 0.20 0.40 0.60 0.20 1.00 1.20 1.40 1.50 1.80 2.00 0.00 0.20 0.40 0.60 0.20 1.00 1.20 1,10 1,60 1.20 2.00 Period,T(sec) Period,T(set) Although this information is a product of the U.S.Geological Survey,we provide no warranty,expressed or implied,as to the accuracy of the data contained therein.This tool is not a substitute for technical subject matter knowledge. http://ehp2-earthquake.wr.usgs.gov/designmaps/us/summary.php?template=minimal&latit... 9/14/2015 2012 IBC SEISMIC OVERVIEW SHEET TITLE: 2012 IBC SEISMIC OVERVIEW CT PROJECT#: Elevation D Step# 2012 IBC ASCE 7-10 1. RISK CATEGORY TYPE= II Table 1604.5 Table 1.5-1 OCCUPANCY CATEGORY 2. IMPORTANCE FACTOR IE= 1.00 Section 1613.1 ->ASCE Table 1.5-2 3. Site Class-Per Geo. Engr. S.C.= D ,: Section 1613.3.5 Section 11.4.2/Ch.20 Table 1613.3.3(2) Table 20.3-1 4. 0.2 Sec.Spectral Response Ss= 0.97 t. :. .- Figure 1613.3.1(1) Figure 22-1 5. 1.0 Sec.Spectral Response S1= 0.43 ' Figure 1613.3.1(2) Figure 22-2 Latitude= 45.46 N Longitude= -122.89 W N/A (Or by ZIP code) (Or by ZIP code) http://earthq uake.u sgs.gov/research/h azm aps/ http://qeohazards.usqs.govidesignmaps/us/application.php 6. Site Coefficient(short period) Fa= 1.11 Figure 1613.3.3(1) Table 11.4-1 7. Site Coefficient(1.0 second) Fv= i.58'' Figure 1613.3.3(2) Table 11.4-2 SMs=Fa*Ss SMS= 1.08 EQ 16-37 EQ 11.4-1 SMS=Fv*Si SMS= 0.68 EQ 16-38 EQ 11.4-2 SDs=2/3*SMS Sos= 0.72 EQ 16-39 EQ 11.4-3 SDi=2/3*SM1 SD1= 0.45 EQ 16-40 EQ 11.4-4 8. Seismic Design Category 0.2s SDCs= D Table 1613.3.5(1) Table 11.6-1 9. Seismic Design Category 1.0s SDC1= D Table 1613.3.5(2) Table 11.6-2 10. Seismic Design Category SDC= D Max. Max. 11. Wood structural panels " - - N/A Table 12.2-1 12. Response Modification Coef. R= 6.5 N/A Table 12.2-1 13. Overstrength Factor Go 3.0 N/A Table 12.2-1 14. Deflection Amplification Factor CD= 4.0 N/A Table 12.2-1 15. Plan Structural Irregularities - No N/A Table 12.3-1 16. Vertical Structural Irregularities - No N/A Table 12.3-2 17. Permitted Procedure Equiv. Lateral Force - Table 12.6-1 Page 1 2012 IBC EQUIV.LAT.FORCE SHEET TITLE: 2012 IBC EQUIVALENT LATERAL FORCE PROCEDURE PER ASCE 7-10 CT PROJECT#: Elevation D Sos= 0.72 h = 18.00(ft) .................. SDI= 0.45 X = 0.75 ASCE 7-05(Table 12.8-2) R= 6.5 Ct= 0.020 ASCE 7-05(Table 12.8-2) IE= 1.0 T= 0.175 ASCE 7-05(EQ 12.8-7) S,= 0.43 k= 1 ASCE 7-05(Section 12.8.3) TL= 6 ASCE 7-05(Section 11.4.5:Figure 22-15) Cs=Bps/(R/IE) 0.111 W ASCE 7-05(EQ 12.8-2) Cs=Sol/(T*(R/IE)) (for T<TL) 0.399 W ASCE 7-05(EQ 12.8-3)(MAX.) Cs=(Sol*IL)/(T2*(R/IE)) (for T>TL) 0.000 W ASCE 7-05(EQ 12.8-4)(MAX.) Cs=0.01 0.010 W ASCE 7-05(EQ 12.8-5)(MIN.) Cs=(0.5 Sl)/(R/IE) 0.033 W ASCE 7-05(EQ 12.8-6)(MIN.if S1>0.6g) CONTROLLING DESIGN BASE SHEAR= 0.111 W VERTICAL DISTRIBUTION OF SEISMIC FORCES PER ASCE 7-10 SECTION 12.8.3 (EQ 12.8-11) (EQ 12.8-12) C„x = DIAPHR. Story Elevation Height AREA DL wr wr *hrk wx *hxk DESIGN SUM LEVEL Height (ft) hr (ft) (soft) (ksf) (kips) (kips) Ewr *hrk Vi DESIGN Vi Roof - 18.00' 18.00 1666 0.022 36.652 659.7 0.58 3.88 3.88 2nd 8.00 10.00' 10.00 1712 0:028 47.936 479.4 0.42 2.82 6.70 1st(base) 10.00 0.00 SUM= 84.6 1139.1 1.00 6.70 E=V= 9.38(LRFD) E/1.4= 6.70(ASD) DIAPHRAGM FORCES PER ASCE 7-10 SECTION 12.10.1.1 (EQ 12.10-1) Design Fp, = DIAPHR. Fr E Fr w! E wr Fpx= EFr `w px 0.4"Sos*1E*Wp 0.2*Sos*1E*Wp LEVEL (kips) (kips) (kips) (kips) (kips) Ewr Fpx Max. Fpx Min. Roof 3.88 3.88 36.7 36.7 5.28 3.88 10.56 5.28 2nd 2.82 6.70 47.9 84.6 6.91 3.80 13.81 6.91 1st(base) 0.00 0.00 0.0 84.6 0.00 0.00 0.00 0.00 Page 2 ASCE 7-10 WIND Part2 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 2 CT PROJECT#: Elevation D NS E-W F-B SS 2012 IBC ASCE 7-10 Ridge Elevation(ft)= 30.00 " 30.00 ft. Roof Plate Ht.= 18.00 18.00 Roof Mean Ht.= 24.00 24.00 ft. - - Building Width 40.0-' 48.0 ft. V u/t. Wind Speed 3s.a Gust= 120 120 mph Figure 1609 Fig. 26.5-1A thru C 3 V asd. Wind Speed 3 s.G Gust lig9 .= '..04,1P mph (EQ 16-33) Exposure= BBi Iw= . '1.0 1.0� N/A N/A Roof Type= " Gable Gable 13330A= 28.6- 28.6psf Figure 28.6-1 Ps3o B= 4.6' 4.6psf Figure 28.6-1 P5300= 20.7 20.7 psf Figure 28.6-1 Ps30D= 4.7 4.7psf Figure 28.6-1 X= 1.00 1.00° Figure 28.6-1 Ku= 100 1:00 Section 26.8 windward/lee= 1.00 1:00:(Single Family Home) a•Krt•I : 1 1 Ps=A•Kzt'I•Pa=o= (Eq.28.6-1) PsA= 28.60 28.60 psf(LRFD) (Eq.28.6-1) Pea= 4.60 4.60 psf(LRFD) (Eq.28.6-1) Psc= 20.70 20.70 psf(LRFD) (Eq.28.6-1) Ps D= 4.70 4.70 psf (LRFD) (Eq.28.6-1) PsAand caverage= 24.7 24.7 psf (LRFD) Ps a and D average= 4.7 4.7 psf (LRFD) a= 4 4 Figure 28.6-1 2a= 8 8 width-2'2a= 24 32 MAIN WIND-ASCE 7-10 CHAPTER 28 PART 2 Areas(N-S) Areas(E-W) (N-S) (E-W) Wind(N-S)(LRFD) Wind(E-W) (LRFD) width factor roof-> 1.00 1.00 1.00 1.00 16 psf min. 16 psf min. width factor 2nd-> 1.00 1.00 wind(LRFD)wind(LRFD) DIAPHR. Story Elevation Height AA AB AD AD AA AB Ac AD per 28.4.4 per 28.4.4 WIND SUM WIND SUM LEVEL Height (ft) hi(ft) h(ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) (sq.ft)(sq.ft)(sq.ft)(sq.ft) Vi(N-S) V(N-S) Vi(E-W) V(E-W) 30.00 12.0 0 192 0 288 0 192 0 384 Roof 18.00 18.00 4.0 64 0 96 0 64 0 128 0 10.2 12.3 6.05 6.05 7.17 7.17 2nd 8.00 10.00 10.00 9.0 144 0 216 0 144 0 288 0 5.8 6.9 8.59 14.64 10.08 17.25 1st(base) 10.00 0.00 0.00 0 0.00 0.00 AF= 1000 AF= 1200 16.0 19.2 V(ns)= 14.64 V(e-w)= 17.25 kips(LRFD) kips(LRFD) klps kips Page 3 ASCE 7-10 Part 1 SHEET TITLE: MAIN WIND FORCE RESISTING SYSTEM USING LOADS FROM ASCE 7-10 CHAPTER 28,PART 1 CT PROJECT#: Elevation D SEE SEAW RAPID SOLUTION SPREADSHEET AND INSERT VALUES BELOW MAIN WIND-7-10 CHAPTER 28 PART 1 Wind(N-S) Wind(E-W) Min/Part 2(Max.) Min/Method 1(Max.) Wind(NS)(LRFD) Wind(E-W)(LRFD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) Vi(N-S) V(N-S) Vi(E-W) V(E-VV) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Roof - 18.00 18.00 0.00 0.00 0.00 0.00 1024 10.24 1229 1229 2nd 8.00 10.00 10.00 0.00 0.00 0.00 0.00 5.76 16.00 6.91 1920 1st(base) 10.00 0.00 0.00 V(n-s)= 0.00 V(e-w)= 0.00 V(n-s)= 16.00 V(e-w)= 19.20 kips kips kips(LRFD) kips(LRFD) DESIGN WIND-Min./Part 2/Part 1 ASD Wind(N-S)(LRFD) Wind(E-W)(LRFD) Wind(N-S)(ASD) Wind(E-W)(ASD) DIAPHR. Story Elevation Height DESIGN SUM DESIGN SUM DESIGN SUM DESIGN SUM LEVEL Height (ft) hi(ft) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Vi(N-S) V(N-S) Vi(E-W) V(E-W) Roof 8 10 10 10.24 10.24 12.29 12.29 7.93 7.93 9.52 9.52 2nd 10 0 0 5.76 16.00 6.91 19.20 4.46 12.39 5.35 14.87 1st(base) 0 0 0 V(n-s)= 16.00 V(e-w)= 19.20 V(n-s)= 12.39 V(e-w)= 14.87 kips(LRFD) kips(LRFD) kips(ASD)_ kips(ASD) Part 1 Base Shear Part 2 Base Shear = 0.0 0.0 ratio ratio Page 4 SHEET TITLE: SDPWS SHEARWALL VALUES PER TABLE 4.3A CT PROJECT#: Elevation D SHEATHING THICKNESS tsheathing= 7/16" • NAIL SIZE nail size= 6.131n dia.X 2.5"long STUD SPECIES SPECIES= H-F or SPF:, SPECIFIC GRAVITY S.G.= 0.43 ANCOR BOLT DIAMETER Anc. Bolt dia.= 0.625' ASD F.O.S.= 2'..9 `= SHEARWALL TYPE Table 4.3A Seismic Table 4.3A Wind 7/16"w/8d common V seismic V s allowable V wind V w allowable (15/32"values per (SDPWS-2008) modify per S.G. (SDPWS-2008) modify per S.G. footnote 2) (divide by 2.0 FOS) (divide by 2.0 FOS) (for ASD) (for ASD) -_I 0 1 0 1 P6TN 150 150 , - 150150 P6 520; 242 730 339 P4 ='760 353 1065 495 P3 > „,980' 456 1370 637 P2 1280 595 1790 832 2P4 1520; 707 2130 990 2P3-.' 1960 911 .2740ff 1274 2P2 2560 1190 °3580 1665 N.G. 10000 4650 10000 4650 GYPSUM THICKNESS tsheathing= 1/2" NAIL SIZE nail size= 11/4"long"No 6 Type S or Response Modification Coef. R= 6.5 SHEARWALL TYPE Table 2306.4.7 Seismic Wind 1/2"w/1 1/4"screw V allowable V s allowable V w allowable Blocked (PER 2009 IBC) modify G7 125 R>2 not allowed R>2 not allowed G4 150 R>2 not allowed R>2 not allowed 2G7 250 R>2 not allowed R>2 not allowed 2G4 300 R>2 not allowed R>2 not allowed 2G4 300 150 SHEET TITLE: LATERAL N-S(front to back-up/down) CT PROJECT#: Elevation D Diaph.Level: Roof Panel Height= 8 ft. Seismic V i= 3.88 kips Design Wind N-S V I= 7.93 kips Max.aspect= 3.5 SDPWS Table 4.3.4 Sum Seismic V i= 3.88 kips Sum Wind N-S V i= 7.93 kips Min.Lwall= 2.29 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pt= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL eC C o w dl V level V abv.V level V abv. 2w/h vi Type Type vi OTM ROTM Unet Usum OTM ROTM Unet Usum Usum HD (sqft) (ft) (ft) (klf) (kip) (kip) (kip) (kip) p (pIf) (plf) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext. A.T1 416 15.0. 46.0 1.00' 0.15' 1.98 0.00 0.97 0.00 1.00 1.00 65 P6TN P6TN 132 7.76 26.12 -1.28 -1.28 15.86 31.05 -1.06 -1.06 -1.06 Ext. A.T2 ` ,139 5.0 46.0 1.00: 0.15 0.66 0.00 0.32 0.00 1.00 1.00 65 P6TN P6TN 132 2.59 8.71 -1.41 -1.41 5.29 10.35 -1.17 -1.17 -1.17 Ext " A.T3 278 10.0 46.0 1.00 0.15 1.32 0.00 0.65 0.00 1.00 1.00 65 P6TN P6TN 132 5.17 17.41 -1.31 -1.31 10.58 20.70 -1.08 -1.08 -1.08 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 ; 0.0 . '0.0 '1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 - 0.0 0.0 ' 1.00 "0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 . 0.0 0.0 1.00'.°0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.001 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0' " 0.0 0.0 `1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Ext. B.T1 150 5.0 47.0 1.00 '0.15 0.71 0.00 0.35 0.00 1.00 1.00 70 P6TN P6TN 143 2.80 8.90 -1.41 -1.41 5.72 10.58 -1.12 -1.12 -1.12 Ext. B.T2 300 10.0 47.0 1.00` 0.15'I 1.43 0.00 0.70 0.00 1.00 1.00 70 P6TN P6TN 143 5.59 17.79 -1.31 -1.31 11.43 21.15 -1.04 -1.04 -1.04 Ext. B.T3 143 4.8..'47.0 =1.00'. 0.15' 0.68 0.00 0.33 0.00 1.00 1.00 70 P6TN P6TN 143 2.66 8.45 -1.42 -1.42 5.43 10.05 -1.13 -1.13 -1.13 Ext. B.T4 240 8.0 47.0 1.00 0.15 1.14 0.00 0.56 0.00 1.00 1.00 70 P6TN P6TN 143 4.47 14.23 -1.33 -1.33 9.15 16.92 -1.06 -1.06 -1.06 - - 0 " 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 -, 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0' 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 `0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00, 0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 0.0 1.00 i' 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 -0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 ^0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 . 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0' 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00' 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1666 57.8 57.8=L eff. 7.93 0.00 3.88 0.00 EVwld 7.93 EVEQ 3.88 Notes: * denotes with shear transfer *" denotes perferated shear wall iSB denotes iSB Shear Panel OIL SHEET TITLE: LATERAL N-S(front to back-up/down) CT PROJECT#: Elevation D Diaph.Level: 2nd Panel Height-.is 9,ft. Seismic V I= 2.82 kips Design Wind N-S V I= 4.46 kips Max.aspect 3".5 SDPWS Table 4.3.4 Sum Seismic V I= 6.70 kips Sum Wind N-S V I= 12.39 kips Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pc= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL eft C 0 w dl V level V abv.V level V abv. 2w/h vi Type Type vi OTM RoTM Unet U. OTM Row Unet Usum Usum HD (sqft) (ft) (ft) (kif) (kip) (kip) (kip) (kip) p (pif) (pit) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Ext. A.Ma `I 621 29 0 46.0 1.00' 0 15 1.62 2.88 1.02 1.41 1.00 1.00 84 P6TN P6 155 21.85 50.50 -1.01 -2.29 40.43 60.03 -0.69 -1.75 -1.75 Ext.', A.Mb,'I 235 J1 0 46,0 1".00 "0.15: 0.61 1.09 0.39 0.53 1.00 1.00 84 P6TN P6 155 8.29 19.16 -1.05 -2.46 15.34 22.77 -0.72 -1.89 -1.89 0 "0.0 " 00 :1.00`'j.0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 -1.31 0.00 0.00 0.00 -1.08 -1.08 0 0.0 0.0 1 00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .;0.0` 0.0 1 00, -.0.-00, 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0;0 1.00" 0.00, 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0, 0 0 00 1 00'J` 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 ,F-.0.1:r.:.:-,-i 016'.:-0 00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 1.00! 000. 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. ::.0X.1,;.:2:,:.:0.0'-;,;;.E,.1 00 , 0 00 o.o0 0.00 0.00 0,00 too 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.0o 0.00 o.o0 0.00 0.00 Ext: B Ma„ 571•'''10.0. .47.0 1.00 0:1 1.49 2.64 0.94 1.29 1.00 1.00 223 P6 P4 413 20.09 17.79 0.25 -1.16 37.18 21.15 1.72 0.60 0.60 Ext.!, B Mb"" 285 5.0,,47.0 1 00••••,:045. 0.74 1.32 0.47 0.65 1.00 1.00 223 P6 P4 413 10.05 8.90 0.27 -1.04 18.59 10.58 1.85 0.81 0.81 0 ." 0 0 00 1.00 0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 -1.42 0.00 0.00 0.00 -1.13 -1.13 0 0 0 "„00 1.00"" "0.00! 0.00 0.00 0.00 0.00 1 A0 0.00 0- -- 0 0.00 0.00 0.00 -1.33 0.00 0.00 0.00 -1.06 -1.06 0 ;:0 0 ,00 1 00; 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 '0 0 ,0t0 .1.00 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,'' 0.0:., --0:0 1.00 0.00. 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0" 00 .1.00"' 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .'.,10:.:, -0 0 ..O.o. 1.00:' 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0"• '0:0>• 00 1.00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0, 0 0 --,0 0 1.00 -0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 '9.1,,•j•0 0 "".9.o 1;.00" 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 0 0 1•.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0., 0.0 -1.005 0 00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 . .'0.0 _"0.0 1 00 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 . 0:0 ` 1.00":'0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 - -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 "1 0 0 e `,001 00 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 :,.,.P.--...---0 0 0.0 1.00 a. - 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0-;-,..,-:0.0 0.0.7-.1.00 "0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 "',•0.0 0.0 1.00= '.0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1712 55.0 55.0=L eff. 4.46 7.93 2.82 3.88 1.00 E V wfnd 12.39 EVEQ 6.70 Notes: * denotes with shear transfer ** denotes perferated shear wall iSB denotes iSB Shear Panel SHEET TITLE: LATERAL E-W(side to side-left/right) CT PROJECT#: Elevation D Diaph.Level: Roof Panel Height 8 ft. Seismic V i= 3.88 kips Design Wind E-W V I= 9.52 kips Max.aspect= 3.5 SDPWS Table 4.3.4 Sum Seismic V i= 3.88 kips Sum Wind E-W V i= 9.52 kips Min.Lwall= 2.29 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pc= 1.00 Table 4.3.3.5 Wind Wind E.Q. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDLeIt C 0 w dl V level V abv.V level V abv. 2w/h v i Type Type vi OTM RorM Unet Ueum OTM ROTM Unet Usum Veum HD (sqft) (ft) (ft) (kif) (kip) (kip) (kip) (kip) p (plf) (pif) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Rear 1.Ta' 283.6 8.0 ".40.0 1.00 0.15 1.62 0.00 0.66 0.00 1.00 1.00 83* * 203 5.28 12.11 -0.93 -0.93 12.96 14.40 -0.20 -0.20* Rear 2.Tb*?407.6; ;11.5 40.0 s 1.00 0.15 2.33 0.00 0.95 0.00 1.00 1.00 83* * 203 7.59 17.41 -0.91 -0.91 18.63 20.70 -0.19 -0.19* Rear 3.Tc*. 141.8 4.0" 40.0 1.00 0.15 0.81 0.00 0.33 0.00 1.00 1.00 83' 203 2.64 6.06 -1.02 -1.02 6.48 7.20 -0.22 -0.22* Rear. 4.Td. 0 ;;0.0 0.0 .1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int' N/A 0 0.0 0.0 1.00;:0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int' N/A 0 0.0 - "0.0 1.00 ; 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0 00 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Int N/A 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 - - 0 0.0 001.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front 4.Ta. 168.2 3.3 11.0 1.00 a 0.15 0.96 0.00 0.39 0.00 1.00 0.83 141 * * 289 3.13 1.39 0.66 0.66 7.69 1.65 2.27 2.27* Front 4.Tb 168.2 3.3 11.0 - 1.00•' 0.15 0.96 0.00 0.39 0.00 1.00 0.83 141 * * 289 3.13 1.39 0.66 0.66 7.69 1.65 2.27 2.27" Front 4.Tc 75.76 1.5 ;9.7 1.00 0.15 0.43 0.00 0.18 0.00 1.00 0.38 314" " 289 1.41 0.55 1.03 1.03 3.46 0.65 3.37 3.37* Front 4.Td 75.76 1.5 9.7 1.00 0.15 0.43 0.00 0.18 0.00 1.00 0.38 314* * 289 1.41 0.55 1.03 1.03 3.46 0.65 3.37 3.37* Front 4.Te 172.6 3.4 11.7 1.00 0.15 0.99 0.00 0.40 0.00 1.00 0.85 138* * 289 3.21 1.51 0.62 0.62 7.89 1.79 2.22 2.22* Front 4.Tf 172.6 .''3.4 11.7 1.00 0.15 0.99 0.00 0.40 0.00 1.00 0.85 138* * 289 3.21 1.51 0.62 0.62 7.89 1.79 2.22 2.22* - - 0 0.0 - 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 "'1.00 , 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 :1.00': -0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 . 0.0 ,1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0 --- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0,' -0.0 1.00.:: 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 = 0.0 "1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 0.0 ' 0.0 , 1.00' 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 " 0.0 1.00 '0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 " 1.00= 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 ."1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - 0 0.0 0.0 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1666 40.0 40.0=L eff. 9.52 0.00 3.88 0.00 EV wind 9.52 EV EQ 3.88 Notes: * denotes with shear transfer *" denotes perferated shear wall iSB denotes iSB Shear Panel 11111. GARAGE ABWP SHEET TITLE: LATERAL E-W(side to side-left/right) CT PROJECT#: Elevation D Diaph.Level: 2nd Panel Height=',,L 9 ft. Seismic V I= 2.82 ps Design Wind E-W V 1= 5.35 kips Max.aspect=, 3.5 SDPWS Table 4.3.4 Sum Seismic V I= 6.7, kips Sum Wind E-W V I= 14.87 kips Min.Lwall= 2.57 ft. (0.6-0.14Sds)D+0.7 p Qe 0.6D+W per SDPWS-2008 pc= 1.00 Table 4.3.3.5 Wind Wind E:4. E.Q. p= 1.00 E.Q. E.Q. Wind Wind E.Q. E.Q. E.Q. E.Q. Wind Wind Wind Wind Max. Wall ID T.A. Lwall LDL eff. C 0 w dl V level V abv. • level V abv. 2w/h v i Type Type v i OTM ROTM Unet Usum OTM ROTM Unet Usum Usum HD (sqft) (ft) (ft) (klf) (kip) (kip (kip) (kip) p (plf) (pif) (kip-ft) (kip-ft) (kip) (kip) (kip-ft) (kip-ft) (kip) (kip) (kip) Rear 1 Ta `.107.6. . 4 3 x12:3 1 00 0.15`. 0.34 1.20 0.18 0.49 1.00 0.94 166" * 361 5.99 1.98 1.12 0.19 13.80 2.36 3.19 3.00* Rear' 2.Tb-•;'98.77,'.i,,,,.:3.9.•.!,.,12.3..,'I''.00';',40 15 0.3 1.10 0.16 0.45 1.00 0.87 181 * 361 5.49 1.82 1.14 0.23 12.67 2.16 3.25 3.06* Rear, 3.Tc -:;158.3 5 3 .19.5 1 00• 0.15 1. 0 1.76 0.26 0.72 1.00 1.00 156* * 361 8.80 4.61 0.75 -0.27 20.30 5.48 2.65 2.44* Rear ::4.71:,.:::63,3.1 .:.:2'::§.',.. .-.1.9.,§7.:'.1 X10" 0.15: 0.20 0.70 0.10 0.29 1.00 0.56 282* * 361 3.52 1.85 0.91 0.91 8.12 2.19 3.23 3.23* 0 ' o.0 0.0 1 00 0 01: 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 int N/A 181 1 ',5 5 5.5 . 1.00 0 5 0.57 0.00 0.30 0.00 1.00 1.00 54 P6TN P6TN 103 2.69 1.15 0.32 0.32 5.10 1.36 0.77 0.77 0.77 Int r N/A 246.9•.:, !7 5„•. 7.5 1.00 `•1.15' 0.77 0.00 0.41 0.00 1.00 1.00 54 P6TN P6TN 103 3.66 2.13 0.22 0.22 6.96 2.53 0.65 0.65 0.65 0 0 0 ` 0.0 1.00 : 0 00' 0.00 0.00 0.00 0.00 1.00 0,00 0--- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 lit' N/.. 42: . 0.0 .11.0 1 to'.,,i'•,(;0 a' 34 0..0 0.7 •00 1 10 1.00 71 P6TN P6TN 134 6.35 3.79 0.27 0.27 12.06 4.50 0.81 0.81 0.81 0 `0 1 0. 00 0'0: 0.01 1.00 0.10 0.1 1 .00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 :Front 4 Ta125 2 ,20.5 1 00: .,.o...1§! 0.39 0.84 0.21 0.57 1.01 0.54 596 ABWP ABWP 739 6.97 1.88 2.91 3.56 16.07 2.23 7.91 10.17 ABWP Front. 4.Tb, 0 ` 40 0 •„0.0 1 00' 0.15• 0.00 0.00 0.00 0.00 1.01 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front '"4.Tc 0 0.0 '0.0 1 00 0.15 i 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Front. 4:Td 125:.],): :274,-,':,:: 0.5..''-'1:00 0.15 0.39 0.84 0.21 0.57 1.0: 0.54 596 ABWP ABWP 739 6.97 1.88 2.91 3.94 16.07 2.23 7.91 11.28 ABWP on' 4`e= ' '8• 2 1!7 .1 10' '0.14' 1.2: 1 4 0 .A. 00 0.44 615* 631 4.92 0.88 3.03 3.65 11.35 1.05 7.73 9.94* Front 4.7 88 2 0 11.7 1.00 <0:15: 0.28 1.54 0.15 0.40 1.00 0.44 615* • 631 4.92 0.88 3.03 3.65 11.35 1.05 7.73 9.94* 0 0 0 ,0.0 1 00 •!,0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 00..!. 081.•: •5,0,011 "! 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,'._0 0 :.0.0 1 00.''0.00!. 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 ''0 ,;0;0 1 00- 0.00: 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 -1.00: 0.00. 0.00 0.00 0.00 0.00 1.00 0.00 0- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 0.0 1'.00 ' 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- --- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ..'•,.0,., . 0 0 0.0 1 0V 0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Si ' 0.0 •.0 0 ,1.00 0.00.: 0.00 0.00 0.00 0.00 1.00 0.00 0-- - 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0;,. 0 0 00 1.00 :0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 .' ; 0 0 A O 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 00.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 0 0 0:0 1 AO,'j 0.00; 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0 0 00 1 00 0.00`. 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,;,.0 0''-0.0 1.00`',':',]:0.00' 0.00 0.00 0.00 0.00 1.00 0.00 0 -- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 0.0 ''•:. 0.0 1.00 0.00! 0.00 0.00 0.00 0.00 1.00 0.00 0-- -- 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1710 48.7 48.7=L eff. 5.35 9.52 2.82 3.88 EV*;,b 14.87 EV Ea 6.70 Notes: * denotes with shear transfer ABWP Alternate Braced Wall Panel-2308.9.3.2 ** denotes perferated shear wall iSB denotes iSB Shear Panel JOB it: Elevation D SHEARWALLWITH FORCE TRANSFER ID: Elevation D 4.Ta,4.Tb Roof Level w dl=- 150 p/f ....... ................ V eq 783.1 pounds V1 eq= 391.6 pounds V3 eq= 391.6 pounds V w= 1921.7 pounds V1 w= 960.9 pounds V3 w= 960.9 pounds --► v hdr eq= 66.3 plf > A H head= A v hdr w= 162.7 plf 1 V Fdragl eq= 166 F2 eq= 166 A Fdragl w= ,47 F2 -407 H pier= v1 eq= 115.0 plf v3 eq= 115.0 plf P6TN E.Q. 5.0 v1 w= 282.1 plf v3 w= 282.1 p/f P6 WIND feet H total= 2w/h= 1 2w/h= 1 9 .v Fdrag3 eq= s• F4 e.- 166 feet - Fdrag3 w=407 F4 w=407 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 66.3 plf P6TN 30 EQ Wind v sill w= 162.7 p/f P6 feet OTM 7048 17296 R OTM 5223 6279 UPLIFT 164 988 Up above 0 0 UP sum 164 988 H/L Ratios: L1= 3.4 L2= 5.0 L3= 3.4 Htotal/L= 0.76 v Hpier/L1= 1.47 Hpier/L3= 1.47 L total= 11.8 feet JOB#: Elevation D ,SHEARWALL WITH FORCE TRANSFER ID: Elevation D 4.Tc,4.Td Roof Level w dl=, ;150 plf V eq. 352.8;, pounds V1 eq= 176.4 pounds V3 eq= 176.4 pounds V w= 865.61 pounds V1 w= 432.8 pounds V3 w= 432.8 pounds v hdr eq= 44.1 plf •H head= A v hdr w= 108.2 plf 1 v Fdragl eq= 110 F2 eq= 110 Fdragl w= 1 F2 -271 H pier= v1 eq= 196.0 plf v3 eq= 196.0 plf P6 E.Q. 5.0 v1 w= 288.5 plf v3 w= 288.5 plf P6 WIND feet.....:. Htotal= 2w/h= 0.6 2w/h= 0.6 9 Fdrag3 eq= • F4 e.- 110 feet • Fdrag3 w=271 F4 w=271 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 44.1 plf P6TN 3.0. EQ Wind v sill w= 108.2 p/f P6TN feet..,,.„. OTM 3175 7791 R OTM 2396 2880 T UPLIFT 106 670 Up above 0 0 UP sum 106 670 H/L Ratios: L1= 15; L2= 5.0 L3= 15 Htotal/L= 1.13 4 1, 4 ►4 Hpier/L1= 3.33 • Hpier/L3= 3.33 L total= 8.0 feet JOB#: Elevation D SHEARWALL-WITH FORCE TRANSFER ID: Elevation D 4.Te,4.Tf Roof Level w dl= 160 p/f V eq 803.5 pounds V1 eq= 401.8 pounds V3 eq= 401.8 pounds V w= 1971.7 pounds V1 w= 985.9 pounds V3 w= 985.9 pounds — . ► v hdr eq= 67.9 plf --P- A —►•H head= A v hdr w= 166.6 plf 1 v Fdragl eq= 170 F2 eq= 170 A Fdragl w= F2 -417 H pier= v1 eq= 117.6 p/f v3 eq= 117.6 plf P6TN E.Q. 5.0 v1 w= 288.5 plf v3 w= 288.5 plf P6 WIND feet H total= 2w/h= 1 2w/h= 1 9 vFdrag3 eq= F4 e - 170 feet A Fdrag3 w=417 F4 w=417 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 67.9 p/f P6TN 3.0 EQ Wind v sill w= 166.6 plf P6 feet OTM 7232 17746 R OTM 5591 6721 v • UPLIFT 147 987 Up above 0 0 UP sum 147 987 H/L Ratios: L1= 3.4 L2= 5.0 L3= 3.4 Htotal/L= 0.76 N Hpier/L1= 1.46 Hpier/L3= 1.46 L total= 11.8 feet JOB#: Elevation D SHEARWALL WITH FORCE TRANSFER ID: Elevation 0 1.Ma 1.Mb Roof Level w dl= 162 plf V eq 1275,5 pounds V1 eq= 677.6 pounds V3 eq= 597.9 pounds V w= 2941.3 pounds V1 w= 1562.6 pounds V3 w= 1378.7 pounds v hdr eq= 106.3 pff -o- • -%•H head= A v hdr w= 245.1 plf 1 v Fdragl eq= 226 F2 eq= 199 A Fdragl w= "1 F2 -460 H pier= v1 eq= 159.4 plf v3 eq= 159.4 plf P6 E.Q. 5.0 vi w= 367.7 pff v3 w= 367.7 plf P4 WIND feet H total= 2w/h= 1 2w/h= 1 9 . Fdrag3 eq= • F4 e•- 199 feet A Fdrag3 w=521 F4 w=460 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 106.3 plf P6TN 3.0 EQ Wind v sill w= 245.1 plf P6 feet OTM 11479 26472 R OTM 5822 6998 w UPLIFT 499 1718 Up above 0 0 UP sum 499 1718 H/L Ratios: L1= 4.3 L2 40 L3= ,3.8 Htotal/L= 0.75 f I. .4 IP.4 Hpier/L1= 1.18 -4 o Hpier/L3= 1.33 L total= 12.0 feet JOB#: Elevation D SHEARWALL WITH FORCE TRANSFER ID: Elevation D 1.Mc,1.Md Roof Level w dl= 162 p/f V eq 1369.4 pounds V1 eq= 978.1 pounds V3 eq= 391.2 pounds V w= 3157.9 pounds V1 w= 2255.6 pounds V3 w= 902.2 pounds ► v hdr eq= 62.2 p/f --► •H head= A v hdr w= 143.5 p/f 1 V Fdragl eq= 589 F2 eq= 236 • Fdragi w= -58 F2 -543 H pier= vi eq= 156.5 plf v3 eq= 156.5 plf P6 E.Q. 5.0 vi w= 360.9 p/f v3 w= 360.9 p/f P4 WIND feet H total= 2w/h= 1 2w/h= 1 9 v Fdrag3 eq= F4 e.- 236 feet • Fdrag3 w= 1358 F4 w=543 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 62.2 plf P6TN 3.0 EQ Wind v sill w= 143.5 p/f P6TN feet OTM 12324 28421 R OTM 19568 23522 ., • UPLIFT -340 230 Up above 0 0 UP sum -340 230 H/L Ratios: L1= 6.3 L2= 13.3 L3= 2.5 Htotal/L= 0.41 , 0 4 Hpier/L1= 0.80 Hpier/L3= 2.00 L total= 22.0 feet ..........._..............._.__..... JOB#: ,.. Elevation D SHEARWALL WITH FORCE TRANSFER ID: Elevation D 4.Me,4.Mf Roof Level w dl= 162 plf V eq; . 1093.6 pounds V1 eq= 546.8 pounds V3 eq= 546.8 pounds V w= 2522.8 pounds V1 w= 1261.4 pounds V3 w= 1261.4 pounds v hdr eq= 96.5 plf •H head= A v hdr w= 222.7 plf 1 ; v Fdragl eq= 354 F2 eq= 354 A Fdragl w= : 6 F2 -816 H pier= v1 eq= 341.7 plf v3 eq= 341.7 plf P4 E.Q. 5.0 , v1 w= 630.7 plf v3 w= 630.7 plf P3 WIND feet Htotal= 2w/h= 0.8 2w/h= 0.8 9 T Fdrag3 eq= F4 e•- 354 feet + Fdrag3 w=816 F4 w=816 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 96.5 plf P6TN 3.0.; EQ Wind vsHlw= 222.7 plf feet OTM 9842 22705 R OTM 5190 6239 v v UPLIFT 436 1544 Up above 147 987 UP sum 583 2531 H/L Ratios: L1= •r, 2.0; L2= 7'3 L3 2.0 Htotal/L= 0.79 4 ► 4 ►4 ► Hpier/L1= 2.50 vi ► Hpier/L3= 2.50 L total= 11.3 feet JOB#: Elevation D SHEARWALL'WITH FORCE TRANSFER ID: Elevation D 1.La,1.Lb Roof Level w dl= 162 p/f V eq 1275.5 pounds V1 eq= 677.6 pounds V3 eq= 597.9 pounds V w= 3587.6 pounds V1 w= 1905.9 pounds V3 w= 1681.7 pounds ► v hdr eq= 106.3 p/f -1.- A ►•H head= n v hdr w= 299.0 p/f 1 v Fdragl eq= 226 F2 eq= 199 • Fdrag1 w= ;,.5 F2 -561 H pier= v1 eq= 159.4 plf v3 eq= 159.4 plf P6 E.Q. 5 0 v1 w= 448.4 plf v3 w= 448.4 p/f P4 WIND feet Htotal= 2w/h= 1 2w/h= 1 8 v Fdrag3 eq= • F4 e.- 199 feet • Fdrag3 w=635 F4 w=561 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 106.3 plf P6TN 2.0 EQ Wind v sill w= 299.0 p/f P6 feet OTM 10204 28701 R OTM . 5822 6998 ye, w UPLIFT 387 1915 Up above 0 1718 UP sum 387 3633 H/L Ratios: L1= 4.3L2= 4.0 L3= 3.8 Htotal/L= 0.67 , 11, 4 ►-t Hpier/L1= 1.18 Hpier/L3= 1.33 L total= 12.0 feet JOB#: Elevation D SHEARWALL WITH FORCE TRANSFER ID: Elevation D 1.Lc.1.Ld Roof Level w dl= 150 plf V eq 1369.4 pounds V1 eq= 978.1 pounds V3 eq= 391.2 pounds V w= 3851.7: pounds V1 w= 2751.2 pounds V3 w= 1100.5 pounds .._...::.._..._ v hdr eq= 62.2 plf •H head= A v hdr w= 175.1 p/f Y Fdragl eq= 589 F2 eq= 236 Fdragl w= -57 F2 .-663 H pier= v1 eq= 156.5 plf v3 eq= 156.5 plf P6 E.Q. ;5,01.'... ,;,' v1 w= 440.2 Of v3 w= 440.2 plf P4 WIND feet Htotal= 2w/h= 1 2w/h= 1 8 • Fdrag3 eq= F4 e.- 236 feet • Fdrag3 w=1657 F4 w=663 2w/h= 1 H sill= (0.6-0.14Sds)D 0.6D v sill eq= 62.2 plf P6TN 2.0 EQ Wind V sill w= 175.1 plf P6 feet OTM 10955 30813 R OTM 18119 21780 • UPLIFT -336 423 Up above 0 0 UP sum -336 423 H/L Ratios: L1= 6.3 L2 ';=13.3 L3=, 2,5 Htotal/L= 0.36 ` 10 4 104 0 Hpier/L1= 0.80 0 Hpier/L3= 2.00 L total= 22.0 feet f r,t, ,1,$111 I t� .i ty .N yt A PA TT-1I OOIF APRIL 2014 A Portal Frame with Hold Downs for Engineered Applications The APA portal-frame design,as shown in Figure 1,was envisioned primarily for use as bracing in conventional light- frame construction.However,it can also be used in engineered applications,as described in this technical topic.The portal frame is not actually a narrow shear wall because it transfers shear by means of a semi-rigid,moment-resisting frame.The extended header is integral in the function of the portal frame,thus,the effective frame width is more than just the wall segment,but includes the header length that extends beyond the wall segment.For this shear transfer mechanism,the wall aspect ratio requirements of the code do not apply to the wall segment of the APA portal frame. Cyclic testing has been conducted on the APA portal-frame design(APA 2012).Recommended design values for engi- neered use of the portal frames are provided in Table 1.Design values are derived from the cyclic test data using a rational procedure that considers both strength and stiffness. The Table 1 values in this report were developed using the CUREE cyclic test protocol(ASTM E2126),using a flexible load head.Earlier testing was conducted using rigid load heads and the sequential phased displacement(SPD)method, as outlined in SEAOSC(1997)Standard Method of Cyclic(Reversed)Test for Shear Resistance of Framed Walls for Buildings. The design values in Table 1 ensure that the code(IBC)drift limit and an adequate safety factor are maintained.For seismic design,APA recommends using the design coefficients and factors for light-frame(wood)walls sheathed with wood structural panels rated for shear resistance(Item 15 of Table 12.2-1 of ASCE 7-10).See APA Report T2004-59 for more details.For designs where deflection may be less of a design consideration,for example,wind loading while the portal frames are used in tandem with each other,and not used as conventional shear walls,a load factor of 2.5, based on the cyclic test results is used. Since cyclic testing was conducted with the portal frame attached to a rigid test frame using embedded strap-type hold downs,design values provided in Table 1 of this document should be limited to portal frames constructed on similar rigid-base foundations,such as a concrete foundation,stem wall or slab,and using a similar embedded strap- type hold down. 1 ©2014 AM—Thc Engineered WoodAssociation PORTAL FRAME DESIGN (MIN.WIDTH =22 1/2"): EQ= 810#< EQ(ALLOW)= 1031# WIND = 1260#<WIND (ALLOW)= 1444# Table 1.Recommended Allowable De gn Val. •s for APA Portal Frame Used on a Rigid-Base Minimum Width Maximo eight Allowable Design(ASD)Values per Frame Segment (in.) ) Sheart"•'1(lbf) Deflection(in.) Load Factor 8 850 (1190 WIND) 0.33 3.09 16 10 625 (875 WIND) 0.44 2.97 8 1,675 (2345 WIND) 0.38 2.88 24 e k : 0.51 3.42 1-10 1/2" 8 1520 EQ(2128 WIND) 1-10 1/2" 10 fab 1 31 EQ(1444 WIND) 'oundation for Wind or Seismic Loading","' ' (a) Design values are based on the use of Douglas-fir or Southern pine framing.For other species of framing,multiply the above shear design value by the specific gravity adjustment factor=(1—(0.5—SG)),where SG=specific gravity of the actual framing.This adjustment shall not be greater than 1.0. (b) For construction as shown in Figure 1. (c) Values are for a single portal-frame segment(one vertical leg and a portion of the header).For multiple portal-frame segments,the allowable shear design values are permitted to be multiplied by the number of frame segments(e.g.,two=2x,three=3x,etc.). (d) Interpolation of design values for heights between 8 and 10 feet,and for portal widths between 16 and 24 inches,is permitted. (e) The allowable shear design value is permitted to be multiplied by a factor of 1.4 for wind design. (f) If story drift is not a design consideration,the tabulated design shear values are permitted to be multiplied by a factor of 1.15.This factor is permitted to be used cumulatively with the wind-design adjustment factor in Footnote(e)above. Figure 1. Construction Details for APA Portal-Frame Design with Hold Downs • Extent of header with double portal frames(two braced wall panels) • Extent of header with single portal frame (one braced wall panels) Header to jack-stud strop 2'to 18'rou h width of o nin J per wind design min 1000 lbf 9 g I on both sides of opening for single or double portal opposite side of sheathing • Pony r-:;"� wallL. height X, n 7, 9, a Fasten top plate to header le 1/with two rows of 16d „per_ _r sinker nails at 3"o.c.typ i. Fasten sheathingto header with 8d common or Min.3/8"wood structural 12' galvanized box nails at 3'grid pattern as shown /panel sheathing max r total tjk. Header to jack-stud strap per wind design. wall l•j Min 1000 lbf on both sides of opening opposite 0 height h ,• side of sheathing. '1' If needed,panel splice edges shall occur over and be 10 Min.double 2x4 framing covered with min 3/8" nailed to common blocking mx 4 10' thick wood structural panel sheathing with •:I within middle 24"of portal height r' 44 4 4 8d common or galvanized box nails at 3°o.c. I 1 r height.One row of 3"o.c. in all framing(studs,blocking,and sills)typ. nailing is required in each panel edge. k Min length of panel per table 1 Typical portal frame construction Min(2)3500 lb strap-type hold-downs (embedded into concrete and nailed into framing) Min double 2x4 post(king and jack stud).Number of Min reinforcing of foundation,one#4 bar �� I jack studs per IRC tables top and bottom of footing.Lap bars 15'min. R502.5(1)&(2). +`` x` 4` P,Al r ;, ' 'g's t!':\4 1 Min footing size under opening is 12"x 12'.A turned-down Min 1000 lb hold-down slab shall be permitted at door openings. device(embedded into concrete and nailed Min(1)5/8"diameter anchor bolt installed per IRC R403.1.6— into framing) with 2"x 2'x 3/16"plate washer 2 102014 APA—The Engineered Wood Association 1 References APA, 2004, Confirnlatlon of Seismic Design Coefficients for the.APA.Portal Frame, APA Report T2004-59, APA—The Engineered Wood Association,Tacoma,WA. APA,2012,Effect of Hold-Down Capacity on IRC Bracing Method PFH and IBC Alternate Method,APA Report T2012L-24, APA—The Engineered Wood Association,Tacoma,WA. • ASCE,2010,Minimum Design Load for Buildings and Other Structures.ASCE 7.American Society of Civil Engineers. Reston,VA. ASTM E2126-11,Standard Test Methods for Cyclic(Reversed)Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings,ASTM International.West Conshohocken,PA. SEAOSC, 1997,Standard Method of Cyclic(Reversed)Test for Shear Resistance of Framed Walls for Buildings,Structural Engineers Association of Southern California.Whittier,CA. • • • • We have field representatives in many major U.S.cities and in Canada who can help answer questions involving i APA trademarked products.For additional assistance in specifying engineered wood products,contact us: WWWdpdvvood.org APA HEADQUARTERS:7011 So.19th St.•Tacoma,Washington 98466•(253)565-6600•Fax:(253)565-7265 APA PRODUCT SUPPORT HELP DESK:(253)620-7400■E-mail:help@apawood.org Form No.TT-100F Revised April 2014 DISCLAIMER:The information contained herein is based on AM—The Engineered Wood Association's continuing programs of laboratory testing,product research,and comprehensive field experience.Neither APA nor its members make any warranty,expressed or implied, or assume any legal liability or responsibility for the use,application of,and/or reference to opinions,findings,conclusions,or recommendations included in this publication.Consult A PA your local jurisdiction or design professional to assure compliance with code,construction, and performance requirements.Because APA has no control over quality of workmanship or the conditions under which engineered wood products ore used,it cannot accept responsibility of product performance or designs as actually constructed. 3 ©2014 AM—The Engineered WeedAssucialiun 180 Nickerson St. CT ENGINEERING Suite 302 / INC. Seattle,WA Project: 061 e $R� C - Pte.— Date: ? . 1 , 98109 (206) )285-4512 Client: r�w ? AJ i 2 - ( //)C5 23P?1 r 2JPage Number: (206)285-0618 • 1L" . . 'a---; kV)) • • . . . . 0.K.R._ \,) . . 1v : 6'0 0-09. . . . . . . . . On----As-tiel-q/t) I.R____Y-f-41 . • rl• c. , . . . • • . . . . .. • . . . . . . - " . . • `` X lb` 12" k t:2•" . -. , k`1-V - mvv. fiJlAi�t� . -,n7? e- N A '8604/16 j'di. - ( 0,7- �� ; j9.s Zly). a= aV0,-6/6c) 0,3 2 (5. 0 06 (g.9Z3)L1z • ( • �nC� J )C . 83 ,° 4- ? . 4 . • ; . 1; &s _ K . . . . . . Go`' .. 5' • • e1 x le F, w/(2 44- of= •0, 86 . . utur. 7v 12 'aZ 10/4-4-7?-13 . Pk )\2t44- ,\,, • • t m . WD'A)&c., Pair)• .F__- AO-) --- 01'1 ot,,L 41;5 fi cv: 0,r,eg . Myy-__ WI) ,q44 VN.' Structural Engineers 1 WOOD FRAME CONSTRUCTION MANUAL. 03 A Table 2.2A Uplift Connection Loads from Wind ,- '' . (For Roof-to-Wall,Wall-to-Wall,and Wall-to-Foundation) . 700-yr.Wind Speed 3-second gust(mph) 110 115 120 130 140 150 160 170 180 195 .. Roof/Ceiling Assembly Roof Span(ft) Unit Connection Loads(plf)1'2'3'4'5'6'7 Design Dead Load 12. 118 128 140 164 190 219 249 281 315 369 Z 24 195 213 232 •272 315 362 412 465 521 612 37 O psffl 36 272 298 324 380 441 506 576 650 729 856 Z 48 350 383 417 489 567 651 741 836 938 1100 In 60 428 468 509 598 693 796 906 1022 1146 1345 v . 12. 70 80 92 116 142 171 201 233 267 321 Cl 24 111 129 148 188 231. 278 328 381 437 528 M 10 psf 36 152 178 204 260 321 386 456 530 609 736 —: 48 194 227 261 333 411 495 585 680 782 944 Z 60 236 276 317 406 501 604 714 830 954 1153 12 46 56 68 92 118 147 177 209 243 297 24 69 87 106 146 189 236 286 339 395 486 15 psf 36 92. 118 144 200 261 326 396 470 549 676 48 116 149 183 255 333 417 507 602 704 866 . 60 140 180 221 310 405 508 618 734 858 1057' 12 22 ' 32 44 68 94 123 153 185 219 273 • • 24 27 45 64 104 147 194 244 297 353 444 eir:11. 20 psf 36 32 58 84 140 201 266 336 410 489 616 48 38 71 105 177 255 339 429 524 626 788 60 44 84 125 214 309 412 522 638 762 961. 12 - 8 20 44 70 99 129 161 195 249 24 - 3 22 62 " 105 152 202 255 311 402 25 psf 36 - - 24 80 141 206 276 350 429 556 48 - - 27 99 177 261 351 446 548 710 60 - - 29 118 213 316 426 542 666 865 1 Tabulated unit uplift connection loads shall be permitted to be multiplied by 0.75 for framing not located within 6 feet of corners for buildings less than 30 feet in width(W),or W/5 for buildings greater than 30 feet In width. 2 Tabulated uplift loads assume a building located in Exposure B with a mean roof height of 33 feet. For buildings located in other exposures,the tabulated values for 0 psf roof dead load shall be multiplied by the appropriate adjustment factor in Section 2.1.3.1 then reduced by the appropriate design dead load. 3 Tabulated uplift loads are specified in pounds per linear foot of wall. To determine connection requirements, • multiply the tabulated unit uplift load by the multiplier from the table below corresponding to the spacing of the connectors: Connection Spacing(in.) 12 16 192 24 48 Multiplier I 1.00 I 1.33 I 1.60 I 2.00 1 4.00 }! ' 4 Tabulated uplift loads equal total uplift minus 0.6 of the roof/ceiling assembly design dead load. s Tabulated uplift loads are specified for roof-to-wall connections. When calculating uplift loads for wall-to-wall-or wail-to-foundation connections,tabulated uplift values shall be permitted to be reduced by 73 plf(0.60 x 121 plf) ?'� ;. for each full wall above. �}!;%;... ` a When calculating uplift loads for ends of headers/girders,multiply the tabulated unit uplift load by 1/2 of the F . header/girder span(ft.). Cripple studs need only be attached per typical uplift requirements. .°1:1:. C<;k t For jack rafter uplift connections,use a roof span equal to twice the Jack rafter length.The jack rafter length '''• includes the overhang length and the Jack span. =.z =r. GY s $ Tabulated uplift loads for 0 psf design dead load are included for Interpolation or use with actual roof dead loads. YM"•Y. ;;• AMERICAN WOOD COUNCIL 180 Nickerson St. CT . ENGINEERING Suite 302 —PO)/�/ L1,' INC.��'�"}Ai�1/�1 1 S98109 eattle,WA Project: -1 r •` t-- S)i / "_••f ' Date: (206) 1 (206)2854512 FAX: Client: Page Number: (206)285-06I8 • - 417.L- 6P1k1 I `n ori. ;" : •U, v- • ivP1\ • WS�� A C7 • MM3\A t41 -7'�► z 2,2 \/i I l n ,Qr ( u.t7) vv.. 15 • .P\ Dz " 1 I ,.► . :7E14 .;.0t_ • .C>9K k . �s. ;' : 47).1 . . . ?P8 • l/•� �' • —_ -:•:4•40y5.4 is u r : : .. ..... .... .. . . . .... .. .. .. .. .. . . . Z. • • " • i(1-6y 41- tb •-•• : • • 'etc AvrAil-ives -tea b ���� �= (ek n a 0J fi0e544 066/i Structural Engineers TRUSS TO WALL CONNECTION ';I'1 VAI UI 1 OF TRUSS CONNECTOR TO TRUSS TO TOP PLATES 111'1111 11 PLIES 1 HI (6) 0.131" X 1.5" (4) 0.131"X 2.5" 400 415 1 N25A (5) 0.131" X2.5' (6) 0.131"X2.5" �',:I nil 1 SDWC15600 eitc, .....i is ....... 2 H10-2 (9) 0.148" X 1.5" (9) 0.148" X 1.5" (ii/l1 100 2 (2)H2.5A (5) 0.131"X 2.5" EA. (5) 0.131"X 2.5" EA. 10/1) n0 2 (2)SDWC15600 - - 11- ...... _.. /0 ••/.1It 3 (3)SDWC15600 - - Ici;, :It`, ROOF FRAMING PER PLAN 8d AT 6" O.C. ,,` 2X VENTED BLK'G. 0.131" X 3" TOENAIL �'FP AT 6" 0.C. r � - =� -. \1-I2.5A & SDWC15600 STYI F IR COMMON G D -I--- PER PLAN ER TRUSS TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE: 3/4"=1'--0" (BEAM/HEADER AT SIMILAR) 14 TYP. RAISED HEEL TRUSS TO WALL CONNECTION [ TRUSS TO WALL CONNECTION SPF VALUE'' #OF TRUSS CONNECTOR TO TRUSS TO TOP PLATES UPLIFT II PLIES 1 HI (6) 0.131" X 1.5" (4) 0.131"X 2.5" *100 415 -- 1 1 HZ5A (5) 0.131"X 2.5" (5)0.131" X 2.5" 535 Ii) 1 SDWC15600 --- ...L_.._.1..... - - 4n'; n5 • 2 H10-2 (9) 0.148"X 1.5" (9)0.148"X 1.5" 10io 701 "-- 2 (2)H2.5A (5) 0.131"X 2.5" EA. (5) 0.131"X 2.5" EA. l07n un.._.. 2 (2)SDWC15600 . - - 1170 .10_.' 3 (3)SDWC15600 - _ 145:i s45 ADD A35 0 48"0.C. ROOF FRAMING PER PLAN FOR.H2.5A AND SDWC STYLE 8d AT 6" O.C. CONNECTIONS 111111111.1.....N �` �- 2X VENTED BLK'G. ....___.-- !A-14 ........! ...... . 1 mil 1 , 1 1 H2.5A & SDWC15600 STYI F COMMON/GIRDER TRUSS _ PER PLAN TRUSS TO WALL CONNECTION TO EACH H1 STYLE BEARING/SHEAR WALL PER TRUSS PLY PER TABLE ABOVE PLAN AND SCHEDULE SCALE 3/4"= 1'-0" (BEAM/HEADER AT SIMILAR) 19 TYPICAL TRUSS TO WALL CONNECTION [