Loading...
Specifications (30) Structural Calculationsmucoc4s jUi, 2 3 2D1: for Cr , §r,. Full Lateral & Gravity Analysis of Plan C 1186 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. # PERMIT ADDRESS CLOSED 5 MST2012-00185 11095 SAGE TER 4/23/2013 5 MST2012-00186 11091 SAGE TER 4/23/2013 5 MST2012-00187 11083 SAGE TER 4/25/2013 5 MST2012-00188 11081 SAGE TER 4/25/2013 5 M5T2012-00189 11075 SAGE TER 4/25/2013 This Packet of Calculations is Null and Void if Signature above is not Original Harper HP Houf Peterson Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 • [F] 503.221.1171 1104 Main St. Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 ♦ [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit C Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC/2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch.20 Importance, IE: 1 ASCE 7-05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S i: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength,f'e: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,ye: 145 pcf Steel Reinforcement Yield Strength,fy: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 2x&4x Wood Beams & Posts: DF-L#2 6x&Greater Wood Beams & Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi, FV=328psi, E=2.0 Million TS/LSL Beams: Fb=2325 psi, FV=460psi, E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists,and flush beams u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works-Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT C Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. E HfstY clR FlA4b RS Designer: AMC Date: June 2010 Pg.# I.AN�Sr AFc ARCHTf F,?e�SJR`:`c Y�RS DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5•psf Framing RPL:= 1.5.psf Plywood RRF:= 5•psf Roofing RME:= 1.5•psf Mech&Elec RMS:= 1•psf Misc RCG:= 2.5•psf Ceiling R.IN:= 1•psf Insulation RDL= 15.psf Floor Dead Load FFR:= 3•psf Framing FPL:= 4•psf Sheathing FME:= 1.5•psf Mech&Elec FMS:= 1.5•psf Misc FIN:= .5-psf Finish&Insulation FCLG:= 2.5•psf Ceiling FDL= 13•psf Wall Dead Load WOOD EX Wallwt:= 12•psf INT_Wallwt:= 10•psf Roof Live Load RLL:= 25•psf Floor Live Load FLL:= 40•psf Harper Project: Summer Creek Townhomes UNIT C h �• Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. -_—D 2,tNEEPS PLANNE.S Designer: AMC Date: June 2010 Pg.# 44:,sc.n.CE Afl.^^,HfT£�£[�$ 4V EYCP.S Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 748-ft2.1.12 RFwrr:= RDL-Roof Area RFWT= 12566•lb Floor Weight Floor Area2nd:= 605-ft2 FLRWT2nd:= FDL-Floor_Area2nd FLRwT2nd=7865-lb Floor_Area3rd:= 600-ft2 FLRWT3rd FDL-Floor_Area3rd FLRWT3rd= 7800.1b Wall Weight EX Wall Area:= (2203)-ft2 INT Wall Area:= (906)-ft2 WALL := EX_Wallwt-EX_Wall_Area+ INT Wallwt-INT_Wall_Area WALLWT= 35496.lb WTTOTAL= 63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 32 Mean Height Of Roof Ie:= 1 Component Importance Factor (11.5,ASCE 7-05) Rte,:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ta:= Ct.(hn)x Ta= 0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 := 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss:= 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa:= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F,:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: Summer Creek Townhomes UNIT C Mr ai• Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. _,GINrFRs.,LAh.£R5 Designer: AMC Date: June 2010 Pg.# SMS:= Fa-Ss SMS = 1.058 (EQU 11.4-1,ASCE 7-05) 2•SMS Sds:= Sds=0.705 (EQU 11.4-3,ASCE 7-05) 3 SM1:= Fv•SI SMI =0.584 (EQU 11.4-2,ASCE 7-05) 2•5Ml Sd1 := 3 Sdl =0.389 (EQU 11.4-4,ASCE 7-05) Sds'Ie Cst:= Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Cs _ Shc'Ie Csmax =0.223 (EQU 12.8-3,ASCE 7-05) max — TaR ...and shall not be less then... C1 := if(0.044•Sds•Ie<0.01,0.01,0.044•Sds'Ie) (EQU 12.8-5&6,ASCE 7-05) 0.5•SI 11 C2:= if! S1 <0.6,0.01, JI R Csmin:= if(Ci > C2,CI,C2) Csmin=0.031 Cs:= if(Cst<Csmin,Csmin,if(Cst<Csmax,Cst,Csmax)) Cs =0.108 V:= Cs•WTTOTAI, V=6914 lb (EQU 12.8-1,ASCE 7-05) E:= V-0.7 E=4840 lb (Allowable Stress) I -7 Harper Project: Summer Creek Townhomes UNIT C ¢ 1 Houf Peterson � � Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# t ANDS_y AF ARCHI EC ,E�'JN Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II Iw:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn=32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2•.1.16•ft Zone A&B Horizontal Length Smaller of... a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) a2:= .4-hR 2-ft or a2=25.6 ft but not less than... a2min 3.2.ft a2min =6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.1psf PnetzoneC:= 14.4•psf PnetzoneD 3.3•psf Vertical PnetzoneE —8.8-psf PnetzoneF 12•psf PnetzoneG 6.4•psf PnetzoneH —9.7•psf Basic Wind Force PA:= PnetzoneA•Iw.X PA= 19.9•psf Wall HWC PB:= PnetzoneB'Iw.X PB=3.2•psf Roof HWC PC:= PnetzoneC'Iw'X Pc= 14.4-psf Wall Typical PD:= PnetzoneD'Iw.X PD=3.3-psf Roof Typical PE:= PnetzoneE'Iw.X PE =—8.8-psf PF:= PnetzoneF•Iw.X PF =—12.psf PG:= PnetzoneG'Iw'X PG=—6.4-psf PH:= PnetzoneH'Iw-X PH=—9.7-psf Harper Project: Summer Creek Townhomes UNIT C Houf PetersonJob# CEN-090 Client: Pulte Group Righellis Inc. Date: June 2010 Pg.# Designer: AMC --- ,lxnr, Rs ebureeus (A,1{ 0.L�1(ECT5•4U'zYEY6R5 Determine Wind Sail In Transverse Direction WSAILZoneA ft (55 + 59+29)- 2 WSAILZoneB (6 + 0 +23)412 WSAILZoneC (429+ 355 + 339)-ft2 WSAILZoneD:= (0 + 0 + 4)-ft2 WA:= WSAILZoneA'PA WA=2846 lb WB:= WSAILZoneB•PB WB=93 lb WC:= WSAILZoneC'PC W C= 16171 lb WD:= WSAILZoneD'PD WD= 13 lb Wind_Force:= WA+ WB+ WC+ WD Wind Forcemin:= 10-psf-(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force= 19123 lb Wind_Forcen,in= 12990 lb WSAII-ZoneE:= 43-ft2 WSAILZoneF:= 43-ft2 WSAILZoneG:= 334-ft2 WSAILZoneH 327-ft2 WE := WSAILZoneE'PE WE =—378 lb WF:= WSAILZoneF'PF WF=—5161b WG:= WSAILZoneG'PG WG =—2138 lb WH:= WSAILZoneH'PH WH=—3172 lb Upliftnet WF + WH + (WE + WG) +RDL-[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILzoneG)]'-6.1.12 UplifneY= 1326 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: Summer Creek Townhomes UNIT C Hauf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# L{NRS PS Ake TECii•S..-RLEYORS Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area= 838 ft2 RFy := RDL•Roof Area RFyrr= 12566-lb Floor Weight Floor_Area2nd =605 ft2 FLLRR = FDL-Floor Area2nd FLRWT2nd= 7865-lb Floor Area3rd =600 ft2 F, := FDL-Floor_Area3rd FLRWT3rd= 7800-lb Wall Weight EX Wall Area:= (2203)-ft2 1NT Wall Area=906 ft2 L = EX_Wallwt-EX_Wall_Area+ Wall INTWallArea WALLWT=35496-lb WTTOTAL= 63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn=32 Mean Height Of Roof Ie = 1 Component Importance Factor (1L5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct=0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x=0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ct•(hn)x Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 = 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5 (1)&(2) Fa= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F.„= L722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) I Harper Project: Summer Creek Townhomes UNIT C s" Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. -ck tNEER�f P PNl4ER Designer: AMC Date: June 2010 Pg.# i4^.Sf.R?E :.R�Ht'EC Tl�3tiR`<'EVnRS S F •S SMS = 1.058 (EQU 11.4-1,ASCE 7-05) ,v�,D�n'= a s S ._ 2'SMS Sds=0.705 (EQU 11.4-3,ASCE 7-05) ^^ ' 3 ,.= Fv•Si SMi =0.584 (EQU 11.4-2,ASCE 7-05) A§suk S 2'SMl Shc =0.389 (EQU 11.4-4,ASCE 7-05) "sl1^_ 3 Sds'Ie Cst:= Cst= 0.108 (EQU 12.8-2,ASCE 7-05) vww R ...need not exceed... Shc•Ie Cs := Csmax =0.223 (EQU 12.8-3,ASCE 7-05) � Ta R ...and shall not be less then... Cj:= if(0.044•Sds•Ie <0.01,0.01,0.044•Sds'Ie) (EQU 12.8-5&6,ASCE 7-05) 0.5•S1'Ie� Com:= if(Si <0.6,0.01, R C := if(Ci >C2,Ci,C2) Csmm=0.031 NCs .= if(Cst<Csmm,Csmm,if(Cst<Csma,Cst,Csmax)) Cs=0.108 V:= Cs•WTTOTAL V=6914 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E=4840 lb (Allowable Stress) wv /` I rl _ Harper Project: Summer Creek Townhomes UNIT C Houf Peterson Client: Pulte Grou Righellis InC p Job# CEN-090 Designer: AMC Date: June 2010 Pg.# A'E F ARCH E..'f..l SvrtvEYC.RS Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II I� = 1.0 Importance Factor (Table 6-1,ASCE 7-05) fin=32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) at 2•.1.16-ft Zone A&B Horizontal Length Smaller of... a2= 3.2 ft (Fig 6-2 note 10,ASCE 7-05) a:_ .4-hn 2-ft or a2=25.6 ft but not less than... a2 := 3.2•ft a2min=6ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9.psf PnetzoneB =3.2.psf PnetzoneC = 14.4-psf PnetzoneD=3.3-psf Vertical PnetzoneE =—8.8-psf PnetzoneF=—12-psf PnetzoneG=—6.4-psf Pnet?oneH=—9.7-psf Basic Wind Force ,:= PnetzoneA-Iw.X PA= 19.9-psf Wall HWC Pte:= PnetzoneB'Iw.X PB=3.2-psf RoofHWC Pte:= PnetzoneClw.X Pc= 14.4.psf Wall Typical Pte:= PnetzoneD'Iw.X PD=3.3•psf Roof Typical := PnetzoneE'Iw.X PE =—8.8-psf A:= PnetzoneF'Ivy'X PF= —12.psf ,:= PnetZoneG'Iw'X PG =—6.4-psf := Pnet2oneH'Iw.X PH=—9.7-psf 1 C r\ Harper Project: Summer Creek Townhomes UNIT C ‘107t- Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. _ - Designer: AMC Date: June 2010 Pg.# __. EN INEEii.S 1?LRN4ERS i.ANCSi:A�E RR.^H!iQCTS�!:S:ftV EVORS Determine Wind Sail In Longitudinal Direction WM Sp4ILm := (58 + 59+ 21)•ft2 WMS L , ,:_ (0+ 0 + 51)412 :_ (98+ 99+ 34)412 WN := (0 + 0 + 114)•12 WSAILZoneA•PA WA=2746 lb WSAILZoneWPB WB= 163 lb W WSAILZoneC'PC WC=3326 lb 171A,:= WSAILZoneD'PD WD= 376 lb WinM WA+ WB+ WC+ WD Wind Forc = 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZonec + WSAILZoneD) Wind Force=6612 lb Wind_Forcemin= 5340 lb WSmA ,149_, 151•ft2 /Magma,:= 138412 WSnvvwaz k4A:= 242•ft2 WivwSn 7,aJ :— 216•ft2 W WSAILZoneE-PE WE =—1329 lb W _ WSAILZoneF'PF WF=—1656 lb W WSAILZoneG•PG WG=—1549 lb W WSAILZoneH-PH WH=—2095 lb 114&10)= WF+ WH+ (WE + WG) + RDLfWSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILZoneG)]'.6.1.12 Upliftnet=901 lb (Positive number...no net uplift) IDO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN I CALCULATION Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 lw= 1.00 Wind Sail Wind Net Design Wind Pressure(psf) ( ) Pressure(lbs) i Zone A= 19.9 143 2846 Wall High Wind Zone Horizontal Zone B= 3.2 29 93 Roof High Wind Zone Wind Forces Zone C= 14.4 1123 16171 Wall Typ Zone Zone D= 3.3 4 13 Roof Typ Zone Zone E= -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F= -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H= -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force=) 19123 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E=I 1313 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): Zone A Zone B Zone C Zone D Anexeseemes Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm Shear= 7291 lbs Upper Floor Diaphragm Shear= 6286 lbs Roof Diaphragm Shear= 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm (lbs) Diaphragm (lbs) Width ft Width ft Width ft ) A 15.83 2321 6.58 1150 19.00 2773 B 19.00 2785 18.00 3143 0.00 0 C 14.92 2186 11.42 1994 19.00 2773 Z= 49.75 7291 36 6286 38.00 5546 /7 , T Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1= 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMs 1.06 Equ. 11.4-1,ASCE 7-05 0.58 Equ. 11.4-2,ASCE 7-05 SMS_ SDs 0.71 Equ.11.4-3,ASCE 7-05 SD0.39 Equ. 11.4-4,ASCE 7-05 Cs=f 0.11 Equ.12.8-2,ASCE 7-05 Cs Csmin= 0.01 Equ.12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ.12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(Ib)= 12566 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22063 Trib.Floor 3 Diaphragm Wt(Ib)= 21998 Trib.Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces 1Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vfloor 2(Ib)= 711 100.0% Yes V50013(lb)= 1595 85.3% Yes Vrof(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear e r sq ft sq ft sq ft lbs lbs A 124 105 326 168 314 1185 B 273 259 0 369 775 0 C 129 169 371 174 506 1349 Sum 526 533 697 711 1595 2534 Total Base Shear*= I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. l i i Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 lw= 1.00 Wind Sail (ft2) Wind Net Design Wind Pressure(psf) Pressure(lbs) Zone A= 19.9 138 2746 Wall High Wind Zone Horizontal Zone B= 3.2 51 163 Roof High Wind Zone Wind Forces Zone C= 14.4 231 3326 Wall Typ Zone Zone D= 3.3 114 376 Roof Typ Zone Zone E= -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F= -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H= -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force=1 6612 lbs I Use to resist wind uplift: Roof&Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs El 3531 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D MISIIIIMMINIMICV Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear= 2565 lbs Upper Floor Diaphragm Shear= 2600 lbs Roof Diaphragm Shear= 1447 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm (lbs Diaphragm Width ft Width ft ) Width ft (lbs) 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 Spas= 1.06 Equ. 11.4-1,ASCE 7-05 SM1= 0.58Equ. 11.4-2,ASCE 7-05 SDS= 0.71 Equ. 11.4-3,ASCE 7-05 _ 0.39 Equ. 11.4-4,ASCE 7-05 Cs=' 0.11 Equ. 12.8-2,ASCE 7-05 Cs Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(Ib)= 12566 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22063 Trib.Floor 3 Diaphragm Wt(Ib)= 21998 Trib.Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces I Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls q'd? Vf1oor2(Ib)= 711 100.0% Yes Vfl°a,3(Ib)= 159585.3% Yes VfOOf(Ib)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear S lbs hear sq ft sq ft sq ft lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum I 605 600 748 1 711 1595 2534 Total Base Shear*= I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kip (plf) (ft-k) (ft-k) (k) 101 8 5.17 5.17 1.55 OK 8.00 2.32 18.00 1.15 27.00 2.77 1209 Double 1.40 VII 102 8 4.00 4.00 2.00 OK 8.00 2.79 8.00 3.14 1482 Double 1.40 VIII 103 8 3.83 7.33 2.09 ox 8.00 2.19 8.00 1.99 8.00 _ 2.77 948 Double 1.40 VI 104 8 3.50 7.33 2.29 OK 8.00 2.19 8.00 1.99 8.00 2.77 948 Double 1.40 VI 105 8 4.25 12.75 1.88 ox 8.00 2.32 18.00 1.15 27.00 2.77 490 Single 1.40 II 106 8 8.50 12.75 0.94 ox 8.00 2.32 18.00 1.15 27.00 2.77 490 Single 1.40 II 107 8 1.25 1.25 6.40 8.00 2.19 18.00 1.15 27.00 2.77 4887 Double 1.40 NG 108 8 1.25 3.50 6.40 8.00 2.19 8.00 1.99 8.00 2.77 1987 _ Double 1.40 NG 109 8 1.25 3.50 6.40 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 110 8 1.00 3.50 8.00 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 201 9 5.58 9.17 1.61 OK 9.00 1.15 18.00 2.77 428 Single 1.40 II 202 9 3.58 9.17 2.51 OK 9.00 1.15 18.00 2.77 428 Single 1.40 II 202A 9 3.50 3.50 2.57 ox 9.00 3.14 898 Double 1.40 VI 203 9 7.00 7.00 1.29 OK 9.00 1.99 18.00 2.77 681 Single 1.40 IV 301 8 6.00 10.00 1.33 ox 8.00 2.77 277 Single 1.40 I 302 8 4.00 10.00 2.00 OK 8.00 2.77 277 Single 1.40 I 303 8 4.96 9.92 1.61 ox 8.00 2.77 280 Single 1.40 I 304 8 4.96 9.92 1.61 OK 8.00 2.77 280 Single 1.40 _ I I Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Hoof Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 F ransvere Shearwalls Line Load Controlled By: Seismic LShear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type (ft-k) (ft-k) (k) (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (plf) 101 8 5.17 5.17 1.55 OK 8.00 0.17 18.00 0.31 27.00 1.19 323 419 0.31 1.29 Single 1.00 III 102 8 4.00 4.00 2.00 OK 8.00 0.37 8.00 0.78 0.00 286 372 0.24 1.00 Single 1.00 III 103 8 3.83 7.33 2.09 OK 8.00 0.17 8.00 0.51 8.00 1.19 254 331 0.23 0.96 Single 0.96 II 104 8 3.50 7.33 2.29 OK 8.00 0.17 8.00 0.51 8.00 1.19 254 331 0.21 0.88 Single 0.88 III 105 8 4.25 12.75 1.88 OK 8.00 0.17 18.00 0.31 27.00 1.19 131 170 0.26 1.06 Single 1.00 I 106 8 8.50 12.75 0.94 OK 8.00 0.17 18.00 0.31 27.00 1.19 131 170 NA 2.13 Single 1.00 I 107 8 1.25 1.25 6.40 8.00 0.27 18.00 0.51 27.00 1.19 1572 2044 0.08 0.31 Double 0.31 NG 108 8 1.25 3.50 6.40 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.08 0.31 Double 0.31 NG 109 8 1.25 3.50 6.40 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.08 0.31 Double 0.31 NG 110 8 1.00 3.50 8.00 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.06 0.25 Double 0.25 NG 201 9 5.58 9.17 1 1.61 OK 9.00 0.31 18.00 1.19 164 213 0.28 1.24 Single 1.00 I 202 9 3.58 9.17 2.51 OK 9.00 0.31 18.00 1.19 164 213 0.18 0.80 Single 0.80 II 202A 9 3.50 3.50 2.57 OK 9.00 0.78 0.00 221 288 0.18 0.78 Single 0.78 III 203 9 7.00 7.00 1.29 OK 9.00 0.51 18.00 1.19 242 314 0.36 1.56 Single 1.00 II 301 8 6.00 10.00 1.33 OK 8.00 1.19 119 154 0.30 1.50 Single 1.00 I 302 8 4.00 10.00 2.00 OK 8.00 1.19 119 154 0.20 1.00 Single 1.00 I 303 8 4.96 9.92 1.61 OK 8.00 1.19 119 155 0.25 1.24 Single 1.00 I 304 8 4.96 9.92 1.61 OK 8.00 1.19 119 155 0.25 1.24 Single 1.00 I Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= 16.50 Total#1st Floor Bays= 4.13 Are 2 bays minimum present along each wall line? No 1st Floor Rho= 13 Total 2nd Floor Wall Length= 19.67 Total#2nd Floor Bays= Are 2 bays minimum present along each wall line? No 2nd Floor Rho= 13 Total 3rd Floor Wall Length= 19.92 Total#3rd Floor Bays= 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 106 8 12.75 12.75 0.63 ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 204 9 11.50 11.50 0.78 ox 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 205 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 305 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 306 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) /1 i 1 = - Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Seismic M Uplift Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo a T Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type (ft-k) (ft-k) (k) (ft) (ft) (ft) ht I k ht k ht k (kit) (plf) (plf) 105 8 12.75 12.75 0.631 OK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 t OK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 I 55.17 96.89 -0.24 1 N 2 1 ` 204 9 11.50 11.50 205 I 9 11150 111.50 1 0.78 0.78 I OK OK I I 19 00 00.88 118.001 11 32 0.81 191 I 191 I NA I 2.56 Single 0 I 1. I 381.56 53 69 -0.06 I 306 I 8 110.00 110.00 10.80 I oK i ( I i 1800 I 11.32 0.35 132 I 1132 I NA I 22.50 L Single 1111111.0000 I 0.52 17.40 -00.0017 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 25.50 Total#1st Floor Bays= 6.30 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= 1.0 Total 2nd Floor Wall Length= 23.00 Total#2nd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= 1.0 Total 3rd Floor Wall Length= 20.00 Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length 14=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H.IL Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overtuming Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls Panel Wall hea i gt*e Goad r t =xmV1 ,- 4 y4V' =:'` .., : . 4ai .w., :c<.st ,l W *�� ?s��i - ti1, ; V „� a.�,z khn� 101 1209 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 1276 102 1482 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 1667 103 948 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 104 948 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 105 490 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 106 490 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 107 Simpson Strongwall 108 Simpson Strongwall 109 Simpson Strongwall 110 Simpson Strongwall 201 428 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 202 428 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 202A 898 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 203 681 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 301 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 280 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 280 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Longitudinal Shearwalls sSVItr"r � x. ,e < � � 4 : �SInS 0 0 , GOUd I'or qW T4s ,a fib) 105 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 204 176 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 Simpson None 0 205 191 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 Simpson None 0 305 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 Simpson None 0 306 132 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 8 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. nsverse Wind Uplift Design it C r H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total 1 Height Lgth. From 2nd From 3rd From Wall Load(not Point Point Hing Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kit kft kft k k k k k k 1 8 1.1667 5.21 5.21 2.321 1.15 2.773 6.244 1199 0.1 0.192 0.208 54.53 2.36 2.44 11.28 11.27 201 L 201 R 4,97 5.11 16.25 16.38 8 1.1667 4.00 4.00 2.785 3.143 5.928 1482 0.092 0.192 51.09 1.50 0.74 14.34 14.47 3 8 1.1667 3.83 7.33 2.186 1.994 2.773 6.953 948 0.1 0.24 0.078 31.98 1.65 1.03 9.30 9.41 203R 1/2 14.34 14.47 ( ) 3.83 9.30 13.24 1 8 1.1667 3.50 7.33 2.186 1.994 2.773 6.953 948 0.1 0.078 0.192 29.20 0.89 1.28 9.56 9.48 9.56 9.48 5 8 1.1667 4.58 13,08 2.321 1.15 2.773 6.244 477 0.1 0.192 0.078 19.10 1.93 1.41 4.39 4.47 201L 201R 4.97 5.11 9.36 9.58 5 8 1.1667 8.50 13.08 2.321 1.15 2.773 6.244 477 0.1 0.078 0.384 35.43 4.28 6.88 4.11 3.91 202L 202R 5,35 5.22 9.46 9.13 7 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.048 0.192 0.045 14.64 0.28 0.09 18.77 18.92 18.77 18.92 3 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.048 0.045 0.192 14.64 0.09 0.28 18.92 18.77 18.92 18.77 7 8 1.1667 1.25 4.75 2.186 1.994, 2.773 6.953 1464 0.1 0.24 0.208 14.64 0.38 0.34 18.70 18.73 203R 7.65 18.70 26.38 8 1.1667 1.00 4.75 2.186 1.994 2.773 6.953 1464 0.1 0.208 0.192 11.71 0.26 0.24 19.81 19.83 304R 1.65 19.81 21,48 1 9 1.1667 5.875 9.75 1.15 2.773 3.923 402 0.172 0.432 0.156 23.22 5.51 3.88 3.39 3.56 301L 301R 1.58 1.55 4.97 5.11 9 1.1667 3.875 9.75 1,15 2.773 3.923 402 0.172 0.156 0.432 15.32 1.90 2.97 3.66 3.49 302L 302R 1.69 1.72 5.35 5.22 9 1.1667 3.833 3.833 3.143 3.143 820 0.142 0.816 28.29 4.17 1.04 6.73 7.22 6.73 7.22 3 9 1.1667 7.083 7,083 1.994 2.773 4.767 673 0.172 0.468 0.192 46.14 7.63 5.67 5.87 6.03 303L 303R 1.65 1.62 7.52 7.65 I 8 5.958 9.916 2.773 2.773 280 0.24 0.384 0.432 13.33 6.55 6,83 1.58 1.55 1.58 1.55 8 3.958 9.916 2.773 2.773 280 0.24 0.432 0.384 8.85 3,59 3.40 1.69 1.72 1.69 1.72 3 8 4.958 9.916 2.773 2.773 280 0.24 0.384 0.432 11.09 4.85 5.09 1.65 1.62 1.65 1.62 3 8 4,958 9.916 2.773 2.773 280 0.24 0.432 0.384 11.09 5.09 4.85 1.62 1.65 1.62 1.65 eadsheet Column Definitions&Formulas ;hear Panel Length ihear Panel Height Length=Sum of Shear Panels Lengths in Shear Line 'anel Shear)=Sum of Line Load/Total L Overturning Moment)=Wall Shear*Shear Application ht Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) rttT(Mo-Mr)/(L-6 in) 1 r N nsverse Seismic Uplift Design it C r H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total 1 Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ Right walls stack) k k k k (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k 1 8 1.1667 5.21 5.21 0.168 0.314 1.185 1.667 320 0.1 0.192 0.208 15.08 2.36 2.44 2.75 2.74 201 L 201 R 0.65 0.85 3.40 3.59 2 8 1.1667 4.00 4.00 0.369 0.775 1.144 286 0.092 0.192 0 10.06 1.50 0.74 2.49 2.68 0 0 2.49 2.68 3 8 1.1667 3.83 7.33 0.174 0.506 1.349 2.029 277 0.1 0.24 0.078 9.62 1.65 1.03 2.44 2.61 0 203R(1/2) 1.01 2.662.44 3.62 2.54 4 8 1.1667 3.50 7.33 0.174 0.506 1.349 2.029 277 0.1 0.078 0.192 8.78 0.89 1.28 2.66 2.54 0 0 5 8 1,1667 4.58 13.08 0,168 0.314 1.185 1.667 127 0.1 0.192 0.078 5.28 1.93 1.41 0.87 0.98 20IL 201R 0.65 0.85 1.52 1.84 6 8 1.1667 8.50 13.08 0.168 0.314 1.185 1.667 127 0.1 0.078 0.384 9.80 4.28 6.88 0.74 0.45 202L 202R 1.22 1.02 1.972 1.47 .47 7 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.048 0.192 0.045 4.84 0.28 0.09 6.12 6.34 0 0 2 8 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.048 0.045 0.192 4.84 0.09 0.28 6.006.34 6.6.12 0 203R 2.02 2 0 0 6.34 6.12 9 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.1 0.24 0.208 4.84 0.38 0.34 0 8 1.1667 1.00 4.75 0.174 0.506 1.349 2.029 427 0.1 0.208 0.192 3.87 0.26 0.24 7.28 7.31 0 304R 0.21 7.28 7.52 I 9 1.1667 5.88 9.75 0.314 1.185 1.499 154 0.172 0.432 0.156 8.96 5.51 3.88 0.68 0.93 301L 301R -0.03 -0.08 0.65 0.85 12 9 1.1667 3.88 9.75 0.314 1.185 1.499 154 0.172 0.156 0.432 5.91 1.90 2.97 1.09 0.84 302L 302R 0.14 0.18 1.22 1.02 4 9 1.1667 3.83 3.83 0.775 0.775 202 0.142 0.816 0 6.98 4.17 1.04 0.84 1.57 0 0 0.84 1.57 G 9 1.1667 7.08 7.08 0.506 1.349 1.855 262 0.172 0.468 0.192 18.27 7.63 5.67 1.61 1.86 303L 303R 0.21 0.16 1.82 2.02 -0.03 -0.08 11 8 0 5.96 9.92 1.185 1.185 120 0.24 0.384 0.432 5.70 6.55 6.83 -0.03 -0.08 0 0 0.04 0.180 )2 8 0 3.96 9.92 1.185 1.185 120 0.24 0.432 0.384 3.78 3.59 3.40 0.14 0.18 0 0 0.214 0.18 )3 8 0 4.96 9.92 1.349 1.349 136 0.24 0.384 0.432 5.40 4.85 5.09 0.21 0.16 0 0 0. 0.16 l4 8 0 4.96 9.92 1.349 1.349 136 0.24 0.432 0.384 5.40 5.09 4.85 0.16 0.21 0 0 ^eadsheet Column Definitions&Formulas Shear Panel Length Shear Panel Height II Length=Sum of Shear Panels Lengths in Shear Line Panel Shear)=Sum of Line Load/Total L (Overturning Moment)=Wall Shear*Shear Application ht (Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) ift T =(Mo-Mr)/(L-6 in) /- NSVERSE UPLIFT CALCULATIONS-SUMMARY fC it Controlling Total Holdown Holdown Good Control Total Holdown Good For :,I Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k )l Wind 16.25 Holdown HD19 w DF 19.07 Wind 16.38 HD19 w DF 19.07 )2 Wind 14.34 Holdown HDU14 14.93 Wind 14.47 HDU14 14.93 )3 Wind 9.30 Holdown HDU14 14.93 Wind 13.24 HDU14 14.93 )4 Wind 9.56 Holdown HDU14 14.93 Wind 9.48 HDU14 14.93 )5 Wind 9.36 Holdown HDU14 _ 14.93 Wind 9.58 HDU14 14.93 )6 Wind 9.46 Holdown HDU14 14.93 Wind 9.13 HDU14 14.93 )7 Wind 18.77 Holdown None 0.00 Wind 18.92 None 0.00 )8 Wind 18.92 Holdown None 0.00 Wind 18.77 None 0.00 )9 Wind 18.70 Holdown None 0.00 Wind 26.38 None 0.00 10 Wind 19.81 Holdown None 0.00 Wind 21.48 None 0.00 )1 Wind 4.97 Strap MST48x2 5.75 Wind 5.11 MST48x2 5.75 )2 Wind 5.35 Strap MST48x2 5.75 Wind 5.22 MST48x2 5.75 \ Wind 6.73 Strap MST60x2 8.11 Wind 7.22 MST60x2 8.11 )3 Wind 7.52 Strap MST60x2 8.11 Wind 7.65 MST60x2 8.11 )1 Wind 1.58 Strap MST48 2.88 Wind 1.55 MST48 2.88 )2 Wind 1.69 Strap MST48 2.88 Wind 1.72 MST48 2.88 )3 Wind 1.65 Strap MST48 2.88 Wind 1.62 MST48 2.88 )4 Wind 1.62 Strap MST48 2.88 Wind 1.65 MST48 2.88 3 DC7\ Fet f i! — K.)/ T i 1 i • , 'U' to 3 `1 . , _ _ %k \ -r r .. tsT FLoofa. - RbP ...i r --64'N102 Ittocn iso —D j1Nn Oi tot Sir 0 (}kt boa F z d � £ [E ¢#S Zol 0 ctoi SO\ 1 Q I i 1 co 1 i d aoaP moi N, • 1 I 1 i S t vNIT c- 2,„w© c 40©R- ‘w Cd) (-12) hog qa 1 i n tati i N T a t z s 1 I P 4 FrYYFr"" f 3 # r j r i h Un t k • jy a_ L i f S r ' w w P` O o ,. 6' is as. I -tAi 1 MY 't-A,9 voc./0), %,' e <92, ,, --,, -16 .,:€.5e,, -.=-- ci-,?i-) -3-1. 1 tv-kiria(1:vs) VA.; 0.)°,) ri!le '2.k),;) --- - CD :, • k -1411 1-3 nk-----. kArp re, v, o) ci cl. . -162ive ,s-s1 --, x -, •/-5' : 1.-'.2.C.;.' 11\ $z,2 . # 4.-L ,___ -,I1 0 11 --- ... Q3s..5\1\ F-1 -1 ---1 ,i i -1 lk j -7z1 2 C-,\y,tj\C \--A kit:T;(7_ 0 0 Si Z4)-)'11,,Pe7A-k: ..)-a6f-, =z:1,--a;'..),\--) z "),:tr Al Castql-i ,6'5Nvi › ,-- ,s'cl: -"-----7:6-s-it 3 v 1 `. I 1 1 -0 1 0 x m re) z m (-) , 0 -z)-48, nt 3rso'l , K LI- m K 3 Suo in g 0 \— m -1 m 0 * \oZti -- rn -, m z - 7----1 n _____Ya3C ,j01211--V kAkcyook‘a 103 road ON 801 0).Ort c Nit cs1( VO n-A4 AEI '-'6V," t --- j cr: As-L. IS AO ; , _`, ,: ,C ,, _. ::: . ,,,,-5c2 7,,,.,,,„:1-1:-c--,, ,..,.., \c-e•: --.--,.:',-03 '?VO -10 • : Slam --‘ --A 1-1-L.2 ' 0 011 Qbt\ --? --A q-b--t..:\ too\ ---A 0 • : 4 .09 %1 --2 `---A \IQ 1 S.,t()1 4 OT31 -> "A 1 k <;" \ --t...01. -OrrakiC NsvcA \A`orr d r- (74%,-,7 1,‘,.),‘, - 4- ,, --A o,,- •Siz.,0 \ •> 4:r cr_c\\ 0 11, CD cD li f'4 ': 41-i--;in ‹. --4 c)c)c.,\c, ,c,,'t, • -f: — "c: - 14-C)°-'(;.1 4 kt <2.(-1 _ Q01 _ ‘--)N -: 1:A 0°)g‘ <, # toScc.`Z' 7. P 0 -zrZt •N 77M ' -4 Qic4;10-L1 -lix'Q -44-e,n'e 7 hi9 4-S1701 QT...o itsilo. cc-G'o ccs k0\_.,......._ .,,,,i,..ks --:‘\ '4ALV)N5 \?-6, 1_ .9.Q pv)trifil 1 ii 3c1C\_1_ \\\0(1) ss 1/4.).turs H 1 0 0 77 z Li m Z 71 —Is -)\ g' 1 = ( i-2)(,-1--)Z-c)'0)(.51)- C,I)c,- --?-0'0 ,Q\) E 0 VT j,lqi) -1/4( cl,I)c_S\CY 0)cz i.i.)4 ( CX,? C''';')-(__(1 9-47 c )1,111 C'())c-C) n 0\1 "M El 0 \ C c--L ic)x.. -e9v)ma 1) 4: t,,--z.11,1)(, s,-20'o)(g\) z -- c, 0. -•c_---=crioTA-11.1,c,)4(q 1 xs\cy o)tt-1, )4' :zi/sly\,st o-oicg I)4 c700'0k-41QVs1) (7) > --I ‘ C)1 ' x - 0 6 '-34Oc -4 so l \OM r.i z -D o —CC all t)VDCY.0 --:7 ktis,zr-7.20‘0)(11.0 z n o n m 1 St 0 r r 0 ("s1 ->q-A(cC;c) 4_01 \\ C( a 7 g K s °°_1 \\° \,ti K ° Pi 61 ii- 11 (7) .•--A -i_c....)2,' -=-73,1,737-3t-iS c--ILDIS (1. 0 F .. m TH 7 ....JO NI CA k-8 1- \C 3LI ,1D3road Q 6 0-- N 3)..ON 9or . 1 a , 01 0 - V k.,- 3_LVO n i 1 -N As 1 ,- 'V‘..io I t' _ .. co • CD = .0 0 o -- • = -a -, . 0 o z L, m Z m P Li 0 o 3 Z c —AO °: k.)..Tri v)0101 r pal-not z ttl'Z ''' '- ' tnd bon 2 ,) , s.s 1 (;. cy•‘ , 0 -vteerE 7 g 13 e) ------- WV C\(\ VAD)U\6)Kis K o m -I 71 0 Li m z — 0 7 4\e"q ---- c.7)(It 1)=-• SVirri YjDJJ 04 Y.) -‘1\3'3'\° -C-°°-) .. , 7 7 fri I)YX-‘03) JDASUN91 _ V...),C9V)04‘0C1 :38 :1D3 C068 0 1C>' N a 'D -ON so r ....... 1.•••• I , A Ki n 5(1 CLd --1,-;-) C o' )(..c. qix1o.0) --)( 0., ..._. , -J.-0 csh2( c., .--,( o-i--)Q - )( alp.t7\ (Yoccy1X- ;ci. 0 C.G.\ — / 2 , caS'Kse :-. -":';'-• 122— — 7-;-- (?) air — \ = ,.,..m; :7-1;.,_.,, •f-,- 4: -I -.”,•••.4.,..E.,of-)1 ........ c 1 h)• f "r 1-( , ...2„ t , — _-,---- _ ,\\r\I _ c‘,1---• ...k *t.) k, *- -r - cs,-, 4 -r---',7z: ' =":„ .t :--__ i- '-'-',-;• ,..-, n , ,-::,.-4,.* 4 r•-• 4 c›.- -, . r• 4.4„.,,--._ ,, ' r.-, i 'pr . --- • , , t e• i. (7)-"1", '7Z.,..i„)0 .4. ,-kp.c) — -99' ,..., 9- , , „_,, ,....„, 1 7,,,... ,„„„,, .999.•,,, ,, ‘,T, ,,, 9 .„,.:,- ,, -.-- ..,--; ,'„,. : -99r '9„..:,,s„„,.,,, ,9y **, .1 7...., ..,',..' / '... ' *7 ..... NI , 0 ,-. .... -t •.•, Cr, ,.. ....—.., ...„ v „STF 77-17cf'="11:71- 72. „_`:, k 1 1_,--='- -----___ ..‘-•..,— - ,,_ ,_:. 4— -: , / 1 f:.-- .1.;', P 1 / ' : \ ..3 Z- \ ' 'i i f .) tst:3"77 = t 2 0 1 ; M „5.1 '-'.-t (24. ji ' # qiC.).1 6 b --- -tv) ')--•fc.se 1, n o --a ae,25.11.-- 21, K C _ 1 4 '1 I '1 `1 Cfl -I 0 7_. "?, :./C:\C\ c ', \c'.C1,- Ur: p ()On Z ._ I(_;0.0\e,— 0.- "7;‘.,-1-C'I”;.:.;i CI ')',),'i C() \.„}C,)IS 3,1Q, TD 1 X M 0 Z n m o ‘,,C)-1. C'3/4, ..7.7 CT)--.1 .'''' 1 7,1”4 2_,.) Y 0',.:1-i i -',.•,' ri(--: Is '11-`0\1\,1 > r 0 r — 1-r%41( 1 '---ID ' -'f 1:-r'- oi '),_1_ 0 M --I --A.,00--k± G.--e), --.) 1,,, IT) )• :t. ,,I.0(-)\\\col m 0 E m CINI7 `7"' ,,...j ,) 0 r-, P1 n n 7- CI 1 ric, C- --,_ .103 road o O— N ) oNeor 0.,:\ ---L \ —-g 3,vc, iyt ...., to, • By. ,r A co, DATE. t ..... v-i.. 0 JOB No (_'' E N; --0C10 PROJECT: 9,20 G:)-1— V RE: Des v\ 4 E Li; 0 w - OPT I ON) fr. z lopo- 0 w tOMINIWItA I- La O 2 Thre) WIDTH () --) 2liMIIIIIII W n 501P,-1 T. ::: qt.-CI112," 51Top -PLAT Li O _1 WAX 5:C-A kt-OV't..1*- k-x--: ce a u 1111p 0 . 4 o z Li, 0 . Ds KJ cr CL Z = —?`0, Ot p;.-,C O .c.---.f• i---- — . - ‹ lae c;..\•L-...xt-\, \D\,.:‘,.A,e,c, ',,,-,-,o '1,..--,A ,t-_--. \-.2 '- i-.4-,, ,r,\' ''i', -reR?Lpcle.--.. -fie z LUA V\ U'-_,‘4'-'7,'-• :(,)'!-C_I :',i-.- lcAl?Liz D O C---7-1:-------V-----C. - '---C---......4--Lj 0 lk t 0-00 2 x 0 U_ Z w l'AcC,O,X =WIZ: I CI al15.35 It 51-2-1' At ct- b 6 0 = 5 F- 0- \ I \„) re c•-,e 1: ‘ \I-Ck.°11 r. 1'-',,,,,/-1-1" Se:: M 571:1---c4 xv/ •....... to\,;:).--%,1\_-0,•'...-..) i 1_, --—,4- /1,,,j2.- Sv •_-:. 4 _ Itin. _ 9)2# A = , 0 6 0 . , 1,-,-„0 ps;... -:o p•••_-,L > c?,.Z., : • ,•:-..p_. 0 . \JC,n -icu) WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:26:08 COMPANY ( PROJECT RESULTS by GROUP- NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Trusses Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jst Not designed by request (2) 208 Lumber n-ply D.Fir-L No.2 1- 2x8 By Others Not designed by request By Others 2 Not designed by request 4x6 Lumber-soft D.Fir-L No.2 4x6 1.75x14 LSL LSL 1.55E 2325Fb 1.75014 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 6x6 Timber-soft Hem-Fir No.2 6x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR ___ Mnf Trusses Not designed by request Deck Joist Lumber-soft D.Fir-L No.2 2x8 @16.0 Mnf Jst Not designed by request Landing Lumber-soft D.Fir-L No.2 2x6 @16.0 (2) 208 Lumber n-ply D.Fir-L No.2 2- 2x8 408 Lumber-soft D.Fir-L No.2 408 By Others Not designed by request 3.125010.5 Glulam-Unbalan. West Species 24F-V4 DF 3.125x10.5 5.25x14 PSL PSL 2.0E 2900Fb 5.25x14 4x6 Lumber-soft D.Fir-L No.2 4x6 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 4x4 Lumber Post Hem-Fir No.2 4x4 4x6 Lumber Post Hem-Fir No.2 4x6 6x6 Timber-soft Hem-Fir No.2 6x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 204 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis/Design Values ---------__ Deck Joist 0, Bending Mnf Jst Mnf Jst Not designed by request Landing j27 Bending 0.17 (2) 2x8 bl Bending 0.96 408 619 Bending 0.05 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125x10.5 b12 Deflection 0.83 (2) 2x10 b6 Bending 0.85 5.25x14 PSL b18 Deflection 0.79 406 621 Bending 0.88 1.75x14 LSL b23 Bending 0.71 Ftg Ftg Not designed by request (2) 2x6 c10 Axial 0.88 404 c42 Axial 0.04 4x6 c50 Axial 0.25 (3) 2x6 c16 Axial 0.87 606 c23 Axial 0.48 (2) 2x4 c28 Axial 0.84 (3) 2x4 c12 Axial 0.41 Typ Wall w12 Axial 0.24 Fnd Fnd Not designed by request DESIGN NOTES: = 1. Please e verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as w load with corresponding esponding duration factor. Add anempty roof level to bypass thisinterpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd= actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. B. BUILT-UP BEAMS: it is sumed that each ply is a single continuous member (that is, o buttjoints are present) fastened together securely at intervals n exceeding 4 times the depth and that each ply i equally top-loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NUS Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:53 Concept blo de : Beam View Floor 2 : 8 ' _4 .. . _. _ 49 O- v ■ a b21 , b10 E: ,; b18 b3 P'-'= b19) b20 \-\Z.0 r.) T- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-REAR LOAD WoodWorks®Sizer 7.1 •June 28,2010 13:26:28 Conceptb mode : Beam View Floor 2 : 8 ' 'il.,:,; b18 4,--;.7,, • n 4 k.. .i▪ii '4 b24 Ga-0 b23 b10 _ _:r i b11b19 r. b21111= b20 i I " )\-eo r Lock& WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:55 Co c24ept Mode : Co,1251mn View Floor 2 : 8 ' v, —.r .. c1 c2 c38 .. o u, .. Jam. �. W c50 c51 `c33° ,. s ; 1 - w c34 c35 c47 . 'c19 rt91 c36 IIc18 c22 U ..,` a c23 c41 1 } c42 1 c43 _ b (f co > a',1' 1 9399',uE 9 . Thi E_ i" / 1.1 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:49 Concept Mode : Beam View Floor 3 : 17 ' b444 b22 15L-0 _ w 23 b24 ;23 b16 b14 � T - 7ri a r. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:46 Concept Mode : Column View Floor 3 : 17 ' J -tom v c9 c10 4 — v' _...1 t c48 c49 C28 -, c12 c11 C26 4 c27 c39 c40 .. _-, a ,F2',-‘,"., vL -,.�ti.rs .= F_Esem �.�. .'; Wit, _ 4 r '-..,C ;. ' �t J -' gam �. — ,1 f f WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:41 Concept Mode : Beam View Roof: 25 ' b5 bs A i rt WOOdWOrks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:44 Concept Mode: Column View Roof: 25 ' .r c13 c14 -s '- -, -, a• - >". „ s 7 _ ._ - - c16 c15 /► I a. COMPANY PROJECT i 1 WoodWorks® SOFIWAREFOR WOOD DESIGN June 28,2010 13:20 j8 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 13.3 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : `,41.�"-�'� -.`»`' . ,.. ... ... >, .... '�`;. ..k,��,..,.:;"� * ' =x.zr..�;�'�:`�?. mss; �` Dead 64 64 Live 213 213 Total 277 277 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for joists is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2, 2x8" Spaced at 16"c/c;Self-weight of 2.58 plf included in loads; Lateral support:top=full, bottom=at supports; Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 32 Fv' = 180 fv/Fv' = 0.18 Bending(+) fb = 506 Fb' = 1242 fb/Fb' = 0.41 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.09 = <L/999 0.40 = L/240 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 277, V design = 235 lbs Bending(+) : LC #2 = D+L, M = 554 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DES June 28,2010 13:21 j27 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 17.3 plf MAXIMUM REACTIONS llbsl and BEARING LENGTHS (inl .-�"8W,6�,� _°�Jaz"�,. �.� . ,�s' " .`����z =`if '� �,, ^d � :;:44,4,.•-- f- '17- a 1. I0, 4i 39 Dead 39 107 Live 107 145 Total 145 Bearing: #2 Load Comb #2 0.5#2 Length 0.50* *Min.bearing length for joists is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2, 2x6" Spaced at 16"c/c;Self-weight of 1.96 plf included in loads; Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 20 Fv' = 180 fv/Fv' = 0.11 Bending(+) fb = 230 Fb' = 1345 fb/Fb' = 0.17 Live Defl'n 0.01 = <L/999 0.13 = L/360 0.07 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 2 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - Shear : LC #2 = D+L, V = 145, V design = 112 lbs Bending(+) : LC #2 = D+L, M = 145 lbs-ft Deflection: LC #2 = D+L EI= 33e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT i i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:26 b11 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 2_w56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 3_c46 Dead Point 938 5.00 lbs 4 c46 Rf.Live Point 1350 5.00 lbs MAXIMUM RE • . , : • 1 ,� - ,,, . « - r --tea: A a °° 4 sj °f "t . , 3 `spa.' ,p, E eelscs-.'5 t• � :.: mw P R v4'. ' ^sem -- KR - -a , ►�1 • • 0' 64 Dead 1673 2298 Live 1575 2475 Total 3248 4773 Bearing: Load Comb #2 #2 Length 2.32 3.41 LSL, 1.55E,2325Fb, 1-3/4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 207 Fv' = 356 fv*/Fv' = 0.58 Bending(+) fb = 1159 Fb' = 2674 fb/Fb' = 0.43 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.07 = L/980 0.30 = L/240 0.24 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - 1.00 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 4773, V design* = 3386 lbs Bending(+) : LC #2 = D+L, M = 5520 lbs-ft Deflection: LC #2 = D+L EI= 620e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT 111 `I WoodWorks° SOFTWARE'FOR WOOD DESIGN June 28,2010 13:21 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude S.01-1t01(fUnits Start End End 1 w33 Dead Partial UD 402.0 402.0 1.5p1f 2 w33 Rf.Live Partial UD 450.0 450.0 0.D0 1.50 pbs plf 3 c9 Dead Point 985 1.50 lbs 4 c9 Rf.Live Point 1470 lbs 5 39 Dead Full UDL 47.7 plf g jg Live Full UDL 160.0 plf Load7 Live Full UDL 40.0 plf Loads Dead Full UDL 13.0 MAXIMUM R6 I f',,-.:4,-.;.. �, s Fle t ,-:, - ` , ,i,,max",.,s, ,-- z. ,; a : :;:, . r yam _ aFP ,= e a <z . Y x 01,1 31 A I 0' 742 Dead 1043 1204 Live 1541 1946 Total 2585 Bearing: #2 Load Comb #2 1.04 Length 1.38 Lumber n-ply, D. L, , 8", ys Self-weight o17 plf included in2xloads; Lateral support:: 5.top=Fir-full,bottomNo.2=at supports;2-Pl Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 135 Fv' = 207 fv/Fv' = 0.65 Bending(+) fb = 1196 Fb' = 1242 fb/Fb' = 0.94 Live Defl'n 0.01 - <L/999 0.10 = L/360 0.19 Total Defl'n 0.03 = <L/999 0.15 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 2 Fcp' 625 1.00 1.00 _ _ 1.00 1.00 E' 1.6 million 1.00 1.00 - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 1.00 1.00 2 Shear LC #2 = D+L, V = 2585, V design = 1961 lbs Bending(+) : LC #2 = D+L, M = 2619 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT 44 11 WoodWorks® SOFTWARE FOR WOOD DESK,`:', June 28,2010 13:18 b12 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j8 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2 j8 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j9 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4 j9 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j10 Dead Partial UD 47.7 47.7 7.50 16.00 plf 6 j10 Live Partial UD 160.0 160.0 7.50 16.00 plf MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : l0. 16f Dead 442 Live 1280 442 Total 1722 1280 Bearing: 1722 Load Comb #2 Length 0.85 #2 0.85 Glulam-Unbal.,West Species,24F-V4 DF, 3-1/8x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 265 fv/Fv' = 0.26 Bending(+) fb = 1440 Fb' = 2400 fb/Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 1722, V design = 1534 lbs Bending(+) : LC #2 = D+L, M = 6890 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPAN:0101317 PROJECT i WoodWorks� June 28, b17 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w49 DeadPartial UD 402.0 402.0 4.00 7.50 plf if 2_w49 Snow Partial UD 450.0 450.0 4.00 4.00 7.50 pbs 3 c15 Dead Point 938 1350 4.00 lbs 4_c15 Snow Point plf Loads Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) ..,,,,,,... ...7„,„tve...._,i401 " ` ',� .-÷--.,--- -,,217`,:'_2--- �_$-,--!-:,---_,--',--,7-7'_, a -. ,gym',-, - _= : ,- - ',L` ✓''-dam...,f - a---`" a`-... "" e ,.-f:'::.,:``- `,---;;“,,,;:'"`"7,--".. . ., ,igt ` ,, ..+7-- �` '' .,-, =`,a ^ `'s- mea --4 '_-14.---_74.-,.. '.,--_. rte -;;;;-:-7--\. w;-:-- ate �"-L __,-----:;---E4- �-: a .-7 ✓-„m= � ' .;msec-- ...:_.----=c ' , +r 1 "- §e's- ,- - ' ---,,,,‘,T=1-7,!°--- -,7,,,;. .-s ." ,•= -°"-',1, >" ,.tea - -.- ,fir'�.R.� � s ... 3 L =at. ,. . .� , - ;, ,. • A T-6'{ I 1656 Dead 843 1927 Live 997 3584 Total 1841 Bearing: #4 2.56 Load Comb #4 Length 1.31 LSL, 1.55E, 2325Fb, 1-314x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Designn5 Shear fv = 162 Fv' = 356 Bending(+) fb = 1511 Fb' = 2674 fb/Fb' - 0.57 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.33 Total Defl'n 0.12 = L/722 0.37 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfr1.rtt Ci 1.00CnL4# Fv' 310 1.15 - 1.00 - - -1 00 4 • Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1_00 1.00 - - - - Fcp' 800 - - 1.00 - - _ _ 1.00 - - 4 E' 1.5 million - 1.00 - - _ 1.00 - - 4 Emin' 0.80 million - 1.00 - Shear : LC #4 = D+S, V = 3584, V design = 2643 lbs Bending(+) : LC #4 = D+S, M = 7198 lbs ft Deflection: LC #4 = D+S EI= 620e06 lbint Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. _. .. . COMPANY PROJECT di' WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:51 b18 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l c16 Dead Point 938 5.00 lbs 2 c16 Rf.Live Point 1350 5.00 lbs 3_w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4_w37 Rf.Live Partial UD 450.0 450.0 15.00 16.00 plf 5_w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Rf.Live Partial UD 450.0 450.0 14.50 15.00 plf 7_w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8_w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 1 _,c39 Dead Point 843 7.00 lbs 11_c39 Rf.Live Point 1147 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs 13 c40 Rf.Live Point 2077 14.50 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : ?'` $ro' k - .,a , a-. -,:-,mss- ,-4„ .. a fir..::-g., d,�., .,=•. - °..' - ; 'f' �- �,. ,au �.mmnwm� � gym,.,: �� , 77'-'77Z77::," • ; ... ,.., Sic.0 . r - ..awm« Ami> ,u i. ; s: tze`� ae€,nwr ,, 3. F,- .:.y� I 161 Dead 3950 3630 Live 3994 3956 Total 7944 7586 Bearing: Load Comb #2 #2 Length 2.77 2.64 Glulam-Unbal.,West Species, 16F-E3 DF,5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 117 Fv' = 247 fv/Fv' = 0.47 Bending(+) fb = 1443 Fb' = 1831 fb/Fb' = 0.79 Live Defl'n 0.21 = L/935 0.53 = L/360 0.38 Total Defl'n 0.49 = L/391 0.80 = L/240 0.61 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 215 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 1600 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fcp' 560 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.79 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 7944, V design = 6613 lbs Bending(+): LC #2 = D+L, M = 27966 lbs-ft Deflection: LC #2 = D+L EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT I i WoodWork ® DESIGNO June 28,2010 13:26 b18.1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Rf.Live Partial UD 450.0 450.0 0.0000 1.00 pif f 3 c9 Dead Point 985 1. bs 1.00 lbs 4 c9 Rf.Live Point 1470 7 00 lbs 5 c10 Dead Point 985 6 c10 Rf.Live Point 1470 7.00 lbs 7_w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 w64 Rf.Live Partial UD 450.0 450.0 7.00 9.50 plfp 9 j25 Dead Full UDL 47.7 plf lf 10_j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (in) : xx _,., = fir, *c 77-7< g,-4- N'-. .. .z°'- T*"'mac. ',),0 ;€ ..;zs u ,.._ ', , , ,:.;._ " 09'-61 -612047 Dead 1977 2047 Live 3226 3189 Total 5204 Bearing: #2 Load Comb #2 2.#2 Length 2.56 Glulam-Unbal.,West Species,24F-V4 DF,3-118x10-112" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 195 Fv' = 305 fv/Fv' 0.64 Bending(+) fb = 2004 Fb' = 2760 fb/Fb' = 0.73 Live Defl'n 0.18 = L/627 0.32 = L/360 0.57 Total Defl'n 0.34 = L/335 0.47 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrrtt Not0 tees 1Cn00 LC# Fv' 265 1.15 1.00 1.00 - - - - - 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 1.00 Fcp' 650 - 1.00 1.00 - - - - 1. 00 - - 2 E' 1.8 million 1.00 1.00 - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - Shear : LC #2 = D+L, V = 5236, V design = 4256 lbs Bending(+) : LC #2 = D+L, M = 9589 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 1 WoodWorks® SOFIWARE FOR WOOD DESIGN June 28,2010 13:21 b19 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j24 Dead Full UDL 51.0 plf 2 j24 Live Full UDL 75.0 plf MAXIMUM RE. a C�'�1" g. � c ; ;7°5',Wrnleg:;,--,;:; XtA71:1P4-fi A A 1 0' • 34 Dead 86 86 Live 112 112 Total 198 198 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 7 Fv' = 180 fv/Fv' = 0.04 Bending(+) fb = 58 Fb' = 1170 fb/Fb' = 0.05 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 198, V design = 118 lbs Bending(+) : LC #2 = D+L, M = 149 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT IIIli III WoodWorks0 SOFTWARE FOR WOOD DESIGN June 28,2010 13:17 b23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l j14 Dead Partial UD 78.0 78.0 0.00 7.00 plf 2_j14 Live Partial UD 240.0 240.0 0.00 7.00 plf 3_j29 Dead Partial UD 78.0 78.0 7.00 10.50 plf j29 Live Partial UD 240.0 240.0 7.00 10.50 plf 5_j31 Dead Partial UD 26.0 26.0 7.00 10.50 plf 6_j31 Live Partial UD 80.0 80.0 7.00 10.50 pit 7_b24 Dead Point 409 7.00 lbs 8 b24 Live Point 1080 7.00 lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) .rw--s ;,;-• 7- i" ^ ` y . --.4" p' s+aw. „ - 1,- "' " v s .4,--t- - a = - s= ue . : s^ t,. --a,41'447--,/77:.47- a - --- 0i10'-64• I0' 798 Dead 601 2213 Live 1667 3012 Total 2268 Bearing: • #2 Load Comb #2 2.12 Length 1.62 LSL, 1.55E,2325Fb, 1-314x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 154 Fv' = 310 fv/Fv' = 0.50 Bending(+) fb = 1658 Fb' = 2325 fb/Fb' = 0.71 Live Defl'n 0.18 = L/714 0.35 = L/360 0.50 Total Defl'n 0.27 = L/462 0.52 = L/240 0.52 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 - Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 - 21.00 - - 2 Fcp' 800 - - 1.00 - - - _ - - 2 E' 1.5 million - 1.00 - 1.00 Emin' 0.80 million - 1.00 - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 3012, V design = 2515 lbs Bending(+) : LC #2 = D+L, M = 7897 lbs-ft Deflection: LC #2 = D+L EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 1 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. ,n COMPANY PROJECT r 1 WoodWorks® SOFTWARE FOR WOOD D[StGN June 28,2010 13:17 b24 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf y Load Type Distribution Magnitude Location [ft] Units Start End Start End Load1 Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS 1Ibsl and SFARING LFNGTHS lint : � ,„,,„�a . . . _.�, y,�. e� '3v � fi_..�. ':',',,,,,,,r4,,-.. av�s �'._- - s ..*„..A.4.„ g s " � � � 4. C� * 5 - p �vima- teskr . , '" � 7r f� c`; ` l - te *, �s ,," ;7, y-z . ---4,'+ z . _,.. ,,11,rt S; ^.v 10Y 44 Dead 409 409 Live 1080 1080 Total 1489 Bearing: 1489 Load Comb #2 #2 Length 0.68 0.68 Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 180 fv/Fv' = 0.50 Bending(+) fb = 1013 Fb' = 1170 fb/Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emirs' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1489, V design = 1148 lbs Bending(+) : LC #2 = D+L, M = 1489 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT i WoodWorksS June 28,2010 13:22 c10 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c14 Dead Axial 938 (Eccentricity = 0.00 in) 2 c14 Rf.Live Axial 1350 (Eccentricity = 0.00 in) 3_b4 Dead Axial 47 (Eccentricity = 0.00 in) 4 b4 Live Axial 120 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs) 06 9' 0' Lumber n-ply, Hem-Fir, No.2,2x6", 2-Plys Self-weight of 3.41 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld:1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design88 Axial fc = 151 Fe*= 1644 fc/Fc* = 0.09 Il Axial Bearing fc = 151 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Crfrt 1Ci0 LC# Fc' 1300 1.15 1.00 1.00 0.104 1.100 - - 1.00 1.00 2 .100 - - 2 Fc* 1300 1.15 1.00 1.00 - Axial : LC #2 = D+L, P = 2485 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. ry o. /1 �. COMPANY PROJECT III WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:25 c12 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b23 Dead Axial 601 (Eccentricity = 0.00 in) 2—b23 Live Axial 1667 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base;Loadface=depth(d); Built-up fastener:nails; Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 146 Fc' = 356 fc/Fc' = 0.41 Axial Bearing fc = 146 Fc* = 1495 fc/Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.238 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2297 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT i woodworks® SOn7WARE FOR WOOD DESIGN June 28,2010 13:23 c16 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b6 Dead Axial 938 (Eccentricity = 0.00 in) 2—b6 Rf.Live Axial 1350 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) 0 17' Lumber n-ply, Hem-Fir, No.2, 2x6",3-Plys Self-weight of 5.11 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 17.00=17.00[ft];Ke x Ld: 1.00 x 17.00=17.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 96 Fc' = 110 fc/Fc' = 0.87 Axial Bearing fc = 96 Fc* = 1644 fc/Fc* = 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 1300 1.15 1.00 1.00 0.067 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2375 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. n .. - COMPANY PROJECT 0,114 l WoodWorksSOFTAREFOH WOOD DESIGN June 28,2010 13:25 c23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b18 Dead Axial 3978 (Eccentricity = 0.00 in) 2-b18 Rf.Live Axial 3994 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): A 8' Timber-soft, Hem-Fir, No.2, 6x6" Self-weight of 6.25 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 265 Fc' = 548 fc/Fc' = 0.48 Axial Bearing fc = 265 Fc* = 661 fc/Fc* = 0.40 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 8022 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT fit WoodWorks® IGN June 28,2010 13:23 c28 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b24 Dead Axial 409 (Eccentricity = 0.0 in) 2 b24 Live Axial 1080 (Eccentricity = 0.0 in) MAXIMUM REACTIONS(lbs): .., 1-a * er' , .Z-44.--. , PA**4 0' Lumber n-ply, Hem-Fir, No.2,2x4", 2-Plys Self-weight of 2.17 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Anfc/Fc'ys/Design89 Axial fc = 144 Fc' = 171 Axial Bearing fc = 144 Fc* = 1495 fc/Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr- Cfrt .00 1Ci0 LC# FFc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 Axial : LC #2 = D+L, P = 1509 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. /+ ( r COMPANY PROJECT il i WoodWorks° SOFIWARE FOR WOOD DESIGN June 28,2010 13:22 c42 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b19 Dead Axial 86 (Eccentricity = 0.00 in) 2 b19 Live Axial 112 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs): 8' Lumber Post, Hem-Fir, No.2,4x4" Self-weight of 2.53 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 18 Fc' = 470 fc/Fc' = 0.04 Axial Bearing fc = 18 Fc* = 1495 fc/Fc* = 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 218 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT 1 WoodWorks® SOFTWARE I OR WOOD DESIGN June 28,2010 13:22 c50 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c48 Dead Axial 599 (Eccentricity = 0.00 in) 2-c48 Live Axial 1660 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) *Ve + v >xa,., i _ 8, Lumber Post, Hem-Fir, No.2,4x6" Self-weight of 3.98 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 119 Fc' = 468 fc/Fc' = 0.25 Axial Bearing fc = 119 Fc* = 1430 fc/Fc* = 0.08 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.327 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2291 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. (1 7-, f BY 1\),A _ i } DATE )1: E116 ///4F` •�.� O 4 0 JOB NO.: 010 PROJECT: -Bo fi 6 Z b -1---) UxM 30M � W O 2 b\ J v \k & 3 Cr O U W W 05)1-V it cc a � -- °, i\ € fie Oz n jy ({�"fit yy _ i j/ t •1 4...�i �.6' °� 1-' l +- SSP i3 f , o Q 1 U A 44"' 41k. f _ ii _ - 2 O U 2 O O W Z w z 0 o i F a O 6 c, = Iii •t fl ay COMPANY PROJECT ill WoodWorks° so June 28,2010 13:36 b17 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 77:5500 .50 plf it 2 w49 Snow Partial UD 450.0 450.0 4.00 7 50 lbs 3_c15 Dead Point 938 1350 4.00 lbs 4 c15 Snow Point plf Loads Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 4.00 lbs wind Wind Point 2240 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (tn) s.. - -mss-;;;',74. 4,:".....17.."-- 4:,;:.: ` - w�L .z.: Yom, .,' ».,w 4 s `.7"r'-- _Z.. :7, ,:77 � 's"-" ' ^a ,- '. &-V,0=°` r-,'. ,v .- `�%'"'-'..-�""-' =..s+s�,- L :- 1 - .r ,. gym. x`"".,� - : ►A 7'_6'i ♦ I 0' 1656 Dead 843 2454 Live 1645 4150 Total 2488 #4 Bearing: 2.94 Load Comb #4 Length 1.78 , 1.55E, , 4 " Self-wLSLeight of 7.66 plf included2325Fb1-3/in loadsx14; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Anfv/Fvs/DesOg45 Shear fv = 162 Fv' == 356 = 216,7/160 4 fb/Fb' = 0 Bending(+) fb = 11/19-99 OL .25 L267/360 0.34 Live Defl'n 0.09 0..5417 Total Defl'n 0.15 = L/580 0.37 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr CtrOtt Ci 1.00 1Cn00 L6# Fv' 310 1.15 - 1.00 1.00 - - 6 Fb'+ 2325 1.15 - 1.00 1.000 1.00 1.00 - - - Fcp' 800 - - 1.00 - - 1.00 _ - - 4 1.00 E' 1.5 million - 1.00 - - - 4 Emin' 0.80 million - 1.00 - - Shear : LC #6 = D+S, V = 3584, V design = 2643 lbs Bending(+) : LC #6 = D+S, M = 7198 lbs-ft Deflection: LC #4 = D+.75(L+S+W) EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are for o 2.SCL BEAMS(Structural Composite Lumber):the attachedappropriate SCL selectionyourapplicatiis for n.preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. r _ r. in COMPANY PROJECT di' WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:36 b17 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2 w49 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3_c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Load5 Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf wind Wind Point -2240 4.00 lbs MAXIMUM REACTIONS lbs and BEARING LENGTHS in : tea. =- OMA A A 10' Dead 843 1656 Live 997 1927 Uplift 528 189 Total 1841 3584 Bearing: Load Comb #6 #6 Length 1.31 2.56 LSL, 1.55E,2325Fb, 1-3/4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 162 Fv' = 356 fv/Fv' = 0.45 Bending(+) fb = 1511 Fb' = 2674 fb/Fb' = 0.57 Bending(-) fb = 469 Fb' = 1114 fb/Fb' = 0.42 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.22 Total Defl'n 0.12 = L/722 0.37 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 1.00 1.00 6 Fb'+ 2325 1.15 1.00 1.000 1.00 - 1.00 1.00 - - 6 Fb'- 2325 1.60 - 1.00 0.299 1.00 - 1.00 1.00 - - 8 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 6 Emin' 0.80 million - 1.00 - - - - 1.00 - - 6 Shear : LC #6 = D+S, V = 3584, V design = 2643 lbs Bending(+) : LC #6 = D+S, M = 7198 lbs-ft Bending(-) : LC #8 = .6D+W, M = 2235 lbs-ft Deflection: LC #6 = D+S EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT Ii WoodWorks® 5OFTW.4Rf FOR WOOD DESIGN June 28,2010 13:41 b18 Ic1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs lbs 2 c16 Snow Point 1350 5.00 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7_w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 11_c39 Snow Point 1147 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs 13 c40 Snow Point 2077 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): ---t-1--:- +- -.� �' .ow* m - .. ^ x tact , 'a. :A.-r ur..�.j �. .., e ,.w.... ,Baa,..,. 1 0' 3630 Dead 3950 3630 Live 5866 3956 Uplift 1588 Total 9816 Bearing: #2 Load Comb #3 2.#2 Length 2.95 Glulam-Unbal.,West Species,24F-V4 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 117 Fv' = 305 fv/Fv' = 0.38 Bending(+) fb = 1443 Fb' = 2747 fb/Fb' = 0.53 Bending(-) fb = 1354 Fb' = 2743 fb/Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #2 = D+S, V = 7944, V design = 6613 lbs Bending(+) : LC #2 = D+S, M = 27966 lbs-ft Bending(-): LC #4 = .6D+W, M = 26233 lbs-ft Deflection: LC #4 = .6D+W EI= 3453e06 lb-int Total Deflection = 1.00)Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT i WoodWorks(8), SOFTWARE FOR WOOD DESIGN June 28,2010 13:41 b18 Ic2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft) Units Start End Start End 1_c16 Dead Point 938 5.00 lbs 2_c16 Snow Point 1350 5.00 lbs 3_w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4_w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8_w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10_c39 Dead Point 843 7.00 lbs 11 c39 Snow Point 1147 7.00 lbs 12_c40 Dead Point 1656 14.50 lbs 13 c40 Snow Point 2077 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): _ 7.7.,:,..-=- :_ar c.�Ma ems, 'vxi c^ 4.a. A 10' Dead 3950 161 Live 3994 3630 Uplift 1396 5838 Total 7944 Searing: 9468 Load Comb #2 Length 2.38 #3 2.84 Glulam-Unbal.,West Species,24F-V4 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 168 Fv' = 424 fv/Fv' = 0.40 Bending(+) fb = 2579 Fb' = 3822 fb/Fb' = 0.67 Live Defl'n 0.41 = L/467 0.53 = L/360 0.77 Total Defl'n 0.58 = L/331 0.80 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - 1.00 1.00 1.00 3 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 3 Fcp' 650 - 1.00 1.00 - - - - 1.00 E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D+.75(S+W), V = 10637, V design = 9461 lbs Bending(+) : LC #3 = D+.75(S+W), M = 49976 lbs-ft Deflection: LC #3 = D+.75(S+W) EI= 3453e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT i WoodWorks® LON June 28,2010 13:41 b18 Ic2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution SMaagnEnd Start itudionE(ft] Units rt 5.00 lbs nd l c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w- 37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w- 54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7-w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8-w56 Dead Partial UD 498.0 498.0 0.0000 6.00 lbslfs 10 c39 Dead Point 843 12 Wind Point lbs WIND1 1656 0.00 14.50 lbs D1 Wind Point -8750 lbs WIND2 Wind Point 8750 7.00 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) • �ti,.==•-.t.'� `_ +s+,.a_ i 161 I0' 3630 Dead 3950 3670 Live 960 7300 Uplift 1396 Total 4910 #3 Bearing: 2.19 Load Comb #2 Length 1.47 Glulam-Unbal.,West Species,24F-V4 DF,5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 135 Fv' = 424 fv/Fv' - 0.32 Bending(+) fb = 2202 Fb' = 3822 fb/Fb' = 0.580.59 Live Defl'n 0.31 = L/614 0.53 = L/360 0.60 Total Defl'n 0.48 = L/398 0.80 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# 1.00 1.00 3 Fv' 265 1.60 1.00 1.00 - - - 1.00 - 4 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1_00 1.00 1.00 1.00 Fcp' 650 - 1.00 1.00 - - - _ - 1.00 - - 3 E' 1.8 million 1.00 1.00 - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - Shear LC #3 = D+.75(S+W), V = 8361, V design = 7630 lbs Bending(+) : LC #4 = .6D+W, M = 42673 lbs-ft Deflection: LC #3 = D+.75(S+W) EI= 3453e06lb-1n2Load Deflection. Total Deflection = 1.00(Dead Load Deflection) + (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT r I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:42 b18 Ic1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 pif 10 c39 Dead Point 843 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : -- 1=:,-,..m` ' = 4 n, .. , - - -r te' i4-K. g Xe.;,a �'z <n4 a . --7,,-,,,,,,,,,7„-...,.,,,:,...„,,-,-,z...:..„7,,„,..:..„,...„;; 10' 161 Dead 3950 3630 Live 3591 Uplift 1065 1588 Total 7541 Bearing: 4695 Load Comb #3 #2 Length 2.26 1.41 Glulam-Unbal.,West Species,24F-V4 DF,5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 74 Fv' = 305 fv/Fv' = 0.24 Bending(+) fb = 933 Fb' = 2747 fb/Fb' = 0.34 Bending(-) fb = 1354 Fb' = 2743 fb/Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #2 = D+S, V = 4910, V design = 4172 lbs Bending(+): LC #2 = D+S, M = 18077 lbs-ft Bending(-): LC #4 = .6D+W, M = 26233 lbs-ft Deflection: LC #4 = .6D+W EI= 3453e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 1144 i Woodworks® SOFIWARFFOR WOOD DESIGN June 28,2010 13:43 beam under 202a LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Windt Wind Point 7380 0.00 lbs Wind2 Wind Point -7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : a - * Sa , Jo, ` ' m ' " . *:e.4.- '�° ,---- -i - - - ,- y� 2.- -„.„-;2.-----L4,--,4, .2 - ,--- q 164 10, 302 Dead 565 302 Live 1646 1538 Uplift 729 Total 2211 Bearing: #2 Load Comb #3 0.5#2 Length 0.84 *Min.bearing length for beams is 1/2"for exterior supports PSL, 2.0E,2900Fb,3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shearfv = 160 Fv' = 464 fv/Fv' = 0.34 Bending(+) fb = 324 Fb' = 2433 fb/Fb' = 0.13 Bending(-) fb = 2163 Fb' = 2842 fb/Fb' = 0.76 Live Defl'n -0.46 = L/415 0.53 = L/360 0.53 7 Total Defl'n -0.42 = L/456 0.80 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - - 1.00 -- 2 1.00 4 Fb'+ 2900 1.00 - 1.00 0.839 1.00 - 1.00 1.00 - - 2 Fb'- 2900 1.60 - 1.00 0.613 1.00 - 1.00 1.00- - 1.00 - - Fcp' 750 - - 1.00 - - - - 4 E' 2.0 million - 1.00 - - - 1.00 Emin' 1.04 million - 1.00 - - 1.00 - 4 Shear : LC #4 = .6D+W, V = 5224, V design = 5224 lbs Bending(+) : LC #2 = D+L, M = 3088 lbs-ft Bending(-) : LC #4 = .6D+W, M = 20612 lbs-ft Deflection: LC #4 = .6D+W EI= 1601e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT 1 WoodWorks® SOFfWARE FOR WOOD DESIGN June 28,2010 13:43 beam under 202a LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Windl Wind Point -7380 0.00 lbs Wind2 Wind Point 7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : 10' 164 Dead 565 302 Live 427 1696 Uplift 1380 Total 992 1950 Bearing: Load Comb #2 #4 Length 0.50* 0.74 *Min.bearing length for beams is 1/2"for exterior supports PSL, 2.0E, 2900Fb,3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 464 fv/Fv' = 0.39 Bending(+) fb = 2352 Fb' = 2842 fb/Fb' = 0.83 Live Defl'n 0.44 = L/435 0.53 = L/360 0.83 Total Defl'n 0.48 = L/398 0.80 = L/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2900 1.60 - 1.00 0.613 1.00 - 1.00 1.00 - - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - - E' 2.0 million - 1.00 - - - - 1.00 - - 4 Emin' 1.04 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 6000, V design = 5909 lbs Bending(+) : LC #4 = .6D+W, M = 22412 lbs-ft Deflection: LC #4 = .6D+W EI= 1601e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT i I WoodWorks° SOFFWARF FOR WOOD DESIGN June 28,2010 13:44 b18 REAR LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Snow Partial UD 450.0 450.0 0.00 1.00 plf 3_c9 Dead Point 985 1.00 lbs 4 c9 Snow Point 1470 1.00 lbs 5_c10 Dead Point 985 7.00 lbs 6_cl0 Snow Point 1470 7.00 lbs 7 w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 w64 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9 j25 Dead Full UDL 47.7 plf 10 j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf W1 Wind Point 6190 1.00 lbs W2 Wind Point -6190 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) v A ad ads '_r a E4 '' v ;, - 4 r *wtv 'a s -€9 3 i..ti '`"i' * F'` ! '.+. .os,,, _,°y ",,.a`.",i+4"`..z�..t r- s Ws,A :';,:4;..' L." l�� A I0' 9,-6,1 Dead 1977 2047 Live 5352 23912667 Uplift 2667 Total 7329 Bearing: #3 Load Comb #4 Length 3.61 2.19 Glulam-Unbal.,West Species,24F-V4 DF,3-1/8x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 297 Fv' = 424 fv/Fv' = 0.70 Bending(+) fb = 1693 Fb' = 2760 fb/Fb' = 0.61 Bending(-) fb = 1580 Fb' = 2844 fb/Fb' = 0.56 Live Defl'n 0.14 = L/837 0.32 = L/360 0.43 Total Defl'n 0.29 = L/386 0.47 = L/240 0.62 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fb'- 1850 1.60 1.00 1.00 0.961 1.000 1.00 1.00 1.00 1.00 - 8 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #4 = D+.75(L+S+W), V = 7329, V design = 6491 lbs Bending(+): LC #3 = D+.75(L+S), M = 8104 lbs-ft Bending(-) : LC #8 = .6D+W, M = 7558 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 543e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). /`r / n i COMPANY PROJECT 1 1 WoodWorks° SOFIWARFEOR WOOD DESIGN June 28,2010 13:44 b18 REAR LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Snow Partial UD 450.0 450.0 0.00 1.00 plf 3_c9 Dead Point 985 1.00 lbs 4 c9 Snow Point 1470 1.00 lbs 5 c10 Dead Point 985 7.00 lbs 6 c10 Snow Point 1470 7.00 lbs 7 w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 w64 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9 j25 Dead Full UDL 47.7 plf 10_j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Loadl2 Live Full UDL 40.0 pif W1 Wind Point -6190 1.00 lbs W2 Wind Point 6190 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : :"ori`» ** £ K, vai �.. A d w .xr -- 'h e as g , * F ams'` v `,-r *` -.; , c 'ar-, , .,.,r s _ ,_gym.. A, W . ,..f t,._ :.Vf#tNVt f*'u ,`M;t; . z. ir. k, ' r A 1* 10' 9'-6'1 Dead 1977 2047 Live 2420 5324 Uplift 2709 Total 4397 7371 Bearing: Load Comb #3 #4 Length 2.16 3.63 Glulam-Unbal.,West Species,24F-V4 DF, 3-1/8x10-1/2" Self-weight of 7.55 Of included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 299 Fv' = 424 fv/Fv' = 0.70 Bending(+) fb = 3225 Fb' = 3840 fb/Fb' = 0.84 Live Defl'n 0.24 = L/468 0.32 = L/360 0.77 Total Defl'n 0.40 = L/283 0.47 = L/240 0.85 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = D+.75(L+S+W), V = 7371, V design = 6533 lbs Bending(+): LC #4 = D+.75(L+S+W), M = 15434 lbs-ft Deflection: LC #4 = D+.75(L+S+W) EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). /' /` neN Harper Project: r '�.i Houf Peterson. Client: Job# Righellis Inc. ENNEE S PLJ.N EPS Designer: Date: Pg.# L AN[)Si:AF= aNCi1fCS•SU12.EfOft= De cic_ co-N, t c3 Wdl 10 lb 8•ft•20•ft Wdl= 1600•lb ft2 Seismic Forces Site Class=D Design Catagory=D Wp Wdl Ip' 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof F := 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) a F := 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) v Sms:= Fa-Ss Sml := Fv-S1 Sds 2 Sms Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a = 1.0 := 2.5 (Table 13.5-1, ASCE 7-05) p•' P Fp = .4ap Sds Ip C1 + 2•h -W,., EQU. 13.3-1 RP Fpmax:= 1.6•Sds•Ip•Wp EQU. 13.3-2 Fpmin .3•Sds•lp.Wp EQU. 13.3-3 Fes= if(Fp> Fpmax,Fpmax,if(Fp <Fpmin,Fpmin,Fp)) F =338.51711b Miniumum Vertical Force 0.2•Sds•Wdl=225.6781.1b ela Harper Project: E '= Houf Peterson Client: Job# Righellis Inc, Designer: Date: ENGINE ERa�?tAK:^i E9S Pg.# L AY 65CAP= ARCR:it'C Fti�Sti.4':E!':Rc Wdl:= 10• lb•8•ft-20•ft Wdl= 1600-lb ft2 Seismic Forces Site Class=D Design Catagory=D Wp :=. Wdl 1p:= 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa•Ss Fv'S1 2Sms Sds := Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1,ASCE 7-05) F • 4ap•Sds•Ip( z l P 1 + R2p h— Wp EQU. 13.3-1 Fpmax:= 1.6•Sds-Ip-Wp EQU. 13.3-2 Fpmin:= •3•Sds-Ip•Wp EQU. 13.3-3 4:= if(Fp >Fpmax,Fpmax,if(Fp <Fpmin,Fpmin,Fp)) Fp = 338.5171•lb Miniumum Vertical Force 0.2.Sds-Wdl =225.6781-lb f 0 Harper COMMUNICATION RECORD HP ". Houf Peterson Righellis Inc. To Li FROM Li MEMO TO FILE Li PHONE CALL:El MEETING:Li ,.0,1,— ,,, ,t,,,,,, :,.•.,J,,,,, ,, ,, PHONE NO.: 7J -13 -cl m m. ° 0 Q li -I (1) 11 ec).7 -?) (0))3 ' . 3 Ks-, ,, 4 * , 0 —0 ,-.6'01 r- - tc ' I( rk- --1CA _ ) -- .--- rn .,-- ( II .,, ,.... ft ? \ If Z A ' o '..—.?) I— O '; 4 0-hh — D'o 1,21 -a 117- 1`.17Y -tlic--,0 c.\\Jo\ = ,-- -,/ (...' -). _ :,-,, 64• 0 Pa -1:1Y°i: /,') +1/4 ---c----Q S ----- ( A 012 fi.,., •,-.-7 cp 1-1, CD i; z. i ,,t) „• ...4 r) /..„=,--------i ,K1k,S 1 I ! , . _ a o °: 1 1 f„, • i 1 , — 2 El m - --16, \ O) 0 X :. 0 M 0 tici -= ••,''4.4 !:0‘,)‘ Ll A)r,(14 ao\ Du i DiedS I o {7 1 d \L ....- cdS C) -\ 1 , Z ii Nx a)i 1 .5,e)-v— (-7,7,----17-) -I 5---- - Z kii ')Vdtip 0 • 2 -0 i x 9 S o rn I 2 M 0 0 1 1 - I 0 X r 0 1YW/4 t,tr t )1 --.7.-- (,.1 C44t\e 1)L "qeO) r 0 ri 1 I m --1 in o L-3/4110.aCt )1 /— / al m z - a r [I] E :1031-02:1 d ON sor )', ' , • .1.v a -• .1, A 9 . , 1 JOB NO *kw- h 6 .... liiimimimmi _..mmmmmimmmimmmmmommommi.af. '-) Nit:.41,1), DATE. ....\\ S's .74......._'111:\ (.......-\'1 ..,...0 .4...,, „...... s, ,,. .,..._ ._.... PROJECT: .•. RE: n 0 1111 f,-.'. s 0• . __ O m , zoom- . ,._ tit 0 < _ x . 0 O Z W 0 I T=C ,- 6400 aousi z F_ 11 -) O ...,........._ z- u ._ siirn?coorN ODu 4 To 2 q ar 0 U cc 0 IL Z 0 6w 1 V 0 1 I-0c).v) C ic-)F.',r--7 I- EL ( T---- C B000 shki , 38(0.4_ 1 1 ! 1 , ) 00 VI 0 a) •,—, ,, I, P. 7-1 1 ell 0 , I 7' (., n Harper COMMUNICATION RECORD HP Houf Peterson Righellis Inc. To LI FROM El MEMO TO FILE 0 ENGINEE7', +PLAFT,E., PHONE NO.: PHONE CALL:0 MEETING:fl xi -13 CO m 13 —"I C 70 —1 C2 i.fl (b (Th r---- 1:,... .,.. li rf .3 d ..c. _.c. 8 c!? 0 0, ,,,,) 6 ,.- 3> 0.2 41 c/i 23 t‘ --A, SD ,... oi i'd i • -1- A 4.:- .----.- I , „.. st ) 1 , ! ., 7-1 c_ 0 03 i 1 p :: ' \--- ...„. ... . ..._ --..... (...,.,..) narper Houf Peterson K>IIP Righellis Inc. To El El FROM COMMUNICATION RECORD . MEMO TO FILE 0 1C,INCEill,.pLA.;;;ER,; LA•G'C,EF ,,C,HITaCIS0 SU,V,..710R..' PHONENO.: PHONE CALL:0 MEETING:El M II I:0 2 m 0 ...? 7:1 g -moo, 4‘ 41 -0 . 0 -7) (r. ,1 oi N. ......11. vi .061, N.= "*"7 c-- 0 0 '";:i r9 ) -N, )4 ,... r.." tc":\ ,.... f cei oJ 7 kJ ..t.......____ 0 c (, ....... ,„,. 1„ , 7 -- 0 .1 1---- r-c\ ,„---) ..(s > 0 . X IV' l....; ,-. C 'N i I 1 IN i -.1. ir.....-.4 ,... 0 03 -10 Z P 0 CP, . ‘ CI) COMPANY PROJECT Wood Works® SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS(lbs) and BEARING LENGTHS(in) : lo, a 54 Dead Live 100 Total 104 100 Bearing: 104 Load Comb #2 Length 0.50* #2 Cb 1.00 0.50* *Min.bearing length for beams is 1/2"for exterior supports 1.00 Lumber-soft, Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT ie% WoodWorks SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load I Typ(Livee Distribution Pteat- Lot caait Endon tft] agnitudeEndUnit rnl StrSMagnitude 1plf LIVE (Full VDL I MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 54A. l0' Dead 125 Live 125 125 Total 129 Bearing: #2 Load Comb #2 0.502 Length 0.50* 1.00 Cb 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft,Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis ::iue Design Value Analysis/Design Shear fv = ' = 150f / ' = 0.1Bending(+) f = Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 0.16 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.11 Total Defl'n 0.03 = <L/999 0.25 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. .. r II WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 22,2010 14:24:15 Concept Mode: Reactions at Base of Structure View Floor 2 : 8 ' 1280 L 1280 L 442 D 442 D 15411204 L 1470 L - 1047746 D)992 D -_ _ 11660 L 553 L 599 D 200 D AIAM 1080 L 640 L 409 D 208 D 480L 1667 L 300 LI 1100 L98 D L 409 D 409 D 75L LJ 24 D 10 • 994 113L 3956 L 3978 1 8113 L k 3658 D :633 D3386 D 2 ecarstr\ '*()().& CO 7 V.\:_i 1,-() )()L5 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-REAR LOAD WoodWorks®Sizer 7.1 June 22,2010 14:22:33 Concept Mode : Reactions at Base of Structure View Floor 2 : 8 ' 1280 L 1280 L 442D 442D < ' „y fir '' t26 LII 3189E 1977 D 2047 D; „; c �.✓ 5555 jr. 3 i2068 L 689 L t s 731 D 244 D = 1080 L640 L 409 D 208 D 480 L 1776 L 300 U 4109 1080D409 L98 DD L! 75 L iau. ♦ 24D { u 113E113 L60 L50 L2077 L 113E_38 D113L 23D8D1656D c 6DtDID86D , _ 30 CO C - D 6.",{ kLDL[ ;:D v Ctr!: , a 6-6-E E1 '6 t r -c::j 1`, � z 12 L_ h r14. a-,— ' .. 5__ „ 3.^6._ 6_,.155 .<€_ _ .. .. ._ .� �.. _,_ ---... ., .1566,. ., . Plain Concrete Isolated Square Footing Design: F2 fe:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity "Yconc 150•pcf Concrete density 'Ysoil:= 100-pcf Soil density clan 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 3978-lb Pdl:= Totaldi Total11:= 3994.lb P11:= Totalll Pt1:= Pdl+ Pll Pt!= 7972-lb Footing Dimensions tf:= 10•in Footing thickness Width:= 30•in Footing width A:= Width2 Footing Area gnet gall —tf 7conc lnet= 1375-psf Ptl Areqd gnet Areqd = 5.798-ft2 < A=6.25-ft2 GOOD Widthregd Areqd Widthreqd =2.41-ft < Width =2.50 ft GOOD Ultimate Loads = Pd!+ tf-A'"Yconc Pu:= 1.4•Pdl+ 1.7-P11 Pu= 13.45-kips Pu olu:= A qu=2.15-ksf Beam Shear bcoi 5.5-in (4x4 post) d:= tf—2-in c):= 0.85 b:= Width b =30-in 13.6-kips Vn:_ � 4•3• fc•psi. -d Vn= P b —bcol Vu:= ch,-( .b Vu= 5.49-kips < Vn= 13.6-kips GOOD 2 Two-Way Shear bs:= 5.5-in Short side column width bL:_ 5.5-in Long side column width bo:= 2-(bS + d) + 2•(bL+ d) bo= 54-in �c:= 1.0 (4 + 8 01Tpsi•b-d Vn=40.8-kips 3 3.Oc Vnmax 0' 2.66• fc-psi-b-d Vnmax=27.13-kips V = qu'[ (b2 — bcol cif] Vu= 10.73-kips < Vnmax=27A3-kips GOOD Flexure 2 Mu qu- Cb —bcolJ 11 b Mn=2.8-ft-kips 2 A:= 0.65 b•d23 S=0.185 ft S:= Ft:= 5-44)• fc-psi Ft= 162.5-psi Mu ft:= ft= 105.14-psi< Ft= 162.5-psi GOOD 'Use a 2'-6"x 2'-6"x 10" plain concrete footing /------- \(,,,_. BYAVL DATE4..i\) ..1,) 01..i, ( I 0 JOB No 11 -1- PROJECT: RE: Ve T1\ Wall Cookif\3 7 7 S -des oP Boilcivnojs _J (9 IT_ O 111 O 2 I)L g asct(v2.?sc )--: 300 9.:_c 2 c't,(.2.1eve‘s)(\lsc) ......-- • O • J 0 J 4°'rs' 650 FcCII it i n 1 27)..:__ 333 cc 6 100 IA) PL5: U z Ld 0 1 , CC CL - Z LL 'a', _(-5 c ..-VA2_ te\i.etc;)(4-0 \:...,.,„5, ):: (.110 p‘_F -Ylor 0 E= .. 0 - z 1- \ 00.ri. 7— Y-1-b1 i-- tOOu) ptc- 3 2 Mo\ ( Gtrp z-- \_ Oc.., p C = IsoopLy- • 2 0 ..__ ..i) O -: 1 .0(a- c-- : -,<., is" 7 2 0 x 0 Li_ Z r.DC' 7 6 O I I- DL: pc= T-Vxx- .40iatsopcc- :Om (' '112.) = 33-2, pLp S\r-c in (tiv?.)(1.. i50 .,4;) .--; (I51-3- ?s ) ---- ?)/3pl._. c-- ,C- 1,-L1--'2-u p Lj7- 0 PL9- O• 6 1 TL : " ,..,14 t ir 100 A.) --..._ l'-:--;061t,U A- . -. 4.a.. 127 --L-- Some a.L M in...r.:, -Stox 1 oc), TL: \•-- 'br-.\ k- ‘ol,),..Ki ( i - .- Loc.) ! ,,,,),r,•.,-e t, " °L.. : 4,0,,w(i.5-0?(Ifkz)( 11-1.) - 33-6191-c 5Vfn) LL g' dtour- -1-L : aq +mu) U.) =-- l,b11- ex 2.2,i NJ -'. L.)se .2,4 l '..1 BY. DATEaolo JoBN0.: PROJECT: RE: n C "Fariljt IDOA E It• 0 z i 1 IA x 3L y115 t‘,100i tt..04J, va.580 • w it•-• 4.0o: tC,`A • Li O 2 Lai 111• ^ 0 _1 1,71T07 ; ‘11 cLc I cE o w u z 4:5 —4-015+613-- cc a. Neti-ufnlo 0 AA" r kto.10 4- 1(v 10 I tC) 4,,k2:Oro 1,1:3,1,t) mc&t_ (o.tsolli;)(35 to (1) i"4 a(01<*- ) "‘"'o , 0 = 0 it.$ X C,01. 6f) 4--4,(0D/C.(/) vs---_ — > c, 0 mar z 0 1- a_ db.c1 cineto,oc cr- .0r2A y_ec 3L( --2c- ) 3C3,5Y1?)-2.(34r)-)) 0 – 0. `5Li I Be ny Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:53 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Front Load.etz\ M33=83.44[Kip*ft] M33=-12.21 [Kip`ft] 1 Bentley Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:54 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Front Load 2.etz M33=43.5[Kip`ft] M33=-40.04[Kip°ft] A ....**-...' BY DATE' ..)\.) ,(... VO JOB No Ce td _090 P ROJ ECT: RE: Una- 13, 4, C — Rea r Load Li E w — 54,5. t.q ...1 0 - Z L. F. ICN4 0 111 1 1- LL1 ZOO *21)00 O 2 f d 2 i w 2 1-1 o :i J I CC 6 — 0 w , 0 z 0 Mor ---- SLi .SZ \‘...Ct Me,- DL(01) r--- 1,5(S5-'0 ( 1)1- o :-. x ,4 E , -X '--- NI iQ - ?:''' --2i-1- (8 0 1, z , _ _____________ — wa , ) 7 6 Va A H a_ + c-. -4.-L --- (2)0,$) aotjy- 0 0 6 i - _ ct o 0 Bentleg Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:57 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\talcs\Unit C\FDN\Rear Load 2.etz\ M33=36.82[Kip*ft] M33=-50.22[Kip*ftj A BY DATE --Soti aoiD JOB NO CeirV,C)90 PROJECT: RE: Un.rt C n\-cr or SW 2 (-9 „a u: z 0 2 2 E 0 0 CKecY__ Ovecturniil 0 Mor 51, 0°1 i\f + Du(q) i4 1 ) (41:›L 0 45--MOT < 3L DI- DL:7 3 i pS Arta. = 1.as )‹ Q.5/ 0 E, 0 t 5- Oct 3‘, 1.S = L - 3') 0 6 • „9 7 CD • CL6 c5 C- \ Benttey Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 1:17 PM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Interior.etz\ M33=60.31 [Kip*ft] M33=-63.58E-12[Kip'ft] M33=-18.91 E-10[Kip`ft] M33=-21.22[Kip`ft] { ( Be n y Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 1:17 PM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Interior 2.etz\ M33=55.84[Kip*ft] M33=65.17E-11 jKip*ft] --- M33=21 46E-11 [Kip-ft] M33=-25.6[Kip*ft] 1 ` BY: DATE: JOB NO.: i t 1 0 9 0 IQ-'-- PROJECT: RE: InVericii coo4--m3 c 5 < 4‘-.- ',‹ 0" 1,1 E6 PLA, 1-04. -:-'7. ( 0.-.. k , . -,,- Arkry‘ir‘ = O w O 2 2 Lil El 0 i CI 0 kli LA(CA CL U O W . 0 z Tr (1) # s ' t7.2‘ 0c, 0 17- a-_-_ (ta_i)(c.olo(J3)/0,b000-;(4‘ ,-/s/t-a) -:----‘- 0. LO 0,603i \ '( C. > 1.05 1 o to-1- . ,, i - 0 - o a -_,_-_ Oss-4Yt.04t--0 )io,etrsv,a)c 4.fisx\72) LI- Z L11 ri 6 O 1 0 M rt.-_,- 0 .go(0,s-sc, ( bloo0)( :)--°'-'4) 7-- (..-)-, Ird.k‹,c 3, :.0.\, I-- 0- 2,q -c.t Asy, •r\ (.2,10‘0), -,-.: „ Pro-44.e., \,3 6) --)4- 4- € 1$'' TO p t v-,Airrorrk - = - ,. ..., , )C al Y SI ?( 1 Q. Ok.:_:: ------ -3!„-, .,-.9)ci, •L c 4-,- ( t , t.„12- o,= 0,S-590..o,, 06) /(o,5-)(73.0.0 )(3) f-2:7) _-_-. 0, 0 M r\ ...= OPOCO.S-e.)9-)(C..0,,(.106)(9, I - o'qoP/122') LU. 2), (F4 0 _ co "1 CD ".4 5 • 0 0 • 1, • E;C\ g ) -1,(A. si -779 COse*C.4" 1'7 'jr 4/S.11.„ bo, c)S' 11-3 vV >< 11 10 19 0 r • vie 8 = (AiTia -A- 4' n 0 * c-13''41C)SW\147)Q7)(t1) r›() E rf, I -4 Frn rn • 4j OeOr C))Of? CCil :3CJ V AS._LV ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 3.50 inches hef= 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmax= 5.25 inches the foundation and does not consider stem WE Fnd Width = 36.00 inches cm;n= 2.25 inches cmin= 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor 0.75 strength reduction factor 4)= 0.75 strength reduction fact' Calculations Calculations in` AN= 1296 in` ANo= 110.25 in` ANo= 1296 in` Nb= 8,607 pounds Nb= 55,121 pounds Wed,N— 0.8286 Wed,N= 1.00 Nth= 4,399 pounds Nth= 55,121 pounds +Ntb= 3,299 pounds +Ntb= 41,341 pounds Combined Capacity of Stem Wall and Foundation WNcb= 44,640 0.750tb= 33,480 Concrete Side Face Blow Out Givens Ab�y= 2.15 in` fc= 3000 psi cmin = 18.00 inches 4) = 0.75 strength reduction factor Calculations Nsb= 231,191 pounds 4)Nsb= 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in` fc= 3000 psi 4)= 0.75 strength reduction factor Calculations Np= 51,552 pounds 4)Np= 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.606 in2 4)= 0.80 strength reduction factor Calculations Ns= 35,148 pounds 4)NS= 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 ' pounds 1.6*Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks t 1 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength AC! 318-05 Appendix D Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc.= 3000 psi h'ef= 17.00 inches he= 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width= 36.00 inches cmin= 2.25 inches cmin= 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor 0.75 strength reduction factor 41= 0.75 strength reduction factor Calculations Calculations ANO= 408 in` AN= 1296 int ANO= 2601 in` ANO= 1296 in Nb= 92,139 pounds Nb= 55,121 pounds Wed,N— 0.7265 Wed,N= 1.00 Nth= 10,500 pounds Nth= 55,121 pounds 4NOb= 7,875 pounds 4NOb= 41,341 pounds Combined Capacity of Stem Wall and Foundation �NOb= 49,216 0.75•Kb= 36,912 Concrete Side Face Blow Out Givens Abrg = 2.75 in` fc= 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 261,589 pounds 4)Nsb= 196,192 pounds Concrete Pullout Strength Givens Abrg = 2.75 in` fc= 3000 psi = 0.75 strength reduction factor Calculations Np= 66,000 pounds 4)Np= 49,500 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.763 in2 = 0.80 strength reduction factor Calculations Ns= 44,254 pounds 4)Ns= 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6*Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks • kiANP 4%, Structural for Full Lateral & Gravity Analysis of Plan B 1332 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 96 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper HP Houf Peterson Righellis Inc. V k S 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St. Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC/2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed,ASCE 7-05 Ch.20 Importance, IE: 1 ASCE 7-05 Table 1 1.5-1 Ss: 0.942 USGS Spectral Response Map S l: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength,Cc: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength,fy: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 2x &4x Wood Beams &Posts: DF-L#2 6x&Greater Wood Beams & Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi, FV=328psi, E=2.0 Million TS/LSL Beams: Fb=2325 psi, FV=460psi, E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists, and flush beams•u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works—Sizer version 2002 Bently RAM Advanse Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# ENGIN.=E 'LA♦ E 5 LAN GSCAP€ARC i:'iEC?S�SUR':£Y:.'.i2. DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5•psf Framing RPL:= 1.5•psf Plywood RRF:= 5•psf Roofing RME:= 1.5.psf Mech&Elec RMS:= 1•psf Misc RCG:= 2.5•psf Ceiling RIN:= 1•psf Insulation RDL= 15•psf Floor Dead Load FFR:= 3•psf Framing FPL:= 4•psf Sheathing FME:= 1.5.psf Mech&Elec FMS:= 1.5•psf Misc FIN:= .5.psf Finish&Insulation FCLG:= 2.5•psf Ceiling FDL= 13.psf Wall Dead Load WOOD EX_Wal1wt:= 12•psf INT_Wallwt:= 10•psf Roof Live Load RLL:= 25.psf Floor Live Load FLL:= 40•psf Harper Project: Summer Creek Townhomes UNIT B 1 't- Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# _ NGS.. FZ AR CniTC_TS _..4.+C MORS Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 748.112.1.12 RFWT:= RDL•Roof Area RFWT= 12566-lb Floor Weight Floor Area2nd:= 605-ft2 FLRWT2nd:= FDL-Floor_Area2nd FLRWT2nd= 7865-lb Floor Area3rd 600.112 FLRWT3rd FDL-Floor Area3rd FLRWT3rd=7800-lb Wall Weight EX Wall Area:= (2203)-ft2 INT Wall Area:= (906)-ft2 WALL := EX Wallwt-EX_Wall_Area+ INT WallN,t•INT_Wall_Area WALLWT=35496-lb WTTOTAL=63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) fin:= 32 Mean Height Of Roof Ie:= 1 Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period x Ta:= Ct•(hnr Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 := 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss:= 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5 (1)&(2) Fa:= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F.:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Nr Righellis Inc. Designer: AMC Date: June 2010 Pg.# _'.Gfh EE NS ' NNE FS LAN CS�APc ARC-!ti EC'R �R`.+E,M1RS .........._... SMS:= Fa Ss SMs = 1.058 (EQU 11.4-1,ASCE 7-05) 2•SMS Sds:= Sds=0.705 (EQU 11.4-3,ASCE 7-05) 3 SM1 := Fv•S1 SMI =0.584 (EQU 11.4-2,ASCE 7-05) 2•SMl Sd1 := Shc =0.389 (EQU 11.4-4,ASCE 7-05) 3 Cst:= Sds Ie Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Cs Shc'Ie Csmax =0.223 (EQU 12.8-3,ASCE 7-05) max — TaR ...and shall not be less then... C1 := if 0.044•Sds•le<0.01,0.01,0.044•Sds'Ie) (EQU 12.8-5&6,ASCE 7-05) rr 0.5•S1.11 C2 := ifiS1 <0.6,0.01, R JI Csmia:= if(Ci > C2,C1,C2) Csmm =0.031 Cs:= if(Cst< Csm;n,Csm;,,,if(Cst<Csmax,Cst,Csmax)) Cs=0.108 V:= Cs•WTTOTAL V= 6914 lb (EQU 12.81,ASCE 7-05) E:= V.0.7 E=4840 lb (Allowable Stress) Harper Project: Summer Creek Townhomes UNIT B ' : Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. 2,3“:,INC EP .AFS ; Designer: AMC Date: June 2010 Pg.# ..ANpS ? c ARC i C r5•5,11r CVOct$ Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II IN,:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2-.1.16•ft Zone A&B Horizontal Length Smaller of... a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) N 2 .4•hri 2•ft or a2=25.6 ft but not less than... a2in3.2 ft a2min =6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA 19.9•psf PnetzoneB:= 3.2•psf PnetzoneC:= 14.4•psf PnetzoneD 3.3•psf Vertical PnetzoneE 8.8•psf PnetzoneF —12-psf PnetzoneG —6.4•psf PnetzoneH —9.7•psf Basic Wind Force PA:= PnetzoneA•IW.X PA= 19.9•psf Wall HWC Pg:= PnetzoneB•Iw.X PB=3.2•psf Roof HWC PC:= PnetzoneC.Iw.X Pc= 14.4•psf Wall Typical PD:= PnetzoneD'Iw.X PD =3.3•psf Roof Typical PE := PnetzoneE'Iw.X PE =—8.8•psf PF:= PnetzoneF.Iw'X PF=—12•psf PC,:= PnetzoneG•Iw.X PG =—6.4.psf PH:= PnetzoneH'Iw.X PH=—9.7•psf Harper Project: Summer Creek Townhomes UNIT B • 'a Houf PetersonJob# CEN-090 Client: Pulte Group Righellis inc. • cN INEkRE•P ,1NNcRS Designer: AMC Date: June 2010 Pg.# SANE SvA th.^^.HIfF 4;R t flR5 Determine Wind Sail In Transverse Direction WSAILZoneA:= •ft (55 + 59+ 29) 2 WSAILZoneB (6 + 0 +23)•f12 WSAILZoneC (429+ 355 + 339)•ft2 WSJ-ZoneD:= (0 + 0 + 4)•ft2 WA=_ WSAILZoneA'PA WA=2846 lb WB:= WSAILZoneB'PB WB=93 lb WC:= WSAILZoneC'PC WC= 16171 lb WD:= WSAILZoneD-PD WD= 131b Wind_Force:= WA+ WB+ WC+ WD Wind_Forcemin:= 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force= 19123 lb Wind Forcemin= 12990 lb WSAft•ZoneE 43•ft2 W SAILZoneF 43•ft2 WSAILZoneG 334ft2 WSAILZoneH 327•ft2 WE:= WSAILZoneE'PE WE =—378 lb WF:= WSAILZoneF'PF WF= 516lb WG:= WSAILZoneG'PG WG=—2138 lb WH:= WSAILZoneH'PH WH —3172 lb Upliftnet WF+ WH+ (WE + WG) + RDL•[WSAILZoneF + WSAILZoneH+ (WSAILZoneE+ WSAILZoneG)]'.6.1.12 UpliftneY= 1326 lb (Positive number...no net uplift) I DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: Summer Creek Townhomes UNIT B .*M'1' ,. Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. i.EE R R L;N N E R$ Designer: AMC Date: June 2010 Pg.# nNner,Ar R2:;4!TEC'S�SJRV'E"QRS Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area= 838 ft2 JF Kr,„:= RDL•Roof Area RFW-r.= 12566-lb Floor Weight Floor_Area2nd = 605 ft2 FFA R te:= FDL•Floor Area2nd FLRWT2nd= 7865-lb Floor_Area3rd=600 ft2 FLS R -,p = FDL-Floor Area3rd FLRWT3rd= 7800-lb Wall Weight EX Wall Area:= (2203)-ft2 INT Wall Area=906 ft2 WNL:= EX_Wal1N,t•EX_Wall_Area+ INT WallwrINT_Wall_Area WALLWT=35496•lb WTTOTAL= 63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) fin=32 Mean Height Of Roof Ie = 1 Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct=0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x=0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period ,Lt• := C (hn)x Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 =0.339 Max EQ, 5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.123 Acc-based site coefficient @ .3 s-period (Table 11.4-1,ASCE 7-05) F,= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: Summer Creek Townhomes UNIT B ° .. Houf Peterson Client: Pulte GroupJob# CEN-090 Righellis Inc. ENCiNE=RS:..PLAN,.x ------- Designer: AMC Date: June 2010 Pg.# _4N^.SCAPE .tFv H:'E�TS�S!iRVEY6RS ,SwDQ '= Fa-Ss SMS = 1.058 (EQU 11.4-1,ASCE 7-05) 2-SMS ^N (EQU 11.4-3,ASCE 7-05) S Q dsr 3 Sds=0.705 ( n _ F�S1 SM1 =0.584 (EQU 11.4-2,ASCE 7-05) nAQ,L: 2-SMl 11.44,ASCE705) := Sdl = 0.389 (EQU 3 Cst:= Sds'Ie Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Cs Shc-Ie Csmax =0.223 (EQU 12.8-3,ASCE 7-05) ...and shall not be less then... $:= if(0.044-Sds-Ie <0.01,0.01,0.044•Sdsie) 1 (EQU 12.8-5&6,ASCE 7-05) C 0.5-Sill a:= if Sl <0.6,0.01, R Com:= if(Ci >C2,C1,C2) Csmin =0.031 Cs = if(Cst<Csmin,Csmin,if(Cst< Csmax,Cst,Csmax)) Cs =0.108 V:= Cs-WTTOTAL V=6914 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E=4840 lb (Allowable Stress) ivw i, 1 Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Grou Righellis Inc. p Job# CEN-090 N',INE RS•PtA„EAS Designer: AMC Date: June 2010 Pg.# Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II Iw = 1.0 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2 .1 16 ft Zone A&B Horizontal Length Smaller of.. a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) a2:= .4 hn 2 ft or a2=25.6 ft but not less than... a„ := 3.2•ft a2,ni,= 6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9-psf Pnet2oneB =3.2-psf Pnet2oneC = 14.4•psf PnetzoneD=3.3•psf Vertical PnetzoneE=—8.8•psf PnetzoneF=—12-psf PnetzoneG=—6.4•psf PnetzoneH=—9.7-psf Basic Wind Force Pte:= PnetzoneA.Iw•X PA = 19.9•psf Wall HWC te:= PnetzoneB-Iw•X PB=3.2•psf Roof HWC Pc:= Pnetzonec.Iw.X PC= 14.4-psf Wall Typical Pte:= PnetzoneD.Iw.X PD=3.3-psf Roof Typical PnetzoneE'Iw.X PE =—8.8-psf := PnetzoneF.Iw.X PF=—12-psf ,KCJA PnetZoneG.Iw•X PG=—6.4•psf ,:= PnetzoneH•Iw-X PH=—9.7-psf t , Harper Project: Summer Creek Townhomes UNIT B h .o- Houf PetersonJob# CEN-090 Client: Pulte Group Righellis Inc. Designer: AMC Date: June 2010 Pg.# E A EIX�..T FLANNEIXS i4N65L4? xRGHiFE.;?S•S UR'fEYURS Determine Wind Sail In Longitudinal Direction p,II := (58+ 59+ 21)-ft2 WSN�w.�ILvv,z,QR,AA:= (0 + 0 + 51)•ft2 W '= (98+ 99+ 34)412 W := (0 + 0 + 114).12 rnn�+ Wi— WSAILZoneKPA WA=2746 lb W WSAILZoneB"PB WB= 163 lb W WSAILZonec-PC We=3326 lb W WSAILZoneD'PD WD=376 lb Wind WA+ WB+ WC+ WD Wind Forc = 10•psf.(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force=6612 lb Wind Forcemin= 5340 lb W = 151-ft2 WSAIL := 138.112 WN G,:= 242-ft2 WSN�n := 216-ft2 W WSAILZoneE'PE WE =—1329 lb NW W WSAILZoneF'PF WF=—1656 lb nr� W _ WSAILZoneG'PG WG=—1549 lb W WSAILZoneH'PH WH=—2095 lb U li := WE+ WH+ (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSA1LZone4•6"1.12 Upliftnet=901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN I I CALCULATION Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: 1 Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 lw= 1.00 Wind Sail ftz Wind Net Design Wind Pressure(psf) ( ) Pressure(lbs) Zone A= 19.9 143 2846 Wall High Wind Zone Horizontal Zone B= 3.2 29 93 Roof High Wind Zone Wind Forces Zone C= 14.4 1123 16171 Wall Typ Zone Zone D= 3.3 4 13 Roof Typ Zone Zone E= -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F= -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H= -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force= 19123 lbs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E= 1313 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): Zone A Zone B Zone C Zone D 14. Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm.Shear= 7291 lbs Upper Floor Diaphragm Shear= 6286 lbs Roof Diaphragm Shear= 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm (lbs) Diaphragm (lbs) Diaphragm (lbs) Width ft Width ft Width ft A 15.83 2275 20.50 3143 21.33 2773 1 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 E= 50.75 7291 41 6286 42.67 5546 Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ. 11.4-1,ASCE 7-05 SMS= 0.58 Equ. 11.4-2,ASCE 7-05 SDs= 0.71 Equ. 11.4-3,ASCE 7-05 SD1= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22063 Trib.Floor 3 Diaphragm Wt(Ib)= 21998 Trib. Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic ForcesCumulative%total of base shear Rho Check to Shearwalls(lbs) I to shearwalls Req'd? Vfloor2(lb)= 711 100.0% Yes Vfloor3(Ib)= 1595 85.3% Yes Vroof(Ib)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 126 299 371 148 795 1257 B 282 0 0 331 0 0 C 197 301 377 231 800 1277 Sum 605 600 748 711 1595 2534 Total Base Shear*= 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. i 1 1 Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A,= 1.00 lw= 1.00 Wind Sail (ft) Wind Net Design Wind Pressure(psf) Pressure(lbs) Zone A= 19.9 138 2746 Wall High Wind Zone Horizontal Zone B= 3.2 51 163 Roof High Wind Zone Wind Forces Zone C= 14.4 231 3326 Wall Typ Zone Zone D= 3.3 114 376 Roof Typ Zone Zone E= -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F= -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H= -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force=I 6612 lbs I Use to resist wind uplift: Roof&Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs El 3531 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diahragm(ft2): Zone A Zone B Zone C Zone D 1 E Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear= 2565 lbs Upper Floor Diaphragm Shear= 2600 lbs Roof Diaphragm Shear= 1447 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Wall Line Diaphragm DiaphragmbLine Shear Tributary Line Shear Width ft (lbs) Width ft (lbs) Diaphragm (lbs) Width ft 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 i . A Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1= 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 1.06 Equ.11.4-1,ASCE 7-05 SM0.58 Equ. 11.4-2,ASCE 7-05 SMS1_ 0.71 Equ. 11.4-3,ASCE 7-05 SDS= SDI= 0.39 Equ.11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 C = E .1122..88--53,&A6, 7-05 Csmaxsmin = 0.221 EququSCE 7-E057 Base Shear coefficient,v= 0.01 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(Ib)= 35496 Trib. Floor 2 Diaphragm Wt(Ib)= 22063 Trib.Floor 3 Diaphragm Wt(Ib)= 21998 Trib.Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces I Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Unoor z(lb)= 711 100.0% Yes Vrioor 3(Ib)= 1595 85.3% Yes Vroof(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof I Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 I 388 877 1315 Sum 605 600 748 711 1595 2534 • Total Base Shear*= I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. /. , 1. 1 LTi Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (pif) (ft-k) (ft-k) (k) 101 8 5.25 5.25 1.52 ox 8.00 2.28 18.00 3.14 27.00 2.77 1560 Double 1.40 VIII 102 8 3.88 3.88 2.06 OK 8.00 2.80 8.00 0.00 , 723 Single 1.40 IV 103 8 4.58 8.58 1.75 ox 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 104 8 4.00 8.58 2.00 OK 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 107 8 4.58 13.08 1.75 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III 108 8 8.50 13.08 0.94 OK 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III 109 8 3.88 3.88 2.06 OK 8.00 2.80 723 Single 1.40 IV 110 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 111 8 2.00 4.50 4.00 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 112 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 201 9 6.79 9.79 1.33 ox 9.00 3.14 18.00 2.77 604 Single 1.40 III 202 9 3.00 9.79 3.00 OK 9.00 3.14 18.00 2.77 604 Single 1.40 III 203 9 5.00 5.00 1.80 ox 9.00 3.14 18.00 2.77 1183 Double 1.40 VII 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 ox 8.00 2.77 275 Single 1.40 I 302 8 3.21 10.08 2.49 ox 8.00 2.77 275 Single 1.40 I 303 8 5.00 10.00 1.60 ox 8.00 2.77 277 Single 1.40 I 304 8 2.50 10.00 3.20 ox 8.00 2.77 277 Single 1.40 I 305 8 2.50 10.00 3.20 ox 8.00 2.77 277 Single 1.40 I Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Flouf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo Ma Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (plf) (ft-k) (ft-k) (k) 101 8 5.25 5.25 1.52 OK 8.00 0.15 18.00 0.80 27.00 1.26 419 545 030 1.31 Single 1.00 IV 102 8 3.88 3.88 2.06 OK 8.00 0.33 8.00 0.00 0.00 85 111 0.22 0.97 Single 0.97 I 103 8 4.58 8.58 1.75 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.26 1.15 Single 1.00 II 104 8 4.00 8.58 2.00 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.23 1.00 Single 1.00 II 107 8 4.58 13.08 1.75 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 219 0.26 1.15 Single 1.00 I 108 8 8.50 13.08 0.94 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 219 NA 2.13 Single 1.00 I 109 8 3.88 3.88 2.06 OK 8.00 0.33 0.00 85 111 0.22 0.97 Single 0.97 I 110 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 0.31 Double 0.31 NG 111 8 2.00 4.50 4.00 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.11 0.50 Double 0.50 NG 112 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 031 Double 0.31 NG 201 9 6.79 9.79 133 OK 9.00 0.28 18.00 1.26 157 205 0.46 1.51 Single 1.00 1 202 9 3.00 9.79 3.00 OK 9.00 0.28 18.00 1.26 157 205 0.20 0.67 Single 0.67 II 203 9 5.00 5.00 1.80 OK 9.00 0.55 18.00 1.28 366 476 0.34 1.11 Single 1.00 IV 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 OK 8.00 1.26 125 162 0.34 1.72 Single 1.00 I 302 8 3.21 10.08 2.49 OK 8.00 1.26 125 162 0.16 0.80 Single 0.80 I 303 8 5.00 10.00 1.60 OK 8.00 1.28 128 166 0.25 1.25 Single 1.00 I 304 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 II 305 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 II Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= 17.71 Total#1st Floor Bays= 4.43 Are 2 bays minimum present along each wall line? No 1st Floor Rho= 1.3 Total 2nd Floor Wall Length= 14.79 Total 4 2nd Floor Bays= 3 Are 2 bays minimum present along each wall line? No 2nd Floor Rho= 1.3 Total 3rd Floor Wall Length= sees Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.3 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) 4 Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Q Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall HIL Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (k1f) (pip (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 106 8 12.75 12.75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 207 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 208 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 306 8 10.00 10.00 0.80 OK 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 307 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#. Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (plf) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 OK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 I 55.17 96.89 -0.24 I207 9 11.50 11.50 0.78 OK 9.00 0.72 18.00 1.22 0.81 169 169 NA 2.56 Single 1.00 I 28.42 53.69 -0.34 208 9 11.50 11.50 0.78 OK 9.00 0.88 18.00 1.32 0.81 191 191 NA 2.56 Single 1.00 I 31.56 53.69 -0.06 I306 8 10.00 10.00 0.80 OK 8.00 1.22 0.35 122 122 NA 2.50 Single 1.00 I 9.76 17.40 -0.07 307 8 10.00 10.00 0.80 OK 8.00 1.22 0.35 122 122 NA 2.50 Single 1.00 I 9.76 17.40 -0.07 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 25.50 Total#1st Floor Bays= e.38 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= 1.0 Total 2nd Floor Wall Length= 2.3.00 Total#2nd Floor Bays= 5 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= 1.0 Total 3rd Floor Wall Length= 20.00 Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.o Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L Y.Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resistingyoment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) V 1 I Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls 101 1560 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 1667 102 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 103 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 104 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 107 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 108 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 109 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 110 Simpson Strongwall I 1 1 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 202 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 203 1183 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 305 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY1 Longitudinal Shearwalls i 5 # e a� t" aw G� d Or i i� i .sOn ■O 'ow:44-:',,,,TIM:',-,,-?';-,. .i-A--,f,-; t 0 d T�ryy 105 259 1/2"APA Rated Plyw'd w/8d Nails ' 6/12 339 44 Sim•son None 0 106 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 I207I 11/2" 176 APA Rated Plyw'd w/8d Nails @ 6/12 339 Simpson None 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 I 242 „-.. Simpson None 0 0 191 Yom' 208 3061 11/2" 122 122 APA Rated Plyw'd w/8d Nails @ 6/12 307 I 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 I 242 Simpson None l 0 242 ; Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. en 1 Transverse Wind Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift 1 Fir. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left floors @ Left @ t House Side of Above Above above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k 101 8 1.1667 5.25 5.25 2.28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 14.54 102 8 1.1667 3.88 3.88 2.8 2.8 722 0.092 2.432 22.40 10.13 0.69 4.83 6.50 4.83 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078 0.078 38.40 1,41 1.41 9.20 9.20 203 R -12.12 -2.91 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 0.117 1.632 33.54 2.34 8.40 9.18 8.14 9.18 107 8 1.1667 4.58 13.08 2.28 3.14 2.77 8.19 626 0.1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201L 201R 6.71 6.71 12.65 108 8 1.1667 8.5 13.08 2.28 3.14 2.77 8.19 626 0.1 0.078 0.384 47.06 4.28 6.88 5.56 5.37 202L 202R 6.77 7.24 12.33 110 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0.18 23.00 23.30 203L 12.13 35.13 111 8 1.1667 2 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.078 0.208 28.91 0.36 0.62 18.87 18.76 203R -12.12 6.75 112 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.208 1.424 18.07 0.34 1.86 23.17 21.99 23.17 201 9 1.1667 6.79, 9.79 3.14 2.77 5.91 604 0.172 0.848, 0.156 39.13 9.72 5.02 4.90 5.32 301L 301R 1.45 1.40 6.35 202 9 1.1667 3 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 17.29 3.32 1.24 5.10 5.51 3021 302r 1.67 1.72 6.77 203 9 1.1667 5 5 3.14 2.77 5.91 1182 0.172 0.848 0.385 56.42 6.39 4.08 10.52 10.80 303L 303R 1.61 1.32 12.13 301 8 6.88 10.09 2.77 2.77 275 0.252 0.384 0.468 15.11 8.61 9.18 1.45 1.40 1.45 302 8 3.21 10.09 2.77 2.77 275 0.252 0.468 0.384 7.05 2.80 2.53 1.67 1.72 1.67 303 8 5 10 2.77 2.77 277 0.252 0.384 0.858 11.08 5.07 7.44 1.61 1.32 1.61 304 8 2.5 10 2.77 2.77 277 0.112 0.192 5.54 0.83 0.35 2.02 2.13 2.02 305 8 2.5 10 2.77 2.77 277 0.112 0.384 5.54 0.35 1.31 2.13 1.90 2.13 Spreadsheet Column Definitions&Formulas L=Shear Panel Length C H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Transverse Seismic Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total T Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point Hing Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift U Flr. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left floors @ Left @ t House Side of Above Above R above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k 101 8 1.1667 5.25 5.25 0.148 0.795 1.257 2.2 419 0.1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 3.15 102 8 1.1667 3.88 3.88 0.331 0.331 85 0,092 2.432 0 2.65 10.13 0.69 -1.91 0.60 -1.91 103 8 1.1667 4.58 8.58 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R -2.99 -0.56 104 8 1.1667 4.00 8.58 0.231 0.8 1.277 2.308 269 0.234 0.117 1.632 9.74 2.34 8.40 2.18 0.62 2.18 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192 0.078 7.00 1.93 1.41 1.29 1.41 201L 201 (part) 1.17 0.34 2.46 108 8 1.1667 8.50 13.08 0.148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 6.88 1.14 0.85 202L 202R 0.33 1.35 1.47 110 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 9.87 111 8 1.1667 2.00 4.50 0.231 0.8 1.277 2.308 513 0.1 0.078 0.208 9.28 0.36 0.62 5.89 5.74 203R,304L -2.99 2.91 112 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.208 1.424 5.80 0.34 1.86 7.13 5.36 7.13 201 9 1.1667 6.79 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 13.83 9.72 5.02 0.75 1.37 301L 301R -0.13 -0.20 0.62 202 9 1.1667 3.00 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 6.11 3.32 1.24 1.04 1.66 3021 302r 0.11 -0.32 1.15 203 9 1.1667 5.00 5.00 0.8 1.297 2.077 415 0.172 0.848 0.385 20.18 6.39 4.08 2.89 3.30 303L 303R 0.11 -0.32 3.00 301 8 6.88 10.09 1.257 1.257 125 0.252 0.384 0.468 6.86 8.61 9.18 -0.13 -0.20 -0.13 302 8 3.21 10.09 1.257 1.257 125 0.252 0.468 0.384 3.20 2.80 2.53 0.21 0.29 0.21 303 8 5.00 10.00 1.277 1.277 128 0.252 0.384 0.858 5.11 5.07 7.44 0.11 -0.32 0.11 304 8 2.50 10.00 1.277 1.277 128 0.112 0.192 0 2.55 0.83 0.35 0.72 0.90 0.72 305 8 2.50 10.00 1.277 1.277 128 0.112 0 0.384 2.55 0.35 1.31 0.90 0.55 0.90 Spreadsheet Column Definitions&Formulas p L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line (� V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 101 Wind 14.54 Holdown HD12 w DF 15.51 Wind 14.93 HD12 w DF 15.51 102 Wind 4.83 Holdown HDQS w 3HF 6.65 Wind 6.50 HDQ8 w 3HF 6.65 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF 9.23 104 Wind 9.18 Holdown HDQ8 w DF 9.23 Wind 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HD12 w DF 15.51 Wind 12.72 HD12 w DF 15.51 108 Wind 12.33 Holdown HDU14 14.93 Wind 12.60 HDU14 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23.30 None 0.00 111 Wind 6.75 Holdown None 0.00 Wind 18.76 None 0.00 112 Wind 23.17 Holdown None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.71 MST60x2 8.11 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 203 Wind 12.13 Strap CMSTI2x2 18.43 Wind 12.12 CMST12x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 302 Wind 1.67 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind 2.13 MST48 2.88 305 Wind 2.13 Strap MST48 2.88 Wind 1.90 MST48 2.88 ( C C Qjd2,Ct- i.C9,1 1,e . ,0 ` 1 S _`<ci`0 4101 -Lk\ 1' j,ld yoa�`S MMan \+'Orn n-�s!a :73 ,7)7C l ;Siu5 0 -k,X I S MSS = 111 - 0 m 14, 0 \ ? x,151 a_ 44.CD-4...-k:\ > - -x.:15'1 C)k\ - c) 0 nil -44.7. 11 Abt c.14 Att 'hI'S _L•p 6414\ x SI t SC) 1.„k1 '1'0 -# fic3h(3\ 1 '0 44-4 ,..- S tK1-+Zc‘rss k1\ cg .0 vi=b1 S Sc.'o 09 Q1. xs\+ASS Oki 41. p i`xQ yo v5 ?'\ck- ')\\kl 361,1 1'1 d N\ Ss ,.)k5-'" �` S 3`1S \-� S k_Zl`S = 101 _ 0 1i cd ,- -h t'°0 cZX01-,01) Z1„) o z -n -IS '\ S4 -A Stcb' 'L' = cziot c ?o'Q)(.G1'b1) - --kQ ,vl, ;t.:'f ® c- tali vt.tQ'o)( Zi11)4 °r ! r. 't' :: 'Q,,`- ,2)4 ?-10) ..S• : 111 \\bm n 0 3 --)t S..1.a'.`S a 040t 3 T1 S4+1, b 'o = c-t c1,o`O)Y- „) -Q Sc , die- ^ cz)\-Et zx510-0)c7i,k) 4 ( f•L ZtG"Gkg1)JC z •1I11ksto•oXele) 4�ZIotX.s\oro)�S,b,) + I,„s;o)cztoo�( t) +k,11S'o)c ,o°o)cs'6x) o m ` \\l -t-t t cA m 0 c q fiat -1S 112:\ = y+a<szo-oks'b1))Y C(szn-o}cs,St)X,Sz•,) r -tu '811-* 0-k'1 csiq '`a`o t<t44. <sto'o)(S'b\)) =(1,7t-%O.0 Z) LS%0'a s t)(52.x) 7 3 011 -S- M .7°61 \Q m 21 1 7 O C yn,� -gq t Z Q r'S-.c 4 ii.%L N 0 :.I2;77ITJ I " \-%S j() (` 01-1-r`r I11-S1(.S. 38 173 10S 0 `j 0\ 4' c-1\CL '.31tld / ).\N AS i o -,,, hti , VI k0 Okk I 7 ... _______© . _ .1, -acliLro i _uut :, _ (0, . 1t €i. il s; ,i .r. x7 I- i: .. k f' E; C . f got --,al D D 1 fti 4 ....Q 0 O 66) 102 T 1 ,o, C I - � -.0., 1 Sae sae 1-,Of ® ' „.() \ --ItiONNMENP - C) W1 1 lilt iiiii1 I I a f .; g' 1 eoe 102 C) Bo 1 a)i. E 0 3. M O rte- ,_ __ iin ii I _ II lII _ 1 ,.\'' I► I_ ii i i _ i-.H ck-4 M C.) , , 303 C) 301 , : i ,,,2 B I.:L."1- • 12 . Jo8 NO. ‘1.\ BY .;,, , DATE. 9 ..... \..-1 \ l... ( E .i' -.0C1•O PROJECT: • 9,00T: a-*-1-5'V , RE. Des 4 1.--,v.v.\ 1,01,,a4-,..,-4.i,r,,...,- ce, 5-1--,.0,..,:i ....4. ,..) -74----- `23 6 OPT 1 0 N) 1- ti: 1E 1111P,a11.1.111 hirMIIICIA . 0 1.33 1 . . ‘ — 1101 ., 0 2 TRtz wIDTH ON) -01,-- -,--V PLA,rk-:.; IQ-S' u., — ( 1/",.J 7 -7- ql-- 1 72. /Millia.... ----, J - < k_.)'.: )--..) PCCSSJC e, cc 11 Z cs.:F 9' — 3-1 •'' , , 1-- -7-,:)??,...Ali.---:',- 5'-Ili' D 2 0 0 "f'7---‘-----------r-------- -----T COV . 'g-i:•:" `4 Cir21 .°.. a-0'' 2 . 0 • Cc 0 -- z 0 = — --....-,, = :-_-- - , / i : i -----, A 1 :k',--,:, j- G".a--'..-4, ,:),-:._.: - ,0 I 4-• 's... C. -;• -.0 IT- Ahh.. . --, .!,) Z---- -. ...." I .0 1 n CO1 — --X° G C.6.- ‘0 ici __„,, i • cc "J.AA Rzl`l--.( e--,,, ---,.( (---)'-4C---.,`,1 n'-, r ci 0'‘y -I'll -2 s a 0 ,s. ,-) = i, --, ,',--) 'J,,--- h-.. — - '/' `Js. ' 1," \- , ,- '- ,/ = ----- — _ „ A — t k ,...„„ = , _ I , 4 '•--\ 4, S.7 \ 1,-0.- ' .• ..r. . ..:-...L.,..A.:, .!j,,,: ---t - '---,--- - 1 ft.i, -C".::r-r; t**--4,-,:,- 4 r„--c',:7-, = 7 --„3 - --- ,.„,,,.., ' -.. .... -: p -4 ,,,-, -. :-:• 0 ' CD r--,' ,:-. -i, c; r-:, = 1:1 0 ,:, — IN•4 . , g• 7 V.' t ! ,....,, . 1 r- 7-7---- r, ,. ..,------ ,- i I 1 ,- ------__ ' ---.- PE-=--- --- . .NI ca,•1CA = 1 ,":-.--- ,---_1.- -\--- =1 ''''' ---'-7, - .1 f ---- , -.: i , / ,„•,_.. t'-' c-‘,4ci- — !'-.S-L-1-',( hn = ' 'I 0 ---: rn . - i - i , ,, ,&-.1 cs o•-,1 ....r.„ . 0 a- i ----- - ------.1 - ' - -t-,- -,; ---= ---,--- -- - --r-( — ......:. 4::', .-rk- Qi - "_, \)aNA\e 7: , — 3 °L5 eiA 1 1 Z E crl 1 ./1 .At A 11 0 , •0,,,,e ,-,,.,,,,. __ — -3,,,)--r--'7"--:!:;;.),t ,-,.-•,_-,,,‘: ,....0:-/ . m (-) n, 0 - IN lc 7; -kir) _./, -i-; r-fi '-- m 3 0 m -I m 0 --,=-1r--- -;,--,.A (7214-7- I./ - - -7 :1D3 rOel d n---, 0 b,..). N :,, ) •ON or r-a‘ -Z.\ ---t-7., 31v0 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:52:50 COMPANY I PROJECT RESULTS by GROUP -NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Trusses Not designed by request (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 208 By Others Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 Typ Wall 2x4 Lumber Stud Hem-Fir Stud 2x4 916.0 _ SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jst Not designed by request landing Lumber-soft D.Fir-L No.2 206 @16.0 4x6 Lumber-soft D.Fir-L No.2 4x6 (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 208 1.75014 LSL LSL 1.55E 2325Fb 1.75014 By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2010 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 Typ Wall 204 Lumber Stud Hem-Fir Stud 2x4 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses Not designed by request deck joists Lumber-soft D.Fir-L No.2 2x8 @16.0 Mnf Jst Not designed by request 3.125x14 LSL LSL 1.55E 2325Fb 3.5x14 4x8 Lumber-soft D.Fir-L No.2 4x8 3.125x10.5 Glulam-Unbalan. West Species 24F-V4 OF 3.125x10.5 5.125016.5 GL Glulam-Balanced West Species 20F-V7 DF 5.125x16.5 (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 4012 Lumber-soft D.Fir-L No.2 4012 3.1200141) LSL 1.55E 2325Fb 3.5x14 (2) 206 Lumber n-ply Hem-Fir No.2 3- 206 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 206 6x6 Timber-soft' Hem-Fir No.2 6x6 (2) 204 Lumber n-ply Hem-Fir No.2 3- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR -=== Fnd-= Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis/Design Values deck joists j42 Bending 0.41 Mnf Jst Mnf Jst Not designed by request landing j46 Bending 0.17 By Others 3 By Others Not designed by request 406 b25 Bending 0.87 (2) 2x8 b7 Bending 0.21 1.75x14 LSL 614 Bending 0.57 3.125x14 LSL b21 Shear 0.41 4x8 b20 Bending 0.04 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125x10.5 b24 Deflection 0.83 5.125x16.5 GL b26 Bending 0.21 (2) 2010 b15 Bending 0.93 4x12 b22 Shear 0.16 3.125x141) b23 Deflection 0.09 Ftg Ftg Not designed by request (2) 2x6 c2 Axial 0.34 (3) 2x6 c64 Axial 0.59 6x6 c36 Axial 0.77 (2) 2x4 c25 Axial 0.35 (3) 204 c44 Axial 0.84 Typ Wall w15 Axial 0.28 Fnd Fnd Not designed by request Typ Wall 2x4 040 Axial 0.33 DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. S. GLULAM: hod= actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. B. BUILT-UP BEAMS: it is assumed that each ply is a single continuous member (that is, no buttjoints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. ar-', 1 a WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 28,2010 10:56:39 Conceptb24ode : Beam View Floor 2 : 8 ' ■ 4r-v-6 41-0 ,, b25 0 s~ ywF 4. 0 t)- '-0 b21 z b6 :b26 b20t=b22 b23 r)E D r r 1ti 1 t2) t c cEE cE-HE:EEEEZ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:32 Concept b24bde: Beam View Floor 2 : 8 ' ■ b1 _ 11177 ® 22747, i x v is b21 b26 `. b20 b22 b23 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:34 Co�c6Oept Mode : Ccc59imn View Floor 2 : 8 ' ❑ E f n u c57 c1 c2 c46 c58 ri- ®v ®. y . r �i J V c48t c55 ' c63 c50 c54 c68 c53 c52 c7 c56 c40 c64 c36 - . c39 rd9Y, 1 v.. �f -v.. .:.. -,C. C' �,.,'3.'',3.0 ' )a. 3 l 7,1_a t= 3311. :v F "-z r'.i U _ C C r r r ._ �; t is ,/) 1 >. WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:29 Concept Mode : Beam View Floor 3 : 17 ' b7 v u b12e.. u b24 b8 b13 b11 , b10 b9 ...- w.,' e '_ 'tom a ' L _r _ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:27 Concept Mode: Column View Floor 3 : 17 ' U., s,' c14 c15 s. s c38 ., C c25c16 .: X c61 c17 c43 c23 ' c67 >-: c22 c24 1 c26 � v c45 c44 - .a man , cc21 c20^,-19 i8 u C r7 r _.� :,-. 1, -. `� r Cr C 3 r-Ta� ,� ..._. r '' - r .. ._ �� t� n _ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:23 Concept Mode : Beam View Roof: 25 ' ` y iw = b15 , -0 b16 b27 , `- os b18 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load Woodworks®Sizer 7.1 June 28,2010 10:04:25 Concept Mode: Column View Roof: 25 ' L-2.1 .k. c27 c28 K_ =as= Istam-ismonsalegi—minsi r, c29 c30 c66 , c65 c34 c35 ac COMPANY PROJECT 01°144 WoodWorks SOFrWARE FOR WOOD DESIGN • June 28,2010 10:34 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2 w27 Rf.Live Partial UD 493.7 493.7 0.00 2.50 plf 3_c14 Dead Point 1074 2.50 lbs 4 c14 Rf.Live Point 1601 2.50 lbs 5 j43 Dead Full UDL 47.7 plf 6 j43 Live Full UDL 160.0 plf MAXIMUM R: r.:na .-.. WrZW z�� p , s�� A NET A I 0 31 Dead 1048 1539 Live 1227 2089 Total 2275 3627 Bearing: Load Comb #2 #2 Length 1.21 1.93 Lumber n-ply, D.Fir-L, No.2, 2x10",2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 127 Fv' = 207 fv*/Fv' = 0.62 Bending(+) fb = 581 Fb' = 1138 fb/Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.09 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 3627, V design* = 2356 lbs Bending(+): LC #2 = D+L, M = 2073 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT ill WoodWorks® SOFTWARE FOR WOOD OESK.'( June 28,2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 • LOADS (lbs,psf,or pif) • Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 plf MAXIMUM REACTIONS lbs and BEARING LENGTHS in " te. .' ., �s�`.�. ' * y �` . tic ��,L -i Z. ; s' # d',p�;"td v V-'i,'t-.i W 3 ,;0, A61 10 54 Dead 54 120 Live 120 174 Total 174 Bearing: #2 Load Comb #2 0.502 Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2,2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 180 fv/Fv' = 0.05 Bending(+) fb = 120 Fb' = 1080 fb/Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - 1.00 1.002 Emin' 0.58 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 174, V design = 139 lbs Bending(+) : LC #2 = D+L, M = 262 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 57 / f rw COMPANYPROJECT I I WoodWorkso ° SOFTWARE FOR WOOD DESIGN June 28,2010 10:33 b8 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c30 Dead Point 59 3.50 lbs 2_c30 Snow Point 75 3.50 lbs 3_w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4_j13 Dead Partial UD 78.0 78.0 000 .50 plf 5j13 Live Partial UD 240.0 240.0 0..00 5.50 plf 6_j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7 j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8b12 Dead Point 171 5.50 lbs 9 bl2 Live Point 469 5.50 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : '� ` mak. . ��kms,4,4;w.,,,, ,°::,!-:-.47,-:7, ''' � ,a_ G ami -' &, ,u .---,:,,,,,g. ' ,1,"` _ „"zi'Y.b^'t =h v,..�a9� . W" ..ax vi' +v.b s �. -. '`}� I0' 61 Dead 531 Live 761 556 Total 1292 1189 Bearing: 1744 Load Comb #2 #2 Length 0.69 0.93 • Lumber n-ply, D.Fir-L, No.2, 2x10",2-Plys Self-weight of 6.59 plf included in loads; Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 67 Fv' = 180 fv*/Fv' = 0.37 Bending(+) fb = 556 Fb' = 990 fb/Fb' = 0.56 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.16 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 1.00 1.00 1.00 1.00 - - E' 1.6 million 1.00 1.00 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - 1.00 1.00 2 Shear : LC #2 = D+L, V = 1744, V design* = 1232 lbs Bending(+): LC #2 = D+L, M = 1984 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow (4=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT 'I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l w51 Dead Partial UD 96.0 96.0 2.0000 3.00 lbslfs 2_c32 Dead Point 59 2.00 lbs 3 c32 Rf.Live Point 75plf Load4 Dead Full UDL 13.0 plf Load5 Live Full UDL 40.0 MAXIMUM REP r''' n1...� ..a QCAnu.lr I CkIf I UO /;••A • �g4 N a 17t y-.' of , 92x f'1".ff y } * 4 3i 10' 146 Dead 63 110 Live 85 256 Total 148 Bearing: #2 Load Comb #2 0.50* Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 12 Fv' = 207 fv/Fv' 0.06 Bending(+) fb = 82 Fb' = 1242 fb/Fb' = 0.07 0.01 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt 00 1C00 1C00 L2# Fv' 180 1.15 1.00 1.00 - - - 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 1.00 1.00 - Fcp' 625 - 1.00 1.00 - - -_ _ 1.00 1.00 - 2 E' 1.6 million 1.00 1.00 _ 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - Shear : LC #2 = D+L, V = 256, V design = 169 lbs Bending(+) : LC #2 = D+L, M = 179 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT i WoodWorksI® SOFTWARE FOR WOOD DESIGN June 28,2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c33 Dead Point 59 1.00 lbs 2_c33 Snow Point 75 1.00 lbs 3_w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Load5 Live Full UDL 40.0 plf MAXIMUM RE - - - - - - • ag4tXupotivAstt -'1:-ZWY-. 7,. ft44„; 1m* • Al 10' 31 Dead 146 63 Live 82 64 Total 229 127 Bearing: Load Comb #3 #3 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 207 fv/Fv' = 0.05 Bending(+) fb = 72 Fb' = 1242 fb/Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S) , V = 229, V design = 148 lbs Bending(+) : LC #3 = D+.75(L+S) , M = 157 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S-snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT ill WoodWorks® SOFIWAREFOR WOOD oESIGX June 28,2010 10:36 b14 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start -End 1_333 Dead Partial UD 78.0 78.0 0.00 1.50 plf 2_j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3_j13 Dead Partial UD 78.0 78.0 3.00 8.50 pit 4_j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5 j34 Dead Partial UD 78.0 78.0 1.50 3.00 pit 6 j34 Live Partial UD 240.0 240.0 1.50 3.00 pit 7 j46 Dead Partial UD 28.9 28.9 5.00 8.50 pit 8-346 Live Partial UD 80.0 80.0 5.00 8.50 Pbs 9_b25 Dead Point 409 5.00 10 b25 Live Point 1080 5.00 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS(In) .� :- - .s. `_,-- .1- 7, ' -'"'� ^,- . r,4 ii. ;«. �.^-iv �"" 8'-6'{ 10' 685 Dead 553 1878 Live 1522 2563 Total 2076 Bearing: #2 Load Comb #2 1.83 Length 1.48 LSL, 1.55E, 2325Fb, 1-3/4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 126 Fv' = 310 fv/Fv' = 0.41 Bending(+) fb = 1324 Fb' = 2325 fb/Fb' = 0.57 Live Defl'n 0.09 = <L/999 0.28 = L/360 0.31 Total Defl'n 0.14 = L/750 0.42 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cf.rt Ci Cn LC# Fv' 310 1.00 - 1.00 - - 1.00 1_00 2 1.00 - 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - Fcp' 800 - - 1.00 - - _ - - 2 E' 1.5 million - 1.00 - - 1.00 - Emin' 0.80 million - 1.00 1.00 2 Shear : LC #2 = D+L, V = 2563, V design = 2064 lbs Bending(+) : LC #2 = D+L, M = 6308 lbs ft Deflection: LC #2 = D+L EI= 620e06 lb int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT i WoodWorks° SOFTWARE FOR WOOD DESIGN June 28,2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j5 Dead Full UDL 335.7 plf 2 j5 Rf.Live Full UDL 493.7 plf MAXIMUM REACTIONS lbs and BEARING LENGTHS in : t4-, 1, a: .sem.; %F-i7: .v,:-.4----,;,:13141.-,;.4 "Z4g,r-y4*tv:z.i?,.44-;.;.:y:, ,,:,,,,.:1,A44',-,-9:,. .i.,;:.L*.:,!..4±-74,41.tri). T-ViVii:',, tf,,,zy4g.,,..474,0-mtif--4A,,,4vt.:,", vxl.rt:_4ra?„,y,:z,,ay;;,m:::: :,7,,,,,,,f,,t;t:t.x..1-rie_,,,„e,iaf,, ;..z„,r;.w,4::,,,Ii„ci„,,.;„,;4v,,,.,;z„,,„4,„:„mti,v,if:,,iyr.f,r,;; r,,„t .,,,,,:z,c,.esvicm„-..mwi...5vzwf, -r-.7rF7,*--z-giltoritta_-o:2e-.Lo:,:t*riowln.vri.v,:*t-, v""e "6:41074roaer:v .a d, r --t4-4-.J41.7%.-z�, .1 `max �5'v • 10' 61 Dead 1027 1027 Live 1481 1481 Total 2508 2508 Bearing: Load Comb #2 #2 Length 1.34 1.34 Lumber n-ply, D.Fir-L, No.2, 2x10", 2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 101 Fv' = 207 fv/Fv' = 0.49 Bending(+) fb = 1055 Fb' = 1138 fb/Fb' = 0.93 Live Defl'n 0.05 = <L/999 0.20 = L/360 0.23 Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fop' 625 - 1.00 1.00 - - - - 1.00 1.00 ' - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 2508, V design = 1864 lbs Bending(+) : LC #2 = D+L, M = 3762 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 7 , .-...+ COMPANY PROJECT i WoodWorks® SOFFWARE FOR WOOD DESIGN June 28,2010 10:46 b20 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j47 Dead Partial UD 42.5 42.5 0.00 2.50 plf 2-j47 Live Partial UD 62.5 62.5 0.00 2.50 plf MAXIMUM REP1TI^wie Ilt"."% a MCAoIAM(` I CAlfsTUO /;•••% • 4 z u „s x "� 4,0,',,e;,;';' z.' � ¥"',-;51-: "� mak r `x' „" it,:, _ ., : .--rte' a€ �,.F ... � ,`c ;� '., a,"7,,1 -1‘7.7.,,i44,,..... 1,444, ,, I 31 10' 53 Dead 71 65 Live 91 118 Total 162 Bearing: #2 Load Comb #2 0.50* Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 6 Fv' = 180 fv/Fv' = 0.03 Bending(+) fb = 46 Fb' = 1170 fb/Fb' = 0.04 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E '1.6 million 1.00 1.00 - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 162, V design = 99 lbs Bending(+) : LC #2 = D+L, M = 118 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 111114 WoodWorks SOEIWAREFOR WOOD DESIGN June 28,2010 10:34 b21 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft( Pat- Start End Start End tern 1 w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2-w63 Live Partial UD 320.0 320.0 6.00 10.00 No 3 w62 Dead Partial UD 308.0 308.0 2.00 6.00 No 4 w62 Live Partial UD 320.0 320.0 2.00 6.00 No 5-w32 Dead Partial UD 369.0 369.0 0.00 2.00 No 6-w32 Snow Partial UD 357.5 357.5 0.00 2.00 No 7 c44 Dead Point 1940 1.50 No 8 c44 Snow Point 2853 1.50 No 9 j20 Dead Partial UD 104.0 104.0 6.50 10.00 No 10 j20 Live Partial UD 320.0 320.0 6.50 10.00 No ll j21 Dead Partial UD 104.0 104.0 6.00 6.50 No 12j21 Live Partial UD 320.0 320.0 6.00 6.50 No 13 j22 Dead Partial UD 104.0 104.0 2.00 2.50 No 14_j22 Live Partial UD 320.0 320.0 2.00 2.50 No 15_j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16 j23 Live Partial UD 320.0 320.0 2.50 6.00 No 17-j48 Dead Partial UD 71.5 71.5 0.00 1.50 No 18-j48 Live Partial UD 220.0 220.0 0.00 1.50 No 19 b23 Dead Point 658 0.00 No 20 b23 Snow Point 195 0.00 No MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): - -- -� y 0' 2' 101 Dead 5581 1311 Live 5266 2508 Total 10847 3819 Bearing: Load Comb #0 #3 #2 Length 0.00 3.50 1.23 Cb 0.00 1.11 1.00 LSL,1.55E,2325Fb,3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 139 Fv' = 356 fv*/Fv' = 0.39 Bending(+) fb = 717 Fb' = 2325 fb/Fb' = 0.31 Bending(-) fb = 600 Fb' = 2632 fb/Fb' = 0.23 Deflection: Interior Live 0.05 = <L/999 0.27 = L/360 0.17 Total 0.07 = <L/999 0.40 = L/240 0.17 Cantil. Live -0.03 = 1/698 0.13 = L/180 0.26 Total -0.03 = L/788 0.20 = L/120 0.15 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fb'- 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #4 = D+S, V = 7237, V design* = 4536 lbs Bending(+): LC #2 = D+L, M = 6833 lbs-ft Bending(-): LC #4 = D+0, M = 5720 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. (4.The critical deflection value has been determined using maximum back-span deflection.Cantilever deflections do not govern design. COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:35 b22 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l_w69 Dead Partial UD 369.0 369.0 1.00 2.50 plf 2 w69 Snow Partial UD 357.5 357.5 1.00 2.50 plf 3_j48 Dead Partial UD 71.5 71.5 1.00 2.50 plf 4_j48 Live Partial UD 220.0 220.0 1.00 2.50 plf 5 j47 Dead Full UDL 42.5 plf 6 j47 Live Full UDL 62.5 plf 7_b23 Dead Point 700 1.00 lbs 8 b23 Snow Point 195 1.00 lbs MAXIMUM RE aew- Atik i � i � 1 s ..�_ . ,. sr� mar"".ter✓ ,€ -+^xzs "`� ^ir - '` - �'s, .t fi s x A � V #' SY -v az'* r 2'-6'1 10' 807 Dead 683 572 Live 341 1379 Total 1024 Bearing: #3 Load Comb #3 0.63 Length 0.50* 'Min.bearing length for beams is 1!2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x12" Self-weight of 9.35 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 30 Fv' = 207 fv/Fv' = 0.14 Bending(+) fb = 159 Fb' = 1138 fb/Fb' = 0.14 Live Defl'n 0.00 = <L/999 0.08 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.13 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn l' 41 180 1.15 1.00 1.00 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - 1.00 1.00 E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 3 Emin' 0.58 million 1.00 1.00 1.00 1.00 3 Shear : LC #3 = D+.75(L+S), V = 1024, V design = 778 lbs Bending(+) : LC #3 = D+.75(L+S), M = 978 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 664e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. I2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. /l f , �® COMPANY PROJECT I11 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w33 Dead Partial UD 204.0 204.0 0.00 1.50 plf 2_c18 Dead Point 143 1.50 lbs 3_c18 Rf.Live Point 110 1.50 lbs 4_c19 Dead Point 59 4.50 lbs 5_c19 Rf.Live Point 85 4.50 lbs 6_w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7_c20 Dead Point 59 6.50 lbs 8_c20 Rf.Live Point 85 6.50 lbs 9 c21 Dead Point 143 9.50 lbs 1-d_c21 Rf.Live Point 110 9.50 lbs 11 w35 Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : ams .,; ,,.a, a�..�v` `. ..+ , € _, '. 5' ..ate. A 10' • 114 Dead 700 Live 195 700 Total 895 195 Bearing: 895 Load Comb #2 Length 0.50* #2 *Min.bearing length for beams is 1/2"for exterior supports 0.50* LSL, 1.55E,2325Fb, 3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 20 Fv' = 356 fv/Fv' = 0.05 Bending(+) fb = 213 Fb' = 2674 fb/Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 895, V design = 639 lbs Bending(+) : LC #2 = D+L, M = 2028 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT ill WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3 j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4 j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7 j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8 j45 Live Partial UD 160.0 160.0 13.00 16.00 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : k , -=1----:.--,,,==.:„.. .7...--...-:..7::,-,:„..---;.--.1 .« L _ ...,.',. :,-,;,-,:___„:=;,7,==,--,... ...Z.,..-� �. e. .,y a4..r....�r",ax.�sevs=.,;.-: .,�.�..�r=t-,..s,:,-;,,Z.,,::4:;.,,,=1:-.7:47-7.., .ate ara.a A 164 10' 442 Dead 442 1280 Live 1280 1722 Total 1722 Bearing: #2 Load Comb #2 0.#2 Length 0.85 Glulam-Unbal.,West Species,24F-V4 DF,3-118x10-112" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 265 fv/Fv' 0.26 Bending(+) fb = 1440 Fb' = 2400 fb/Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.820.83 Total Defl'n 0.66 = L/290 0.80 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt .00 Notes 1Co0 LC# Fv' 265 1.00 1.00 1.00 - - Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1_00 1_00 1.00 1.00 1_00 - 2 - Fcp' 650 - 1.00 1.00 - _ - - 1.00 - - 2 E' 1.8 million 1.00 1.00 - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - Shear : LC #2 = D+L, V = 1722, V design = 1534 lbs Bending(+) : LC #2 = D+L, M = 6890 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS (Ibsl and BFARING I FNGTHS(inl r4Vi f„ I0' 41 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 180 fv/Fv' = 0.50 Bending(+) fb = 1013 Fb' = 1170 fb/Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1489, V design = 1148 lbs Bending(+) : LC #2 = D+L, M = 1489 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT Al 111 I 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:57 b25 Design Check Calculation Sheet Sizer 7.1 LOADS l lbs,psf,or plf) : Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Rf.Live Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6_c14 Rf.Live Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Rf.Live Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 plf 11-w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w74 Rf.Live Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Rf.Live Partial UD 493.7 493.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18-'43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19-j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20-344 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26-j47 Live Partial UD 160.0 160.0 14.50 16.00 plf - - MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): vi0 • 161 Dead 4328 4101 Live 5296 5376 Total 9624 9477 Bearing: #2 Load Comb #2 Length 2.89 2.84 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 305 fv/Fv' = 0.52 Bending(+) fb = 2301 Fb' = 2760 fb/Fb' = 0.83 Live Defl'n 0.36 = L/528 0.53 = L/360 0.68 Total Defl'n 0.77 = L/249 0.80 = L/240 0.96 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 9624, V design = 8063 lbs Bending(+): LC #2 = D+L, M = 36854 lbs-ft Deflection: LC #2 = D+L EI= 2594e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). � COMPANY PROJECT ail WoodWorks° SOFIWARE FOR WOOD DESIGN June 28,2010 10:36 b26 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End l_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : s r .s,,. .,...i.-eh'-n,- ,--.--..w.':wwYwo-.... .. ..s: ,>._....'cr �,-.<td..v��- � E,, rcs aTCxF, > a,u< ,„ r.<.{x.",fi ua x,. Z1 1 10' 15'-6'l Dead 583 2397 Live 393 Total 976 2044 Bearing: 4441 Load Comb #2 #2 Length 0.50* 1.33 *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 54 Fv' = 305 fv/Fv' = 0.18 Bending(+) fb = 488 Fb' = 2297 fb/Fb' = 0.21 Live Defl'n 0.05 = <L/999 0.52 = L/360 0.09 Total Defl'n 0.14 = <L/999 0.77 = L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+S, V = 4441, V design = 3070 lbs Bending(+) : LC #2 = D+S, M = 9454 lbs-ft Deflection: LC #2 = D+S EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT II WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:50 c2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End l bl Dead Axial 1539 (Eccentricity = 0.00 in) 2 bl Rf.Live Axial 2089 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) 0' Lumber n-ply, Hem-Fir, No.2,2x6", 2-Plys Self-weight of 3.41 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design I Axial fc = 221 Fc' = 980 fc/Fc' = 0.23 Axial Bearing fc = 221 Fc* = 1644 fc/Fc* = 0.13 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 3655 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. /� /C f\1 i COMPANY PROJECT r I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b12 Dead Axial 514 (Eccentricity = 0.00 in) 2 b12 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): ,444 0, 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 2-Plys Self-weight of 2.17 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 185 Fc' = 380 fc/Fc' = 0.49 Axial Bearing fc = 185 Fc* = 1495 fc/Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1942 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2 b21 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 8' Timber-soft, Hem-Fir, No.2, 6x6" Self-weight of 6.25 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 420 Fc' = 548 fc/Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc/Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 12705 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. nl COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:52 c44 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c35 Rf.Live Axial 2853 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): it " tr 'a i w www''',7 mIgtaWrio~AirV a .�., _. _ �.a.. �.. �nw � � �.�;� � a � .>��.x,�..� �� 1 _ tea _..- *�.a 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb:1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 306 Fc' = 363 fc/Fc' = 0.84 Axial Bearing fc = 306 Fc* = 1719 fc/Fc* = 0.18 • ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 4823 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. ^ I - - COMPANY PROJECT 111 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l c45 Dead Axial 1940 (Eccentricity = 0.00 in) 2_c45 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3_b22 Dead Axial 807 (Eccentricity = 0.00 in) 4 b22 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs) 0' 8' Lumber n-ply, Hem-Fir, No.2, 2x6", 3-Plys Self-weight of 5.11 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 259 Fc' = 439 fc/Fc' = 0.59 Axial Bearing fc = 259 Fc* = 1644 fc/Fc* = 0.16 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 6404 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. "—to-. BY (., DATE JOB NO '1.311 0 C 1.)Ct 0 PROJECT: • RE: Zeo, c'M ik•ti Lak-104A. OY) bea‘rr‘ u.jk\ a,0 3 O w w O 2 \* p_cm as- -> wo,,‘\ ar,‘ * . ao a„ a cr 0 `WM& > esAC.C- tarrsk-ii\ 0_ 14) rtoic _ 0 2 O - (r 0 Z LT] 6 0 0_ a Co 0 0 ct o e-P 1 --8ark COMPANY PROJECT II1. WoodWorks 19 b25 LC1 SOFIWAR£FOR WOOD DESIGN June 28,2010 10. Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 Pbs lf 5 c14 Dead Point 1074 7 00 lbs 6 c14 Snow Point 1601 7 c15 Dead Point 1074 13.00 lbs 8 c15 Snow Point 1601 13.00 lbs 9-w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 w- 74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w- 74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13_w- 75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16 j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18-j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 X44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24-j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25-j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26-j47 Live Partial UD 160.090 160.0 14.50450 16.00 p10 203A Wind Point 7 00 lbs bs 203A.1 Wind Point -7960 13.00 lbs 203B.2 Wind Point 7960lbs 203B.2 Wind Point -7960 16.00 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) 7. oos_t`, c-er,e. ,mr , r,+u � w ,-,---0- ,-..,-,_...--,,,,, ...-...---q4. ,, , .,,..---v,...,,..4.1,,,, ,,, ,,„, ,. ., . 161 is 4101 1 Dead 4328 Live4096 7703 8197 Uplift 2458 Total 12031 #6 Bearing: 2.46 Load Comb #4 Length 3.61 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 305 fv/Fv' = 0.45 Bending(+) fb = 1986 Fb' = 2760 fb/Fb 0.510.72 Live Defl'n 0.27 = L/704 0.53 = L/360 0.85 Total Defl'n 0.68 = L/283 0.80 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr L rt00 L tes 1C00 LC# Fv' 265 1.15 1.00 1.00 - - - Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 1_00 - 6 Fcp' 650 - 1.00 1.00 - - -- - 1.00 - - - 3 E' 1.8 million 1.00 1.00 - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - Shear : LC #6 = D+S, V = 8344, V design = 6983 lbs Bending(+): LC #6 = D+S, M = 31814 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 2594e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). r COMPANY PROJECT i 1 WoodWorks� SOFTWARE FOR WOOD DESIGN June 28,2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3_w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5_c14 Dead Point 1074 7.00 lbs 7_c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf ll_w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13_w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 203B_1 Wind Point 7960 13.00 lbs 203B.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : x ' , : '„ � A_ X„` 77 t,' . A • 10' 164 Dead 4326 4101 Live 3300 Uplift 2458 Total 7572 Bearing: 4101 Load Comb #2 #1 Length 2.27 1.23 Glulam-Bal.,West Species,24F-V8 DF, 5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 978 Fb' = 2160 fb/Fb' = 0.45 Live Defl'n -0.30 = L/632 0.53 = L/360 0.57 Total Defl'n -0.03 = <L/999 0.80 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+): LC #1 = D only, M = 15667 lbs-ft Deflection: LC #2 = .6D+W EI= 2594e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT lel 1 WoodWorks® C2 SOFTWARE FOR WOOD DESIGN June 28,2010 10:20 b25 LC2 Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) • Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2-w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3-w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5-c14 Dead Point 1074 7.00 lbs 6-c14 Snow Point 1601 7.00 lbs 7-c15 Dead Point 1074 13.00 lbs 8-c15 Snow Point 1601 13.00 lbs 9-w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10_w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11-w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12-w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13-w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 141w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16-j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18 j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19-j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20-j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 211j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23-j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24-j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25-j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26-j47 Live Partial UD 160.0 160.0 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs 203A.1 Wind Point 7960 7.00 lbs 203B.1 Wind Point -7960 13.00 lbs 203B.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) , a-r - .tea --..,.,,,,v-,---,;„.•,, -x,: 161 I p, 4101 Dead 4328 7763 Live 4016 Uplift 2321 11864 Total 8344 #4 Bearing: 3.56 Load Comb #6 Length 2.50 Glulam-Bal.,West Species,24F-V8 DF,5-118x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 305 fv/Fv' = 0.45 Bending(+) fb = 2949 Fb' = 3840 fb/Fb' = 0.77 Live Defl'n 0.42 = L/454 0.53 = L/360 0.87 Total Defl'n 0.69 = L/277 0.80 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - 1.00 1.00 1.00 6 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1- _00 1.00 1.00 1.00 -- 4 Fcp' 650 - 1.00 1.00 - -4 E' 1.8 million 1.00 1.00 - - - - 1.00 - -- 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - Shear : LC #6 = D+S, V = 8344, V design = 6983 lbs Bending(+): LC #4 = D+.75(L+S+W), M = 47228 lbs-ft Deflection: LC #4 = D+.75(L+S+W) EI= 2594e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live 5=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT tit WoodWorks® SORWARE FOR WOOD DESIGN June 28,2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 31w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17 j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs ' 203A.1 Wind Point 7960 7.00 lbs 203B.1 Wind Point -7960 13.00 lbs 2038.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : l0' 164 Dead 4328 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb #1 #2 Length 1.30 2.23 Glulam-Bal.,West Species,24F-V8 DF, 5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 1905 Fb' = 3840 fb/Fb' = 0.50 Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 Total Defl'n 0.37 = L/525 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+): LC #2 = .6D+W, M = 30517 lbs-ft Deflection: LC #2 = .6D+W EI= 2594e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT I WoodWor-ks® SORWARE FOR WOOD DESIGN June 28,2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (lbs) and BEARING LENGTHS(in) : w kr 15'-6'1 Dead 583 2397 Live 4182 8392 Total 4704 10789 Bearing: Load Comb #4 #3 Length 1.41 3.24 Glulam-Bal.,West Species, 20F-V7 DF,5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design I Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cf rt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC #4 = .6D+W, M = 48956 lbs-ft Deflection: LC #4 = .6D+W EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT I I WOod SOFTWARE FOR WOOD DESIGN June 28,2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf Wl.l Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : �,� may.,=. .�,.s ..,�.. ��., �.. f. .�. ,., _.�.fi�,..,,,��_,«, .� �,� .�.; r: .,,ti.,_._ ,..k,,,..,,,,,,--,1-,,,,,,. _ -,,,.,,,,,,4,-,,,,,,,..,M,41201. w ? V.���,,u� ��.- �.:,.�.r_n:�ra�.ra.- �..�_F.� .1.:,w�.„;s.�-,.n.,,,..,M -wff:�.� ,,.d. 10' 15'-64 Dead 583 2397 Live 4182 8247 Total 4704 10583 Bearing: Load Comb #2 #2 Length 1.41 3.18 Glulam-Bal.,West Species, 20F-V7 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC'#2 = .6D+W, M = 48956 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 1 WoodWorks® SOF7WARf FOR WOOD DESIGN June 28,2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2-w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4-w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5-w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6-w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : a 15'-6'1 l0' 2397 Dead 583 2397 Live 393 2044 Uplift 3945 7647 Total 976 Bearing: #2 Load Comb #2 1.#2 Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species,20F-V7 DF, 5-118x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 424 fv/Fv' = 0.32 Bending(+) fb = 488 Fb' = 2297 fb/Fb' = 0.21 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' - 0.990.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.54 Total Defl'n -0.42 = L/441 0.77 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - 1.00 - - 4 E' 1.6 million 1.00 1.00 - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - Shear : LC #4 = .6D+W, V = 7647, V design = 7647 lbs Bending(+): LC #2 = D+S, M = 9454 lbs-ft Bending(-) : LC #4 = .6D+W, M = 42496 lbs-ft Deflection: LC #4 = .6D+W EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 000, 1 WoodWorkse SOFTWARE FOR WOOD DFS$GN June 28,2010 10:30 b26 LC2 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : ''''''=":"C:; t.., ; '* , r F-V _ ..1u*�r�==,.o-...��< ,x=:a.n.,:v. .«,,; :4 m, :.� V0' 15'-6'4 Dead 583 2397 Live Uplift 3945 7647 Total 583 2397 Bearing: Load Comb #1 #1 Length 0.50* 0.72 *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species,20F-V7 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 424 fv/Fv' = 0.32 Bending(+) fb = 267 Fb' = 1797 fb/Fb' = 0.15 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 7647, V design = 7647 lbs Bending(+) : LC #1 = D only, M = 5167 lbs-ft Bending(-) : LC #2 = .6D+W, M = 42496 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). Harper Project: ;4;1 ,, flout'Peterson Client: Job# Righellis Inc. EN4INEERa• NERS Designer: Date: Pg.# CIS I.ANDS,AP-ARCHF95lft�EY^R! lb Ved' 'C5Y\ Wdl:= 10•—•8•ft•20•ft Wdl= 1600-lb ft2 Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl Ip 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss•= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period • z 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa Ss Sml := Fv'Si Sds ._ 2 S"'s Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1, ASCE 7-05) FFp — .4ap•Sds 1p C1 + 2 h I•Wp EQU. 13.3-1 RP J 23- Fpmax:= 1.6•Sds•Ip•Wp EQU. 13. Fpmin .3.Sds•lp Wp EQU. 13.3-3 Fes:= if(Fp >Fpmax,Fpmax,if(Fp <Fpmim Fpmim Fp)) F =338.5171.1b Miniumum Vertical Force 0.2•Sds'Wdl=225.6781.1b Harper Project: WW- Houf Peterson Client: Job# Righellis Inc. ENGIN E4S S ki Designer: Date: Pg.# LANDSCAP- 0.RCrE:iF.CI 4 UrI+:EYCR9 10.-8 .20-ftlb ft Wdl= 1600.1b Wdl:= ft2 Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl Ip:= 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa•Ss Smi := Fv•S 1 2Sms Sds:= Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1, ASCE 7-05) .4ap•Sds•Ip z Fp := Rp (1 + 2 •Wp EQU. 13.3-1 Fpmax 1.6•Sds•lp•Wp EQU. 13.3-2 Fpmin:= .3•Sds•lp•Wp EQU. 13.3-3 Fes:= if(Fp>Fpmax,Fpmax,if(Fp <Fpmim Fpmim Fp)) F =338.5171.lb Miniumum Vertical Force 0.2•Sds'Wdl=225.6781-lb Harper Houf Peterson 0HP Righellis Inc. To LI FROM L] COMMUNICATION RECORD MEMO TO FILE LI PHONE NO• PHONE CALL:El MEETING:LI M 13 III M A -< P_ m II 3. .. ... ft . 03 . 11 (;,c‘ -0 (....0 la 1...Z ----) 3 -0 ,$) Lri ?. (.. ---, ,.1 oi 6- ..-, wi II rt- tt- ,./ 1(1,031 '.1 1 01 4 Cr „.......,,. rt. 4.2 LZ Ull 313 0 11. L. (.... ,,,, ,), co z o , e -,-, 3 (Th (Ti ...........---..-- '`,.. 6 _0 . 0 , - 0 ; 4 O-hb — ' )'O 1,71 --a ,i—z- 1, 17 s5( -171,sac -4 Ji# Ice -= c:All,k) # Ic.() --- -f ocil CrIA ,I r,,,ailt..) 'm .0 -- --1-'0i? 5 (,,..1(1:( ,..k0 S 0! \ i ! : 11•:.113 (-1---' 4--i'k — A — -, i I — / • t ria d -- fl : it,„ • 4 1 -a:7d z o m 0 . : 0 K Li r ,,,_, fr___ .D'Oh`)1 .. -t---- 0'0 Li ca‹)III,Jt aCA DUI--) ic j TT ____.1 ciS r z (--3 ,of- kli YKIdt/D • rTi --,..-- & • 13 + /tC, §0 • 0 U/4 r 70 El g c:4‘aljr,!..1:7k) ri I) k-i.1 Did.jtj D -1\Ici N 3 if, _10 Lni 0 \ M Z - 0 r "3rX).aci 1 3N ac[ P1 0 0 I)(Z _ ____ ___- \-.-jrzJD \IN'd"i?), H 71_ C\_ :1.03 road 0 ba--Nad I.ON 801- 0 I ) cie Q \0 3.1,V0 kiiik.s.0) )643R :A. t , „ . 74- , 1-d ...)--, --,, - j, a • co . . o 0 170G-ti -. 001-,:e -) argef) 400O ---- z” Do (..„07) #COe - \AI L ; --,-,) cd kicTi -o --, . 0 2 0 m z -n o Pi g Dr7 n 0 11511 ‘,..A 0 0 ii 1, 1';?S'a ik 0 1 K c ;7(ACik-i \jCAdVAG --- () Z _.........,,i— (7) )4 rilS'Q, 6 2-#-oobe ----- ri1447 00119 --,---- z i 0 m Nk# col-ig z 0 n rn 0 M c il'e )44 0 Oe ---: \il r 0 0 g ..„ , , g 0 rn -I Pi 0 2 --9 P rp-i 0 0 —T-7:747777Y)-31 -11:3:06_ ''''.), a(.1 • .3a 4.,,-4 -, -, • 103 10d d Lud 0 bao, 1)1 2 ) .•ON 1301- a itte CfltaINC) 11/411454,1) Pa,., ‘t?,..j 'A9 Ivi Harper HP HoufPeterson COMMUNICATION RECORD Righellis Inc. To 0 FROM 0 MEMO TO FILE 0 LArG4::AP a AF cr,irecr.“,SU,VC,..R• PHONE NO.: PHONE CALL:0 MEETING:0 X m m A `rel 11 .. Q J:M fn 11 tr d o # 7 16 W. It" I ,..„) l' >Fr1/ fr 5.' a 0 a 7-1 1 z 0 Cri ill 0 narper Houf Peterson 0 0HP Righellis Inc. TO FROM 0 COMMUNICATION RECORD . MEMO TO FILE 0 v,,olmeE.:4s..PLA,r,ER., l. cI,F. AF:CHITECTSSU?VTIYOR.1 PHONE NO.: PHONE CALL!0 MEETING: . XI 13 ip 13 .< 2 M C) g ..; .....-C/ '''......:•Sefs, --1 • . (7 MM. --t ;414. II 0 k....).'..*A., c.........t . ....______....... . 07 C,- , fri A ts.... 4.-,, 74* 1 0 ..- 01 LIC r-- > ( x . ..T, c • 2-) ..7 Tc., C i • r , i -0 z Cl' tt M Zi. I. CD COMPANY PROJECT t WoodWorks' • SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 10' 1 5{ Dead Live 125 125 Total 129 Bearing: 129 Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft,Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: FIE CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. II COMPANY PROJECT cfl oodWorks® SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 10' 51 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. , s WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 22,2010 14:13:51 Concept Mode : Reactions at Base of Structure View Roof: 25 ' • III , 1280L 1280E 12-3 4'j442 D 442 D 4v ,. .3 ,,f_r_ L0 12272089 L 1601 L :� 10481539 D 1074 D 44,5 v54 a 4. 75L • , to 59 D -5. 1232E - ti o 1408 L .v i'. 514 D 556 D r:-:, r4- - 1080L 640E 11,.5 409 D.. ,. ,..1 � ru 792 L u aRni _ 99D�99 D 1522E ; Y D L 225 98553D 75 L o 55 73D Zan G- L., 2192 L 1311D ^ _. GS v T 20L- L 55L , • M, 109 58 D ` 021 L , J• . 2450 2 1 D 5581 D E3B-ssocr-c co:3,-;*/-1 c,:acc:c:,-,c,(cc oc,c(5.-J5;:.--' -,-"'.:Dri:D.Ca-:DDDr'',:).0,_,E-rD,r2,:.1,7zE-E=EE" ,E,1•-r.---'-',:::Er= 7, !.,,E.-:-.21F 7 i1 31 FCD 0 T iN C-, L ki 007' -F Zomc L.r.)f=t-t , WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 22,2010 14:14:21 Concept Mode : Reactions at Base of Structure View Floor 3 : 17 ' ■ • u '^ _- 1280E 1280E v 442 D ,; 442 D . ''::. es II 376 L 5296L ' 'u 4328 D 4101 D L -- ;4 w_n. - 75 Ls 59 D _,, 765 a 1036 L 277 D 483 D e 9 D t 640 L 208[ 774 L U4 fli 99DJ - ■1020 L 99 D 368D ' 98 D 75 L 225 z/�1 7311\aO 2186E - ,t�Q 1298 D r.r 1�` _ •4 L 084 L � 94 LK r 306 DL D_ 4 . 062 L 73 D7E2515 D5 D = 5647 D ti 2 4, C -LT ? 11 -8 . 28 t _r 2c' f''83 4 _: r 2 4,_ t ,fir 50',-:,8,"-., .. , jrQ - ‘ L Pt OUT iiikei...pocz.. Ls)pis) Plain Concrete Isolated Square Footing Design: Fl fe 2500-psi Concrete strength fy:= 60000•psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density 'Ysoil 100-pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 5647-lb Pd1:= Totaldl Totalll:= 7062-lb Pll:= Totalll Pt1:= Pdl+ Pll Ptl= 12709-lb Footing Dimensions tf:= 12-in Footing thickness Width:= 42-in Footing width A:= Width2 Footing Area net gall –tf-"Yconc quer= 1350-psf Ptl Areqd:= gnet Areqd= 9.414 ft2 < A= 12.25 ft2 GOOD Widthregd Areqd Widthreqd= 3.07•ft < Width = 3.50 ft GOOD Ultimate Loads 1;14,:= Pd1+tf-A'"Yconc P„:= 1.4Pd1+ 1.7-P11 Pu=22.48-kips Pu qu=_ — qu= 1.84-ksf A Beam Shear boot:= 5.5-in (4x4 post) d := tf–2•in := 0.85 b:= Width b =42•in V„:_ 4• fc•psi•b•d Vn=23.8-kips 3 Vu qu Cb–boot)-b Vu= 9.77•kips < Vn=23.8-kips GOOD 2 /I Two-Way Shear bg 5.5.in Short side column width bL:= 5.5-in Long side column width bo:= 2-(bg+ d) + 2.(bL+ d) bo= 62•in (3c:= 1.0 _ -(4 + 8 /- fc•psi-b•d Vn=71.4-kips 3 3-(3c Vimax:= 0.2.66• fc•psi•b•d Vnmax =47.48•kips V.= qu[b2–(bcoi+ d02] Vu= 19.42•kips < V ,ax =47.48•kips GOOD Flexure 2 Mu:– qu (b -boot) 11• b Mu= 7.43•ft•kips 2 /I 2/I At,:= 0.65 2 S:= b6 S=0.405-ft3 Ft:= 5 fc psi Ft= 162.5•psi Mu ft:_ — ft= 127.36•psi< Ft= 162.5-psi GOOD Use a 3'-6"x 3'-6"x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fc:= 2500•psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density 'Ysoi1 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 4101-lb Pd1:= Totaldi Totalll:= 5376-lb Pll:= Total11 Ptl= Pd1+ P11 Ptl=9477-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 36-in Footing width A:= Width2 Footing Area new gnet gall —trYconc net= 1375•psf Pt1 Areqd:= gnet Areqd=6.892•ft2 < A=94E2 GOOD Widthreqd JAreqd Widthreqd=2.63•ft < Width=3.00 ft GOOD Ultimate Loads := Pdl+ ti"'A'-Icone := 1.4•Pd1+ 1.7•P11 Pu= 16.46-kips Pu qu:= — qu= 1.83•ksf A Beam Shear bcoi:= 5.5.in (4x4 post) d:= tf-2-in := 0.85 b:= Width b =36•in Vn:_ 4• fc psi-b•d Vn= 16.32-kips 3 Vu qu(b b2 colt b Vu=6.97-kips < Vn= 16.32•kips GOOD Two-Way Shear bs:= 5.5-in Short side column width bL:= 5.5-in Long side column width bo:= 2•(bg + (1) + 2•(bL+ d) bo= 54-in Rc:= 1.0 Vim:= 4-(4 + 8 )- fc-psi-b-d Vn=48.96-kips 3 3•(3c Vnmax:_ 0.2.66• fc psi-b•d Viuuax = 32.56-kips = qu.[b2-(bcol+ d)2] Vu= 14.14-kips < V = 32.56-kips GOOD Flexure 2 Mu qu Cb -bcoll .(11 b Mu=4.43-ft-kips 2 2 ,Z:= 0.65 2 S:= b d S =0.222-ft3 Ft:= 5•(13.• fc•psi Ft= 162.5•psi M ft:= u ft= 138.42•psi< Ft= 162.5-psi GOOD Use a 3'-0"x 3'-0"x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density Ysoil 100•pcf Soil density gall:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 2515-lb Pd1:= Totaldi Total11:= 3606-lb P11:= Totalll Ptl Pd1+ Pll Ptl=6121-lb Footing Dimensions tf 10-in Footing thickness Width:= 30-in Footing width A:= Width2 Footing Area 9net gall —tr7conc gnet= 1375•psf Ptl Areqd gnet Areqd =4.452•ft2 < A=6.25•ft2 GOOD Widthreqd Widthreqd =2.11-ft < Width=2.50 ft GOOD Ultimate Loads jvc)th:= Pdl+ tf•A-7conc Pu:= 1.4-Pdl+ 1.7•Pll Pu= 10.74-kips Pu qu A qu= 1.72•ksf Beam Shear bedl:=S.5•in (4x4 post) d:= tf–2-in := 0.85 b:= Width b =30-in Vn:= (1)•4- f s•b•d Vn= 13.6-kips 3 cPi Vu qu. (b –bcoll b Vu=4.39-kips < Vn= 13.6-kips GOOD := 2 /I Two-Way Shear bS:= 5.5•in Short side column width bL=_ 5.5-in Long side column width b,:= 2•(bs+ + 2•(bL+ d) bo= 54-in Rc:= 1.0 48 + fc pst b d Vn= 40.8-kips 3 3-(3c Vnmax:= 2.66 fc psi b d Vmnax=27.13-kips V = qu'[ –(b2 bcol+ c1)2] max Vu= 8.57-kips < V =27.13-kips GOOD n Flexure 2 Cb –bco1� (1) Mu=2.24-ft-kips Mu:= qu' 2 l 2/I 0.65 b•d23 S=0.185-ft S:_ Ft:= 5.0- fc•psi Ft= 162.5-psi Mu ft ft= 83.98-psi < Ft= 162.5-psi GOOD := — .Jse a 2'-6" x 2'-6" x 10" plain concrete footing BY N \L DATE: �.k,...) auto JOB NO.:C .0..0C(0 4-taosx. n PROJECT: 1 RE U Y\i*- Z '° "Fron L LOGE \q,9tvtt 1 31±1'i Yi6 1 1:9 • Ztom o w L ki--o:f5\-41st ( i'-t--S,?5' LIA y t J ❑ J Er a U O w UZ W V\ L Oveihyiai �-4 cc a JJJ o Moi 1,c‘\ , t? �Sj1 : Jr4-� .vCIO = 13 .a1 -) \ C t w (00 4SV) U Ez 3.S J 5) s 4- atgs(t ''Q, tCc•5 / 1-s.S6\(i o 2 :o ii,s>(3 5 ( Y ) 1F , 5 f -)+ ,-3 (..(k.5)}5.S ` (6 o = aOta 0 O S _ &lb .'. 0Y-- Lt• z _ M aga,65 - 1' c1t'a1 El 0 3(f s)(tb-a 1. !( # O• U v, , N xxa _ 9 ----:, rol. " en' `y. Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:48 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load.etz\ M33=81.13[Kip*ft] M33=-23.24[Kip*ft] 1 rrIA Bentley- Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:49 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load 2.etz\ M33=4859[Kiplt] M33=-54.65[Kip-ft] A • BY: Nmu DATE: `- ` It, i \ o t,o J08 NO.: c e OCIL.° PROJECT: _. ~• W _ O 2 _ _ _ 131 .� id 1• — oW U W a Z J\PkriW\ = UYN't-V Pt -. (-):-0.77' j'� . c -- OA' r - -Sy, Q0. - C -> - 4 .04 s U Z , on t o c . As- io, 3 ` - U ( {� L � 1i. e1 O W a. (O,�t ,o o 15/3006")(4'k.)--:-'„, � $ \ f� [/�� ([[[^/ yy}jam j\ , .�j/mss} , , .1E ciy s. 1/.c1 to.t 9 f �y}j vs - tJCS231%i ,e , 1 az-7; (\,0. ,.(4o;o0.5) fa..1 i-' .00642) O.t.42..I ° 5 ` ,"D Ah.\ 0 t':-Yo( TO t�0 bO o 20 vq. - 0. , 2 2 _ 4 T :0" ts, t.33) -�i 4-:-4 ' -,1. ,._ Oki,. i " c tot' Q,c, or_. (\ . cA,")( ),DooT)i C Orb 4- = Q t:,) O• v ,. bcd 0 y - _Aze `� kN- +c CIO q # By DATE: JOB NO- PROJECT: RE: Ua- C -Reck( Load 54,5VS€ - z o w 2.0.00 F- 0 2 w 0 0 11 a ca t ti 0 (\Aar S .SZ F: 34 Alf! I xalx I , 5--J1 X NV 3,)14 t (8= e = ec 0 z 6 0 = cCiv O 1 OL (ixin (tb)-7- < ,s 2( s 6 4 117 FrA: Bentteu Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:57 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\talcs\Unit C\FDN\Rear Load 2.etz\ 1 1 1 M33=36.82[Kip*ft] M33=-5022[Kip`t] 1 ACI 318-05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 17.00 inches her= 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches cmin= 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor 4'= 0.75 strength reduction factor Calculations Calculations ANC= 408 in' AN = 1296 in` ANo= 2601 in` ANo= 1296 in` Nb= 92,139 pounds Nb = 55,121 pounds Wed,N= 0.7265 Wed,N— 1.00 Ncb= 10,500 pounds Nth= 55,121 pounds 4'Nnb= 7,875 pounds 4'Ncb= 41,341 pounds Combined Capacity of Stem Wall and Foundation ocb= 49,216 0.754'Ncb= 36,912 1 • Concrete Side Face Blow Out Givens Abrg= 2.75 in` fc= 3000 psi cm;,, = 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 261,589 pounds 4)Nsb= 196,192 pounds Concrete Pullout Strength Givens Abrg= 2.75 in` fc= 3000 psi = 0.75 strength reduction factor Calculations Np= 66,000 pounds 4)Np= 49,500 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.763 in2 = 0.80 strength reduction factor Calculations Ns= 44,254 pounds SNS= 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6*Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks r ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 3.50 inches hef= 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmax= 5.25 inches the foundation and does not consider stem viz' Fnd Width = 36.00 inches cmin = 2.25 inches emir, = 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact' Calculations Calculations ANO= 68 in AN= 1296 in` ANO= 110.25 in` ANO= 1296 in` Nb= 8,607 pounds Nb= 55,121 pounds Wed,N= 0.8286 Wed,N— 1.00 NOb= 4,399 pounds Ncb= 55,121 pounds (I)NOb= 3,299 pounds (ONOb= 41,341 pounds Combined Capacity of Stem Wall and Foundation 4Ncb= 44,640 0.754Ncb= 33,480 Concrete Side Face Blow Out Givens Abrg= 2.15 in` fc= 3000 psi = 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 231,191 pounds 4)Nsb= 173,393 pounds Concrete Pullout Strength Givens Abrg= 2.15 in` fc= 3000 psi = 0.75 strength reduction factor Calculations Np= 51,552 pounds 4)Np= 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.606 in2 = 0.80 strength reduction factor Calculations Ns= 35,148 pounds 4)Ns= 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDUI4 Holdown Capacity= 14,930 pounds 1.6*Capacity= 23,888 pounds 23 888 < 28,118 Holdown Checks m, BY' k V DATE \ U\i .4:26^1 0 JOB NO.. C.:/, 6ci 0 �• �0 PROJ ECT: RE: Stem Wa11 ' cook-% Z E 5i des OP BV i lcionois W O 2 I 'l.. o aSc t (a?SC.j: 300 p 1...c U.:00) ❑ 8 cLCZ\e:16.0 13 $c = . 0b , toes ° J 4oIN C ►50pCC�('I/z� �(Iz-)_ 33 pL 5k-ern 0 o (.a'tz)( ISO pc.F)(w =- 100 w PLS W = z a z LL ? (e c r�. tevr' ;)(.4Q \` lo� Pt.F _31,30r- 0 1cO a o z Tom+ lo0_J, = 1L1- t i- toow Pis- 7 MCNx Gbp=^ 'Sup P e( = 1Sot p ►`- • LAJ o LI 5 I Jr (CeD UJc \SOOw (. IS" f ¢ O W e 1 . cl C "t c:- ti st, C r bJ + r.),'i`'A.i ❑ o O = F d 0 DL, a5Lit) co pc.,P Uock.►E (clh ); !`evP ,�• 1:::;- y7 s f ( X34 ;��r , 10Q�`., 4Ur,)1.1s ! 3, 1,,,,,,,,ik , °t,(. i (117/ Structural Ca Ic ulatio =:1::3;i�,fC c,tON for Full Lateral & Gravity Analysis of Plan A 1460 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper HP' Houf Peterson Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St.Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1133 NW Wall St.Suite 201 • Bend, OR 97701 • [P] 541.318.1161 • [F] 541.318.1141 NEL Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lw: 1 2006 IBC/2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed, ASCE 7-05 Ch.20 Importance, le: 1 ASCE 7-05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map 51: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength,f'c: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength,f,,: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 2x&4x Wood Beams &Posts: DF-L#2 6x &Greater Wood Beams &Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi, FV=328psi, E=2.0 Million TS/LSL Beams: Fb=2325 psi, FV=460psi, E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists, and flush beams u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 WoodWorks—Sizer version 2002 Bently RAM Advanse I AIM ;•_ Harper Project: SUMMERCREEK TOWNHOMES UNIT A Houf Peterson m ;x Client: PULTE GROUP Job# CEN-090 Righellis Inc. k4GINEE ,LhN EE Designer: AMC Date: Pg.# I.ANDS AP.,ARC :r£t'F:sitl DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5.psf Framing RPL:= 1.5-psf Plywood RRF:= 5•psf Roofing RME:= 1.5-psf Mech&Elec RMS:= 1•psf Misc RCG:= 2.5-psf Ceiling RIN:= 1•psf Insulation RDL= 15•psf Floor Dead Load FFR:= 3•psf Framing FPL:= 4•psf Sheathing FME:= 1.5-psf Mech&Elec FMS := 1.5•psf Misc FIN:= .5•psf Finish&Insulation FCLG:= 2.5•psf Ceiling FDL= 13•psf Wall Dead Load WOOD EX_Wallwt:= 12•psf INT_Wallwt:= 10•psf Roof Live Load RLL:= 25.psf Floor Live Load FLL:= 40•psf a Harper Project: SUMMERCREEK TOWNHOMES UNIT A • �'C' HOuf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. Designer: AMC Date: Pg.# Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 843•ft2.1.12 RDL•Roof Area ' 'WT= 14162.1b Floor Weight Floor_Area2nd:= 647.112 FLRw r2nd:= FDL•Floor Area2nd FLRW-r2nd= 8411.lb Floor_Area3rd 652.112 FLRWT3rd FDL-Floor Area3rd FLRWT3rd= 8476-lb Wall Weight EX Wall Area:= (2203)•112 INT Wall_Area:= (906)•ft2 WALLWT:= EX_Wallwt•EX_Wall_Area+ INT_Wallwt•INT_Wall_Area WALLW-i-=35496-lb WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 32 Mean Height Of Roof Ie:= 1 Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ta:= Ct.(hn)x Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 := 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss:= 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa:= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: SUMMERCREEK TOWNHOMES UNIT A * nd ' .• Houf Peterson Job# CEN 090 .. Client: PULTE GROUP Righellis Inc. --- Designer: AMC Date: Pg.# _F,.h EER •?LRN KERS LANDS,,,,,7 ARC'S-'C.::' •3✓:t'i E"i�RS SMS:= Fa•Ss SMS = 1.058 (EQU 11.4-1,ASCE 7-05) Sds2'SMS Sds=0.705 (EQU 11.4-3,ASCE 7-05) =—= 3 SM1 := Fv•S1 SM1 =0.584 (EQU 11.4-2,ASCE 7-05) 2•SMl Shc := Sdl = 0.389 (EQU 11.4-4,ASCE 7-05) 3 Cst:_ Sds Ie Cst= 0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Csmax := Shc Ie Csmax =0.223 (EQU 12.8-3,ASCE 7-05) TaR ...and shall not be less then... C1 := if(0.044•Sds•Ie <0.01,0.01,0.044•Sds'1e) (EQU 12.8-5&6,ASCE 7-05) O S•S1•Ie1 C2:= if S1 <0.6,0.01, JI R Csmin:= if(CI >C2,CI,C2) Csmin=0.031 Cs := if(Cst<Csmin,Csmm,if(Cst<Csmax,Cst,Csmax)) Cs =0.108 V:= Cs•WTTOTAL V= 7220 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E = 5054 lb (Allowable Stress) 1 BY: DATE. JOB NO I-.. PROJECT: RE: \-em Walk ' COCA10 W ❑ J , 5iCS:S UP 130i Icilrns W 0 2 Dttl2 ° aSc ( ?scD 300 PLP 'UJCA\J 2 ❑ 13 a:CZ le.460C13 Sc� = 0b ?,...F Skov o 4DIN C15opc �'112.�(. ,7,-)= 33 pt..F 5-ern a o W Cahz.)( 1s0 pc0C w = 100 w PLS UZ W O z a te\ `s'-')40 , c._) : (off .F _Itclor Z I.t. o ��t=�,�2 �° Q 0 z TOA.a-\ loo tk. = \'i`o I A- tOO W PIA: 7 Tho,-.x Stp \$vu \-.-ie- = Isoop • (AJ 0 \-Lib I + (CXR ) ' isoocu (.L 7. 1 .0(6 c x is, I n 0 0 LL w f f'fes.k c 4 cr ;<`01-4, c. b,.1 . 1_6 C"(_.p ❑ a O = DLo aSCIt)---- W pLr we k (gli eve,)(14,, ,i>;4 a-2)4 f't..F _Y1rj — 01 N(t50-pc -'117_ )0'10 — 33-23 (oma 5 v r (tlt2)( Iia w') _ (00Lu n )( 1"3 psF ) _ '14/36 p C .<-(1)(---- ''.-1,-: -(N.)r! , t --e ';--2.,L) 9Lp. od 0. a3 ,3 10o & c ISCXo Some cts. 74, m,rwc- -... loci- ted,; TL \' bq i0`J'AJ W t 1 ,00 , U`,-,--e. Y ' ' @ Pla.t k"./ w t D.,. o .5(12.)(2.), = (00 L LA,,-.A s (B)l2 xt3-x.22) = L pwF _Skocr 4r: Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc= 3000 psi cmin= 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 231,191 pounds 4)Nsb= 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in` fc= 3000 psi = 0.75 strength reduction factor Calculations Np= 51,552 pounds 4)Np= 38,664 pounds Steel Yield Strength Givens f,= 58,000 psi A= 0.606 in2 = 0.80 strength reduction factor Calculations Ns= 35,148 pounds SNS= 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks 1 I P , BY •k\V........, DATE: ......_ Roto JOB NO. CE-m 0 S° PROJECT: . , RE' If\k, SYN-e..arti,x),1 i Sooki-ocA,— tiev lc E E -J• 0 Li z -r. 0 w 1- w O 2 1 1 a '2) 0 w ozw i ok. - At..S,.. /0,50 Sc10 ,. a. Trk.) 0 0,scD9 14,0,000) =-- 0.40°1 tt...) Mn 0 trql=- 0 clOCO,StP).1(,,Oit7X0 ) i 2- IL 3143\L.361:"6'-6) ..-' \4' t9Sf, t_c6 : eit•- 2 0 02 - 0,--5 ( 00 ) f03 o .6,4.:(),(30 --- - - -- - 'A, ) u.• z 0 1 F- 0- 0qt, . , ,.. , 7 ,,, •.. -, ..... , 0 ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 3.50 inches hef= 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cm„= 5.25 inches the foundation and does not consider stem wE Fnd Width = 36.00 inches cm;n = 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast-in-place anchor wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor 4'= 0.75 strength reduction fact Calculations Calculations ANc= 68 in` AN = 1296 in2 ANO= 110.25 in` ANO= 1296 in` Nb= 8,607 pounds Nb= 55,121 pounds Wed,N= 0.8286 Wed,N= 1.00 Ncb= 4,399 pounds Nth= 55,121 pounds 4'NOb= 3,299 pounds 4'NOb= 41,341 pounds Combined Capacity of Stem Wall and Foundation (i)NOb= 44,640 0.754'NOb= 33,480 1 Bentley,�►� Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:42 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Interior.etz\ M33=32.26[Kip*ft] M33=-9.27[Kip*ft] i kA Benttey Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:42 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Interior 2.etz\ M33=23.55[Kip*ft] M33=-17.88[Kip`ft] 1 . t A 1 BY: DATE: ,.......30 k 0 JOB No. C....'',. ki PROJECT: RE: , ) [—I W - _1 0 LI Z 1 4 P :k7 f L) (a c -xas-C L •)K Ns P\ 0 w I- w , )1 — /A/ - ); , - /Q., = - _ - ----- ----- -- \/ r1 e...z..--- 1 .\ID. O e 0 0 -fY\,0,,y, ::: t"ir , -)r•-N) 0 z ri.(-1 ,- ,c, 4-- - ,•-, ; z , , 1 ,4, 2-, -i '''..--- 7%, — --.4-, -- ,,,,,- si• „--) „.,. • , . , ....., ....) j,..._- ,t 1" ) --- ‘ < _ -- Lq,,i,(- 1" -3(. •3-3 '75-.) -a(--(D'7`-,) z '', ,-,-":- -',„...1, ::.,-.- -- ----„ --- --- =-7 i •;b1',,,,, e., :•-••' U 4 Of Q.) i r- ----- -z, -;' 1 --. t • ,, ,- . '---- • --, Li 2 0 •• E (f) IL z w Ti z 0 O I I- EL = - c) ci •--:, `4.' _; • 1- a• — .'- ,,z -_-_, Aii., -_-„,• 1 , , 7,7_,\ _-_-_---- ,f,•S k ( --7-5- 4 4-)c)1 4.-7_,-::: -: 7_" S 4 S'e'fa) . jr.,.A.: k , ,....-.: c),c?'k:E_.) — ,-c.C)' l'F• — 0--'z--' 1 -• 1 . ,sl -a,,Je -x 13001 c-cy-x _s 1!• (7) 7•1') S.";\ --?)V\I')°VI .S'k .....,,,,,2 +..r ._..,:y 7 -2,-i-1'1 i)--'t c!, '.):.' (__.'ci• 4-t'S-) '7-7 1:ZY'14i \.,. i ,'-'- „. -.....- \I ,)`‘.= co_f -3 --- ....- , „. : .,,:: ,. 4.,,:, 1 ci.,:..-,..,.; 4 2 k_ t - .„, - ‘If 7(--- .'. c -4:-4.. .S —", ..,,,. , , (...... Q1e)s \ ,._ • =- - -0 ---,.r •-, - ,'71-.)(-, 2: eil 4 ''i c"; ' ') --k c c)1 7'2-4 7;3) \,,,,,,,,, •,_::'? .& 2:2'-4 t' ) 0 1.-.-7, ,3) 04. () , "XII , C27.7\,c4,-)c, - 0S" _.1 .) -- Sc) 3 ok: . i 0 z L._.. m Z 71 c.crtIpe -i°v\I 0 ., . 0 .. 3 .‘"A 0 ' •-'' S' 1 < IQ) 1 ::- 'I ‘011-17 E -1 C n 19. 1+) ,---- ( a.).-)ri( i(fe) 4 -)- - °\r 3 OkAik.A)C4-))A0 -"A") VI\D z -0 73 i O 01 z n rn o › m ✓ o r 1 1 1 f'= n K K 0 m -I TY i k_21 N'e'S m 0 2. . 3-AC-0.1‘e 0 P .. m E r -Irk-1 — V k N4 n '3 8 tal 1 K C k a v 1103 1-0 d 0 0-- c\.) 17) ,.oN eor 0 t Ot ---' 9 -v. :AS a BY. DATE. JOB NO PROJECT: RE: Tfc,„....., -v- kola& 4ctai-‘3 S-C)( LA O w 1- w O 2 1 ---- - • —4A.'s '---- — --4' a , UC\Or Z -5 Zi,klj V.-et cc < O w Ur\i't C b3.L14 IL% o z . 0 i cc z MrAxi,. = Uy-vt Qi\i k C ---> - 40,0 4 t...0 t.. z 20 ( t 1;‘'AT\ = 2 a o.c. A o ....7: • o .._(.3 A-1 .r.„ , oco ) / 0 y, 06)(4R)7:- \...an\N) • cS . 0,C\0(0,(0‘143.*) (170i(X).) )65- I:Lb 3/z., I-• 0- =1-bcoL"60 .0 'Lnc, > 53. L-1.4 l'f---x, ( €) tt S ,2 a' 0,C.-, /6, . k,o -L- a -- (\,01-t7)000,00:-.)-) i(o00 .42-)..--:-- b.(.42- ti-J \ tk-s-e tz k --:---- 7:4‘,.. ..o-lt.s . C L-2,3) ---- q 4.-4 > a it -tr 4.-:-,-- e 10 CC. , OL: (\ .200Co,D00---)/ (oS.-5)(3090Y4-2',/ = OM, :: 0,0t0(\:2.°I.I(00,07-X5Xt5 - °:-11' 12_) = 8 t4:65 r•-.C-- . >Z)3.q 9-*-0 0 ci 717 cu •,. :-,.-., (..- .),-I-d i , IM)T1\•-e rdc, 6 c'5 -6',,„ ------=.:. = 1,2 0 ' = IV .,, , “ " ..• ._ A .-.... L 0,qt,,c;si.7.0,i,:xtv ) i 0,b(-3„J-..3„--, f elz) 4* s_ , '. PO. Mil Mei o FID hH N W tia 41, i 4.04 a .770 , A-00414 < h v s �c.c,,)x-+ -A c)S'O14 z cy,,,,n,o-s9c.coo'0,71/4„-hi,`0)b'o -= °ill 0 Ch-t} (2 '0/ct0,)f)!`) '0 = V --ZN1 hi '1 o :---SV ')'0 ,,v a S # �!1 ( ,'ob( o -,59(000'0")(t th'0)0b'0 =u yy 0 ( fi ;o '0,(00 O'oail ft1 '0 -LN‘-ik '0 -=S V "70 „01 il 4 ci) _ m (I/ - i �>;CTA, . b' ' "VI 7) z 3 3 G V *0 71:kIWO c- 119 -irkUf z m O rD 4-- ---)K1 --kvun _ ° 3 Z t- .d. ttV x 1 X iP-�e 103 road "") :C {iii ew ..ON eOi, I`V;C :31tl4 � 1 \-1 :AS tt 4%. Bent ey Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:43 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Rear Load 2.etz\ M33=41,88[Kip`t] M33=-46.37[Kip`ft] A - MGe er - LCt rr BentLey Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:38 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Rear Load.etz\ M33=43.24[Kip*ft] M33=-45.06[Kip*ft] A !_ . ° b ( 0s Clef ' °) ab'C '` 'tO lob.'ate -f,s-S = a '''zbi•5 - gv-ok - 1 V\o'et - X 0 Z m . 3 o sl < (2, 1 = °wi li1N o 31 'lb*b‘e`e ( % ' I'- ,4 c `)rt t`€ 4 c� �I)( I )\1 )<�'x_as V'o)o n 0 ,i-A gt 4c)t1 = c e 49 .,°e) H-l'O A' 1 V = 1°N Z 16%..AtJJft))d!\D U 3 0 } m i -t--0-1' f m O o xiD ✓ p r 1 1 K o O r AAA kVOZ II\ kit'C) ❑ n "A��k.:z 0f - k 1. \ l\ NCl S, ---k001 \' u3road .-DN‘N 0 10 D- N .,tet 4 _'oN 9or 0108C— ,.d0 .r 9 31V0 A9 r Bentte �, Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:35 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Front Load.etz\ UtJ IT M33=25.66[Kip*ft] M33=-30.27[Kip`ft] i 'eny Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:43 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Front Load 2.etz\ M33=51.9[Kip-ft] M33=-12.19[Kip-ft] • _ 0,j: -- C 01?4 ,-- -- - ,-• CD 1 S'g-S .... °V\I '. 1.• CI) : EA --Ao 0 ; 'S AC -::: c:\R"-- '. • 1,9, -ICI -.J .1 (.. b1 .0 = V-1 — ---1...(TE:1-)( S'7 ) (72)(s; _.-) _ 4c - I so-e:e - 4. fl----g-sckub -- (.12c.lc:c +577-c_.;Li to/ vv = lax 1 0 0 ( 1 )C6,c1rc.,..-t-4( ..-e is)<7,7_, Icz,:t 4 ci 0C7.....lx_s..,'c,-)c '1 x_os t,0) = Z 71 P ' g ( 1:b),7,-,1 . ._.., ( 1 I .-)( ccks,k 7)(2 i.0) 4-, .?_,‘v\i, ‘ ..stqs n Ok.:\k it •L:\ \ Jr \ \ S . --` IC\Ai o 3 3 l'' C , --, 7, x O n z n m o › x ✓ o A r 1 4 3 E 0 m -I 1 1 "2 In .. rn 7 7 -40-k ok:\I M'k CAM - . Pool ,4-u0•Ai _ ti v1/4.ACI :3 8 iST:1 X cs-AA 4 00,1, -pa u GI\t,A.CD ,103 rOH d Q bad' 1\4 °0 :ON 90r 0 1 ae — 9 -3.04,0 "..)14\1 1 Beam Shear bcoi:= 5.5-in (4x4 post) d:= tg–2-in := 0.85 b:= Width b =48-in V,,:_ 4:1:••4• fc•psi-b-d V,=35.36-kips 3 Vu.– qu r b – col b Vu= 16.26 kips < Vn=35.36 kips GOOD 2 Two-Way Shear bs:- 5.5-in Short side column width bL:= 5.5-in Long side column width b,:= 2-(bg+ d) + 2-(bL+ d) bo=74-in 3c:= 1.0 V"Miln:= 4 + 8 fc•psi•b-d V,= 106.08-kips C 3 3.0c . Vim= := 0.2.66• fc psi-b•d Vnmax = 70.54-kips /44:= qu[b2 –(bc0i+ d)21 V„= 31.26-kips < Vnmax = 70.54-kips GOOD Flexure 2 Mu•- qu (b –bcol) (1)1) Mu= 14.39-ft-kips 2 2 At:= 0.65 2 S:= b d S=0.782-ft3 `"" 6 Ft:= 5 fc psi Ft= 162.5-psi Mu ft:_ — ft= 127.75-psi< Ft= 162.5-psi GOOD Use a 4'-0"x 4'-0"x 15" plain concrete footing Plain Concrete Isolated Square Footing Design: FG, fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity "(cont:= 150-pcf Concrete density "(soil:= 100•pcf Soil density gall:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 7072-lb Pd1:= Totaldi Totalll:= 13304-lb P11:= Total11 Ptl:= Pdl+ P11 Pti=20376.1b Footing Dimensions tf:= 15-in Footing thickness Width:= 48-in Footing width A,:= Width2 Footing Area gnet:= gall —tf--(cone lnet= 1313-psf Ptl Areqd gnet Areqd= 15.525 ft2 < A= 16 ft2 GOOD Widthreqd:= Areqd Widthreqd= 3.9441 < Width=4.00 ft GOOD Ultimate Loads Pd1+t f-A-'leonc Pu:= 1.4-Pdl+ 1.7•Pll Pu= 36.72•kips Pu qu:= A— qu= 2.29•ksf Beam Shear bcol:= 5.5-in (4x4 post) d:= tt--2-in := 0.85 b := Width b =24-in V„:= (1)•4• fc psi•b•d V,= 10.88-kips 3 Vu.— qu r b b2 col b Vu=3.01-kips < Vn= 10.88•kips GOOD Two-Wav Shear bs:= 5.5•in Short side column width bL:= 5.5-in Long side column width b,:= 2-(bs + d) + 2-(bL+ d) bo=54-in Rc:= 1.0 Vim:= 4 + 8 J fc psi b d Vn=32.64-kips 3 3•(3c Vri,,ax :_ x-2.66• fc•psi•b•d Vi,n,ax =21.71-kips ,VK„:= qu.[b2 -(bcol+ (1)2] V„= 5.35•kips < Vax =21.71-kips GOOD Flexure u 2 Mu:= qr b —bcoll (1) 6 Mu= 1.16-ft-kips • I\ 2 J 2 A:= 0.65 2 1:= := b•d S =0.148•ft3 "" 6 Ft:= 5- Ft= 162.5-psi M ft:= n ft=54.45-psi < Ft= 162.5-psi GOOD Use a 2'-0"x 2'-0"x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F7 fc:= 2500-psi Concrete strength fy: 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity 'foam:= 150•pcf Concrete density 'Ysod 100-pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 1200-lb Pdl:= Totaldi Total11:= 3200-lb Pll:= Totalll Ptl Pdl+ P11 Pt1=4400-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 24-in Footing width A:= Width2 Footing Area nw net gall – tf'"'Iconc net= 1375•psf Ptl Areqd:= chid Ared = q 3.2 ft2 < A=4•ft2 GOOD Widthregd JAregd Widthregd= 1.79-ft < Width=2.00 ft GOOD Ultimate Loads -= Pd1+ tf'A'^Yconc Pu:= 1.4-Pd1+ 1.7-P11 Pu=7.82-kips Pu qu:= — qu= 1.96-ksf A Beam Shear b�1:= 3.5-in (4x4 post) d:= tf–2-in := 0.85 b:= cos(45•deg)-Dia b = 12.73•in Vu:_ (I)--4• fc•psi•b•d V„=7.901-kips Vu – qu(b -2 col b Vu=0.91-kips < Vn= 7.901•kips GOOD Two-Way Shear bs:= 3.5 in Short side column width bL:= 3.5 in Long side column width bo:= 2.(bs + d) + 2•(bL+ d) bo= 54-in (3c:= 1.0 Vim`:= �•(4 + 8 J c•psi•b•d Vi,=23.703•kips l3 3•0cJ Vnn,ax := 2.66- fc-psi-b-d Vrunax = 15.76-kips /4,:= qu.[b2 –(bc01+ d)2] Vu=–0.31•kips < Vnmax = 15.76•kips GOOD Flexure 2 Mu:– qu (b – bcol • 11•b Mu=0.18.ft•kips (I\ 2 2JJ it:= 0.65 b-d2 S=0.123•ft3 6 Ft:= 5.(13.• fc•psi Ft= 178.01-psi Mu ft:_ — ft=9.9-psi < Ft= 178.01•psi GOOD Use a 18" Dia. x 12" plain concrete footing Plain Concrete Isolated Round Footing Design: f5 f�:= 3000-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity 1'00nc 150-pcf Concrete density 'Ysoii 120•pcf Soil density gall:= 1500-psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldi:= 619-lb Pd1:= Totaldi Total11:= 1600-lb P11:= Totalll Pt1:= Pdl+ Pll Pti=2219-lb Footing Dimensions tf:= 12-in Footing thickness Dia:= 18-in Footing diameter Tr-Dia2 A:= Footing Area 4 net gall —tf-Icon gnet= 1350-psf Ptl Areqd gnet Ared=q 1.644 ft2 < A= 1.77 ft2 GOOD J Areqd-4 Diareqd Diareqd = 1.45-ft < Dia= 1.50 ft GOOD Tr Ultimate Loads Pdk= Pdl+ tf'A•-1conc Pu:= 1.4•Pd1+ 1.7-P11 Pu= 3.96-kips Pu qu A qu=2.24-ksf Beam Shear bcol:= 5.5•in (4x4 post) d:= tf—2•in 41):= 0.85 b:= Width b =30•in Vu:_ 4• fc si•b•d Vtt= 13.6-kips 3 vu:= qu(b b2 colt b Vu=4.97.kips < Vn= 13.6-kips GOOD Two-Way Shear bs:= 5.5-in Short side column width bL:= 5.5•in Long side column width b,:= 2-(bs + d) + 2.(bL+ d) bo= 54-in �c:= 1.0 NVQ.= -(4 + 8 ). fc psi•b•d Vu=40.8•kips 3 3.0c Vmnax 2.66 fc psi b d Vnmax =27.13-kips ,�Vyy�:= qu•[b2—�bc01+ (1)2] Vu=9.71-kips < VI,r,tax = 27.13-kips GOOD Flexure ( Mu qu. I b —2 J bco1J2 11 b Mu=2.54•ft•kips 2J A:= 0.65 2 = bd S=0.185•ft3 6 Ft:= 5.4• fc•psi Ft= 162.5•psi Mn ft:= ft=95.19-psi < Ft= 162.5•psi GOOD Use a 2'-6"x 2'-6"x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F3 fe:= 2500-psi Concrete strength fy:= 60000•psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density soil 100•pcf Soil density gall:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 2363-lb Pd1:= Totaldi Total1,:= 4575-lb P11:= Totalll Pt1 Pdl+ P11 P11= 6938.1b Footing Dimensions tf:= 10-in Footing thickness Width:= 30•in Footing width A:= Width2 Footing Area gnet gall —tf'1'conc net= 1375•psf Ptl Aregd:= gnet Areqd = 5.046•ft2 < A=6.25 ft2 GOOD Widthreqd JAregd Widthreqd=2.25-ft < Width =2.50 ft GOOD Ultimate Loads U:= Pdl+ tf'A'-lconc Pu:= 1.4 Pd1+ 1.7•P11 Pu= 12.18-kips Pu qu:= A qu= 1.95•ksf Beam Shear bcol 5.5•in (4x4 post) d := tf—2-in 0:120 := 0.85 b:= Width b =42-in V,,:_ 0.-4• fc•psi.b•d V„= 23.8-kips 3 Vu.— qu(b-2 colt b Vu= 9.8-kips < V,=23.8-kips GOOD Two-Way Shear bs:— 5.5-in Short side column width bL:= 5.5-in Long side column width 110:= 2-(bs+ d) + 2-(bL+ d) bo=62-in Rc:= 1.0 0•(4 + 8 ) fc-psi•b•d V„= 71.4-kips 3 3•13c := 4).2.66• fc-psi•b•d Vax =47A8-kips ,vyy;= q„-[b2 —(bc01+ d)2] Vu= 19.49-kips < Vax =47.48-kips GOOD Flexure 2 Mu:= qu- (b —2 JI bcoll C 11 b Mu= 7.45-ft•kips l\ 2 J At:= 0.65 2 S:= b•d S =0.405-ft3 Ft:= 5.4).J fc-psi Ft= 162.5-psi Mu ft:= — ft= 127.79-psi< Ft= 162.5-psi GOOD Use a 3'-6"x 3'-6"x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F4 fu:=2500•psi Concrete strength fy:= 60000.psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity '(cone 150•pcf Concrete density ''(soil 100.pcf Soil density gall 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 5001-lb Pd1:= Totaldi Totalil 7639.1b Pll:= Totalll Ptl Pd1+ Pll Ptl= 12640-lb Footing Dimensions tf:= 12-in Footing thickness Width:= 42•in Footing width A:= Width2 Footing Area clnet gall –trYconc tlnet= 1350•psf Pt1 Areqd gnet Ared = q 9.363-112 < A= 12.25 ft2 GOOD Widthregd Areqd Widthregd = 3.06-ft < Width=3.50 ft GOOD Ultimate Loads = Pd1+ tf'A''(conc Pu:= 1.4-Pd1+ 1.7•P11 Pu=22.56-kips Pu qu — qu= 1.84•ksf A Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength E,:= 29000•ksi Steel modulus of elasticity 'Yconc:= 150•pcf Concrete density "Isoil 100•pcf Soil density gall:= 1500.psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 2659-lb Pd1:= Totaldi Totalll:= 7756-lb Pll:= Totalll Ptl Pdl+ P11 Pti = 10415•lb Footing Dimensions tf:= 10•in Footing thickness Width:= 36-in Footing width A,:= Width2 Footing Area net:= gall —tf'Yconc einet= 1375•psf Pt1 Areqd:= gnet Areqd = 7.575•ft2 < A= 9•ft2 GOOD Widthreqd Aregd Widthregd=2.75-ft < Width = 3.00 ft GOOD Ultimate Loads 2;411,:= Pdl+tf'A'"Yconc Pu:= 1.4•13d1+ 1.7•P11 Pu= 18.48-kips Pu qu:= A gu=2.05•ksf Beam Shear bcol 5.5-in (4x4 post) d:= tf—2-in := 0.85 b:= Width b =36-in Vn:_ 0 4 fc psi b d Vn= 16.32-kips 3 Vu.— qu(13bcol)cb Vu=7.83-kips < Vn= 16.32-kips GOOD Two-Way Shear bs:= 5.5-in Short side column width bL:= 5.5-in Long side column width bo:= 2-(bs+ d) + 2-(bL+ d) bo= 54-in 13c:= 1.0 Vim:= 4 + fc• 8 psi-b-d Vn=48.96-kips (3 3-(3c Vumax := 0.2.66•Jfc-psi-b-d Vnmax =32.56-kips NVvbY,:= qu[b2—kbc01+ d)2] Vu= 15.88-kips < Vax=32.56-kips GOOD Flexure [(b —bcol 2 1l Mu:= qu 2 (-2 J•b M„=4.98-ft-kips A:= 0.65 2 S:= b-d S=0.222-ft3 Ft:= 5.0•0•4357i Ft= 162.5-psi M ft:_ ° ft= 155.47-psi< Ft= 162.5-psi GOOD Use a 3'-0"x 3'-0"x 10" plain concrete footing *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. *The required flexural reinforcement considers at least the minimum reinforcement * I design bending moment is calculated at the critical sections located at the support faces *Only rectangular footings with uniform sections and rectangular columns are considered. *The nominal shear strength is calculated in critical sections located at a distance d from the support face *The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces *Transverse reinforcement is not considered in footings *Values shown in red are not in compliance with a provision of the code *qprom=Mean compression pressure on soil. *gmax=Maximum compression pressure on soil. *Amax=maximum total settlement(considering an elastic soil modeled by the subgrade reaction modulus). *Mn=Nominal moment strength. *Mu/(4•*Mn)=Strength ratio. *Vn=Nominal shear or punchure force(for footings Vn=Vc). *Vu/(4)*Vn)=Shear or punching shear strength ratio. Page4 r Controlling condition S2 Condition qmean qmax Amax Area in compression Overturning FS [Lb/ft2] [Lb/ft2] [in] [ft2] (%) FSx FSz slip S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 4) • 0.90 Min rebar ratio 0.00180 Development length Axis Pos. Id Ihd Dist1 Dist2 [in] [in] [in] [in] zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4)*Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip*ft] [Kip*ft] [in2] [in2] --- ------------ - ------------ zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 " 11= Shear Factor 4 • 0.75 Shear area(plane zz) 3.10[ft2] Shear area(plane xx) 2.92[ft2] Plane Condition Vu Vc Vu/(4)*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 2111= yz D2 8.68 48.88 0.237 zzlismiM Punching shear . Perimeter of critical section(b... : 4.67[ft] Punching shear area3.31 [ft2] Column Condition Vu Vc Vu/(4)*Vn) [Kip] [Kip] column 1 D2 - - 29.25 104.29 0.374 Notes Page3 „ ,...- i- Length 4.25[ft] Width 4.25[ft] Thickness 1.00[ft] Base depth 1.50[ft] Base area 18.06[ft2] Footing volume 18.06[ft3] Base plate length 5.50[in] Base plate width 5.50[in] Column length 5.50[in] Column width 5.50[in] Column location relative to footing g.c. Centered Materials Concrete,fc 3.00[Kip/int] Steel,fy 60.00[Kip/in2] Concrete type Normal Epoxy coated : No Concrete elasticity modulus . 3122.02[Kip/int] Steel elasticity modulus : 29000.00[Kip/in2] Unit weight 0.15[Kip/ft3] Soil Modulus of subgrade reaction 200.00[Kip/ft3] Unit weight(wet) 0.11 [Kip/ft3] Footing reinforcement Free cover : 3.00[in] Maximum Rho/Rho balanced ratio : 0.75 Bottom reinforcement//to L()o) : 644 @ 9.00" Bottom reinforcement//to B(zz) : 644 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 : DL S2 DL+LL S3 DL+0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL+1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip"ft] [Kip*ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings -Insufficient development length,Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03[Lb/ft2] Min.safety factor for sliding 1.25 Min.safety factor for overturning • 1.25 VA Bentley Harper Houf Peterson Righellis Inc. .VA. Cu n•rent Date:6/24/2010 1:41 PM I system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318-05 Footing type Spread Column type Steel Geometry F 11 01 —fl 2 in £ k 4.2$ft ~) £ { 1 i ft 4.25 ft ft X2.13 ft"+'2.13 ft:1 t -4.25 ft WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Rear Load WoodWorks®Sizer 7.1 June 22,2010 13:57:37 Concept Mode : Reactions at Base of Structure View Floor 2 : 8 ' jV 0 1600L 1600E - ; 619D 619D' § r, '_ 13274 L 3304 Lr 7153 D 7072 D j 315 L 358 DL-, ✓ ri -- --- 100L 96D !1'74(84 611L 452 D 5546 D 03D 2 ° 908 L • ,46 D 307 - = 245E ,, -. 3D y.. :‘..z> ■ 374 D elejjss 3599 _ _ n 209 LD 2587 L, X2587 L 154 D 8 D 19u6 3D E. . 1963 D 2_... 2219 D DLL 725 L - X78 D7 DJ 617 D D "-'B8BCCCCC.C•u ,C CCOCCC,CCCC' CO :C 'CC 1�� C {'2,_. �, .5v._5C DDD-D,DE I.EEEEEEEE-E:8EEEEEEEHEIEFEEZ A u l. 12 13 155, 2,"J22248828 } 32'7-4' 8,-8 :C 42 4- t s 5'32:88'38' . A - .657.. 1 t ', 1-'2:2 2,12332332332-23133...2.'1::8,5.;1 ,. -;4F 4. zz:L'4 .. 35 8-`?..6-,--3,!8A8 6 %7 _ OOTt \ LPectour WoodWorks®Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 22,2010 13:57:56 Concept Mode : Reactions Base of Structure View Floor 2 : 8 ' (5- _ ... __ _. _ _. -49'--€ V y --.4-...;v,,> 1600 L 600 L u u -'i 619D 619D 4,5 .. .,.a 4 , r 1193 L153 2404 L , 2404 L -'` 625 D105911439 D 1394 D 5 s 7 315 L 358 D :,� _, r 315E M ss 100 L �+ 358 D 96D -- m* ■ ' 74(847 5611 L 756 L .3 4052 D 5546 D 'g--0 D r, 625L 5 D , n 203 D = 5 D 908 L ' 46 D 105 307 245E 50 L { ^, - - 3D : ._-- Oc74s C , z 599 87 L 587 L , 209 LD8 DI.1963 D — 1963 D 4 u 1540 2rauD_. 112363D -, 78 Di D 106 D EEE 3; ` C-., cf:CC ,-,0- OC c 1.: - c 015.,J ,_.J 1-,'53,D.CDLK,r'2).+D DC, t D E,I- --c "r rE 2 .. - 2 ._ -i i .22 2„..2 2...z...22.3'3'....l.r .,. .:. . 4- .. L _.77,3455_ L 5 6,5 5 5 7-7 TOOT k N*1 el t., pci 0 OT4 7 -ONST U COMPANY PROJECT 1 WoodWorks® SOFTWARE FOX WOOD DESIGN June 8,2009 16:27 Hand RaiI2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : I5a O Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft,Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 10 51 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 ' 1.00 1.00 1.00 1.00 - 2 Fop' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. narper oHPt HOUfPeterson COMMUNICATION RECORD Righellis Inc. To❑ FROM • MEMO TO FILE❑ Ei,GIHEEI'._.PLAMER:: L a•,ns;:1PE Ar,cIu recrs-sur+vavo;t PHONE NO.: PHONE CALL:fl MEETING: TiM CO m O m Lit yT i„ " Thciv1 N.M. C. ,i .. izi t k IC r 11 Ts n > U Ii 7 6 C. r. 1 n 40 I :.:, o m O Q U1 1 1 e Harper HP HoufPeterson COMMUNICATION RECORD Righellis Inc. To 0 FROM 0 MEMO TO FILED ENGINEER., , PLANNERS LAnc::.:Aa::ARGr.ITECT.,>;u^.VErol:: PHONE NO.: PHONE CALL:El MEETING:E o "0 I:0 m xi S L_ o (a 27.1 rf Sv d s 8 L ° 0 0 Q7 5 .T it 7 16 V, q (5,) F; (� I c----1 I 1, ) 1 . , { } 3 � I 67- I ` m I z narper Houf Peterson 0HP Righellis Inc. TO 0 FROM El COMMUNICATION RECORD MEMO TO FILED Fiqr,INL'Etr:,.PLA,;:;ER: LA,D,CAFE ARGIIITECT3,.-,uftvEY0,,S PHONE NO.: PHONE CALL:0 MEETING:0 M 13 G —I --"T PI u75 o 7.9 '.? 0 tp It 33(a) :D ---1 .--, () ii it 3) 6- 2 o ., ri) CP 1 i 03& 0 co 6 k.....) ‘r, '.-- c) Z r w 0' ' 0 01-0 D fr cp 0 --C- (flct+ — kl.. Cl a- 0 0 -. •C3 Iril -4" 2 (. , 9.3 1 . • „........--- --ii- c., ,, .• ,,..." ...r.,” iZV do 0 ti ..t 4 ..,. ..,.. , 1.) 8 _J. IV -, , 4 C/J 1 ;4-3 El,' 1\ e--• \_../ I,. ............................m•r Lil\ I 1 , , v —I N --i 0 0 , I- 0 z p ) . ; BY: Arettt"9 ir (...p.141tA DATE. JOB No 1 Ai 4 P ROJ ECT: RE: i, t.) P,IA e (..1\I'9 [2x L il Z V 1--- 0 w 0 2 N Pt k 1._ C Pr-PfCt T'N/ (t Lci CiAT,IY-CP:) I 2 tii 0 , 6 O w it, o z a . tu o ct o_ Z • a t CAPRC. CrY i , o IV ri_bil_ ) (2 board‘\ -Pc i \\ 0 _ = 1-1 c-DL p- a ___A,v_____ L1 i 0 1- ,--__ - J ct 0 COC'47 -3 — Lt. Z w D 6 1 i i i kA.) ,A t. I \ — 11 i 5 v,---F- 1 i i .1 C.. , .) 11, ,. . . 7)c-- E ; i ,. ,0 n L2 ) SI rsrviD4- iN a.) 0-1 e ' 2 C T Z `.. (> 0 Cl.& ) . -= So CI # (VII\(.2) = 30544_ x412_1' e__ 12" 0,( , Harper Houf Peterson 0HP Righellis Inc. To[i FROM LI COMMUNICATION RECORD MEMO TO FILE LI PHONE NO,: PHONE CALL:0 MEETING:LI X T al m X, -< B fr, — c--. E -ii Il 3 G i I 11," 4 11 c 1 (1) 0‘3 a 11 (*----‘c 1,:\ T) -- 03 (../) -0 ,-S) di ?'"1 CA '-'-' :t, Cil 1 n _.3 6- •^."'"1 rk2 1 1 I A./ (-- 11 ,......- a .,4 ..c) r, m „.......c$ 4 —id it c-fl )1 for ..9 ti) -.0 ) , ( 11 .w., L., i 0 z 0 fil-] ,.., Harper Project: Houf Peterson. Client: Job# Righellis Inc. EN GING ENS•C'S•54 F- Designer: Date: Pg.# LnNpS,:APE:AftCFtii[C t'S�S4i N'I,YOft 10. lb 8-ft-20-ft Wdl= 1600-lb Wdl ft2 Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl Ip :_ 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa-Ss Sml := Fv'S1 2-Sms Sds Max EQ, 5% damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp := 2.5 (Table 13.5-1, ASCE 7-05) Fp = .4ap Sds'lp C1 + 2-z I-Wp EQU. 113.3-1 RP h Fpmax:= 1.6-Sds-lp.Wp EQU. 13.3-2 Fpmin:= .3-Sds'lp-Wp EQU. 13.3-3 Fes:= if(Fp >Fpmax,Fpmax,if(Fp <Fpmin,Fpmin,Fp)) F = 338.5171.1b Miniumum Vertical Force 0.2•Sds-Wdl=225.6781-lb Harper Project: '�t• Rout'Peterson Client: Job# R.ighellis Inc. E N':IrtcE� ?l:h Nt4"s Designer: Date: Pg.# LANI)3C.A?c AHC-F:•Ceti43tiH�£YOR D-e Wdl:= 10 Ib -8-ft-20-ft Wdl= 1600-lb G� D SI✓ , ft2 Seismic Forces Site Class=D Design Catagory=D Wp Wdl Ip:_ 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa-Ss Sml := Fv-S1 2-Sms Sds:= Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1, ASCE 7-05) . p 4a •Sds. z - Fp:= Rp •(1 + 2-h Wp EQU. 13.3-1 Fpmax 1.6-Sds-Ip-Wp EQU. 13.3-2 Fpmin .3-Sds.Ip•Wp EQU. 13.3-3 Fes:= if(Fp >Fpmax,Fpmax,if(Fp <Fpmim Fpmin,Fp)) F =338.5171•lb Miniumum Vertical Force 0.2-Sds.Wdl=225.6781-lb COMPANY PROJECT I WoodWorks° SOFTWARE FOR WOOD DETRA June 24,2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs.psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5-c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w- 71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 364 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25_362 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_332 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31_j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 334 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39-367 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41-349 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43-'63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45-365 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 366 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49_368 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51_369 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 372 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55_773 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): xr a X7 s z I' ; . , ,_ a_, t. ;= s. o I ' 201 l Dead 7189 6822 Live Total 7189 6822 Bearing: Load Comb #1 • #1 Length 2.16 2.05 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x22-1/2" Self-weight of 26.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 74 Fv' = 238 fv/Fv' = 0.31 Bending(+) fb = 950 Fb' = 2038 fb/Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L/585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending(+): LC #1 = D only, M - 34217 lbs-ft Deflection: LC #1 = D only EI= 8756e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). II • COMPANY PROJECT III II I WoodWorks© SOFTWARE FOR WOOD DE57GN June 24,2010 13:23 b34 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 plf 11 c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23 j28 Dead Partial UD 47,7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 27_j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33-'34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35-j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_-j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45 j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51 j69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53- 72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 plf W1 Wind Point 5850 0.00 lbs W2 Wind Point -5850 4.00 lbs W3 Wind Point 5850 11.00 lbs W4 Wind Point -5850 17.00 lbs W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): ""tJ s I 10' 201 Dead 7189 6822 Live 156 302 Total 7238 7018 Bearing: Load Comb #2 42 Length 2.17 2.11 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x22-1/2" Self-weight of 26.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 74 Fv' = 238 fv/Fv' = 0.31 Bending(+) fb = 950 Fb' = 2038 fb/Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L/585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending(+): LC #1 = D only, M = 34217 lbs-ft Deflection: LC #1 = D only EI= 8756e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live 5=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT ill Wood Works 144 0 June24.201013:20 b34 LCZ SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Saar 7.1 LOADS(tbi Pst or PE): Liad Type Eis--ltution Magnitude 1rsallon [ft] =pets Star, End S,Eir7 End 1 wEZ =ear Partial UE 113.2 5.13.2 0.00 2.00 pif 'Entre Partial JE 79.5.0 7P5.0 0.00 2.00 plf 3_,79 Dead Partial J2 61t.5 61/.5 7.52 11.00 pl., 4-4423 Snow Paittlal JE 501.2 301.2 17.50 11.00 plf 5-,15 Dead Err:, 1435 12.02, "'d 5_,15 Pre* Poior 2404 11.01 Ite 7 r15 Dead 13E3 17.00 1:7, E ri,S :77.7w E7E,7 2404 17.00 Its ,-.4454 2,,, Partial CD 517.3 517.5 17.0, 15.00 plf IT.w54 Snow Partial NE ,01.2 501.2 17.00 le.so plf 11-7311 Dead Print 622 7,00 Its If-,e1 11,2 1.. 13-7,2 Dead 522 4.00 =Pe 14-rd: 11,2 Its 15-...-62 Dead Parffal un 613.2 61322 2.00 4.00 plf le-w63 .3,3W Fait:al UD /25.0 7,5., 2.00 4.0C. pif read Partial DE 517.B 527.5 12.00 20.00 pif 12:,-52 3nre Partial US .101.2 au, 2 12,00 2,0, pif L:'!"--::7 Sear Partial DE E-1.7 513.2 7.00 7.50 pif Show Partial SD '25.1 7,5.0 7.G., -.50 p:f 22-164 Live Partial JO 160., 150.3 17.00 le.. plf 1 23-122 Dead Peril,JD 47.7 47.7 4.50 7.5, plf 1 24-123 Live Partial CD 150., 150.0 4.5, 7.50 plf 25-152 Dee, Part,a1 127, 47.7 47.7 2.50 11.0, plf ' 25-152 Llve Partia1 CD 160., 150.0 7.50 11.00 plf , 27-,4. Oead Parrial JD 120.2 120.2 0.00 2.00 pif ' Live ZE-142 Partial 12D 270.0 370,0 0.00 2.00 plf 23-132 Dead Partial JD ,2^' .2,- 3.50 4.00 plf 30-7,32, Par,lal jE 2-0.= 370.0 3.50 4.00 pif 21-133 read Partial J, -2,' 17,- 4.50 7.50 pif 32:0,23 Live Pariial V, 320.0 370,, 4.5, -.5, plf '.:14.::! Dead Partial DD 120.2 1,1'., 7.50 5.00 p1f _, ,_, Fait_al 2D 370.0 3,0.0 7.5, 5.00 pif 32-135 Dead Faitial 1.57 120.2 120,2 5.00 11.00 plf 35:132 Live Par,lal 02 370.0 370.0 d,01 11.00 plf ''0," Dead Partial UD 121.2 120.2 11.00 17.00 plf 3,142 Par,ial JD 270.0 220.0 11.00 17.00 pif Dead par,ial JE I'D- 120.2 2.00 3.5= plf 41 157 Far,ial UD 370.0 270,2 2.00 3.50 plf 41 149 Dead Par,ial SD 120.2 120.2 4.00 4.50 pif 42:14. Live 41_1E3 Dead Partial 100 47.7 47.7 11.00 17,00 pif 44 1E3 Live Partial JD 160.0 1E0.0 11.00 12.00 plf 43-1E5 Dead partia0 22. 47.7 57.1 1..00 20.00 p1f 4E-1E5 Part,:SE 1E1.3 150.= 12.00 2,00 plf 42-1E, Dead Partial JD 47.2 47,7 4.0, 4.50 pif 42-1SE live Partial UD 160., 160.0 4.01 4.50 pif 50_1E5 live Partial DO 570.0 370.= 17,Q Ir.,: plf El 1E3 Dead Partial U2 1=0.2 120.2 15.0, 20.00 plf 5=-1E3 Live Partial SD 370.1 370., 1,10 20.00 plf 53-172 Dead 2artial UD 47.7 47.7 1.00. 4.00 pif 54-172 Live Partla: um 150.0 150., 2.1'0 4.00 pif 5E-172 Live Partial CO 1E0, 1510.0 0.00 2.00 p:f WI- Wind Print -2E50 Its Wind Prin., 55E0 its W3 Wind Point -BeBo 11,0 Its N4 Wi., Print 5E52 17.00 Its NE Wind Prin, 20,S, Its MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in):,L'.:,:=:;::Z,; :;,.,,.„,„=;=', It,:,.,f!:;!':,=?f.:,.,,,,,,,;,=,,,,,-,,,,„,,„,._,-,-=, .e..,--,4t;Ar.x; -zr,-;;: ,--: i.,.-;,.:zi;,....,. 7.,,,,a,,,,,e,a,sh-aaa,,a,ese,e,,,st,s,,,,aaaa,aahar hx.saaaaseas,ezahsehaesess-,,asahSeese-a,4,,,,,,,a,,,,,,,hattea,asehl=s,,,,MtratEas,Jseesh7e7,- --,,,4aeha as.;.,a,:,7,a,:,_,-„aaa.,aa,;aaa,a;aseaee ;--hras,.6<a;_af.aa;J,,ha;aSa, "'""::',-7.4",.-7,-; 74.ZZ,r7=1C':-T, . .=.1rixf,17:,.- -,tv«;71,,7--zyz,-.,:r7 .21',1,7:,n;:Z77.:r:r.,f".7?-77- 7,:,;:=':7':',-:::-. •`:. .'-,;=-':'::7' :. ;„1..,;,,,-,,,,-,- 'Dead 17409E 1E355 29-5 Dotal I-2E1 1730.1 Searing: Drat trdt 42 43 Lenrth 5.21 Glulam-Bal.,West Species,24F-V8 DF,5-118x22-1/2" Setfwveigia 0(26.55 plf included in bads; IJJami aaPPorti top=fira bottoms at supports Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 20041: • 2..v.e.-22n inalvaie Value Dealdn Value AnalveieiCeeirn fv- 122 Eenring,-, ft.-23,2 fh/Ft. e 0.42 Live Eef1.2, 0.41- 2,231 0,7- 1/0161 0.51 Total Seri', 0.54. 2/294 1.10- 2/240 0.d4 ADDITIONAL DATA: 2,472ORS, Eirl 22 02.1 2: 22 CV Sf2 Dr Cfrt Mites Er 1,-.a Fop' 550 - 1.01 1.00 - 2272, Ch SE,ILion 1.0a 1.3) - Bendin211V: 2,42 =02.75t,,,M- 351,2 Ite-f, Def1.-lin: 2,d4 -Et.-35.2,3-0, 51- 375.2ele 1,-102 :2-dead Delioe 27-snrw W.wind Ieirpact C-sinstruitirr. ELd-ornrentratert Pell 1.1.1,are:ivied in the Aneipela ru,pri, Lrad=7,in-et-fens: ICD-IE, DESIGN NOTES: 1.Please venfy that the default deflection limas are appropriate for your applicabon. 2.Glulam design values are for materials conforming to AJTC 117-2001 and manufactured in accordance with ANSI/AITC A1901-1992 3.GLULAM:bird w actual breadth 0 actual depth 4.Glaam Basins 4a04 be lalwallY supported according to the provisions of SIDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(compn). COMPANY PROJECT 111 I i c 0 I IWO 0 d Wo r kO June 24,2010 13:19 b34 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sizer 7.1 LOADS uw,pw,orrou: Load Type Distritutitt, Magnitude :25-5,1,, Efti Units =tart Enr Start En, 1 4462 Deac Partial U2 6,3., 5." 0.00 2.00 plf 2-w62 37.59: Partial UD /95.0 795.0 0.00 2.00 plf 2-w2P 2aad Partial U2 617.5 617.5 7.5, 11.00 plf 4-wO5 Onsv Partial:2 F01., 5', 7 7.50 11.0: plf 5-T15 2saP 2-- 1426 11.05 lcs 6 r15 Once Print 2404 11.01 its -,7_,-; 2ead Print 1299 17.00 "s F rib Ontw rtint 2404 17.00 's 9 4464 Das, Partial um 617.9. 611.5 11.00 15.50 p2f 1T,we: Snrw Partial UD F01.2 901.2 17.00 19.00 rlf 11-c91 Dead Print 61,2 7.00 lEs 12-,62. Snre ;tint 1:92 Ira 12:c6.2 °ea, Point 62, '" 15-5402 Dead Partlal 27. 623.2 912.2 2.00 4.00 pif 19-w53 :in:, 25_2,1 UO 195.0 755.5 2.9: 4.00 plf 17--w9-9 Dead Partial U=2 91/.1 617..5 ../5 22-00 plf Snew Partra.1.2 201.1 :01.1 .5 0, 10.00 plf 19_5471 Dead Pa-c'al UD 613.2 613.2 7.00 7.50 pif 20_w114 Sncw Partial 02 7E5.0 795.5 1.2C 7.52 plf 1:_j64 Dead Partial 02 47.7 47.7 17.00 le.. plf 22_9164 22._yle Liva Partlal 02 290.0 192.0 1-.00 19.00 plf -ear Partial un 47., 47., 4.50 1.50 plf 2431, Tiva Partial:2 le,.., 160.: 4.5, 7.50 plf 25362 Dead Partlal UD 47.7 47.7 7.50 11.00 plf 1.6_je, Live P2f,i,UT :50.: 160.0 7.52 11.00 plf 27 j49 Dead Partial 047. 120.2 120.2 .2.00 2.00 plf 25-j49 ' Partial 02. 370.0 270.0 0.0: 0.00 plf ,P-j32 rear Partial:2 1,0.1 rt./7 2.50 4.00 Flf as-13a live Partial 22 3,,, 37a, 2.50 4.,, plf 31-j23 2ead Partial:2 1:0.2 120.2 4.5:2 7.50 plf 32-333 33_1, ,eaP parr2a,my .79 7 ,20..p. 7.5D 5.00 pif 24_J34 rive Partial..,n 1,5.: 27,2 1.52 5.00 pif 25355 2aad Partial:2 110.2 1,0.2 1.22 11.09 plf 36 J35 Partial 0.2 372.2 270., .1.00 11.00 plf 37 j4, Da" Partial 02 1,0., 120., 11.25 1-.0: plf 2934, 29 JS- Partial 22 2-2.: 27E., 12.1.0 17.00 plf Dear Partial U2 1:0., 122.2 ,.0-2 2.5: plf 40 167 1,2va Parttal 02 3-3.2 270.1 2.2., 3.52 plf 41:j44, Peed Partial UP 12D.: 120.2 4.02 4.50 pi:, _ive Partial U2 2,3.0 310.0 4.00 4.50 plf 43 jC, 2ear Partial 02 47.7 47., 11.0: 17.00 p2f. 44-2:63 Live Partial U2 160.0 160.0 11.00 27.09 plf 45:j65 Dead Partial UD 47.7 17.7 ,5 -, '90.00 ,if 463:65 Liva Partial 22 151.0 1E5.0 IF.00. 20.90 pif 4,166 Sear Partial:2 47.7 47., 4.00 4.5: p2f 45:360 Partial U2 15,2 160.0 4.02 4.5, plf 4R;CP ,aar Partial 22 1,2.1 '7/, 27.2'2 1,00 plf 50-159 Partial 22 FCC.: 270.0 17.09 iS.05 plf 51-jCP Pear Partia::12 2,0., i,c.: le.D, ,,,s plf or,vp. Lit, Partial 02 2-2.0 370.9 15,0 ,O.:0 plf 5337, "" Partial 02 47.1 47.7 2.00 4.00 plf 54 9.1, Partial 02 160.0 150.: .1.05 4.32 pif 55-j73 2aar Partial:2, 47.7 47.7 0.50 2.20 plf 9.6-173 live Partial OD 1E0.0 :53.0 2.00 2.:0 pif W2.- Winn Fria., 16a W2 Wind paint 5950 1' W3 Wicr Point 11.00 1" W4 Wind ?mint 11.00 '" WE W2na Print -5550 its MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): 1=7===4-;:r.. -.-7.! :7;'..7,1Z.,===,-=`,.; :.=.'..Z",;.=:-=7"-nla7,:"..;.=.: ,:.- ::.-,n,.-.V.";21:.7: ::::::.:;..T.::::,:;Z: -...:.. . .;-;=:;:•.; ;;;;;,;;;:i::::::::.2.-;-=:=;.'" ' " "' "-. =;.---,,. 4956 3,-.7= Tutal 27261 Pearin, Laar Car. 43 5.% Cana, Glulam-Bal,West Species,24F-V8 DF,5-1/8x22-1/2" Self-weight 01 2055 plf included In loads, Lateral support,tope fulL bottom.M supports: Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005 C7.-a7,-5 Analysis Value Desian Value Analysis:57es,, si-,ar Pending:5: fr-2271 1.5.-26:4 fr/Fr.'- 0.92 Total 2efl'n 2,4= 14294 1.3e- Li240 0.94 ADDITIONAL DATA: PECCORS: 3/3 cc , c: cl. , f, , f, S5ear :LC 42 -2-.15022,1,V- 2-35l4 V dealyn- 1,290 2rs --,a' ,..4, --,n 2.50:0eac Trad Daflartirn, 5 Li-4e 1,3-.Oefleitiin. 12edead L-liye Sean,. W=virE leIrpact Deurnstructi/n 21r-rrn--r--.5=5: (E.2.1 LC's are lisreE in tr.,5nal:-sis ru.iput: =car rechinaticns:,22-2152 DESIGN NOTES: 1.Please verify that the default 400.0009 4099 are appropriate for your application. 2.Glulam design values are for materials conforming InSETS 117-2001 and manufactured in accordance with ANSPAITC 41901-1992 3 GLULAM,Sod e actual breadth 0 actual depth 4.Glitlam Beams shall be laterally swooned according to the provisions of NOS Clause 3.3.3_ 5.GLULAM,bearing length based on smaller of Fcp(tensiors),Fcp(corrin). . . .1 COMPANY PROJECT Ik c 0 1 ill WOod Wo r k3 June 24,2010 13719 b34 LC1 1 I SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Sder 7.1 LOADS i iw.vo,or Plf Ida, 7,,e 7istributidn 3,271tude Lcuatl, :ft] I:nits i Start 'End Start End i 1 556, Dead Partial'JD 613.1 613.1 077 2.2, plf 2-w62 Snaw Partial UD 7,5.3 7,57 700 2.00 plf 5-w2S Dead Partial DD 617.5 617.5 7.60 ,, . plf read Partlal'47 517, 9072 7.50 .11., plf 1436 11.OD Ids . 6,15 7,56 Ptint 24. 12.00 Its 7:616 ,, =eee 17.20 Ips 5-p,, .Pni., ,int 2404 17.00 1,s n we, Dead Partial CD 617.5 6175 17., 15.. pif IT wE4 Sn7w Partial UD 511.2 A7 7 177, 15.39 plf 11-'6: Cead Paint 6. 7.2, Its . 12:461 1192 lts 14_,62 Sntw Psinz 11,, 4., lts 1 ,1,,,, Partial UD 613., 613., 2.30 4.00 plf . Sn7,- Partial UD 7E5.0 7P5.1 1.00 4.0, plf . 17-wE5 Dead ue-,:eu. p.,...:u= 501.2 S01.2 1-2.01 20.00 plf IDT-5,1 Dna, Partial DD 613., 613.2 4.00 7.7, plf 20 u-'1 Partial UD 775.6 755.0 7., 750 plf ,1-1-64 Dead Partial D, 47.7 4'7 170, 15.00 plf 7,-164 Partial UD /6,7 ,40... 17.0, 15.00 alf . 23-1,5 Dead Partial CD 47.7 47.7 4.5, 7.50 plf :4-J=e Par7i,DO 160.D 16.0 4.50 750 plf 25_162 De, Partia1 DO 47, 47.- 7.5C :1,, plf ' .16, Partial DD 1670 160.0 7.50 11.00 plf 27 145 Dead 25 145 live Partial'SD 3773 37,7 0.30 2.00 pif ,5-13.2 Dead Par-.1a1 DD 1207 1..2 3.50 4.0, plf 3S-j,2 Partial CD 3'0., 3707 3.5, 4.10 plf 3.133 ',T.-',' Partial CD 120.2 170.2 4.5, 7.50 pif 32_133 Partial 27 377, 37,7 4.50.- 750 plf _ - a4 7,34 Partial 27 3,7 e==., 7.5, ,..1 plf 35-135 Deau Partl,D7 377.2 I.., 5., 11.DS plf 36-135 Partial C7 3707 310.0 3.10 1175, plf ' 37-1, Dead Partial'27 127, 1,0., 11.30 ==., pl5 39:167 =ea, 4D 167 41-1414 Dead Partial,,, 150.5 ,5C., 4.,C 4.5, 5717 42-14, LiVe Partial CD 477.3 3770 4., 4.5, pI5 43-163 Dead Parti, CD 47.7 47.7 II., 1710 P=f 45-165 7ead Partial CD 477 47, 15., =,.=, p14 46-165 47-.56 Seed Partial CD 47.7 47.7 :.6, 4.53 pl: 45-156 live Partial CD 1470 1,7 47, 4.5, pli 7.ead Partial. 12.7 1.7 1730 1570 pid e=-Jee Partral CD 37.... 373., 17. 147, plf 51-16, Dead Partial DJ 120., —7' 15.02 Z0.70 pia 52-16P Fartia1. 3717 3'70 15.7 .70 plf :r-.7.7 Dew, Partia1 DD. 477 477 2.3, 4.00 pif Partla, U, 160.1 .7 0 171 4.00 plf ! 53_173 Dead Partial. 477 477 076 2.00 plf 16 7'3 Partial CD 1.., 5,D., =.=° 1.00 pif WI' wind 555, 0.0, 1ds W2 FrInt 115n W3 Wind Point 5550 Ina Wd Paint 1773 Its WE Wird Pui„ lts MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): ---------=z1'1=7:1•%7-;-,"-•==r-7::::=:=7=7,,=;,.-=----_-:-r-•-• ••!••-•,-:::,:,.-Z7 7:::.: n-:=7.;-•,;Z::: :::,: ::; .•;.!=';',::::=,:=V2,7:::,-1•1":::::::7,7,77::::!.;:,::::;;:c::.1-=:::: ',Z: ri-;.=t ::;:i- :=;.7:n'tl'IrS. ,L;:*,i 4.._1„:„;;;,=7-!:z.=',17,"" 7-1-FEY,4- 7,'"'7;77,7.ii-.1.,7::::b=,:*-IZI:=7.•!-•;:::: :7,7--;77-1=7•;:::::=77. --",,277,77t.,-r:T.:7;;;•=7, :15n:7.:7'7,77';:*T;7:- ;:=7,1-7-"'''7',2Z`r--",--7,-P-1,7-2,-" V'-',,Ir'=',. .V°.-=', 1.:7:-7-=Z;;;C7=-7,-, ',:i'----------Z,-.:--------7::::-`•:.:--t :;•••-::";,•--,•::'- .-Z"---';`:,,,-.7,;;;="er7r-,,;.,1:--,1".:.:f-:L.,:.,,,..).6---,-;7;--; Dead Lg._ ,.., 21,, 5",- 12172 Eea,17,, 1,,a,..Damr 44 44 lend, 5.57 Glulam-Bal.,West Species,24F-V8 DF,5-118x22-1/2" Self-weight 012E55 01i:waded in loads; Lateral support tope full,bottom=It supports; Analysis vs.Allowable Stress(psi)and Deflection(in)wing Nos sops 77--7-0. Analvnis Value 7esidn Value Analvets/Desidr. 76, ADDITIONAL DATA: FA7TORS: 7/7 DD , 77_ 72 71 .7f2 Tr Cdr. ,,tes 7n 10.74 ,.e 5111.0.7n 172 1.77. - :dial neflettlan=1.57Dead..„Dwd, , .! -L,:re',ad Deflertiin. fAll 10,are,i5tuz,n,,,e Analysts..40,, Icad udn,inatfrns: IC,,, DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Gluten design values are for materials conforming to RITC 117-2001 and manufactured in accordance with ANSUAITC 5100t-1902 3.GLULAM:bed e actual breadth 0 actual depth_ 4.GiuNm Beams shall be laterally supported according to Me provisions 0(605 Clause 333 5.GLULAM:bearing length based on smaller of Fophension),Fcp(comph). COMPANY PROJECT fit WoodWorks® SOFTWARE OR WOOD DFSIGA June 24,201013:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2-w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4_c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10_w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19-b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUM R : •. .,_ . ,• c -: , • ', - try , " a�.,.r s I ° -u+..----f ',=- ..<•-mac £e rg --: '.. ., '.. - , ..,, r..s -r - 10 . �3,,,Nw--x'-" } -TC,,,> r.- ;.'-`"iia. .:fi x.. ' - r. s tr "" " -4-7----,.-„,-,--&!' 'te . _ :::-.:„:„,.,- --='-•:,5=--i'313.1, 21.----7,... . «-.,..- -r _ ,-arrz.� r- :; y .. `- u, - � a � -^ i l o' 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 3.76 LSL,1.55E,2325Fb,3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 356 fv/Fv' = 0.44 Bending(+) £b = 1295 Ph' = 2674 fb/Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D+_75(L+S), V = 6822, V design = 5122 lbs Bending(+): LC #3 = D+.75(L+S), M = 12340 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOODmb L ps June 24,2010 13:11 b13 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 911,c4:9 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 pit 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 pit 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 pit 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 pit 19 j38 Live Partial UD 250.0 250.0 3.50 6.50 pit 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 pit 1 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind 21-_2.t, -6590 3.00 lbs W3 Wind 6590 0.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM - _ •. .. _: 'I `a�; �' max *" f ., '• `'- 4 � . •-- -` 34u,b.-�,« ., - ,;. .�..-,° -#. ' sA _ - - arm - � . � , , fi - « ''T.:"'''''-'-,SZ ._ x ,-. - .. -� ,_.,0_`.a.3' ;,�-'-'"'r..., >: "_o-�. .--s A x d o' at Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 • 6822 A Bearing: Load Comb # #3 Length 2.121 .20 2.44 LSL,1.55E,2325Fb,3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 356 fv/Fv' = 0.44 Bending(+) fb = 1295 Fb' = 2674 fb/Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Co LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear LC #3 = D+.75(L+S), V = 6822, V design = 5122 lbs Bending(+): T-' #3 = D+.75(L+S), M = 12340 lbs-ft Deflection: LC #3 = D+.75(L+S) EI=Deflection)6 lb-int Total Deflection = 1.50(Dead Load + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT i WoodWorks° SOFTWARE fOR WOOD DESIGN June 24,2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8-w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9-c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11-c65 Dead Point 165 1.50 lbs 12-c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15 w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 j36 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20-j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22 j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23 j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26-j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) - r...,4,7,-,,,,z.--.-7:„.-.2,,,:7.„,:,te ...,,, .., ,...n �. ..,..""1 7 ,AA g . e. I o' 121 2207 Dead 2207 4811 Live 4826 7018 Total 7033 Bearing: #4 Load Comb #4 Length 2.51 2.51 LSL,1.55E,2325Fb,3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 158 Fv' = 310 fv/Fv' = 0.51 Bending(*) fb = 1735 Fb' = 2325 fb/Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Ey' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 6557, V design = 5170 lbs Bending(+): LC #2 = D+L, M = 16527 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. 1 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer.' 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT Ili WoodWorks® SOFEWAREFOR WOOD D£SJGA June 24,2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4-c19 Live Point 1050 9.00 lbs 5-c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8-w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9-c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Poipt 225 1.50 lbs 13-w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15-w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16 w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17-j36 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19-j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20-j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22-j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23 j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24-345 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 j46 Dead Partial UD 17.0 17.0 10.50 12.00 p1f 26-j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28 j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): ,; , ..,ma - ._ P.-.1'-'-- -_":.:-' .;., - a �rr _ # --ate-•- ,�� ,- r _--,„_. "'.-.' ,. s-az. """ c . e'm g, ., A,.'c- "-'ter',^ _. ` ,'" ,m., ..- a - ",.",:n&'1`r ac A A 10' 121 Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb #2 #2 Length 2.34 2.34 LSL,1.55E,2325Fb,3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 158 Fv' = 310 fv/Fv' = 0.51 Bending(*) fb = 1735 Pb' = 2325 fb/Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Pb'-! 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' B00 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 6557, V design = 5170 lbs Bending(+): LC #2 = D+L, M = 16527 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT i 1 WoodWorks' SOFTWARE FOR WOOD DESIGN June 24,2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM R CTIONS llbsl and BEARING LENGTHS linl : a _ t matin F �z ►/ 2 • ru IO' 61 Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 Length 1.73 1.90 Lumber n-ply, D.Fir-L, No.2, 2x12", 2-Plys Self-weight of 8.02 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 97 Fv' = 207 fv/Fv = 0.47 Bending(+) fb = 805 Fb' = 1035 fb/Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - 1.00 1.00 3 Emin' 0.58 million 1.00 1.00 - - - 1.00 1.00 3 Shear : LC #3 = D+.75(L+S), V = 3239, V design = 2190 lbs Bending(+) : LC #3 = D+.75(L+S), M = 4247 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 285e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT 1111 oodWarks® SOFTWARE FOR WOOD DESIGN June 24,2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4_w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 p16 10 j25 Live Full UDL 370.0 p16 WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM R CTIONS(Ibsl and BEARING LENGTHS(in) : , > ` x ''`x ' k`� ': r`a _ sr �- ' '7 _e 14t:.,,,' ait',, rt ': s'''`;'f:5"a�. :,1` *$' -1:',A-v.e " '^'"kms,. x' :. a,, . .,,, Lts 0. • 0' 61 1389 Dead 1436 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n-ply, D.F.ir-L, No.2,2ix12",2-Plys Self-weight of 8.02 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 97 Fv' = 207 fv/Fv' = 0.47 Bending(+) fb = 805 Fb' = 1035 fb/Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt C.i Cn IT Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 1.00 1.00 - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Emin' 0.58 million 1.00 1.00 1.00 1.00 4 Shear : LC #3 = D+.75(L+S), V = 3239, V design = 2190 lbs Bending(+) : LC #3 = D+.75(L+S), M = 4247 lbs-ft Deflection: LC #4 = D+.75(L+S+W) EI= 285e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. ANAL- DATE (.0 aoko JOB No: CE CtOO PROJECT: RE: Beams wi likkfcti 9,ea_ChaCtS, 7 71 Lu ‘CeiaiN-N -) Jo kk O w w O 2 Noect -3 --) Walls aoalot aoa, a 0 earn 1 kAKA,Vt.s 2‘.0-6 Lii awl 0 \o earn 1-1 \duo\(k. a0 i da ao 0 kiye (Aka Ceo,0:1 ricy >> Se IsSyy-N c_ rear_ 2 r UJ1 ',34) C okci‘vrfA 0 2 0 E 0 • Z Lu E 6 0 • eL 1L) I) a: 0 .bn COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:52 c55 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs, psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 b30 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): sa �Nr, b+;;' x t m` ,� lttiT�n.:�t.. .. a==.:r r '. , .a .^ 3 »,A`kk h l ,,,h e*"e t .n 0' 8' Lumber Post, Hem-Fir, No.2,4x4" Self-weight of 2.53 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value .Design Value Analysis/Design Axial fc = 31 Fc' = 470 fc/Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc/Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 384 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT ill WoodWorks® SOFIWAR£FOR WOOD D£SK;N June 24,2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 267 (Eccentricity = 0.00 in) 2 b21 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): ..feec,' ,,.. _-i T r.� ,a^ay�`..r, ns fir•,',,rm ,. " 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 2-Plys Self-weight of 2.17 plf included in loads; Pinned base;Loadface=depth(d); Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress (psi) and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 106 Fc' = 171 fc/Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc/Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1108 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. dr gym*. Pt. COMPANY PROJECT fit WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 b13 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): DY k k..' ` `.'S.`5' 4 '4,-''rte. �... wS a°3, „ . f,�'.€ -Te; 0' 8' Lumber n-ply, Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base; Loadface=depth(d); Built-up fastener: nails;Ke x Lb: 1.00 x 8.00=8.00[ft]; Ke x Ld: 1.00 x 8.00=8.00[ft]; Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 393 Fc' = 443 fc/Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc/Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 6186 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT l WoodWorks� SOFTWARE FOR WOOD DESIGN June 24,2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 b13 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs): 3 �# mom€+»' . ` ,."'` � ��n "� %�.' ?�'�;..-����, �"�;.,. � � f',e,c'I 0' 8' Lumber n-ply, Hem-Fir, No.2, 2x6", 3-Plys Self-weight of 5.11 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Desig Axial fc = 328 Fc' = 439 fc/Fc' = 0n.75 Axial Bearing fc = 328 Fc* = 1644 fc/Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 8126 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT fi l WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS ([bs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l_c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c23 Live Axial 4320 (Eccentricity = 0.00 in) 3—b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 b10 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 8' Timber-soft, Hem-Fir, No.2,6x6" Self-weight of 6.25 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 346 Fc' = 492 fc/Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc/Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 10465 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT fit WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2 b9 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): Y" Spyk- ' NIktfc4A c 0' 9' Lumber Post, Hem-Fir, No.2,4x6" Self-weight of 3.98 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 303 Fc' = 379 fc/Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc/Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 5834 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l_c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 bl0 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 8' Timber-soft, D.Fir-L, No.1, 6x6" Self-weight of 7.19 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 701 Fc' = 820 fc/Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc/Fc* = 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 21214 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT • 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ins,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 bl Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): srs ' ' + ` 0' 8' Lumber n-ply, Hem-Fir, No.2, 2x6", 2-Plys Self-weight of 3.41 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener:nails; Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 196 Fc' = 980 fc/Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc/Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 3236 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks® SO'tWARE FOR WOOD DESIGN June 24,2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2 j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3 j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4 j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5 j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live Partial UD 370.0 370.0 1.50 3.00 plf MAXIMUMREF^ .,...., ,.. . ...,.r.Ur% . • ' '� t -**0 Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2,2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 31 Fv' = 180 fv/Fv' = 0.17 Bending(+) fb = 254 Fb' = 1080 fb/Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 743, V design = 444 lbs Bending(+): LC #2 = D+L, M = 557 lbs-ft Deflection:,LC #2 = D+L EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT ill WoodWorks® June 24,2010 1315 b34 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 5507.1 LOADS(limostwoff): load 75,e Distritutirs Magrt17ude ',station .1. Units Start En= Start End Dear Partial UD E13.1 613.1 0.90 1.00 pif Snow Par... 395.0 263.9 0.09 1.00 plf 3 3036 Dead Par7ial 22 1111.5 .7.5 7.50 11.00 plf Snow Partial. E..3 901.3 /.. 11.00 pif o-r15 Dead Poini 1436 . snow 2,1,. ,4:4 Its -rIE read Poi, 13,.. lb. 3...,4 1-oel read Filo, EE, Ire 111,21 Poi,. II. Its 4-o62 Snow Frio, 1191 4.30 lbs 5:w63 Dead Partial 20 2.19.1 .5.2 1.00 4.00 pli E w. Snow Partial=9 '65.9 7 Pe.5 1.0, 4.0', jilf 7-1,5 read Partial. 513.5 812.5 :e., 10.90 plf Snow oa=tia- . 391., .1.: le.:o 10.00 pif 5-w7, read =arida..UD 613.1 5.- 2.00 7.59 rlf Partial UD 795.9 295.0 7.00 7.50 plf 1-164 Dead Partlal JD 47.7 41.2 13.90 15.00 plf 2-1E4 7artial. 1E9.0 .0.5 1,..ao 15.00 pif -3-j. Dead 9artial. 4,.7 4,7 4.5C 7.50 plf 4-115 live Patti.Ur 1E0.0 .0.0 4.50 7.5S plf E-1051 Dead Par... 0.7 al, 7.5, 11.00 plf 6:1e, Live Partial UD 1E0.0 1E9.9 7.59 11.00 plf .0 44= read E-145. live Far.,DD .9.9 310.0 0.09 1.00 plf 3-13, read 0-131 Live Partial CD 375.0 379.0 3.55 4.0C rlf -1-j33 =ea, Partial. '--' 1,0.1 4.EC ,.as plf 311:193 live ?artial U2 310., 329.0 4.E, 3.60 rlf 33,34 Dead . 34_13.1 Partial Ur 379.7 3'0.0 1.50 9.00 pif 35 J3E Dead Partial'Dr 110., 1,9.3 9.99 11.00 p1f --1".1 live Partial=1 3 0.9 3,5.5 5.90 1-.00 rof read Partial Ur ""3 110.2 11.00 1/.00 p1f 3=-141 Partial JD 3'0.1 370., 11.00 17.00 plf 39:167 rea= Partlal DO 11.0.1 110.2 1.00 5.50 pif 40 JE/ Partial Dr 379.9 370.5, 1.30 3.10 pli read Partial=2 7--1 43--- 4.0, 4.50 rlf 417146 live Partial Ur 330.5 370.0 4.09 4.50 plf 43 je3 Dtad Partial UD 43.3 43.7 11.90 11.00 plf 44-j63 Partial Dr. 1E0.0 1E0.9 11.90 11.00 pif 45-j=5 read partia0,,..,- ,7.7 47.7 ,e., 10.00 plf 4E-1E5 Partial UD 160E0 .5.0 15.99 10.00 plf 43:1. Dead Par7ial'JD 43.1 47.3 4.00 4.50 plf .te J. live Partial Jr 1E0.9 169.9 4.00 4.50 plf 49 166 read Partial Jr 110.1 110.1 11.00 '9 20 rlf 50-J. live Partial Ur 370.5 370.0 12.00 13.90 pif . 51-169 read Partial=00 120.1 1,0.1 le., 95.00 r1f El j69 live Partial,jr 311.0 370E9 le., 19.90 plf aa-?, read Partial. 41.1 47.7 1.0C 4.90 plf 54-17, Partial UD 150.9 1E0.0 .09 4.90 rlf 55.3 read Partial UD 47.3 47.7 0.09 9.00 plf 55-473 Par.,'ED ,60., :60.0 0,0 1.9, olf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): '=',Z,:;;;;:.:=',::,7;:::"..:,,',=;;;;;;;..;f:=;;:=7,Z;-;;;;-7.1g;...... :.:;:.,:: 7,L-Z.7,:,1,:.:-.:,,„:.;.:::1_:',::!:Z.ff,..: ::::-;_:,=::::-,Z;;,::,:;;;a'.:::,7:::;:ail,',-::=-.,:i-,--;; ;-„,,..:,:„;...-'1-:',:,;;;_-_-,,;,,-:,;•,-:,:,1,:„;.-:,.,:.,,-.:,, ,,_,r..T. _:--.; 1-2A. rea, 104.' 21, .317 99. 9515 'Dotal 1236, 11105 'Searing: Liad Door 43 03 1.5,7, 5.51 Glulam-Bal.,West Species,24F-V8 DF,5-118x22-1/2" Self-weight 0126.55 plt included in loads, Lateral support,top.ha,b06001 N 5,,PP0d.; Analysis vs.Allowable Stress(psi)and Deflection(in)„m,,g Nos 2005: -='=-3=-0 Snalisis Val4e Deslan Yaloe Analysis/Lest:9 Sa.ear fv= 15, Sendios, fs.1.1 ft/Ft.= 1,1 9.54 ADDITIONAL DATA: 974.070.: 11/5 Cr 174 Ct D-o 95' rfo Dr cr. Notes 9, E9. 3,7,152i-, 'Er 01 -Dc.15,E..),M. 32.159 lts.fr ,All EC's are listed in the Analysis rotpot, liad oscrinarions: 1,23.59. DESIGN NOTES: i Please verify that the default deflection Mats are approprWe for your application. 2 Glutam design values are for materials conforming to AFC 1171001 and manufactured in accordance with ANSI/NIG A190.1-1992 3.GLULAPA:bad a actual breadth x actual depth_ 4.Gleam Beams shall be laterally supported according to the provisions of NOS Clause 3 3.3. 5.GLULAM:bearing length based on smaller of Fcp(tersion),Fcp(cornan) 0its aft ...... a . COMPANY PROJECT IIIt l WoodWorks SOFTWARE FOR WOOD DESIGN June 24,2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End l j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3 128 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4-j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9 j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12-j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : I0' 204 Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 #2 Length 0.67 0.67 Glulam-Unbal.,West Species,24F-V4 DF,5-118x12" Self-weight of 14.16 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 49 Fv' = 265 fv/Fv' = 0.18 Bending(+) fb = 1082 Fb' = 2400 fb/Fb' = 0.45 Live Defl'n 0.43 = L/553 0.67 = L/360 0.65 Total Defl'n 0.69 = L/350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 2219, V design = 1997 lbs Bending(+) : LC #2 = D+L, M = 11095 lbs-ft Deflection: LC #2 = D+L EI= 1328e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT fit WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 pif 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS11bsl and BEARING I FNGTHS (inl :A - °� -tea. A 4 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analyss/Design Shear fv = 15 Fv' = 180 fv/Fvi' = 0.08 Bending(+) fb = 140 Fb' = 1170 fb/Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - 1.00 1.00 2 Shear : LC #2 = D+L, V = 364, V design = 253 lbs Bending(+) : LC #2 = D+L, M = 359 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. /1 ..e* • COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live Full UDL 60.0 plf MAXIMUM REA(=TIANS/Ihc1 and RFARIN(+ I FNCZTHS lin) • .,�.- � Q.;>.im.... ,: 10' Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* "Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 9 Fv' = 180 fv/Fv' = 0.05 Bending(+) fb = 90 Fb' = 1170 fb/Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 151, V design = 111 lbs Bending(+) : LC #2 = D+L, M = 132 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load" Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DFSCGN June 24,2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w33 Live Partial UD 350.0 350.0 9.00 12.00 plf 3_c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8 w34 Live Partial UD 350.0 350.0 0.00 3.00 pif 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs • 13 j36 Dead Full UDL 113.7 plf 14_j36 Live Full UDL 350.0 plf 15_j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19_j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21_j46 Dead Partial UD 17.0 17.0 10.50 12.00 pif 22 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : - :� -" 10' 121 Dead 2351 2351 Live 4350 4350 Total 6701 6701 Bearing: Load Comb #2 #2 Length 2.39 2.39 LSL, 1.55E,2325Fb, 3-112x14" Self-weight of 15.31 plf included in loads; Lateral upport:top=full, bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 163 Fv' = 310 fv/Fv' = 0.52 Bending(+) fb = 1769 Fb' = 2325 fb/Fb' = 0.76 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.43 = L/333 0.60 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 6701, V design = 5314 lbs Bending(+): LC #2 = D+L, M = 16851 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT ill WoodWorks° SOFTWARE FOR WOOD DESIGN June 24,2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 516 5.00 lbs 6_c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf ll_j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12_j37 Live Partial UD 310.0 310.0 6.50 6.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15_j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b- 15 Live Point 389 3.50 lbs 19 b- 32 Dead Point 225 6.50 lbs 20-b32 Live Point 693 6.50 lbs 1 MAXIMUM REACTIONS lbs and BEARING LENGTHS in : - y- y � :rte_,rte. S,t,;14 -7-"--Z--1:7=7: 11, " - '' 10' 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2.44 LSL, 1.55E,2325Fb, 3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 356 fv/Fv' = 0.44 Bending(+) fb = 1295 Fb' = 2674 fb/Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D+.75(L+S), V = 6822, V design = 5122 lbs Bending(+): LC #3 = D+.75(L+S), M = 12340 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 11. COMPANY PROJECT ! WoodWorks® SOFFWARPFOR WOOD DESIGN June 24,2010 12:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS I lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 0.00 4.50 No 3_c39 Dead Point 267 2.00 No 4 c39 Live Point 822 2.00 No 5 j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 j33 Dead Partial UD 120.2 120.2 1.00 4.00 No 8 j33 Live Partial UD 370.0 370.0 1.00 4.00 No 9 j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10 j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 Dead Partial UD 120.2 120.2 4.50 7.50 No 12_j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13 j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14 j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15 j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17 j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 j47 Live Partial UD 370.0 370.0 7.50 13.50 No 19 j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20 j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21 j49 Dead Partial UD 120.2 120.2 0.50 1.00 No 22 j49 Live Partial UD 370.0 370.0 0.50 1.00 No 23_b32 Dead Point 300 3.00 No 24 b32 Live Point 922 3.00 No MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): 10' 4.-6" 16-61 1180 Dead 452 4067 1180 Live 847 11291 Uplift 12 4616 Total 1300 15358 Bearing: #2 Load Comb #2 #2 1.#2 Length 0.50• 4.24 1.27 Cb 1.00 1.09 'Min.bearing length for beams is 1/2"for exterior supports Glulam-Unbal.,West Species,24F-V4 DF,5-118x12" Self-weight of 14.16 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 158 Fv' = 265 fv/Fv' = 0.60 Bending(+) fb = 1074 Fb' = 2400 fb/Fb' = 0.45 Bending(-) fb = 1396 Fb' = 1844 fb/Fb' = 0.76 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - 2 Shear : LC #2 = D+L, V = 8357, V design = 6496 lbs Bending(+): LC #2 = D+L, M = 11006 lbs-ft Bending(-): LC #2 = D+L, M = 14310 lbs-ft Deflection: LC #2 = D+L EI= 1328e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams. 4.GLULAM:bxd=actual breadth x actual depth. 5.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR WOOD DfSICN June 24,2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2_j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3_j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5 j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6-j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7 j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8_j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9-j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10 j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11-.j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12 j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13-j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14 j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15-j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16-j53 Live Partial UD 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 'k, s, mvam m--.' T$ r, ,,, ES,A. , WWa-,. a t�_-4 , ,. Ar IWmW N-r T +Y , . "s "Y # .. 'ia s#., is aim a z a+- aft ' gft,Te,-5',ZI,F,Oft,F,Oft;- . " 44,PA 'Faa -• ., aN644€.?4-,5 sZ" m a " a- .r-. --r, .......^� ,.., 4,a., -,;» -fi s-..azx,*'.4messr. ..yivq,~,,a,. .,. .>. u`5"k.'.. s t*;*',r,^e' .a,.. a ,:,' .1".#X.,€'* x,A _ ,.,,r 10, 12_ Dead 1478 1478 Live 4320 4320 Total 5798 5798 Bearing: Load Comb #2 #2 Length 1.74 1.74 Glulam-Unbal.,West Species, 24F-V4 DF,5-1/8x10-1/2" Self-weight of 12.39 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 138 Fv' = 265 fv/Fv' = 0.52 Bending(+) fb = 2217 Fb' = 2400 fb/Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 5798, V design = 4953 lbs Bending(+) : LC #2 = D+L, M = 17395 lbs-ft Deflection: LC #2 = D+L EI= 890e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Full UDL 113.7 plf 2 j14 Live Full UDL 350.0 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : , frfz ,mss `fig ,��.,�* �## "�..-4.--.. . 'r-'�:, a, fr ',''''',4',« �,t.,%t� `, ,: °vire ;s;;,.,. < �t,i4- 1 � �,Y ?„. A 10' 61 Dead 357 357 Live 1050 1050 Total 1407 1407 Bearing: Load Comb #2 #2 Length 0.75 0.75 Lumber n-ply, D.Fir-L, No.2, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 77 Fv' = 180 fv/Fv' = 0.43 Bending(+) fb = 963 Fb' = 1080 fb/Fb' = 0.89 Live Defl'n 0.07 = <L/999 0.20 = L/360 0.33 Total Defl'n 0.10 = L/712 0.30 = L/240 0.34 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 FCp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1407, V design = 1123 lbs Bending(+) : LC #2 = D+L, M = 2110 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. ,e . - COMPANY PROJECT i 1 WoodWorks' SOmvAHr RIR WOOD DESIGN June 24,2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ftl Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4_w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 444 5.00 lbs 6 c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf MAXIMUM R CTIONS fibs)and BEARING LENGTHS(in) : S ra.;,,,- 4. x { ti"s x 1 ,z a ., -,k04, ,' s;r k .,.b' 4 ' 4 ., e � "A ' 4' as a `"� -ems k 4,� :- , s�-f am -. ..1.n?? s2'k' K a ` `' 9 _ mea ad'& �;,'� P ' 34, 1 0' 6i Dead 1436 1389 Live 1803 1803 Total 3239 3192 Bearing: Load Comb #3 #3 Length 1.73 1.70 Lumber n-ply, D.Fir-L, No.2,2x12", 2-Plys Self-weight of 8.02 plf included in loads; Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 97 Fv' = 207 fv/Fv' = 0.47 Bending(+) fb = 805 Fb' = 1035 fb/Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 3239, V design = 2190 lbs Bending(+) : LC #3 = D+.75(L+S), M = 4247 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 285e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT i i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:43 b3 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_j45 Dead Full UDL 17.0 plf 2 j45 Live Full UDL 25.0 plf MAXIMUM REACTIONS(lbs) and BEARING LENGTHS (in) : ,:far.*fi a g ^t� ;e, - , a,-0-- -ate't'i_ ,r0,.-$7, '`: '- "# 10' 94 Dead 106 106 Live 112 112 Total 218 218 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Glulam-Unbal.,West Species, 24F-V4 DF,3-118x9" Self-weight of 6.48 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: • Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 265 fv/Fv' = 0.04 Bending(+) fb = 140 Fb' = 2400 fb/Fb' = 0.06 Live Defl'n 0.01 = <L/999 0.30 = L/360 0.04 Total Defl'n 0.03 = <L/999 0.45 = L/240 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 218, V design = 182 lbs Bending(+) : LC #2 = D+L, M = 491 lbs-ft Deflection: LC #2 = D+L EI= 342e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). n C , t COMPANY PROJECT I WoodWorks' SOFTWARE FOR WOOD DESIGN June 24,2010 12:42 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w61 Dead Partial UD 613.2 613.2 2.50 3.00 plf 2 w61 Snow Partial UD 795.0 795.0 2.50 3.00 plf 3 c61 Dead Point 622 2.50 lbs 4 c61 Snow Point 1192 2.50 lbs 5 j28 Dead Full UDL 47.7 plf 6 j28 Live Full UDL 160.0 plf 7_j 33 Dead Full UDL 120.2 plf 8 j33 Live Full UDL 370.0 plf MAXIMUM RE z �, 'u: s Vi. `- -�„t�:� of xI+e. , x ^; fi,.,,, ,-,ac. ,f s 2r Itif 5 m ate. i z a,,, '. ' %.41.:a+,,W1`*as � :-;t:,- --' � 4 ; -.":0414, a �"`'T -43, �xd. •t5 �v �" .x*. ter, "-c�i,„44-'',4;,41.::* 0 j 0 3i Dead 391 1061 Live 795 1615 Total 1186 2676 Bearing: Load Comb #2 #3 Length 0.63 1.43 Lumber n-ply, D.Fir-L, No.2, 2x10",2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 67 Fv' = 207 fv*/Fv' = 0.32 Bending(+) = 331 Fb' = 1138 fb/Fb' = 0.29 Live Defl'n 0.r)01:01 = <L/999 0.10 = L/360 0.04 Total Defl'n 0. = <L/999 0.15 = L/240 0.05 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - ' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear LC #3 = D+.75(L+S), V = 2676, V design* = 1237 lbs Bending(+): LC #3 = D+.75(L+S), M = 1178 lbs-ft Deflection: LC #3 = D+,75(L+S) EI= 158e06 lb int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:itis assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceedingis times the depth and that each ply is equally top loaded.Where beams are side loaded,special fastening details may be required. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 24,2010 12:58:40 Concept Mode : Column View Roof: 25 ' 105,, c42 c43 c44 c45 '' sy v - n ,...:'d-': c46 Zc47 ::: c , c51;;50 c52 !c53 =. .,1 MS y� - WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 24,2010 12:58:38 Concept Mode : Beam View Roof: 25 ' v. P b23 b24 M ti M} w▪:, - _ b25 - Q b27 b28 '' LCO MP WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN 1 Unit A-Front Load WoodWorks®Sizer 7.1 June 24,2010 12:58:42 Concept Mode : Column View Floor 3 : 17 ' ;.. c62 c61 c15 c16 `;. r c17 _y jcl8 4 c39 c24 c23 r c60 E c37 , EDSISBEIMli ,:. c35 ._ c6 '367) , � -: � c66 , c63 " •�'` ->r1 c756520 c1c6c74 ._ _. [ ,G�_ _____2,2_ _ . moi/ - ... . 77,..,.2 _2 _ _ .�� -, _, WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 24,2010 12:58:44 Concept Mode : Beam View Floor 3 : 17 ' lOb f, 4t J b35 b6 v b7 -0 b9 b22 _ , t, b20 b21 0s b1tb17 b34 b8 :_.- . t ....-7,',-_-:=.. 5-.. Z . 7:10-7 .71:.1 ..a 2":2'... 7- ,._� 2_...-7'1'2'7 7. E _..,_.__ _ ,- T N_7_ _u._ ..__"_ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Rear Load WoodWorks®Sizer 7.1 June 24,2010 13:14:35 Concept Mode: Column View Floor 2 : 8 ' 1111���V i ��(3.) c58 c14 IJVa J n•= z , 4 c82 c81c F1 „ e J. c3 ., U c25 c12 c26 c72 c2 ' c73 a F c3 c78, c77 .c31 c76 c71 - << t . , ='c30 c32 c55 t s c56 ' r_ ., _:v, 3_"�_4_=_:,C,;;'-'-'," _ _-2(-- .. . C_ _� _ a- {,_ - - v_ -z - _-___ ._�. Woodworks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Rear Load WoodWorks®Sizer 7.1 June 24,2010 13:14:33 Concept Mode : Beam View Floor 2 : 8 ' ry4 Ni?--• U.)Pi' b31 2 b34 7 ,..., 4 ,-,...... e b2 b10y_.' b33 _-; b32 b19915 3 =tb4 b14 b30 b29 .: ;S _,3 .:.:_.-,,C _CC,L. _ O_ CCC".....,._U 17., _7-i.:_.._D I1.7 O'Jr.._ DE:_--- _ L _ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 24,2010 12:41:19 Concept Mode : Column View Floor 2 : 8 ' Liv r LORD 1, 7", 4;c58 c14 1_. - < -est c69 c2 c70 c71 4:-"t„) a, grxmons4 - 4 r. w yu. c3 3 - c25 c12 c26 c72 c2 Foe= c73 .,_c-D c3 v c78, ri c77 c31 c76 c79 = .....: . ''c30 c32 w'i _ c55 c - - r -- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN il Unit A-Front Load WoodWorks®Sizer 7.1 June 24,2010 12:41:17 Concept Mode : Beam View Floor 2 : 8 ' -Ve)`{dr, 1�p b31 J ;; 5ecl :, Y b1 y SI ■ ■ ■ x b2 cs b10 my -, b33 b32 b1015 3 _ b4 b14 b30b2 b3 II ,, ii 1 I — WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load Woodworks®Sizer 7.1 June 24,2010 12:49:04 COMPANY I PROJECT RESULTS by GROUP-NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Trusses Not designed by request (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 2x8 By Others Not designed by request (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 206 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 Typ Wail Lumber Stud Hem-Fir Stud 206 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf Jet Not designed by request Sloped Joist Lumber-soft D.Fir-L No.2 2x6 @16.0 (2) 2x8 (1) Lumber n-ply D.Fir-L No.2 1- 2x8 (2) 208 Lumber n-ply D.Fir-L No.2 2- 228 By Others Not designed by request By Others 2 Not designed by request (2) 2x12 Lumber n-ply D.Fir-L No.2 2- 2x12 5.125x10.5 Glulam-Unbalan. West Species 24F-V4 DF 5.125x10.5 4X6 Lumber-soft D.Fir-L No.2 4x6 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 4x6 Lumber Post Hem-Fir No.2 4x6 (3) 206 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses Not designed by request Mnf Jst Not designed by request Deck Jst Lumber-soft D.Fir-L No.2 208 @16.0 (2) 2x8 Lumber n-ply D.Fir-L No.2 2- 2x8 3.125x9 Glulam-Unbalan. West Species 24F-V4 OF 3.125x9 408 Lumber-soft D.Fir-L No.2 408 By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 1- 2010 5.125X12 GL Glulam-Unbalan. West Species 24F-V4 OF 5.125x12 By Others 3 Not designed by request 3.125x14 L5L LSL 1.55E 2325F6 3.5x14 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 4x4 Lumber Post Hem-Fir No.2 404 4x6 Lumber Post Hem-Fir No.2 42(6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 606 Timber-soft Hem-Fir No.2 606 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 204 606 nol Timber-soft D.Fir-L No.1 6x6 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 204 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA Group Member Criterion Analysis/Design Values Mnf Jst Mnf Jst Not designed by request Deck Jet j65 Bending 0.41 Sloped Joist j30 Bending 0.10 Floor Jst4 unknown Unknown 0.00 (2) 28 (1) b35 Bending 0.47 • (2) 2x8 b8 Bending 0.89 3.125x9 b3 Bending 0.06 408 b30 Bending 0.12 By Others By Others Not designed by request By Others 2 By Others Not designed by request (2) 2x12 b6 Bending 0.93 (2) 2x10 bl Shear 0.78 5.125X12 GL 610 Bending 0.76 By Others 3 By Others Not designed by request 5.125x10.5 b9 Deflection 0.95 4X6 620 Bending 0.08 3.125x14 L5L 614 Deflection 0.73 (2) 2x6 c2 Axial 0.91 404 c55 Axial 0.07 406 c23 Axial 0.80 (3) 206 c29 Axial 0.75 6x6 =26 Axial 0.70 (2) 2n4 c39 Axial 0.62 6x6 nol c12 Axial 0.86 (3) 2x4 c31 Axial 0.89 Typ Wall w14 Axial 0.48 End Fnd Not designed by request DESIGN NOTES: 1. Please verify that the default deflection limits= eare appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding esponding duration factor. Add a n empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd= actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT-UP BEAMS: it is assumed umed that each ply issingle continuous member (that is, no buttjoints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. .:. BY I Aii, L. A ..._, DATE IA \ U JOB No ,-- , PROJECT: RE: Op 713 is) ,'"‘, li: -., 1'-''-. .\'‘°°ITh ',... f-i- 1.--,k-k‘ o w H w O 2 2 w —, 2 -- Iv f;5 -1 ) :-.1-1 i-' :ID r,, ....i '- ' t 4 t-j,/- .. --) .., =,', ....., _•_._,- —1." — s • ,.) m < o i O ta w 0 0, #-: 7-4-4-- -:---, -- :7 ::: —'C'''),,0• , a. . . — 1...- ‘. ,- ,, ,. z 0 O t„, ',.. 1, ir- -1,- t„ 0 H z T 'is 2 ,•,— ,4P"- ',. R. 2 O 1 k k ,, , O 1 i 't),e a.,?,44:7 IP 1 2,-: "I 7::-• 0 Li '.=‘ -, - 4. --i-- ---= 5 = EIJ i : ° "A'''''CIA".• ,, ... ..... r f".-1,-)-.1\L",-,. .7.--- =,'` ' -7., ., -.'.. _----6=':-.1.._ • ' - - L> - - - A i -"''' 1.,'', , ::: ;) • L -;:a ' '''.:i— I... . :\ '.' , C...) - 4....\,, 4 •:,-.-- .-.:. , — ,7..- , '.."-.i'''' C.) • -: /1 `-' .2,7, 7. , C.) , 0 - : Az...' ' .,..... =,: - • It,SCG, --- - , c„ _ ,.. ' _- - -..; qq ---9- -- , — - - --,r; - iI( ( \ i r; i r, /3 ,i . - 1 0 '., ),,, ., ,,,,Li ki•J P,,,zOt, - i - i-c-- , -y- ------,<:: ,.- / /1`-- BY '\ 11 DATE t, ....... irin_ .....„1/4.0 JOB NO ( E i (y. 1.0 PROJ ECT. g'°C)V & -' 5-lW RE. Der4 c.\CV\ 1\oV-Jc.__ ...., Op-rioN) a... _I CD E z 1 R. 110111."--411111 o ul liVAIN.ItA 1 ' I 0 [RAZ 14)11,1 11 01‘j Illtli\10.1. F. -. \ ) 1. 1°1 2 blur- I "i "li 13 -ro? 9‘....P-i iti — 30‘PJT 1-- '7-1 11 IIIIIII 2 :i O _J MO'.X 5.ZA it-CC I oili,'„I'l C-A (..) O Z LII o . D r:-5 I(2_-..n i ,...k.)1':',-) Pces,,-,-J-ce, CC 0_ Z 0 1-- a '–;-.75. "•-•' '' , \ "../' -..t.:::.. -,---, ,–. t , - -rcti?-'1'.A1 --7,.----, .5 -114 o , , _ — z 1,..k.:: D '--- .''' i 1 0-0 2 0 X 0 — A. LI i 4\ A - -- 1Q12: 1 CI a(15.3-,), z _ 0 '6 /Th , - :_...1 ;-, -- , - t---- 1=--t ..,: t..., .-• to , = = •CLE° ''' ,.. • -- --- N BY Ni\ DATE: (.0 NO JOB NO cem _0010 PROJECT: RE: T.pot,n0r\fd,c --i- er \-- -RTCA-- hO\ISC--, • une.s .52-4 told_ Ct 0 E ok,tcylra_gyn tu(61ctil = w 0 Lij I Cu --76a01 6,s-44 O Cv ,_.Dok.c _or un 10 to(Aced Cita phYtt re) 0 = Ctbo-X 1,t4) as-a, F O Woct_ ict f 35-4-> o 2 0 2 0 11- Z ° al_ E 6 cd . 62 771 Nr! CO 1 ...1- L )Nrn 44.1.L-0("CS\iil, (V% LU 4 ; 4 \Cq t It; 'CI - <j (°I .,,, ',: 111.111M1.1.11111.111.11111111=1.111111111.114c -m*.) L II:1‘,11 ,E . . . _ „,,,i 7-r• C) V: , r3r1.4 V) S Wt.!. 1,) N M'. ,---- , CD ..._ • \-.,........." \-7- ,-- SW -1)--I s Lci NJ T H Pt LOAJC1 110 S L IN t \-..,... . , I . L - #J, i ........... , ; i Ci N T, 5— LA :1 a) LI ,,,.. Aofo, M 1 f'u Lk Ni c CC(4'l -6 -1 6 3 .....- NV 44-1-(--)r\J'11 WI Ns q 01 0 1 ' 1 --t, 1 ca ,.P 0 . 1 . • _1 1 „-- (7); ; r i,.;,. 3py)-7 cnii i„ 1,)Nrri ki :.;:-.)tivalok.NN 44 1..,-)r1 '2\ I- MS ( ..'-)1111 5 ifiL v)r\icriv I 0 J ==7EMINERNMENERMINIMMEMEICC) D c-t C i co CC ' --- .-, 3 N n siv4.1....,-)Ncr‘\I +4.1.,,,,k4'31 ';'1 1-11 rAg 1 , BY: DATE. 6 ,...... aolo JOB NO- ,--, a PROJECT: REf".SW "‘ x --- - '---'': —3r — Tec Loa El r- Lo : isi-\---o-„-,,,,„ ki.„),,c,,r,,., ( :,,,,,,--- '- ,-„, .... , , ‘,_ -\\„--, ,,„1( ... , .,, ___. )-- „ ,.., ,„„,• Li=• z '-'-i I'll # J,,,, O w O 2 lj cg. ,./\ OP sys.)a\ g. 1-- - . -‘00 \o O _I CC < O LI kkIDA L-00-A = O z w CL = 3 ii-aci.-titkickti z act-1)01 < lak,•Yi- • -• O‘C-1 0 . _ . Z it-- , I 0 c• ci 4 cS.... U. Z W ! 1 6 O I H CL 0 o ci) - H. 1..) — My 7= Ct :.-. .. . TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift re., or Strap Type@ Left For hag Uplift Type@ Left Left Case rD Right k Simpson k k Simpson k 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 I 11 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF 9.23 112 Wind 11.44 Holdown HDUI4 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDUI4 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST4Sx2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 1 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 301 Wind 0.83 Strap _ MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 Transverse Seismic Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total T Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift U Flr. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left floors @ Left @ t House Side of Above Above R above if Right House @ Left @ walls Right stack) ' (ft) (ft) (ft) (ft) k k k k plf ' klf k k kft kft kft k k k k k 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2,284 653 0.152 0.192 0.832 10.40 0.57 1.69 7.91 7.11 0 0 7.91 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0,192 10.40 1.69 0.57 7.11 7.91 0 0 7.11 103A 8 1.1667 4.00 4.00 0.481 0.481 120 0.04 2.016 1.664 3.85 8.38 6.98 -1.06 -0.69 0 0 -1.06 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 1.36 1.20 1.93 0 0 1.20 105 8 1.1667 3.00 10,50 0.126 0.73 1.44 2.296 219 0.048 0.252 0.156 5.97 0.97 0.68 2.04 2.14 0 0 2.04 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 2.14 2.04 0 0 2.14 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 2.31 0.82 0.86 201L 201R 1.13 1.54 1.95 110 8 1.1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 0.192 15.23 9.45 9.90 0.56 0.53 201 aL 201 bR 1.32 1.32 1.88 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 2.00 2.73 0 0 2.00 112 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.252 0.234 4.18 0.43 0.41 3.79 3.82 0 0 3.79 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0 3.82 201 9 1.1667 3.92 10.80 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301L 301R _ -0.03 0.13 1.13 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156_ 8.11 2.61 2.61 1.38 1.38 302L 302R -0.06 -0.06 1.32 201b 9 1.1667 2.71 10.80 0.9 1.27 2.17 201 0.225 0.156 0.432 5.27 1.25 2.00 1.53 1.28 303L 303R 0.10 -0.06 1.63 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.50 304L 304R 1.28 1.50 2.43 202B 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.173 0.052 0.216 5.32 0.93 1.43 1.49 1.35 305L 305R 1.50 0.63 2.99 203 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.33 1.16 1.08 0 0 1.16 204 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.225 0.312 0.432 5.32_ 1.95 2.31 1.19 1.08 0 0 1.19 301 8 0 3.92 13.96 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.03 0.13 0 0 -0.03 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5.07 -0.06 -0.06 0 0 -0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 3.09 2.96 3.73 0.10 -0.06 0 0 0.10 304 8 0 2.96 5,96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.42 1.28 1.50 0 0 1.28 305 8 0 3.00 5.96 1.44 1.44 242 0.232 0.136 1.104 5.80 1.45 4.36 1.50 0.63 0 0 1.50 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Transverse Wind Uplift Design . Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total ' Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift I. Flr. Fir. Roof Shear including Load Load Mooren @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left floors @ Left @ t House Side of Above Above 1 above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf kif k k kft kft kft k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 21.31 : 103 8 1.1667 1.75 3.50 1.737, 2.8 2.32 6.857 1959_ 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 20.79 : 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6.98 6.00 6.24 6.00 104 8 1.1667 4.50 10.50 1.516 2.8 2.26, 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 5.58 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 6.45 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.52 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 4.82 5.09 8.45 110 8 1.1667 12.50 17.08 1.737, 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201aL 201 bR 4.95 4.88 8.18 111 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 8.02 112, 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 11.44 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11.44 11.46 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301L 301R 0.83 0.93 4.82 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.95 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 474 0.225 0.156 0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.91 0.80 5.15 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 2.60 2.75 6.21 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305L 305R 2.74 2.16 6.58 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3.56 3.62 204 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.64 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 ' 0.83 302 8 5.79 13.96 2.32, 2.32 166 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.80 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.91 304 8 2.96 5,96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 2.60 305 8 3 5.96 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2.16 2,74 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY1 Longitudinal Shearwalls Pe i ea 7v I "�*r � : ll T r � .�� z' =i tj 010-71 FU �lf"e mSsOn-Holr don6.5.,)::::7:44 t >; 0 kt p 4sai- 'c i '12, t ° l _ c 04, . 107 254 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 * a' Simpson None 0 108 254 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 . f " Simpson None 0 205 208 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 it Simpson None 0 206 208 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 ,' Simpson None 0 306 133 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 48 Simpson None 0 307 138 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 59 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. • .A I \ Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls IIe Alt gt : ' "all e to r Ot ;;q4Oj s Q(1 07 101 Not Used ++J 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 104 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 105 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 106 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 109 401 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 110 401 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 111 907 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 112 907 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 990 113 907 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 990 201 474 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 201a 474 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 201b 474 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 202A 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 202B 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 203 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 204 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 301 166 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 166 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 166 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 379 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 305 379 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. . 3 Harper Houf Peterson Righellis Pg#. Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (plf) (ft-k) (ft-k) (k) 107 8 15.50 15.50 0.52 oK 10.00 0.32 IS0 . 0 0.73 27.00 1.33 1.09 153 153 NA 3.88 Single 1.00 I 52.25 130.70 -1.74 108 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 27.00 1.38 1.09 173 173 NA 3.88 Single 1.00 I 57.35 130.70 -1.40 205 9 13.00 13.00 0.69 OK 9.00 0.73 18.00 133 0.76 158 158 NA 2.89 Single 1.00 I 30.54 64.22 -0.64 206 9 13.00 13.00 0.69 OK 9.00 0.90 18.00 1.38 0.76 175 175 NA 2.89 Single 1.00 I 32.85 64.22 -0.45 I306 8 10.00 10.00 0.80 OK 8.00 1.33 0.35 133 133 NA 2.50 Single 1.00 I 10.67 17.40 0.02 307 8 10.00 10.00 0.80 OK 8.00 1.38 0.35 138 138 NA 2.50 Single 1.00 I 11.00 17.40 0.06 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 31.00 Total#1st Floor Bays= 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= 1.0 Total 2nd Floor Wall Length= 26.00 Total#2nd Floor Bays= 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= 1.0 Total 3rd Floor Wall Length= 20.00 Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft-k) (ft-k) (k) 107 8 15.50 15.50 0.52 ox 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.52 OK 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 205 9 13.00 13.00 0.69 OK 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 206 9 13.00 13.00 0.69 ox 9.00 1.57 18.00 1.14 0.70 208 Single 1.40 I 34.62 59.15 -0.07 306 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 307 8 10.00 10.00 0.80 ox 8.00 1.14 0.29 114 Single 1.40 I 9.10 14.40 0.05 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overtuming Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) .7/ 1 i , Harper Houf Peterson Righellis Pg#. Shearwall Analysis Based on the ASCE 7-05 Cransvere Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo Ma Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (plf) (ft-k) (ft-k) (k) 101 Not Used 102 7 1.75 3.50 4.00 8.00 0.11 18.00 0.90 27.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103 7 1.75 3.50 4.00 8.00 0.11 8.00 0.90 8.00 1.27 651 846 0.10 0.50 Double 0.50 NG 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 0.00 120 156 0.22 1.14 Single 1.00 I 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.25 1.13 Single 1.00 II 105 8 3.00 10.50 2.67 oK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 106 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 219 284 0.17 0.75 Single 0.75 III 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 134 174 0.25 1.15 Single 1.00 I 110 8 12.50 17.08 0.64 OK 8.00 0.11 8.00 0.90 8.00 1.27 134 174 NA 3.13 Single 1.00 I 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.25 1.13 Single 1.00 III 112 5 138 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII _113 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII 201 9 3.92 10.79 2.30 OK 9.00 0.90 18.00 1.27 200 261 0.17 0.87 Single 0.87 II 201a 9 4.17 10.79 2.16 OK 9.00 0.90 18.00 1.27 200 261 0.18 0.93 Single 0.93 II 201b 9 2.71 10.79 3.32 OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 202A 9 2.96 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 III 202B 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 Single 0.67 III 203 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 301 8 3.92 13.96 2.04 OK 8.00 1.27 91 118 0.20 0.98 Single 0.98 I 302 8 5.79 13.96 1.38 OK 8.00 1.27 91 118 0.29 1.45 Single 1.00 I 303 8 4.25 13.96 1.88 OK 8.00 1.27 91 118 0.21 1.06 Single 1.00 I 304 8 2.96 5.96 2.70 OK 8.00 1.44 242 315 0.15 0.74 Single 0.74 III 305 8 3.00 5.96 2.67 OK 8.00 1.44 242 315 0.15 0.75 Single 0.75 III Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= 18.00 Total#1st Floor Bays= 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho= 13 Total 2nd Floor Wall Length= 22.75 Total#2nd Floor Bays= a Are 2 bays minimum present along each wall tine? No 2nd Floor Rho= 1.3 Total 3rd Floor Wall Length= 19.92 Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? No 3rd Floor Rho= 1.3 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0.for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*1.2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) /A 1 k Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 'Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr., From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft-k) (ft-k) (k) 101 Not Used 102 7 1.75 3.50 4.00 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 ox 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 OK 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 OK 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 20Ia 9 4.17 10.79 2.16 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3.32 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 11.96 3.00 OK 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 13.96 2.04 OK 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 OK 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 ox 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 ox 8.00 2.26 379 Single 1.40 II 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single 1.40 II Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ. 11.4-1,ASCE 7-05 SM1= 0.58 Equ. 11.4-2,ASCE 7-05 Sias= 0.71 Equ. 11.4-3,ASCE 7-05 Siad= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 8411 Floor 3 Wt(lb)= 8476 Roof Wt(lb)= 14162 Wall Wt(Ib)= 35496 Trib. Floor 2 Diaphragm Wt(Ib)= 22609 Trib.Floor 3 Diaphragm Wt(lb)= 22674 Trib.Roof Diaphragm Wt(lb)= 21261 Vertical Dist of Seismic Forces %total of base shear Rho Check to Shearwalls(lbs) 1Cumulative to shearwalls Req'd? Vfloor2(Ib)= 720 100.0% Yes Vfloor 3(Ib)= 1625 85.8% Yes Vroof(lb)= 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 286 291 415 318 725 1334 2 361 361 428 402 900 1375 Sum 647 652 843 720 1625 2709 Total Base Shear*= 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail Wind Net Design Wind Pressure(psf) ( ) Pressure(lbs) Zone A= 19.9 147 . 2925 Wall High Wind Zone Horizontal Zone B= 3.2 54 173 Roof High Wind Zone Wind Forces Zone C= 14.4 295 4248 Wall Typ Zone Zone D= 3.3 156 515 Roof Typ Zone Zone E= -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F= -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H= -9.7 252 • -2444 Roof Leeward Typ Wind Zone Total Wind Force= 7861 lbs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -7254 lbs Resisting Dead Load= 8483 lbs E= 1229 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D A 9 4 I Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear= 2440 lbs Upper Floor Diaphragm Shear= 3147 lbs Roof Diaphragm Shear= 2275 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm Width(ft) (lbs) Width(ft) (lbs) Width(ft) (lbs) 1 r 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 20 2275 Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ. 11.4-1,ASCE 7-05 SM1= 0.58 Equ. 11.4-2,ASCE 7-05 SDs= 0.71 Equ. 11.4-3,ASCE 7-05 SDI= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 8411 Floor 3 Wt(lb)= 8476 Roof Wt(lb)= 14162 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22609 Trib. Floor 3 Diaphragm Wt(lb)= 22674 Trib. Roof Diaphragm Wt(lb)= 21261 Vertical Dist of Seismic Forces %total of base shear Rho Check to Shearwalls(lbs) 1Cumulative to shearwalls Req'd? Vfloor2(lb)= 720 100.0% Yes Vfloor 3(lb)= 1625 85.8% Yes Vroot(lb)= 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line , Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 102 361 394 114 897 1266 Al 432 0 0 481 0 0 B 113 293 449 126 728 1443 Sum 647 654 843 720 1625 2709 Total Base Shear*= 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1-simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 Iw= 1.00 Wind Sail (ft2) Wind Net Design Wind Pressure(psf) Pressure(lbs) Zone A= 19.9 129 2567 Wall High Wind Zone Horizontal Zone B= 3.2 42 134 Roof High Wind Zone Wind Forces Zone C= 14.4 970 13968 Wall Typ Zone Zone D= 3.3 5 17 Roof Typ Zone Zone E= -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F= -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H= -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force=l 16686 lbs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -7275 lbs Resisting Dead Load= 8472 lbs E=l 1197 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D W? InSIMISSIMMUIVAP NW, 1/1111.111016=108 Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear= 6507 lbs Upper Floor Diaphragm Shear= 5595 lbs Roof Diaphragm Shear= 4584 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR _ ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm Diaphragm Diaphragm (lbs) (lbs) (lbs) manenamegsammaWidth(ft) islawimpaussinWidth(ft) ^ Winat n A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 18 2797 18.5 2261 E. 49 6507 36 5595 37.5 4584 Harper Project: SUMMERCREEK TOWNHOMES UNIT A e i• Houf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. t•E=a„n �;, a r Designer: AMC Date: Pg.# r. NCS.�RE eRCnFc C'S.'a::R1 E"vRa' Determine Wind Sail In Longitudinal Direction := (48 + 59+ 40)412 W SNwww A := (10+0 + 44).ft2 WSAN�:= (91 + 137 + 67)412 WSANwMN�.= (43 + 0 + 113)-ft2 AL,A14,;= WSAILZoneA'PA WA=2925 lb AVA:= WSAILZoneB'PB WB= 173 lb ,) = WSAILZonec-PC WC=4248 lb • W = WSAILZoneD-PD WD= 515 lb Wines WA+ Wg+ WC+ WD Wind Force = 10-psf-(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force=7861 lb Wind_Forcen,in= 6520 lb Wim = 148-ft2 irA,.= 120-ft2 WSAwM A:= 323-ft2 W := 252-ft2 Wim:= WSAILZoneE-PE WE _—1302 lb W := WSAILZoneF-PF WF =—1440 lb ,W = WSAILZoneG-PG WG = —2067 lb W := WSAILZoneH'PH WH= —2444 lb U li := WF+ WH+ (WE + WG) + RDL-[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE + WSAILZoneG)]'.6.1.12 Upliftnet= 1243 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Project: SUMMERCREEK TOWNHOMES UNIT A H.ouf Peterson Client: PULTE GROUP Job# CEN-090 Righellis inc. Designer: AMC Date: Pg.# wN� �x.PE AF JntiECSa --'C�3 Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II Iw= 1.0 Importance Factor (Table 6-1,ASCE 7-05) hn= 32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2•.1.20-ft Zone A&B Horizontal Length Smaller of... (Fig 6-2 note 10,ASCE 7-05) a2=4ft or a2:= .4•hn 2-ft a2=25.6 ft but not less than... 3.2-ft a2min=6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9•psf PnetzoneB =3.21psf PnetzoneC = 14.4•psf PnetzoneD=3.3.psf Vertical PnetzoneE=—8.8•psf PnetzoneF=—12-psf PnetzoneG=—6.4-psf PnetzoneH=—9.7-psf Basic Wind Force PnetzoneA'Iw-X PA = 19.9.psf Wall HWC P �= PnetzoneB'Iw.X PB= 3.2•psf Roof HWC Pte= PnetzoneC'Iw'X PC= 14.4•psf Wall Typical PA:= PnetzoneD'Iw'X PD=3.3•psf Roof Typical := PnetzoneE-Iw.X PE =—8.8•psf := PnetzoneF'Iw'X PF =—12-psf ,:= PnetzoneG'Iw.X PC, =—6.4-psf := PnetzoneH'Iw'X PH=—9.7-psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A '2 P - Houf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. E Nr�IEi _ _...__ Designer: AMC Date: Pg.# •?LRSV "RS Ln'C3!:nv ,ARCi:Tc C'v�sU R`:F(fsR3 5 sA:= Fa Ss SMs = 1.058 (EQU 11.4-1,ASCE 7-05) 2'SMg:= Sds=0.705 (EQU 11.4-3,ASCE 7-05) 3 SmA:= Fv•Si SMi =0.584 (EQU 11.4-2,ASCE 7-05) 2'SMi (EQU 11.4-4,ASCE 7-05) S Sdi = 0.389 'wdJv 3 Sds'Ie (EQU 12.8-2,ASCE 7-05) MsW= R Cst=0.108 ...need not exceed... Cs •— Sdi•Ie Csmax = 0.223 (EQU 12.8-3,ASCE 7-05) A"..".4WTa•R ...and shall not be less then... &:= if(0.044•Sds•Ie <0.01,0.01,0.044•Sds'Ie) Com:= if0 Si <0.6,0.01, .5•S1 •Ie (EQU 12.8-5&6,ASCE 7-05) � R Com:= if(Ci > C2,C1,C2) Csmin =0.031 Cs:= if(Cst<Csm;n,Csmin,if(Cst< Csmax,Cst,Csmax)) Cs =0.108 V:= Cs•WTTOTAL V=7220 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E= 5054 lb (Allowable Stress) iwv I Harper Project: SUMMERCREEK TOWNHOMES UNIT A Houf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. --- NE£Ps Pi.,N`4EPS Designer: AMC Date: Pg.# A.11'E :4F^14[?E7.3S•54iftv'E Y4.5 Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area= 944 ft2 JF. := RDL•Roof Area RFWT= 14162-lb Floor Weight Floor_Area2nd =647 ft2 N4LR� = FDL-Floor Area2nd FLRWT2nd= 8411-lb Floor_Area3rd =652 ft2 FFLR„4 = FDL-Floor Area3rd FLRWT3rd = 8476-lb Wall Weight EX Wall Area:= (2203)•ft2 INT Wall Area= 906 ft2 W, wL",= EX_Wallwt•EX_Wall_Area+ INT_Wallw•INT_Wall_Area WALLWT= 35496•1b WTTOTAL= 66545 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hr,=32 Mean Height Of Roof 1e= 1 Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct= 0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x= 0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ct.(hn)x Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 = 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or Ss=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F,= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: SUMMERCREEK TOWNHOMES UNIT A HP i Houf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. Designer: AMC Date: Pg.# zvcsc;.F=_ ,,R�;r..recrs.au�vec�s Determine Wind Sail In Transverse Direction WSAILZoneH:= (41 + 59+ 29)4ft2 W SAILZoneB (19+ 0 + 23)•ft2 WSAILzoneC:= (391 + 307 + 272)-ft2 WSAILZoneD (0 + 0 + 5)•ft2 WA:= WSAILZoneA•PA WA=2567 lb WB WSAII-ZoneB-PB WB= 134 lb WC:= WSAILZoneC-PC WC= 13968 lb WD:= WSAILZoneD•PD WD= 16 lb Wind_Force:= WA+ WB+ WC+ WD Wind_Forcemin:= 10-psf-(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force= 16686 lb Wind_Forcemin= 11460 lb WSAILZoneE:= 94•ft2 WSAILZoneF 108•ft2 WSAILZoneG 320-ft2 WSAILZoneH 320-ft2 WE:= WSAILZoneE•PE WE =—827 lb WF:= WSAILZoneF'PF WF=—1296 lb WG := WSAILZoneG-PG WG=—2048 lb WH:= WSAILZoneH-PH WH =—3104 lb Upliftnet WF + WH+ (WE + WG) + RDL-[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILZoneG)}.6.1.12 Upliftnet= 1212 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION 1 Harper Project: SUMMERCREEK TOWNHOMES UNIT A H E' v Hold Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. Designer: AMC Date: Pg.# t,nNGv�+.F- AR HITS=i>�:,;Rvet'p35 Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II Imo,:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn=32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) Smaller of... a2:= 2•.1.20.ft Zone A&B Horizontal Length (Fig 6-2 note 10,ASCE 7-05) a2=4 ft a2:= .4-hn•2•ft or a2=25.6 ft but not less than... a2rnin:= 3.2•ft a2nun =6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA 19.91psf PnetzoneB 3.2•psf PnetzoneC:= 14.4•psf PnetzoneD 3.1psf Vertical PnetzoneE 8.8•psf PnetzoneF 12-psf PnetzoneG 6.4-psf PnetzoneH —9.7-psf Basic Wind Force PA:= PnetzoneA'Ivy'X PA = 19.9-psf Wall HWC PB:= PnetzoneB'Iw'X PB=3.2•psf Roof HWC PC:= PnetzoneC•Iw•X Pc= 14.4-psf Wall Typical PD:= PnetzoneD Ivy'X PD=33-psf Roof Typical PE:= PnetzoneE'kr*X PE =—8.8-psf PF:= PnetzoneF'Iw.X PF= —12•psf Pc,:= PnetzoneG'Iw'X PG =—6.4•psf PH:= PnetzoneH'Iw'X PH=—9.7•psf