Loading...
Plans (19) Structural Calculations RECEIVED DEC 11 2012 for CITyOFT/GARD Full Lateral & Gravity Analysis oilUILDINGDIVIs[ON Plan A 1460 Lot 13, Summer Creek Townhomes Tigard, OR g City of Tigard AID.roved Plans - 1 PultePrepared for By of Date �-��1 Pulte Group sT2o 2- 00211 April 7, 2011 OFFICE COPY �(L 06 ATtc JOB NUMBER: CEN-090 36b'-1 Ati Ro,%tno, y L ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. a 122 sheets total including this cover sheet. ssRuctuR�i. ‘4NG1 NE£R'ffpAL ( / 12.320 0 J ..^^ RAr��YL4Lr—+ V� OREGON r 15.'► Ni NJ. E - ENS !XPIRE& 2-33-2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper 0 Houf Peterson Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 • [F]503.221.1171 1 104 Main St.Suite 100 ♦ Vancouver, WA 98660 • [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St.Suite 201 ♦ Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Structural CalculationECEIvED for DEC 1 1 2012 CITY OF TIGARD Full Lateral & GravityAnalysis�/ LDING DNISION Plan B 1332 Lot 14, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. sisucTUist ��$\1NROpp V �•� ffR 4.4.4 12.3/20' ,�...+i AlrilVlrhN{44, onGoN J. ENS PIRESa 12-31-2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper . Hoof Peterson Righellis Inc. 205 SE Spokane St.Suite 200 • Portland, OR 97202 ♦ [P]503.221.1131 • [F]503.221.1171 1 104 Main St.Suite 100 • Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St.Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Structural Calculations RECEIVE DEC 11201.; for CITYOFTIG' ' ' Full Lateral & Gravity Analysis of BUILDINGDNISI IN Plan C 1186 Lot 15, Summer Creek Townhomes Tigard, OR Prepared for Pulte Group April 7, 2011 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 98 sheets total including this cover sheet. OrEgraZip (�O PRO/ VS t.tkG1 NE£R �9 12.320 -' J tI) OREGON 15, 41 J. E0- i XPIRES*12-31-2011 This Packet of Calculations is Null and Void if Signature above is not Original Harper 1' 'LL Houf Peterson Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202 ♦ [P] 503.221.1131 • [F]503.221.1171 1104 Main St.Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St.Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 • RECEIVED DCI 1 2012RD CITI�er Ilir (,A Structural CalculationsUILDIGDNISIGI� for Full Lateral & Gravity Analysis of Plan A 1460 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN-090 ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client, who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 117 sheets total including this cover sheet. • This Packet of Calculations is Null and Void if Signature above is not Original Harper Houf Peterson Righellis Inc. .E 205 SE Spokane St. Suite 200 • Portland, OR 97202 • [P] 503.221.1131 • [F] 503.221.1171 1 104 Main St.Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1133 NW Wall St. Suite 201 ♦ Bend, OR 97701 ♦ [P] 541.318.1 161 ♦ [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit A Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, l : 1 2006 IBC/2007 OSSC Occupancy Category: II Earthquake Design: Residential Seismic Design Category: D From Building Authority Site Class: D Assumed,ASCE 7-05 Ch.20 Importance, IE: 1 ASCE 7-05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map SI: 0.339 USGS Spectral Response Map Dead Load: Floor: Wall: 13 psf Roof: 12 psf Wood Live Load: 15 psf Roof: Floor: 25 psf Snow 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength, f'c: 3000 psi Foundations&Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength,fy: 60,000 psi Wood Studs (Wall Studs): 2x&4x Wood Beams & Posts: Dem F2 #2 DF-L #2 6x&Greater Wood Beams & Posts: DF-L#1 Glulam Beams: PSL Beams: 24F V4 TS/LSL Beams: Fb=2,900 psi, FV=328psi, E=2.0 Million Fb=2325 psi, FV=460psi, E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists, and flush beams u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works—Sizer version 2002 Bently RAM Advanse Harper Project: SUMME RCREEK TOWNHOMES UNIT A 0, - Houf Peterson Client: PULTE GROUP Job# CEN-090 - -" Righellis Inc- Designer: AMC Date: Pg.# 14414=_ £..[S♦ LY Jf YOK=� DESIGN CRITERIA 2007 Oregon Structural S ecialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5•psf Framing RPL:= 1.5•psf Plywood RRF:= 5.psf Roofing RME:= 1.5•psf Mech&Elec RMS:= 1•psf Misc RCG:= 2.5-psf Ceiling RIN:= 1•psf Insulation RDL= 15•psf Floor Dead Load FFR:= 3•psf Framing FPL:= 4•psf Sheathing FME:= 1.5-psf Mech&Elec FMS:= 1.5•psf Misc FIN:= .5•psf Finish&Insulation FCLG:= 2.5•psf Ceiling FDL= 13•psf Wall Dead Load WOOD EX Wallwt:= 12•psf INT Wallwt:= 10.psf Roof Live Load RLL:= 25-psf Floor Live Load FLL:= 40-psf Harper Project: SUMMERCREEK TOWNHOMES °=}• Houf Peterson IINITA Client: PULTE GROUP Righellis Inc. Job# CEN-090 Designer: AMC Date: Pg.# Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Transverse Direction Roof Weight Roof Area:= 843.112.1.12 RFWT:= RDL•Roof Area RFWT= 14162-lb Floor Weight Floor Area2nd:= 647•ft2 FLRwT2nd:= FDL•Floor—Area2nd FLRwr2nd = 8411•lb Floor Area3rd 652•ft2 FLRWT3rd:= FDL-Floor Area3rd FLRWT3rd= 8476-lb Wall Weight EX Wall Area:= (2203)• 12 INT Wall_Area:= (906)•ft2 WALLWT:= EX_Wallwt•EX_Wall_Area+ INT Wall�,t•1NT_Wall Area — _ WALLu,-r=35496.16 WTTOTAL =66545 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 32 Mean Height Of Roof Ie:= 1 Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period x Ta:= Ct (hn) Ta= 0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 := 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-OS)...or SS:= 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa:= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F.„:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) MS�_ Harper Project: SUMMERCREEK TOWNFIOMES UNIT A • ® Houf Peterson Client: PULTE GROUP Job# CEN-090 RighelliS Inc Designer: ADate: Pg.# --_— SMS = 1.058 _._.... MC (EQU 11.4-1,ASCE 7-05) S Fa SS 2 SMS (EQU 11.4-3,ASCE 7-05) Sds:= Sds=0.705 3 (EQU 11.4 2,ASCE 7 05) SMi:= Fv'S 1 SMl =0.584 2•SMl (EQU 11.4-4,ASCE 7-05) Sd1 := Shc =0.389 3 (EQU 12.8-2,ASCE 7-05) Cst:= Sds le Cst=0.108 R ...need not exceed... (EQU 12.8-3,ASCE 7-05) Shc•Ie Csmax =0.223 Csmax -r a•R ...and shall not be less then... C1 := if(0.044•Sds•Ie <0.01,0.01,0.044•Sds•Ie) (EQU 12.8-5&6,ASCE 7-05) v ( 0.5•SI-I, C2:= ifi Si <0.6,0.01, R JI Csmin:= if(Ci > C2,C1,C2) Csmin=0.031 Cs Cs=0.108 Cs:= if(Cst<Csmin,Csmin,if(Cst<Csmax,Cst, max�� V:= Cs•WTTOTAL V=7220 lb (EQU 12.8-1,ASCE 7-05) niw E:= V•0.7 E = 50541b (Allowable Stress) Hc�uHarperfPetersen Project: SUMMERCREEK TOWNHOMES UNIT A Client: PULTE GROUP Job# CEN-090 Righellis Inc. N _ Designer: AMC Date: Pg.# NP ::.. F AR^riiT 5:: .E•'CRS Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II Iw:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn=32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2-.1-20-ft Zone A&B Horizontal Length Smaller of... a2=4 ft (Fig 6-2 note 10,ASCE 7-05) a2:= .4.hn 2 ft or a2=25.6 ft but not less than... a2m11:= 3.2•ft a2mu,=6 ft Wind Pressure (Figure 6-2, ASCE 7-05) Horizontal PnetzoneA 19.9•psf PnetzoneB 3.2•psf Pnetzonec 14.4•psf PnetzoneD:= 3.3•psf Vertical PnetzoneE —8.8-psf PnetzoneF —12-psf PnetzoneG 6.4-psf PnetzoneH 9.7•psf Basic Wind Force PA:= PnetzoneA'INV X PA = 19.9-psf Wall HWC PB:= PnetzoneB'lw'X PB=3.2•psf Roof HWC PC:= PnetzoneC'Iw'X Pc= 14.4-psf Wall Typical PD:= PnetzoneD'INV X PD=3.3•psf Roof Typical PE := PnetzoneE'kr'X PE =—8.8•psf PF:= PnetzoneF'lw'X PF=—12•psf PG:= PnetzoneG'Jw.X PG =—6.4-psf PH:= PnetzoneH'lw.X PH=—9.7•psf A Harper Project: SUMMERCREEK TOWNHOMES UNIT Houf Petersen Job# CEN-090 Client: PULTE GROUP Righellis Inc. Date: Pg.# Designer: AMC Determine Wind Sail In Transverse Direction WSAILZoneA:= (41 + 59+ 29) ft2 WSAILZoneB (19+ 0 + 23)•ft2 WSAILZoneC=_ (391 + 307+ 272)•ft2 WSAILZoneD= (0 + 0 + 5) ft2 WA:_ WSAILZoneA'PA WA=2567 lb WB WSAILZoneB'PB WB= 134 lb :_ WC WSAILZoneCPC WC= 13968 lb �_ WD WSAILZoneD'PD WD= 16 lb �_ Wind Force:= WA+ WB+ WC+ WD Wind Forcemin:= 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force= 16686 lb Wind Forcemin= 11460 lb WSAII-ZoneE:= 94•ft2 WSAILZoneF:= 108•ft2 WSAILZoneG 320 ft2 WSAILZoneH:= 320•ft2 WE:= onWSAILZeE'PE WE =—827 lb WF-_ WSAILZoneF'PF WF=—1296 lb W WSAIL WG2048 lb G:= ZoneG'PG WH:_ WSAILZoneH'PH WH=—3104 lb + �WSAIL + WSAILZoneG��'•6'1.12 Upliftnet:= WF+ WH+ (WE + WG) + RDL•[WSA1LZoneF+ WSAII-ZoneH ZoneE Upliftnet= 1212 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR EARWALL HOLDDOWN HarpProject: SUMMERCREEK TOWNHOMES UNIT A P=- Hoofer Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. G14EPDesigner: AMC Date: # .S• Pg. AN cAP ic :¢ S ft SEY,SZ� Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area= 944 ft2 RFS,:= RDL•Roof Area RFS = 14162 lb Floor Weight Floor_Area2nd =647 ft2 LL„R,�,3j:= FDL-Floor_Area2nd FLRWT2nd = 8411•lb Floor_Area3rd=652 ft2 F,,R, v= FDL•Floor_Area3rd FLRWT3rd = 8476-lb Wall Weight EX Wall Area:= (2203)•ft2 INT Wall Area=906 ft2 WAND, LCL N— EX_Wallwt•EX_Wall_Area+ Waller INTWallArea WALLwr=35496•1b WTTOTAL = 66545 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn=32 Mean Height Of Roof Ie = 1 Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct= 0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x=0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period x 24,:= Ct•(ho Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) Si =0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F,= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) ,:= Fa. Ss Harper Project: SUMMERCREEK TOWNHOMES IT UNA Houf Peterson Client: PULTE GROUP tlob# CEN-090 LtY ;;?o T I.. .. Righellis be. Date: Pg.# SMS = 1.058 c_Nrt R 4�C.S•TL LA't ERS Designer: AMC (EQU 11.4-1,ASCE 7-05) 2•SMS (EQU 11.4-3,ASCE 7-05) S _ S�=0.705 `" 3 (EQU 11.4 2,ASCE 7-05) MA6�= F�S1 SMl =0.584 2-SMlAS$ S 0.389 (EQU 11.4-4,ASCE 7-05) _ 3 Sell Sds Ie Cst=0.108 (EQU 12.8-2,ASCE 7-05) Cst:_ rnnrov R ...need not exceed... Sdt'le (EQU 12.8-3,ASCE 7-05) AmAIPAU C = Csmax =0.223 TaR ...and shall not be less then... Com:= if(0.044•Sds•Ie <0.01,0.01,0.044•Sds•Ie) (EQU 12.8-5&6,ASCE 7-05) 0.5 Si Ie l := if Si <0.6,0.01, R /I C := if(CI >C2,C1,C2) Csmin=0.031 Crys .= if(Cst<Csmin,Csmin,if(Cst<Csmax,Cst,Csmax )) Cs=0.108 V:= CS•WTTOTAL V=7220 lb (EQU 12.8-1,ASCE 7-05) E:= V-0.7 E= 5054 lb (Allowable Stress) iwv Harper Project: SUMMERCREEK TOWNHOMES UNIT A LEP Houf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. z x N r Designer: AMC Date: Pg.# _.iN kfFk i =yOgy Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II IN,= 1.0 Importance Factor (Table 6-1,ASCE 7-05) hn=32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2;= 2•.1.20•ft Zone A&B Horizontal Length Smaller of... a2=4 ft (Fig 6-2 note 10,ASCE 7-05) , ,:= .4•hn 2•ft or a2=25.6 ft but not less than... ai,w:= 3.2•ft a2m;n=6ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9•psf Pnet2oneB =3.2•psf Pnetzonec = 14.4•psf PnetzoneD=3.3•psf Vertical PnetZoneE=—8.8•psf PnetzoneF=—12•psf Pnet2oneG=—6.4•psf PnetzoneH=—9.71psf Basic Wind Force Pte:= PnetzoneA'Iw.X PA = 19.9.psf Wall HWC Pte:= PnetzoneB'Iw.X PB=3.2•psf RoofHWC Pte:= PnetzoneClw.X Pc= 14.4•psf Wall Typical Pte:= PnetzoneD'Iw.X PD =3.3•psf Roof Typical = PnetzoneE'Iw'X PE =—8.8•psf := PnetzoneF'Iw.X PF =—12•psf := PnetzoneGlw.X PC, _—6.4•psf , := PnetzoneH'Iw.X PH=—9.7•psf Harper Project: SUMMERCREEK TOWNHOMES UNIT A 1 I"t' Houf Peterson Client: PULTE GROUP Job# CEN-090 Righellis Inc. Designer: AMC Date: Pg.# E_�> ANS as \NCS�?,G[ tRCrTE�Tg,•�.,3,E-Oft3 Determine Wind Sail In Longitudinal Direction W •= (48+ 59+ 40)•ft2 W ^= (10+ 0 + 44).W WSNw (91 + 137 + 67)•ft2 9 := (43 + 0 + 113)•ft2 WSAILZoneA'PA WA=2925 lb Y44,I= WSAILZoneB'PB WB= 173 lb WQ:= WSAILZoneC'PC WC=4248 lb WSAILZoneD'PD WD= 515 lb Win�,r WA+ WB+ WC+ WD Wind Forc = 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force=7861 lb Wind Forcemin=6520 lb WNL — 148•ft2 120•ft2 W 323•ft2 WSN .— 252•ft2 WSAILZoneE'PE WE _—1302 lb WSAILZoneF'PF WF=—1440 lb yvv/w= WSAILZoneG'PG WG=—2067 lb W WSAILZoneH1 H WH=—2444 lb ,1A1460,:= WF+ WH+ (WE+ WG) + RDL•[WSAILZoneF + WSAILZoneH+ (WSAILZoneE+ WSAILZone4.6.1.12 Uplift11et= 1243 lb (Positive number...no net uplift) IDO NOT USE ROOF DEAD LOADCALCULATION WFOR SHEARWALL HOLDDON Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1-simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf a.= 1.00 lw= 1.00 Wind Sail (ft) Wind Net Design Wind Pressure(psf) Pressure(lbs) Zone A= 19.9 129 2567 Wall High Wind Zone Horizontal Zone B= 3.2 42 134 Roof High Wind Zone Wind Forces Zone C= 14.4 970 13968 Wall Typ Zone Zone D= 3.3 5 17 Roof Typ Zone Zone E= -8.8 94 -827 Roof Windward High Wind Zone Vertical Zone F= -12.0 108 -1296 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 320 -2048 Roof Windward Typ Wind Zone Zone H= -9.7 320 -3104 Roof Leeward Typ Wind Zone Total Wind Force=l 16686 lbs I Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -7275 lbs Resisting Dead Load= 8472 lbs E=) 1197 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): Zone A Zone B Zone C Zone D Main Floor 41 19 391 0 Upper Floor 59 0 307 0 Main Floor Diaphragm Shear= 6507 lbs Upper Floor Diaphragm Shear= 5595 lbs Roof Diaphragm Shear= 4584 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tribute Wall Line Diaphragm (lbs) Diaphragm Line Shear Diaph agm Line Shear Width(ft) Width(ft) ( ) Width(ft) (lbs) A 13.08 1737 18 2797 19 2323 Al 24.50 3254 0 0 0 0 B 11.42 1516 _ 1_8 2797 18.5 2261 E= 49 6507 36 5595 37.5 4584 Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ. 11.4-1,ASCE 7-05 0.58 Equ. 11.4-2,ASCE 7-05 SMS__ 0.71 Equ. 11.4-3,ASCE 7-05 ScrSDS_— 0.39 Equ.11.4-4,ASCE 7-05 Cs=f 0.11 Equ. 12.8-2,ASCE 7-05 Cs 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmin= 0.22 Equ. 12.8-3,ASCE 7-05 Csmax= 0.076 Base Shear coefficient,v= Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 8411 Floor 3 Wt(lb)= 8476 Roof Wt(Ib)= 14162 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22609 Trib.Floor 3 Diaphragm Wt(Ib)= 22674 Trib.Roof Diaphragm Wt(Ib)= 21261 Vertical Dist of Seismic Forces Cumulative%total of base shear Rho eChde?ck to Shearwalls lbs to shearwalls 720 100.0% Yes Vfloor 2(lb)= Yes Vfloor 3(Ib)= 1625 85.8% Vroof(lb)= 2709 53.6% Yes Shear Distribution T0o Wall Lines Wall Line Tributary Area Tributary Area Tributary(Area FloShearrLine Floor 3 Line Roof Shear ne Floor 2 Floor 3 sq ft sq ft sq ft s 394 1 lblbs bs lbs bs A 102 361 481 0 0 B 66 Al412 0 6 113 29347 654 449 126 728 1443 Sum 6 B843 720 1625 2709 Total Base Shear= 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 lw= 1.00 Wind Sail (ftZ) Wind Net Design Wind Pressure(psf) Pressure(lbs) R IIIIMINIMMENNagab Zone A= 19.9 147 . 2925 Wall High Wind Zone Horizontal Zone B= 3.2 54 173 Roof High Wind Zone Wind Forces Zone C= 14.4 295 4248 Wall Typ Zone Zone D= 3.3 156 515 Roof Typ Zone Zone E= -8.8 148 -1302 Roof Windward High Wind Zone Vertical Zone F= -12.0 120 -1440 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 323 -2067 Roof Windward Typ Wind Zone Zone H= -9.7 252 -2444 Roof Leeward Typ Wind Zone Total Wind Force=l 7861 lbs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -7254 lbs Resisting Dead Load= 8483 lbs El 1229 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ftZ): Zone A Zone B Zone C Zone D Main Floor 48 10 91 43 Upper Floor 59 0 137 0 Main Floor Diaphragm Shear= 2440 lbs Upper Floor Diaphragm Shear= 3147 lbs Roof Diaphragm Shear= 2275 lbs • Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary • Wall Line Diaphragm Diaphragm Line Shear Tributary Line Shear Width(ft) e (lbs) Width(ft) (lbs) Diaphragm ift) (lbs) 1 10 1220 10 1573 10 1137 2 10 1220 10 1573 10 1137 E= 20 2440 20 3147 20 2275 Harper Houf Peterson Righellis Pg#: ' Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1= 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 0.27 Equ. 12.8-7,ASCE 7-05 Period(Ta)= 1.00 12.8.3,ASCE 7-05 k= SMS 1.06 Equ. 11.4-1,ASCE 7-05 0.58 Equ. 11.4-2,ASCE 7-05 S0.71 Equ. 11.4-3,ASCE 7-05 SDD__S 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Cs 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= Csmin= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 8411 Floor 3 Wt(lb)= 8476 Roof Wt(lb)= 14162 Wall Wt(lb)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22609 Trib.Floor 3 Diaphragm Wt(Ib)= 22674 Trib.Roof Diaphragm Wt(Ib)= 21261 Vertical Dist of Seismic Forces 1Cumulative%total of base shear I Rho Redd?Check to Shearwalls(lbs) to shearwalls Ufloorz(Ib)= 720 100.0% Yes Ufloor 3(Ib)= 1625 85.8% Yes Vroof(Ib)= 2709 53.6% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributaryf Area Floor 2 sqLine FloShearrSher Line Roof Line Floor 2 Floor 3 ft lbs lbs lbs sq ft sq ft 725 1334 2 1 361 286 361 428 I 402 900 291 415 318 1334 Sum 647 652 843 720 1625 2709 Total Base Shear*= 5054 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. Harper Houf Peterson Righellis Pg#. Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kip (plf) (ft-k) (ft-k) (k) 101 Not Used 102 7 1.75 3.50 4.00 8.00 1.74 18.00 2.80 27.00 2.32 1959 Double 1.40 NG 103 7 1.75 3.50 4.00 8.00 1.74 8.00 2.80 8.00 2.32 1959 Double 1.40 NG 103a 7 4.00 4.00 1.75 ox 8.00 3.25 814 Single 1.40 IV 104 8 4.50 10.50 1.78 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 105 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 106 8 3.00 10.50 2.67 ox 8.00 1.52 8.00 2.80 8.00 2.26 626 Single 1.40 III 109 8 4.58 17.08 1.75 ox 8.00 1.74 18.00 2.80 27.00 2.32 401 Single 1.40 II 110 8 12.50 17.08 0.64 ox 8.00 1.74 8.00 2.80 8.00 2.32 401 Single 1.40 II 111 8 4.50 7.25 1.78 OK 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 112 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 113 4.75 1.38 7.25 3.45 ox 8.00 1.52 8.00 2.80 8.00 2.26 907 Double 1.40 VI 201 9 3.92 10.79 2.30 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 201 a 9 4.17 10.79 2.16 OK 9.00 2.80 18.00 2.32 474 Single 1.40 II 201b 9 2.71 10.79 3.32 ox 9.00 2.80 18.00 2.32 474 Single 1.40 II 202A 9 2.96 11.96 3.04 fax 9.00 2.80 18.00 2.26 423 Single 1.40 II 202B 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 203 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 204 9 3.00 11.96 3.00 ox 9.00 2.80 18.00 2.26 423 Single 1.40 II 301 8 3.92 13.96 2.04 ox 8.00 2.32 166 Single 1.40 I 302 8 5.79 13.96 1.38 ox 8.00 2.32 166 Single 1.40 I 303 8 4.25 13.96 1.88 OK 8.00 2.32 166 Single 1.40 I 304 8 2.96 5.96 2.70 OK 8.00 2.26 379 Single 1.40 II 305 8 3.00 5.96 2.67 ox 8.00 2.26 379 Single 1.40 II y Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) _ Harper Houf Peterson Righellis Pg#. Shearwall Analysis Based on the ASCE 7-05 fransvere Shearwalls Line Load Controlled By: Seismic * % Panel Shear Panel Mo MR Uplift L Wall H/L Line Load Line Load Load Dead' V Rho*V Story # T Shear H Load Strength Bays Sides Factor Type Panel Lgth. From 2nd Flr. From 3rd Flr. (ft-k) (ft-k) (k) (ft) (ft) (ft) Ell k ® k ht, 'k (kit) (plf) (Ply Not Used 101 651 846 0.10 0.50 Double 0.50 NG 102 7 1.75 3.50 4.00 8.00 0.11 18.00 0.90 2700 1.27 103 7 1.75 3.50 4.00 8.00 0.11 8.00 0.90 8.00 0.00 1.27 651 846 0.10 0.50 Double 0.50 NG I 120 156 0.22 1.14 Single 0.00 103a 7 4.00 4.00 1.75 OK 8.00 0.48 0.00 120 284 0.25 1.14 Single 1.00 II 104 8 4.50 10.50 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 21219 284 0.17 1.13 Single 1.00 III 105 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 19 284 0.17 0.75 Single 0.75 III _ 106 8 3.00 10.50 2.67 OK 8.00 0.13 8.00 0.73 8.00 1.44 214 174 0.25 1.15 Single 1.00 I 109 8 4.58 17.08 1.75 OK 8.00 0.11 18.00 0.90 27.00 1.27 13134 174 NA 3.13 Single 1.00 I 110 8 12.50 17.08 0.64 oK 8.00 0.11 8.00 0.90 8.00 1.27 3163 47411 0.25NA 3.13 Single 1.00 III 111 8 4.50 7.25 1.78 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 1.13 Double 1.00 VII 112 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 316 411 0.08 0.58 Double 0.58 VII ]13 5 1.38 7.25 3.45 OK 8.00 0.13 8.00 0.73 8.00 1.44 200 261 0.17 0.87 Single 0.87 II 201b 9 2. 7 201 9 3.921 10.79 3.10.79 236 oK 9.00 0.90 18.00 1.27 9.00 0.90 18.00 1.27 200 261 0.18 0.93 Single 0.93 II 71 10.793.322 oK OK 9.00 0.90 18.00 1.27 200 261 0.12 0.60 Single 0.60 III 201b 9 2.9 9.00 0.73 18.00 1.44 182 236 0.13 0.66 Single 0.66 III 202A 9 3.006 11.96 3.04 OK 9.00 0.73 18.00 1.44 182 236 0.13 0.67 , Single 0.67 III 20 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 2043 9 3.00 11.96 3.00 OK 9.00 0.73 18.00 1.44 181 236 0.13 0.67 Single 0.67 III 204 9 3.00 11.96 3.00 OK 8.00 1.27 91 118 0.20 0.98 Single 0.98 1 301 8 5.79 13.96 2.04 OK 8 00 1 27 91 118 0.29 1.45 Single 1.00 I 302 8 5.79 13.96 1.38 OK 5.968.00 1.27 91 118 0.21 1.06 Single 1.00 I 304 8 4.25 13.96 1.88 OK 8.00 1.44 242 315 0.15 0.74 Single 0.74 III 304 8 2.96 2.70 OK 8.00 1.44 242 315 0.15 0.75 Single 0.75 III 305 8 3.00 5.96 2.67 OK Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= 18.00 r Total#1st Floor Bays= 4.77 Are 2 bays minimum present along each wall line? No 1st Floor Rho= 1.3 Total 2nd Floor Wall Length= 22.75 Total#2nd Floor Bays= 5 Are 2 bays minimum present along each wall line? No 2nd Floor Rho= 1.3 Total 3rd Floor Wall Length= 1992 Total#3rd Floor Bays= 5 Are 2 bays minimum present along each wall line? No 3rd Floor Rho= 13 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho 1 Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) A a t ,- Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd FIr. From Roof Load (kit) Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k ( � (pit) (ft-k) (ft-k) (k) 107 8 15.50 15.50 0.52ox 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 108 8 15.50 15.50 0.521 ox 10.00 1.22 18.00 1.57 27.00 1.14 1.03 254 Single 1.40 I 71.21 123.49 -0.19 I205 1 9 113.001 13.001 0.691 OK 1 1 1 9.00 1 1.57 1 18.001 1.14 l 0.70 1 208 1 Single 1 1.40 I 34.62 59.15 -0.07 206 9 113.00 13.00 0.69 ox 9.00 1.57 18.00 1.14 10.70 208 Single 1.40 I 34.62 1 59.15 1 -0.07 I 1307 1 8 1 10.001 10.001 0.801 ox 1 1 1 1 1 8.00 1 1.14 1 0.291 114 1 Single 1 1.40 I 9.100 1 14.401 0.055 4e0II Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) n i , _ Harper Houf Peterson Righellis Pg#: - Shearwall Analysis ` Based on the ASCE 7-05 Line Load Controlled By: Seismic * u panel ShearPanel Mo MR Uplift Lon:itudinal Shearwalls T Shear Wall 1 L Line Load Line Load Line Load Dead V Rho V Strength Bays Sides Factor Type (ft-k) (ft-k) (k) Lgth. From 2nd Flr. F®3r©®R© (kit) (pit) (ply 1.00 ©k) 130.70-k) -1.74 P107l NI 1111 k (ft) ® 1.09 153 153 NA 3.88 130.70 -1.40 107 8 15.50 15.50 0.52 OK 10.00 0.32 18.00 0.73 27.00® 1.09 173 173 NA 3.88 1.00 _® 108 8 15.50 15.50 0.52 OK 10.00 0.40 18.00 0.90 ®� ' 158 158 NA 2.89 � 1.00 © 30.54 64.22 -0.64 9.00 0.73 18.00 11101111001.00 ® 30.54 64.22 4 205 9 13.00 13.00 0.69 oK __ 9.00 0.90 18.00 1.38 175 175 NA 2.89 .. 1.00 _ 10.85 17.40 -0.450.02 206 9 10.00 13.00 0.8069 OK __ 8 00 ® - 133 133 NM2.50 Eiji11.67 17.40 0.06 306 8 10.00 10.00 0.80 OK ME 11111111111111 8.00 _U 138 138 NA 2.50 Single 1.00 307 8 10.00 10.00 0.80 UK �_�� Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 31.00 Total#1st Floor Bays= 7.75 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= 1.0 Total 2nd Floor Wall Length= 26.00 Total#2nd Floor Bays= 6 Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= 1.0 Total 3rd Floor Wall Length= 20.00 Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.0 S readsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L uired for walls with H2>1.0,for use in Rho check) %Story Strength=L/Total Story L (Req #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis SHEAR WALL SUMMARY' Pg#: Transvere Shearwalls Paiel �lle$r� T Z $ e x �i00 O � IID SOii liol own Go0(� 'Or 101 Not Used 102 Simpson Strongwall 103 Simpson Strongwall 103a 814 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 104 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 105 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 106 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 109 401 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 110 401 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 111 907 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 112 907 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 990 113 907 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 990 201 474 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 201a 474 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 201b 474 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 202A 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 202B 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 - 203 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 204 423 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 301 166 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 166 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 166 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 379 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 305 379 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 495 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Longitudinal Shearwalls I ', Sim son�ioldowm Good- ..� €. 51' 's goo, .01 Panel a r S tail av; a a tk P` 6 rQ ttA {T , 1 wg , ,4_4„,„,,, ,,I.,,,,&,,,72" a_ f; 7: F=. b xi" ,' A....,:--.. .s-� .r, 339 �.� `� Sim•son None 107 254 1/2"APA Rated Pl 'd w/8d Nails • 6/12 339 Simpson None 0 108 254 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 205 208 1/2"APA Rated PI 'd w/8d Nails ' 6/12 339 1:_L�',� Simpson None 0 w Simpson None 0 339 ~�•' '` 206 208 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 48 Sim•son None 0 306 ® 242 1/2"APA Rated P1 'd w/8d Nails , 6/12 242 59 Simpson None 0 307 138 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Transverse Wind Uplift Design Unit A Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear� Floor Shear Q Stacking @ Stacking From From Uplift Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left floors @ Left @ t House Side of Above Above above if Right House @ Left @ walls stack) Right (ft) (ft) (]t) (ft) k k k k plf klf k k kft kft kft k k k k k 102 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.192 0.832 27.43 0.57 1.69 21.31 20.79 103 8 1.1667 1.75 3.50 1.737 2.8 2.32 6.857 1959 0.152 0.832 0.192 27.43 1.69 0.57 20.79 21.31 2 103A 8 1.1667 4.00 4.00 3.254 3.254 814 0.04 2.016 1.664 26.03 8.38 6,98 6.00 6.24 200.7.799 104 8 1.1667 4.50 10.50 1.516 2.8 2.26 6.576 626 0.1 0.8 0.078 25.08 4.61 1.36 5.58 6.06 6.00 105 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.252 0.156 16.72 0.97 0.68 6.45 6.52 5.58 106 8 1.1667 3.00 10.50 1.516 2.8 2.26 6.576 626 0.048 0.156 0.252 16.72 0.68 0.97 6.52 6.45 6.45 109 8 1.1667 4.58 17.08 1.737 2.8 2.32 6.857 401 0.152 0.192 0.156 16.31 2.47 2.31 3.63 3.66 201L 201R 6.52 110 8 1.1667 12.50 17.08 1.737 2.8 2.32 6.857 401 0.096 0.156 0.192 44.52 9.45 9.90 3.24 3.21 201aL 201bR 4.95 4.88 8.45 4.95 4.88 8.18 III 8 1.1667 4.50 7.50 1.516 2.8 2.26 6.576 877 0.144 0.8 0.078 35.11 5.06 1.81 8.02 8.51 112 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.252 0.234 11.70 0.43 0.41 11.44 11.46 8.02 113 8 1.1667 1.50 7.50 1.516 2.8 2.26 6.576 877 0.048 0.234 0.252 11.70 0.41 0.43 11.46 11,44 11.44 11.46 201 9 1.1667 3.92 10.8 2.8 2.32 5.12 474 0.225 0.432 0.156 17.71 3.42 2.34 3.99 4.16 301 L 301 R 201a 9 1.1667 4.17 10.8 2.8 2.32 5.12 474 0.225 0.156 0.156 18.84 2.61 2.61 4.14 4.14 302L 302R 0.80 0.80 4.82 201b 9 1.1667 2.71 10.8 2.8 2.32 5.12 474 0.225 0.156 0.432 12.24 1.25 2.00 4.24 4.08 303L 303R 0.800.80 4.95 2.611 202A 9 1.1667 2.96 11.958333 2.8 2.26 5.06 423 0.173 0.432 0.052 11.92 2.04 0.91 3.62 3.84 304L 304R 0.80 5.1521 202B 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.173 0.052 0.216 12.09 0.93 1.43 3.84 3.74 305E 305R 2.60 2.75 6.21 203 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.309 0.216 0.312 12.09 2.04 2.33 3.62 3,56 2.74 2.16 6.58 204 9 1.1667 3 11.958333 2.8 2.26 5.06 423 0.225 0.312 0.432 12.09 1.95 2.31 3.64 3.57 3.62 3.64 301 8 3.92 13.96 2.32 2.32 166 0.232 0.384 0.204 5.21 3.29 2.58 0.83 0.93 302 8 5.79 13.96 2.32 2.32 166 0.232 0.204 0.204 7.70 5.07 5.07 0.80 0.80 0.83 303 8 4.25 13.96 2.32 2.32 166 0.232 0.204 0.384 5.65 2.96 3.73 0.91 0.80 0.80 304 8 2.96 5.96 2.26 2.26 379 0.232 0.384 0.136 8.98 2.15 1.42 2.60 2.75 0.91 305 8 3 5.96 2.26 2.26 379 0.232 0.136 1.104 9.10 1.45 4.36 2.74 2.16 2.60 2.74 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) I . Transverse Seismic Uplift Design Unit A lits > Shear H foist L Wall Line Load Line Load Line Total V Loaada(oft:ot Doin Doan O fling RMomentt Momentt F oor'SI ear @ Floor'Shear @ Sta k ng @ Stacaking From From Upli Panel Height Lgth. From 2nd From 3rd From Wall Ri ht Left Side of @ Right Wall Wall @ Lett Shear includng Load Load Momen @Left @Right Left g House Side of Above Above } 1. Flr. FIr. Roof floos @ Left @ t }douse @ Left @ abovif Right Right wals stack) k k k k (ft) (ft) (ft) (ft) k k k k plf klk k kftkft kft k 7.91 7.91 7.11 0 0 7.11 7.91 0 0 7.11 102 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 6553366 3 0.152 0.192 0.832 10.40 0.57 1.6 -1.06 103 8 1.1667 1.75 3.50 0.114 0.9 1.27 2.284 653 0.152 0.832 0.192 10.40 1.69 0.57. 111 7 91 0 0 0.481 120 0.04 2.016 1.664 3.85 8.38 6.98 120 1.93 0 0 1.20 103A 8 1.1667 4.00 4.00 0.481 2.04 104 8 1.1667 4.50 10.50 0.126 0.73 1.44 2.296 219 0.1 0.8 0.078 8.96 4.61 136 2,04 2.14 0 0 2.14 2.04 0 0 2.14 105 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.252 0.156 5.97 0.97 0. 106 8 1.1667 3.00 10.50 0.126 0.73 1.44 2.296 219 0.048 0.156 0.252 5.97 0.68 0.97 0 82 0.86 201E 2018 3 1.54 ].95 109 8 1.1667 4.58 17.08 0.114 0.9 1.27 2.284 134 0.152 0.192 0.156 5.58 2.47 231 0.56 0.53 201 aL 201 bR 1.32 1.32 1.88 2.00 2.73 0 0 2.00 110 8 ].1667 12.50 17.08 0.114 0.9 1.27 2.284 134 0.096 0.156 0.192 15.23 9.45 9• 3.79 111 8 1.1667 4.50 7.50 0.126 0.73 1.44 2.296 306 0.144 0.8 0.078 12.54 5.06 1.81 3 79 3 82 0 0 112 8 1.1667 1..50 7.50 0.126 0.73 1.44 2.296 6 0.048 0.252 0.234 4:18 0.43 0 0 3.82 113 8 1.1667 1.50 7.50 0.126 0.73 1.44 2.296 306 0.048 0.234 0.252 4.18 0.41 0.43 3.82 3.79 0 0.9 1.27 2.17 201 0.225 0.432 0.156 7.63 3.42 2.34 1.16 1.41 301 L 301 R 03,2 0.13 1.13 201 9 1.1667 3.92 10.80 116.38 1.38 302L 302R 0.06 -0.06 1.32 201a 9 1.1667 4.17 10.80 0.9 1.27 2.17 201 0.225 0.156 0.156 8.11 2.61 2.61 1.53 1.28 303L 303R 0.10 -0.06 1.633 201b 9 1.1667 2.71 10.80 0.9 1.27 2.17 201 0.225 0.156 0.432 5.27 1.25 2.00 1.50 304R 1.28 1.500 2.63 202A 9 1.1667 2.96 11.96 0.73 1.44 2.17 181 0.173 0.432 0.052 5.25 2.04 0.91 1.15 1.35 304L305L 305R 1.28 .50 3 0.73 1,44 2.17 181 0.173 0.052 0.216 5.32 0.93 1.43 1.491.16 1.08 0 0 2.991.16 202B 9 1.1667 3.00 11.961.19 203 9 1.1667 3.00 11.96 0.73 1..44 2.17 181 0.309 0.216 0.312 5.32 2.04 2.330 0 204 9 1.1667 3.00 11.96 0.73 1.44 2.17 181 0.225 0.312 0.432 5.32 1.95 2.31 1.19 1.08 -0.03 0.13 0 0 -0.03 301 8 0 3.92 13.96 1.27 1.27 91 0.232 0.384 0.204 2.85 3.29 2.58 -0.036 0.13 0 0 -0.03 6 302 8 0 5.79 13.96 1.27 1.27 91 0.232 0.204 0.204 4.21 5.07 5,07 0.0 0 0 0.06 303 8 0 4.25 13.96 1.27 1.27 91 0.232 0.204 0.384 3.09 2.96 3.73 1.280,10 -0.060 0 0 1.28 304 8 0 2.96 5.96 1.44 1.44 242 0.232 0.384 0.136 5.72 2.15 1.421.50 0 0 1.50 305 8 0 3.00 5.96 1.44 1.44 242 0.232 0.136 1.104 5.80 1.45 4.36 1.50 Spreadsheet Column Definitions&Formulas L=Shear Panel Length 11=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT A Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift a or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 102 Wind 21.31 Holdown None 0.00 Wind 20.79 None 0.00 103 Wind 20.79 Holdown None 0.00 Wind 21.31 None 0.00 103A Wind 6.00 Holdown HDQ8 w 3HF 6.65 Wind 6.24 HDQ8 w 3HF 6.65 104 Wind 5.58 Holdown HDQ8 w 3HF 6.65 Wind 6.06 HDQ8 w 3HF 6.65 105 Wind 6.45 Holdown HDQ8 w 3HF 6.65 Wind 6.52 HDQ8 w 3HF 6.65 106 Wind 6.52 Holdown HDQ8 w 3HF 6.65 Wind 6.45 HDQ8 w 3HF 6.65 109 Wind 8.45 Holdown HDQ8 w DF 9.23 Wind 8.75 HDQ8 w DF 9.23 110 Wind 8.18 Holdown HDQ8 w DF 9.23 Wind 8.09 HDQ8 w DF 9.23 111 Wind 8.02 Holdown HDQ8 w DF 9.23 Wind 8.51 HDQ8 w DF 9.23 112 Wind 11.44 Holdown HDU14 14.93 Wind 11.46 HDU14 14.93 113 Wind 11.46 Holdown HDU14 14.93 Wind 11.44 HDU14 14.93 201 Wind 4.82 Strap MST48x2 5.75 Wind 5.09 MST48x2 5.75 201a Wind 4.95 Strap MST48x2 5.75 Wind 4.95 MST48x2 5.75 201b Wind 5.15 Strap MST48x2 5.75 Wind 4.88 MST48x2 5.75 202A Wind 6.21 Strap MST60x2 8.11 Wind 6.59 MST60x2 8.11 202B Wind 6.58 Strap MST60x2 8.11 Wind 5.91 MST60x2 8.11 203 Wind 3.62 Strap MST60 4.06 Wind 3.56 MST60 4.06 204 Wind 3.64 Strap MST60 4.06 Wind 3.57 MST60 4.06 301 Wind 0.83 Strap MST37 1.79 Wind 0.93 MST37 1.79 302 Wind 0.80 Strap MST37 1.79 Wind 0.80 MST37 1.79 303 Wind 0.91 Strap MST37 1.79 Wind 0.80 MST37 1.79 304 Wind 2.60 Strap MST48 2.88 Wind 2.75 MST48 2.88 305 Wind 2.74 Strap MST48 2.88 Wind 2.16 MST48 2.88 • l 7 LI By. \\Nsr, DATE: ........ ao to JOB NO.: C '-_;,,k-i -0C10 PROJECT: ,4 ,-- RE: 3,S43 a.\ ,,,,,r __ -ceo,r-- Loo.c\ ,-. --:' -• NockA Loc‘&5: u-\-\\\,;,--i4_, ',.1-1-c-7;:.) (J---).,7\---.1 -5,,,,C- \,-,.-. iii_ if: (72.)0,,-( 0::...V._ '.,2,3'-,Cs:r:‘, ,,k:Jr,),f1'''-7:., ,.•'-' , C''-.,_/:'.:.), \ \a:7_6 "•:71 47) 0 2 op s \j,,,a\ ,..,......i_ ..... , k00 \\0, a ..i 1M < U O W 6-07111‘ t--OaCk- 7-7 w z w 0 1 = 3 Li-act Ir-i wail z / 2 aC,I1.0.1 < ag),-64t.) ;• 014-• 1-- i < o z D Cc '''''' '1: P'! i ' , " c S-:::::;-.,),„7:;41 5 :7`'''' 3ott,o *F- s __,...."- ,,, ,.),.,:‘ :., -r...,,,: ..) , ....; 7 .1•=.7 t :. I- ,i'-‘ rrk-, ,(i r ,n :- :,, O • *44‘' E 0 Li- Z w FT 6 O I I-- 0- . . a CS -: Y. ,.. 0 -I-- CA 1.) •-• --- 0 a) 0 3r-1n s 1.fiL v)rwriv .3-&;14;4(Y\iNil HILON \HI. (\As ii —çi • c.4) 4 4, el_ 0 0 mrsimmiall _ o • fo, I I o N TI41. 44.1.9r4 "31 141 rc ) FC) ..),-,,' c 1, ,3VJ 1\r\k.co Lemeo NQ-104-ev...G. p, ON/ A 01- AJ k ft LC11$ ( C _ 0't -- , Ci ',. , c-- 2_—_- 1 , 1 I rkil (P1 0 _ in <1.... 1 o N)----- --- _ 0 ) lob sv.) IRIS tlekiCilik I\N If tli lit V-t;' f\ts,oso(---, Thi',1, L 1 i'/€". -.... 0 --6 . --' ' /a . )1 % r;(1‘\,/ ,)r-Nf 10 -if I • - 0 C41 c.,11 • = • 0 .1: 31,v1/ sou.. 9(No1v 114r S r • s‘o ,,,,,..\,‘,,,,, ut„.1‘.1(11 '13'1\" (-11' :,.5 :1\f•C 306 7. k r":„1 — 156,.........................0.. —3( 7: , .1 0 , 0 'al Ller. lee 11 I I()‘) ), ::I klij W 1)4\S (..t..'iL)("1.11+ k V31\i(r1, -rHts Llt,A. BY A hi\c„, DATE. (.0 'Th 01 0 t JOB NO CC,kl 0 C1 0 PROJECT: RE: To\f„..•i(yrot,crr\ A-ccm\ er- -• z 0 w ott 01 ph ra gm Lui cl,-4,1 = aock O 2 2 Cu= laol pk,..p 1‘ Li 0 -J GE < 0 W C c?C"'Cr 1:111,or unbtociced dictphir-torn 0 z w 0 = Ctbo X L61--aS9Lf cc 11 Z 2 0 WO(t... Cii ICA I*,ftkrjr/A il- oz. ha• =7 03 .-0 1,0 fl, — Q.5- pt-P I,L1- - 1'>u,.) - - o ic,. 2 D 2 0 U 2 . 0 Eci EL Z w _ 1 , z ° E O• 0 ti) z " a) -— -- `s'-z).`+-' --•- s--, — - ct o .b-0 ---i' 0 ,_.4 I eThCrN •, BY , , r,.. p DATE: ,...... V1 .........‘0 JOB NO.. ( E ki ;.....i.A li,\ i ; 1 k Y k,,k...../ —OcID PROJECT: 5'— W' RE: Des. oc 'II,cc, )161-0(,.:,.I.,.-t @ 5-);(1,- .1' -,.? j OPTION) a- . # LT_ z 11Pligli o F- w O 2 [ t.c21 Wr fri I ri0.1',J allio........i..11 r...' . MI/ i W• — 30r,-)T ---": °It—911Z" 001111111.- • L---, _.1 I ' It_I Ka X 5-C-A k -OV-k,t,4 , I. Cr < 0 i i W 0 5 1(_ '...) kJ_.1),.;.jip cc a_ O c,---.f. 4:1 ,..., • .\,-.",- -7.;''-•-1 \ --', _ Z D 2 2 0 2 X 0 0 1 94 f-",-d. __•:, '.„------<-- ' --- -„. c..=.- ji\j‘t = -....: ?:,., ,.-- L‘..-..-.......__:_d ,....., -7.-t / .,=---, ., : - :„... , :_..-...- ,.....- ,-m ...... 0 •,-- r, ,... 0. ..._, , ,---- , „-- ' ., ,(---7 ' -:--- ' - 7Y ,:7.1 -3-,-_-_- , _,I-- \--(',---\ 0 c-, :,, ',,TIM 2_... ,.) A 7 lit r..--"I BY 111Aif : DATE D.... It -2___ k--0 JOBNO. PROJECT: RE: ,,,-?(-1;-"7 1,,,,, 1 , 1',../i.7., L. .--, ,-.L.,is-Jc.-' 7" '-.,:a7n- 'OC\k‘oor\ 1:- c ...1r=.4-1-,c •g....0 T):.00f-,. 0 w 1__ w 0 2 17 ;b ii, Ji.I'l-i',, --- 0 o w 0 z 0 r-, • ,--„ 0 ,....,,, ,_ p- .--,-- ,,— ,., ', \: . .,- ,-:. ,--,, v — xiiip_ ......0 ,,...,..,., , c-- , -, , ,.,....,,__,_,.. ,_, _ 0 7 i- < Ir. V---- y---7------T-7—rj . U D „ - .„, r------.-.77---, --,---- ,, 1ST ---- — — . .i I 1 x o i 0,,,, Li -- z L. ,... , . . ",,,.,, •..i, = i,.0,-17..-, X,I.7::- ) = ci..-" ,C ''' ...". '' 2.-6,-- i ",----, L.------ ------ i -4---- -------,k,--- ._:-- ‘ --- , -'-',-- K2, ,-, ,, 5 — :1,,,,,,,, 0 .: •. - - X X :e• --y,:, .. _ r---. - ..,,„ ...., r r.... 1(.05G,7 - 1,,, ,.„, \-1_',-;-'-----1, --'- `„.,c,, f , --,-,--- 7"0 — 3 0k7 0 --'-'1:, 1-1T-T--- '‘\ 1 r ,...,, -,„ 'r''. -••••'--"..,‘ V..._.---;:a 2"1', ,,1,,'',, ,,,,,,,--, ..., , . .. Eii WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN June 24,2010 12:49:04 AWoodWorks®Sizer 7.1 Unit A-Front Load PROJECT COMPANY RESULTS by GROUP -NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Trusses Not designed by request 1- 2x8 Lumber n-ply D.FirL No.2 (2) 208 Not designed by request 2- 2x6 (2)2 Others Hem-Fir No.2 3- 2x6 Lumber n-ply Hem-Fir 2x6 No.2 (3) 2a6 Lumber Stud Fir Stud 2x6 @16.0 Typ Wall Lumber Stud Hem- L SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR Mnf est Not designed by request 2x6 @16.0 1- 6x0 Stoped Joist Lumber D.Fir-L No.2 n-pt No.2 2- 2xB (2) 2x8 (1) Lumber n-ply D.Fir-L No.2 By the Lumber n-P1Y D.Fir-L Not designed by request By Others Not designed by request 2- 2x12 By Others 2 No.2 5.12-x20.2 (2). 5x12 Lumber Unbaln-ply W.st Species 24F-V4 DF 4.625x10.5 Umber-softlan. WestNo.2 4x6 (2)4X6 Lumbers-pt D.Fir-Lr No.2 2- 2x6 (2) 2x6 Lumber n-plysHem-Fir 4x6 Lumber Post Hem-Fir No.2O. 3- 2x6 4x6 Hem-Fir No.2 (3) 2x4 Lumber n-plyly No.2 2- 2x4 (2) 2a4 Lumber ntudY Hem-Fir Stud 2x6 @16.0 Typ Wall Lumber Stud Hem-Fir SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Not designed by request Mnf Trtusses Not designed by request 208 @16.0 Dec JJeNo.2 2- 208 (2) 08t Lumber-soft D.Fir-L No.2 (2) 5x9 Lumbar n-plyUnbal W.st SpL 3.125x9 Glulam-Unbalan. West Species 29F-V9 DF qxe 4.125x9 No.2 4y8 Lumber-soft Nor deL By Others Not designed by request By Others 2 Not designed by request 1- 2x10 Lumber n-ply D.Fir-L No.2 5.-22x10 (2) 2x10 Species 24F-V4 OF BOther GL Glulam-Vn6alan. NotWest designed by request 3.5x14 By 3.1250145014s 3 1.55E 232GFb 2- 214 (2) LSL LSL n 1 Hem-Fir No.2 404 6 (2) 206 Lumber s Y No.2 4x6 Lumber Post Hem-Fir 4x6 436 Lumber Post Hem-Fir No.2 3- 2x6 65 2x6 Timber sty Hem-Fir 6x6 Timber-soft Hem-Fir No.2 2- 2x4 6x6Hem-Fir No.2 6x6 (2) 2x4 Timber noftY No.1 (3) 204 Timber-soft He-Fir No 2 3- 2x4 (3) 2a4 Lumber Stud Hem-Fir Stud 2x6 @16.0 Typ Wall Lumber Stud Hem-Fir SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR-- _ -5_=- __ -____ .- Not designed by request End - - - CRITICAL MEMBERS and DESIGN CRITERIA Crite tion Analysis/Design Values Group Member _ ______ Mnf Jst Mnf Jet Not designed by request 0.41 Bending0.10 Sok dst j65 Bending Slloped Joist unknown Unknown 0.00 (2 2_8s 1 n Bending 0.47 (2)) ( 208 (1) b35 Bending 0.89 (2) 208 bB 0.06 b3 Bending 0 12 3.125x9 b30 Bending 4x8 By Others By Others Not designed by request By Others 2 b6By Others Not designed by request (2) 20100.93 Bending 0 93 . 5x10 Benbl Shear ding 0.76 BOther GL 610 _ By Others 3 By Others Not designeDeflecti ny equest 0.95 5.625x10.5 b9 Bending 0.08 3X6 b14 Deflection 0.73 c)22x69 LSL b14 Axial 0.91 (2) 2x6 c2 023 Axial 0.07 0.80 cZ 4x4 c23 Axial 0.75 36 9 Axial (3) 2x6 26 c26 Axial 0.70 Axial 0.62 (2) 204 c39 0.86 c12 Axial 0.89 Typ66 Wall w14 (3) 204 c31 Axial (3) WAxial 0.48 Pod Fnd Not designed by request DESIGN NOTES: - ' 1. Please verify that the default deflection limits are appropriate for yourapplication. result .. 2. DESIGN GROUP OCCURS ON MULTIPLELEVELSt :thelowe Mlevela reults. consideredis the final design and Linc es Materig duration 3. ROOF LIVE LOAD: treated as a snowload with this espordigadura. factor. Add an empty roof level to bypass 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. actual depth. 5. GLULAM: bxd= actual breadth x according to then provisions 6. Glulam Beams shall be laterally supportedaccordingoto of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported the provisions of NOS Clause 4.4.1. 8. mUILerUP BEAMS: it 1 s a single continuous oibutts s h each jointsare present) fastened together member (that is, n eedin 4 times the depth and that secu-ply at intervals not adc g side-loaded, each ply is equally top-loaded. beams are special fastening details may required. 9. SCL-BEAMS (Structural Composite Lumber): the herattachedeSCL selection is for preliminary design only. design contact your local SCL manufacturer columns shall conform 10. BUILT-UP COLUMNS:ns ofNDS Clause15.3 rs built-up to the prow ElWoodWorks® Sizer SOFTWARE FOR WOOD DESIGN I Unit A-Front Load _J WoodWorks®Sizer 7.1 Concept Mode: Beam View Floor 2 : 8 , June 24,2010 12:41:17 b31atv"� ArD vr- b1 n4 Z. b2 -- ., b10 b33 c. b32- " b19315 3 `' '' b14 b29 y Ei-_- WOodWorks® Sizer SOFTWARE FOR WOOD DESIGN June 24,2010 12:41:19 Woodworks®Sizer 7.1 Unit A-Front Load thN T. ! ()PfD Column View Floor 2 : 8 ' li Concep t Mode = `�� c58 c14 R ,.....:i...,2„::_,"_,,:,,,,,._____,:,:,,..,,,_:._,,,,,,,____, c69 c2 c70 c71 r :; i a ` c26 , c25 c12 c2 c73 c78, ill F c77 c31 c76 c79 __;___,,s, �� c32 1"4",� . c30 c55 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Rear Load WoodWorks®Sizer 7.1 June 24,2010 13:14:33 Concept Mode : Beam View Floor 2 : 8 ' b31 b34 b2 r. b10 b33 b32 b19)15 3 b14 b30' b29 111 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Rear Load WoodWorks®Sizer June 24,2010 13:14:35 Concept Mode: Column View Floor 2 : 8 ' c58 c14 c82 4' 4c --Z: c81 ... _ I-..1... c3 z,--_-- •:, c25 c12 c26 — c72 c2 _ - c78 -2 ::- c77 ....... ,.., rli —• c76 c71 - ::. 9c30 c32 -,- • - - c55 a 'Z.:, 7-,---'.'-' - :-7-_./:'_/-,CC--07,--(''': :,-,__ C:, : ' , -' ,•'-,_;, -7,-; :,2'` ,T;'- ,-_,_ _,_ - --1:-' 41,---::: -,-'747-• ----- , '--,:”"z- :- _ ,- - _„-- - 22_,2_-___ _ - < -2- ',- - ' - - ; '-•--- ,7,- - ' -,- _,- ----- --- - WoodWorks@ Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 24,2010 12:58:44 Concept Mode: Beam View Floor 3 : 17 ' ,r- -" b35 b6 y_ micatalisms yt, _... .:"C` b7 b9 u tib2h21 b20 b11b17 w I b34 b8 El WOpdWOrks® Sizer SOFTWARE FOR WOOD DESIGN June 24,2010 12:58:42 WoodWorks®Sizer 7.1 Unit A-Front Load Concept Mode Column View Floor 3 : 17 ' `9 c62 c61 c1r 5 , n c17 ',,: c18 c39 c24 c59 , `c60 c37 -, c35 =, > - x 6 ^67)c66 _. c63 � r f , t!'!c756520 c1c6c74 n r - ✓ t Woodworks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 Concept Mode : Beam View Roof: 25 June 24,2010 12:58:38 u - _, b23 b24 v , 4,_ I b25 b27 b28 8 / J WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN ElJune 24,2010 12:58:40 WoodWorks®Sizer 7.1 Unit A-Front Load Mode: Column View Roof: 25 ' Concepta aO ti c42 c43 c44 c45 fourso—ossaiC*maw aselissean wow G t 1c46 c47 • c51c50 c52 c53 f 14 COMPANY PROJECT WOodWorksA SOFTW4RF FOR WOOD DFSIGN June 24,2010 12:42 bt Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location fit] Units Stal w61 Dead Partial UD 613r2 613t n2 d S2a50 3n00 2 w61 Snow Partial UD 795.0 795.0 2.50 3.00 plf 9 c51 Dead Point 622 2.50 lbs 1 Snow Point 1192 lbs 5_j28 Dead Full UDL 2.50 lbs 6_j2g 47.7 plf -!-I Live Full UDL 160.0 j33 Dead Full UDL 120,2 plf 8 j33 Live Full UDL 370.0 plf p1f MAXIMUM RE ,rt,:qt.!tt.,::,v'f...--ko-.".it,tk*t-:--z.--,!hz-,v4e•-'-,-!.:'--,-:':_7,'.!!..- gi-,-;,„' ,4:;.,..;,4f-;*.-e- ,---it7,,,r... .',.,1A.-4:---,,,rie,--gr.::,,i:;;:,-- c-'', ix - r M - a pit*- .4. rx. `. el Dead 391 2 Live 795 31 Icr Total 1186 1061 Bearing: 1615 Load Comb #2 2676 Length 0.63 #3 1.43 Lumber n-ply, D.Fir-L, No.2,2x10", 2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Desi.n Value Anal sis/Desi.n Shear Bending(+) ffb = 331 FIT 207 fv*/Fv' = 0.32 Live Defl'n 0.00 = <L 99g .1 = 11380 = fb/Fb' = 0.29 Total Defl'n 0.01 = <L/999 0.15 = L/360 0.04 *The effect of L/240 0.05 point loads within a distance d of the support has been included as per NDS 3.9.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL Fv' 180 1.15 1.00 1.00 CF Cfu Cr 1.00 Ci Cn LC# Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1 00 1.00 1.00 1.00 1.00 1.00 3 Fcp' 625 1.00 1.00 3 E' 1.6 million 1.00 1.00 1.00 1.00 - - Emin' 0.58 million 1.00 1.00 1.00 1.00 - - - 1.00 1.00 - Shear : LC #3 = D+.75(L+S), V = Bending(+) : LC #3 = D+.75 L+S M = 11786, V design* = 1237 lbs Deflection: LC #3 = D+.75(1+S) EI= 1158 lbs-ft Total Deflection = 1.50(Dead Load Deflection06+1Live2Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no buttjoints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT ill Woodworks° - SOFrWARE FOR WOOD DE5lGN June 24,2013 b3 Design Check Calculatio1 :h:: t Sizer 7.1 LOADS (lbs,psf,or plf) Location [ft] Type Distribution MagnitudEnd Start End Load Start plf 2 '45 Live Dead Full UDL 17.0IIIIIIIIIIIIII .lf 2 45 Full UDL 25.0 MAXIMUM REACTIONS(lbs) and BEARING LENGTHS (in) tk 7Flv < � � as r -' a_ ...,� ". 94 106 IO' 112 Dead106 218 Liv e 112 Total 218 0.50#2 * Bearing: #2 Load Comb Len.th 0.50* *Min.bearing length for beams is 112"for exterior supports Glulam-Unbal.,West Species, 24F-V4 DF,3-118x9" Self-weight of 6.48 plf inbottom=in n supports; ads; Lateral support:top=full, Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2005: Desi•n Value Anal sis/Desi.n Fv Shear Criterion .fb = 140 Fb' = 2400' = 265 fv/Fv' fv = 10 fb/Fb' = 0.06 0.06 Liveing(+) 0.01 = <L/999 0.30 = L/360 0.064 Live Defl'n 0.03 = <L/999 0.45 = L/240 Total Defl'n ADDITIONAL DATA: CV Cfu Cr cfrt Notes Cn Lc# FACTORS: 2CD CM Ct CL - - - 1.00 1.00 1.00 2 Fb' 265 1.00 1.00 1.00 - - Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1_00 . 1.00 1.00 1.-00 - 2 Fcp' 650 - 1.00 1.00 - -- - - 1.00 - - 2 E' 1.8 million 1.00 1.00 - - _ - 1.00 Emin' 0.85 million 1.00 1.00 Shear LC #2 = D+L, V = 218, V design = 182 lbs D+L, M = 491 lbs-ft Delet(o) : LC #2 _ D+L EI= 342e06 lb-int Deflection:oaDflLC #2 + Live Load Deflection. Total Deflection = S=sn(Dead Load Deflection)I- construction CLd=concentrated) (D=dead L=live S=snow W=wind I=impact C= (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: ro riate for your application. 1.Please verify that the default ectios limconforming mi g to p 2.Glulam design values are fodeflectionmaterials conts are a to AITC 117-2001 andpmanufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions)NDS Clause 3.3.3. - 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp( _ . COMPANY PROJECT i WoodWorks SOFTWARE fOR WOOD DESIGN June 24,2010 12:40 b6 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units l c44 Start End Start End Dead Point 444 2.00 2_c44 Snow Point 647 lbs 3 w44 Dead 0.00 lbs 4 w44 Partial UD 389.2 389.2 0.00 2.00 plf Snow Partial UD 431.2 431.2 0.00 2.00 plf 5 c45 Dead Point 44q 6_c45 Snow Point 5.00 lbs 7 w45 647 5.00 lbs Dead Partial UD 389.2 389.2 5.00 6.00 plf 8 w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9_j25 Dead Full UDL 120.2 10 j25 Live Full UDL 370.0 plf plf MAXIMUM R CTIONS(lbs)and BEARING LENGTHS(in) : ter. -;r���'t'.4'''- ': .'.7. # a U ``' x� t , K � � ' 3 _ reads w +��k��. g ,,,46.1.,::: .�, _z, x : ``� �� � �_�k �,�..rs 3r$� -w� atmoi:, r'_ � .�.,d".� �,aM Ixict .�.k 's � r z" §' _ � ?"tom x' ^ �e i rix ,.^ �,`a 1 i a ' � �F��` x�� ,� �'� .ate' 41'''''-' •'-' �a 10' Dead 1436 6{{1 Live 1803 Total 3239 1389 Bearing: 1803 Load Comb #3 3192 Length 1.73 #3 1.70 Lumber n-ply, D.Fir-L, No.2,2x12",2-Plys Self-weight of 8.02 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 97 Fv' = 207 Bending(+) fb = 805 fv/Fv' = 0.47 Live Defl'n 0.03 = <L/999 0.20 _ 1L/3 fb/Fb' = 0.14 /360 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 _ 1.00 1.00 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 1.00 3 Fcp' 625 - 1.00 1.00 - -3 E' 1.6 million 1.00 1.00 - - 1.00 1.00 - 3 - Emin' 0.58 million 1.00 1.00 - 1.00 1.00 - 3 - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 3239, V design = 2190 lbs Bending(+): LC #3 = D+,75(L+S), M = 4247 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 285e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC ' DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT `I Woodworks SOFTWARE FOR WOOD DESIGN June 24,2010 12:50 b8 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Units Load Type Distribution Magnitude Location [ft] Start End Start End plf Dead Full UDL 113.7 •lf 1 '14 Full UDL 350.0 2 '14 Live MAXIMUM REACTIONS lbs and BEARING LENGTHS inu A 64 • 357 I0, 1050 Dead 350 1050 Live 1050 Total 1407 #2 Bearing: 0.75 Load Comb #2 Len•th 0.75 Lumber n-ply, D.Fir-L, No.2,2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Desi•n Value Anal sis/Desi•n ShearCeterion Ifv = 77 Fv' _ 180 fv/Fv' = 0.43 fb/Fb' = 0.89 fb = 963 Fb' = 1080 0.33 Livding(+) = <L/999 0.20 = L/360 0.34 Live Defl'n 0.1007 0.30 = L/240 Total Defl'n 0.10 = L/712 ADDITIONAL DATA: CF Cfu Cr Cfrt Ci Co Lc# FACTORS: 18CD CM C0 CL - - 1.00 1.00 1.00- 2 Fb' 180 1.00 1.00 1.00 - 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.002 - E'Fc625 1.00 1.00 - -- - - 1.00 1.00 g� 1.6 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 Shear : LC #2 = D+L, V = 1407, V design = 1123 lbs 2110 lbs-ft Ben ding(+) : LC #2 = D+L, M = 76e06 lb-int/ply Deflection: LC #2 = D+L EI= Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: appropriate for your application. 1.Please verify that the default deflection limits are appro p 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. - COMPANY PROJECT - i i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:40 b9 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j50 Dead Partial UD 113.7 113.7 0.00 1.50 plf 2 j50 Live Partial UD 350.0 350.0 0.00 1.50 plf 3 j14 Dead Partial UD 113.7 113.7 3.00 9.00 plf 4 j14 Live Partial UD 350.0 350.0 3.00 9.00 plf 5_j51 Dead Partial UD 113.7 113.7 1.50 3.00 plf 6 j51 Live Partial UD 350.0 350.0 1.50 3.00 plf 7_j24 Dead Partial UD 120.2 120.2 0.00 3.00 plf 8 j24 Live Partial UD 370.0 370.0 0.00 3.00 plf 9_j25 Dead Partial UD 120.2 120.2 3.00 9.00 plf 10 j25 Live Partial UD 370.0 370.0 3.00 9.00 plf 11_j26 Dead Partial UD 120.2 120.2 9.00 12.00 plf 12_j26 Live Partial UD 370.0 370.0 9.00 12.00 plf 13_j52 Dead Partial UD 113.7 113.7 9.00 10.50 plf 14_j52 Live Partial UD 350.0 350.0 9.00 10.50 plf 15_j53 Dead Partial UD 113.7 113.7 10.50 12.00 plf 16 j53 Live Partial UD 350.0 350.0 10.50 12.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : a - a.�.. .a.� °�, ,, 3, tm � ,yam�r *% * " . , 3a .- ...�ss^�k��� rz. - .x- e a. - tttr>-a' ,.x. .,±4_ i, .:.. +o=i �: .t .,fir . *, ,w..,.vm x s: _ ,, �.�,.- � - '" %c ' '; W Fit , 1p Dead 1478 121 Live 4320 1478 Total 5798 4320 Bearing: 5798 Load Comb #2 Length 1.74 #2 1.74 Glulam-Unbal.,West Species, 24F-V4 DF,5-1/8x10-1/2" Self-weight of 12.39 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 138 Fv' = 265 fv/Fv' = 0.52 Bending(+) fb = 2217 Fb' = 2400 fb/Fb' = 0.92 Live Defl'n 0.38 = L/381 0.40 = L/360 0.94 Total Defl'n 0.57 = L/252 0.60 = L/240 0.95 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - E' 1.8 million 1.00 1.00 - - - - 1.00 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 5798, V design = 4953 lbs Bending(+): LC #2 = D+L, M = 17395 lbs-ft Deflection: LC #2 = D+L EI= 890e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 - 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). • • COMPANY PROJECT WoodWorks� r SOFTWARE FOR WOOD DESIGN June 24,201012:43 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution MStaartitude End StartionEnddtl Pat- tern 1 w39 Dead Partial UD 311.0 311.0 0.00 4.50 No 2 w39 Live Partial UD 680.0 680.0 0.0000 4.50 No No 3 c39 Dead Point 822267 2.00 No 4 c39 Live Point 5-j32 Dead Partial UD 120.2 120.2 0.00 0.50 No 6 j32 Live Partial UD 370.0 370.0 0.00 0.50 No 7 j33 Dead Partial UD 120.2 120.2 1.00 4.00 No 81j33 Live Partial UD 370.0 370.0 1.00 4.00 No 9 j34 Dead Partial UD 120.2 120.2 4.00 4.50 No 10 j34 Live Partial UD 370.0 370.0 4.00 4.50 No 11 j35 - Dead Partial UD 120.2 120.2 4.50 7.50 No 12 j35 Live Partial UD 370.0 370.0 4.50 7.50 No 13 j36 Dead Partial UD 113.7 113.7 4.50 16.50 No 14 j36 Live Partial UD 350.0 350.0 4.50 16.50 No 15 j37 Dead Partial UD 100.7 100.7 3.00 4.50 No 16 j37 Live Partial UD 310.0 310.0 3.00 4.50 No 17j47 Dead Partial UD 120.2 120.2 7.50 13.50 No 18 X47 Live Partial UD 370.0 370.0 7.50 13.50 No 191j48 Dead Partial UD 120.2 120.2 13.50 16.50 No 20_j48 Live Partial UD 370.0 370.0 13.50 16.50 No 21j49 iveDead Partial UD 120.2 120.2 0.500 1.00 No 22 j49 Live Partial UD 370.0 370.0 0.00 1.00 No 23 b32 Dead Point 922 3.00 No 24 b32 Live Point MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) 16'-6'1 452 4,-6„11291 1180 Live 847 la40673436 L9616 Uplift 12 15358 Total 1300 16 Bearing: #2 1.27 1. Load Comb #2 4 #2 1.002 Length 0.50* 1.09 Cb 1.000 'Min.bearing length for beams is 1/2"for exterior supports Glulam-Unbal.,West Species,24F-V4 DF,5-118x12" • Self-weight of 14.16 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 158 Fv' = 265 fv/Fv' = 0.60 Bending(+) fb = 1074 Pb' = 2400 fb/Fb' 0.45 5 Bending(-) fb = 1396 Pb' = 1844 fb/Fb' = 0.32 Live Defl'n 0.13 = <L/999 0.40 = L/360 0.32 Total Defl'n 0.19 = L/740 0.60 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt- 1.00 Notes L n LC# Fv' 265 1.00 1.00 1.00 - - _ Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1,00 1.00 - 2 Fb'- 1850 1.00 1.00 1.00 0.997 1.000 1.00 1.00 1.00.00 1.00 2 Fcp' 650 - 1.00 1.00 - _ - - 1.00 - -- -2 E' 1.8 million 1.00 1.00 - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - Shear : LC #2 = D+L, V = 8357, V design = 6496 lbs Bending(+): LC #2 = D+L, M = 11006 lbs-ft Bending(-): LC #2 = D+L, M = 14310 lbs-ft Deflection: LC #2 = D+L EI= 1328e06 lb-int+ Live Load Deflection. Total Deflection = 1.50(Dead Load Deflection) (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) - (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190 1-1992 3.Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams. 4.GLULAM:bxd=actual breadth x actual depth. 5.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:44 b13 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pit) Load Type Distribution Magnitude Location [ft) Units Start End Start End l w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3_c40 Dead Point 217 5.50 lbs 4_c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13_j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16_j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17 b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20-b32 Live Point 693 6.50 lbs MAXIMUM REACTIONS lbs and BEARING LENGTHS in : � '�, " i� ,. A A 0 81 Dead 2561 3033 Live 2699 3789 Total 5261 6822 Bearing: Load Comb #3 #3 Length 1.88 2.44 LSL, 1.55E,2325Fb, 3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 356 fv/Fv' = 0.44 Bending(+) fb = 1295 Fb' = 2674 fb/Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D+.75(L+S), V = 6822, V design = 5122 lbs Bending(+) : LC #3 = D+.75(L+S), M = 12340 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 1241e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT i WoodWorks® - SOf7W.4RF NOR WOOD DESIGN June 24,2010 12:43 b14 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 317.7 317.7 9.00 12.00 plf 2 w33 Live Partial UD 350.0 350.0 9.00 12.00 pit 3 c19 Dead Point 357 9.00 lbs 5 c29 Live Point 1050 9.00 lbs 5 3.00 lbs c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 7 w34 Dead Partial UD 317.7 317.7 0.00 3.00 plf 8-w34 Live Partial UD 350.0 350.0 0.00 3.00 pif 9-c64 Dead Point 165 10.50 lbs lbs lO c64 Snow Point 225 10.501.50 lbs 11-c65 Dead Point 165 lbs 12-c65 Snow Point 225 1.50 13 j36 Dead Full UDL 113.7 plf 14 j36 Live Full UDL 350.0 plf 15 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 16_j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 17_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 18_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 19_j45 Dead Partial UD 17.0 17.0 1.50 10.50 plf 20_j45 Live Partial UD 25.0 25.0 1.50 10.50 plf 21_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 22 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) .a Irte':.7` 'fi ";.. is -- a�anv. ... _ -e.,,-.�. _--- sem. -- . `0- 121 _ 013 i0' 2351 Dead 2351 4350 Live 4350 6701 Total 6701 Bearing: #2 Load Comb #2 2.39 Length 2.39 LSL, 1.55E, 2325Fb,3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 163 Fv' = 310 fv/Fv' = 0.52 Bending(+) fb = 1769 Fb' = 2325 fb/Fb' = 0.630. 6 7 Live Defl'n 0.25 = L/573 0.40 = L/360 0 72 Total Defl'n 0.43 = L/333 0.60 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1_00 2 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - Fcp' 800 - - 1.00 - - _ _ - 2 E' 1.5 million - 1.00 - 1.00 Emin' 0.80 million - 1.00 - - - 1.00 2 Shear : LC #2 = D+L, V = 6701, V design = 5314 lbs Bending(+) : LC #2 = D+L, M = 16851 lbs-ft Deflection: LC #2 = D+L E2= 1241e06 1b-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) - (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT • l WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:41 b20 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j30 Dead Full UDL 21.7 plf 2 j30 Live Full UDL 60.0 plf MAXIMUM REI=TIfNS /lhcl and RFARIN(: I FN(;THS lint ; �� � V , '��.:��.:�.�. ''= m, �, „:11.1.:.,A1'°�:.�`4�..fi ' ,,,,!.,„--°,,,,,,,,,,y-,,,,-- »�.,., 3.4x:? .,3'�#>"<�§°.� �y max-, z- ,. f ,;--.�.�. r l0' 3.-6.i Dead 46 46 Live 105 105 Total 151 151 Bearing: Load Comb #2 #2 Length 0.50* 0.50* _ *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value _Design Value Analysis/Design Shear fv = 9 Fv' = 180 fv/Fv' = 0.05 Bending(+) fb = 90 Fb' = 1170 fb/Fb' = 0.08 Live Defl'n 0.00 = <L/999 0.12 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.18 = L/240 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 151, V design = 111 lbs Bending(+) : LC #2 = D+L, M = 132 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT fi l WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:50 b30 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j41 Dead Partial UD 68.0 68.0 2.00 4.00 plf 2_j41 Live Partial UD 100.0 100.0 2.00 4.00 plf 3_j42 Dead Partial UD 72.2 72.2 0.00 2.00 plf 4 j42 Live Partial UD 106.2 106.2 0.00 2.00 plf MAXIMUM REACTIONS 1lhs1 and RFARINf; LENGTHS linl : 10' 44 Dead 154 150 Live 209 203 Total 364 353 Bearing: Load Comb #2 0.5#2 Length 0.50* 0* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 15 Fv' = 180 fv/Fv' = 0.08 Bending(+) fb = 140 Fb' = 1170 fb/Fb' = 0.12 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.03 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 364, V design = 253 lbs Bending(+) : LC #2 = D+L, M = 359 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. _ . COMPANY PROJECT i II I WoodWorks® SOFTWARE FOR WOOD DESIGY June 24,2010 12:42 b31 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j65 Dead Partial UD 47.7 47.7 0.00 4.00 plf 2_j65 Live Partial UD 160.0 160.0 0.00 4.00 plf 3_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j28 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 6_j62 Live Partial UD 160.0 160.0 7.50 11.00 plf 7_j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 8_j63 Live Partial UD 160.0 160.0 11.00 17.00 plf 9 j64 Dead Partial UD 47.7 47.7 17.00 20.00 plf 10_j64 Live Partial UD 160.0 160.0 17.00 20.00 plf 11_j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 12 j66 Live Partial UD 160.0 160.0 4.00 4.50 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : 0 l ' 20+ Dead 619 619 Live 1600 1600 Total 2219 2219 Bearing: Load Comb #2 #2 Length 0.67 0.67 Glulam-Unbal.,West Species, 24F-V4 DF,5-118x12" Self-weight of 14.16 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 49 Fv' = 265 fv/Fv' = 0.18 Bending(+) fb = 1082 Fb' = 2400 fb/Fb' = 0.45 Live Defl'n 0.43 = L/553 0.67 = L/360 0.65 Total Defl'n 0.69 = L/350 1.00 = L/240 0.69 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 2219, V design = 1997 lbs Bending(+) : LC #2 = D+L, M = 11095 lbs-ft Deflection: LC #2 = D+L EI= 1328e06 ib-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). COMPANY PROJECT es ill It c WO od Wo r k 0 June 24.2010 13.15 b34 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 1 Soar 7I LOADS ilw.r.J.orvvi 1cad 140,a P,----'-'m MagnIt0de ,dation:fti Units . Start Epj =ea-- .pd . 1 weD Dead Partial UD 9'9' 513.2 0.10 2.00 pif : 2:=E5 Snow Partial. ',L.., 495., 0.00 2., pif 3 wl, De, Partial JD 57.5 :917.5 7.5C 11.00 plf : 4-9:29 Sr," Partial. PS1.2 901.2 7.50 11.00 plf 5:ci 5 ,, Shins 14, lbs , :15 Dead ?sir, l399 17.52: lcs P-3.16 Spdw Part, 2404 17.00 1de Dead Parhial UD 91.5 517.5 1.00 15.00 pif :5.54 5,, Pardial. .01.2 9, , 1.00 19.00 plf 11-rel Dead ?dint 922 ids 12-5E1 Spew Pcint 1,2 .00 ids :3-rez Dead Sdis, 522 4.00 lbs 14-7,2 Sedw Pair, 11P2 4.00 ids 15-=63 Dead Sattial DO .13.2 C13.2 2.00 4.00 pad' 4.51:a63 Sp, ,siia,De ,s5.0 -,55, 2.0, 4.00 plf 17 9405 Dead Partial. 91.9 61.5 le.o, C0.00 pl., 29:,•65 Spdh• ,ttia:17D 901.2 9..2 Ie.-, 20., plf 21-w. Spre 21-CE4 Dead Papddal. 47. 47." 1,.00 19.00 plf 22-1E4 Santial un 1E,, 1.92.0 17.00 15.00 plf 23-929 Dead ea,ral UD 47., 4,.' 4.5C 7.5: pif 24-129 Live Partial UD lES.0 1ED.S 4.50 7.50 pif . 25-7;32 Dead padtdai JD 44., 47., 7.50 11.00 plf 26-16.2 Sated,52 150.0 152.0 7., :' r^ plt: 2,-j45 Dead Pardial UD 120.2 12,2 0.02 2., plf 74:::-;'3! Dead Partial. 150.2 '--' 3.5, 4.0S pif • Partial De 3'0.0 3,S.: 3., 4.00 elf 31:j 33 Dead Partial JD •'" ' 120.2 4.50 -.ac pif 3=h33 niy. sa=tra: Dp 370.2 3..0 4.50 .5C plf 33-j34 Dead Partia1 DC "-^- 120.2 7.5C 9.00 pif . 34-134 . Partial JD a7o.o 3-1., .517 id:, ptif 35:135 Dead Partial DD 110.2 '-^- 5.00 11.00 plf 3:5:39-. Partial UD 3"0.7, 370., 5.00 11.00 plf 37 147 Dead Partial JC 120.2 .",- 11.00 17.0C: pit' 35:.4, -,... saetial UV 270.1 3-... 1.1.00 17.00 pif 35:j, Dead Pardial JD 120.2 120.2 1500 3.50 plf 42 d64 Live Partial... a-,..0 3'0.0 a.s, 3.50 pif 41-j4S Dead Partial JD 110.2 120.2 4., 4., plf 42=49 :,ive Pardial DD 3,150 3.50 4.00 4.5C pif 43_j6.3 Dead Par,al JD 4,.7 47.7 :4.00 2,.0, ,s,p 44 DE3 Paftlal UD 150.0 160.0 11.0.-4 17.0C plf 45-1E5 Dead Partial UD 47.' 4.7 19.00 20.00 pif 49-165 Sartia:JD 16.0 151, le.ao 20.00 pif 47-d, Dead Partial jD 47., 47.- 4.00 4.5S pif 1.ine Partial JD 9.0 162.5 4.2C 4.50 pit 4,155 Dead Partial 1. 20.1 110.2 17.2 19., Plf . 50-1ES Ilye partial JD •70., 370.7 17.0C 19.00 plf . . 51-'69 Dead Partial UD 20.2 1.10.2 15.00 .70500 elf 52-,, :-'•'2 Partial DO 4..0 37,0 15., 20500 pif 53 72 Dead Fardiai DC 4." 4., 2.00 4.0 plf 54-.j7.2 Sardial JD 2.0.4. :PP" 2.10 4.00 p2f Dead Partial UD 47., 47., 0.00 2.00 plf Partial 1411 1E0.0 1,, 0.00 2.00 Cif - MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): :7zr'.74-cr,Tz.,-; -:A=r-74:-:-zirgfs.-xi=graXl=r':-;',--r-!Ai:::::-=1-z-,4•===v17=-7,n- :=7:.,--; :;,,f=";7:1:txrtr..!--,=,,,:7,==,7xtzz--_,:;:::: LT Dead t V :405 212, ,de 9,9 P979 Drtal 1,362 Seating: Ls,Ddph 42 43 -..... . , 5.19 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x22-1/2" SO-weight of 26.55 plf included in loads; Lateral support,tope full,bottoms at supports; Analysis vs.Allowable Stress(psi)and Deflection(in),,.. NOS 2006 D"-:-.. 5nalysis Vai, Desiap Val, ,naldstsiDesian Spear 5epdipe'd: ft-2,2 Ph.' -2,4 ,..0 ADDITIONAL DATA: f0 En,' 0.95 pillisn 1.00 1., - - 1.00 - 3 Haddrpg,, 57.43 =D..,9,C4S),Y.. rr2r9 its-. Dital Def,rtird=1.3=Dead Irad Def,stidn: -1ive 1,,D.,1----p. ;:55.1 LC:s are iisted,the Analysts drsprt: DESIGN NOTES: 1 Please verify that Ere default deflection lints are appropriate for your application. 2.Gtulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSUAITC 26501-1992 3.GLULAM'Ind 4 actual breadth x actual depth 4.Gluten Beams shall be laterally supported according to the provisions of NOS Clause 3.3.3. 5.GLULAM,bearing length based on smaller of Fcrtgeneon).Fcp(compe). . . COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:49 b35 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j21 Dead Partial UD 120.2 120.2 0.50 1.50 plf 2_j21 Live Partial UD 370.0 370.0 0.50 1.50 plf 3_j59 Dead Partial UD 120.2 120.2 0.00 0.50 plf 4_j59 Live Partial UD 370.0 370.0 0.00 0.50 plf 5_j60 Dead Partial UD 120.2 120.2 1.50 3.00 plf 6 j60 Live Partial UD 370.0 370.0 1.50 3.00 plf MAXIMUMRE! .., , ..,...t% I r..,.r1... , Dead 188 188 Live 555 555 Total 743 743 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2'for exterior supports Lumber n-ply, D.Fir-L, No.2,2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 31 Fv' = 180 fv/Fv' = 0.17 Bending(+) fb = 254 Fb' = 1080 fb/Fb' = 0.24 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 743, V design = 444 lbs Bending(+): LC #2 = D+L, M = 557 lbs-ft Deflection:,LC #2 = D+L EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT i WoodWorks® SOFnWARE FOR WOOD DESIGN June 24,2010 12:51 c2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 bl Dead Axial 1056 (Eccentricity = 0.00 in) 2 bl Rf.Live Axial 2153 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): .' ', � a z � .e,# a.r ,zei .._4 Vit" -W 0' 8' Lumber n-ply, Hem-Fir, No.2,2x6", 2-Plys Self-weight of 3.41 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 196 Fc' = 980 fc/Fc' = 0.20 Axial Bearing fc = 196 Fc* = 1644 fc/Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 3236 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT fi l WoodWorks® SOFTWARE fOR WOOD DESIGN June 24,2010 12:54 c12 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c24 Dead Axial 1478 (Eccentricity = 0.00 in) 2 c24 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 4067 (Eccentricity = 0.00 in) 4 b10 Live Axial 11291 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • 0' 8' Timber-soft, D.Fir-L, No.1,6x6" Self-weight of 7.19 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 701 Fc' = 820 fc/Fc' = 0.86 Axial Bearing fc = 701 Fc* = 1000 fc/Fc* = 0.70 - ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1000 1.00 1.00 1.00 0.820 1.000 - - 1.00 1.00 2 Fc* 1000 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 21214 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT 114 di WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:53 c23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 b9 Dead Axial 1478 (Eccentricity = 0.00 in) 2-b9 Live Axial 4320 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) ' gym ._ '".,z"t ., z 0' 9' Lumber Post, Hem-Fir, No.2,4x6" Self-weight of 3.98 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 303 Fc' = 379 fc/Fc' = 0.80 Axial Bearing fc = 303 Fc* = 1430 fc/Fc* = 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.265 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 5834 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES 1. Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT 1 WoodWorks® SOFIWAWE FOR WOOD DESIGN June 24,2010 12:54 c26 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c23 Dead Axial 1478 (Eccentricity = 0.00 in) 2_c23 Live Axial 4320 (Eccentricity = 0.00 in) 3 b10 Dead Axial 1180 (Eccentricity = 0.00 in) 4 b10 Live Axial 3436 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): A 0' 8' Timber-soft, Hem-Fir, No.2,6x6" Self-weight of 6.25 plf included in loads; Pinned base; Loadface=depth(d); Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 346 Fc' = 492 fc/Fc' = 0.70 Axial Bearing fc = 346 Fc* = 575 fc/Fc* = 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.00 1.00 1.00 0.856 1.000 - - 1.00 1.00 2 Fc* 575 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 10465 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. n COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:52 c29 Design Check Calculation Sheet Sizer 7.1 LOADS (ibs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b13 Dead Axial 3033 (Eccentricity = 0.00 in) 2 b13 Rf.Live Axial 5052 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0. 8, Lumber n-PIY, Hem-Fir, No.2,2x6",3-Plys Self-weight of 5.11 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 328 Fc' = 439 fc/Fc' = 0.75 Axial Bearing fc = 328 Fc* = 1644 fc/Fc* = 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 8126 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 12:55 c31 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b13 Dead Axial 2561 (Eccentricity = 0.00 in) 2 b13 Rf.Live Axial 3599 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 8' Lumber n-ply, Hem-Fir, No.2, 2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base;Loadface=depth(d); Built-up fastener:nails;Ke x Lb: 1.00 x 8.00=8.00[ft]; Ke x Ld: 1.00 x 8.00=8.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 393 Fc' = 443 fc/Fc' = 0.89 Axial Bearing fc = 393 Fc* = 1719 fc/Fc* = 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.258 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 6186 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT e 1 WoodWorks® SOFTWARE FOR WOOD DE51GX June 24,2010 12:54 c39 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b21 Dead Axial 267 (Eccentricity = 0.00 in) 2—b21 Live Axial 822 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): * *"a-' ✓l ^" �'ro ��t � � 'a '"``Fd-ir�"�-4 a .` � 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4", 2-Plys Self-weight of 2.17 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 106 Fc' = 171 fc/Fc' = 0.62 Axial Bearing fc = 106 Fc* = 1495 fc/Fc* = 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1108 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. /1 of o'a COMPANY PROJECT 1 WoodWorks® SOFT WARE FOR WOOD DES1GW June 24,2010 12:52 c55 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b30 Dead Axial 154 (Eccentricity = 0.00 in) 2 b30 Live Axial 209 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs): 4- moi ? r , � 44 CY 8' Lumber Post, Hem-Fir, No.2,4x4" Self-weight of 2.53 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 31 Fc' = 470 fc/Fc' = 0.07 Axial Bearing fc = 31 Fc* = 1495 fc/Fc* = 0.02 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 384 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. By A fi\k„, DATE ao 1.0 JOB No CEN ........6CtO PROJECT RE /Seams wI Lai-critt Ckeac-FiartS 71 Ill J (9 w \pea if\ LZ, -> Wa‘ks . 03 -4, Ws O w F- w O 2 2 w 7 bea Tirl V3 -,) UAW S a 0 a A ;'S ao-a,,, b M 6 O w ‘1)Mirn 1 q- -- kikx-klks 2\o--6 ' a0k-1 0 . w 0 z \c)eakm -3 L-1 -- cA 0,5 act , 30 1 A •7- aC)‘ v. 0 < 5 nce Wed Ceakl riiNks >> 5-e ts-cr,,,c. reac fsiark,c.„. O „.., E D 2 2 0 0 --, 2 0 x 0 IJ_ Z Lu - 6 0 = . I-- = o Li _ JD z , cd o .* --- :- COMPANY PROJECT i I WoodWorks® SOFfIVARr FOR WOOD DESIGN June 24,2010 13:07 b6 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location (ftl Units Start End Start End 1_c44 Dead Point 444 2.00 lbs 2 c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4 w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5_c45 Dead Point 444 5.00 lbs 6_c45 Snow Point 647 5.00 lbs 7 w45 Dead Partial UD 389.2 389.2 5.00 6.00 p1f 8_w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9 j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point 800 2.00 lbs WIND2 Wind Point -910 5.00 lbs MAXIMUM R CTIONS fibs)and BEARING LENGTHS(in) : 1:khe s r � - ` f +1 tet.-, �' a���"�� -=&� .Fy ,yam r,4 5.., ^�, ^*:✓ �r,,c� � ,;s � � r: 4'�' max. ,,. - . 10' 61 Dead 1436 1389 Live 2089 1803 Total 3525 3192 Bearing: Load Comb #4 #3 Length 1.88 1.70 Lumber n-ply,D.Fir-L, No.2, 2x12", 2-Plys Self-weight of 8.02 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 97 Fv' = 207 fv/Fv' = 0.4 Bending(+) fb = 805 Fb' = 1035 fb/Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.21 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 180 1.15 1.00 1.00 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 1.00 1.00 - - E' 1.6 million 1.00 1.00 1.00 1.00 4 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 4 Shear LC #3 = D+.75(L+S), V = 3239, V design = 2190 lbs Bending(+): LC #3 = D+.75(L+S), M = 4247 lbs-ft Deflection: LC #4 = D+.75(L+S+W) EI= 285e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. - 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT ill WoodWorks® SOFTWARE FOR WOOD DESIGN June 24,2010 13:07 b6 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c44 Dead Point 444 2.00 lbs 2_c44 Snow Point 647 2.00 lbs 3_w44 Dead Partial UD 389.2 389.2 0.00 2.00 plf 4_w44 Snow Partial UD 431.2 431.2 0.00 2.00 plf 5-c45 Dead Point 444 5.00 lbs 6-c45 Snow Point 647 5.00 lbs 7_w45 Dead Partial UD 389.2 389.2 5.00 6.00 plf 8-w45 Snow Partial UD 431.2 431.2 5.00 6.00 plf 9-j25 Dead Full UDL 120.2 plf 10 j25 Live Full UDL 370.0 plf WIND1 Wind Point -800 2.00 lbs WIND2 Wind Point 910 5.00 lbs MAXIMUM REACTIONS fibs)and BEARING LENGTHS lint : ,"'swb sr", „+ lWQL °S„z. N „{ "T ,u a; ' ,a-.w^ `` +y„'"u d w .4, a rg*"2EsA 0' 61 Dead 1436 1389 Live 1803 2172 Total 3239 3561 Bearing: Load Comb #3 #4 • Length 1.73 1.90 Lumber n-ply, D.Fir-L, No.2, 2x12",2-Plys Self-weight of 8.02 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 97 Fv' = 207 fv/Fv' = 0.47 Bending(+) fb = 805 Fb' = 1035 fb/Fb' = 0.78 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.14 Total Defl'n 0.06 = <L/999 0.30 = L/240 0.20 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), V = 3239, V design = 2190 lbs Bending(+) : LC #3 = D+.75(L+S), M = 4247 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 285e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT 1 i WoodWorks® SOFTWARE FOR WOOD O611Gty June 24,2010 13:09 b14 LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3 c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9-c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11 c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13 w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15_w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 18w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 j36 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19 j43 Dead Partial UD 17.0 17.0 0.00 0.50 plf 20 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21_j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22_j44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23_j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 345 Live Partial UD 25.0 25.0 1.50 3.00 plf 25_j46 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26 j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28_j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29_511 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point 3560 3.00 lbs WIND2 Wind Point -3640 9.00 lbs wind3 Wind Point -3620 0.00 lbs winds Wind Point 3570 12.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): °. ,�� s,£ 'er .,.-_7 z. -.-z .c' ... _a --t,2 �.._.� `= .-_,„„..., ,,,,...v .,..,..„..,- 121 o • A 1 0' Dead 2207 2207 Live 4350 4350 Uplift 499 479 Total 6557 6557 Bearing: Load Comb #2 #2 Length 2.34 2.34 LSL,1.55E,2325Fb,3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 158 Fv' = 310 fv/Fv' = 0.51 Bending(*) fb = 1735 Fb' = 2325 fb/Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = L/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' B00 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 6557, V design = 5170 lbs Bending(+): LC #2 = D+L, M = 16527 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT fi i WoodWorks® • SofmAREFOR WOOD Dssicw June 24,2010 13:09 b14 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ftl Units Start End Start End 1 w68 Dead Partial UD 221.7 221.7 9.00 10.50 plf 2 w68 Live Partial UD 350.0 350.0 9.00 10.50 plf 3-c19 Dead Point 357 9.00 lbs 4 c19 Live Point 1050 9.00 lbs 5 c20 Dead Point 357 3.00 lbs 6 c20 Live Point 1050 3.00 lbs 7 w66 Dead Partial UD 317.7 317.7 0.00 1.50 plf 8 w66 Live Partial UD 350.0 350.0 0.00 1.50 plf 9 c64 Dead Point 165 10.50 lbs 10 c64 Snow Point 225 10.50 lbs 11-c65 Dead Point 165 1.50 lbs 12 c65 Snow Point 225 1.50 lbs 13-w67 Dead Partial UD 221.7 221.7 1.50 3.00 plf 14 w67 Live Partial UD 350.0 350.0 1.50 3.00 plf 15-w69 Dead Partial UD 317.7 317.7 10.50 12.00 plf 16_w69 Live Partial UD 350.0 350.0 10.50 12.00 plf 17 j36 Dead Full UDL 113.7 plf 18 j36 Live Full UDL 350.0 plf 19-j43 Dead Partial UD 17.0 17.0 0.00 •0.50 plf 20 j43 Live Partial UD 25.0 25.0 0.00 0.50 plf 21 j44 Dead Partial UD 17.0 17.0 0.50 1.50 plf 22-'44 Live Partial UD 25.0 25.0 0.50 1.50 plf 23 j45 Dead Partial UD 17.0 17.0 1.50 3.00 plf 24 j45 Live Partial UD 25.0 25.0 1.50 3.00 plf 25 346 Dead Partial UD 17.0 17.0 10.50 12.00 plf 26-j46 Live Partial UD 25.0 25.0 10.50 12.00 plf 27 j70 Dead Partial UD 17.0 17.0 3.00 9.00 plf 28-j70 Live Partial UD 25.0 25.0 3.00 9.00 plf 29 j71 Dead Partial UD 17.0 17.0 9.00 10.50 plf 30 j71 Live Partial UD 25.0 25.0 9.00 10.50 plf WIND1 Wind Point -3560 3.00 lbs WIND2 Wind Point 3640 9.00 lbs wind3 Wind Point 3620 0.00 lbs winds Wind Point -3570 12.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): , `.' '.semsr' fie* t �`#�:(' -',u ""47d�» s.�-.+aS"r ' -w - ' - _c • -vimL CA 02 A A 10' 121 Dead 2207 2207 Live 4826 4811 Total 7033 7018 Bearing: Load Comb #4 #4 Length 2.51 2.51 LSL,1.55E,2325Fb,3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 158 FV' = 310 fv/Fv' = 0.51 Bending(+) fb = 1735 Fb' = 2325 fb/Fb' = 0.75 Live Defl'n 0.25 = L/573 0.40 = L/360 0.63 Total Defl'n 0.42 = L/343 0.60 = 1/240 0.70 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 6557, V design = 5170 lbs Bending(*): LC 82 = D+L, M = 16527 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer.' 3 Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT ill WoodWorks® SOFTWARE KW WOOD DESIGN June 24,2010 13:11 b13 LCI Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft( Units Start End Start End 1 w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2 w58 Snow Partial UD 505.0 505.0 0.00 3.00 pit 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6--c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9 w59 Dead Partial UD 593.7 593.7 5.00 8.00 plf 10 w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.508.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13 j38 Dead Partial UD 81.2 81.2 3.50 6.50 pl£ 14 j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17-b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point 6590 0.00 lbs W2 Wind Point -6590 3.00 lbs W3 Wind Point 6590 5.00 lbs W4 Wind Point -6590 8.00 lbs MAXIMUM - •CTIONS fibs)and BEARING LENGTHS(in). amu. -a 3.y,.,sf4. sem .,� a w.�*, rra-74 7. c'` 's''',: �� .a , ....,,,, 7.' 'em` - ^5t`�� -te`-. ' � x" . ��bi' = "� ;mow 7 t 1E31 • o, 81 Dead 2561 3033 Live 6406 3789 Uplift 3098 Total 8968 6822 Bearing: Load Comb #4 #3 Length 3.20 2.44 LSL,1.55E,2325Fb,3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 356 fv/Fv' = 0.94 Bending(+) fb = 1295 Fb' = 2674 fb/Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 00 - - 3 Emin' 0.80 million - 1.00 - - - - 1 1..00 - - 3 Shear : LC #3 = D+.75(L+S), V = 6822, V design = 5122 lbs Bending(+): LC #3 = D+.75(L+S), M = 12340 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. ., (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: - 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT 1 WoodWorks° • SOFTWARE FOR WOOD DESIGN June 24,2010 13:11 b13 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l w58 Dead Partial UD 519.0 519.0 0.00 3.00 plf 2_w58 Snow Partial UD 505.0 505.0 0.00 3.00 plf 3 c40 Dead Point 217 5.50 lbs 4 c40 Live Point 668 5.50 lbs 5 c67 Dead Point 518 5.00 lbs 6 c67 Snow Point 778 5.00 lbs 7 c68 Dead Point 573 3.00 lbs 8 c68 Snow Point 942 3.00 lbs 9-w59 Dead - Partial UD 593.7 593.7 5.00 8.00 plf 10w59 Snow Partial UD 735.0 735.0 5.00 8.00 plf 11 j37 Dead Partial UD 100.7 100.7 6.50 8.00 plf 12 j37 Live Partial UD 310.0 310.0 6.50 8.00 plf 13-j38 Dead Partial UD 81.2 81.2 3.50 6.50 plf 14_j38 Live Partial UD 250.0 250.0 3.50 6.50 plf 15 j39 Dead Partial UD 22.7 22.7 0.00 3.50 plf 16 j39 Live Partial UD 70.0 70.0 0.00 3.50 plf 17-b15 Dead Point 126 3.50 lbs 18 b15 Live Point 389 3.50 lbs 19 b32 Dead Point 225 6.50 lbs 20 b32 Live Point 693 6.50 lbs W1 Wind Point -6590 0.00 lbs W2 Wind Point 6590 3.00 lbs W3 Wind Point -6590 5.00 lbs W4 Wind Point 6590 8.00 lbs MAXIMUMR a •. . . : -: . • •1 • Arn'�„- e3 10Mi A A Ia 81 Dead 2561 3033 Live 2699 7496 Uplift 3381 Total 5261 10529 Bearing: Load Comb #3 #4 Length 1.88 3.76 LSL,1.55E,2325Fb,3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005 Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 356 £v/Fv' = 0.44 Bending(+) fb = 1295 Fb' = 2674 fb/Fb' = 0.48 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.14 = L/680 0.40 = L/240 0.35 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 3 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 3 Fcp' B00 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 3 Emin' 0.80 million - 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D+_75(L+S), V = 6822, V design = 5122 lbs Bending(+): LC #3 = D+.75(L+S), M = 12340 lbs-£t Deflection: LC #3 = D+.75(L+S) EI= 1241e06 ib-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT I1 %le rks® 111 I I WOod Wo June 24 2010 13:19 b34 LC1 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet Steer 7.1 LOADS I lbS.P.I.or Plf) Load Typsa Sistritrtirn Mar-6-, -....satic.. :fti LIdt_ Snart En, Start End .1=EC Dear Fartial SD Pc'- EL3.: :.0, 2.52. pif 2:4,2 Ens.= Partial SC zE5.0 -55.: 2,..7.0 2.:0 plf 3 d2, Sear Partial SS 617.5 617.5 7.57 ,, rz plf 4=d25 Cntw Partial DS =al, .-, ,, 7,sc ,- aa. pif 5 r15 S prw Print l4di 2404 11.00 Its Ids z-rIE Sea, Print 1,3, 17.40 Ids i_r1E Snow dcs 3=54 Sea, Partial ID 4,4.5 El7.5 l7.00 ,,tz pli 1-5_dE4 5nrw Partial UD 5,62 ,01.2 1,.l= 15.0: plf IL rEl Dea, Print El2 Its Ill-sEl Err= Frint UPS Its 43-rE2 Dead .....6 K2 Its 14-tED Ens= Print IL,: Its Ir:4,65 Sea- P3_1,1 SO 613.2 ,6,- 2.'47 4.7.6 plf lE=53 Snow Partial un s53.0 7E3.Z 2.S, 4.00 ;If :7-w'f-f Sead ,e_we.5 linsd Partial CS ea,..2 tal., 1,,,, 24.47 plf Z.,w7, Seat Partial SS 613.: 613.2 ',SS a.ac plf ,nrw Partial SD z95.: 7,5.: -.0, 4.30 plf 2,jE4 Sea, Partial SS 47.z 4-.7 .44-.zu is.00 pif S2-f34 Li._ 23 ff, Co-ad Partial CD 42.7 41.: 4.3: ,.36 plf 24 7:2, - Partial CD 1E4-3 .152, 4.5, 7.50 plf 25_,:32 Sea, Partial SC 47.z 47.7 2.30 II., pif DE JEV2 Partial SC LED.0 :ED, ,.32 11.07 plf 2,jd, Sead Zairlal SD ID6.2 120.7 C.00 S.00 plf 1,443 Live Eartial U0 ,-L.0 3,7,0 06:: S.S0 plf :a_jaa Sea, Pari_ai SD n , 120.r 3,C 4.00 pill 3:_232 Partial UD 3v0.4 3,0., 3.50 4.4,2 pif 31 f33 Sean Partial-JD 12,2 lii' 4.37 v.57 plf 32:f32 Partial CC ',Ill.:. 3,4.4 4.54 7.50 pif :3:Si Sear Partial SS 1,, 120.E z.B: 5,0 plf 34-f34 Partial SC 374.: 3V4.: Z.2: 3.04 plf 3B-f35 Sear Parilal SD lfr- .12,2 5.4, 11.0, pif .1E-f,f1 Lire Partial SS 377.: 27,0 e.,,, 11.00 plf 3'-f47 Sear P.5-:47 Sear Parifal DS Iln.: ICS., Z.00 2.3: pif Smad Partial SO 120.: 12,2 4.-r: 4.50 plf 42-43 Fartral CS 274.: 5,7,7 4.:: 4.se plf 4'7224 Sea, Partial US 4V., 4v.t 1Z,, 17.:D plf 44-El Live Dea, Partial CD 4,., 4-., ls n4 20.:E plf 4E fell Partial SD iE0.0 154.0 1,..40 ::.:0 pif 4'4E3 Dear 45-fEE Partial.CD 150, 15,., 4.7: 4.5: plf 4,-,P= :Dead Partial CC lll.l. lvz.- ID,: le.a, pli l-D-jEi Partial,2 2ll.: ,70.: l'.4: 13.00 pif SIDE, Sea, 52 f55 Partial SC 27,67 3',67. 12.Z: I6.00 plf 33-j22 Sear _ Partial SS 4z.v 47.7 :-..., 4.02! pif 54-fil Partial CS 1E0., .16,0 Z.:6 4.00 plf 53-f73 Sear Partial S2 4-.7 17.z 0.07 7.70 pif 35-fi3 Partial SD 150.0 l,l.2 0.40 .7.0.0 pif Wind aesa a,. WC Win, Print -5=54 Zhs ,i, Win, Print see: Its W4 Win, Print -sea, 7.s. Wit' ri.__ 54E: 20-40 its MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(ml: je E . Dead GC If f,5 Live 12,2 Drtal 1,4,5 Cearing, Ira,Crpr 44 ,4 Lenrth Glulam-Bal.,West Species,24F-V8 DF,5-118x22-1/2" Self-weight of 25.55 plf included in loads; Lateral support togn full,bottomat supporta Analysis vs.Allowable Stress(psi)and Deflection(in).ing NOS 2005 S near -21,,:--efiln 4:4':= I,595 0:67. 5,360 2.54 S rtal Deff.n 0,54. I/255 1.00= 1,242 ADDITIONAL DATA: F,,702,24, 12,S CD C!, St SI CV Cfi Cr :frt. hrtes Dr IC, 1.5 mill5rr.1.7, l.22 - --fue-D-n: LC Pr =D-.-5(1,-,3! ED. E6rEleSE Ir-ln, 'rt.,Seflettiin.1.30lSead trad lief:err-Lis, =lire Ira,,.'".,----n. :S=read L=live 5-snrw W-wind l-irs.__ C-cirdtrcrtith CL,=tfirentraterl lhill IC's are lister in the Apal5dis ittpi, ! Lrar trspindtirns, 1,77.-C.EC i . DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2 Gee=design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSUA1TC 519C1-1992 3.OLULAM:tad=actual breeders actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NOS Clause 3 33 • 5_GLULAM:bearing length based on smatter of Fcpgension),Fcp(condin). • COMPANY . PROJECT 441 c 0 I I I WO 0 111 Wo rk., June 24,2010 13.19 634 LC2 • 5011 WARP FOR WOOD DESIGN Design Check Calculation Sheet Siaer7.1 LOADS i iv%p.t.vr pm Load TyFe DtstrI,Toirn Magnitcde Leavitt, ft; Pn17., Ste, End Soart Er, 1 wED Dead Fact1a1 DD E13.2 613.2 C.00 1.00. pif Snpw ParcLal 30 765.0 765.0 0.00 C.TC Flf _r Dead Partial.0-, 617.5 617.5 7.50 11.00 plf 4...CS Snow Partial ED c01.2 901.2 7.50 11.00 plf 5-olf, Dead Point :43E lbs 6-015 Ps,v ,7,,s, 2404 11.00 Ice e-,la 3404 17.00 Its 9-,64 Deaf Per,_ar 00 E17.5 617.5 17.0L It.TO Tlf 1,3_=64 Snow Part1a1 TO 301.= SC1.2. 17.00 19.00 Flf 11 cEl Sea, Print EDI 1,, ID:cE: P7=w ,f7s,C 113.1 7.00 Its 13 cE0 Dea, ;son: EDS Ihe • 14,7rED p,,,,, pri, .11-9= 4.00 167 15;03 Dead Partial VD El3.2 E13.0 D.D0 4.00 plf 1E7=63 Ehrw Persial TD 7E5.0 7E5.0 2.20 4.00 plf 17:di, Dead Pe-',1 UD 617.5 617.5 ,,,, z,.. plf le,...,5 Snow Partia1 LC 601.2 ET1.3 le.00 13.00 pif 19-.CI Sea,. Partial TD .513., 613-1 ".70 7.50 plf 10-w71 En,. Partial TD 735.0 732.0 7.00 7.50 plf 2.1_264 Dead Paotial UD 47.7 47.7 1".00 157.06 pff 1,2_264 =Ice Pao-lal TD 160.0 160.0 1-,00 1,00 plf 2.3_2DE Dead Partial TD 47., 4'.7 4.60 7.,, ,:f :,..--N! Tice Pattlal TD 1E0.0 161., 4.31 ,.E.0 rlf c,ad Partial TD 47., 4'.' 7.5, I,-00 P1f 2e_jea - a Partial SD 160.0 1E0.0 7.50 'LL.D.: plf C'_14, Dead Paccial TD '77 7 120.2 0.0, 1.00 plf za 24, Sive Paocial SD 370.0 ro.o o.00 2.00 p.lf 23_232 Des, Paccdal TD 120.1 120.1 3.3, 4.0, ,If 3S:132 Paroral TD 370.0 370.0 3.30 4.0, pif 31-123 Dead Parofal SD "7 7 100-2 4.20 '.5.0 plf 32-235 Lica Partial UD 3'0.0 5'0.0 4,50 7.50 plf , 33:134 Dead Partial SD '7, - 1.20.0 7.5, 3.00 plf 34 234 ..v. Partial D0 a,,, 3-0.0 7.5C a.,,, pff 33:23.2 Deaf Partial DD -7, - 110.2 i.,C 11.00 pif 36_74c Partial 11.,, 3'7,0 370.0 6.30 11.00 pif r-,-17'4; Des, Partts,DS 1E0.2 1,0.0 11.0: 17.00 pff Partial TT 370.0 370.0 11.00 1-.03 plf 3PD 07 Dead Partial ED 1:0.2 1,0., 1.00 3.50 pld 40 1E7 Live Parti,UD, 3,0.0 37 P.0 1.00 3.50 p1f 41-2,43 Ile 3, Cacti,. 100.2 1:0.2 4.. 4.50 ,If 42-24, Live Partial ED 370.0 37D.0 d.3, f..63 ,,,, 44 2E3 =rice Parvial UD 16,0 163.3 11=0 17.00 pff 45.-jES Dead Pactial DC 47.7 47.7 1,.,. 1.i.ii plf 4E-263 live Par,tal TT 1E0.0 1E0.0 li.00 10.00 plf 47-266 Se-, Pari1a1 I= 47.7 47., a.o, -1., Flf 4E-266 Ince Pariial UD 160.0 1E0.0 4.00 4.50 plf 49-2E3 Dea, Partial 1,D, 11,32 123.3 1.7.00 le.o, p:f F.,-jee ,,,, Partial DD 3,0.0 370,0 0.-.sc se.pc prf 31:203 c,pd Paotla1 TD :20.2 ,-, 7 16.10 1..00 p:f 22 CEP Partia:TD 370.0 a,D., ,, ,s.00 plf E.'4:'177'Cl Deaf , Paottal TD 47.7 4,.7 1.00 4.00 plf Live Paroia:TD .1E0.0 L60.2 D.,0 4.00 plf Deaf Parcial DI, 4-.' 47.7 C.,: I.00 plf . 56_21r Partial TD 1E0.0 1E0.0 ,D0 I.00 Flf sr. Pcin, 0.,0 IP= W: •,,,,, pern, 5E50 1,s W3 Wind Foist -5E50 11.00 ItS Wi ,i,ri Pcinh BE50 17.00 1,s WE Wind Print -5E10 20.00 "' MAXIMUM REACTIONS(Ms)and BEARING LENGTHS(in): -,;-. .,.:„....:....-„-x-:,,,,,,,,,, ,,,,,;,,,,,--,-:-;,,,;,,- 4:,,,`,-!.,:,...;c;„;„.-':-T.-:""7.7,'„`„,;,,,,..- $7.-TZ-'-=4 ,--;-„,,, -----0---..-04-‘,0-.4%.,----,-----,...,gr- ---1,--‘‘--,'---,---.7-75r- ----- ii.ii-,----'-joo--- ---v-z-1-277----!---.,.-4faar,X,=:-. ,-1 ,:„.„-,.„„in„.0 .,„ ,„;;;:,„-,...7,-, Total I73.61 17303 ecarfdsr, Load Doc, 43 S3 Lend,: 5-01 5.19 . Glulam-BaL,West Species,24F-V8 DF,5-118x22-1/2" Self•vekght of 20.55 elf included in loads; Lateral support topNIL bottomm at supports: Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005: ! Cti-e-,-= nnalvsi,Valve Desl,n Value Frnalveis/Desi,7. Shear ' Bending,-, f6.23PI Pc'-2604 ft•VE,' - 0.40 Love Defl'n 0.41- 1,551 0.E7- 1,3E, C.E1 ',oaf Defl'n 0.54. ',CEA 1.00- 1,24, 0.24 ADDITIONAL DATA: FATTORE3 Ts= TD =4 =7 7.1. TV =Er, Dr Cfrc Ncoes Dn DTs Shear ,LT s3 -D,.7.5,L-DI,V= l'2El,V de,ign e 13E2,1,s_ DeffectLord LT.4 -D..75.1-SsW, El. 20DiEeS it-1n: Total Deffec7.13n.1.5012ead Load Ceffect1on, s Live Load DeflecoIvr- :,-dear. L.five S-sr,w .-wit-C ',impact C-con.7.-ticr CLd.rrncenorated, ,P11 LC's are lisoed ir.the Pnalsseis,,,,p0t Load of,,insoicr,, .17.1,12C DESIGN NOTES: . * 1.Please verify that rile default deflection lints are appropriate for your application. Z Globm design values are for materials conforming to AfTC 117-2001 and manufactured of accordance With ANSVAITC A150.1-1992 3.GLULAbli bed•adual breadth x actual depth 4.Glulam Beams shall be later*supported according to the provisions 01505 Clause 3 33 5.GLULAM:bearing length based on smaller of Fopriension),Foo(comprri. • • ' COMPANY PROJECT • o VI i 1d I WO od Wo r ks June 24,2010 13:20 b34 LC2 SOFTWARE FOR WOOD DESIGN Design Check Calculation Sheet 56e57.1 LOADS ilbs.p.f..,W)' Load Type Zistricatirn Magnits,e Lt.-rat-it, [ft) Dnits Stars End Eta, Er, 2._w5,1 Deas Partial CC 512.2 513.2 0.00 3.00 pif 5_,222 antw Partial UD 732.0. 735.5 2.00 2.00 plf Ds, Partial CD 61,5 E17.5 7.50 12..0= pif 4..2.23 Snaw Partial UL '2' - P=5.2 ,50 11.00 plf Tea, Print l436 ., ,,,- Its E:s12, Tea, ?tint 2404 155, its its 5 ilE Snow Print 2404 1-.00 lbs P wE4 Dead IT;64 Snow Patti,DZ. 521.2 501.2 1,00 12.10 plf ll-sCi Dead Print EZ2 Its 12-tEl Fn.,' 2,1, 1:92 7.2, its 13-,52 Ell Its 24 iEl Sr,w Psis, 1122 4.00 ,bs 05-2,63 Deaa Partial U, E13.2 P2'= 2.09 4.0C pif 162,23 Snsw Partial 1.72 7,5.0 795.0 2.00 4., pif It wEE Zee, Partial LC 61-.5 E17.5 :e.co ,,,,, pif le-w65 Snsw Partial, a2, 2 501.2 :e.,,,, ... pif 19-w, Se, Pastial IT, ""P 3 511.3 7.00 7., plf 207,1 32,,,- Parrial 172 -25.0 735.0 7,'.00, -.25 plf 21-1E4 Lea, Partial 1220 4,- 47.7 17.02, T.'2, plf 22-j24 - Partial U, 122., 160.3 I.,,,, Ie.,: plf 22-272 Dead Partia1 122, 47." 47.7 4.50 7.2= plf 24-12.5 Live Partial CD -,12.2 165., 4,5= ,ES plf 25-j52 lie, Partial 12, 47.7 4,.7 '..2.-C li.10 pif 22:0.5. - Partial 2, 1E0.0 220.0 7.50 12.00 pif .2-f:-I'', Tea, Partial TO 120.2 120.2 0.02, 2.00 plf Live Partial 112, 3220.0 3,0., 0.00 1.2, plf 25:152 Dead Partial 20 20' 120.2 3.5, 4.00 pif 30232 Ltve Pattlal 1, 3',.0 370.0 3.50 4.0, plf 31233 Dead Partial DC l20.5 120.2 4.50 7,21 plf 2,2_353 ' Paptial U, 3"0.0 3,0.0 4.50 -.2C plf 33224 Dead Patti.,UD 1,1.2 520.2 7.50 5.70 pin 34224 3a_j3a 0ea, Far-tial 05 150.2 '27 7 9.0, 11.00 pif 36 ..325 3.22 Dead Partial 120 221.0 370., 51.05 17.0, tlf Partial 127 120.2 ,P2' 2.02 3.5C plf al'=i-a3 live Partial 1,0 3,0.0 32,2 Z.00 3.5S pif Dea, Pariial..25 120.2 27'- 4.0C 4.50 plf 42249 Partial UD 372.0 2-2.0 4.00 4.5, pif 432;E3 Dead dart,:,D sy.3. 47.7 10.00 12.00 pif 4,j2.1 Live Partial 22,22 160.0 100.2 11.00 17.00 plf 45:TEE Dead Partial.DD 47., 47,7 152.0 20.00 pl2 Partial UD 4,- 47.Y 4.0, 4.50 p....2 42-d22 live Part_al, 162., 160.0 4.20 4.2, pi: 4.41-:.:6, Deal Partial CD 520.2 11.0.2 17.02 ,e.,c p1f 52-j, Dea, ,-!_;- -.% Live Partial UD 3,0.0 222,.0 15.20 .:,,..ao pif Dead Partiai U0 4,7 4-2.2' Z.00 2.00, plf 54-2-2 Live Partial UD :60.0 160.0, 2.00 4.00 pif 5.53,a Pea, Partial, 47., 4".7 0.00 2.0, plf 5E 122 Zive Partial U0 IF,' 1E2.0 0.02 2.00 plf WI- 0.02 Its W2 win, Ptint 5,52 4.00 Its W3 Win, Psint 11.00 Ica W4 FP, 1,00 Its W5 Wind Point -555, 515. MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): - .,.., ,:'-:::-,Z7:=Z:Z7!!".''''''''' ..-;.-7L,-;77T''''"'7,:'.';;-•,,:;;-.±,'''''''..':-.:;'''.7-'''',t.,:,,::.1:'='.=:qn =7.--T.Z,7n:=r,'.=T::.':.=Z,,:Z.;',I:7,:;T.".',:":',:';.:: :=Z.-,1:,t:::;=.7.=:..-:.::Zrg=== Ek Sea, L-F,, 21,,9,55 9573 Cita: 1-22: 1-325 Peanins, a2 5.1S Glulam-Bal.,West Species,24F-V8 DF,5-1/8x22-1/2" Self-weigirt of 26.55 pa included in bads; Lateral support topfiat bottom=at supports: Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005: ,-',4--, Ftalveis Valse Lesisn Valse ,Analn,is/c.-7-n Shear ean,ing,-, ft.2322 Ft'.2E24 Live Defi'n 2.41. 1/52,1 0.,. 1,3E0 S.S1 Dstal Defl'n 0.24. 2/254 1.,. 5/240 0,4 ADDITIONAL DATA: FADZOF-54 F/E CD TX Ot CC. 02C 532 Tr Cirt Nites Dn LC, Ft', Z4fC 1,5 l., 1.20 1.002 '2-444 1.22 1.0, 1.20 1., - 3 1.5 ntlli,I., 1.00 - Denaing1.1: LC 03 -D-.7321..E.,7.2- asle9 Its-ft Tot,Defleriiin-1.20,Dead ltat D-.7.,---t -Live 1-ad Zef,e^-'-s, (T11 LC,are listed In the tr.-a:Lys,s'ittat2 • DESIGN NOTES: 1.Please verity that be default deflection limes are appropriate for your application. 2.Ceram design mitres are fur materials conformbg to AITC 117-2001 and manufactured in accordance pith ANSPAITC A190.1-1902 3.GLULAM:tad.actual breadth a actual depth. 4.GaAs.Beams shall be lateraay supported according b the provisions of NDS Clause 53.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp4 COMPANY PROJECT WoodWorks LL • SOFTWARE FOR wooD DESIGN June 24,2010 13:23 b34 LC1 NO Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or ptf) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 plf 3_w29 Dead Partial UD 617.5 617.5 7.50 11.00 plf 5 c15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9-w64 Dead Partial UD 617.56 617.5 17.000 18.00 plf lbsT c61 Dead Point7lbs 13 c62 Dead Point 622 4.00 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 plf 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 plf 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21_j64 Dead Partial UD 47.7 47.7 17.00 18.00 plf 23_j28 Dead Partial UD 47.7 47.7 4.50 7.50 plf 25 j62 Dead Partial UD 47.7 47.7 7.50 11.00 plf 271j48 Dead Partial UD 120.2 120.2 0.00 2.00 plf 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 plf 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 plf 33 j34 Dead Partial UD 120.2 120.2 7.50 8.00 plf 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39 j67 Dead Partial UD 120.2 120.2 2.00 3.50 plf 41j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 j63 Dead Partial UD 47.7 47.7 11.00 17.00 plf 45-j65 Dead Partial UD 47.7 47.7 18.00 20.00 plf 47 j66 Dead Partial UD 47.7 47.7 4.00 4.50 plf 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 plf 51j 69 Dead Partial UD 120.2 120.2 18.00 20.00 plf 53 j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 551j73 Dead Partial UD 47.7 47.7 0.00 2.00 pbs lf W1 Wind Point 5850 0.00 lbs W2 Wind Point -5850 4.00 W3 Wind Point 5850 11.00 lbs lbs W4 Wind Point -5850 17.00 W5 Wind Point 5850 20.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) A 201 10' 6822 302 Dead 7189 Live 156 7018 Total 7238 Bearing: 2.11 Load Comb #2 #2 Length 2.17 Glulam-Bal.,West Species,24F-V8 DF,5-1/8x22-112" Self-weight of 26.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 74 Fv' = 238 fv/Fv' = 0.31 Bending(+) fb = 950 Fb' = 2038 fb/Fb' = 0.47 Live Defl'n negligible 0 91 Total Defl'n 0.41 = L/585 1.00 = L/240 ADDITIONAL DATA: FACTORS: FIE CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1_00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1_00 1.00 1.00 1.00 1 Fcp' 650 - 1.00 1.00 - - - 1.00 - -- - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending(+): LC #1 = D only, M = 34217 lbs-ft Deflection: LC #1 = D only EI= 8756e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT • di WoodWorks SOFTWARE FOR W000 DESIGN June 24,2010 13:22 b34 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft) Units Start End Start End 1 w62 Dead Partial UD 613.2 613.2 0.00 2.00 pif 3 w29 Dead Partial UD 617.5 617.5 7.50 11.00 pif 5_c 15 Dead Point 1436 11.00 lbs 7 c16 Dead Point 1389 17.00 lbs 9 w64 Dead Partial UD 617.5 617.5 17.00 18.00 pif ll c61 Dead Point 622 7.00 lbs 13 c62 Dead Point 622 4.00 lbs 15 w63 Dead Partial UD 613.2 613.2 2.00 4.00 pif 17 w65 Dead Partial UD 617.5 617.5 18.00 20.00 pif 19 w71 Dead Partial UD 613.2 613.2 7.00 7.50 plf 21 j64 Dead Partial UD 47.7 47.7 17.00 18.00 pif 23 j28 Dead Partial UD 47.7 47.7 4.50 7.50 pif 25_j62 Dead Partial UD 47.7 47.7 7.50 11.00 pif 27 j48 Dead Partial UD 120.2 120.2 0.00 2.00 pif 29_j32 Dead Partial UD 120.2 120.2 3.50 4.00 pif 31 j33 Dead Partial UD 120.2 120.2 4.50 7.50 pif 33-'34 Dead Partial UD 120.2 120.2 7.50 8.00 pif 35 j35 Dead Partial UD 120.2 120.2 8.00 11.00 plf 39_j67 Dead Partial UD 120.2 120.2 2.00 3.50 pif 41 j49 Dead Partial UD 120.2 120.2 4.00 4.50 plf 43 j63 Dead Partial UD 47.7 47.7 11.00 17.00 pif 45_j65 Dead Partial UD 47.7 47.7 18.00 20.00 pif 47 566 Dead Partial UD 47.7 47.7 4.00 4.50 pif 49 j68 Dead Partial UD 120.2 120.2 17.00 18.00 pif 51 569 Dead Partial UD 120.2 120.2 18.00 20.00 pif 53 j72 Dead Partial UD 47.7 47.7 2.00 4.00 plf 55 j73 Dead Partial UD 47.7 47.7 0.00 2.00 pif W1 Wind Point -5850 0.00 lbs W2 Wind Point 5850 4.00 lbs W3 Wind Point -5850 11.00 lbs W4 Wind Point 5850 17.00 lbs W5 Wind Point -5850 20.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): 20$ Dead 7189 Live 6822 Total 7189 Bearing: 6822 Load Comb #1 Length 2.16 #1 2.05 Glulam-Bal.,West Species,24F-V8 DF,5-118x22-1/2" Self-weight of 26.55 plf included in loads; Lateral support top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 74 Fv' = 238 fv/Fv' = 0.31 Bending(+) fb = 950 Fb' = 2038 fb/Fb' = 0.47 Live Defl'n negligible Total Defl'n 0.41 = L/585 1.00 = L/240 0.41 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 0.944 1.00 1.00 1.00 1.00 - 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 1 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 1 Shear : LC #1 = D only, V = 7189, V design = 5674 lbs Bending(+): LC #1 = D only, M = 34217 lbs-ft Deflection: LC #1 = D only EI= 8756e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). Harper Project: i< ' Houf Peterson Client: Job# Righ.ellis Inc. Designer: Date: Pg.# ENwIN E C h4GH I.AHI) APc xHC,E Fr F,.♦ IR:E'iOR W := 10. lb O'�st 8•ft•20,ft Wd1= 1600.16 � dl 2 ft Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl Ip := 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof F := 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) a Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa•Ss Sm! FV Si Sds•_ 2"Sms Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections a = 1.0 R_ := 2.5 (Table 13.5-1,ASCE 7-05) P•' --P 4ap-Sds Fp:= h 1p 1 + 2•z1 Wp EQU. 13.3-1 R )P JJ/ FPmax:= 1'6•Sds•Ip•Wp EQU. 13.3-2 Fpmin:= .3•Seta.1p•Wp EQU. 13.3-3 F4,:= if(Fp >Fpmax,Fpmax,if(Fp <Fpmin,FPmm°Fp)) F =338.5171.16 Miniumum Vertical Force 0.2•Sds•Wdl=225.6781•lb Harper Project: Houf Peterson Client: Job# Righellis Inc. ENG..„_Es� LAN`,EHS Designer: Date: Pg.# LANDSCAPE:ARCH!rEC re.5UVE:(CAS Wdl•= 10 16 8•ft•20•ft Wdi= 1600-lb ft2 Seismic Forces Site Class=D Design Category=D Wp:= Wdl Ip := 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa-Ss Sml := Fv.S1 2•Sms Sds• Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap := 1.0 Rp:= 2.5 (Table 13.5-1, ASCE 7-05) a Fp := pR_ds • 1 + 2 h Wp EQU. 13.3-1 P Fpmax:= 1.6.Sds.ip.Wp EQU. 13.3-2 Fpmin:= .3.Sds.lp.Wp EQU. 13.3-3 Fes:= if(Fp >Fpmax,Fpmax,if(Fp <Fpmin,Fpmin,Fp)) F =338.5171.1b Miniumum Vertical Force 0.2•Sds.WdI=225.6781.16 Harper Houf Peterson 0HP Righellis Inc. To n FROM Ill COMMUNICATION RECORD MEMO To ALE III PHONE NO.. PHONE CALL:El MEETING:Cl m -a to m u. -‹ 2 m .0 ( ) 7:1 II ,3 1.1" —4 II ,... I et) 0 03 II ,---, -c) ....0 --, :j 3 (j ?'"'"C.•" ' .1 3- (I 6- -'..--7 on II 0' et- ‘,..1 . ..1) LA ......0 N. ( „I -1 L g . 0 . z . 1 " . 0 o . ...3 ••••••••••••—••••• • • a I • 0 O '; .:#- 0-h-k-) ..... ;-3/# C..e = c\c)kl ) # 1002 =- 7,‘ • If3 00\ Cak ,1 PsN)J1,) , ,i;;- 7 Z, : : .\ — ( • -- ---) '-..( --7 -','i (-7. :y- crq ca A ") e*- ", .,,..,..--...,...-T :, zg ,t , c_ c.s ',Ir);c3`,}A S , - . : ; t. • ..n.j, TO c.l....., ci A ...=-- (\. 1: . ------------ ------ . r,-",)L-7.1\ST-7.1(73. --6.•.-]'----T391 ___ -- – ' . . . 4...—. LAO ``"° iI r 4 • ; •I -.. ..--;c1 c..,v:--; 1 :----- ‘ 4....‘0 1 )v on . o . H i 9 n -16. 1 0) :1,(DcOD z 71 O X C 0 0 I i/ — i 1 d V± -.."'' CIS\OSN- i Z a-•(---, _____________ ‘_____ z „1 . k_Li lcidkID -,0 m i 2 . . . m 9 • Z M 0 0 C"14 t ).tc)1 7.--' (I rY:Alt4tkel)Lqe0.1) r>. E 0 0 ri , I c\KOLU.J.,11.7,0 ri 1 ) , 0 1 ri. . N - ,I z - P F1 VITX)3(1.I /-„, :103 Mad D. ON 901 ,31VCI ‘,.14( k.,c9 xx,k,, :A. . C 54,-01 0.0 co .•• ):C) -170(1-ii '.-• 00he iee itS*2. NI* clop? 0009 2: <-14_ coz ( „0t7.) #coe -0 H iicri 0 2 a Z O M : 0 'D r igt Qj. /ICI As6kulls (7) •2. 00 NI4i och9 h`72 O rn NI\4:;• 0 El • 0 -0"00Z m co-1 D 777:777:3777, -443(1(:‘ •.3H 103 r02.1d - ON eor ,3tva UrS. A 11 ) 111C4H - • • , . Harper COMMUNICATION RECORD HP Houf Peterson Righellis Inc. TO 0 FROM El MEMO TO FILE 0 ENGINE:EP: . (+LA/I.:ERE LANE:N.,P:+:ARC,IITECT...SU('VE,...E PHONE No.: PHONE CALL:0 MEETING:0 M 71 ID RI X 70 —1 2 RI 17 ki' X I 1 O 7:1 0 2 (Th I- 0 .....4.: I/ [ sb d g-- ...<___....0 0 o 8 rut 0 7 , 31* C,4 LI d . 01 .........> ..,.., 5 . it 6 0 --"A--, r., (Th 9) m 4r- , C) I 1 6-.4 • 7. t.- 0 ca I z P • 'S-,- .—.........—.....-- 40 narper HP Houf Peterson Righellis Inc. To 0 FROM Ell COMMUNICATION RECORD MEMO TO FILE Ej Elt•IEE:12.PLA,,NER-, tA,D_CIFF i:Gli,TICTS,SLI,Vitt:R,: PHONE NO• PHONE CALL:El MEETING:El M 13 CO PI M 7, 0 (._ rrI 0 ni .... :::" „,,z,....,....1.., al L.) --0 _., Nix= ........, ... .. k .N. 7 C) lc _c•-1 ii) CP 7). Li C I ,...1 ›- r V' C 7 i'--4 I*, Li. ,--, Li C. `N 1 I r A, 4 0 m -10 z P 0 CI' e . . . , , . COMPANY PROJECT 1 l Woodworks® SOFTWARE FOR WOOD OES(ON June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : I0' 54 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 ' 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 1 WoodWorks SOF7WAREFOR WOOD DESIGN June 8,2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : i‘ - , to Jp. Dead Live 125 125 Total 129 129 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft,Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; • Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Front Load WoodWorks®Sizer 7.1 June 22,2010 13:57:56 Concept Mode : Reactions Base of Structure View Floor 2 : 8 ' 49-6 ,,,,',:. CP -,t, t:.. 1600 L 600 L c 619 D 619 D L c 1193 L153 2404 L 2404 L - -; 625 D105911439 D 1394 D .5 -1 ' 315Lr 358 D` _,, 315E z"-M 358 D 96100DE ■ •-74(847 5611 L 756 L - 4(452 D 5546 D 25 L)D 625 L, 5 D 203D _-_ 5D �, 908 L ;. 46D 307 , L v Y - - a NF`= gin: 23D P50L 3599 _ 87 7.L ` 87 L e•,_�. 5 .' 209 LD 8 D 1963 D 1963 D 154 D -iu u •5V �.t ,D 112363D s _.. 78 D3 D 106 D e %S y0^92 4` 6 G '2 _w 2,, 4 99 tit` -f-t -E'. _ v v _ _L. ., .: c-" 3 -_ U• 2=2_ - _.,_94 .,9., _,. 4,/ 4, . _: ..._,.,t..;� __ 6666 ,. VOOTNJE \ L ? 1Ocxr WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit A-Rear Load WoodWorks®Sizer 7.1 June 22,2010 13:57:37 Concept Mode : Reactions at Base of Structure View Floor 2 : 8 ' _, 1600 L 1600 L 619D 619D -,vri v▪ 13274 L3304 L .'-,�4 7153 D .. - 7072 D .-_ ti yJ '4 315 L ' _t rt 358 D , _. 315 L 3518D 100E l� t `; 96D c ▪ �* oip 74(84 611 L r r 56 L '_ • 4!(452D 5546D 5L�D 625 L, sr 203 D 5 D 908 L - 46 D L307 D ,, , ▪ 245 L ) 50L 3 D- _ ~- 374D N. f, _ 3599 _587. v t-,,, Lr�2587 L. '2587 C 4 r - 209 LD 8 D 11963 D 1963 D 154 D 2i uPLL II.725 L219 D T 78D7DJ 617D'D _;.,; E... .:`..,C .CC,= uC CC CC CC=.,.s C:,_C 1 D �- - ,-: -v_..• :EEE i.__ EE.,.t_k_.E.'FEZ . :C��..,� ��. .�'�t�:�:_3.IJV.,,. i:�i)4..L��.7�_3 _��, � ,`��_ 4 ?, 'ti 2 , : u 2..7 22 242 2 -0. _ _ 4C'A" d 4.'-' z' _ v $ S' .-v _6 106 8 < r 21,a 5_V 8.,.,-: :,1.. . 2, 21_222:e_23V..3._ ,1.,. 4 ,iA4 . .--c. - - _ _77 7 - ',7.J....,66^.7.. 757 \.'.0gr. INiCN k_pc. 10ur ` n Harper Houf Peterson Righellis Inc. C'••rent Date:6/24/2010 1:41 PM I system: English Flue name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\F1.ftd\ Design Results Reinforced Concrete Footings GENERAL INFORMATION: Global status Warnings Design Code ACI 318-05 Footing type Spread Column type Steel Geometry • 12 in l• T 4.25 ft I 25ft leagingnal 4.25 ft Length 4.25[ft] Width 4.25[ft] Thickness 1.00[ft] Base depth 1.50[ft] Base area 18.06[ft2] Footing volume 18.06[ft3] Base plate length 5.50[in] Base plate width 5.50[in] Column length 5.50[in] Column width 5.50[in] Column location relative to footing g.c. Centered Materials Concrete,fc 3.00[Kip/in2] Steel,fy 60.00[Kip/in2] Concrete type Normal Epoxy coated No Concrete elasticity modulus : 3122.02[Kip/in2] Steel elasticity modulus : 29000.00[Kip/in2] Unit weight 0.15[Kip/ft3] Soil Modulus of subgrade reaction 200.00[Kip/ft3] Unit weight(wet) 0.11 [Kip/ft3] Footing reinforcement Free cover : 3.00[in] Maximum Rho/Rho balanced ratio : 0.75 Bottom reinforcement//to L(xx) , : 6-#4 @ 9.00" Bottom reinforcement//to B(zz) : 644 @ 9.00" (Zone 1) Load conditions to be included in design Service loads: SC1 DL S1 DL S2 DL+LL S3 DL+0.75LL Design strength loads: DC1 1.4DL D1 1.4DL D2 1.2DL+1.6LL Loads Condition Axial Mxx Mzz Vx Vz [Kip] [Kip*ft] [Kip"ft] [Kip] [Kip] DL 5.55 0.00 0.00 0.00 0.00 LL 15.61 0.00 0.00 0.00 0.00 RESULTS: Status Warnings -Insufficient development length,Section 21.5.4.1 Soil.Foundation interaction Allowable stress 1.5E03[Lb/ft2] Min.safety factor for sliding 1.25 Min.safety factor for overturning : 1.25 Controlling condition S2 ' Condition qmean qmax Amax Area in compression Overturning FS [Lb/ft2] [Lb/ft2] [in] [ft2] (%) FSx FSz slip --------------------- ------------------------------------------ S2 1.38E03 1.38E03 0.0826 18.06 100 1000.00 1000.00 1000.00 Bending Factor 40.90 Min rebar ratio 0.00180 Development length Axis Pos. Id lhd Dist1 Dist2 [in] [in] [in] [in] ------------------- zz Bot. 20.11 7.04 19.75 19.75 xx Bot. 20.11 7.04 19.75 19.75 Axis Pos. Condition Mu 4)*Mn Asreq Asprov Asreq/Asprov Mu/(4)*Mn) [Kip*ft] [Kip*ft] [in2] [in2] zz Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 i I zz Bot. D2 13.38 45.76 1.10 1.20 0.918 0.292 ;1111111111 xx Top DC1 0.00 0.00 0.00 0.00 0.000 0.000 I I xx Bot. D2 13.38 43.06 1.10 1.20 0.918 0.311 `-._:NUMMI Shear Factor(I) 0.75 Shear area(plane zz) 3.10[ft2] Shear area(plane xx) 2.92[ft2] Plane Condition Vu Vc Vu/(4)*Vn) [Kip] [Kip] xy D2 8.99 46.09 0.260 " 1111.M.. yz D2 8.68 48.88 0.237 Punching shear Perimeter of critical section(b... : 4.67[ft] Punching shear area 3.31 [ft2] Column Condition Vu Vc Vu/(4)*Vn) [Kip] [Kip] ------------------------------ column 1 D2 29.25 104.29 0.374 ,°'=MN= Notes Pana' *Soil under the footing is considered elastic and homogeneous. A linear soil pressure variation is assumed. *The required flexural reinforcement considers at least the minimum reinforcement *" design bending moment is calculated at the critical sections located at the support faces *Only rectangular footings with uniform sections and rectangular columns are considered. *The nominal shear strength is calculated in critical sections located at a distance d from the support face *The punching shear strength is calculated in a perimetral section located at a distance d/2 from the support faces *Transverse reinforcement is not considered in footings *Values shown in red are not in compliance with a provision of the code *qprom=Mean compression pressure on soil. *gmax=Maximum compression pressure on soil. *Amax=maximum total settlement(considering an elastic soil modeled by the subgrade reaction modulus). *Mn=Nominal moment strength. *Mu/(4*Mn)_.Strength ratio. *Vn=Nominal shear or punchure force(for footings Vn=Vc). *Vu/(4*Vn)=Shear or punching shear strength ratio. Page4 _ Beam Shear bcoi:= 5.5•in (4x4 post) d:= tf—2•in := 0.85 b:= Width b =36•in Vn:_ (1)•34• fc psi•b•d Vn= 16.32-kips V b —bcol b Vu=7.83-kips < Vn= 16.32•kips GOOD ❑:= qu'� 2 Two-Way Shear bg:— 5.5•in Short side column width bL:— 5.5•in Long side column width bo:= 2.(bg+ d) + 2•(bL+ d) bo= 54-in �c 1.0 _ 4 + 8 fc psi•b-d Vn=48.96-kips (3 3•(3c Vnmax 2.66• fc si-b-d Vnm„ = 32.56•kips • „Vyy„:= qu-[b2—�bco1+ d)2] Vu= 15.88-kips < Vim„ =32.56•kips GOOD Flexure 2 M (b —bcotl k-2)-13 �2 J11 b Mu=4.98•ft-kips — qu' \ 2 /I A,:= 0.65 _ b d2 S=0.222-ft3 Ft:= 5.4- fc•psi Ft= 162.5-psi Mu ft:= ft= 155.47•psi< Ft= 162.5-psi GOOD Use a 3'-0"x 3'-0"x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity "Yconc:= 150•pcf Concrete density "Ysoil:= 100•pcf Soil density gall:= 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 2659-lb Pd1:= Totaldl Totalll:= 7756-lb P11:= Totalll Ptl:= Pdl+ Pll Pti= 10415-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 36-in Footing width A:= Width2 Footing Area net:= gall —tf'^lconc net= 1375•psf Ptl Areqd gnet Ared = q 7.575 ft2 < A=9 ft2 GOOD Widthreqd:= Areqd Widthreqd=2.75.ft < Width =3.00 ft GOOD Ultimate Loads ,j` Pd1+tf-A.'Yconc Pu:= 1.4•Pdl+ 1.7-P11 Pu= 18.48-kips Pu chi:= A qu= 2.05-ksf Plain Concrete Isolated Square Footing Design: F4 fu:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity 7conc:= 150•pcf Concrete density '(soil 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 5001-lb Pd1:= Totaldi Totalll:= 7639-lb Pll:= Totalll Pti Pdl+ P11 Pt!= 12640•1b Footing Dimensions tf:= 12-in Footing thickness Width:= 42-in Footing width • A Width2 Footing Area net Mall —tf'"Yconc lnet= 1350•psf Ptl Areqd gnet Areqd= 9.363 ft2 < A= 12.25•ft2 GOOD Widthreqd Areqd Widthreqd=3.06-ft < Width=3.50 ft GOOD Ultimate Loads ivpiat:= Pd1+ tf•A'`(conc Pu:= 1.4•Pd1+ 1.7•P11 Pu=22.56-kips Pu qu:= — qu= 1.84-ksf A Beam Shear bc01 5.5-in (4x4 post) d := tf-2-in := 0.85 b := Width b =42-in VI,:= 0,--4fc•psi•b•d V„=23.8-kips 3 Vu•= qu(b -2 toll b Vu= 9.8-kips < V„=23.8-kips GOOD Two-Way Shear bs:= 5.5-in Short side column width bL:= 5.5-in Long side column width b0:= 2-(bs+ d) + 2•(bL+ d) bo=62-in (3c:= 1.0 AU_ 4 + 8 fc-psi•b•d V„=71.4-kips 3 3'13c . Vt,n, := 2.66 fc psi b d Vnmax =47.48-kips = qu.[b2—(bcol+ d)21 Vu= 19.49-kips < Vnmax =47.48-kips GOOD Flexure 2 Mu:= qu (b - bcolJ - 11 b Mu= 7.45-ft-kips I\ ,:. 0.65 2 S:= b d S=0.405-ft3 Ft:= 5.0- fc•psi Ft= 162.5-psi M" ft:_ — ft= 127.79-psi< Ft= 162.5-psi GOOD Use a 3'-6"x 3'-6"x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F3 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density 'Ysoil 100•pcf Soil density cla11:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 2363•lb Pd1:= Totaldl Total!':= 4575-lb Pll:= Totalll Ptl dl II tl:= P + P P =6938-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 30-in Footing width A:= Width2 Footing Area net gall —tf-^Iconc lnet= 1375•psf Ptl Areqd gnet Aregd= 5.046 ft2 < A=6.25 ft2 GOOD Widthreqd IA-Z(1 Widthreqd=2.25-ft < Width =2.50 ft GOOD Ultimate Loads ,:= Pdl+ tf-A-"lconc Pu:= 1.4-Pdl+ 1.7-Pll P = 12.18-kips Pu q,,:= A qu= 1.95-ksf Beam Shear bco1:= 5.5 in (4x4 post) d:= tf—2•in := 0.85 b:= Width b =30-in V„:_ 4- fc•psi-b•d V„= 13.6-kips 3 Vu•= qu b —11,1 b Vu=4.97-kips < V„= 13.6-kips GOOD Two-Way Shear bs`:= 5.5•in Short side column width bL:= 5.5-in Long side column width b0:= 2-(bs + d) + 2-(bL+ d) b0= 54•in r3c:= 1.0 V .= 41)-(1 + 8 /• fc•psi-b-d V„=40.8-kips 3 3.0,J Vnmax := 4.2.66- fc-psi•b•d Vnma„ =27.13•kips = qu•[b2—(bcol+ d)2] vu=9.71-kips < Vnmax =27J3•kips GOOD Flexure z Mu qu Cb -bcoll (l l b Mu=2.54•ft•kips 2 2/I ,Z:= 0.65 2 1:— b6 S=0.185-ft3 Ft:= 5-4:1:1- fc•psi Ft= 162.5-psi M ft:= n ft=95.19-psi < Ft= 162.5-psi GOOD Use a 2'-6"x 2'-6"x 10" plain concrete footing Plain Concrete Isolated Round Footing Design: f5 fc:= 3000-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density Ysoil 120•pcf Soil density gall:= 1500•psf Allowable soil bearing pressure TYPICAL FOOTING Reaction Totaldl:= 619-lb Pd1:= Totaldl Totalll:= 1600-lb P11:= Totalll Ptl Pd1+ P11 Pt1=2219-lb Footing Dimensions tf:= 12-in Footing thickness Dia:= 18-in Footing diameter it-Dia2 Ate:= Footing Area 4 net gall —trfconc cinet= 1350•psf Pt1 Areqd gnet Areqd =q 1.644 ft2 < A= 1.77 ft2 GOOD J Aregd'4 Diareqd Diareqd = 1.45-ft < Dia= 1.50 ft GOOD It Ultimate Loads ,:= Pdl+ tf'A''Yconc P„:= 1.4•Pdl+ 1.7•P11 P„=3.96-kips Pu qu A qu=2.24-ksf Bea7:0=1 b 3.5-in (4x4 post)d tfShear-2•in := 0.85 b:= cos(45•deg)-Dia b = 12.73•in := �• fc psi b d V,i=7.901-kips 3 Vu:= qu C b –bco11 b Vu=0.91-kips < Vn=7.901-kips GOOD 2 /I Two-Way Shear bs:= 3.5-in Short side column width bL:= 3.5-in Long side column width bo:= 2•(bs + d) + 2•(bL+ d) bo= 54-in �c:= 1.0 Vim:= 4 + 8 f psi b d V„=23.703-kips (3 3.0c Vnmax:= 2.66 fc psi b-d Vnmax = 15.76-kips = qu.[b2—(bc01+ d)21 Vu=–0.31-kips < Vnmax= 15.76-kips GOOD Flexure 2 b –bcoi 1 Mu:= qu• •(2) •bMu=0.18 ftkips A,:= 0.65 b d2 :_ S=0.123.13 S Ft:= 5.0- fc•psi Ft= 178.01-psi Mu ft:= — ft=9.9-psi < Ft= 178.01-psi GOOD Use a 18" Dia. x 12" plain concrete footing Plain Concrete Isolated Square Footing Design: F7 fc:= 2500-psi Concrete strength fy-= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity 1'cone 150•pcf Concrete density ''soil 100•pcf Soil density gall := 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 1200-lb Pd1:= Totaldi Tota111 := 3200-lb P11:= Totalll Pt1 Pdl+ Pll Ptl=4400-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 24-in Footing width A:= Width2 Footing Area clnet gall —tf'^Yconc net= 1375-psf Pt! Areqd Areqd 3.2•ft2 A=4 ft2 GOOD gnet Widthreqd Aregd Widthreqd= 1.79-ft < Width=2.00 ft GOOD Ultimate Loads AF,4'11,:= Pd1+ tf'A'•'conc Pu:= 1.4•Pd1+ 1.7•Pll Pu=7.82-kips Pu qu:_ — qu= 1.96-ksf A Beam Shear bcoi 5.5•in (4x4 post) d:= tf-2-in 4:1):= 0.85 b:= Width b =24-in Vn:_ 4.34- fc-psi-b-d Vn= 10.88-kips Vu:= qu r b -2 colt b Vu=3.01-kips < Vn= 10.88•kips GOOD Two-Way Shear bs:= 5.5-in Short side column width bL:= 5.5-in Long side column width bo:= 2-(bs + d) + 2-(bL+ d) b0='54-in Rc:= 1.0 V ,= 4 + 8 j-j -psi-b•d Vn=32.64-kips (3 3•Rc Vmnax := x-2.66• fc•psi•b-d Vmnax =21.71-kips „�,a{„:= qu.[b2 —(bcol+ d)2] Vu= 5.35-kips < Vmnax =21.71-kips GOOD Flexure a Mub —bcolJ _ (I) := -b Mu= 1.16-ft-kips \ 2 2 0.65 2 S:= b-dS=0.148-ft3 nv. 6 Ft:= 5.4)- fc•psi Ft= 162.5-psi M ft:_ ° ft=54.45-psi < Ft= 162.5-psi GOOD Use a 2'-0"x 2'-0"x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000•ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density 'Ysoil 100•pcf Soil density gall:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 7072-lb Pd1:= Totaldi Total11:= 13304-lb Plt := Totalll Ptl== Pdl+ Pll Pti=20376•lb Footing Dimensions tf:= 15-in Footing thickness Width:= 48-in Footing width A:= Width2 Footing Area nvr net gall —tf'^'conc net= 1313•psf Ptl Areqd:= gnet Areqd= 15.525•ft2 < A= 16•ft2 GOOD Widthreqd Aregd Widthreqd=3.94•ft < Width =4.00 ft GOOD Ultimate Loads Mme-= Pd1+ tf'A'Yconc P„:= 1.4•Pd1+ 1.7•P11 P„= 36.72-kips Pu qu:_ — qu=2.29•ksf A Beam Shear boot 5.5•in (4x4 post) d:= tg—2-in (13:= 0.85 b := Width b =48-in Vn:= (1)•4- fc•psi•b•d Vn= 35.36-kips 3 Vu.— qu(13bco1)•b 2 Vu= 16.26•kips < Vn=35.36-kips GOOD Two-Way Shear bs:— 5.5•in Short side column width bL:= 5.5-in Long side column width b0:= 2-(bs + d) + 2-(bL+ d) bo=74-in Rc:= 1.0 _ (1)•(4 + 8 /• fc psi•b•d V,= 106.08-kips 3 3•c3c Vnmax:_ -2.66- fc psi-b•d Vnmax =70.54-kips = qu.[b2 —( „Vybcol+ (1)2] Vu= 31.26-kips < Vnmax = 70.54-kips GOOD Flexure z Mu.— qu (b —2 /I bcol) (11.b Mu= 14.39-ft-kips I\ l2 J At:= 0.65 2 S:= b d S=0.782-ft3 Ft:= 5.0• fc•psi Ft= 162.5-psi M ft;_ ° ft= 127.75-psi< Ft= 162.5-psi GOOD S Use a 4'-0"x 4'-0"x 15" plain concrete footing DATE (730 a0 0 JOB No Cie f\J ---0q 0 . C 4-) To PROJECT: C31y) \rvecto .11,flop a a I RE' Oni+ A _ ffon+ Load -, - ‘1,10,,vv, V%710,(St• _I 0 1-- 0 2 lil n I __. O _I .44 1 X < O ‘ 4_34_ ___ 0_ ,,, _1,0, _-,0.,..,%-k\\ 1 O w O z . . i < O C.:`,r, .- ""' ,f, ,.• i s ' 41'.^.01, O ...., O : 2 - ''. i 1 , ',. .... i 1 / • ..,'C'...• ,+4,-'.. - 4 , -,...,1 ,.,,,,,,,,„ 1 i o i.,.. z Cs _ — z A Z. = NI /2 _-= ( [32.c-;+ b-2-L, (3. )(22_-) 13L, v L. --9.- c.) t•A,o 5-5.51 ct 0 Ao.ik• -_ ----7 • entley Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:43 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Front Load 2.etz1 M33=51.9[Kip{ft] M33=-12.19[Kip`ft] Bentley-r Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:35 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Front Load.etz\ UM %T P' - -- M33=25.66[Kip`ft] M33=-30.27[Kip*ft] 0 x x ` . < SI JSP tae.' 1 :: x` : , - _ SID °�-', CD (Ss•s)e-'ee .) ( z-c)- _ r 2 c,cri h. ' — `TUU ... O> a3 4V„1 - silt- 0 a ° ' ` Otc O = \Pu—A-t, 1db`O'€ Z m . ;' ,: S'l fi ', a1-z,w o a 5) -7--4 c i � ) f yL4 ( 'e)L_II )ctyosl'o) — -SW. n 0 K Z FAA l.kija )anp -"A- v\D Z T, L T, m a 1 1 t a 'A cs v'ts, Sl't, m o 4; r`v�C tll. .. m F 0 t 7 `Ace-:z cl o 1 d 1 \ Nfl a lo3road 0 ID N •oN eor l g — 9 31va INI A8sss I Bentley Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:38 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Rear Load.etz\ M33=43.24[Kip`ft] t M33=-45.06[Kip`ft] C5PAelAkS ntteu Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:43 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Rear Load 2.etz\ M33=41.88[Kip`ft] • M33=-46.37[Kip-ft] MGmetf\A-% - LC2. BY A,,,\NL DATE **-- D,0 I 0 JOB NO PROJECT: RE: /Rear Load,' cbobc\,) E rE t 0 w - —0 X L‘0( t2.," FTC1 Er_ il 1 LI NA O 2 I v Irr\004 = Ofylk- A ivbe4,* Oft Li 0 J cc 6 o w ..... CL' 2 JAYTIT\— ON 4" I-\ ---)-4-6..15--+-v_f k z On v-i- ilf., 0MT,_, aclor\sSi(d- Tr o CI) it 4- e n,.." OC, A 0, -3‘43,,,,Js › 1 0 O = ,---, O - ' C 0 409 CZ IA r‘Z--*''0 t 0(0 "Y:71'7:6)(11010,0 Ca) 6-‘' X 0 LL Z atta0 f-ct, - E 6 O i vatt 01C,.. Al-.-. o. (414 ‘Nil- . :-. c. 490 tf•J ,_ ,, i \ Tft) 4 5 e kV OC., /),- ,Ir. Ow c, 11.4 t/ — -.... 0, C,I 4(4,4005)/0,5(,socoThev4-) O , f.:(40.S‘ \c -ES.1,‘1,-7-;) =53 Pk LI > Mmx,,,, :- Ott- e ity i kx)thivh .• _ CL/ — — or 4 BY: DATE JOB NO.: PROJECT: eN RE: \ra'i i itoo.o 1-0D-VIOB e Z F°- W i O4,- Li E I --) 51 J 3 r, rt Uc\-\ j --) X31,b at v o w Z PArtvr,, = Uni s Pk - —3(1a:`-- -.0 ° l A-- - --54. S kc - r Uri C -> - 40. 4t 2 2 0,-.1.\, _ 0,0\0 ti . s, (0‘ — 2.7) U .1''r CSS 2. b` Q,C. 5� (�.btbt X3,SE . #4@12 , =1 :60 6 k("k ) 53, 44 c°4 ( t ra;' o.c. P‘ ..:.. 14o t) toi- . 1 a C\,o.'1-%)- ‘00,00Y) /Co,61,3 42- -- O.t..42- u.' #s-@1,2.11 1 0 M r\ = 0,':),0( r.01-'6)( 0.00,6)0,5 * 0.(..4242..) -=1k,ao"I (s33) e 4el• > 0V I r\ -t e lo" a,C. 1\s; ,---a-,(::>1.0-2- a_ (\ .2°(.4.x,004 /G0,--E5'?(309a-)C4- , = O -to8InJ OM 0, o0 ° tS- o,-1-b�1Z _ 84..6S >>3:vi9.'.0t. W W Frl _ tti- 1'2! o.�,.s PL'Ne-r... ��r � A.ice.' . f ( 0, '. / :CMZ} (1 1 ' to , BY N\LC......." DATE aol 0 JOB NO • C1:2,,'-' C\\3 '"O 9 0 PROJECT: RE. urNok rA - ‘Tylr 5u,..) , , LI, 1-• Li O Y ---- - • Li 0 J X a O w O z w 0 1 cc cL. z ChecL Oveituff\K‘9 0 Kor .-7- sra.031.(-f - - )i , _i +1 &L 7 (b (0,t51..).- -1 ,5NY'C)Ce4f) 4-5C:4,N) ),- \ LL(2) .7..--- s--C,. 0 2 -,.......- .... ................ ...m. i CC• 0 MO i * ato 0.1 Li_ z w _ 0 x ..... i0 pl 0 , ., ....- 3 '''' -,-, --'-_- 1-- c4- t", .=-L4 D) ,..) •,- _. : : \' .= - , , r ...)e- -"1 , ; •- _. .f...,f‘ « 1\ (5 ''.- - ,--\—_—/t----7 t5" ':/- '- - -x---.7_-__ f‘A.1 Q. ,- 4 c .b(., if--____________13 - - a 1 ,c) •„ --_. ->f,(' `(-D _ \.,"--1,--)- c-*„ _ BY• DATE: to 30 t JOB No C., ) CAT) PROJECT: RE. • i• Z ; u\ )„Sf- ‘s 0 w 1-- 2 pA (4*(, :I- -3( a,coi 0 V.0 0 4 r ok VA LA-(7,tA, 3(3 -LT I i•b ,:r• 2 I i , t ; 0 rf '1* 4. I / -;;;-•-•*) C 7,:kile-N. -"*N( 2 0 •* cr 0 Z • Z - 0 0 0 i-o 0 • ‘.4 , CL. Atra4 ‘57 Bentley Harper Houf Peterson Righellis Inc. - Current Date:6/22/2010 10:42 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Interior 2.etz\ M33=23.55[Kip-ft] A M33=-17.88[Kip-ft] A f I'"'"mo Benttey Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:42 AM • Units system:English File name:O:HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit A\foundations\Interior.etz\ M33=32.26[Kip*ft] M33=-9.27[Kip-ft] A • ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens f c= 3000 psi f c= 3000 psi h'ef= 3.50 inches het= 12.00 ` inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmax= 5.25 inches the foundation and does not consider stem WE Fnd Width = 36.00 inches cmm - 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor (= 0.75 strength reduction fact Calculations Calculations ANc= 68 in` AN= 1296 ANO= 110.25 in` ANO= 1296 in` Nb= 8,607 pounds Nb= 55,121 pounds Wed,N= 0.8286 Wed,N= 1.00 Nei)= 4,399 pounds Ncb= 55,121 pounds 4)Ncb= 3,299 pounds 4)Ncb= 41,341 pounds Combined Capacity of Stem Wall and Foundation ocb= 44,640 0.754)Ncb= 33,480 c , , - i - ,-. . 0 ,.--; • :-E.:,: 6:4• 0 = ':- ."• CD",1 : n . i 9 8 , - 4O ; L-"ww < ( btye—....- . 1 0 2 n (lei)(1"-...m.5.•;;)e QJ (coosol)vic_..0 = v Z 71 P 7' .. o K r-I c't (t-5: I Z) 404 c 1) '11 bJ o o K -710 ': 9J-1 caS°11, --- ci..5.,1)S1‘e'iZ (7/boh,0-7-1)(900'01Kbg.S'0)01;1'0 -'\A\PI Z z ( E--X,0.00q,01 e 1 ‘..000 oil --E,N\ logS '0 =S sci ‘IV 4 4'• c.,\) \f).-A.L. z c....z if. 10)& sjc;b1011,\°u vli 0 9 n m o 0 m r o r /151 )4 IS x ig o ri , . K 0 rrl -I z )\AM 0 F .. m E] E • ,. . 103108 d 1 • :ON eor oioe . Concrete Side Face Blow Out Givens Abrg= 2.15 in` fc= 3000 psi cmin= 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 231,191 pounds 4)Nsb= 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in` fc= 3000 psi = 0/5 strength reduction factor Calculations Np= 51,552 pounds 4)Np= 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.606 in2 = 0.80 strength reduction factor Calculations Ns= 35,148 pounds 4)Ns= 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6* Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks V BY DATE. JOB NO 1 PROJECT: • 4 RE: ye Wa►► z, coahrt3 El W 0 e Si des JP BVi Ici rjs Z LL F m '01_ ° asct(1z?sc ) Soo PL. ,jiCAk1 8 cl(Z leveis,(13 s(%) = a bb p:.. S loan 4DiN 650pc0012.- e1127)= 333 puP Sk-em 0 z (.5117..)( t SO pcc)(w =- 00w PLS W 0 a a z LL o (e cT) Z levels (40 \-,),5S :)z (ot-i0 P`F s tuDr O z T ' 1Loot). N-b t i- tO0u-) 1,1.,r 2 MCXx Sbp- .cuL) P = 1SOOpc • (A.) 0 i L 1 + ((X)Li) '� 1SC 0w - "u 7-: 1 00(a k t ,- IS� i El 2 0 Er 0 LSI Z e t C C,'..C .1, C'4- �. 1�' . \.%,_ F/`.' 1 t {�f. � O Dt- as6L1- 'a' p,..F ‘i 40�Z i(t ; C- 0/1.7_ (bk.)34 f'. 3331,Lp S 1-e- pc C- P ry- ( Itz)( to (;) - (OO ) L: ( )(Z)C4C,.)-1-` '4-2..c) L c C1� ,C —�zS) ''4-SO PLC 4 = TL o ' :-3(4 '3 t- 100 QJ ,- M. o aau3t100WG 1SOOC,U > (.?.. '_,),,,,,,. t".2:: "/,' C. Sore. as ,4. Mit-i,,..t, --.Iocc lCXkc TL,e \3bG }- k00'4J W — LOU t: ', ,E 1�� ` ?a(ivwc k 1 DL- 0 3.5(.\-2:)(2.) = (ov p v-; Structural Calculations DEC I21 2r for CITYOFTIGARD BUILDINGDNISIDN Full Lateral & Gravity Analysis of Plan B 1332 Summer Creek Townhomes Tigard, OR Prepared for Pulte Group July 13, 2010 JOB NUMBER: CEN-090 IO4s ***Limitations*** Engineer was retained in limited capacity for this project. Design is based upon information provided by the client,who is solely responsible for the accuracy of same. No responsibility and/or liability is assumed by, or is to be assigned to the engineer for items beyond that shown on these sheets. 96 sheets total including this cover sheet. This Packet of Calculations is Null and Void if Signature above is not Original Harper fl':..' Hoof Peterson Righellis Inc. 205 SE Spokane St. Suite 200 • Portland, OR 97202• [P]503.221.1131 • [F] 503.221.1171 1 104 Main St. Suite 100 ♦ Vancouver, WA 98660 ♦ [P] 360.450.1 141 • [F] 360.750.1 141 1 133 NW Wall St. Suite 201 • Bend, OR 97701 • [P] 541.318.1 161 • [F] 541.318.1 141 Design Criteria Project Scope: Full lateral & Gravity Analysis of Unit B Design Specifications: Wind Design: Basic Wind Speed (mph): 100 From Building Authority Exposure: B From Building Authority Importance, lW: 1 2006 IBC/2007 OSSC Occupancy Category: II Residential Earthquake Design: Seismic Design Category: D From Building Authority Site Class: D Assumed,ASCE 7-05 Ch.20 Importance, le: 1 ASCE 7-05 Table 11.5-1 Ss: 0.942 USGS Spectral Response Map S l: 0.339 USGS Spectral Response Map Dead Load: Floor: 13 psf Wall: 12 psf Wood Roof: 15 psf Live Load: Roof: 25 psf Snow Floor: 40 psf Residential Floor Materials and Design Data: Materials: Concrete Compressive Strength,Pc: 3000 psi Foundations &Slab on Grade Concrete Unit Weight,yc: 145 pcf Steel Reinforcement Yield Strength,fy: 60,000 psi Wood Studs (Wall Studs): Hem-Fir#2 2x &4x Wood Beams& Posts: DF-L#2 6x&Greater Wood Beams & Posts: DF-L#1 Glulam Beams: 24F-V4 PSL Beams: Fb=2,900 psi, FV=328psi, E=2.0 Million TS/LSL Beams: Fb=2325 psi, FV=460psi, E=1.55 Million Design Assumptions 1. Allowable soil bearing pressure (qa) : 1500 psf Assumed 2. All manufactured trusses,joists, and flush beams-u.n.o.shall be designed by others. Structural Analysis Software Used: Mathcad 11 Microsoft Excel 2000 Wood Works—Sizer version 2002 Bently RAM Advanse t �a Hamer Project: Summer Creek Townhomes UNIT B HOttf Peterson Client Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# k N4'INEE4 �i Ati1E? I.ANOS:AP-ARC H:i ECFS�SUHV£!^.ftp DESIGN CRITERIA 2007 Oregon Structural Specialty Code&ASCE 7-05 Roof Dead Load RFR:= 2.5•psf Framing RPL:= 1.5•psf Plywood RRF:= 5.psf Roofing RME:= 1.5•psf Mech&Elec RMS:= 1•psf Misc RCG:= 2.5•psf Ceiling RIN:= 1•psf Insulation RDL= 15•psf Floor Dead Load FFR:= 3.psf Framing FPL:= 4•psf Sheathing FME:= 1.5•psf Mech&Elec FMS:= 1.5.psf Misc FIN:= .5•psf Finish&Insulation FCLG:= 2.5•psf Ceiling FDL= 13•psf Wall Dead Load WOOD EX_Wallwt:= 12•psf INT Wallwt:= 10•psf Roof Live Load RLL:= 25.psf Floor Live Load FLL:= 40•psf Q 1 401/4 Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# .aN CE�iF F: AFCiTEC > 3J4 JE✓ORS Transverse Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:H Weight of Structure In Transverse Direction Roof Weight Roof Area:= 748•ft2.1.12 RFWT:= RDL•Roof Area RF WT= 12566-lb Floor Weight Floor_Area2nd:= 605•ft2 FLRWT2nd:= FDL•Floor_Area2nd FLRWT2nd=7865.1b Floor Area3rd:= 600•$2 FLRWT3rd:= FDL•Floor_Area3rd FLRWT3rd=7800 Ib Wall Weight EX Wall Area:= (2203)•ft2 INT Wall_Area:= (906)4ft2 WALLwr:= EX_Wallwt•EX_Wall_Area+ INT Wallwt•INT_Wall_Area WALLwr=35496-lb WTTOTAL=63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) hn:= 32 Mean Height Of Roof Ie:= 1 Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) c:= .02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x:= .75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period Ta:= Ct(hn)x Ta= 0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 := 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS:= 0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa:= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) F,:= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) 42 \ n Harper Project: Summer Creek Townhomes UNIT B .414:43- Hoof Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. EtHS,> a:aR_G5 Designer: AMC Date: June 2010 Pg.# L?NDSC Afle=ttrE-^.ig.,t R`e o-s SMS:= Fa Ss SMS = 1.058 (EQU 11.4-1,ASCE 7-05) S 2 SMS Sds=0.705 (EQU 11.4-3,ASCE 7-05) ds-= 3 SM1 := FvS1 SM1 =0.584 (EQU 11.4-2,ASCE 7-05) 2•SMl 1144,ASCE 7 OS) S Sdl =0.389 (EQU d1 �= 3 Cst:= Sds'Ie Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Shc'Ie (EQU 12.8 3,ASCE 7-05) Csmax T .R Csmax =0.223 a ...and shall not be less then... C1 := if(0.044•Sds•le<0.01,0.01,0.044•Sds•Ie) 0.5•Si•Iel (EQU 12.8-5&6,ASCE 7-05) � C2 := if Si <0.6,0.01, JI R CsI„in:= if(CI >C2,C 1,C2) Csmin =0.031 Cs:= if(Cst<Csmin,Csmin„if(Cst<Csmax,Cst,Csmax)) Cs=0.108 V:= Cs•WTTOTAL V=6914lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E =4840 lb (Allowable Stress) Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# AN..SO C ARCH 5 REYORe Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II Iw:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) hn=32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) Smaller of... a2:= 2-.1.16•ft Zone A&B Horizontal Length (Fig 6-2 note 10,ASCE 7-05) a2= 3.2 ft or aw:= .4.h .2-ft a2= 25.6 ft but not less than... a2min 3.2 ft a2min =6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA:= 19.9•psf PnetzoneB 3.2.psf PnetzoneC 14.4•psf PnetzoneD:= 3.3•psf Vertical PnetZoneE —8.8•psf PnettoneF 12•psf PnetzoneG —6.41psf PnetzoneH 9.7•psf Basic Wind Force PA:= PnetzoneA'Iw'X PA= 19.9•psf Wall HWC PB:= PnetzoneB'Iw'X PB =3.2•psf Roof HWC PC:= PnetzoneC'Iw.X PC= 14.4•psf Wall Typical PD:= PnetzoneD•Iw'X PD =33•psf Roof Typical PE:= PnetzoneE'Iw'X PE =—8.8-psf PF:= PnetzoneF'kr'X Pp=—12•psf PG:= PnetZoneG'Iw'X Pc, =—6.4•psf PH:= PnetzoneH-Iw'X PH=—9.7-psf _1 k Harper Project: Summer Creek Townhomes UNIT B ' 'ti • Houf Peterson Client: Pulte Group Job# CEN-090 Highellis Inc. Date: June 2010 Pg.# Designer: AMC �nNCSi;a.?E nF;^HIfE.^,TS�S+f ft`.'FVGRS Determine Wind Sail In Transverse Direction WSAILZoneA:= (55 + 59+ 29)412 WSAILZoneB (6+ 0 + 23)•112 WSAILZoneC (429 + 355 + 339)4'12 WSAILZoneD (0 + 0 + 4)•112 WA:= WSAII-ZoneA-PA WA=2846 lb WB:= WSAILZoneB'PB WB=93 lb WC:= WSAILZoneC'PC WC= 16171 lb WD:= WSAILZoneD'PD WD = 13 lb Wind_Force:= WA+ WB+ WC+ WD Wind Forcemin:= 10•psf•(WSA1LZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force= 19123 lb Wind_Forcemin= 12990 lb WSAILZoneE 43•ft2 W SAILZoneF 43•ft2 WSAILZoneG 334.112 WSAILZoneH 327.112 WE:= WSAILZoneE'PE WE =—378 lb WF:= WSAILZoneF'PF WF=—516 lb WG:= WSAILZoneG'PG WG = —2138 lb WH:= WSAII-ZoneH'PH WH= —31721b Upliftnet WF + WH+ (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILZonea'.6.1.12 Upliftnet= 1326 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper:3,_ Project: Summer Creek Townhomes UNIT B Hilo Peterson Client: Pulte Group Righellis Inc. Job# CEN 090 b fY , „... S L . JR Designer: AMC Date: June 2010 Pg.# na16,,, f_ A,Y4IT 5 vE-'O HS Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area= 838 ft2 Maav:= RDL-Roof Area RFWT= 12566-lb Floor Weight Floor_Area2nd= 605 ft2 FMLR, := FDL-Floor_Area2nd FLRW 12nd= 7865 lb Floor_Area3rd=600 ft2 F�LR2ci := FDL.Floor_Area3rd FLRWT3rd = 7800.1b Wall Weight EN Wall Area:= (2203)-ft2 INT Wall Area= 906 ft2 ALL := EX_Wallwt-EX_Wall_Area+ INT Wallwt-INT_Wall_Area WALLwr=35496-lb WTTOTAL= 63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) lin=32 Mean Height Of Roof Ie= I Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct=0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x=0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period ,T,a,:= Ct-(hn)x Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) S1 = 0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.123 Acc-based site coefficient @.3 s-period (Table 11.4-1,ASCE 7-05) Fr,= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Date: June 2010 Pg.# Eh INE.R.°.rt A vh_n_ --- Designer: AMC _AN4cr A?E AR..NI;ECFS•9JRVER7Rti 1.058 (EQU 11.4-1,ASCE 7-05) - := Fa Ss SMS = 2•SMg (EQU 11.4 3,ASCE 7 05) S '`^ids'` 3 Sds=0.705 (EQU 11.4-2,ASCE 7-05) ��= Fv'S1 SMi =0.584 2•SMl S Shc =0.389 (EQU 11.4-4,ASCE 7-05) e CstSds :_ Cst=0.108 (EQU 12.8-2,ASCE 7-05) ^"M^' R ...need not exceed... Sdl Csmax =0.223 (EQU 12.8-3,ASCE 7-05) Cs Ta R ...and shall not be less then... AcjA:= if 0.044•Sds•Ie <0.01,0.01,0.044•Sds4e) (EQU 12.8-5&6,ASCE 7-05) - r 0.5•Sile) ,:= ifIS1 <0.6,0.01, R JI ..C := if(Ci > C2,C1,C2) Csmin=0.031 NCs.= if(Cst<Cs Cs if <Cs Cst Cs Cs =0.108 Csmin, mom, max> max) V:= Cs•WTTOTAL V= 6914 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E=4840 lb (Allowable Stress) Nw I Harper Project: Summer Creek Townhomes UNIT B Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. • r „EER 3 Designer: AMC Date: June 2010 Pg.# Lon;;itudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II Imo,= 1.0 Importance Factor (Table 6-1,ASCE 7-05) hn=32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) Smaller of... a a2:= 2-.1.16•ft Zone A&B Horizontal Length (Fig 6-2 note 10,ASCE 7-05) a2=3.2 ft or a2 _ 4 hn2 ft a2=25.6ft but not less than... ate:= 3.2-ft a2min =6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9•psf PnetzoneB =3.2-psf PnetzoneC= 14.4•psf PnetzoneD=3.3•psf Vertical PnetzoneE=—8.8•psf PnetzoneF=—12•psf PnetzoneG=—6.4•psf PnetzoneH=—9.7•psf Basic Wind Force Pte:= PnetzoneA'Iw.X PA= 19.9•psf Wall HWC := PnetzoneB'Iw'X PB=3.2•psf Roof HWC Pc:= PnetzoneC'Iw'X PC= 14.4-psf Wall Typical Pte:= PnetzoneD'Iw'X PD=3.31psf Roof Typical := PnetzoneE'Iw'X PE =—8.8•psf ,,:= PnetzoneF'Iw'X Pp=—12•psf A:= PnetzoneG'Iw.X PG =—6.4-psf Da,:= PnetzoneH•Iw'X PH=—9.7•psf Harper Project: Summer Creek Townhomes UNIT B e : Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. E k N E A S• A N z E Designer: AMC Date: June 2010 Pg.# AN.^,SC4PE ARCFITECTS•SUR`'IE(ORS Determine Wind Sail In Longitudinal Direction W := (58+ 59+21)4E2 WA4.1L�= (0 + 0 +51)•ft2 W wgn:= (98+ 99+ 34)•ft2 W N A:= (0 + 0 + 114)•ft2 Wim= WSAILZoneA•PA WA=2746 lb := WSAILZoneB•PB WB= 163 lb U,:= WSAILZoneC"PC WC=3326 lb aim= WSAILZoneD'PD WD= 376 lb WinNForce = WA+ WB+ We+ WD Wind Forc = 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force=6612 lb Wind_Forcemin= 5340 lb WNLarx, = 151•ft2 WSN LAws,v,:= 138•ft2 MwAlgaieCu:= 242412 W := 216412 Wim:= WSAILZoneE•PE WE =—1329 lb Wim= WSAILZoneF"PF WF=—1656 lb W%:= WSAILZoneG'PG WG= —15491b Wim.•= WSAILZoneH•PH WH=—2095 lb U li := WF+ WH+ (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE + WSAILZoneG)]..6.1.12 Uplift1et=901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 Iw= 1.00 Wind Sail nd Net Design Wind Pressure(psf) (ft) Pressure(lbs) Zone A= 19.9 143 2846 Wall High Wind Zone Horizontal Zone B= 3.2 29 93 Roof High Wind Zone Wind Forces Zone C= 14.4 1123 16171 Wall Typ Zone Zone D= 3.3 4 13 Roof Typ Zone Zone E= -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F= -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H= -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force= 19123 lbs Use to resist wind uplift: Roof Only . Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs E= 1313 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm.Shear= 7291 lbs Upper Floor Diaphragm Shear= 6286 lbs Roof Diaphragm Shear= 5546 lbs Wind Distribution To Shearwall Lines - MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm - (lbs) Diaphragm (lbs) Diaphragm (lbs) Width(ft) Width(ft) Width(ft) _ . a a Sr ilea A 15.83 2275 20.50 3143 21.33 2773 B 19.50 2802 0.00 0 0.00 0 C 15.42 2215 20.50 3143 21.33 2773 E= 50.75 7291 41 6286 42.67 5546 i -1 Harper Houf Peterson Righellis Pg#: I Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ.12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ. 11.4-1,ASCE 7-05 SM1= 0.58 Equ. 11.4-2,ASCE 7-05 SDS= 0.71 Equ. 11.4-3,ASCE 7-05 SDI= 0.39 Equ.11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(Ib)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(Ib)= 35496 Tub.Floor 2 Diaphragm Wt(Ib)= 22063 Trib.Floor 3 Diaphragm Wt(Ib)= 21998 Trib.Roof Diaphragm Wt(lb)= 19665 Vertical Dist of Seismic Forces total of base shear Rho Check to Shearwalls(lbs) leumulative %to shearwalls Req'd? Vfloor 2(Ib)= 711 100.0% Yes Vfloor3(Ib)= 1595 85.3% Yes Vroof(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 126 299 371 148 795 1257 B 282 0 0 331 0 0 - C 197 301 377 231 800 1277 Sum 605 600 748 711 1595 2534 Total Base Shear*= 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. cry k Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf A.= 1.00 lw= 1.00 Wind Sail (ft) Wind Net Design Wind Pressure(psf) I Pressure(lbs) Zone A= 19.9 138 2746 Wall High Wind Zone Horizontal Zone B= 3.2 51 163 Roof High Wind Zone Wind Forces Zone C= 14.4 231 3326 Wall Typ Zone Zone D= 3.3 114 376 Roof Typ Zone Zone E_ -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F= -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H= -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force= 6612 lbs Use to resist wind uplift: Roof&Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs E= 3531 Lbs...No Net Uplift Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Dia hragm(ft2): Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear= 2565 lbs Upper Floor Diaphragm Shear= 2600 lbs Roof Diaphragm Shear= 1447 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Line Shear Wall Line Diaphragm lbs Diaphragm Diaphragm ( ) (lbs) (lbs) Width ft Width ft Width ft 1 8 1283 8 1300 8 723 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution - Seismic Design Category= D Occupancy Category= II Site Class= D S1= 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ. 12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMs 1.06 Equ. 11.4-1,ASCE 7-05 SMI 0.58 Equ. 11.4-2,ASCE 7-05 SDs= 0.71 Equ. 11.4-3,ASCE 7-05 SDS= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22063 Trib.Floor 3 Diaphragm Wt(Ib)= 21998 Trib. Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces 1Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vfloor 2(Ib)= 711 100.0% Yes Vfloor3(Ib)= 1595 85.3% Yes Vroot(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs 1 275 270 360 323 718 1220 2 330 330 388 388 877 1315 Sum 605 600 748 711 1595 2534 Total Base Shear*= 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. —J • Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (pIf) (ft-k) (ft-k) (k) 101 8 5.25 5.25 1.52 OK 8.00 2.28 18.00 3.14 27.00 2.77 1560 Double 1.40 VIII 102 8 3.88 3.88 2.06 ox 8.00 2.80 8.00 0.00 723 Single 1.40 IV 103 8 4.58 8.58 1.75 ox 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 104 8 4.00 8.58 2.00 ox 8.00 2.22 8.00 3.14 8.00 2.77 947 Double 1.40 VI 107 8 4.58 13.08 1.75 ox 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III 108 8 8.50 13.08 0.94 ox 8.00 2.28 18.00 3.14 27.00 2.77 626 Single 1.40 III 109 8 3.88 3.88 2.06 ox 8.00 2.80 723 Single 1.40 IV 110 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 111 8 2.00 4.50 4.00 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 112 8 1.25 4.50 6.40 8.00 2.22 8.00 3.14 8.00 2.77 1807 Double 1.40 NG 201 9 6.79 9.79 1.33 ox 9.00 3.14 18.00 2.77 604 Single 1.40 III 202 9 3.00 9.79 3.00 ox 9.00 3.14 18.00 2.77 604 Single 1.40 III 203 9 5.00 5.00 1.80 ox 9.00 3.14 18.00 2.77 1183 Double 1.40 VII 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 ox 8.00 2.77 275 Single 1.40 I 302 8 3.21 10.08 2.49 ox 8.00 2.77 275 Single 1.40 I 303 8 5.00 10.00 1.60 OK 8.00 2.77 277 Single 1.40 I 304 8 2.50 10.00 3.20 ox 8.00 2.77 277 Single 1.40 I 305 8 2.50 10.00 3.20 OK 8.00 2.77 277 Single 1.40 I Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper HodPeterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Seismic ` Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd FIr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type (ft-k) (ft-k) (k) (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (plf) * 101 8 5.25 5.25 1.52 OK 8.00 0.15 18.00 0.80 27.00 1.26 419 545 0.30 1.31 Single 1.00 IV 102 8 3.88 3.88 2.06 OK 8.00 0.33 8.00 0.00 0.00 85 111 0.22 0.97 Single 0.97 I 103 8 4.58 8.58 1.75 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.26 1.15 Single 1.00 II -104 8 4.00 8.58 2.00 OK 8.00 0.23 8.00 0.80 8.00 1.28 269 350 0.23 1.00 Single 1.00 II 107 8 4.58 13.08 1.75 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 219 0.26 1.15 Single 1.00 I 108 8 8.50 13.08 0.94 OK 8.00 0.15 18.00 0.80 27.00 1.26 168 219 NA 2.13 Single 1.00 I 109 8 3.88 3.88 2.06 OK 8.00 0.33 0.00 85 111 0.22 0.97 Single 0.97 I 110 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 0.31 Double 0.31 NG 111 8 2.00 4.50 4.00 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.11 0.50 Double 0.50 NG 112 8 1.25 4.50 6.40 8.00 0.23 8.00 0.80 8.00 1.28 513 667 0.07 031 Double 031 NG 201 9 6.79 9.79 1.33 OK 9.00 0.28 18.00 1.26 157 205 0.46 1.51 Single 1.00 I 202 9 3.00 9.79 3.00 OK 9.00 0.28 18.00 1.26 157 205 0.20 0.67 Single 0.67 II 203 9 5.00 5.00 1.80 OK 9.00 0.55 18.00 1.28 366 476 0.34 1.11 Single 1.00 IV 204 Not Used 205 Not Used 206 Not Used 301 8 6.88 10.08 1.16 OK 8.00 1.26 125 162 0.34 1.72 Single 1.00 I 302 8 3.21 10.08 2.49 OK 8.00 1.26 125 162 0.16 0.80 Single 0.80 I 303 8 5.00 10.00 1.60 OK 8.00 1.28 128 166 0.25 1.25 Single 1.00 I 304 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 II 305 8 2.50 10.00 3.20 OK 8.00 1.28 128 166 0.12 0.63 Single 0.63 II Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= 17.71 Total#1st Floor Bays= 4.43 ` Are 2 bays minimum present along each wall line? No 1st Floor Rho= 1.3 Total 2nd Floor Wall Length= 14.79 Total#2nd Floor Bays= 3 * Are 2 bays minimum present along each wall line? No 2nd Floor Rho= 1.3 Total 3rd Floor Wall Length= zoos Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 73 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L.>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For TEL>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift • Panel Lgth. From 2nd Fir. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 106 8 12.75 12.75 0.63 ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 207 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 208 . 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 1 24.71 49.73 -0.47 306 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 307 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) f i 1 n Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 i.ongitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall WI. Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (plf) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 OK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 OK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 I 55.17 96.89 -0.24 207 9 11.50 11.50 0.78 OK 9.00 0.72 18.00 1.22 0.81 169 169 NA 2.56 Single 1.00 I 28.42 53.69 -0.34 208 9 11.50 11.50 0.78 OK 9.00 0.88 18.00 1.32 0.81 191 191 NA 2.56 Single 1.00 I 31.56 53.69 -0.06 306 8 10.00 10.00 0.80 OK 8.00 1.22 0.35 122 122 NA 2.50 Single 1.00 I 9.76 17.40 -0.07 307 8 10.00 10.00 0.80 OK 8.00 1.22 0.35 122 122 NA 2.50 Single 1.00 I 9.76 17.40 -0.07 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 25.50 Total#1st Floor Bays= 6.30 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= 1.0 Total 2nd Floor Wall Length= 23.00 Total#2nd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= 1.0 Total 3rd Floor Wall Length= 20.00 Total#3rd Floor Bays= Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= ID Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays= Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resistingyoment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls a11 Tn)e y"'ri6'I 44 i � sprVA:-r-141' �,�' �� � � 101 1560 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 1667 102 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 103 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 104 947 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 107 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 108 626 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 109 723 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 110 Simpson Strongwall 111 Simpson Strongwall 112 Simpson Strongwall 201 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 202 604 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 638 203 1183 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 1276 204 Not Used 205 Not Used 206 Not Used 301 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 275 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 305 277 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY1 Longitudinal Shearwalls el i n Wij: 1`e T GOO[ F,Or °' i i ° 014 hld0W l 105 259 1/2"APA Rated PI 'd w/8d Nails ' 6/12 339 44 Sim'son None 0 106 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 207 176 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 ) v Simpson None 0 208 191 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 ,.fib Simpson None 0 306 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 Simpson None 0 307 122 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 242 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. Transverse Wind Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Tot Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Upl Flr. Flr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Rig above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.25 5.25 2.28 3.14 2.77 8.19 1560 0.1 0.8 0.208 72.42 5.58 2.47 14.54 14.93 14.54 14. 102 8 1.1667 3.88 3.88 2.8 2.8 722 0.092 2.432 22.40 10.13 0.69 4.83 6.50 4.83 6. 103 8 1.1667 4.58 8.58 2.22 3.14 2.77 8.13 948 0.1 0.078, 0.078 38.40 1.41, 1.41 9.20 9.20 203 R _ -12.12 -2.91 9. 104 8 1.1667 4 8.58 2.22 3.14 2.77 8.13 948 0.234 0.117 1.632 33.54 2.34 8.40 9.18 8.14 9.18 8. 107 8 1.1667 4.58 13.08 2.28 3.14 2.77 8.19 626 0.1 0.192 0.078 25.36 1.93 1.41 5.93 6.01 201L 201R 6.71 6.71 12.65 12. 108 8 1.1667 8.5 13.08 2.28 3.14 2.77 8.19 626 0.1 0.078 0.384 47.06 4.28 6.88 5.56 5.37 202L 202R 6.77 7.24 12.33 12. 110 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.384 0.078 18.07 0.56 0.18 23,00 23.30 203L 12.13 35.13 23. III 8 1.1667 2 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.078 0.208, 28.91 0.36 0.62 18.87 18.76 203R -12.12 6.75 18. 112 8 1.1667 1.25 4.5 2.22 3.14 2.77 8.13 1807 0.1 0.208 1.424 18.07 0.34 1.86 23.17 21.99 23.17 21. 201 9 1.1667 6.79 9.79 3.14 2.77 5.91 .604 0.172 0.848 0.156 39.13 9.72 5.02 4.90 5.32 301L 301R 1.45 1.40 6.35 6. 202 9 1.1667 3 9.79 3.14 2.77 5.91 604 0.172 0.848 0.156 17.29 3.32, 1.24 5.10 5.51 3021 302r 1.67 1.72 6.77 7. 203 9 1.1667 5 5 3.14 2.77 5.91 1182 0.172 0.848 0.385 56.42 6.39 4.08 10.52 10.80 303L 303R _ 1,61 1.32 12.13 12. 301, 8, 6.88 10,09 2.77 2.77 275 0.252 0.384 0.468 15.11 8.61_ 9.18 1.45 1.40 1.45 1. 302 8 3.21 10.09 2.77 2.77 275 0.252 0.468 0.384 7.05 2.80 2.53 1.67 1.72 1.67 1. 303 8 5 10 2.77 2.77 277 0.252 0.384 0.858 11.08 5.07 7.44 1.61 1.32 1.61 1. 304 8 2.5 10 2.77 2.77 277 0.112 0.192 5.54 0.83 0.35 2.02 2.13 2.02 2. 305 8 2.5 10 2.77 2.77 277 0.112 0.384 5.54 0.35 1.31 2.13 1.90 2.13 1. Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height 1 ..o.... all Length=Sum of Shear Panels Lengths in Shear Line 1 V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) Transverse Seismic Uplift Design Unit B Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ping Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Fir. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k • k k k k 101 8 1.1667 5.25 5.25 0.148 0.795 1.257 2.2 419 0.1 0.8 0.208 19.99 5.58 2.47 3.15 3.74 3.15 3.7 102 8 1.1667 3.88 3.88 0.331 0.331 85 0.092 2.432 0 2,65 10.13 0.69 -1.91 0.60 -1.91 0.6 103 8 1.1667 4.58 8.58 0.231 0.8 1.277 2.308 269 0.1 0.078 0.078 11.15 1.41 1.41 2.42 2.42 203 R -2.99 -0.56 2.4 104 8 1.1667 4.00 8.58 0.231 0.8 1.277 2.308 269 0.234 0.117 1.632 9.74 2.34 8.40 2.18 0.62 2.18 0.6 107 8 1.1667 4.58 13.08 0.148 0.795 1.257 2.2 168 0.1 0.192 0.078 7.00 1.93 1.41 1.29 1.41 201L 201 (part) 1.17 0.34 2.46 1.7 108 8 1.1667 8.50 13.08 0.148 0.795 1.257 2.2 168 0.1 0.078 0.384 12.99 4.28 6.88 1.14 0.85 202L 202R 0.33 1.35 1.47 2.2 110 8 1.1667 1.25 4.50 0.231 0.8_ 1.277 2.308 513 0.1 0.384 0.078 5.80 0.56 0.18 6.88 7.32 203L 3.00 9.87 7.3 111 8 1.1667 2.00 4.50 0.231 0.8 1.277 2.308 513 0.1 0.078 0.208 9.28 0.36 0.62 5.89 5.74 203R,304L -2.99 2.91 5.7 112 8 1.1667 1.25 4.50 0.231 0.8 1.277 2.308 513 0.1 0.208 1.424 5.80 0.34 1.86 7.13 5.36 7.13 5.3 201 9 1.1667 6.79 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 13.83 9.72 5.02 0.75 1.37 301L 301R -0.13 -0.20 0.62, 1.1 202 9 1.1667 3.00 9.79 0.795 1.257 2.052 210 0.172 0.848 0.156 6.11 3.32 1.24 1.04 1.66 3021 302r 0.11 -0.32 1.15 1.3 203 9 1.1667 5.00 5.00 0.8 1.297 2.077 415 0.172 0.848 0.385 20.18 6.39 4.08 2.89 3.30 303L 303R 0.11 -0.32 3.00 2.9 301 8 6.88 10.09 1.257 1.257 125 0.252 0.384 0.468 6.86 8.61 9.18 -0.13 -0.20 -0.13 -0.2 302 8 3.21 10.09 1.257 1.257 125 0.252 0.468 0.384 3.20 2.80 2.53 0.21 0.29 0.21 0.2 303 8 5.00 10.00 1.277 1.277 128 0.252 0.384 0.858 5.11 5.07 7.44 0.11 -0.32 0.11 -0.3 304 8 2.50 10.00 1.277 1.277 128 0.112 0.192 0 2.55 0.83 0.35 0.72 0.90 0.72 0.9 305 8 2.50 10.00 1.277 1.277 128 0.112 0 0.384 2.55 0.35 1.31 0.90 0.55 0.90 0._` Spreadsheet Column Definitions&Formulas L=Shear Panel Length ..�°" H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT b Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 101 Wind 14.54 Holdown HD12 w DF 15.51 Wind 14.93 HD12 w DF 15.51 102 Wind 4.83 Holdown HDQ8 w 3HF 6.65 Wind 6.50 HDQ8 w 3HF 6.65 103 Seismic -0.56 Holdown HDQ8 w DF 9.23 Wind 9.20 HDQ8 w DF 9.23 104 Wind 9.18 Holdown HDQ8 w DF 9.23 Wind 8.14 HDQ8 w DF 9.23 107 Wind 12.65 Holdown HD12 w DF 15.51 Wind 12.72 HD12 w DF 15.51 108 Wind 12.33 Holdown HDU14 14.93 Wind 12.60 HDU14 14.93 110 Wind 35.13 Holdown None 0.00 Wind 23.30 None 0.00 111 Wind 6.75 Holdown None 0.00 Wind 18.76 None 0.00 112 Wind 23.17 Holdown None 0.00 Wind 21.99 None 0.00 201 Wind 6.35 Strap MST60x2 8.11 Wind 6.71 MST60x2 8.11 202 Wind 6.77 Strap MST60x2 8.11 Wind 7.24 MST60x2 8.11 203 Wind 12.13 Strap CMST12x2 18.43 Wind 12.12 CMST12x2 18.43 301 Wind 1.45 Strap MST48 2.88 Wind 1.40 MST48 2.88 302 Wind 1.67 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.61 Strap MST48 2.88 Wind 1.32 MST48 2.88 304 Wind 2.02 Strap MST48 2.88 Wind 2.13 MST48 2.88 305 Wind 2.13 Strap MST48 2.88 Wind 1.90 MST48 2.88 • a • a a a c-tf-e- - 1- y ,,,_„ .,,, , _ G t -, 1 1 '.. ,0 1s- .0 °oma - .k _ v,U,,m 1e€,0 ayn L� Ter-'9 cfai 01, .......--- A451(1 S } 1) 1'''A-314•5 4.) k J-00.4s mon \i-Nom k 'mSS = t\\ -\ -i-'-± 9 zxx CD0A A°Crt.k \ > - __5'1 0t\ 0 , c(--%!'e *[h IS S. 0 014N k_x SA rr'S zt\ 4-601'0 -# hc30(31 1L.'4 #0S.A.S t xtZ..rr=SS til • cg\ 'Q 4g7tr5 54.'0 # 09(3k xSlrACS Okt ``t )..A = }-a -+J,111 j,,,u;s--t-;\ ti'-K\ .J VS i\ck' C)\;s,1 36 ki. "1.'t b N\ SSS -L )' 5-4\J- -iC kS - 21 'X Silk*S = Yak 01 = o °z n '"'t, sd 1 t t � \`0 ' -.k9h,Q•0 x2 ,1) m --1S ca,-A . "e = G,,z cr c 2,0'0")c bl) 733 -va -' `l, C " ,.: -ii,vt.tQ'O) ZI )4 111r.r O'O,3(,:k.q.)4 �Z-10{)t s{Q•0)c 'bIrf : Z\\ \\ n c) 0 z -As cd,,, \c Z;1'� 0 4 _.57O'O` S'b ) -4 7S'a SZO'0-0'b\) D 0 kl11\ks(0.0 (ele) } \ tor) $\o`0)cs'b9 -4t�S'o)cZ.t00)L-42I) -tQ s'0) 1O'0)0'b') a m ' \\i '11+dt \ m o carA-,4'S. = 1'040, 0 o (—lS '-A hct,'\ = tzi2xLs70•0 (,_S'b1))-s C(s-zryo)cs-5t)) ,s.2.•1) r zd <1.8t1-1, 0-x'1 \.Iq z:\o'O)c :4-. <s0'°)<S'b\)1 4*(3.:C•O; 2)4cSk0'0 5,br) 52'1) LI 3 011 '\t 'M. l \C)<\01 m m ° Z -n L 47:;''' '''“'-4 A.A.\i N O — ' 1 ---ZPt=t 5 " C) ( O ir'ze l l 11.- \Q :31 103 road 10 ON eOr l \ i \ 1 7 31VO -)-\N\I .A. v t -1 7,,\\ kl Cikk NIB \l/ (°I.7_c t30 0 0 o ° \01_ • 1 I l— ! ddp 102 I T 0 CD g 0,ti J 0, 0 AMP 1111!1 .-® 1 _IIIIMEMEN. — (3 si j -714 1 1 . • f . _ , , i, r ..,.) co , 1 f 1 ,f i l n2 . ( Bo \ �- 3 j i ti tp^ M O . :'dZ 1. . . , f . i , in 11I - c71 . II U II I " II i II _ I 4 f 4 , l O�\ 1 AMIE 0 3u1 , g-' CL:1- 17 DATE _ ,.-1 JOBNo c PROJECT: ' 9,00'F Go--ii—6'1,21' RE Des'c\c--, 4 n , I 0,:_, .r-c,„ C=‘•-- f:-.:-;',0 I a, ,..) Op71)/Q a.. _i CD 11_ 111**-.1111111114 0 121 ,1117,INItifil 0 2 [P.ki6 IJUIDT60,--) 111.'.....10:111 R . \ '''' -jrlick‘ Ir.' Li — "Malr 7 ? P' A----"i- 151- 2 _ - 0 _1 Mc 5711‘11-'aitt'C--V. ---: CC U 0 ii—Af---1— U Iv LI O i I)C.--:5"; -,1-.•,;_) _,J ':,-...-; PleCe-- ct o_ z o c=-.F. _ 0 . ,.. Z Li i-'--- ,:-:' : ' - 2 ] 2 ! i 0 r , ,„,.. , U IN ---*; 1 i ___ ? 17:Iti(AC\: - 2,-Lz.- -4 ?1. # 2 0 . ix 0 LL. Z — z _ — - 0 co — —-- -7:;.,-- i ni-- ; ----, ><--I -....; 6 q ; ,...____J- .4 1--- 2_-"-'1.h)11 . . , _, ..__ .......... ...., .,_, _ -.,... i- t) -- - ..:_ ..) ‘ .\i BY : . . L it\ DATE Is' JOB NO c , K j - 0 Ct(") PROJECT: RE 2:...._._,.............,...... .,,.. ___ __ r". • ' ' '''' LI • ‘,..,,-''' j '''''''-- JO I . , i \ .,:. :...1,3.0 _I 0 - 00,-\\.00',. 1 -'• i, .- O w H Ui O 2 ••-- ;\41,,c,,,,i ,0,,,, _,,-.. 1 -„,...:,„,c,„‘ „,c1,;iri, r 1, :--- o J CE < 0 O III w 0 1 , ;Re,‘3-.. )•,1-,'" Dc= 1,---,. ,:,.r.' -c '--- ,... 1 , ',..,- - —-,--- ‘-- r'c-N --- z 0 2 u = -, . -N i''' — r'e4 i't •.• r- 11 ; -. _ '? -05 1 "--- ___1...• . , , cc 0 s i lc...7,',/ --- C-1,' ..r° ,r- I •' Li- Z — Z -- - 1 H 6-_ ''""7=,I. — ' _ 11. Ir. ,,,,,,,(...- •-' '''' ' ''', ,-,..,',-,,," ,,,, r.,=,. .,.., : 'C , ,L'. , 1 i - 1 1., 1 , 4._ . , - 1 \ — ..•./ C.) (..) •- - 0, - - ' 7.--)-",% ,‘ .,) t.„") T --, ,..1.- ., -,--- '_.,,, ',N-.; -- - _ _,_ „ •=.•- _ / , ,..-- - , ,,- ,,,„ ,-;,.., --,' - -_ 4„ __,, t..' - - • ,=,,,- !-, -1.„ .,-.. ,„, , „,,,,,„, ,,,, 4 , .... = , „ r v 1-,, -, ,,,) I:-.) ; . N t 1,,,- ,...,..i. _r ,;,- 1 .--5 ) ...._ I --i-1,..,1 ; ;•-'; ' _ .... = \t .I:-.1 f N.,' ' , 0 ,t --7_,, v ,.0 _ -) ) , tt '''''' n_.0-::,...1 1.7%5„.t...• ,,,,.v i ..‘ st ., i,-...` •_.,1` 1 r 7.-- a34-(..., — e ,..... pi , ..."1 ., ,,, s -t--,i, ... c) 1 el en WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit Et-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:52:00 COMPANY I PROJECT • RESULTS by GROUP -NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Trusses Not designed by request (2) 208 Lumber n-ply D.Fir-L No.2 1- 2x8 By Others Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 204 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 Typ Wall 2x4 Lumber Stud Hem-Fir Stud 2x4 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR 2a MnfJet Not designed by request landing Lumber-soft D.Fir-L No.2 2x6 @16.0 4x6 Lumber-soft D.Fir-L No.2 4x6 (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 2x8 1.75x14 LSL LSL 1.55E 2325Fb 1.75x14 By Others Not designed by request By Others 2 Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 204 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 Typ Wall 204 Lumber Stud Hem-Fir Stud 204 @16.0 • SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses Not designed by request deck joists Lumber-soft D.Fir-L No.2 2x8 @16.0 Mnf Jst Not designed by request 3.125014 LSL LSL 1.55E 2325Fb 3.5x14 408 Lumber-soft D.Fir-L No.2 408 3.125x10.5 Glulam-Unbalan. West Species 24F-V4 DF 3.125x10.5 5.125x16.5 GL Glulam-Balanced West Species 20F-V7 DF 5.125x16.5 (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 4x12 Lumber-soft D.Fir-L No.2 4x12 3.125x141) LSL 1.55E 2325Fb 3.5x14 (2) 206 Lumber n-ply Hem-Fir No.2 3- 206 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 2x6 6x6 Timber-soft Hem-Fir No.2 606 (2) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA --Groups Member Criterion Analysis/Design Values deck joists j42 Bending 0.41 Mnf Jst Mnf Jst Not designed by request landing j46 Bending 0.17 By Others 3 By Others Not designed by request 4x6 b25 Bending 0.87 (2) 2x8 b7 Bending 0.21 1.75014 LSL b14 Bending 0.57 3.125x14 LSL 621 Shear 0.41 4x8 b20 Bending 0.04 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125x10.5 b24 Deflection 0.83 5.125x16.5 GL 626 Bending 0.21 (2) 2x10 615 Bending 0.93 4x12 b22 Shear 0.16 3.1250141) b23 Deflection 0.09 Ftg Ftg Not designed by request (2) 2x6 c2 Axial 0.34 (3) 2x6 c64 Axial 0.59 6x6 c36 Axial 0.77 (2) 2x4 c25 Axial 0.35 (3) 204 c44 Axial 0.84 Typ Wall w15 Axial 0.20 Fnd Fnd Not designed by request Typ Wall 204 w40 Axial 0.33 - ---- DESIGN NOTES: s 1. e Please verify that the default deflection limits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as w load with corresponding duration factor. Add an empty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLULAM: bxd-actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. a R. BUILT-UP BEAMS: it issumed that each ply is a single continuous member (that is, o buttjoints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 10. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 28,2010 10:56:39 Concept b24Dde: Beam View Floor 2 : 8 ' . RI 735:; i 4d'- - 0 #4 b25 4, r s -o „w .4 5 _ -. - r ., r 4, b21 . _ b6 b26 b20iGb22 b23 e s i 2. _ .. is 1 2..., G 2-222,`,_3 ... ....� .. v ... WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:32 Concept b24Dde : Beam View Floor 2 : 8 ' 21:- bl s • -t- b21 b26 b20 b22 b23 -% 2- - •- 4' WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:34 Co;c60ept Mode : Ccc59imn View Floor 2 : 8 ' -/L'-, c57 c1 c2 c46 c58 -1. c47 c48 : L r, c,, c55 11 a c49 c50 _ c54 'c68 _ _.. c53 c52 c51 --.. c7 c56 f- c40 c64 c36 II c39 ir reg O 1_,i--3.C C':DE'2..-.)--__'E,,,,t:DE-I:E E.E EE E-EEE EE EEF4 `g /'1 1 w'...\ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:29 Concept Mode : Beam View Floor 3 : 17 ' b7 v� b12 (� b8 b25014 bs b11 aw lama I b10 b9 1111111122111=11112 _ U F ( 1� 1 F �: �-�- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:27 Concept Mode : Column View Floor 3 : 17 ' c14 c15 =BEMs sawFxreassmossi-nass c38 C c25 c16 7 '- c61 c17 ,c43 c23 �7 c22 c24 c26 t, c45 c44 c21 c20319 c8 _ s WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:23 Concept Mode : Beam View Roof: 25 ' b15 - F W„� b16 vt b27 b18 e) warmIIMommokikiiiimg (7 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 28,2010 10:04:25 Concept Mode: Column View Roof: 25 ' u c27 c28 --,== 28 , r "A s, 4 c29 „ c30 !c66 xc65 • - c34 c35 W, COMPANY PROJECT Ili WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:34 b1 Design Check Calculation Sheet • Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1_w27 Dead Partial UD 539.7 539.7 0.00 2.50 plf 2 w27 Rf.Live Partial UD 493.7 493.7 0.00 2.50 plf 3 c14 Dead Point 1074 2.50 lbs 4_c14 Rf.Live Point 1601 2.50 lbs 5_j43 Dead Full UDL 47.7 plf 6 j43 Live Full UDL 160.0 plf MAXIMUM R: o 11:1 ' ; �,��� 1 � �'� w•mar � "fir �`�, � � ��"�'g�� �- � �� 1 m :41 =: .,'¢ ,•' - +"s�; ,,,-.'.'. 0E:20 I 0' 31 Dead 1048 1539 Live 1227 2089 Total 2275 3627 Bearing: Load Comb #2 #2 Length 1.21 1.93 Lumber n-ply, D.Fir-L, No.2, 2x10",2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 127 Fv' = 207 fv*/Fv' = 0.62 Bending(+) fb = 581 Fb' = 1138 fb/Fb' = 0.51 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.06 Total Defl'n 0.01 = <L/999 0.15 = L/240 0.09 *The effect of point loads within a distance d of the support has been included as per EDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 3627, V design* = 2356 lbs Bending(+): LC #2 = D+L, M = 2073 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. n i' COMPANY PROJECT fit WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:45 b7 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 13.0 plf Load2 Live Full UDL 40.0 plf MAXIMUM REACTIONS lbs and BEARING LENGTHS in g A74:‘;4 .':444;*. k � .4[sT ,r.,,. "` may; e^„� �r ♦ 64 I 0' 54 Dead 54 120 Live 120 174 Total 174 Bearing: #2 Load Comb #2 .0.5#2 Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2,2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 180 fv/Fv' = 0.05 Bending(+) fb = 120 Fb' = 1080 fb/Fb' = 0.11 Live Defl'n 0.01 = <L/999 0.20 = L/360 0.04 Total Defl'n 0.01 = <L/999 0.30 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - EE' 1.6 million 1.00 1.00 - - - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 174, V design = 139 lbs Bending(+) : LC #2 = D+L, M = 262 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT fit WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:33 b8 Design Check Calculation Sheet Sizer 7.1 LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c30 Dead Point 59 3.50 lbs 2 c30 Snow Point 75 3.50 lbs 3 w47 Dead Partial UD 96.0 96.0 0.00 3.50 plf 4_jl3 Dead Partial UD 78.0 78.0 0.00 5.50 plf 5_j13 Live Partial UD 240.0 240.0 0.00 5.50 plf 6_j14 Dead Partial UD 104.0 104.0 5.50 6.00 plf 7_j14 Live Partial UD 320.0 320.0 5.50 6.00 plf 8 bl2 Dead Point 171 5.50 lbs 9 b12 Live Point 469 5.50 lbs MAXIMUM REACTIONS lbs and BEARING LENGTHS in : '. ?� r s 1a. v s 1 .,,e ,..110,-,;:,:=,- x rf;;:;.,:'X 4' � . -a v 'arms r T� rAi +g' r ! i S iMac �i AHI"?t . C A I0' s1 Dead 531 556 Live 761 1189 Total 1292 1744 Bearing: Load Comb #2 #2 Length 0.69 0.93 Lumber n-ply, D.Fir-L, No.2, 2x10",2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 67 Fv' = 180 fv*/Fv' = 0.37 Bending(+) fb = 556 Fb' = 990 fb/Fb' = 0.56 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.13 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.16 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1744, V design* = 1232 lbs Bending(+): LC #2 = D+L, M = 1984 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC - DESIGN NOTES: • 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not - exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. 2 7- I ( COMPANY PROJECT 1 WoodWorksSO ARE FOR WOODDESIGN June 28,2010 10:33 b9 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft] Units Start End Start End 1 w51 Dead Partial UD 96.0 96.0 2.00 3.00 plf 2_c32 Dead Point 59 2.00 lbs 3 c32 Rf.Live El- ' nt 75 2.00 lbs Load4 Dead l UDL 13.0 plf Loads Live l UDL 40.0 plf MAXIMUM REPf'TrnwM* na..' .....+ [MAO �wrl� i CwIt'TUC /:..► r �' 1 --0,--,,;; nye Vs'�, - s.+s ' > a `� g letz,r i . b` a,-„ .r'-, .,., ., . ., a mi., ` 4 e. V-.- 6., % 34 10' 146 Dead 63 110 Live 85 256 Total 148 Bearing: #2 Load Comb #2 0.50* Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.Fir-L, No.2,2x8", 2-Plys Self-weight of 5.17 plf included int loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Fv' = 207 Criterion Analysis Value Design Value Analysis/Design Shear fv = 12 fv/Fv' = 0.06 Bending(+) fb = 82 Fb' = 1242 fb/Fb' = 0.07 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 -, 1.00 1.00 - - - 1.00 1.00 E' 1.6 millon 1.00 1.00 - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 256, V design = 169 lbs Bending(+) : LC #2 = D+L, M = 179 lbs ft ^ Deflection: LC #2 = D+L EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top loaded.Where beams are side-loaded,s:2cial fastening details may be required. r . r. COMPANY PROJECT 1 WoodWorks. SOFTWARE FOR WOOD D£SICN June 28,2010 10:33 b10 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) • Load Type Distribution Magnitude Location [ft] Units Start End Start End l c33 Dead Point 59 1.00 lbs 2_c33 Snow Point 75 1.00 lbs 3_w52 Dead Partial UD 96.0 96.0 0.00 1.00 plf Load4 Dead Full UDL 13.0 plf Loads Live Full UDL 40.0 pit MAXIMUM REP 'T1t is /11....1........1 DCADIMr• i rMr+ruc is„i . "LL ;r > 1' -• r.,- F.4 ''Ars'Mt c v�r -'' ;, - •€=,,..t- � �� x. �� �' sem 3 Dead 146 63 Live 82 64 Total 229 127 #3 Bearing: Load Comb #3 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber n-ply, D.F1ir-L, No.2e, 2x8", 2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 10 Fv' = 207 fv/Fv' = 0.05 Bending(+) fb = 72 Fb' = 1242 fb/Fb' = 0.06 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: Cfrt Ci Cn LC# FACTORS: F/E CD CM Ct CL CF Cfu Cr Fv' 180 1.15 1.00 1.00 1.00 1.00 1.00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 3 Fcp' 625 - 1.00 1.00 - - 1.00 1.00 - E' 1.6 million 1.00 1.00 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 1.00 1.00 3 Shear : LC #3 = D+.75(L+5), V = 229, V design = 148 lbs Bending(+) : LC #3 = D+.75(L+S), M = 157 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 76e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3. BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is, no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT i Woodworks® SOFFW REFOA WOOD DESIGN . June 28,2010 10:36 b14 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start -End 1 j33 Dead Partial UD 78.0 78.0 0.00 1.50 plf 2 j33 Live Partial UD 240.0 240.0 0.00 1.50 plf 3_j13 Dead Partial UD 78.0 78.0 3.00 8.50 plf 4_j13 Live Partial UD 240.0 240.0 3.00 8.50 plf 5_j34 Dead Partial UD 78.0 78.0 1.50 3.00 plf 6_j34 Live Partial UD 240.0 240.0 1.50 3.00 plf 7_j46 Dead Partial UD 28.9 28.9 5.00 8.50 plf 8_346 Live Partial UD 80.0 80.0 5.00 00 8.50 pit 9_b25 Dead Point 409 bs 10 b25 Live Point 1080 5.00 lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) " .m' z,•,--7.--,,t_.----.;-4%. z. ,,, -3 " ' ,,..teax „�-nt,� �;*� ",r .moi '�- L:#- �, , z. . �.. - u-s: `i s - _-.tz,.t - .- i- may,= . - - of "°. ° -�...: �w.,�. -...�. `. '�... .a tea...,. =.',...7. 7.°x ►- 1A A A 8'-6'1 l�� 685 Dead 553 1685 Live 1522 25637 Total 2076 Bearing: #2 Load Comb #2 1.82 Length 1.48 LSL, 1.55E, 2325Fb, 1-314x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 126 Fv' = 310 fv/Fv' = 0.41 Bending(+) fb = 1324 Fb' = 2325 fb/Fb' 0.31 0.57 Live Defl'n 0.09 = <L/999 0.28 = L/360 Total Defl'n 0.14 = L/750 0.42 = L/240 0.32 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# - 1.00 2 Fv' 310 1.00 - 1.00 - - - 1.00 - - 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 Fcp' 800 - - 1.00 - _ 1.00 - - 2 E' 1.5 million - 1.00 - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - Shear : LC #2 = D+L, V = 2563, V design = 2064 lbs . Bending(+) : LC #2 = D+L, M = 6308 lbs-ft Deflection: LC #2 = D+L EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. . /.. \ L COMPANY PROJECT i WoodWorks' SOFTWARE FOR WOOD DESIGN June 28,2010 10:48 b15 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units 1_j5 Dead Full UDL 335.7 End Start End plf 2 j5 Rf.Live Full UDL 493.7 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : : tt "ts* u � � 61 Dead 1027 Live 1481 1027 Total 2508 1481 Bearing: 2508 Load Comb #2 Length 1.34 #2 1.34 Lumber n-ply, D.Fir-L, No.2,2x10", 2-Plys Self-weight of 6.59 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 101 Fv' = 207 fv/Fv' = 0.49 Bending(+) fb = 1055 Fb' = 1138 fb/Fb' = 0.93 Live Defl'n 0.05 = <L/999 0.20 = L/360 0.23 Total Defl'n 0.09 = L/776 0.30 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 ' - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 2508, V design = 1864 lbs Bending(+) : LC #2 = D+L, M = 3762 lbs-ft Deflection: LC #2 = D+L EI= 158e06 lb-in2/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. COMPANY PROJECT i WoodWorks® SOFlWARE FOR WOOD DESIGY June 28,2010 10:46 b20 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 j47 Dead Partial UD 42.5 42.5 0.00 2.50 plf 2 j47 Live Partial UD 62.5 62.5 0.00 2.50 plf MAXIMUM REP^T'^"'c n--.l '' D Aou.Ir I ewIrTUO r -.- y„ ; v v`.�w :--1:. . e""y -.,'"-..,:111,:i,,%:-`0x g£ ;;:: was . #� - s �`" w _ a `',ice e : Al' 34 10' 53 Dead 71 53 Live 91 165 Total 162 Bearing: #2 Load Comb #2 0.5#2 Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 6 Fv' = 180 fv/Fv' 0.03 Bending(+) fb = 46 Fb' = 1170 fb/Fb' = 0.04 0.01 Total Defl'n 0.00 LiveDefl'n 0.00 _ <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Crfrt0 1Ci0 1Co0 LC# Fv' 180 1.00 1.00 1.00 - - Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - 1.00 1.00 - - - - 1.00 1.00 - 2 E' 1.6 million 1.00 1.00 - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - Shear : LC #2 = D+L, V = 162, V design = 99 lbs Bending(+) : LC #2 = D+L, M = 118 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT g WoodWorks • 6081 WARP FOR WOOD 0E6103 June 28,201010:34 b21 Design Check Calculation Sheet _ Sizer 7.1 LOADS (lbs.psf,or pif) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern 1 w63 Dead Partial UD 308.0 308.0 6.00 10.00 No 2_1463 Live Partial UD 320.0 320.0 6.00 10.00 No 3 w62 Dead Partial UD 308.0 308.0 2.00 6.00 No 4 w62 Live Partial UD 320.0 320.0 2.00 6.00 No 5'w32 Dead Partial UD 369.0 369.0 0.00 2.00 No 6 w32 Snow Partial UD 357.5 357.5 0.00 2.00 No 7-c44 Dead Point 1940 1.50 No 8 c44 Snow Point 2853 1.50 No 9 j20 Dead Partial UD 104.0 104.0 6.50 10.00 No 10 j20 Live Partial UD 320.0 320.0 6.50 10.00 No 11-j21 Dead Partial UD 104.0 104.0 6.00 6.50 No 12 j21 Live Partial UD 320.0 320.0 6.00 6.50 No 13 j22 Dead Partial UD 104.0 104.0 2.00 2.50 No 14 j22 Live Partial UD 320.0 320.0 2.00 2.50 No 15 j23 Dead Partial UD 104.0 104.0 2.50 6.00 No 16 j23 Live Partial UD 320.0 320.0 2.50 6.00 No 17-j48 Dead Partial UD 71.5 71.5 0.00 1.50 No 18 j48 Live Partial UD 220.0 220.0 0.00 1.50 No 19-b23 Dead Point 658 0.00 No 20 b23 Snow Point 195 0.00 No MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): .."'-'":"'"2", ',"E ,,;-,- � ., � - ;;::. `z. -, ,, ,,, % -''may. liali,. .�. - . - - s.,,,E.a•-=,. .:-. .''',Z''''3`�'.; ., �" '"". '.r ter.: Sim 0101 0 2 10i Dead 5266 5581 Live 1311 Total Bearing: 10847 2508 3819 ` Load Comb #0 #3 #2 Length 0.00 3.50 1.23 Cb 0.00 1.11 1.00 LSL, 1.55E,2325Fb,3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv* = 139 Fv' = 356 £v./Fv' = 0.39 Sending(+) fb = 717 Fb' = 2325 fb/Fb' = 0.31 Bending(-) fb = 600 Fb' = 2632 fb/Fb' = 0.23 Deflection: Interior Live 0.05 = <L/999 0.27 = L/360 0.17 Total 0.07 = <L/99# 0.40 = L/240 0.17 Cantil. Live -0.03 = L/698 0.13 = L/180 0.26 Total -0.03 = L/788 0.20 = L/120 0.15 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Pb'- 2325 1.15 - 1.00 0.984 1.00 - 1.00 1.00 - - 4 FCp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 Shear LC #4 = D+S, V = 7237, V design* = 4536 lbs Bending(+): LC #2 = D+L, M = 6833 lbs-ft Bending(-): LC #4 = D+S, M = 5720 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live 5=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) • Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 4.The critical deflection value has been determined using maximum back-span deflection.Cantilever deflections do not govern design. r) /' ■ f1, COMPANY PROJECT 1 WoodVVorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:35 b22 Design Check Calculation Sheet Sizer 7.1 - LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location (ftl Units Start End Start End l w69 Dead Partial UD 369.0 369.0 1.00 2.50 plf 2 w69 Snow Partial UD 357.5 357.5 1.00 2.50 plf 3 j48 Dead Partial UD 71.5 71.5 1.00 2.50 plf 4 j48 f. Live Partial UD 220.0 220.0 1.00 2.50 plf 5 j47 Dead Full UDL 42.5 plf 5 j47 Live Full UDL 62.5 lbs 7 b23 Dead Point 700 1.00 8 b23 Snow Point 195 1.00 lbs MAXIMUM REf 1 � 4411 ,.. ` * 'tet 1,sf !.. : �.. .t e;a� e.-,+xs + , rte.: fi r`-i ,- r ,.. ' of l` a d* �� a i ��� k ; a . Ak r u... --`,1,,,,,,,, �S � � ;a,.�. Y -'` , ... dmss _ ys e€ as " .^ 2-611 1 0' 807 572 Dead 683 Live 341 1379 Total 1024 Bearing: #3 Load Comb #3 0.63 Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft,D.Fir-L, No.2,4x12" Self-weight of 9.35 pi included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design 0.14 Shear fv = 30 Dei„..? = 207 fv/Fv' = 0.14 Bending(+) fb = 159 Fb' = 1138 fb/Fb' = 0.01 Live Defl'n 0.00 = <L/999 0.08 = L/360 0.02 Total Defl'n 0.00 = <L/999 0.13 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 1.00 1.00 1_00 3 Fb'+ 900 1.15 1.00 1.00 1.000 1.100 1.00 1.00 1.00 1.00 3 Fcp' 625 - 1.00 1.00 - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 3 Shear : LC #3 = D+.75(L+S), A1,74 = 1024, V design = 778 lbs Bending(+): LC #3 = D+.75(L+S), = 978 lbs-ft Deflection: LC #3 = D+.75(L+S) ET- Deflection: lb int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT fit WoodWorks® • SOFTWARE FOR WOOD DFS/GN June 28,2010 10:35 b23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w33 Dead Partial UD 204.0 204.0 0.00 1.50 plf 2_c18 Dead Point 143 1.50 lbs 3_c18 Rf.Live Point 110 1.50 lbs 4_c19 Dead Point 59 4.50 lbs 5_c19 Rf.Live Point 85 4.50 lbs 6_w34 Dead Partial UD 108.0 108.0 4.50 6.50 plf 7_c20 Dead Point 59 6.50 lbs 8 c20 Rf.Live Point 85 6.50 lbs 9-c21 Dead Point 143 9.50 lbs 10 c21 Rf.Live Point 110 9.50 lbs 11 w35 Dead Partial UD 204.0 204.0 9.50 11.00 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : A A 101 i i Dead 700 700 Live 195 195 Total 895 895 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports LSL, 1.55E, 2325Fb, 3-1/2x14" Self-weight of 15.31 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 20 Fv' = 356 fv/Fv' = 0.05 Bending(+) fb = 213 Fb' = 2674 fb/Fb' = 0.08 Live Defl'n 0.01 = <L/999 0.37 = L/360 0.03 Total Defl'n 0.05 = <L/999 0.55 = L/240 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - - 2 - Shear : LC #2 = D+L, V = 895, V design = 639 lbs Bending(+) : LC #2 = D+L, M = 2028 lbs-ft Deflection: LC #2 = D+L EI= 1241e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. • (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. .- - - COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN • June 28,2010 10:47 b24 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 2_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j43 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4 j43 Live Partial UD 160.0 160.0 4.50 7.50 plf 5 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 6 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 7 j45 Dead Partial UD 47.7 47.7 13.00 16.00 plf 8 j45 Live Partial UD 160.0 160.0 13.00 16.00 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : k*.: w� . Z 11;. ,,;�_ �., .,,..�.&.3.. 5.. v, :.,t , . -� m: �.�, ; , 4-i'Mam� .am... _ ro. 10, 164 442 Dead 442 1280 Live 1280 1722 Total 1722 Bearing: #2 0.85 Load Comb #2 Length 0.85 - Glulam-Unbal.,West Species, 24F-V4 DF,3-118x10-112" Self-weight of 7.55 plf included in loads; - Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 265 fv/Fv' = 0.26 Bending(+) fb = 1440 Fb' = 2400 fb/Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 1722, V design = 1534 lbs Bending(+) : LC #2 = D+L, M = 6890 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM: bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). 0 f_in siel COMPANY PROJECT r 1 VVoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:33 b25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM REACTIONS 11130 and BFARINGIFNGTHS lint �, fit? � ..�rte=`+ s s e 1 0' 41 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 180 fv/Fv' = 0.50 Bending(+) fb = 1013 Fb' = 1170 fb/Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1489, V design = 1148 lbs Bending(+) : LC #2 = D+L, M = 1489 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: - 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. T rt COMPANY PROJECT lit WoodWorks® SOFt WARE FOR WOOD Of87GN June 28,2010 10:57 b25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Rf.Live Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Rf.Live Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 6 c14 Rf.Live Point 1601 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Rf.Live Point 1601 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Rf.Live Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w74 Rf.Live Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 141w75 Rf.Live Partial UD 493.7 493.7 4.50 5.50 plf 15 342 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16-j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 pif 18-j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19 j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20 j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 231j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 346 Live Partial UD 160.0 160.0 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 347 Live Partial UD 160.0 160.0 14.50 16.00 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in): .,& m - CIA 161 I o' 4101 Dead 4328 5376 Live 5296 5376 Total 9624 Bearing: #2 Load Comb #2 2.84 Length 2.89 Glulam-Bal.,West Species,24F-V8 DF,5-118x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 157 Fv' = 305 fv/Fv' = 0.52 Bending(+) fb = 2301 Sb' = 2760 fb/Fb' = 0.83 Live Defl'n 0.36 = L/528 0.53 = L/360 0.68 Total Defl'n 0.77 = L/249 0.80 = L/240 0.96 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.002 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 9624, V design = 8063 lbs Bending(+): LC #2 = D+L, M = 36854 lbs-ft Deflection: LC #2 = D+L EI= 2594e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC - DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 49 f n e.Ni • COMPANY PROJECT II II WoodWorks° SOFIWARFFOR WOOD DESIGN June 28,2010 10:36 b26 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4_w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5_w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : v A 10• A 15'-6'4 Dead 583 Live 393 2397 2044 Total 976 Bearing: 4441 Load Comb #2 #2 Length 0.50* 1.33 *Min.bearing length for beams is 1/2"for exterior supports Glulam-Bal.,West Species, 20F-V7 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 54 Fv' = 305 fv/Fv' = 0.18 Bending(+) fb = 488 Fb' = 2297 fb/Fb' = 0.21 Live Defl'n 0.05 = <L/999 0.52 = L/360 0.09 Total Defl'n 0.14 = <L/999 0.77 = L/240 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 1.00 1.00 1.00 2 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+S, V = 4441, V design = 3070 lbs Bending(+) : LC #2 = D+S, M = 9454 lbs-ft Deflection: LC #2 = D+S EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. • 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). f. --- p1 COMPANY PROJECT I WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:50 c2 ` Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 bl Dead Axial 1539 (Ecce tricity = 0.0 in) 2—b1 Rf.Live Axial 2089 (Ecce tricity = 0.0 in) MAXIMUM REACTIONS(lbs) -q wi FY S : 4d $ 0, 8' Lumber n-ply, Hem-Fir, No.2,2x6", 2-Plys Self-weight of 3.41 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 221 Fc' = 980 fc/Fc' = 0.23 Axial Bearing fc = 221 Fc* = 1644 fc/Fc* = 0.13 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 1300 1.15 1.00 1.00 0.596 1.100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 3655 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:52 c25 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b12 Dead Axial 514 (Eccentricity = 0.00 in) 2 b12 Live Axial 1408 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4",2-Plys Self-weight of 2.17 plf included in loads; Pinned base; Loadface=depth(d); Built-up fastener:nails; Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 185 Fc' = 380 fc/Fc' = 0.49 Axial Bearing fc = 185 Fc* = 1495 fc/Fc* = 0.12 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.254 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1942 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. g . r- �- COMPANY PROJECT r 4 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:51 c36 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b21 Dead Axial 5634 (Eccentricity = 0.00 in) 2 b21 Rf.Live Axial 7021 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): • 0 8' Timber-soft, Hem-Fir, No.2, 6x6" Self-weight of 6.25 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 420 Fc' = 548 fc/Fc' = 0.77 Axial Bearing fc = 420 Fc* = 661 fc/Fc* = 0.64 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 12705 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT i 1 Woodworks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:52 c44 • Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l_c35 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c35 Rf.Live Axial 2853 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): ..», ,> a4✓,'sv�;' .�- r.: :.°, h; z•:!0' 9' Lumber n-ply, Hem-Fir, No.2,2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base; Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Repetitive factor applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 306 Fc' = 363 fc/Fc' = 0.84 Axial Bearing fc = 306 Fc* = 1719 fc/Fc* = 0.18 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.211 1.150 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 4823 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT fit WoodWorks® 5OFE4VARE EOR WOOD DESIGN r June 28,2010 10:51 c64 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c45 Dead Axial 1940 (Eccentricity = 0.00 in) 2 c45 Rf.Live Axial 2853 (Eccentricity = 0.00 in) 3_b22 Dead Axial 807 (Eccentricity = 0.00 in) 4 b22 Rf.Live Axial 763 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs) ;r ; 1, a s semaa.„m �' '` 0' Lumber n-ply, Hem-Fir, No.2,2x6", 3-Plys Self-weight of 5.11 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;wheee permitted 8.00r to online Ef t help);ex Ld: 1.00 x 8.00=8.00[ft];Repetitive factor: applied Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: ICriterion Analysis Value Design Value Analysis/Design Axial fc = 259 Fc' = 439 fc/Fc' = 0.59 Axial Bearing fc = 259 Fc* = 1644 fc/Fc* = 0.16 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt 1.00 1Ci LC# Fc' 1300 1.15 1.00 1.00 0.267 1.100 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - Axial : LC #2 = D+L, P = 6404 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. g--- 610 —I BY: DATE JOB NO. \ aoto ,,oct a „.„ PROJECT: RE: Zeaff% 1/40 LCA.k.-X-CAA Re-a-Cba% E %ewer\ a ,x)\\ L33; 17- 0 IA I- ill 0 2 2),e-corr 9,5 a . ao Lu _J 0 111 ( 6% > S k c., kalys\dirs‘ 0 U W ,0 Le' 1. 0 0 Li 0 • re 0 Z E 6 0 I I- 0- ^ C o d u • COMPANY PROJECT 111111 WoodWorks b25LC1 SOFTWARE FOR WOOD arsx,a June 28,201010:19 - Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,pat or plf) Load Type Distribution Magnitude Location Ift] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2 w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 0.00 4.50 plf 5 c14 Dead Point 1074 7.00 lbs 1601 7.00 lbs 6 c14 Snow Point lbs 7 c15 Dead Point 1074 13.00 lbs 8 c15 Snow Point 1601 13.00 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15 j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16_j42 Live Partial UD 160.0 160.0 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 18_j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_144 Live Partial UD 160.0 160.0 7.50 13.00 plf 21 j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22-j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25-347 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 j47 Live Partial UD 160.090 160.0 14.50450 16.00 plf 203A Wind Point lbs bs 203A.1 Wind Point -7960 7.00 203B.1 Wind Point 7960 13.00 lbs 203B.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) ,,,,...,,,,...7.-- -...-.-,- ," - d' +.xmsn. a,.^' .,.2... maw*- > -, .. 'a " + *!+'...;.' .*�= - yr.. w r+m�. a*-&ua� v.:.:.,.a«a .s., _ ,. v ^� 161 I 0' 4101 Dead 4328 4096 Live 7703 2458 8458 Uplift Total 12031 ' #6 Bearing: 2.46 Load Comb #4 Length 3.61 Glulam-Bal.,West Species,24F-V8 DF,5-118x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: • Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 305 fv/Fv' = 0.45 Bending(+) fb = 1986 Fb' = 2760 fb/Fb' = 0.510.72 1. Live Defl'n 0.27 = L/704 0.53 = L/360 0.85 Total Defl'n 0.68 = L/283 0.80 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1_00 6 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1_00 1.00 1.00 1.00 6 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - 3 E' 1.8 million 1.00 1.00 - - - 1 00 - - 3 Emin' 0.85 million 1.00 1.00 - - Shear : LC #6 = D+S, V = 8344, V design = 6983 lbs Bending(+): LC #6 = D+S, M = 31814 lbs-ft - Deflection: LC #3 = D+.75(L+S) EI= 2594e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live 5=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT l Woodworks® • SOFTWARE.FOR WOOD arsic' June 28,2010 10:24 b25 LC1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS I lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 51c14 Dead Point 1074 7.00 lbs 7_c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf ll w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point 7960 0.00 lbs 203A.1 Wind Point -7960 7.00 lbs 203B.1 Wind Point 7960 13.00 lbs 203B.2 Wind Point -7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : .;„1_ h�.� _.-v 10, A 161 Dead 4328 Live 3300 4101 Uplift Total 7572 2458 .. Bearing: 4101 Load Comb #2 Length 2.27 #1 1.23 Glulam-Bal.,West Species, 24F-V8 DF, 5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 978 Fb' = 2160 fb/Fb' = 0.45 Live Defl'n -0.30 = L/632 0.53 = L/360 0.57 Total Defl'n -0.03 = <L/999 0.80 = L/240 0.04 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 0.90 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 1 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+): LC #1 = D only, M = 15667 lbs-ft Deflection: LC #2 = .6D+W EI= 2594e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). n 1 COMPANY PROJECT II I WoodWorks 010:20 b25 LC2 SOFTWARE MR WO00 DESIGN June 28,201 - Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w72 Dead Partial UD 539.7 539.7 13.00 14.50 plf 2-w72 Snow Partial UD 493.7 493.7 13.00 14.50 plf 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 4 w28 Snow Partial UD 487.5 487.5 .0000 4.50 pbs lf 5 c14 Dead Point 1074 6-c14 Snow Point 1601 7.00 lbs 13.00 lbs 8 c15 Dead Point 1074 13.00 lbs 8 c15 Snow Point 1601 9-w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf 10 w73 Snow Partial UD 493.7 493.7 14.50 16.00 plf 11 w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 12 w74 Snow Partial UD 493.7 493.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 14 w75 Snow Partial UD 493.7 493.7 4.50 5.50 plf 15-j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 16-j42 Live Partial UD 160.0 160.0 0.00 4.50 plf Dead Partial UD 47.7 47.7 4.50 5.50 plf 17 j43 18_j43 Live Partial UD 160.0 160.0 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 20_j44 Live Partial UD 160.0 160.0 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 22 j45 Live Partial UD 160.0 160.0 5.50 7.50 plf 23 j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 24 j46 Live Partial UD 160.0 160.0 13.00 14.50 plf 25-j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 26 X47 Live Partial UD 160.0 160.0 14.50 4.50 16.00 pbs s lf 203A Wind Point -7960 7.00 lbs 203A.1 Wind Point 7960 13.00 lbs 203B.1 Wind Point -7960 lbs 20313.2 Wind Point 7960 16.00 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) , , . . ,� ''.--,---,:=4.41V'''''11, ,,"'m .r"ww'a .w,�,» sma.5 G.v `ri „ Ss... - t „*.i' ,:r;.'.;::'''':'.' s 0A 161 10' 4101 7101 Live 4328 Live 4016 11864 Uplift 2321 Total 8344 64 Bearing: 3.56 Load Comb #6 Length 2.50 Glulam-Bal.,West Species,24F-V8 DF,5-118x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 0.45 Bending(+) fb = 2949 Fv' = 305 fv/Fv'Pb' = 3840 fb/Pb' 0.79 Live Defl'n 0.42 = L/454 0.53 = L/360 0.87 Total Defl'n 0.69 = L/277 0.80 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Crt Cf rt Notes Coo LC# Fv' 265 1.15 1.00 1.00 - - Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00- - 1.00 1_00 - 4 Fcp' 650 - 1.00 1.00 - - - 1.00 - - 4 E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - Shear : LC #6 = D+S, V = 8344, V design = 6983 lbs Bending(+): LC #4 = D+.75(L+S+W), M = 47228 lbs-ft - Deflection: LC #4 = D+.75(L+S+W) EI= 2594e06Llb -ive noad Deflection. 2 Total Deflection = 1.00)Dead Load Deflection) (D--dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: lication. 1.Please verify that the default deflection limits are appropriate for your app 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). I • COMPANY PROJECT tit WoodWorks° SOFTWARE FOR WOOD DESIGN June 28,2010 10:23 b25 LC2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End l w72 Dead Partial UD 539.7 539.7 13.00 14.50 pif 3 w28 Dead Partial UD 535.5 535.5 0.00 4.50 plf 5_c14 Dead Point 1074 7.00 lbs 7 c15 Dead Point 1074 13.00 lbs 9 w73 Dead Partial UD 539.7 539.7 14.50 16.00 plf ll w74 Dead Partial UD 443.7 443.7 5.50 7.00 plf 13 w75 Dead Partial UD 539.7 539.7 4.50 5.50 plf 15_j42 Dead Partial UD 47.7 47.7 0.00 4.50 plf 17_j43 Dead Partial UD 47.7 47.7 4.50 5.50 plf 19_j44 Dead Partial UD 47.7 47.7 7.50 13.00 plf 21_j45 Dead Partial UD 47.7 47.7 5.50 7.50 plf 23_j46 Dead Partial UD 47.7 47.7 13.00 14.50 plf 25 j47 Dead Partial UD 47.7 47.7 14.50 16.00 plf 203A Wind Point -7960 0.00 lbs 203A.1 Wind Point 7960 7.00 lbs 203B.1 Wind Point -7960 13.00 lbs 203B.2 Wind Point 7960 16.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : , ... r" * S#. ie . '.17:4`4..`,.� >1 , , . A 10, 161 ' Dead 4328 4101 Live 3391 Uplift 2321 Total 4328 7435 Bearing: Load Comb #1 #2 Length 1.30 2.23 Glulam-Bal.,West Species, 24F-V8 DF, 5-1/8x15" Self-weight of 17.7 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 70 Fv' = 238 fv/Fv' = 0.29 Bending(+) fb = 1905 Fb' = 3840 fb/Fb' = 0.50 Live Defl'n 0.10 = <L/999 0.53 = L/360 0.18 Total Defl'n 0.37 = L/525 0.80 = L/240 0.46 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 0.90 1.00 1.00 - - - - 1.00 1.00 1.00 1 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #1 = D only, V = 4328, V design = 3577 lbs Bending(+): LC #2 = .6D+W, M = 30517 lbs-ft Deflection: LC #2 = .6D+W EI= 2594e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (0-dead L=live S=snow W=wind I=impact C-construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSUAITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 2 _ /_ 2 2 COMPANY PROJECT 1 1 WoodWorks SOFINARE FOR WOOD DESIGN June 28,2010 10:25 b26 LC1 Design Check Calculation Sheet Sizer 7.1 - LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2_w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 51-w39 _w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6 w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : �K..�i ,r�€. ,, , c ,4, + �. °vim:zi sr vn Ai i 15'-6'l 0 2397 Dead 583 2397 Live 4182 10789 Total 4704 Bearing: #3 Load Comb #4 3.23 Length 1.41 Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC #4 = .6D+W, M = 48956 lbs-ft Deflection: LC #4 = .6D+W EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 0_....1.-1 2_(-I COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DFSlGN June 28,2010 10:27 b26 LC1 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End l w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point 13500 10.50 lbs W1.2 Wind Point -13499 15.50 lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : y „„r;..„..,.,.. , ."Jr "'moi.. lz ';'"'M'*"": .: "< V *,h xii'Ym�SU..... �A4n"ns: = - 4 .. �`a .F'-au.fi« w✓ ,,,,,i ,:;,.yu4a.� -.r ,-,+r.- ,:e- .r.� -- ..�F x mawr, ,.�e s, .,a ...�r_.,,. -�,.,�•z4€.-4. .,z..w a, n.�.r.srs...*�.,.�,��.,.�,- rttma,.+ 10' 15'-6'l Dead 583 2397 Live 4182 8247 Total 4704 10583 Bearing: Load Comb #2 #2 Length 1.41 3.18 Glulam-Bal.,West Species, 20F-V7 DF, 5-118x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full, bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 424 fv/Fv' = 0.43 Bending(+) fb = 2526 Fb' = 3195 fb/Fb' = 0.79 Live Defl'n 0.47 = L/395 0.52 = L/360 0.91 Total Defl'n 0.56 = L/331 0.77 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 1.60 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 10643, V design = 10194 lbs Bending(+) : LC-#2 = .6D+W, M = 48956 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). /7 / A00.- COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 10:26 b26 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 2-w37 Snow Partial UD 487.5 487.5 10.50 11.00 plf 3 w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 4-w38 Snow Partial UD 487.5 487.5 11.00 14.00 plf 5-w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf 6-w39 Snow Partial UD 487.5 487.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : _ � . g AA l 15'-6't 10' 2397 Dead 583 2397 Live 393 2044 Uplift 3945 7647 Total 976 Bearing: #2 Load Comb #2 1.#2 Length 0.50* *Min.bearing length for beams is 1/2"for exterior supports * Glulam-Bal.,West Species,20F-V7 DF,5-118x16-112" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 424 fv/Fv' = 0.32 Bending(+) fb = 488 Fb' = 2297 fb/Fb' = 0.21 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2000 1.15 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 2 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - 1.00 - - 4 E' 1.6 million 1.00 1.00 - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - Shear : LC #4 = .6D+W, V = 7647, V design = 7647 lbs Bending(+): LC #2 = D+S, M = 9454 lbs-ft Bending(-): LC #4 = .6D+W, M = 42496 lbs-ft Deflection: LC #4 = .6D+W EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 0 i i COMPANY PROJECT i 1 WoodWorks0 SOFlWARE FOR WOOD DESIGN June 28,2010 10:30 b26 LC2 no II Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_w37 Dead Partial UD 535.5 535.5 10.50 11.00 plf 3_w38 Dead Partial UD 535.5 535.5 11.00 14.00 plf 5 w39 Dead Partial UD 535.5 535.5 14.00 15.50 plf W1.1 Wind Point -13499 10.50 lbs W1.2 Wind Point 13500 15.50 lbs MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : ��-: 'fix.. ,,.x+s ,v ;,,,,,, a ,., .774:-..4•1,7. .,. .�+-.,. ,'x-R 7; "'�'�} z`...< .;. we R. ^.-,... ............,.,.* ...._ .' a- n 10. 15'-6'I Dead 583 2397 Live Uplift 3945 7647 Total 583 2397 Bearing: Load Comb #1 #1 Length 0.50* 0.72 *Min.bearing length for beams is 1/2"for exterior supports - Glulam-Bal.,West Species,20F-V7 DF,5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 136 Fv' = 424 fv/Fv' = 0.32 Bending(+) fb = 267 Fb' = 1797 fb/Fb' = 0.15 Bending(-) fb = 2193 Fb' = 2940 fb/Fb' = 0.75 Live Defl'n -0.51 = L/362 0.52 = L/360 0.99 Total Defl'n -0.42 = L/441 0.77 = L/240 0.54 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2000 0.90 1.00 1.00 1.000 0.999 1.00 1.00 1.00 1.00 - 1 Fb'- 2000 1.60 1.00 1.00 0.919 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = .6D+W, V = 7647, V design = 7647 lbs Bending(+) : LC #1 = D only, M = 5167 lbs-ft Bending(-) : LC #2 = .6D+W, M = 42496 lbs-ft Deflection: LC #2 = .6D+W EI= 3070e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). c s"1 Harper Project: t1; flout'Peterson Client: Job# Righetlis Inc. Designer: Date: Pg.# E NGINEE J•?lfihNk45 a I.ANDS::AY ARGi:Tt t'`S•:iU R'u Yl.R� pea(NC bies►CiY\ Wdl:= 10- lb•8•ft•20-ft Wdl= 1600-lb ft2 Seismic Forces Site Class=D Design Catagory=D Wp••= Wdl Tp 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa•Ss • Smi Fv Si S •ds•� 2 Sms Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap' P•= 1.0 R_ := 2.5 (Table 13.5-1, ASCE 7-05) Fp = FRP.4ap Sds Ip C1 + 2---)-W,,WEQU. 13.3-1 Fpmax:= 1.6•Sds•Ip•Wp EQU. 13.3-2 Fpmin:= .3.Sds.lp•Wp EQU. 13.3-3 Fes:= if(Fp>Fpmax,Fpmax,if(Fp <Fpmin,Fpmin,Fp)) Fp =338.5171.1b Miniumum Vertical Force 0.2-Sds"Wd1=225.6781-lb Harper Project: (114:- Houf Peterson Client: Job# Righellis Inc. • ENGtNERS• RS Designer: Date: Pg. # 1.1ND4f kV'r`AH(.i TEGrN*S•SUr2'.€I61RS Wdl:= 10 lb •8•ft-20-ft Wdl= 1600-lb ft2 Seismic Forces Site Class=D Design Catagory=D Wp:= Wdl Ip:= 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5% damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms:= Fa-Ss Sml Fv-S1 2•Sms Sds:= Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections (Table 13.5 1,ASCE 7-05) ap := 1.0 RP := 2.5 .4ap•Sds-Ip z Fp:= Rp (1 + 2-h)-Wp EQU. 13.3-1 Fpmax 1.6-Sds•Ip-Wp EQU. 13.3-2 Fpmin:= .3•Sds.Ip•Wp EQU. 13.3-3 Fes:= if(Fp >Fpmax,Fpmax,if(Fp <Fpmin,Fpmin,Fp)) F =338.5171-lb Miniumum Vertical Force 0.2•Sds.Wdl=225.6781-lb #. /1 Harper Houf Peterson 0HP Righellis Inc. To LI FROM[1 COMMUNICATION RECORD MEMO TO FILE El PHONE NO PHONE CALL ri MEETING LI q•,.. X -r.1 W rn 71 -< 0 .. ....,...,, Cb 0 03 it ce-Tj -7) (....0 S .....0 *Z -2, ---, .... --*() eS) (II OA et* er oi _lc-- 4 ---1 03 ....r) 1., m s....) ,......9 # _I., 0 ...... 4 c..11 4 -----) .1 . I et. VI 32) • 'S .C, C) Ns NN ft 1..1 '11 1 TM C9 (" 0 ..,.. 6 _0 0 • , . V a 1. . . By, ATOM (...01'. ...)A, DATE: 010 JOB NO.:# , kJ---09 0 PROJECT: . . RE: - [2x L o 0 /. - DuctiNG , 0 u: z 1 V . p• 0 w w 1 0 2 NAtl... CPCPC.. t-r`y (It. x 0 */noi! -.J cc < 0 = O w O z • • w 0 = Er • • 11 CAPAC IT", i , , i I -74- 1(0 %;.t -F.6 1\ U i 0 A i i c 5P0C-!ROLkl/si ee ir-,, aCic \ -c--_-_, = 34 -- (CO,C:-----1- 0 i 2 . (.0 t •cx...7F- . . El 6 i 1 p. cf kis) 1 : JL _ _ ____). . (-,--,N_I J -,-- .V, c1,-::,-- 4-t • • . i 1 sIrryi,-.) ,01---) s.--)-3 ' 3 41-:(- 0 ci , .c. d • - -:, 2 'Vcu •— ,,,.; (41 -.)( z y., a 2_0 E, ' if-t- S\01\?Sc-5-,CN 505'14- x4 '12 ' E lz" o,c. , TLI By: rcyxf ( :jr „ ,,,..,, , 0A t....) 01 0 TE -) JOB NO.- ( E ki 43Cf D PROJECT: . . RE: ED Ld - -1 (9 LI Z P Le3( 1\_-- r' O La i•-. III . O 2 / Li a 1\1\ = Qo 0 4t6( 43," ) <--. u . 6 8400 4%4 -='- at-tool -11 ..) 0 i o __. 51r,,\?bv\ tA Ou 4 I D 2 To ______.. . 1'- 2 rt2-5" 0 U r.....-1- .4..jC El —7"-- 2 0 CC ci 11- Z Ld o 6 . 0 . LcAl- C.',cV-7,-,1:7 M.....- ao(34 (4o"-) 200 f4:- 3000 ft Ki T--:: C BOoo itiNi i 1 = aagtat- a.,4 00 -`- 1-i-D04 0 r 30 ;-. . cu *d ,' :::-1 :Ct 0 .°4 'L,- ,. ., Pk = i R li" I ---->7 --,k ,---) 7 t —% , Harper . • HP Houf Peterson COMMUNICATION RECORD Righellis Inc. TO❑ FROM EMGINEEP,«PLAU,,E,, MEMO To FILE LANG,CAPH ARCHITFLIT::..surwev,oi, PHONE NO.: PHONE CALL: MEETING:f XI 11 W m X I—II m l ) 1---- y it rf 3 Q, d [2.) 0 0 1 t 7 0) - a ►, 6 f. m N r T54) i , 0i ____i i =i o ! to Z O M 0 riAlPel' COMMUNICATION RECORD HP Houf Peterson Righellis Inc. To❑ FROM❑ MEMO TO FILE❑ E,,HMEEI1:,.PLAN;IER: LA::n e:: Pe ar;CI1iTECTS.Su?V e,IN.: PHONE NO.: PHONE CALL:❑ MEETING:❑ mm 74 o n i (,,,.., 3 a (....7 N. -1/4min----01 ..., gt _I. d .._, m i f, a cei 6 / >° C rr 1 1 L O 10 Z. O Z. I. 0A`/ '0 COMPANY PROJECT fit` WoodWorks® • SOERVMIEFOR WOOD OESIGN June 8,2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : to Dead 51{d� Live 125 Total 129 125 Bearing: 129 Load Comb #2 Length 0.50* #* Cb 1.00 0.50* *Min.bearing length for beams is 1/2"for exterior supports .00 Lumber-soft,Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. I (.0,-,t 0,-i/3 COMPANY PROJECT 1 1' WoodWorks® . SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : A. 0' 51 Dead Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* • Cb 1.00 1.00 "Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir,No.2,2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NOS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: - 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ,_ -', (AC WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Front Load WoodWorks®Sizer 7.1 June 22,2010 14:13:51 Concept Mode : Reactions at Base of Structure View Roof: 25 ' ■ ■ 1280 L 1280 L w:,-:. 4w 442 D 442 D 4 _ -t. 12272089 L 1601 L ,t;,v '' 10481539 D 1074 p 4 ., Yo-c. ,. ce- 75L c.: 59 D .! x, 1232 L ` y 1408 L Y> 514 D 556 D y 1080 L 640 L 409 D 79 L L u-u aRni 99 DJ j.r, - 1522 E 990 553 D y & n 225 98D 75L , 73D San i_4, 2192 L 1311 D 120E „, L__. 55 L 109 58D 021 L _ u 2450 .-1 D.. .5581 D o 2 1a s- -,T3'7-53CC.` C ti.Cw5 O C0 0 C.00CCC'OC'.00 CO:::.)7L::r.Z.11=�._.O€ OD1.?1,,D3D :I ,--:E EE EPE r,l_- ._ESE 4 8 ,2 ,ti 46 « 22 24`25'2? . :2 _4 _, _ : 4- 4 s., , 7)1 31 D FOC T1NCr‘ Loor 4°"?. e.ON3c LOPti:) 2 1 t WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN Unit B-Rear Load WoodWorks®Sizer 7.1 June 22,2010 14:14:21 Concept Mode : Reactions at Base of Structure View Floor 3 : 17 ' ' ■ ■ B: 1280 L- 1280E1 rt -`7;_ 442 D 442 D ry .'-'- eik 1 \ 1,„. ,, , , , ,, 5296 L Ill 376 Lc C-2' 4328 D 4101 D -'-" 75L 59 D ^v 3- 765 11 1036 L ; 277D 483D ; 9 640 L ' . 208 74 L 99 DJ 1020 L 99 D 368 D 225.3: 98 Di 7-3 75 L Y 73D v San _: \ `Q 2186 L - , 15 'at 1298 D _,.i 94 L 084 L 94 b i 306 L.4 D. 4 a 62 L ✓ 73 D7112515 D5 D 5647 D ^2BEi;CC _ -Jc ,cO:f.DC, rteLr.r_-DEJ C,_DC� _FUpT [,- 71C1,-'E., DE EE_ E EEEE E 3 r 7 _ f '' 2 -.3" o7. E.�.14 : __ 5 _,.. f. -. .. , ii. 00T 11•1(--) I-- Px j OUT _ R€.. Lore Plain Concrete Isolated Square Footing Design: Fl fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength ES:= 29000-ksi Steel modulus of elasticity 'Yconc 150•pcf Concrete density "(soil 100-pcf Soil density gall:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 5647-lb Pd1:= Totaldl Total1l:= 7062-lb Pll:= Totalll Ptl= Pdl+ Pll Ptl= 12709•lb Footing Dimensions tf:= 12-in Footing thickness Width:= 42-in Footing width A:= Width2 Footing Area gnet:= gall —tf'"(cone lnet= 1350•psf Pt' Areqd:= gnet Areqd = 9.414•ft2 < A= 12.25•ft2 GOOD Widthreqd Widthreqd= 3.07•ft < Width =3.50 ft GOOD Ultimate Loads ,j:= Pdl+ tf'A'Iconc Pu:= 1.4•Pd1+ 1.7•Pll Pu= 22.48-kips Pu qu:= A qu= •1.84•ksf Beam Shear bcoi 5.5•in (4x4 post) d:= tf–2-in := 0.85 b:= Width b =42-in Vn:_ 0.34fc• psi•b•d Vn=23.8•kips V (b –bcol) b Vu= 9.77•kips < Vn=23.8•kips GOOD u = qu'I 2 Two-Way Shear bs:= 5.5•in Short side column width bL:= 5.5-in Long side column width bo:= 2-(bs + d) + 2-(bL+ d) bo=62-in (3c:= 1.0 AU_ + 8 • fc.psi.b.d Vn=71.4•kips (3 3-(3c Vnmax x-2.66• fc-psi•b•d Vnmax =47.48.kips Vyy= qu[b2–(bcol+ d)2] Vu= 19.42•kips < Vtun„=47.48.kips GOOD Flexure 2 b –bcol r11 Mu ( qu I ) 1 I.b Mu=7.43•ft•kips \ 2 2 – 0.65 2 b6 S=0.405-ft3 Ft:= 5-44).1Ft= 162.5-psi Mu ft:_ — ft= 127.36•psi< Ft= 162.5-psi GOOD .Jse a 3'-6"x 3'-6"x 12" plain concrete footing I Plain Concrete Isolated Square Footing Design: F2 • fc:= 2500-psi Concrete strength fy 60000-psi Reinforcing steel strength ES:= 29000••ksi Steel modulus of elasticity "Yconc:= 150•pcf Concrete density "(soil 100•pcf Soil density gall 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 4101-lb Pd1:= Totaldi Total!!:= 5376-lb Pll:= Total!! Pt1 Pdl+ Pll Pt1= 9477-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 36-in Footing width A:= Width2 Footing Area gnet gall —tf•"Yconc gnet= 1375•psf Pt1 Aregd gnet Ared= q 6.892 ft2 < A=9 ft2 GOOD Widthreqd Fr; Widthreqd =2.63-ft < Width=3.00 ft GOOD Ultimate Loads ,:= Pdl+ tf'A""Yconc Pu:= 1.4•Pdl+ 1.7-Pll Pu= 16.46-kips Pu qu:_ — qu= 1.83•ksf A Beam Shear bcoi 5.5•in (4x4 post) d:= tg—2•in := 0.85 b := Width b =36•in Vn:_ (13•3• fc psi-b•d Vn= 16.32-kips vu:= qu(b ' bcoll b Vu=6.97-kips < V„= 16.32kips GOOD I\ 2 JI Two-Way Shear bg:= 5.5•in Short side column width bL:= 5.5•in Long side column width b0:= 2-(bg + d) + 2•(bL+ d) bo= 54-in (3c:= 1.0 Vim:= (1)-(-4 + 8j-KF•si.b-d Vn=48.96•kips 3 3-(3c Vnmax := x•2.66• fc•psi•b•d Vnmax =32.56•kips = qu.[b2-(bcoi+ d)2] Vu= 14.14-kips < Vnmax =32.56•kips GOOD Flexure 2 1 Mu:= qu Cb —2bcoi .H2).b Mu=4.43 ftkips 2 := 0.65 2 S:= b6 S=0.222•ft3 Ft:= 5.0• fc•psi Ft= 162.5-psi Mu ft:= s ft= 138.42•psi< Ft= 162.5•psi GOOD Use a 3'-0"x 3'-0"x 10" plain concrete footing Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength ES:= 29000•ksi Steel modulus of elasticity "Yconc 1501pcf Concrete density 'Ysoit:= 100•pcf Soil density gun:= 1500•psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldl:= 2515-lb Pdi:= Totaldl Total11:= 3606-lb P11:= Totalll Ptl:= Pdl+ P11 P1 =6121-lb Footing Dimensions tf:= 10-in Footing thickness Width:= 30-in Footing width A:= Width2 Footing Area gnet gall —tf'^Yconc lnet= 1375•psf Pt' Areqd:= gnet Areqd=4.452 ft2 < A=6.25 ft2 GOOD Widthreqd:= Areqd Widthreqd =2.11-ft < Width =2.50 ft GOOD Ultimate Loads ,:= Pdl+ tf'A'"Yconc Pu:= 1.4 Pdl+ 1.7•P11 Pu= 10.74-kips Pu qt, A qu= 1.72•ksf Beam Shear bcot:= 5.5•in (4x4 post) d := tf-2-in := 0.85 b := Width b =30-in Vn:= cp 4 fc•psi•b-d Vn= 13.6-kips 3 Vu:= qu I(b bCOIJ-b Vu=4.39-kips < Vn= 13.6-kips GOOD 2 Two-Way Shear bs:= 5.5-in Short side column width bL:– 5.5-in Long side column width b0:= 2-(bs + d) + 2-(bL+ d) b0= 54-in �c:= 1.0 Vim`:= + 8 /• fc•psi-b-d V„=40.8-kips 3 3•13c Vnmax x•2.66- fc-psi•b-d Vax =27.13-kips := qu.[b2 —(bcol+ d)2] Vu= 8.57-kips < V „ax =27.13-kips GOOD Flexure 2 bbCOl mut:= - 1 qu 1 b Mu=2.24-ft-kips 2 2 7Z:= 0.65 2 S:= b•d S=0.185-ft3 ^" 6 Ft:= 5- Ft= 162.5-psi Mu ft:_ — ft= 83.98-psi < Ft= 162.5-psi GOOD Use a 2'-6"x 2'-6"x 10" plain concrete footing BY: \qc aoj o JOBNOC OcjO 1{lit/J w.ii/L 41X5 434Sk PROJECT: 01y LO 1 5581► W' 1 11 V O W i C UJkti I 0,5_\-4.-.1 t-�- ;?5 LA t' Q U O w Z tr MOT = tat :A 11- 4-i.vy5 C►. = 13°1. rikQ (Oo �soX .� C esktfc + tatLisCt Jr t c.5> s .st (V)-> 2 M r. (o, IS6 311 )( I{ (9) t- .,'45(11--) 4-;, g (k >k \ C O aot 0 2 o o vncr,-„ = 0 1.1q-s1S vk O xxx 11ty Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:48 AM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load.etz\ • M33=81.13[Kip`ft] M33=-23.24[Kip*ft] i /L -\r) Ain Bentley' Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:49 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit B\FDN\Front Load 2.etz\ • M33=48.59Ki 'ft [ P ] r M33=-54.65[KipIt] i By: N4.(........, DATE: a„)It,i ji 3,0 0 Jos No: cetj ....0,44,0 PROJECT: RE: T. forik koa.A. -r-r0- V e‘ Li 7 i-710 6, , il x O - L -.1 0 • LL R ab'' O w I— Lil 1 '3 rj: •)C\AP‘ -.'') 5 1 . .y..-C-t_. o z w 0 Z ikrkrfLYINk = Uri, V r; ---) --' .)--a•-- "c,--C•E, - Lc C. ---> - 40,.0 4 z 000 = ‘ a.,,,, A s,;-,..)‘ I 0 t,TL u .: 0 2.-: tC, ,...) _ O• - 7 rt 0 (3 t52 ; Li- Z w a..„:. (0,1,,vs.:1..t.o,r3c6) 6:0,61,3000:x..-4-k-)= \----. 5,3\i\J * • O i 0 P" rz: C*ci_O(0,10V.--)000.ierx xv5-\itb 31 L ) 344 A,= k,c)---kb ,0-1- I . _,,o . i O _, (\, ,)_-_iii),f,coo 305) /(o, 62-)_ ._s- -0,._(.4,2- ,,_N' , #sip_Iv • 0..,;\_0(.1.-,risin7n(c.,0,0 06)(A5- (J,. 042 qz ) ..o ((‘..73) --7 4,-74 > "cp,i -t- -S- @ to" OC. a _, (\ .2..00(..0,0007)/ Cote-)c3096Y4k----z-,— 0 0MI\ ...---- 0.,°t o(\,_2t)k11.44CXX)X 15. -.°11-6_ ) = 8(.1., 'S"- t•-c-- , )53. \-I 9:. 0 t.,.. --, --±' Tr, -. -et. Q vr2.,," 0 r „,---,,- . t-, t - _ -,.........-=•_. ,_,.. ,-) -, --I • ,-----,: A 4: C 0-11155 4,.L0,tX:4-) /0,b f.:73,-.20:2':;1(M2) ..= -. = 5.-. ,,k.C9 (1:-. -;\)•_:_ (oc,c2_ !, C,„\L_ 1 By DATE: JOB No.: PROJECT: RE: a. 3 -, C Rehr Load Z; 5*#,53F O w ‘T w 0 2O � s w —:jt 0 Y q ` 4 a a (V\or = 54 ►S3 � �� L(01) k a. t Ct(.433) = 45.3 -f-°11)1_ M O) :Ctt,LC) a(t.(7 = ... 0 1¢ (54,S gl. Lt IDL 1 L . \V., v- ps ! x I , 5 12� . t N � _ TIP 42 -I-1 ", Bentley' Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:57 AM Units system:English File name:O:U-IHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Rear Load 2.etz\ M33=36.82[KGp*ft] M33=-50.22[Kip`ft] I - I i I g_ r1 - ACI 318-05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall • Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 17.00 inches hef= 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches cmin= 2.25 inches cmin= 18.00 inches Wc,N= 1.00 cast-in-place anchor W,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction factor Calculations Calculations ANc= 408 in` AN= 1296 in` AN°= 2601 in` ANo= 1296 in` • Nb= 92,139 pounds Nb= 55,121 pounds Wed,N= 0.7265 Wed,N= 1.00 • Ncb= 10,500 pounds Nth= 55,121 pounds (I)Neb= 7,875 pounds (I)Neb= 41,341 pounds Combined Capacity of Stem Wall and Foundation (ONeb= 49,216 0.754Neb= 36,912 Q 'CThC • Concrete Side Face Blow Out Givens Abrg = 2.75 in` fc= 3000 psi Cm,n= 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 261,589 pounds 4Nsb= 196,192 pounds Concrete Pullout Strength Givens Abrg= 2.75 in` fc= 3000 psi = 0.75 strength reduction factor Calculations 4 Np= 66,000 pounds 4•Np= 49,500 pounds • Steel Yield Strength Givens ft= 58,000 psi A= 0.763 in2 = 0.80 strength reduction factor Calculations Ns= 44,254 pounds SNS= 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6*Capacity= 26,208 pounds • 26,208 < 35,403 Holdown Checks 42 ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi f c= 3000 psi h'ef= 3.50 inches hef= 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmax= 5.25 inches the foundation and does not consider stem WE Fnd Width = 36.00 inches cmin = 2.25 inches cmin = 18.00 inches Wc,N= 1.00 cast-in-place anchor WO,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact' Calculations Calculations ANO= 68 in` AN= 1296 in` ANO= 110.25 in` ANO= 1296 in` Nb= 8,607 pounds Nb= 55,121 pounds Wed,N— 0.8286 Wed,N= 1.00 Nob= 4,399 pounds Nob= 55,121 pounds 4)NOb= 3,299 pounds 4NOb= 41,341 pounds Combined Capacity of Stem Wall and Foundation 44,640 0.750Ob= 33,480 c e^*. Concrete Side Face Blow Out Givens Abrg= 2.15 in` • fc= 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 231,191 pounds �Nsb= 173,393 pounds Concrete Pullout Strength Givens Abrg= 2.15 in` fc= 3000 psi = 0.75 strength reduction factor Calculations NP= 51,552 pounds 4)Np= 38,664 pounds Steel Yield Strength Givens ft= 58,000 psi A= 0.606 in2 = 0.80 strength reduction factor Calculations Ns= 35,148 pounds SNS= 28,118 pounds < 33,480 Ductility Met Holdown Check A Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6*Capacity= 23,888 pounds 23,888 < 28,118 Holdown Checks, lrt - NI he -as n ',- r ` 74- --Lic-ca:1 = (-fl rri 00 i 4 b'e're : u .Jr0A Es- -:-ria (AZ\ = Ioi"jcz •-I,..9) S -11 CA 00k .-. c(r Qt ) -'.01c22 ...-.(-1118)(7'hY,P6Oli)N'T —"'°U -41d, 001 Cio 1 - - C() re-,17)..0\ 4 Vg ..1 crl_L _1001 5--, SU'W w .4( -s'o =_ • "") :', -"--31- `77 4:g'-''r, 75, ., : r-o . ;.1:... -& NJ\ vse, ,7.-A. + T1 :.:• er-4- 0 ,si! croosl 5 i:T: PC ; z =I-16 c-RA, --.z.i: 0-1)1 IX b) : i J(x ) i -,<-_t .,,c) .., -- c JS4 €.1 Xj1) ( oQ) = (rr' °S1)(21/ LA°1 -')i5 - -,dc&si = (1`14)V-tfi)( 3)d•es9rAtc* ''''''il r , r, r() lc °c .: 7._ ,.-1+) s., ;IQ J -0 -I i 0 z m O x :. 0 K El HS) ---,-: .- ) 9)Q0 ; -=.- rn moos -5 k._7)c- 1 -+ 1 g h\ 0 - ,• K Cr • fildOOSI :-7- JS":3' OCIS '2: dq5 YO,O\N\ K -S14 CrOC.)1 -4 ical-1\ -7.: 1)-00) yo ()_1,.. z o › z JCntS.- 3-Na Oric) 7';: .,106 0 A.P)(it,:o-r\?1 TIP jg) g 11 1 P1 z n --"nd e'n 001 7- cff)) 1.36 0-S1 n 0 Lu-a26 ,ici 9... c 2:(.2119Vtard OS1) N 1,c). ). r ✓ o -)Q°1'S 3'''''(3` CIO -:. OS z..\)(75'1.2'r‘ ‘7)13 2, • E 1\'`Olei ild OQE ;7( 356/1)1iSlf, S -1C1. K 0 m H 0 .-J m z - .. PI E E - ---- -.0,1A-017-1A :- TOM \IJ DA :32,I 4 • ,1031-0bid b(j- r\r-,:)) oNeor 01() Ckec 3Iv0 IN \I :A. Harper Project: Summer Creek Townhomes UNIT C # I Wi Houf Peterson Client: Pulte Group Job# CEN-090 ``, Righellis Inc. --------- --- EDesigner: AMC Date: June 2010 Pg.# L ANOSCnpE ARC3iECFS• U .. SR :R5 1 kcPRIF_'i CP.3 SMS:= Fa-Ss SMS= 1.058 (EQU 11.4-1,ASCE 7-05) 2-SMS Sds:= Sds=0.705 (EQU 11.4-3,ASCE 7-05) 3 SMl := Fv.S1 SMI =0.584 (EQU 11.4-2,ASCE 7-05) 2•5M1 (EQU 11.4-4,ASCE 7-05) Sdl �= 3e Sdl =0.389 Cst:_ Sds Cst=0.108 (EQU 12.8-2,ASCE 7-05) R ...need not exceed... Cs := Sd1'Ie Csmax =0.223 (EQU 12.8-3,ASCE 7-05) max 7---a R ...and shall not be less then... C1 := if(0.044•Sds•Ie<0.01,0.01,0.044•Sds•le) (EQU 12.8-5&6,ASCE 7-05) 0.5•SI Ie) Si <0.6,0.01, C2:= if Si R Csmin:= if(CI > C2,C 1,C2) Csmin=0.031 Cs:= if(Cst<Csmin,Csmin,if(Cst<Csm ,Cst,Csmax)) Cs=0.108 V:= Cs•WTTOTAL V=6914 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E=4840 lb (Allowable Stress) Harper ProjSummer Ck Townhomes UNC Houf Peterson Client:ect: Pulte GroupreeJob# CEN-090IT Righellts Inc. ER NEER nN Designer: AMC Date: June 2010 Pg.# ANS 4f Afi___ i CSS_n.El'ORS Transverse Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 100 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II Iw:= 1.00 Importance Factor (Table 6-1,ASCE 7-05) fin= 32 Mean Roof Height X:= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2:= 2•.1•16•ft Zone A&B Horizontal Length Smaller of... a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) a2:= .4•hn2•ft or a2=25.6 ft but not less than... a2m;n:= 3.2-ft a2min =6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA 19.9-psf PnetzoneB 3.2•psf Pnetzonec 14.4•psf PnetzoneD 3.31psf Vertical PnetzoneE —8.8-psf PnetzoneF —12•psf PnetzoneG:= —6.4•psf PnetzoneH 9.7•psf Basic Wind Force PA:= PnetzoneA'Iw'X PA= 19.9•psf Wall HWC PB:= PnetzoneB'Iw'X PB=3.2•psf Roof HWC PC:= PnetzoneC'Iw'X Pc= 14.4-psf Wall Typical PD:= PnetzoneD'Iw'X PD=3.3.psf Roof Typical PE := PnetzoneE'Ivy'X PE =—8.8-psf PF:= PnetzoneF'Iw.X PF=—12-psf PC,:= PnetzoneG'Iw.X PC, =—6.4.psf PH:= PnetzoneH'I .X PH=—9.7-psf Harper Project: Summer Creek Townhomes UNIT C ll' Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Designer: AMC Date: June 2010 Pg.# Eti:�:NEEFi5• tRS - LANC: ARC'^1lEr�fS•S::,�E Yi}A.5 Determine Wind Sail In Transverse Direction WSAll-ZoneA (55 + 59+ 29)-ft2 WSAILZoneB (6 + 0 + 23)-ft2 WSAII ZoneC (429 + 355 + 339)•ft2 WSJ-ZoneD (0 + 0 + 4)-ft2 WA WSAILZoneA"PA WA=2846 lb WB:_ WSAILZoneB-PB WB=93 lb WC:= WSAILZoneCPC WC= 16171 lb WD:= WSAILZoneD'PD WD= 13 lb Wind_Force:= WA+ WB+ WC+ WD Wind Forcemin:= 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind_Force= 19123 lb Wind Forcemu,= 12990 lb W SAILZoneE 43412 W SAII-ZoneF:= 43•ft2 WSJ-ZoneG 334•ft2 WSAILZoneH 327•ft2 WE:= WSAILZoneE'PE WE =–378 lb WF:= WSAII-ZoneF'PF WF=–516 lb WG:= WSAILZoneGPG WG =–2138 lb W �_ WSAILZoneH'PH WH=–31721b H Upliftnet WF + WH+ (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE+ WSAILZoneG)]'•6.1.12 Upliftnet= 1326 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN CALCULATION C— Harper Project: Summer Creek Townhomes UNIT C IHI'>: Houf Peterson Client: Pulte Group Job# CEN-090 Righelhs Inc. w=E ,-,•,LANN,,,S Designer: AMC Date: June 2010 Pg.# dNCS. G,AFS ,EYCRS Longitudinal Seismic Forces Site Class=D Design Catagory=D Building Occupancy Category:II Weight of Structure In Longitudinal Direction Roof Weight Roof Area= 838 ft2 M ,:= RDL-Roof Area RFS= 12566-lb Floor Weight Floor_Area2nd=605 ft2 F��L�Rya 4= FDL•Floor_Area2nd FLRWT2nd= 7865 lb Floor_Area3rd=600 ft2 FLR��x,b4,:= FDL-Floor_Area3rd FLRWT3rd=7800•1b Wall Weight EX Wall Area:= (2203)•ft2 INT_Wall_Area= 906 ft2 tiJVz := EX_Wallwt•EX_Wall_Area+ INT Wallwt•1NT_Wall Area WALLS=35496.1b WTTOTAL = 63727 lb Equivalent Lateral Force Procedure(12.8,ASCE 7-05) lin=32 Mean Height Of Roof Ie = I Component Importance Factor (11.5,ASCE 7-05) R:= 6.5 Responce Modification Factor (Table 12.2-1,ASCE 7-05) Ct= 0.02 Building Period Coefficient (Table 12.8-2,ASCE 7-05) x= 0.75 Building Period Coefficient (Table 12.8-2,ASCE 7-05) Period x ,T ,:= Ct•(hn) Ta=0.27 < 0.5 (EQU 12.8-7,ASCE 7-05) Si =0.339 Max EQ,5%damped,spectral responce acceleration of 1 sec. (Chapter 22,ASCE 7-05)...or SS=0.942 Max EQ,5%damped,spectral responce acceleration at short period From Figures 1613.5(1)&(2) Fa= 1.123 Acc-based site coefficient @ .3 s-period (Table 11.4-1,ASCE 7-05) Fv= 1.722 Vel-based site coefficient @ 1 s-period (Table 11.4-2,ASCE 7-05) Harper Project: Summer Creek Townhomes UNIT C Houf Peterson Job# CEN-090 Righellis Inc. V :? F ;t? - Designer: AMC Date: June 2010 Pg.# ` E 5:k JE 7R5 5��:= Fa'Ss Client: Pulte Group cM INFRS?„.„ER,SMS = 1.058 (EQU 11.4-1,ASCE 7-05) 2•SMS (EQU 11.4-3,ASCE 7-OS) S Sds=0.705 nn�Sv'= 3 5A41,:= Fv SI SMl =0.584 (EQU 11.4-2,ASCE 7-05) 2-SMI (EQU 11.4-4,ASCE 7-05) ,5�:= Sdi =0.389 3 e Cst:_ Sds Cst=0.108 (EQU 12.8-2,ASCE 7-05) ^nnw R ...need not exceed... Shc Cs Csmax =0.223 (EQU 12.8 3,ASCE 7-05) nw n— — Taa ...and shall not be less then... C Ie <0.01,0.01,0.044•Sds•Ie) =_ if(0.044•Sds' (EQU 12.8-5&6,ASCE 7-05) 0.5 SIle) Com:= if Si <0.6,0.01, R 9A:= if(CI > C2,CI,C2) Csmin=0.031 - CCs .= if(Cst<Csmin,Csmin,if(Cst<Csmax,Cst,Csmax)) Cs= 0.108 V:= Cs-WTTOTAL V=6914 lb (EQU 12.8-1,ASCE 7-05) E:= V•0.7 E=4840 lb (Allowable Stress) rv✓v Harper Project: Summer Creek Townhomes UNIT C Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc, 4 rRs P«; FS Designer: AMC Date: June 2010 Pg.# - &N!S E AFCHI E T31S k E.Ye" Longitudinal Wind Forces (Method 1 -Simplified Wind Procedure per ASCE 7-05) Basic Wind Speed: 110 mph(3 Sec Gust) Exposure:B Building Occupancy Category:II Imo,= 1.0 Importance Factor (Table 6-1,ASCE 7-05) 11,1= 32 Mean Roof Height X= 1.00 Adjustment Factor (Figure 6-3,ASCE 7-05) a2 = 2-.1.16•ft Zone A&B Horizontal Len h Smaller of... a2=3.2 ft (Fig 6-2 note 10,ASCE 7-05) a:= .4'hn-finor a2=25.6 ft but not less than... a 3.2•ft a2m;n=6 ft Wind Pressure (Figure 6-2,ASCE 7-05) Horizontal PnetzoneA= 19.9•psf PnetZoneB =3.1psf PnetzoneC = 14.4-psf PnetzoneD=3.3•psf Vertical PnetzoneE=-8.81psf PnetzoneF=—12•psf PnetZoneG=—6.4-psf PnetzoneH=—9.71psf Basic Wind Force )24,:= PnetzoneA'IW.X PA = 19.9•psf Wall HWC PX:= PnetzoneB•Iw.X PB=3.2•psf Roof HWC Pc:= PnetzoneC'Iw•X Pc= 14.4•psf Wall Typical Pte:= PnetzoneD'Iw.X PD=3.3-psf Roof Typical AP,F,,,A:= PnetzoneE'Iw'X PE =—8.8-psf APNV„:= PnetzoneF'Iw.X PF=—12•psf := PnetzoneGlw.X PG =—6.4•psf := PnetzoneH'Iw.X PH=—9.7-psf Harper Project: Summer Creek Townhomes UNIT C • :• Houf Peterson Client: Pulte Group Job# CEN-090 Righellis Inc. Date: June 2010 Pg.# _k NEE�:S P �u - � Designer: AMC ry �A E h.G N!TE S iih'E t*JRS Determine Wind Sail In Longitudinal Direction UMAivII .— (58 +59+ 21) ft2 WSw AII" SAG ,:= (0 + 0 + 51)•ft2 WSA�.— (98 + 99+ 34).ft2 W +'= (0 + 0 + 114)•ft2 W WSAILZoneA-PA WA=2746 lb W WSAILZoneB'PB WB= 163 lb lW := WSAILZoneCPC WC=3326 lb W�i— WSAILZoneD-PD WD= 376 lb ,v�n WinNd Force _ WA+ WB+ WC+ WD wiw Wind Forc = 10•psf•(WSAILZoneA+ WSAILZoneB + WSAILZoneC + WSAILZoneD) Wind Force= 6612 lb Wind_Forcemin= 5340 lb WSnv A — 151•ft2 WSvwvwAw11 •_ 138•ft2 WW Shv AwbAppA iin:— 242•ft2 Wifit := 216412 W WSAILZoneE-PE WE _—13291b W WSAILZoneF'PF WF=—1656 lb W — WSAILZoneG'PG WG=—1549 lb rriv�3J W WSAILZoneH'PH WH=—2095 lb U li := WF + WH+ (WE + WG) + RDL•[WSAILZoneF+ WSAILZoneH+ (WSAILZoneE + WSAILZoneG)]'•6.1.12 Upliftnei=901 lb (Positive number...no net uplift) DO NOT USE ROOF DEAD LOAD FOR SHEARWALL HOLDDOWN I I CALCULATION Harper Houf Peterson Righellis Pg#: Transverse Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1 -simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ft)= 32 Roof Pitch= 6/12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 lw= 1.00 Wind Sail (ftz) Wind Net Design Wind Pressure(psf) Pressure(lbs) Zone A= 19.9 143 2846 Wall High Wind Zone Horizontal Zone B= 3.2 29 93 Roof High Wind Zone Wind Forces Zone C= 14.4 1123 16171 Wall Typ Zone Zone D= 3.3 4 13 Roof Typ Zone Zone E= -8.8 43 -378 Roof Windward High Wind Zone Vertical Zone F= -12.0 43 -516 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 334 -2138 Roof Windward Typ Wind Zone Zone H= -9.7 327 -3172 Roof Leeward Typ Wind Zone Total Wind Force=I 19123 lbs Use to resist wind uplift: Roof Only Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6204 lbs Resisting Dead Load= 7517 lbs El 1313 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D Main Floor 55 6 429 0 Upper Floor 59 0 355 0 Main Floor Diaphragm Shear= 7291 lbs Upper Floor Diaphragm Shear= 6286 lbs Roof Diaphragm Shear= 5546 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Line Shear Tributary Wall Line Diaphragm Diaphragm Diaphragm Line Shear Width(ft (lbs) Width ft (lbs) Width ft (lbs) A 15.83 2321 6.58 1150 19.00 2773 B 19.00 2785 18.00 3143 0.00 0 C 14.92 2186 11.42 1994 19.00 2773 E= 49.75 7291 36 6286 38.00 5546 • Harper Houf Peterson Righellis Pg#: Transverse Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1 = 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ.12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 1.06 Equ.11.4-1,ASCE 7-05 SMS SMS= 0.58 Equ.11.4-2,ASCE 7-05 SDS= 0.71 Equ. 11.4-3,ASCE 7-05 SDS= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ.12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(Ib)= 12566 Wall Wt(lb)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22063 Trib.Floor 3 Diaphragm Wt(Ib)= 21998 Trib.Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces I Cumulative%total of base shear I Rho Check to Shearwalls(lbs) to shearwalls Req'd? Vnoorz(Ib)= 711 100.0% Yes Vnoor s(Ib)= 1595 85.3% Yes V,00f(lb)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area Floor 2 Line Floor 3 Line Roof Line Floor 2 Floor 3 Roof Shear Shear Shear sq ft sq ft sq ft lbs lbs lbs A 124 105 326 168 314 1185 B 273 259 0 369 775 0 C 129 169 371 174 506 1349 Sum 526 533 697 711 1595 2534 Total Base Shear*= I 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. V Harper Houf Peterson Righellis Pg#: Longitudinal Wind Line Shear Distribution ASCE 7-05,section 6.4(Method 1-simplified) Design Criteria: Basic Wind Speed= 100 mph Wind Exposure= B (Section 6.5.6,ASCE 7-05) Mean Roof Height,H(ftj= 32 Roof Pitch= 6 /12 Building Category= II (Table 1604.5, OSSC 2007) Roof Dead Load= 15 psf Exterior Wall Dead Load= 12 psf X= 1.00 lw= 1.00 Wind Sail (ft2) Wind Net Design Wind Pressure(psf) Pressure(lbs) Zone A= 19.9 138 2746 Wall High Wind Zone Horizontal Zone B= 3.2 51 163 Roof High Wind Zone Wind Forces Zone C= 14.4 231 3326 Wall Typ Zone Zone D= 3.3 114 376 Roof Typ Zone Zone E_ -8.8 151 -1329 Roof Windward High Wind Zone Vertical Zone F= -12.0 138 -1656 Roof Leeward High Wind Zone Wind Forces Zone G= -6.4 242 -1549 Roof Windward Typ Wind Zone Zone H= -9.7 216 -2095 Roof Leeward Typ Wind Zone Total Wind Force=l 6612 lbs Use to resist wind uplift: Roof&Half of Upper Floor Walls Total Exterior Wall Area= 2203 ft2 Uplift due to Wind Forces= -6629 lbs Resisting Dead Load= 10160 lbs E=I 3531 Lbs...No Net Uplift I Wind Distribution Tributary to Diaphragms Wind Sail Tributary To Diaphragm(ft2): Zone A Zone B Zone C Zone D Main Floor 58 0 98 0 Upper Floor 59 0 99 0 Main Floor Diaphragm Shear= 2565 lbs Upper Floor Diaphragm Shear= 2600 lbs Roof Diaphragm Shear= 1447 lbs Wind Distribution To Shearwall Lines MAIN FLOOR UPPER FLOOR ROOF Tributary Line Shear Tributary Tributary Wall Line Diaphragm Line Shear Line Shear (lbs) Diaphragm (lbs) Diaphragm (lbs) Width ft Width(ft) Width(ft) 1 8 1283 8 1300 8 723 W 2 8 1283 8 1300 8 723 E= 16 2565 16 2600 16 1447 C L\ Harper Houf Peterson Righellis Pg#: Longitudinal Seismic Line Shear Distribution Seismic Design Category= D Occupancy Category= II Site Class= D S1= 0.34 Ss= 0.94 Importance Factor= 1.00 Table 11.5-1,ASCE 7-05 Structural System,R= 6.5 Table 12.2-1,ASCE 7-05 Ct= 0.020 Other Fa= 1.12 Fv= 1.72 Mean Roof Height,H(ft)= 32 Period(Ta)= 0.27 Equ.12.8-7,ASCE 7-05 k= 1.00 12.8.3,ASCE 7-05 SMS 1.06 Equ. 11.4-1,ASCE 7-05 SMI 0.58 Equ. 11.4-2,ASCE 7-05 SDS_ 0.71 Equ. 11.4-3,ASCE 7-05 SDS= 0.39 Equ. 11.4-4,ASCE 7-05 Cs= 0.11 Equ. 12.8-2,ASCE 7-05 Csmin= 0.01 Equ. 12.8-5&6,ASCE 7-05 Csmax= 0.22 Equ. 12.8-3,ASCE 7-05 Base Shear coefficient,v= 0.076 Weight Distribution Determination to Diaphragm Floor 2 Diaphragm Height(ft)= 8 Floor 3 Diaphragm Height(ft)= 18 Roof Diaphragm Height(ft)= 32 Floor 2 Wt(lb)= 7865 Floor 3 Wt(lb)= 7800 Roof Wt(lb)= 12566 Wall Wt(Ib)= 35496 Trib.Floor 2 Diaphragm Wt(Ib)= 22063 Trib. Floor 3 Diaphragm Wt(Ib)= 21998 Trib.Roof Diaphragm Wt(Ib)= 19665 Vertical Dist of Seismic Forces I Cumulative%total of base shear I Rho eqChek to Shearwalls(lbs) to shearwalls 711 100.0% Yes Vfloor2(lb)= 85.3% Yes Vfl°or 3(Ib)= 1595 V,°°r(Ib)= 2534 52.4% Yes Shear Distribution To Wall Lines Wall Line Tributary Area Tributary Area Tributary Area FloShearrLine Floor 3 Line Roof Shear ne o Floor 2 Floor 3Roof I I lbs lbs lbs sq sq sgft 388 388 8771220 718 270 360 323 1315 1 275 330 2 330 711 1595 2534 Sum 605 600 748 Total Base Shear*= 4840 LB *Base shear assumes rho equal to 1.0. See shearwall analysis spreadsheet for confirmation of rho. C- LV5 Harper Houf Peterson Righellis Pg#. Shearwall Analysis Based on the ASCE 7-05 Transvere Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (kit) (plf) (ft-k) (ft-k) (k) 101 8 5.17 5.17 1.55 ox 8.00 2.32 18.00 1.15 27.00 2.77 1209 Double 1.40 VII 102 8 4.00 4.00 2.00 ox 8.00 2.79 8.00 3.14 1482 Double 1.40 VIII 103 8 3.83 7.33 2.09 ox 8.00 2.19 8.00 1.99 8.00 2.77 948 Double 1.40 VI 104 8 3.50 7.33 2.29. ox 8.00 2.19 8.00 1.99 8.00 2.77 948 Double 1.40 VI 105 8 4.25 12.75 1.88 ox 8.00 2.32 18.00 1.15 27.00 2.77 490 Single 1.40 II 106 8 8.50 12.75 0.94 ox 8.00 2.32 18.00 1.15 27.00 2.77 490 Single 1.40 II 107 8 1.25 1.25 6.40 8.00 2.19 18.00 1.15 27.00 2.77 4887 Double 1.40 NG 108 8 1.25 3.50 6.40 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 109 8 1.25 3.50 6.40 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 110 8 1.00 3.50 8.00 8.00 2.19 8.00 1.99 8.00 2.77 1987 Double 1.40 NG 201 9 5.58 9.17 1.61 0000 0009.00 1.99 18.00 2.77 681 Single 1.40 IV 301 8 6.00 10.00 1.33 000 i oo8.00 2.77 280 Single 1.40 I 304 8 4.96 9.92 1.61 ox 8.00 2.77 280 Single 1.40 1 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) C_ 1 --- YV 1 1i Harper Houf Peterson Righellis Pg#: Shearwall Analysis Based on the ASCE 7-05 fransvere Shearwalls Line Load Controlled By: Seismic * % Panel Shear Panel Mo MR Uplift Shear H L Wall WL Line Load Line Load Line Load Dead V Rho*V Story #Bays Sides Factor Type T Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength (ft-k) (ft-k) (k) (ft) (ft) (ft) ht k ht k ht k (klt) (plf) (plf) 323 419 0.31 1.29 Single 1.00 III 101 8 5.17 5.17 1.55 OK 8.00 0.17 18.00 0.31 27.00 1.19 .00 Single 1.00 III 102 8 4.00 4.00 2.00 OK 8.00 0.37 8.00 0.78 0.00 254 331 0.2 286 372 0.24 4 ]1.00 Single .00 II 103 8 3.83 7.33 2.09 OK 8.00 0.17 8.00 0.51 8.00 1.19 254 331 0.23 0.88 Single 0.88 III 104 8 3.50 733 2.29 OK 8.00 0.17 8.00 0.51 8.00 1.19 131 170 1.06 Single 1.00 I 105 8 4.25 12.75 1.88 OK 8.00 0.17 18.00 0.31 27.00 1.19 0.26 0Single I 106 8 8.50 12.75 0.94 OK 8.00 0.17 18.00 0.31 27.00 1.19 1 131 20 170 NA0.08 2.132. Double 1.00.01 I 107 8 1.25 1.25 6.40 8.00 0.27 18.00 0.51 27.00 1.19 57730 0.08 0.31 Double 0.31 NG 108 8 1.25 3.50 6.40 8.00 0.27 8.00 0.51 8.00 1.19 Double 0.31 NG 109 8 1.25 3.50 6.40 8.00 0.27 8.00 0.51 8.00 1.19 561 730 0.08 0.31561 730 0.06 0.25 Double 0.251 NG 110 8 1.00 3.50 8.00 8.00 0.27 8.00 0.51 8.00 1.19 164 213 0.28 1.24 Single 1.00 I 2012 9 3.58 3.9 5.58 9.17 .51 oK OK 9.00 0.31 18.00 1.19 9.00 0.31 18.00 1.19 164 213 0.18 0.80 Single 0.80 II 2023.500 2.51 2.57 OK 9.00 0.78 0.00 221 288 0.18 0.78 Single 0.78 III 203 20 9 3.50 9.00 0.51 18.00 1.19 242 314 0.36 1.56 Single 1.00 II 9 7.00 7.00 1.29 OK 8.00 1.19 119 154 0.30 1.50 Single 1.00 I 301 8 6.00 10.00 1.33 oK 8.00 1.19 119 154 0.20 1.00 Single 1.00 1 302 8 4.00 10.00 2.00 oK 8.00 1.19 119 155 0.25 1.24 Single 1.00 1 303 8 4.96 9.92 1.61 OK 8.00 1.19 119 155 0.25 1.24 Single 1.00 1 304 8 4.96 9.92 1.61 OK Rho Calculation Yes Does the 1st floor shearwalls resist more than 35%of the total transverse base shear? Does the 2nd floor shearwalls resist more than 35%of the total transverse base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total transverse base shear? Yes Total 1st Floor Wall Length= 16.50 Total#1st Floor Bays= 4.13 Are 2 bays minimum present along each wall line? No 1st Floor Rho= 1.3 Total 2nd Floor Wall Length= 19.67 Total#2nd Floor Bays= Are 2 bays minimum present along each wall line? No 2nd Floor Rho= 13 Total 3rd Floor Wall Length= 19.92 Total#3rd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho= 1.11 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) _ \C. Harper Houf Peterson Righellis Pg#: r Shearwall Analysis Based on the ASCE 7-05 Longitudinal Shearwalls Line Load Controlled By: Wind Shear H L Wall H/L Line Load Line Load Line Load Dead V Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd FIr. From Roof Load Sides Factor Type T (ft) (ft) (ft) ht k ht k ht k (klf) (pif) (ft-k) (ft-k) (k) 105 8 12.75 12.75 0.63 ox 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 106 8 12.75 12.75 0.63 OK 10.00 1.28 18.00 1.30 27.00 0.72 1.13 259 Single 1.40 I 55.75 92.01 0.04 204 9 11.50 11.50 0.78 OK 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 205 9 11.50 11.50 0.78 ox 9.00 1.30 18.00 0.72 0.75 176 Single 1.40 I 24.71 49.73 -0.47 305 8 10.00 10.00 0.80 OK 8.00 _ 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 306 8 10.00 10.00 0.80 ox 8.00 0.72 0.29 72 Single 1.40 I 5.78 14.40 -0.30 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load/Total L Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) C- 1_\ 31" Harper Houf Peterson Righellis Pg#: BSahsedeoan rw the AalE Analysis - Longitudinal Shearwalls Line Load Controlled By: Seismic Shear H L Wall H/L Line Load Line Load Line Load Dead V Rho*V %Story # Panel Shear Panel Mo MR Uplift Panel Lgth. From 2nd Flr. From 3rd Flr. From Roof Load Strength Bays Sides Factor Type T (ft-k) (ft-k) (k)T (ft) (ft) (ft) ht k ht k ht k (klf) (plf) (plf) 105 8 12.75 12.75 0.63 oK 10.00 0.32 18.00 0.72 27.00 1.22 1.19 177 177 NA 3.19 Single 1.00 I 49.09 96.89 -0.74 106 8 12.75 12.75 0.63 OK 10.00 0.39 18.00 0.88 27.00 1.32 1.19 202 202 NA 3.19 Single 1.00 I 55.17 96.89 -0.24 204 9 11.50 11.50 0.78 OK 9.00 0.72 18.00 1.22 0.81 169 169 NA 2.56 Single 1.00 I 28.42 53.69 -0.34 205 9 11.50 11.50 0.78 OK 9.00 0.88 18.00 1.32 0.81 191 191 NA 2.56 Single 1.00 I 31.56 53.69 -0.06 305 8 10.00 10.00 0.80 OK 8.00 1.22 0.35 122 122 NA 2.50 Single 1.00 I 9.76 17.40 -0.07 306 8 10.00 10.00 0.80 OK 8.00 1.32 0.35 132 132 NA 2.50 Single 1.00 I 10.52 17.40 0.01 Rho Calculation Does the 1st floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 2nd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Does the 3rd floor shearwalls resist more than 35%of the total longitudinal base shear? Yes Total 1st Floor Wall Length= 25.50 Total#1st Floor Bays= 6.38 Are 2 bays minimum present along each wall line? Yes 1st Floor Rho= 1•0 Total 2nd Floor Wall Length= 23.00 Total#2nd Floor Bays= s Are 2 bays minimum present along each wall line? Yes 2nd Floor Rho= i.0 Total 3rd Floor Wall Length= 20.00 Total#3rd Floor Bays= 5 Are 2 bays minimum present along each wall line? Yes 3rd Floor Rho- 1.0 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line H/L Ratio=Hight to Width Ratio Check V (Panel Shear)=Sum of Line Load*Rho/Total L %Story Strength=L/Total Story L (Required for walls with H/L>1.0,for use in Rho check) #Bays=2*L/H Shear Factor=Adjustment For H/L>2:1 Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift T=(Mo-Mr)/(L-6 in) C- L.,-.--L ` • Harper Houf Peterson Righellis Pg#: SHEAR WALL SUMMARY' Transvere Shearwalls tilt i Sh 7s all tie k r ,' q115; ,�.. 101 1209 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 3/12 1276 102 1482 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 1667 103 948 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 104 948 2 Layers 1/2"MA Rated Plyw'd w/8d Nails @ 4/12 990 105 490 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 106 490 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 107 Simpson Strongwall 108 Simpson Strongwall 109 Simpson Strongwall 110 Simpson Strongwall 201 428 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 202 428 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 495 202A 898 2 Layers 1/2"APA Rated Plyw'd w/8d Nails @ 4/12 990 203 681 1/2"APA Rated Plyw'd w/8d Nails @ 2/12 833 301 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 302 277 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 303 280 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 304 280 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. C Harper Houf Peterson Righellis' Pg#: • SHEAR WALL SUMMARY Longitudinal Shearwalls e a '. Apr. 4 : t;414:_10:00 IIn� 4r, o O�Id0' Go0i1 O 1p V i eft i, f E �� , - a � 4,'` * � i - SIA *= (Il l,.•-• *j�,b :4 -r; `„. 4-0,10,,,,1---;-, 105 259 1/2”APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 106 259 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 44 Simpson None 0 204I IYom' I 176 1/2"APA Rated Plyw'd w/8d Nails @ 6/12 339 205 191 Simpson None 0 --� w1 Simpson None 0 1/2 APA Rated Plyw'd w/8d Nails @ 6/12 242 1 3051 11/2" 122 APA Rated Plyw'd w/8d Nails @ 6/12 242 . Simpson None I 0 306 132 1yam' 12"APA Rated Plyw'd w/8d Nails @ 6/12 I 242 8 Simpson None 0 NOTE: 1) This table is a comparative summary between the wind and seismic loading. The values above are the minimum requirement to satisfy both wind and seismic design loads. L\5\ • I Transverse Wind Uplift Design Unit C Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift FIr. FIr. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.21 5.21 2.321 1.15 2.773 6.244 1199 0.1 0.192 0.208 54.53 2.36 2.44 11.28 11.27 201 L 201 R 4.97 5.11 16.25 16.38 102 8 1.1667 4.00 4.00 2.785 3.143 5.928 1482 0.092 0.192 51.09 1.50 0.74 14.34 14.47 14.34 14,47 103 8 1.1667 3.83 7.33 2.186 1.994 2.773 6.953 948 0.1 0.24 0.078 31.98 1.65 1.03 9.30 9.41 203R(1/2) 3.83 9.30 13.24 104 8 1.1667 3.50 7.33 2.186 1.994 2.773 6.953 948 0.1 0.078 0.192 29.20 0.89 1.28 9.56 9.48 9.56 9.48 105 8 1.1667 4.58 13.08 2.321 1.15 2.773 6.244 477 0.1 0.192 0.078 19.10 1.93 1.41 4.39 4.47 201L 201R 4.97 5.11 9.36 9.58 106 8 1.1667 8.50 13.08 2.321 1.15 2.773 6.244 477 0.1 0.078 0.384 35.43 4.28 6.88 4.11 3.91 202L 202R 5.35 5.22 9.46 9.13 107 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.048 0.192 0.045 14.64 0.28 0.09 18.77 18.92 18.77 18.92 108 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.048_ 0.045 0.192 14.64 0.09 0.28 18.92 18.77 18.92 18.77 109 8 1.1667 1.25 4.75 2.186 1.994 2.773 6.953 1464 0.1 0.24 0.208 14.64 0.38 0.34 18.70 18.73 203R 7.65 18,70 26.38 110 8 1.1667 1.00 4.75 2.186 1.994 2.773 6.953 1464 0.1 0.208 0.192 11.71 0.26 0.24 19.81 19.83 304R 1.65 19.81 21.48 201 9 1.1667 5.875 9.75 1.15 2.773 3.923 402 0.172 0.432 0.156 23.22 5.51 3.88 3.39 3.56 301L 301R 1.58 1.55 4.97 5.11 202 9 1.1667 3.875 9.75 1.15 2.773 3.923 402 0.172 0.156 0.432 15.32 1.90 2.97 3.66 3.49 302L 302R 1.69 1.72 5.35 5.22 202A 9 1.1667 3.833 3.833 3.143 3.143 820 0.142 0.816 28.29 4.17 1.04 6.73 7.22 6.73 7.22 203 9 1.1667 7.083 7.083 1.994 2.773 4.767 673 0.172 0.468 0.192 46.14 7.63 5.67 5.87 6.03 303L 303R 1.65 1.62 7.52 7.65 301 8 5.958 9.916 2.773 2.773 280 0.24 0.384 0.432 13.33_ 6.55 6.83 1.58 1.55 1.58 1.55 302 8 3.958 9.916 2.773 2.773 280 0.24 0.432 . 0.384 8,85 3.59 3.40 1.69 1.72 1.69 1.72 303 8 4.958 9.916 2.773 2.773 280 0.24 0.384 0.432 11.09 4.85 5.09 1.65 1.62 1.65 1.62 304 8 4.958 9.916 2.773 2.773 280 0.24 0.432 0.384 11.09 5.09 4.85 1.62 1.65 1.62 1.65 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) UplifttT(Mo-Mr)/(L-6 in) 1 F CJ • 1 Transverse Seismic Uplift Design Unit C Shear H Joist L Wall Line Load Line Load Line Total V Dead Dead Dead Overtur Resisting Resisting Uplift From Uplift From Wall Wall Uplift Uplift Total Total Panel Height Lgth. From 2nd From 3rd From Wall Load(not Point Point ning Moment Moment Floor Shear @ Floor Shear @ Stacking @ Stacking From From Uplift Uplift Flr. Fir. Roof Shear including Load Load Momen @ Left @ Right Left Right Left Side of @ Right Wall Wall @ Left @ floors @ Left @ t House Side of Above Above Right above if Right House @ Left @ walls Right stack) (ft) (ft) . (ft) (ft) k k k k plf klf k k kft kft kft k k k k k k 101 8 1.1667 5.21 5.21 0.168 0.314 1.185 1.667 320 0.1 0.192 0.208 15.08 2.36 2.44 2.75 2.74 201 L 201 R 0.65 0.85 3.40 3.59 102 8 1.1667 4.00 4.00 0.369 0.775 1.144 286 0.092 0.192 0 10.06 1.50 0.74 2.49 2.68 0 0 2.49 2.68 103 8 1.1667 3.83 7.33 0.174 0.506 1.349 2.029 277 0.1 0.24 0.078 9.62 1.65 1.03 2.44 2.61 0 203R(1/2) 1.01 2.44 3.62 104 8 1.1667 3.50 7.33 0.174 0.506 1.349 2.029 277 0.1 0.078 0,192 8.78 0.89 1.28 2.66 2.54 0 0 2.66 2.54 105 8 1.1667 4.58 13.08 0.168 0.314 1.185 1.667 127 0.1 0.192 0.078 5.28 1.93 1.41 0.87 0.98 201L 201R 0.65 0.85 1.52 1.84 106 8 1.1667 8.50 13.08 0.168 0.314 1.185 1.667 127 0.1 0.078 0.384 9.80 4.28 6.88 0.74 0.45 202L 202R 1.22 1.02 1.97 1.47 107 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.048 0.192 0.045 4.84 0.28 0.09 6.12 6.34 0 0 6.12 6.34 108 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.048 0.045 0.192 4.84 0.09 0.28 6.34 6.12 0 0 6.34 6.12 109 8 1.1667 1.25 4.75 0.174 0.506 1.349 2.029 427 0.1 0.24 0.208 4.84 0.38 0.34 6.00 6.05 0 203R 2.02 6.00 8.07 110 8 1.1667 1.00 4.75 0.174 0.506 1.349 2.029 427 0.1 0.208 0.192 3.87 0.26 0.24 7.28 7.31 0 304R 0.21 7.28 7.52 201 9 1.1667 5.88 9.75 0.314 1.185 1.499 154 0.172 0.432 0.156 8.96 5.51 3.88 0.68 0.93 301L 301R -0.03 -0.08 0.65 0.85 202 9 1.1667 3.88 9.75 0.314 1.185 1.499 154 0.172 0.156 0.432 5.91 1.90 2.97 1.09 0.84 302L 302R 0.14 0.18 1.22 1.02 202A 9 1.1667 3.83 3.83 0.775 0.775 202 0.142 0.816 0 6.98 4.17 1.04 0.84 1.57 0 0 0.84 1.57 203 9 1.1667 7.08 7.08 0.506 1.349 1.855 262 0.172 0.468 0.192 18.27 7.63 5.67 1.61 1.86 303L 303R 0.21 0.16 1.82 2.02 301 8 0 5.96 9.92 1.185 1.185 120 0.24 0.384 0.432 5.70 6.55 6.83 -0.03 -0.08 0 0 -0.03 -0.08 302 8 0 3.96 9.92 1.185 1.185 120 0.24 0.432 0.384 3.78 3.59 3.40 0.14 0.18 0 0 0.14 0.18 303 8 0 4.96 9.92 1.349 1.349 136 0.24 0.384 0.432 5.40 4.85 5.09 0.21 0.16 0 0 0.21 0.16 304 8 0 4.96 9.92 1.349 1.349 136 0.24 0.432 0.384 5.40 5.09 4.85 0.16 0.21 0 0 0.16 0.21 Spreadsheet Column Definitions&Formulas L=Shear Panel Length H=Shear Panel Height Wall Length=Sum of Shear Panels Lengths in Shear Line V (Panel Shear)=Sum of Line Load/Total L Mo(Overturning Moment)=Wall Shear*Shear Application ht Mr(Resisting Moment)=Dead Load*L2*0.5*(.6 wind or.9 seismic) Uplift TI=(Mo-Mr)/(L-6 in) `1 � C� ?') TRANSVERSE UPLIFT CALCULATIONS-SUMMARY UNIT C Shear Controlling Total Holdown Holdown Good Control Total Holdown Good For Panel Case Uplift @ or Strap Type@ Left For ling Uplift Type@ Left Left Case @ Right k Simpson k k Simpson k 101 Wind 16.25 Holdown HD19 w DF 19.07 Wind 16.38 HD19 w DF 19.07 102 Wind 14.34 Holdown HDU14 14.93 Wind 14.47 HDU14 14.93 103 Wind 9.30 Holdown HDU14 14.93 Wind 13.24 HDU14 14.93 104 Wind 9.56 Holdown HDU14 14,93 Wind 9.48 HDU14 14.93 105 Wind 9.36 Holdown HDU14 14.93 Wind 9.58 HDU14 14.93 106 Wind 9.46 Holdown HDUI4 14.93 Wind 9.13 HDU14 14.93 107 Wind 18.77 Holdown None 0.00 Wind 18.92 None 0.00 108 Wind 18.92 Holdown None 0.00 Wind 18.77 None 0.00 109 Wind 18.70 Holdown None 0.00 Wind 26,38 None 0.00 110 Wind 19.81 Holdown None 0.00 Wind 21.48 None 0.00 201 Wind 4.97 Strap MST48x2 5.75 Wind 5.11 MST48x2 5.75 202 Wind 5.35 Strap MST48x2 5.75 Wind 5.22 MST48x2 5.75 202A Wind 6.73 Strap MST60x2 8.11 Wind 7.22 MST60x2 8.11 203 Wind 7.52 Strap MST60x2 8.11 Wind 7.65 MST60x2 8.11 301 Wind 1.58 Strap MST48 2.88 Wind 1.55 MST48 2.88 302 Wind 1.69 Strap MST48 2.88 Wind 1.72 MST48 2.88 303 Wind 1.65 Strap MST48 2.88 Wind 1.62 MST48 2.88 304 Wind 1.62 Strap MST48 2.88 Wind 1.65 MST48 2.88 'I V- N C) 0 c t C / 102 . a T J -LCD to3 U _il .._. 2 1 (D, I )k,//1/4.%7 rn \e' -� ❑ CV 1P4O?J 'LFoc^ 1S 1 —) .1-INC) c301 _01 T01,1 6O3 • ZO) 0 `)01 So 1 2.0\ aoa pp xY'' a i aoa I /\ Nt-c c- b40 J.nOiNt., t eros 110013 aZat. — i‘ roll Z • .., .... •ho . �oF1 , .._______,. .,..__ _ .. i 0 9 ,::,.,,,..,";:_,-, __, ., , . 5 g 1 ' ...1 ill i , w Iii k L t a L t k `tr W V gYr If tr. Si 1 I - .- -- _.. ,--- -, _ . ...-. ......------C;) ZC1 C \O By ,i✓O +,1 OF DATE:)µ ti .v/ Joe No Cit- \\..\ _...p\K.."f PROJECT: ('+" RE: C�l_-L'� V)\04,0(11(04M �/t. l er- r JZ lu v 72 0 W =, l�b.b ?t w LINE'Ravp¢ER o U L i 1, f V °< LtC. l , U 11 �} Z L\r\e-Q J C +ri Y-C e l- ' .. _`ice' : 0:(‘,.., , CI\s,sFE1 a' . 2ct 1 Li- Z - q.1(2,5- a Lvc,e. C..= \log}3# 31-42,1—'--- - vas an = e , .# i i 1 2.2# ,f" , c2, ' (0aG\- 1‘.-1 .{0 x 2,3',0 313P:.0 4Lc' .1..); L It =ll, Ck. 1:::1 Co - $r ,_ °' •.� 0 \o f&. X4)2, d;a f 3 ifCCS` ,(11 " 0. j Ay by = :7 )%..:c .1 a a, as � ._ a voS. � eta: t-)c . t 5 , 1 c — —p-- D - I . ': „ .'' .), -. .,... v ‘7.--0 ), \ \:, ‘c,... -1:-,c- ''<':'...-”, ,CI", S r,aCIA -, —A 1-=-LW 0 cbt)1N *). '-A qh-4,..° 4 0 9 %1 -) ."-A \AQ' 1 t1q• 1 k.V. .--nlutC isKI 11TrY) -- -6 4zIH S--3 „-- O-,- .44 7----b 0 ‘ -0 4,. -- .1 )Oc -_= -• 0 Qat 9N -: IA 0')gl < , - 'era • l'\-='' ----77--- -4°A,lioti --4_S1:,01 tf"-ie%c5 0‘\ 'SCS -tx_St_q\S:-.3 --tcA c ;°. 5 sg?L). 4.5 z 0 0 -- , Z 11 --)-, ,,, 't.,,, , , -,) --0,0 Q\ ‘p o- ,;::,7,_ ..,... c.,,,,,1,--ITSql 1-A 9ri l, :-.- C-z1 (..77')'---,L,_' ',..1.,y?1)--t 1 1 )c., ) PI I )(- 7:':';'''Cr'l()) 1Q/14 ( ';X--,.j-' '°'''):).1\--(2.-9-Jr (-, 0\1. ‘1"0(Y1 7_1 o "k: cl)c, > --k or t--=c-i.‘cio)(721,-kciT)4-(q9cS\7 0)c4-1,"14-ViisiXst 0-op;9 4 c-zio'o'k-il ) n , H ,;5; -ak.kirso , ‘.)0k IA'ocfm, L-I ES \ \\-00-.1 z M3 locy a --= vas20.0)C1 ,) m 0 n xi --\0, d1 ‘e•St'10 71 ' sco.01(-z! r 0 r 4.01 \\ c a 7 g 3 cci00-1 m -.1 M 0 --I Z -11 1 7 c-r-- :3LI :103 CO2,1=1 Q 6 0-- N 3) .ON HOF e 00' _ vAets„... •31VCI .\ci n 'AEI \0\el ;;. 0.4 o co —4, co • -t -1 CD m. CD 5) 0 o o z rn z m P 0 3 t—0 07'‘1,_SOST:: bt-A/ P')L,I Li4,1 kAin tka pd-1--)on cr-\,)-i-) -)90 b CY7) -a 0 -,o.AsslaS g•Do*k p, M 1 3 CI V1/41CA iq\Oa M 0 m 4\e, 9 c:6)( sA.‘\Tilt u-o-kj Ir.) ,_kkAax) -coo-) 41)-x\-9 3JJr \KAy.-yo..)L4vc, 0 1C) CA ON aO1 v a 1\4\W Ocz-i—s -A.0 , (.1,..t,0 — 1 --Z'1 X\c,.G) 0'1;)( '3 --, , (Syl 1, C -s'( o'lls) ' , _,.., i -- --- — — ,, :_,,,,,,s ...., 3.........„,-,,,T).„,,,,D crj)G,A ......... 0,:* • -r---477)S67.-T — A =. " ' tt‘l• :::7.!,, h 4.7 -I "- --- '`,.' -r ; '1*., -., C.*, .- :::-,x.c;*/0 .1. C 4,C'17,,' e..---. ....( "*,,,.4.-C; *( ; *II- ! '`, ..,,- ---,."' • -A. ('"*,... 0'1,', / '•••--*4.p 4 •-,`,,,P"c) = - ,. NI 0 z-- -,.s c-,.--. p :, c• E• o a o '-1 - CD • cD c';, ••7;.. ‘°_,(i.*C ';'.?• -.'"-I '% = I: I't - ^• CD tiD r-, CD _ ..• " Z c4 • ,7!--,1 c•::::,./;*if .*:. V „ .7.11- ,,,,,-_.-7,-L_- __ -, 1 ' ..-• ,o ..,°i• :: ( -;-1--TI,77.71,1-‘0) =:,. 1- -9,' .., a,_. _., -+- i . i .r. / i 5,....— y .1 I ! I 41 , i `.t ',;-'4 i 0 i : I m I„ 1 „ Z -n al 7: INNiMeara I . o ;t 5”! 1 =t--- i _ :,, n '7'' .1 ' — -7-T-7,-, = )c,, ,i jtr \ 4 0 K i c 1 1 z Cn 1 'A 1 1 11 /1 _Ho CC,, '3,CI -3.k \I \C•C\ \,-;:::, ',2',J•ic() i x o z n m o 0 x ‘,0....-V, :- 1---),)\ .,,t:-....,,,,-1(-_-.,-- 3' ,,,)•,--..., i .-....„,- ,',.Ci*.,, r-CAAil › ✓ 0 r .,-_ k.JC, K K o m -1 "30Crki C-"A , D k,? -1 E 71 --76 Co-• i (Y--47 •--'; %j ,) 7)(-, -..;t,A rc:.:1, 0 '-- 1-1 1 c i C i (jC, .3H 103 I-0 LI cl JO n b° N ) ON 90r n\ -7_ \ -0 ,..0 Eivc, ti s I BY . \ DATE €c ...... 0.. .‘.0 JOBNO OF PROJ ECT: - 9'o 9.v a-4'-8'la' RE. De , S tar\ 0C ,.? S'i-0\r :--,- J OPT 0 N.) 1.— g J 0 G: Z IIPP-ML41. 1 F- 1 O w ,OtrirAnrita F- ILI O 2 [ t WIDTH 0;`-) 101.-ikS14 F.F. \Ctl- 1.114" 2 SW- D 301MT- :-- qt—Ci112." 1r4116.— ,I ,1 -7-09 ?Lp,-i- Li a Et < 0 1 w z , w 0 :,-1,i 1:YD PCCSSOC C., cc a_ f.f. -= ), \ \:, ) -r ..k. .„,,, „.,:o -, .;:„., ,., \, : , 1,, i7).4.77--,, e,??LAI E El:-Ile - D 2 O ik 1' , g.„.....- \I cl1 i' 0'-'0° 2 0 it 0 I LL Z I 7-1 Z so, S - „Li, ------',-, ---: -7-- 6 q Si.7... V14,42- - r-\ c i 0 6 , . . -,',_. .,- : N -\ -\--("i , o c,,'7,--,-7,rm 2_ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:26:08 • COMPANY 1 PROJECT RESULTS by GROUP- NDS 2005 SUGGESTED SECTIONS by GROUP for LEVEL 4 - ROOF Mnf Trusses Not designed by request (2) 2x10 Lumber n-ply D.Fir-L No.2 2- 2x10 (3) 2x6 Lumber n-ply Hem-Fir No.2 3- 206 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 3 - FLOOR S.Mnf Jst Not designed by request (2) 2x8 Lumber n-ply D.Fir-L No.2 1- 2x8 By Others Not designed by request By Others 2 Not designed by request 4x6 Lumber-soft D.Fir-L No.2 406 1.75x14 LSL LSL 1.55E 2325Fb 1.75x14 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 66x6 Timber-soft Hem-Fir No.2 6x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 204 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 2 - FLOOR Mnf Trusses Not designed by request Deck Joist Lumber-soft D.Fir-L No.2 2x8 @16.0 Mnf Jet Not designed by request Landing Lumber-soft D.Fir-L No.2 2x6 @16.0 (2) 208 Lumber n-ply D.Fir-L No.2 2- 208 4x8 Lumber-soft D.Fir-L No.2 408 By others Not designed by request 3.125X10.5 Glulam-Unbalan. West Species 24F-V4 DF 3.125x10.5 5.25x14 PSL PSL 2.0E 2900Fb 5.25x14 406 Lumber-soft D.Fir-L No.2 4x6 (2) 2x6 Lumber n-ply Hem-Fir No.2 2- 2x6 4x4 Lumber Post Hem-Fir No.2 4x4 4x6 Lumber Post Hem-Fir No.2 4x6 606 Timber-soft Hem-Fir No.2 6x6 (2) 2x4 Lumber n-ply Hem-Fir No.2 2- 2x4 (3) 2x4 Lumber n-ply Hem-Fir No.2 3- 2x4 Typ Wall Lumber Stud Hem-Fir Stud 2x6 @16.0 SUGGESTED SECTIONS by GROUP for LEVEL 1 - FLOOR Fnd Not designed by request CRITICAL MEMBERS and DESIGN CRITERIA • Group Member Criterion Analysis/Design Values Deck Joist je Bending 0.41 Mnf Jst Mnf Jst Not designed by request Landing j27 Bending 0.17 (2) 208 bl Bending 0.96 408 619 Bending 0.05 By Others By Others Not designed by request By Others 2 By Others Not designed by request 3.125x10.5 b12 Deflection 0.83 (2) 2x10 b6 Bending 0.85 5.25x14 PSL b18 Deflection 0.79 406 b21 Bending 0.88 1.75x14 LSL 023 Bending 0.71 Ftg Ftg Not designed by request (2) 2x6 c10 Axial 0.88 404 c42 Axial D.04 406 c50 Axial 0.25 (3) 2x6 c16 Axial 0.87 6x6 c23 Axial 0.4B (2) 2x4 c28 Axial 0.84 (3) 2x4 012 Axial 0.41 Typ Wall w12 Axial 0.24 Fnd Fed Not designed by request L DESIGN NOTES: = = 0. Plea verify that the default deflectionlimits are appropriate for your application. 2. DESIGN GROUP OCCURS ON MULTIPLE LEVELS: the lower level result is considered the final design and appears in the Materials List. 3. ROOF LIVE LOAD: treated as a snow load with corresponding duration factor. Add anempty roof level to bypass this interpretation. 4. BEARING: the designer is responsible for ensuring that adequate bearing is provided. 5. GLUCAN: bxd =actual breadth x actual depth. 6. Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 7. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 8. BUILT-UP BEAMS: it is sumed that each ply is ingle continuous member (that is, o buttjoints are present) fastened together securely at intervals not exceeding 4 times the depth and that each ply is equally top-loaded. Where beams are side-loaded, special fastening details may be required. 9. SCL-BEAMS (Structural Composite Lumber): the attached SCL • selection is for preliminary design only. For final member design contact your local SCL manufacturer. r 10. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. • C- ( \ WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:53 Concept b2 de : Beam View Floor 2 : 8 ' ;1,, :;::::::::',:: b1 s - b21 b10 b18 Y. b3 I n,P V N T" WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-REAR LOAD WoodWorks®Sizer 7.1 June 28,2010 13:26:28 Concept b2 de : Beam View Floor 2 : 8 ' b18 b24 24- _ b23 b10 b11 b19 b211/= b20 �.n Lock& C- 613 WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:55 Co c24ept Mode : Coc25zmn View Floor 2 : 8 ' , _ c1 c2 c38_ -- c. n-; c50 c51 ii 'c33 k41 c34 c35 c47 c19 coy _ ; �;,c36 :: 1 c18 c22 03 c23 c41 __ I eDir c42 I c43 ., of ES--..=...7--,-a-;"-- c = �— Cl_,i L.( WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD Woodworks®Sizer 7.1 June 28,2010 13:16:49 Concept Mode : Beam View Floor 3 : 17 ' .r 4r_ b4 b22 b24 << :23 bili b14 b17 c- � c WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:46 Concept Mode : Column View Floor 3 : 17 ' Yy :, n c9 c10 tiJ 0 Y,: c48 c49 Ya t` N� c28 � . II- , i _, c12 ... c11 ` c26 I c27 c39 c40 - W -3!' .. - w ._:, ..,i,__.. :r mac..::— : ycv-.+ r ': sit c" 2,:‘''' ,, E E_ t. A WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:41 Concept Mode : Beam View Roof: 25 ' 4. 4o c b5 4z. -0 v -=a _r- b6 r WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 28,2010 13:16:44 Concept Mode: Column View Roof: 25 ' Y V "s.,e c13 c14 `, _A .� _ '. 4".:''y _ vv v ,> c16 c15m' C— CP)::ej COMPANY PROJECT fit WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:20 j8 Design Check Calculation Sheet Sizer 7.1 LOADS (ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 13.3 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : A . . gD 10' Dead 64 64 Live 213 213 Total 277 277 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for joists is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2, 2x8" Spaced at 16"c/c;Self-weight of 2.58 plf included in loads; Lateral support:top=full, bottom=at supports;Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 32 Fv' = 180 fv/Fv' = 0.18 Bending(+) fb = 506 Fb' = 1242 fb/Fb' = 0.41 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.24 Total Defl'n 0.09 = <L/999 0.40 = L/240 0.23 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.200 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 277, V design = 235 lbs Bending(+) : LC #2 = D+L, M = 554 lbs-ft Deflection: LC #2 = D+L EI= 76e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 1 WoodWorks® - SOFIWARE FOR WOOD DESIGN June 28,2010 13:21 j27 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Live Full UDL 53.3 plf Load2 Dead Full UDL 17.3 plf MAXIMUM REP CTIONS (lbsl and BEARING LENGTHS (inl 41, g- .i "�� *� " ��� gr-: Ids 'r Y �sF' .fir � sr 1" f� � s+ N- 47"� ' :`;::4.4, q .�.�� 44:-.. ... A .; * .,t 1 4,-;:i., 4,,, , >.ka z ..� A4+ 10' 39 Dead 39 107 Live 107 107 Total 145 Bearing: #2 Load Comb #2 0.5#2 Length 0.50* *Min.bearing length for joists is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2, 2x6" Spaced at 16"c/c;Self-weight of 1.96 plf included in loads; . Lateral support:top=full,bottom=at supports;Repetitive factor:applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 20 Fv' = 180 fv/Fv' = 0.11 Bending(+) fb = 230 Fb' = 1345 fb/Fb' = 0.17 Live Defl'n 0.01 = <L/999 0.13 = L/360 0.07 Total Defl'n 0.01 = <L/999 0.20 = L/240 0.07 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.15 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 145, V design = 112 lbs Bending(+) : LC #2 = D+L, M = 145 lbs-ft Deflection: LC #2 = D+L EI= 33e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC I DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. r4 Gin COMPANY PROJECT fit WoodWorks° SOFTWARE FOR WOOD DESIGN June 28,2010 13:26 b11 Design Check Calculation Sheet Sizer 7.1 LOADS (ibs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 2 w56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 3_c46 Dead Point 938 5.00 lbs 4 c46 Rf.Live Point 1350 5.00 lbs MAXIMUM RE •• . "1 ' a zw 010=11i ss A► A I 0' 61 Dead 1673 2298 Live 1575 2475 Total 3248 4773 Bearing: Load Comb #2 2.32 #2 Length 3.41 LSL, 1.55E, 2325Fb, 1-3/4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005 Criterion Analysis Value Design Value Analysis/Design Shear fv* = 207 Fv' = 356 fv*/Fv' = 0.58 Bending(+) fb = 1159 Fb' = 2674 fb/Fb' = 0.43 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.07 = L/980 0.30 = L/240 0.24 *The effect of point loads within a distance d of the support has been included as per NDS 3.4.3.1 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cf rt Ci Cn LC# Fv' 310 1.15 - 1.00 - - 1.00 1.00 2 Fb'+ 2325 1.15 1.00 1.000 1.00 1.00 1.00 - 2 Fcp' 800 1.00 - 1.00 E' 1.5 million - 1.00 - - - - 1.00 - - 2 Emin' 0.80 million 1.00 1.00 2 Shear : LC #2 = D+L, V = 4773, V design* = 3386 lbs Bending(+) : LC #2 = D+L, M = 5520 lbs ft Deflection: LC #2 = D+L EI= 620e06 lb int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L- -live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT fit WoodVVorks® SOFTWARE FOR WOOD DFSIGti June 28,2010 13:21 b1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w33 Dead Partial UD 402.0 402.0 0.00 1.50 plf 2_w33 Rf.Live Partial UD 450.0 450.0 0.00 1.50 plf. 3 c9 Dead Point 985 1.50 lbs 4 c9 Rf.Live Point 1470 1.50 lbs 5:j9 Dead Full UDL 47.7 plf 6 j9 Live Full UDL 160.0 plf Load7 Live Full UDL 40.0 plf Load8 Dead Full UDL 13.0 plf MAXIMUM RI ,_ .1 ' � a Wiz, ,,fit. , «s� 3� �' - - -10:si!4VAIAX;4;.iejNAiTx.,4- 40glttYOrW:,t4!.i. 4k* qi;:,ikg.; tli'Ail.r44,001rPt"1-'04m - *3: ,•I . ifi 31 I 0' 742 Dead 1043 1742 Live 1541 1204 Total 2585 Bearing: #2 Load Comb #2 1.#2 Length 1.38 Lumber n-ply, D.Fir-L, No.2,2x8",2-Plys Self-weight of 5.17 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design • Shear fv = 135 Fv' = 207 fv/Fv' = 0.65 Bending(+) fb = 1196 Fb' = 1242 fb/Fb' = 0.96 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.14 Total Defl'n 0.03 = <L/999 0.15 = L/240 0.19 ADDITIONAL DATA: FACTORS: FIE CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.15 1.00 1.00 1.000 1.200 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 2585, V design = 1961 lbs Bending(+): LC #2 = D+L, M = 2619 lbs ft Deflection: LC #2 = D+L EI= 76e06 lb-int/ply Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3.BUILT-UP BEAMS:it is assumed that each ply is a single continuous member(that is,no butt joints are present)fastened together securely at intervals not exceeding 4 times the depth and that ' each ply is equally top-loaded.Where beams are side-loaded,special fastening details may be required. C- COMPANY PROJECT III i WoodWrk Works® SOFTWARE FOR WOOD DESIGN June 28,2010 13:18 b12 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j8 Dead Partial UD 47.7 47.7 0.00 4.50 pif 2_j8 Live Partial UD 160.0 160.0 0.00 4.50 plf 3_j9 Dead Partial UD 47.7 47.7 4.50 7.50 plf 4_j9 Live Partial UD 160.0 160.0 4.50 7.50 plf 5_j10 Dead Partial UD 47.7 47.7 7.50 16.00 plf 6 j10 Live Partial UD 160.0 160.0 7.50 16.00 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : ;;,.,a,;;- ,-=;'-R ; J : twZ-max . .Y". .. ,;, ,,`,„:-,=,,,',„.."..,„::.,- ,,.., 1 10' 164 Dead 442 442 Live 1280 1280 Total 1722 1722 Bearing: • Load Comb #2 #2 Length 0.85 0.85 Glulam-Unbal.,West Species, 24F-V4 DF, 3-1/8x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear . fv = 70 Fv' = 265 fv/Fv' = 0.26 Bending(+) fb = 1440 Fb' = 2400 fb/Fb' = 0.60 Live Defl'n 0.43 = L/441 0.53 = L/360 0.82 Total Defl'n 0.66 = L/290 0.80 = L/240 0.83 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.00 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 1722, V design = 1534 lbs Bending(+) : LC #2 = D+L, M = 6890 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM: bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 1I Woodworks® SOfIWAkf FOR WOOD QFSIGN June 28,2010 13:17 b17 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2 w49 Snow Partial UD 450.0 450.0 4.00 7 50 Pbs 3 c15 Dead Point 938 1350 4.00 lbs 4 c15 Snow Point plf Loads Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (In) k amu- �"' � - �-�:� � �a ��, ' ' �_ .I. „= -- �' ' ate d. '� � �` '��.--fir. -, �* €*' `�. � 7:17;_.,,. ��'�,, a _ A 7'_6'1 0 1656 A I Dead 843 1927 Live 997 3587 Total 1841 Bearing: #4 Load Comb #4 2.54 Length 1.31 LSL, 1.55E,2325Fb, 1-314x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 162 FIT' = 356 fv/Fv' 0.45 Bending(+) fb = 1511 7 Fb' = 2674 fb/Fb' 0.22 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.33 Total Defl'n 0.12 = L/722 0.37 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci 1C00 L4# Fv' 310 1.15 1.00 - 1 -0 1.0 00 - 4 Fb'+ 2325 1.15 1.00 1.000 1.00 1.00 1.00 - - Fcp' 800 - 1.00 _ _ - 4 1.00 E' - 1.5 million - 1.00 1.00 - 4 Emin' 0.80 million - 1.00 - - Shear : LC #4 = D+S, V = 3584, V design = 2643 lbs Bending(+) : LC #4 = D+S, M = 7198 lbs ft Deflection: LC #4 = D+S EI= 620e06 lb int+ Live Load Deflection. Total Deflection = 1.50(Dead Load Deflection) (D=dead L=live 5=snow W=wind m=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2. SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. C- Cil, COMPANY PROJECT 1 WoodWorks° SOFTWARE FOR WOOD DESIGN June 28,2010 13:51 b18 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Rf.Live Point 1350 5.00 lbs 3_w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4_w37 Rf.Live Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 61w54 Rf.Live Partial UD 450.0 450.0 14.50 15.00 plf 7_w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Rf.Live Partial UD 450.0 450.0 0.00 6.00 plf 10_c39 Dead Point 843 7.00 lbs 11 c39 Rf.Live Point 1147 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs 13 c40 Rf.Live Point 2077 14.50 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (in) : a� .. �" r ,A,t r+ s .ate «ea c^ .. y a? �.r m.. vas, , - rz: F _ �. , �r+dw _�� ., a ., xL�. .r ., ,'r.� .u„aw ra ., a, .,._ ..w,..,.xM*s.. w, , s ., s,. 21 10' 161 Dead 3950 3630 Live 3994 3956 Total 7944 7586 Bearing: Load Comb #2 #2 ' Length 2.77 2.64 Glulam-Unbal.,West Species, 16F-E3 DF,5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 117 Fv' = 247 fv/Fv' = 0.47 Bending(+) fb = 1443 Fb' = 1831 fb/Fb' = 0.79 Live Defl'n 0.21 = L/935 0.53 = L/360 0.38 Total Defl'n 0.49 = L/391 0.80 = L/240 0.61 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 215 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 1600 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fcp' 560 - 1.00 1.00 - - - - 1.00 - - - E' 1.6 million 1.00 1.00 - - - - 1.00 - - 2 Emin' 0.79 million 1.00 1.00 - - - - 1.00 - - 2 Shear : LC #2 = D+L, V = 7944, V design = 6613 lbs Bending(+) : LC #2 = D+L, M = 27966 lbs-ft Deflection: LC #2 = D+L EI= 3070e06 lb-in2 Total Deflection = 1.50)Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC • DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT i 1 WWV oadWorks® SOFTWARE FOR WOOD DESIGN June 28,2010.13:26 b18.1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2 w63 Rf.Live Partial UD 450.0 450.0 0.00 1.00 lbs lf 3_c9 Dead Point 985 1.00 4 c9 Rf.Live Point 1470 1.00 lbs 5 c10 Dead Point 985 7.00 lbs 6_c10 Rf.Live Point 1470 7.00 lbs 7 w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 w64 Rf.Live Partial UD 450.0 450.0 7.00 9.50 plf lf 9_j25 Dead Full UDL 47.7 10 j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : ,rom. G ' ; «: -^x ""* - - ` 17,.::7."-'11.:7.71.,01',„7:,.*::-**":::',7.,:':::147,'";.:1 m sm*.: Ft ?*b� °ad+:v,�wr. ,� 2 #'*_.`" r.�...xzs 9'-6'I 10' 2047 Dead 1977 3189 Live 3226 5236 Total 5204 Bearing: #2 Load Comb #2 2.#2 Length 2.56 Glulam-Unbal.,West Species, 24F-V4 DF, 3-118x10-112" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 195 Fv' = 305 fv/Fv' = 0.64 Bending(+) fb = 2004 Fb' = 2760 fb/Fb' = 0.73 Live Defl'n 0.18 = L/627 0.32 = L/360 0.57 Total Defl'n 0.34 = L/335 0.47 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cf rt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1_00 1.00 1.00 1_00 - 2 Fcp' 650 - 1.00 1.00 - - - 1.00 - - 2 E' 1.8 million 1.00 1.00 -- - 1.00 - - 2 Emin' 0.85 million 1.00 1.00 - - Shear : LC #2 = D+L, V = 5236, V design = 4256 lbs Bending(+) : LC #2 = D+L, M = 9589 lbs-ft Deflection: LC #2 = D+L EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). C-- G\�c COMPANY PROJECT i WoodWorks® SOFT WARE FOR WOOD DESIGN June 28,2010 13:21 b19 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j24 Dead Full UDL 51.0 plf 2 j24 Live Full UDL 75.0 plf MAXIMUM REPT-rinmo ocAomir- : curs...-ruc . �t "', � -rkzirt,142.!vA+t �.1 4 k3�� g 1 b E �� atm ''�#" ate; 10' • 3� Dead 86 86 Live 112 112 Total 198 198 Bearing: Load Comb #2 #2 Length 0.50* 0.50* *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, D.Fir-L, No.2,4x8" Self-weight of 6.03 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 7 Fv' = 180 fv/Fv' = 0.04 Bending(+) fb = 58 Fb' = 1170 fb/Fb' = 0.05 Live Defl'n 0.00 = <L/999 0.10 = L/360 0.01 Total Defl'n 0.00 = <L/999 0.15 = L/240 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.58 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 198, V design = 118 lbs Bending(+) : LC #2 = D+L, M = 149 lbs-ft Deflection: LC #2 = D+L EI= 178e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. C- (en,Or- . COMPANY PROJECT r t Woodworks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:17 b23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_j14 Dead Partial UD 78.0 78.0 0.00 7.00 plf 2_j14 Live Partial UD 240.0 240.0 0.00 7.00 plf 3_j29 Dead Partial UD 78.0 78.0 7.00 10.50 plf 4_j29 Live Partial UD 240.0 240.0 7.00 10.50 plf 5_331 Dead Partial UD 26.0 26.0 7.00 10.50 plf 6_j31 Live Partial UD 80.0 80.0 7.00 10.50 pif 7_b24 Dead Point 409 7.00 lbs 8 b24 Live Point 1080 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : - � . ' -, , Z ca.^.�-)" --�,- '- , #= "- --- :," -.a. ��.r , .`aux _ 2 AA 10'-6'4 ID 798 Dead 601 2213 Live 1667 2213 Total 2268 Bearing: #2 Load Comb #2 2.12 Length 1.62 LSL, 1.55E,2325Fb, 1-3/4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in)using NUS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 154 Fv' = 310 fv/Fv' = 0.50 Bending(+) fb = 1658 Fb' = 2325 fb/Fb' = 0.71 Live Defl'n 0.18 = L/714 0.35 = L/360 0.50 Total Defl'n 0.27 = L/462 0.52 = L/240 0.52 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fb'+ 2325 1.00 - 1.00 1.000 1.00 - 1.00 1.00 - - 2 Fcp' 800 - - 1.00 1.00 - 1.00 - - 2- E' 1.5 million - 1.00 - - - 2 Emin' 0.80 million - 1.00 - - - - 1.00 - Shear : LC #2 = D+L, V = 3012, V design = 2515 lbs Bending(+) : LC #2 = D+L, M = 7897 lbs-ft Deflection: LC #2 = D+L EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. i3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. C'- Cf\\?) COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:17 b24 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf Load Type Distribution Magnitude Location [ft] Units Start End Start End Loadl Dead Full UDL 200.0 plf Load2 Live Full UDL 540.0 plf MAXIMUM RE CTIONS (Ibsl and BFARING LFNGTHS (inl : "s e• . • 10' 41 Dead 409 409 Live 1080 1080 Total 1489 1489 Bearing: Load Comb #2 #2 Length 0.68 0.68 Lumber-soft, D.Fir-L, No.2,4x6" Self-weight of 4.57 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 180 fv/Fv' = 0.50 Bending(+) fb = 1013 Fb' = 1170 fb/Fb' = 0.87 Live Defl'n 0.04 = <L/999 0.13 = L/360 0.30 Total Defl'n 0.06 = L/764 0.20 = L/240 0.31 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 900 1.00 1.00 1.00 1.000 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.00 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = D+L, V = 1489, V design = 1148 lbs Bending(+) : LC #2 = D+L, M = 1489 lbs-ft Deflection: LC #2 = D+L EI= 78e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. c- (r,\ 9 COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:22 c10 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 cl4 Dead Axial 938 (Eccentricity = 0.00 in) 2_c14 Rf.Live Axial 1350 (Eccentricity = 0.00 in) 3 b4 Dead Axial 47 (Eccentricity = 0.00 in) 4 b4 Live Axial 120 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) 0 9' Lumber n-ply, Hem-Fir, No.2,2x6",2-Plys Self-weight of 3.41 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld:1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 151 Fc' = 172 fc/Fc' = 0.88 Axial Bearing fc = 151 Fc* = 1644 fc/Fc* = 0.09 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.15 1.00 1.00 0.104 1100 - - 1.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1..100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2485 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 111 Woodworks® SOFTWARE FOA WOOD DESIGN June 28,2010 13:25 c12 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b23 Dead Axial 601 (Eccentricity = 0.00 in) 2 b23 Live Axial 1667 (Eccentricity = 0.00 in) MAXIMUM REACTIONSI (lbs): ✓I k `t_ 'Zty, rvc Kgmoo` rgr'1#` Pz Aq 9' Lumber n-ply, Hem-Fir, No.2,2x4", 3-Plys Self-weight of 3.25 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener: nails; Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 146 Fc' = 356 fc/Fc' = 0.41 Axial Bearing fc = 146 Fc* = 1495 fc/Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.238 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2297 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. CIA\ COMPANY PROJECT ill WoodWorks® SOFIWARE FOR WOOF)DESIGN June 28,2010 13:23 c16 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_b6 Dead Axial 938 (Eccentricity = 0.00 in) 2 b6 Rf.Live Axial 1350 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) az. 17' 0' Lumber n-ply, Hem-Fir, No.2,2x6", 3-Plys Self-weight of 5.11 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb:1.00 x 17.00=17.00[ft];Ke x Ld: 1.00 x 17.00=17.00[ft];Repetitive factor: applied where permitted(refer to online help); Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 96 Fc' = 110 fc/Fc' = 0.87 Axial Bearing fc = 96 Fc* = 1644 fc/Fc* = 0.06 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 1300 1.15 1.00 1.00 0.067 1.100 - 1.00 1.00 21.00 1.00 2 Fc* 1300 1.15 1.00 1.00 - 1.100 - Axial : LC #2 = D+L, P = 2375 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT il i WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:25 c23 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 bi8 Dead Axial 3978 (Eccentricity = 0.00 in) 2 b18 Rf.Live Axial 3994 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs): 0' 8' Timber-soft, Hem-Fir, No.2,6x6" Self-weight of 6.25 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft]; Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 265 Fc' = 548 fc/Fc' = 0.48 Axial Bearing fc = 265 Fc* = 661 fc/Fc* = 0.40 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 575 1.15 1.00 1.00 0.829 1.000 - - 1.00 1.00 2 Fc* 575 1.15 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 8022 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. C eG\,'2) COMPANY PROJECT II WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:23 c28 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 b24 Dead Axial 409 (Eccentricity = 0.0 in) 2 b24 Live Axial 1080 (Eccentricity = 0.0 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, Hem-Fir, No.2, 2x4",2-Plys Self-weight of 2.17 plf included in loads; Pinned base;Loadface=depth(d);Built-up fastener:nails;Ke x Lb: 1.00 x 9.00=9.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft]; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 144 Fc' = 171 fc/Fc' = 0.84 Axial Bearing fc = 144 Fc* = 1495 fc/Fc* = 0.10 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.114 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 1509 lbs Kf = 0.60 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:22 c42 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End l b19 Dead Axial 86 (Eccentricity = 0.00 in) 2 b19 Live Axial 112 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): .. ,,� ...� +_.. .... ,-.. .��y,�.;�, ..�� .�.�f'y; x-�� s ,sr�.yr., ✓r<,�x �ff a�,, ",,�,C¢,,�w '..tu �a 8' Lumber Post, Hem-Fir, No.2,4x4" Self-weight of 2.53 plf included in loads; Pinned base;Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft]; Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 18 Fc' = 470 fc/Fc' = 0.04 Axial Bearing fc = 18 Fc* = 1495 fc/Fc* = 0.01 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.315 1.150 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 218 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOL)DESiGN June 28,2010 13:22 c50 Design Check Calculation Sheet Sizer 7.1 LOADS (ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c48 Dead Axial 599 (Eccentricity = 0.00 in) 2 c48 Live Axial 1660 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs) , ase " „w .. ,. r , a , w; D 0' 8' Lumber Post, Hem-Fir, No.2,4x6" Self-weight of 3.98 plf included in loads; Pinned base; Loadface=depth(d);Ke x Lb: 1.00 x 8.00=8.00[ft];Ke x Ld: 1.00 x 8.00=8.00[ft]; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Axial fc = 119 Fc' = 468 fc/Fc' = 0.25 Axial Bearing fc = 119 Fc* = 1430 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1300 1.00 1.00 1.00 0.327 1.100 - - 1.00 1.00 2 Fc* 1300 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC #2 = D+L, P = 2291 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. DATE_ JOB NO ? BY: (DI) I 0 09 0 PROJECT: RE ' earr‘s w-% `tok,,,,‘re_fai fzerkc,t-iarls r.- Z - WcM 3Q 0 w O 2 111 2 Li Wakk DS3. 0 CC 0 3)40(re-' 3 f\-,CY, 2 05 Se srri a_ il- • l• -- UI Ca u\1} J, 0 2 0 Gr 0 • Z w z0 O 2 0- ' O• 0 G.) • frr 0 C.) GG 0 .birj 1110111r C , COMPANY PROJECT i WoodWorksSOFTWAREFORWOODDESIGN June 28,2010 13:36 b17 LC1 .. Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 pit 2_w49 Snow Partial UD 450.0 450.0 4.00 7.50 pit 3 c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Load5 Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 pit wind Wind Point 2240 4.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) a --`d ."•,»-"e,r �, a^' _, q- s r^ ..,.a te„ ,.,. # ' ,....y...r "' .- -- , - ` mgrr-- , " g, = -- ` ', - ,- ,}.�, ' a . -1 Z. 'z �.. � "„ ..s .' • • jg 1 0' 7'-6'( 1656 Dead 843 2454 Live 1645 4110 Total 2488 #4 • Bearing: Load Comb #4 2.94 Length 1.78 LSL, . , , 44" Self-weig1ht55Eof 7.66 plf inclu2325Fbded1-3/in loax1ds; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 162 Fv' = 356 fv/Fv' = 0.45 Bending(+) fb = 1511 Fb' = 2674 fb/Fb' = 0.57 0.34 Live Defl'n 0.09 = <L/999 0.25 = L/360 0.41 Total Defl'n 0.15 = L/580 0.37 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1C.:1-00 6 Fb'+ 2325 1.15 1.00 1.000 1.00 - 1.00 1.00 - 6 Fcp' 800 1.00 - - - - 1.00 _ - - E' 1.5 million - 1.00 - - - - 1.004 Emin' 0.80 million - 1.00 - - - - 1.00 - - 4 Shear : LC #6 = D+S, V = 3584, V design = 2643 lbs Bending(+) : LC #6 = D+S, M = 7198 lbs-ft Deflection: LC #4 = D+.75(L+S+W) EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D-dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. r 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. C (11Th COMPANY PROJECT 1111 Woodworks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:36 b17 LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (Ins,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w49 Dead Partial UD 402.0 402.0 4.00 7.50 plf 2 w49 Snow Partial UD 450.0 450.0 4.00 7.50 plf 3 c15 Dead Point 938 4.00 lbs 4 c15 Snow Point 1350 4.00 lbs Loads Dead Full UDL 13.0 plf Load6 Live Full UDL 40.0 plf wind Wind Point -2240 4.00 lbs MAXIMUM REACTIONS lbs and BEARING LENGTHS in :Ya "rs-, =x A A 10' 7-6'1 Dead 843 1656 Live 997 1927 Uplift 528 189 Total 1841 3584 Bearing: Load Comb #6 #6 Length 1.31 2.56 LSL, 1.55E,2325Fb, 1-3/4x14" Self-weight of 7.66 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 162 Fv' = 356 fv/Fv' = 0.45 Bending(+) fb = 1511 Fb' = 2674 fb/Fb' = 0.57 Bending(-) fb = 469 Fb' = 1114 fb/Fb' = 0.42 Live Defl'n 0.06 = <L/999 0.25 = L/360 0.22 Total Defl'n 0.12 = L/722 0.37 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 310 1.15 - 1.00 - - - - 1.00 - 1.00 6 Fb'+ 2325 1.15 - 1.00 1.000 1.00 - 1.00 1.00 - - 6 Fb'- 2325 1.60 - 1.00 0.299 1.00 - 1.00 1.00 - - 8 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 6 Emin' 0.80 million - 1.00 - - - - 1.00 - - 6 Shear : LC #6 = D+S, V = 3584, V design = 2643 lbs Bending(+) : LC #6 = D+S, M = 7198 lbs-ft Bending(-) : LC #8 = .6D+W, M = 2235 lbs-ft Deflection: LC #6 = D+S EI= 620e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT i i WoodWorks® • SOFTWARE FOR WOOD DESIGN June 28,2010 13:41 b18 Ic1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10_c39 Dead Point 843 7.00 lbs 11 c39 Snow Point 1147 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs 13 c40 Snow Point 2077 14.50 lbs lbs WIND1 Wind Point 8750 0.00 WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) s-4.yvP�nv b .�. .0.,' n F C+[ &70 mo" gib 4 ` A a z „ : p . L,„: .,-..-„,.. „„„;,„.1„.,,,,,...- -,, a ' � z V te � a .-. ...emt. sxxss•e,�tr. '"" ��� 'A A Ip' 161 3630 Dead 3950 3630 Live 5866 3956 Uplift 1588 Total 9816 Bearing: #2 Load Comb #3 2.#2 Length 2.95 Glulam-Unbal.,West Species,24F-V4 DF,5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 117 Fv' = 305 fv/Fv' = 0.38 Bending(+) fb = 1443 Fb' = 2747 fb/Fb' = 0.53 Bending(-) fb = 1354 Fb' = 2743 fb/Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #2 = D+S, V = 7944, V design = 6613 lbs Bending(+) : LC #2 = D+S, M = 27966 lbs-ft Bending(-) : LC #4 = .6D+W, M = 26233 lbs-ft Deflection: LC #4 = .6D+W EI= 3453e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. • 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT • i I WoodWorks° SOETWARE FOR WOOD DESIGN June 28,2010 13:41 b18 Ic2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1_c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3 w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7_w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8_w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 9 w56 Snow Partial UD 450.0 450.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 11 c39 Snow Point 1147 7.00 lbs 12_c40 Dead Point 1656 14.50 lbs 13 c40 Snow Point 2077 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : -"' « mac ,m� :zW'- "r 4: sur 4: ;,.... c g 10' 161 Dead 3950 3630 Live 3994 5838 Uplift 1396 • Total 7944 9468 Bearing: Load Comb #2 #3 Length 2.38 2.84 Glulam-Unbal.,West Species,24F-V4 DF, 5-1/8x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 168 Fv' = 424 fv/Fv' = 0.40 Bending(+) fb = 2579 Fb' = 3822 fb/Fb' = 0.67 Live Defl'n 0.41 = L/467 0.53 = L/360 0.77 Total Defl'n 0.58 = L/331 0.80 = L/240 0.72 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 3 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 3 Shear : LC #3 = D+.75(S+W), V = 10637, V design = 9461 lbs Bending(+): LC #3 = D+_75(S+W), M = 49976 lbs-ft Deflection: LC #3 = D+.75(S+W) EI= 3453e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxrt=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). rA 1 COMPANY PROJECT i I Woodworks SOFTWARE FOR WOOD DESIGN June 28,2010 13:41 b18 Ic2 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location (ft) Units Start End Start End 1 cl6 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3_w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4 w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6 w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 498.0 498.0 0.00 6.00 plf 10 c39 Dead Point 843 7.00 lbs 12 c40 •Dead Point 1656 14.50 lbs WIND1 Wind Point -8750 0.00 lbs WIND2 Wind Point 8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) > 5 1AA 161 10' 3630 Dead 3950 3630 Live 960 Uplift 1396 7300 Total 4910 Bearing: #3 Load Comb #2 2.19 Length 1.47 Glulam-Unbal.,West Species,24F-V4 DF,5-118x16-1/2" Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 135 Fv' = 424 fv/Fv' = 0.32 Bending(+) fb = 2202 Fb' = 3822 fb/Fb' = 0.590.58 Live Defl'n 0.31 = L/614 0.53 = L/360 0.60 Total Defl'n 0.48 = L/398 0.80 = L/240 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fb'+ 2400 1.60 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 1.00 - 4 - Fcp' 650 - 1.00 1.00 - - - 1.00 - - 3 E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - Shear : LC #3 = D+.75(S+W), V = 8361, V design = 7630 lbs Bending(+): LC #4 = .6D+W, M = 42673 lbs-ft Deflection: LC #3 = D+.75(S+W) EI= 3453e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2 Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). COMPANY PROJECT 1 1 WoodWorksOD SQFIW45(FOR WOOD D,SICN June 28,2010 13:42 b18 Ic1 NO LL Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or ptf) : Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 c16 Dead Point 938 5.00 lbs 2 c16 Snow Point 1350 5.00 lbs 3_w37 Dead Partial UD 498.0 498.0 15.00 16.00 plf 4_w37 Snow Partial UD 450.0 450.0 15.00 16.00 plf 5 w54 Dead Partial UD 498.0 498.0 14.50 15.00 plf 6_w54 Snow Partial UD 450.0 450.0 14.50 15.00 plf 7 w55 Dead Partial UD 96.0 96.0 6.00 7.00 plf 8 w56 Dead Partial UD 496.0 498.0 0.00 6.00 plf 10_c39 Dead Point 843 7.00 lbs 12 c40 Dead Point 1656 14.50 lbs WIND1 Wind Point 8750 0.00 lbs WIND2 Wind Point -8750 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : ' ..y Ip' 164 Dead 3950 3630 Live 3591 1065 Uplift 1588 Total 7541 4695 Bearing: Load Comb #3 #2 Length 2.26 1.41 Glulam-Unbal.,West Species,24F-V4 DF, 5-1/8x16-1/2" • Self-weight of 19.47 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 74 Fv' = 305 fv/Fv' = 0.24 Bending(+) fb = 933 Fb' = 2747 fb/Fb' = 0.34 Bending(-) fb = 1354 Fb' = 2743 fb/Fb' = 0.49 Live Defl'n -0.43 = L/446 0.53 = L/360 0.81 Total Defl'n -0.26 = L/737 0.80 = L/240 0.33 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fb'+ 2400 1.15 1.00 1.00 1.000 0.995 1.00 1.00 1.00 1.00 - 2 Fb'- 1850 1.60 1.00 1.00 0.927 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #2 = D+S, V = 4910, V design = 4172 lbs Bending(+): LC #2 = D+S, M = 18077 lbs-ft Bending(-) : LC #4 = .6D+W, M = 26233 lbs-ft Deflection: LC #4 = .6D+W EI= 3453e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). C- :2) COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:43 beam under 202a LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Winds Wind Point 7380 0.00 lbs Wind2 Wind Point -7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (in) : y. ti axrr #� �,i'• _ _. -ter ._. ,... A A16( l0 302 Dead 565 302 Live 1646 1538 Uplift 729 Total 2211 Bearing: #2 Load Comb #3 0.5#2 Length 0.84 *Min.bearing length for beams is 1/2"for exterior supports PSL,2.0E, 2900Fb, 3-112x14" Self-weight of 15.31 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 160 Fv' = 464 fv/Fv' = 0.34 Bending(+) fb = 324 Fb' = 2433 fb/Fb' 0.13 Bending(-) fb = 2163 Fb' = 2842 fb/Fb' - 0.76 Live Defl'n -0.46 = L/415 0.53 = L/360 0.87 Total Defl'n -0.42 = L/456 0.80 = L/240 0.53 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cf rt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2900 1.00 - 1.00 0.839 1.00 - 1.00 1.00 - - 2 Fb'- 2900 1.60 - 1.00 0.613 1.00 T 1.00 1.00 - - 4 1.00 - 1.00 - Fcp' 750 - - - - 1.00 - - 4 E' 2.0 million - 1.00 - - 1.00 - 4 Emin' 1.04 million - 1.00 - - Shear : LC #4 = .6D+W, V = 5224, V design = 5224 lbs Bending(+) : LC #2 = D+L, M = 3088 lbs-ft Bending(-) : LC #4 = .6D+W, M = 20612 lbs-ft Deflection: LC #4 = .6D+W EI= 1601e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 13.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT lit WoodWorks® SOFTWARE FOR WOOD DESIGN June 28,2010 13:43 beam under 202a LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End dead Dead Full Area 13.00 (1.33)* psf live Live Full Area 40.00 (1.33)* psf wall Dead Partial UD 90.0 90.0 0.00 3.83 plf Windl Wind Point -7380 0.00 lbs Wind2 Wind Point 7380 3.83 lbs *Tributary Width (ft) MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A 10 161 Dead 565 302 Live 427 1696 Uplift 1380 Total 992 1950 Bearing: Load Comb #2 #4 Length 0.50* 0.74 *Min.bearing length for beams is 1/2"for exterior supports PSL, 2.0E, 2900Fb,3-1/2x14" • Self-weight of 15.31 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 181 Fv' = 464 fv/Fv' = 0.39 Bending(+) fb = 2352 Fb' = 2842 fb/Fb' = 0.83 Live Defl'n 0.44 = L/435 0.53 = L/360 0.83 Total Defl'n 0.48 = L/398 0.80 = L/240 0.60 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fv' 290 1.60 - 1.00 - - - - 1.00 - 1.00 4 Fb'+ 2900 1.60 - 1.00 0.613 1.00 - 1.00 1.00 - - 4 Fcp' 750 - - 1.00 - - - - 1.00 - - - E' 2.0 million - 1.00 - - - - 1.00 - - 4 Emin' 1.04 million - 1.00 - - - - 1.00 - - 4 Shear : LC #4 = .6D+W, V = 6000, V design = 5909 lbs Bending(+) : LC #4 = .6D+W, M = 22412 lbs-ft Deflection: LC #4 = .6D+W EI= 1601e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT i WoodWorks° - SoFtWAR?FOR WOOD DESIGN June 28,2010 13:44 b18 REAR LC1 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2 w63 Snow Partial UD 450.0 450.0 0.00 1.00 p15 3-c9 Dead Point 985 1.00 lbs 4 c9 Snow Point 1470 1.00 lbs 5-c10 Dead Point 985 7.00 lbs 6 c10 Snow Point 1470 7.00 lbs 7 w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8_w64 Snow Partial UD 450.0 450.0 7.00 9.50 plf lf 9 j25 Dead Full UDL 47.7 pplf 10_j25 Live Full UDL 160.0 plf Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 lbs W1 Wind Point 6190 1.00 W2 Wind Point -6190 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : � ty x, *t,., <�. a�a.� �,... 'i`rol* ilz u.,.. - - -�jSQ 9'-6't I 0' 2047 Dead 1977 2047 Live 5352 2391 Uplift 4439 Total 7329 Bearing: #3 Load Comb #4 2.13 Length 3.61 Glulam-Unbal.,West Species,24F-V4 DF,3-118x10-112" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 297 Fv' = 424 fv/Fv' = 0.70 Bending(+) fb = 1693 Fb' = 2760 fb/Fb' 0.61 Bending(-) fb = 1580 Fb' = 2844 fb/Fb' = 0.56 Live Defl'n 0.14 = L/837 0.32 = L/360 0.43 Total Defl'n 0.29 = L/386 0.47 = L/240 0.62 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.15 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 3 Fb'- 1850 1.60 1.00 1.00 0.961 1.000 1.00 1_00 1.00 1.00 1.00 - 8 - - Fcp' 650 - 1.00 1.00 - - - - 1.00 - - 3 E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Emin' 0.85 million 1.00 1.00 - Shear : LC #4 = D+.75(L+S+W), V = 7329, V design = 6491 lbs Bending(+): LC #3 = D+.75(L+S), M = 8104 lbs-ft Bending(-): LC #8 = .6D+W, M = 7558 lbs-ft Deflection: LC #3 = D+.75(L+S) EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). - COMPANY PROJECT 1 WoodWorks© SOeIWAREFOR WOOD DESIGN - June 28,2010 13:44 b18 REAR LC2 Design Check Calculation Sheet Sizer 7.1 LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location Eft] Units Start End Start End 1 w63 Dead Partial UD 402.0 402.0 0.00 1.00 plf 2_w63 Snow Partial UD 450.0 450.0 0.00 1.00 pif 3_c9 Dead Point 985 1.00 lbs 4 c9 Snow Point 1470 1.00 lbs 5 c10 Dead Point 985 7.00 lbs 6_c10 Snow Point 1470 7.00 lbs 7_w64 Dead Partial UD 402.0 402.0 7.00 9.50 plf 8 w64 Snow Partial UD 450.0 450.0 7.00 9.50 plf 9 j25 Dead Full UDL 47.7 plf 10_j25 Live Full UDL 160.0 pif Loadll Dead Full UDL 13.0 plf Load12 Live Full UDL 40.0 plf W1 Wind Point -6190 1.00 lbs W2 Wind Point 6190 7.00 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : ,rfa° 4,+L e rb+c ax ,, , usa sA ' ''-a Vzc4 �^f.. 4 a'- q'-5 " : ,. s"``.�...!�_ "`r,- sc a�< dsr,,,-s«.�� �... m� s� - J`:.s�e .:a*e,�,:.�c .x ...�,z- x. ��" :`2' a; i v 4i r, c ^`� • '-F` r ^ '- �* : `ah ""x t,,t:iixi- tt, t„--,,,,- pif 'l-q. r .- ., I* 1 0' 9'-6I Dead 1977 2047 Live 2420 5324 Uplift 2709 Total 4397 7371 Bearing: Load Comb #3 #4 Length 2.16 3.63 Glulam-Unbal.,West Species,24F-V4 DF, 3-1/8x10-1/2" Self-weight of 7.55 plf included in loads; Lateral support:top=full,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection (in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 299 Fv' = 424 fv/Fv' = 0.70 Bending(+) fb = 3225 Fb' = 3840 fb/Fb' = 0.84 Live Defl'n 0.24 = L/468 0.32 = L/360 0.77 Total Defl'n 0.40 = L/283 0.47 = L/240 0.85 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fv' 265 1.60 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fb'+ 2400 1.60 1.00 1.00 1.000 1.000 1.00 1.00 1.00 1.00 - 4 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 4 Emin' 0.85 million 1.00 1.00 - - - - 1.00 - - 4 Shear : LC #4 = D+.75(L+S+W), V = 7371, V design = 6533 lbs Bending(+) : LC #4 = D+.75(L+S+W), M = 15434 lbs-ft Deflection: LC #4 = D+.75(L+S+W) EI= 543e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM_bxd=Artual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). Harper Project: t• I-louf Peterson. Client: Job# Righellis Inc. Et INEE I S.M1 kEfli Designer: Date: Pg.# I.AN65C?.PE ANCk:I F.'i;FSsU R'.Ev/J C 'e t.V- fl-es t e Wdl:= 10 lb •8-ft•20•ft Wdl= 1600.1b ft2 Seismic Forces Site Class=D Design Catagory=D Wp Wdl lTp 1.0 Component Importance Factor (Sect 13.1.3,ASCE 7-05) S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5%damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) F := 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) v Sms:= Fa-Ss Smi := Fv S Sds•_ 2'Sms Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 := 2.5 (Table 13.5-1, ASCE 7-05) FFp -•— .4apSds Ip C1 + 2 h I•Wp EQU. 13.3-1 R P J Fpmax:= 1.6•Sds•Ip•Wp EQU. 13.3-2 Fpmin:= .3'Sds'lp•Wp EQU. 13.3-3 Fes= if(Fp >Fpmax,Fpmax,if(Fp <Fpmj0,Fpmin,Fp)) F =338.5171-lb Miniumum Vertical Force 0.2-SdsWdl=225.6781-lb �xtt Harper Project: .i- tt, ol'-•!•• Houf Peterson Client: Job# Righellis Inc. ^ENGI!FcE • LRhN 45 Designer: Date: Pg.# L AN OS:.n PE ARCRiEC TSPS!;R'. V;R lb Wdl:= 10•—•8-ft-20•ft Wdl = 1600-lb ft2 Seismic Forces Site Class=D Design Catagory=D Wp Wdl – 1.0 Component Importance Factor (Sect 13.1.3, ASCE 7-05) 1P" S1 := 0.339 Max EQ, 5%damped, spectral responce acceleration of 1 sec. Ss:= 0.942 Max EQ, 5% damped, spectral responce acceleration at short period z:= 9 Height of Component h:= 32 Mean Height Of Roof Fa:= 1.123 Acc-based site coefficient @ .3 s-period (Table 1613.5.3(1), 2006 IBC) Fv:= 1.722 Vel-based site coefficient @ 1 s-period (Table 1613.5.3(2), 2006 IBC) Sms Fa Ss Sml := FVS1 2Sms Sds := Max EQ, 5%damped, spectral responce acceleration at short period 3 Exterior Elements & Body Of Connections ap:= 1.0 Rp:= 2.5 (Table 13.5-1, ASCE 7-05) .4ap-Sds-Ip � Fp.= R �1 + 2•zh/•Wp EQU. 13.3-1 Fpmax 1.6.Sds•Ip•Wp EQU. 13.3-2 Fpmin .3.Sds.Ip.Wp EQU. 13.3-3 Fes:= if(Fp >Fpmax,Fpmax,if(Fp <Fpmin,Fpmin,Fp)) F = 338.5171•lb Miniumum Vertical Force 0.2.Sds•Wdl =225.6781-lb - '. BY A 1 1\1 t: DATE JOB NO 1kiOF ) ac, ....,010 PROJECT: RE: _., w -• (-A---)oro1- PUNKJS • 17 2O 1- w O 2 2 L-1 J o J W < O La C= 1 --- tLcisi4ct v, 5c1-4t w z w 0 cc o_ z se_ 5unr\p5criN, Linci < O c9. z __. c k . - i 2 S 2 17:C31 <0, -1,-- ' y U / r 7 2 2 6 u_ Z Iti O I 1- EL O <3 1 ;.- (L) •-4 -- a) tO -2-, It, i _ - .... ,. By. ki\ft ejf_ (pi 4W\ DATE. r•N, ,„ + , JOB ,.. PROJECT: • RE* -D C, r 'C',-)rC\7 ,/ [2L, 0 El j c La - DEctwel ...i 0 li V0 Ul I- LII 0 2 NP .( r-1_-. 0 PCPA C. i 'Y (i La ebrrjrni\s) I 7 I 1(.0 a + WinCti! 1 0 I I kL --'' ' 0 1 I” U l a pi --a 0 x eC a. Z ( * — is -' i 1„ C,APIAC,IFY I I Z 2.bOaraS) I- I r: < 110 6.1 -Pc \ o z 0 U [CtOte:—H- 0 i 2 6 CC\c)0 C.!41.. :: (0 t L... z 0 6 ! 0 = v,.) /N,t .T-0 a \ ...-- '1 GI 5" pt--k--- I. , 3 f-• 0- I I ii. i : 0 0 0, ---- _____-__ I v_ -----> 0 a el. LET.X---,z: j ......, t.1- . i . . i 1 (22) SI r0 n S o ci t \,/ C T (4, ,. ,, , Ia )1. 2 ',,ii, 7 2_(,D K ) :_-_-- '7".`o----:--) nip+ 4' 40,---7 • si .- -.1' 1 ,,,, • Z > , \\i'i\?sc5N-N 3D5`14- x1-41 2: e- 12 0,C . . , ------ (12)(-2'2.0 i*') = 4O 1# :` o IC- • C- CICk\ narper HP Houf Peterson K ? Righellis Inc. TO 0 FROM El COMMUNICATION RECORD MEMO TO FILE Li E-,,,,„•PLArNEi4:, l/k^:C,IclaFE ARCHITECIS.SURVEV0,3 PHONE NO.: PHONE CALL:El MEETING:0 --I . -D ri P3 03 -< H - . c----- 2 m g2 0 u ii CO0 93 ::1) .--1 n h " o 5, ...,..) IC (N) 7#' r) r- ,..393 . 0*. ,---„, 2-..) 4./1-0 0) •-c• 8 cr. e di 8 AV r) r -> 0 - •0 ei -;,- 2 E # 5 .,.f (Isk ,• il ,. ' so F, 7 - —r- ..C, c) 0 1., d---- 1 ..: ';•,,,-:, / i_....' 4 s-------... . — --.....--....--.....—. -- is—ST 1 1 1 --1N -A 0 , 0 1 z p _ 1 J o o , 0 ' i • 4 a Harper 1. COMMUNICATION RECORD HP Houf Peterson Righellis Inc. To Li FROM El MEMO TO FILE 11 IFPGINEF,'' +PLA,,,ti LA,t,'.CAF.-.ARCHIIECT,.SUF,C,,,, PHONE NO.: PHONE CALL:Eil MEETING:E=I X 11 03 M X 75 ..?° —I e 0 I) 0 0 , If (1 - 3 gi 9..) ..c. -c. d -----0 00 Q u? 00 0 ..... e--„, d . 0 -.......3 It" 1 k .."....." 4.-.... 'C C r.° ..". ,....', rni I ) (....) 6-- , 7.1 L. 0 tri P (" ) _..— limper COMMUNICATION RECORD HP Houf Peterson Righellis Inc. TO El FROM El . MEMO TO FILE 0 FI,CINE 14L,.PLAER LA,E,r,F F 4:,i,111TECTS SU,'VE(OS: PHONE NO.: PHONE CALL:Ill MEETING:El . M -0 130 rr1 M 2 -< m 0 :-J (g) Z•a-7.- _11 . • ...., --u P ... ...t. --t • CNN\ \ Ci \--, -c--- A______.........._... , 0 C Ch ,....1 kr Vi C • 7 X C id C I i t I %•10.. P.:::11 , co -13 Z 0 e ‘. c..) . v' . tl G COMPANY PROJECT or% WoodWorks® SOFTWARE FOR WOOD OFSION June 8,2009 16:27 Hand Rail Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Point 2.50 200 lbs MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : 10. Dead 54 Live 100 100 Total 104 104 Bearing: Load Comb #2 #2 Length 0.50* 0.50* Cb 1.00 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft, Hem-Fir, No.2,2x6" Self-weight of 1.7 plf included in loads; • Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in) using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 405 Fb' = 1048 fb/Fb' = 0.39 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.20 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.14 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fv' 150 1.00 1.00 1.00 = 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 - 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 104, V design = 103 lbs Bending(+) : LC #2 = L, M = 255 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-in2 Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. it COMPANY PROJECT t WoodWorks® SOFTWARE FOR WOOD DESIGN June 8,2009 16:27 Hand Rail2 Design Check Calculation Sheet Sizer 8.0 LOADS: Load Type Distribution Pat- Location [ft] Magnitude Unit tern Start End Start End LIVE Live Full UDL 50.0 plf MAXIMUM REACTIONS(lbs)and BEARING LENGTHS(in) : ' - 3 10. 51 Dead 125 Live 125 125 Total 129 Bearing: 2 Load Comb #2 0.5##2 Length 0.50* 1.00 Cb 1.00 *Min.bearing length for beams is 1/2"for exterior supports Lumber-soft,Hem-Fir, No.2, 2x6" Self-weight of 1.7 plf included in loads; Lateral support:top=at supports,bottom=at supports; Analysis vs.Allowable Stress(psi)and Deflection(in)using NDS 2005: Criterion Analysis Value Design Value Analysis/Design Shear fv = 19 Fv' = 150 fv/Fv' = 0.13 Bending(+) fb = 256 Fb' = 1048 fb/Fb' = 0.24 Dead Defl'n 0.00 = <L/999 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.16 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.11 ADDITIONAL DATA: FACTORS: F/E CD CM Ct CL CF Cfu Cr Cf rt Ci Cn LC# Fit' 150 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fb'+ 850 1.00 1.00 1.00 0.949 1.300 1.00 1.00 1.00 1.00 - 2 Fcp' 405 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.3 million 1.00 1.00 - - - - 1.00 1.00 2 Emin' 0.47 million 1.00 1.00 - - - - 1.00 1.00 - 2 Shear : LC #2 = L, V = 129, V design = 106 lbs Bending(+) : LC #2 = L, M = 162 lbs-ft Deflection: LC #2 = L EI = 27e06 lb-int Total Deflection = 1.50(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction Lc=concentrated) (All LC's are listed in the Analysis output) Load combinations: ICC-IBC DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN • UNIT C-FRONT LOAD WoodWorks®Sizer 7.1 June 22,2010 14:24:15 - Concept Mode : Reactions at Base of Structure View Floor 2 : 8 ' 1280 L 1280 L v 442 D 442 D "_r' u1_Y _-, 15411204 L 14701 1047746 D)992 D -r: '1660 L 553 L ; 599D 200D �' inn Is 1080 L1667 L 640 L = 409 D 208 D 480 L 300 U 1100 L98 D L 75 L 409D409D (su \ 24D ;} 994 113 L i 3956 L 3978 P 8113E k 3658 D f 8633 D3386 D :..,.' w 4c\C(rf\\ \''() S • QO7tr o OU k-- WoodWorks® Sizer SOFTWARE FOR WOOD DESIGN UNIT C-REAR LOAD WoodWorks®Sizer 7.1 June 22,2010 14:22:33 Concept Mode : Reactions at Base of Structure View Floor 2 : 8 ' 1280 L 1280 L .;,.; 442 D 442 D _,_, IMP'26 L1 I W3189 L -< 1977 DSO ' 2047 D r .2068 L 689E L 731 D. 244 D 1080E 640E 409 D 208 D - 480E 1776 L! ` 300 U 1080L98DL 75L 409D409D 24D - 113E 1131160L50L2077L 113 LD 38113 L23 D8 D1656 D � 6 D D31863186 D ' C— eF9 Plain Concrete Isolated Square Footing Design: F2 fc:= 2500-psi Concrete strength fy:= 60000-psi Reinforcing steel strength Es:= 29000-ksi Steel modulus of elasticity ',fume 150•pcf Concrete density "Ysoil:= 100•pcf Soil density gall:= 1500-psf Allowable soil bearing pressure COLUMN FOOTING Reaction Totaldi:= 3978-lb Pd1:= Totaldi Totalll:= 3994-lb Pll:= Totalll Pt1:= Pdl+ Pll Pt!=7972-lb Footing Dimensions tf:= 10•in Footing thickness Width:= 30-in Footing width A:= Width2 Footing Area %net gall —tf-1'conc gnet= 1375-psf Pt! Areqd clnet Areqd = 5.798•ft2 < A= 6.25$t2 GOOD Widthreqd JAregd Widthreqd =2.41.ft < Width =2.50 ft GOOD Ultimate Loads ,:= Pd1+ tf•A•"Yconc Pu:= 1.4-Pdl+ 1.7-Pll Pu= 13.45-kips Pu gu A qu=2.15•ksf Beam Shear bcol 5.5-in (4x4 post) d:= tf—2-in 0:= 0.85 b:= Width b =30-in V„:= 0.-4• fc psi-b•d Vn= 13.6-kips Vu:= qu'r b —bcoll b Vu=5.49-kips < Vn= 13.6-kips GOOD J Two-Way Shear 2 bS:_ 5.5-in Short side column width bL:= 5.5-in Long side column width b0:= 2-(bS + d) + 2•(bL+ d) bo= 54-in (3c:= 1.0 V4 + 8 fc-psi-b•d V„=40.8-kips Aviv— (3 3.pc Vrimax := (1).2.66• fc•psi•b•d V , = 27.13-kips V := qu rLLb2 —(bcol+ d)2] Vu= 10.73-kips < Vilma, =27.13-kips GOOD NvyL� Flexure (b —bcol 2 1 Mu qui ( ].(_}b Mu=2.8•ft kips \ 2 2 0.65 b•d2 3 S:= S=0.185 ft 6 Ft:= 5.0• fc psi Ft= 162.5-psi Mu ft:= _ ft= 105.14-psi< Ft= 162.5-psi GOOD S Jse a 2'-6"x 2'-6"x 10" plain concrete footing — 1 /* -----. By. DATE V i /..)tiF.\1 , Ok. k--) JoB No n i i 9 0 OF PROJECT: RE: Ve 1--( WM ;! Tockw3 7 ---_, w E S 6. s )c( B o i 1614 nois _J 0 II if.- O W aSc t,(a?SC ): 300 pi_c i,j.rio) 2 LLI TT 2 -- S Vt,C21e,Je1,0(1Ipsc) 7— '0"b F-S: 3 toor 40,N) 650 pc0C1-til)Q1127):: 333 cc 6 100 kk) pLe- w z Iii . (8 C 0(2 1.e\irVf:.-:)(4 0 v-y--,,, " ):: ()tic) PAF .S koor 0 Et- - — -- < o z To-ko,\ (,)Ck C,), 7— v-1-bt i- toow D 2 MCi\Y Gb?z-- ' OO 2, c-. --, IsOopt_P • U1/4„) 2 0 \ libt 4- (Ca 63 S CSOOod 0 :: II ,--- __, 2 0 E 0 a Z c , o 1 H a_ Di...; 5.(ll..):7-, C300 f)(., - LAJoAtl (112.1.ev ('7.:,s ip c = a7D,L4- PiF: ,. koor• 40110( ) iao pc c 0/1-2_ 0),,2.) :=-. 332 pLP ,s‘ c. fr.) (T I tl) t3.0 u,-) (t51 1-.. ?SF )--:- •?1,)! pi_ .i.,:- f y) C C\t;)( 915- = 0 (.; ,., ,...., al. = , '16 t -go a3\-',C7 tOOLAJ ..--- 1SOO-t-) _., .. .,: 0 -= Some, aL A rotivd,;:, -FL.: \'3'^i3 cA k, ‘013-,..,.) (...k) 7:--- L 00 : ('6)(2 X i32--)z- (-4 t(c pLF- -5 toc r 333c 51fro • u,)`) :7100 v) LL c? (t.'f,1)(.,40)(z) 7- 12%0 cL' JAYA- ri_ : LA) 7---- 1 (1— ^x• 2...3INJ -% us-e <ay t fr•J BY: it\ DATE: I JOB NO: Cc:A\j.43C1 OF PROJECT: • RE: de" C frank Loc . 8.1Sv- K _J 1 1-10 - ( 3 0 2 7.01 tVi()1° Li 0 0 ‘1,5 &5' IX a. UNec,14./._ Nei +um 1\1\0 T- \to to Ito, o (coo k2:bra Oa 1:74b 01. (1-}) acaS 0 2 > s .- ct 0 Mor z _Mick at.c1 ts 9-mo.x 0 C12.Cit Y__sc 31-(B-2c) 3 CS 15)(1 b-Z(3i00 rID c5 ‘27 - C— nr-- - B en ey- Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:53 AM - Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Front Load.etz\ M33=83.44[Kip*ft] M33=-12.21 [Kip*ft] A X • C- �` � Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:54 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Front Load 2.etz\ M33=43.5[Kip*ft1 M33=-40.04[Kip°ft] A X ps._, ,,kc../ DATE j (...) P JOB NO.: „am __o 9 O PROJECT: RE: (), T C Rear Load O W ley ,,Mi B I Li I JP CC U O w II-4-1---- CC a Z Mr = 54 ,SZ ,.fz o Me,c, DL(GO4- a, (6: c)(1..33) = (Is.3q fG1DL z Mea = °101_ i- CILLO t (.t.0-0 = 3C.,LL I.99 --- 2 1;5(S ,5'0 < giCtL(4., tC31 DI.. bL - G . tZG V.-;25 Acr � z o Ft F- 0 d i X " 4. l0 M ,D �' + L`9 ♦IN ,0r C. G M L (12, (o,-)-- ` - - a `. ' , 2( ta_;' I— "` 3 t � .f 0 OU cn = GJ r. $. N a 3 entley Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 10:57 AM Units system: English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\talcs\Unit C\FDN\Rear Load 2.etz\ M33=36.82[Kip*ft] M33=-50.22[Kip'ft] X \ i ) - "-• 0 AD - CD CD -- 0 0 • (34...c; Jr.?, X.. I's- C • -AO S'1 -> is-A -C17-17DVI-7 x-ok,A.A J-r,1 0 n ' c)f, • W P Ig c6" -E-01 —7,11-) 4 crS`b ‘e > IQWS/1 0 h (2)"11 (:))7.)e., 41 ..h‘e cf-9-10 + ( ) 1.4 1--A 100 '1S Utial-IdA --Va\-0 -a tr 0 ra00'1S ("Y'S -Hun '3H WD3roefd • 0 017041,0) oN 9or 1 Ot) '1(T .............. Bentley- Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 1:17 PM Units system:English File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\talcs\Unit C\FDN\Interior.etz\ M33=60.31 [Kip'ft] M33=-63.58E-12[Kip`ft] m33-18.91E-10[Kip`ft] M33=-21.22[Kip-ft] A X I� n ey_ Harper Houf Peterson Righellis Inc. Current Date:6/22/2010 1:17 PM Units system:English . File name:O:\HHPR Projects\CEN-Centex Homes(309)\CEN-Plans\CEN-090 Summer Creek Townhomes\calcs\Unit C\FDN\Interior 2.etz\ M33=55.84[Kip*ft] • • M33=65.17E-11[Kip*ft] — — M33=21.46E-11 [Kip-ft] M33=-25.6[Kip*ft] a X C;Ft 3 . ,, --›,O - ; ti,2. -01 ‹, --.1..)A E . 2.,+L. --;--- '-'-i; 0.?;. cr2A , C'ziboh,o - I '6)(.90or"))(..10(2S)0)0V0 =--- \-'W 0 N % 60h 0 ----- c-ti x€)(..,o ocis)Cra'o)/ Coo o'o'yG 5 0 ="o 0 -::-sy c3,aL -a ..),-,-..; -k..)-. :A (s) 7_. ' .--' 0 '--'(-40-4-,;1 i) \°'2: t- • c,,"2.;) 7“ '''', -4' 0' „-,--, 0 (...,0 ezp..„ .0 (--„:-00z 2 ,..., . , - CD 7, Cil = 0 0 s}/c4.4-c Ok la. 4 0,I 0'6 1 NA ---- QS'07)i,i,1 q- CV Sc:‘ '.- Ic'''"ia I ---co-e.0)1 = toli A ‘v, coolol) C-1- - 4 *>\0*: 1"-.)A Ne,‘e'-Lc) --:-- Czkict.0-42t)( 00'91,7sS'90b! 0 z LI r, st1 p m .. 2 -041 e15S4 0 f-5 V ' '0 i,q1 a) t- r\,‘) "Y'''a 01 < K ( c:61q0410.'4,,Z)(900 04:1X567:1)0 b'0 -:LAVV2 (7) coC) 'a Q.) OX Et 1 :- ' ..'j° 1;11 -a s # c') , E ri z K o ...1A-A- or ..::-..)--e.,... =•• 4...)1 NA.A w m o d m z - -)TA ‘ 'Cn = '1004,1114 11 0 0 , :103 road 10 °b 0 ri a :0,,.0rc) 0Air Cr) (-,- , .\'1 ,... 1, 1&._, :31V0 'BY vi‘L....../ DATE 13 JOB NO. ...,, '7, '` 0 P PROJECT: • RE: 7 !_i w -• ,t'!('-'-*e IC 0-1- 477. 4-.) -r,(irk ll 1- O IA F— w , IT,c -,-- ri,e. i, ,,,,,,,,,,,,, Mov z--- S ,09 2• L , j ..,..- x < (0 I ' +-3 'a'\\14, t DLCA) - di(.4z, : t, Z = ----- ---.-, ) 4r ii: i R ,.1 .. - „a•-,+."' / _ z 0 2 1 >CM 01- <'4-c,1 Fluor-40\- 7 0 ,--_-_, i--- ' _._, of , i Qs 2 O — Cr 0 LL Z 1 0 11 1 0 . - _ m -1- 9-(-},2D - 5),Oct _--, 4.54 c---7 0 (--1 ..a +. I, . (71 , I , N -1-fr' , -,- 7:!;-- ,:5„,_ , tO r---''k _— ( (k. C. M i * 0 Y;L— WL IL., ( b :': — , ',»;),.)-2 '.‘-) i).- e 1 r V, r r: C 6 --m) .„ ) ) 1.) 7 — , ,--5 c : : a _., • . ACI 318-05 Appendix D 1.0" Diameter Bar Capacity at Portal Frame Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc= 3000 psi h'ef= 3.50 inches hef= 12.00 inches (into the Fc Stem = 8.00 inches Note: hef above is the the embedment into or cmax= 5.25 inches the foundation and does not consider stem wz Fnd Width = 36.00 inches c = 2.25 inches cmin= 18.00 inches Wc,N= 1.00 cast-in-place anchor Wc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction fact, Calculations Calculations ANc= 68 inz AN= 1296 inz AND= 110.25 in` AND= 1296 in` Nb= 8,607 pounds Nb= 55,121 pounds Wed,N= 0.8286 Wed,N= 1.00 Ncb= 4,399 pounds Nth= 55,121 pounds 4NDb= 3,299 pounds 4NDb= 41,341 pounds • Combined Capacity of Stem Wall and Foundation ciNDb= 44,640 0.750Db= 33,480 Concrete Side Face Blow Out Givens Abrg = 2.15 in` fc= 3000 psi cmin= 18.00 inches = 0.75 strength reduction factor Calculations Nsb= 231,191 pounds 4)Nsb= 173,393 pounds Concrete Pullout Strength Givens Abrg = 2.15 in` fc= 3000 psi = 0.75 strength reduction factor Calculations Np= 51,552 pounds 4)Np= 38,664 pounds • Steel Yield Strength Givens ft= 58,000 psi A= 0.606 in2 = 0.80 strength reduction factor Calculations NS= 35,148 pounds SNS= 28,118 pounds < 33,480 Ductility Met Holdown Check Holdown: HDU14 Holdown Capacity= 14,930 pounds 1.6*Capacity= 23,888 pounds • 23,888 < 28,118 Hotdown Checks ACI 318-05 Appendix D 1.125" Diameter Bar Capacity at Standard Stem Wall Concrete Breakout Strength Stem Wall Capacity when govern by 3 edges Foundation Capacity Givens Givens fc= 3000 psi fc.= 3000 psi h'ef= 17.00 inches hef= 12.00 inches (into the Foundation) Stem = 8.00 inches Note: hef above is the the embedment into only the the foundation and does not consider stem wall embedment Fnd Width = 36.00 inches cmm = 2.25 inches cmin= 18.00 inches Wc,N= 1.00 cast-in-place anchor VVc,N= 1.00 cast-in-place anchor k= 24 cast-in-place anchor k= 24 cast-in-place anchor = 0.75 strength reduction factor = 0.75 strength reduction factor Calculations Calculations ANc= 408 in` AN= 1296 in` ANO= 2601 in` ANO= 1296 Int Nb= 92,139 pounds Nb= 55,121 pounds Wed,N= 0.7265 Yed,N= 1.00 Nth= 10,500 pounds Ncb= 55,121 pounds •Ncb= 7,875 pounds •NOb= 41,341 pounds Combined Capacity of Stem Wall and Foundation (pNct,= 49,216 0.75(1)NOb= 36,912 • Concrete Side Face Blow Out Givens Abrg = 2.75 in` fc= 3000 psi cmin = 18.00 inches = 0.75 strength reduction factor Calculations Nsb = 261,589 pounds 4Nsb = 196,192 pounds Concrete Pullout Strength Givens Abrg = 2.75 in` fc= 3000 psi 41 = 0.75 strength reduction factor Calculations Np= 66,000 pounds 4)NP= 49,500 pounds s Steel Yield Strength Givens ft= 58,000 psi A= 0.763 in2 = 0.80 strength reduction factor Calculations Ns = 44,254 pounds 4)Ns = 35,403 pounds < 36,912 Ductility Met Holdown Check Holdown: HD19 Holdown Capacity= 16,380 pounds 1.6*Capacity= 26,208 pounds 26,208 < 35,403 Holdown Checks