Report (15) WI&T
I _ 3kSws7S71171rc
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 1 of 72
03 February 2015
Hansen Architectural Systems
5500 SE Alexander ST
Hillsboro, OR 97124 RECEIVED
SUBJ: CLEARVUE RAILING SEP 2 1 2015
ALUMINUM RAILING
CITY OF TIGARD
PICKET,CABLE AND GLASS INFILL SYSTEMS BUILDING DIVISION
SERIES 100,200, 300,350 AND 400 SERIES SYSTEMS
The ClearVue Railing System (CVR) utilizes aluminum extrusions and glass infill to construct
building guards and rails for decks,balconies, stairs,fences and similar locations. The system is
intended for interior and exterior weather exposed applications and is suitable for use in all
natural environments. The CVR may be used for residential,commercial and industrial
applications. The CVR is an engineered system designed for the following criteria:
The design loading conditions are:
On Top Rail:
err 7r-r,Concentrated load= 200 lbs any direction,any location , py
Uniform load= 50 plf, any perpendicular to rail
On In-fill Panels:
Concentrated load =50#on one sf.
Distributed load= 25 psf on area of in-fill,including spaces
Wind load = 28.5 psf typical installation (higher wind loads may be allowed based on
post spacing and anchorage method)
Refer to IBC Section 1607.7.1 for loading.
The CVR system will meet or exceed all requirements of the 2000,2003,2006,2009 and 2012
International Building Codes and International Residential Codes,and state building codes
based on these versions of the IBC, and 2005 and 2010 Aluminum Design Manual. Wood
components and anchorage to wood are designed in accordance with the 2012 National Design
Specification for Wood Construction.
Edward Robison,P.E.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 2 of 72
Typical Installations:
Refer to Guard Posts Mounted To Wood Decks Residential Installations 42"Guard Height
report for other details and mounting requirements for mounting to wood framing in
compliance with the 2009 IBC and 2009 IRC.
Surface mounted with base plates:
Residential Applications:
Rail Height 36" or 42" above finish floor.
• Standard Post spacing 6'on center maximum.
Bottom rail intermediate post required over 5'.
All top rails
Commercial and Industrial Applications:
Rail Height 42" above finish floor.
Standard Post spacing 5' on center maximum.
All top rails
Core pocket/embedded posts or stainless steel stanchion mounted:
Residential Applications:
Rail Height 36" or 42" above finish floor.
Standard Post spacing 6'on center maximum, series 100
8'on center Series 200,300,350 and 400.
Bottom rail intermediate post required over 5'.
Commercial and Industrial Applications:
Rail Height 42" above finish floor.
Standard Post spacing 6' on center maximum, series 100
6'on center Series 200, 300, 350 and 400.
Contents: Page: Contents: Page:
Signature/Stamp Page 3 Picket Infills 54 - 57
Load Cases 4 Grab Rails and Brackets 57 - 61
Wind loading 5 Cable Infills 62 - 72
Glass Infill 6 - 9
Posts and mountings 10 - 27
Series 100 28 - 31
Top Rails 32 - 43
Bottom Rails 44 - 45
Mid Rails 46 - 47
Rail Connection Block 48
Rail End Caps 49 - 50
Wood Fastener Tables 51 - 53
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@ narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 3 of 72
SIGNED: 02/19/2015
� eSSion./F
.t• F I C A T s/1 �D C. RQ ��
'� 42123 LICENSED 2 ••, 9�i
v PROFESSIONAL / .':.•EDWARD C. 0+lt
EDWARD C. * ENGINEER ; 01 ROBISON 0
\ �,,�,,; s :I 0 - •. 11576-S i c : E 12/31/2015 , r
Z
• ivi a� cy
-.1;A:'"• '".,
lONAv' S lv•
EXP 04/30/2016 ► N0.175., ...—
\\ ,..--
\� �EXP 03 1/2017 ���...--
pSSIp
d 1U No. C 65883 Z EDWARD C.ROBISON % EDWARD C. ROBISON
�i/,I'S '/may ��y� `'l;�,�l"��_�f��� ,tj�;i•. 100688 ZQi
,q•
4. p��P �� ,i��� ��\��OIVAI ENG
OF CA- ""'// FIRM#F-12044
EXP 09/30/2015 EXP 12/31/2015
EXP 12/31/2015
�P��
C R0.i - • , '•.
O OCEN SC%
• 63(% Edwar• C. Rob�Lsen
��/, EDD C.C‘
/t " s�-i
; �•F g
( WART\
TRUCTURAL co
No. 49757
-P„ ,.(t-
,4,
41 ORO' ��� 088030 �GiST
SS�ONAL E�� •A'�•�ssP�'�
EXP 02/28/2017 EXP 03/31/2017 XP 06/ 0/2016
?x'—D PROP
i,NGINfkc4 • C. RO
18195PE .•'So) wAsli 76).<5,
EDWARD C.
1 Lr4i3: ��O ROBISON
OREGON �`e . v. 1800707
FO 6 O 9129 A�qR0 C. 0'` . Nappy
OC G/STEel) I
EXP 1 2/31/2016 SIGNAL
EXP 1 1/3 0/2 01 6
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 4 of 72
LOAD CASES:
Glass rail Dead load = 5 plf for 42" rail height or
less.
Loading: ,
Horizontal load to top rail from in-fill:
25 psf*H/214).4.40,
;�► oc SU tf
iti '` P
Post moments
Mi= 25 psf*H*S*H/2
= 12.5*S*H2 /
For top rail loads: WINO LOAD=w psf
Mc = 200#*H on face area
Mu = SOplf*S*H LL=25 PSF entire area
including spaces /4
For wind load surface area: r` H
MW = w psf*H*S*H*055 =
=0.55w*S*H2
Solving for w :
w=M/(0.55*S*H2)
Wind load equivalent for 42" rail height, 5'post
spacing 50 plf top rail load:
M„ = 50plf*5'*3.5' = 875#' = 10,500#"
w= 875/(0.55*5*3.52) = 26 psf
Allowable wind load adjustment for other post spacing:
w = 26*(5/S)
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 5 of 72
WIND LOADING
For wind load surface area is full area of guard:
Calculated in accordance with ASCE/SEI 7-05 Section 6.5.14 Design Wind Loads on Solid
Freestanding Walls and Solid Signs (or ASCE/SEI 7-10 Chapter 29.4). This section is
applicable for free standing building guardrails, wind walls and balcony railings that return to
building walls. Section 6.5.12.4.4 (29.6) Parapets may be applicable when the rail is along a
roof perimeter. Wind loads must be determined by a qualified individual for a specific
installation.
p = gp(GCp) = q,GCf (ASCE 7-05 eq. 6-26 or 7-10 eq. 29.4-1)
G =0.85 from section 6.5.8.2 (sec 26.9.4.)
Cf= 2.5*0.8*0.6 = 1.2 Figure 6-20 (29.4-1) with reduction for solid and end returns,will vary.
QZ = KZKZtKdV2I Where:
I = 1.0
KZ from Table 6-3 (29.3-1) at the height z of the railing centroid and exposure.
Ka=0.85 from Table 6-4 (Table 26-6).
KZt From Figure 6-4 (Fig 26.8-1) for the site topography,typically 1.0.
V=Wind speed (mph) 3 second gust,Figure 6-1 (Fig 26.5-1A) or per local authority.
Simplifying -Assuming 1.3 <_ Cf-<2.6 (Typical limits for fence or guard with returns.)
For Cf= 1.3: F= qh*0.85*1.3 = 1.11 qh
For Cf= 2.6: F= qh*0.85*2.6 = 2.21gh
Wind Load will vary along length of fence in accordance with ASCE 7-05 Figure 6-20 (29.4-1).
Typical exposure factors for KZ with height 0 to 15' above grade:
Exposure B C D
KZ= 0.70 0.85 1.03
MINIMUM WIND LOAD TO BE USED IS 10 PSF.
Centroid of wind load acts at 0.55h on the fence.
Typical wind load range for I = 1.0 and KZt= 1.0
Table 1: Wind load in psf Cf= 13 Wind load in psf Cf=2.60
Wind Speed B C D B C D
V 0.00169V2 0.00205V2 0.00249V2 0.00337V2 0.00409V2 0.00495V2
85 12.2 14.8 17.9 24.3 29.5 35.8
90 13.7 16.6 20.2 27.3 33.1 40.1
100 16.9 20.5 24.9 33.7 36.9 49.5
110 20.5 24.8 30.1 40.7 49.5 59.9
120 24.3 29.6 35.8 48.5 58.9 71.3
130 28.6 34.7 42.0 56.9 69.1 83.7
140 33.1 40.2 48.8 66.0 80.1 97.1
Where guard ends without a return the wind forces may be as much as 1.667 times Cf=2.6 value.
When I=0.87 is applicable (occupancy category I) multiply above loads by 0.87.
For wind loads based on ASCE 7-10 wind speeds,figures 26.5-IA,B and C,multiply the wind
loads by 0.6 to convert to Allowable Stress Design loads.
For example -Exp B with Cf= 1.3; 7-05 wind speed = 85 mph w= 12.2 psf:
7-10 wind speed= 110mph w =0.6*20.5 = 12.3 psf (ASD wind loads used herein)
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 6 of 72
GLASS STRENGTH FULLY TEMPERED INFILL PANELS
All glass is fully tempered glass conforming to the specifications of ANSI Z97.1,ASTM C
1048-97b and CPSC 16 CFR 1201. The average Modulus of Rupture for the glass Fr is 24,000
psi. In accordance with UBC 2406.6 or IBC 2407.1.1 glass used as structural balustrade panels
shall be designed for a safety factor of 4.0. This is applicable only to structural panels (glass
provides support to railing). Glass not used in guardrails may be designed for a safety factor of
2.5 in accordance with ASTM E1300-12a.
Values for the modulus of rupture,FR,modulus of Elasticity,E and shear modulus,G for glass
are typically taken as (see AAMA CW-12-84 Structural Properties of Glass) :
FR = 24,000 psi.
E = 10,400 ksi. While the value of E for glass varies with the stress and load duration
this value is typically used as an average value for the stress range of interest. I
G= 3,800 ksi: This is rarely used when checking the deflection in glass. The shear
component of the deflection tends to be very small,under 1% of the bending component and is
therefore ignored.
p =0.22 (Typical value of Poisson's ratio for common glasses.
The safety factor of 4 is dictated by the building code (IBC 2407.1.1). It is applied to the
modulus of rupture since glass as an inelastic material does not have a yield point.
There is no deflection limits for the glass in guards other than practical limits for the opening
sizes,retention in the frames and occupant comfort. Refer to ASTM E 1300-12a for a standard
method of calculating deflections but the deflection limits are concerned with glazing in windows
and similar parts of the building envelope rather than a free standing guard. IBC 2403.3 applies
a limit of L/175 or 3/4" for the supporting frame. From IBC Table 1604.3 footnote h similar
types of construction have a limit of L/60. ICC AC 273 Acceptance Criteria for Handrails and
Guards paragraph 4.2.4 applies a deflection limit of h/12 to the posts and L/96 to the top rail.
The shear strength of glass tracks closely to the modulus of rupture because failure under shear
load will be a tensile failure with strength limited by the modulus of rupture. Thus shear loads
are transformed using Mohr's circle to determine the critical tension stress to evaluate the failure
load. The safety factor of 4 is applicable to this case same as the bending case. Thus the shear
stress is limited based on principal stresses of 0 and 6,000 psi to 6,000/2 = 3,000 psi.
Bearing stress can be derived in a similar fashion with the principal stresses being—6,000 psi and
6,000 psi so the bearing stress = 6,000 psi.
Bending strength of glass for the given thickness:
I= 12"*(t)3/12= (t)3 in3/ft
S = 12"*(t)2/6= 2*(t)2 in3/ft
For lites simply supported on two opposite sides the moment and deflection are calculated from
basic beam theory
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 7 of 72
MW =W*L2/8 for uniform load W and span L or
Mp = P*L/4 for concentrated load P and span L,highest moment P @ center
Maximum wind loads:
W=Ma*8/L2 for uniform load W and span L(rail to rail distance)
Deflection can be calculated using basic beam theory:
A = (1-v2)5wL4/(384EI) for uniform load
For concentrated load:
A = (1-v2) PL3/(48EI)
Maximum allowable deflection: Use L/60 deflection limit for infill. This will prevent glass from
deflecting enough to disengage from the frame.
For uniform load (wind load)
Solving for w
w = [t3*1.676*108]/L3
Solving for L
L= [(t3*1.676*108)/w]1/3
Solving for t
t= [L3w/(1.676*108)]1/3
For Concentrated load
Solving for P
P= (8.74*106t3)/L2
Solving for L
L= [8.74*106,113/p]1/2
Solving for t
t= [PL2/(8.74*106)]1/3
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 8 of 72
From IBC 2407 the minimum nominal glass thickness for infill panels in guards is 1/4"
1/4"FULLY TEMPERED GLASS
Weight= 2.89 psi
tave=0.223"
For 1/4" glass S = 2*(0.223)2=0.0995 in3/ft
Mallowable= 6,000psi*0.0995 in3/ft= 597#"/ft
For FS = 3.0 (no fall hazard,glass fence or wind screen)
Mall = 597"#*4/3 = 796"#
Moment for 36" wide lite (infill for 42"rail height) 25 psf or 50 lb load
Mw = 25psf*3'2*12"/'/8= 337.5"#
Mp = 50*36"/4 =450"#
Moment for 42" wide lite (infill for 48"rail height) 25 psf or 50 lb load
Mw = 25psf*3.5'2*12"/'/8= 459.4"#
Mp= 50*42"/4 = 525"#
for 36" wide lite (infill for 42"rail height)
W= 597"#*8/(3'*36")= 44 psf
for 42" wide lite (infill for 48"rail height)
W= 597"#*8/(3.5'*42")= 32.5 psf
Deflection:
36" wide lite (infill for 42" rail height) 25 psf or 50 lb load
L/60 = 36/60 =0.60
A = [(1-0.222)*25*364/0.253]/(9.58 x 109) =0.27"
or A = (1-0.222)*50*363/(4.992*108*0.253) = 0.285"
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 9 of 72
3/8"FULLY TEMPERED GLASS
Weight= 4.75 psi
tave= 0.366"
For 3/8" glass S = 2*(0.366)2 =0.268 in3/ft
Mallowable= 6,000psi*0.268 in3/ft= 1,607#"/ft
For FS = 3.0 (no fall hazard,glass fence or wind screen)
Mall = 1,607"#*4/3 = 2,143#"
Moment for 36" wide lite (infill for 42"rail height) 25 psf or 50 lb load
MW = 25psf*3'2*127/8= 337.5"#
Mp= 50*36"/4 = 450"#
Moment for 42" wide lite (infill for 48"rail height) 25 psf or 50 lb load
MW= 25psf*3.5'2*12"/'/8= 459.4"#
Mp = 50*42"/4 = 525"#
for 36" wide lite (infill for 42"rail height)
W= 1,607"#*8/(3'*36")= 119 psf
for 42" wide lite (infill for 48" rail height)
W= 1,607"#*8/(3.5'*42")= 87.5 psf
Deflection:
36" wide lite (infill for 42"rail height) 25 psf or 50 lb load
L/60 = 36/60 =0.60
A = [(1-0.222)* 25*364/0.3663]/(9.58 x 109) = 0.085"
or A = (1-0.222)*50*363/(4.992*108*0.3663) = 0.090"
Check maximum wind load based on deflection:
36" width w = [0.3663*1.676*108]/363= 175 psf(does not control)
42" width w = [0.3663*1.676*108]/423= 110 psf(does not control)
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 10 of 72
2-3/8" Square Post
6061-T6 Aluminum
Post
-Area 0.995"
IXX= Iyy =0.863 in4
S = 0.726 in3
r= 0.923 in
J =0.98 in
k s 1 for all applications
Allowable bending stress ADM Table 2-21
S1 = LB SC = LB • 0.726 = 1.58 LB
0.5 (Iy J)1/2 0.5 (0.863 • 0.98)112
for LB s 146= 92" -› FCB=21 ksi
158
for LB > 92" FCB= 2.39-0.24(1.58 LB)1i2
POST EXTRUSION 2-%a square
Man =0.726 • 19i = 13,794#" = 1,149.5#ft
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 11 of 72
Post 45° Corner
6061-T6
V7-"°
Post Section Properties
-Area 1.261"
L = 1.120 in4
Iyy = 1.742 in4
Sxx =0.812in3
Syy =0.900 in3
rxx =0.975 in
ryy = 1.175 in
J = 1.146 in �o
k= 1 for all applications
Allowable pending stress ADM Table
2-21
Si = LB Sc = LB • 0.900 = 1.58 LB
0.5 -✓(Iy J) 0.5 ✓(1.120*1.146)
for LB <_ 146 = 92" FCB=21 ksi
1.58
for LB > 92"FCB= 2.39-0.24(1.58 LB)1/2
Man =0.812 • 19ks, = 15,428 #" = 1,286#ft
Connection to base plate
Post uses standard base plate
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 12 of 72
Connection to base plate Cp
Failure modes -› screw tension
-� screw shear
,.3125"
-› screw withdrawal 8125"
For screw withdrawal = , ( 1 11 f f T1
See ADM 5.4 M T,
From testing screw engagement in slot is adequate 7
2.28" -t Cb
so that failure is consistently screw rupture without
withdrawal from the slot.
4.375"
Base plate to post screws are AISI 4037 steel alloy
fabricated in accordance with SAE J429 Grade 8 E 5
and coated with Magni 550 corrosion protection.
Refer to base plate attachment strength test report
for determination of allowable screw tension
strength and allowable moment on the connection.
Average failure moment= 22,226"#
Safety factor calculated in accordance with ADM 9.3.2 = 2.07
Allowable Moment on the base plate to post connection:
Mallowable= 22,226"#/2.07 = 10,895"#
Allowable screw tension load:
Ta11 = 10,895"#/(2*2.28") = 2,389# From testing
Calculated strength:
Screw tension — Ftu =0.0376 • 150 ksi = 5,640# Screw rupture on net tension area
For fracture SF= 1.6/(0.9*0.75) = 2.37 — 5,640/2.37 =2,380#
Using the calculated screw strength
Mall= 2 • 2,380# • 2.28" = 10,852"#
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 13 of 72
Base plate bending stress
Fr= 24 ksi Smin = 5" • 3/82 =0.117 in3
6 2 3/8"SQ.AL.TUBE
Base plateallowable moment
mall = 24 ksi • 0.117 in3 = 2,812 "# - '
— Base plate bending stress .
B
TB = C \ BUTTON
M = 0.8125" • TB • 2 . ;
LOCK NUT
Tall=2 0 g 125 1,730# 4.1.0004 e'! � BUTTON_ WASHER
���
��E�a���� �5x5x3/8 BASE
��■� PLATE
Maximum post moment for base plate strength
Mall = 2 • 1,730 • 4.375" = 15,142#" ®% BASE PLATE SCREW
Limiting factor= screws to post 3/8 BOLT
Muit= 2 • 5,314# • 2.28" = 24,232#"
Mall= 2 • 2,293# • 2.28" = 10,500"#
Refer to Guard Rail Post To Base Plate Screw Connection Strength report dated 11/22/2010 by
this engineer for testing results. Testing has confirmed that screws fail in tension and not pullout
from the screw slot, 2010 ADM J5.5.1.2 equation J5-7 is not applicable based on testing.
For factors of safety refer to Aluminum Design Manual Section 5.3.2.1
and SEI/ASCE 8-02 section 5
BASE PLATE ANCHORAGE
TDes= 10,500 = 1,195#
2 • 4.375"
adjustment for concrete bearing pressure:
a= 2*1,195/(2*3000psi*4.75") =0.087"
T'Des= 10,500 = 1,206#
2 • (4.375"-0.087/2)
For 200#top load and 42" post ht
T200 = 8,400 = 960#
2*4.375"
For 42"post height the maximum live load at the top of the post is:
Pmax = 10,500"#/42" = 250#
For 50 plf live load maximum post spacing is:
Smax = 250#/50 plf= 5'= 5'0"
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 14 of 72
RAISED BASEPLATE DESIGN AND ANCHORAGE—
Baseplates are raised up and bear on nuts installed on epoxy anchored threaded rod.
Guard rail Height: 42"
loading: 200#concentrated load or cp Ts
50 plf uniform load on top rail
or _
25 psf distributed load on area 1 25" V
or 8125"k
25 psf= 80 mph exp C wind
E , E ,
load: �, IT I1 11 11
m, b
A
Design moment on posts: [ [ j 2.28" T Cb
M1 =42"*200#= 8,400"# 3.75"
M1 =42"*50plf*5ft= 10,500"#
MW= 3.5'*5'*25psf*42"/2 = 9,188"# 4.375"
5"
Design anchorage for 10,500"# r
moment.
Design shear= 438# (wind)
Bolt tension for typical design
T=10,500/(2*3.75)=1,400#
Anchor to concrete:
3/8" x 5" all-thread embedment depth= 3.5" and 4,000 psi concrete strength.
Hilti HIT-RE 500SD per ESR-2322, Simpson Set-XP per ESR-2508 or other adhesive capable of
developing the required strength.
T= 2,700# Adjustment for anchor spacing = 3.75"
Cs@ 3.75" = 1-0.20[(5.625-3.75)/4.5] = 0.917
Adjustment for edge distance = 2-1/8"
Ce= 1-0.30[(3.375-2.125)/2.25] =0.833
T' = 2,700#*0.917*0.833 = 2,062#
Check base plate strength: Bending is biaxial because it sits on bearing nuts:
M = (3.75"-2.28")/2*1,400#*2*-✓2 = 2,910"#
Bending stress in plate
The effective width at the post screws: 3.86"
S = 2*3.86"*0.3752/6 =0.181 in3
fb = 2,910/0.181 = 16,080 psi
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 15 of 72
Allowable = 19 ksi
Bearing on nut:
Area= (0.82-0.56252)rt= 1.0 in2
fB = 1,400#/1.0 = 1,400 psi - Okay
Screws to post—okay based on standard base plate design
Posts okay based on standard post design
OFFSET BASE PLATE
Offset base plate will have same allowable loads as the standard base plate.
Anchors to concrete are same as for standard base plate.
BASEPLATE MOUNTED TO WOOD—SINGLE FAMILY RESIDENCE
For 200#top load and 36" post height: M =
200#*36" = 7,200"#
11.1
T200= 7,200 = 823# Zx FASCIA
2*4.375" BOARD
Adjustment for wood bearing: F
eFLOOR
Bearing Area Factor: -
Cb = (5"+0.375)/5" = 1.075 PIE
MINI If
a= 2*823/(1.075*625psi*5")= 0.49" r,
T= 7,200/[2*(4.375-0.49/2)]= 872#
Required embed de the 3/e x 4' ss
p LAG SCRBV 4 0 EACH
POST LOc,AlION. 2) 2 X 8
For protected installations the minimum
embedment is:
le= 872#/323#/in = 2.70" : +7/32" for tip = 2.92"
For weather exposed installations the minimum embedment is:
le = 872#/243#/in = 3.59" : +7/32" for tip = 3.81"
FOR WEATHER EXPOSED INSTALLATIONS USE 5"LAG SCREWS AND INCREASE
BLOCKING TO 4.5" MINIMUM THICKNESS.
REFER TO GUARD POSTS MOUNTED TO WOOD DECKS RESIDENTIAL
INSTALLATIONS 42"GUARD HEIGHT REPORT FOR OTHER DETAILS AND
MOUNTING REQUIREMENTS FOR MOUNTING TO WOOD FRAMING. MAY BE
USED FOR COMMERCIAL APPLICATIONS AT 4'POST SPACING.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 16 of 72
BASE PLATE MOUNTED TO CONCRETE - Expansion Bolt Alternative:
Base plate mounted to concrete with ITW Red Head Trubolt wedge anchor 3/8"x3.75" concrete
anchors with 3" effective embedment. Anchor strength based on ESR-2427
Minimum conditions used for the calculations:
f'e>_ 3,000 psi
edge distance=2.25" spacing = 3.75" GAP FOR BISEPt hTE
PART.7088
h= 3.0": embed depth /// BASEPLATE GAP WASHER
_ "� / PART.'1063/1064
For concrete breakout strength: I
Ncb = [ANcg/ANco]Cped,NCpc,N(pcp,NNb PART.3 3 4
55 MED6E ANCHOR
��� � 7356
ANcg= (1.5*3*2+3.75)*(1.5* -3+2.25) - 86.06 in 2 anchors ,' o�ii��i,,��'
ANco= 9*32 = 81 in2
Ca,cmin= 1.5" (ESR-2427 Table 3)
Cac = 5.25" (ESR-2427 Table 3) r� :I
CQed,N = 1.0 -
cpc,N = (use 1.0 in calculations with k= 24)
t cp,N= max (1.5/5.25 or 1.5*3"/5.25) =0.857 (ca,min cac)
Nb = 24*1.0*-✓3000*3.015 = 6,830#
Ncb= 86.06/81*1.0*1.0*0.857*6,830 = 6,219_<2*4,200
based on concrete breakout strength.
Determine allowable tension load on anchor pair
Ts =0.65*6,219#/1.6 = 2,526#
Check shear strength - Concrete breakout strength in shear:
Vcb=Avc/Avco(�ped,V(pc,VCph,VVb
Avc = (1.5*3*2+3.75)*(2.25*1.5) =43.03
Avco=4.5(cal)2=4.5(3)2=40.5
Cped,V= 1.0 (affected by only one edge)
rpc,v= 1.4 uncracked concrete
Wh,V= ✓(1.5ca1/ha) =V(1.5*3/3) =1.225
Vb= [7(le/da)0'21/da]A.✓f'c(cal)1.5 = [7(1.625/0.375)0.2✓0.375]1.Q0000(3.0)15 =1,636#
Vcb=43.03/40.5*1.0*1.4*1.225*1,636#= 2,981#
Steel shear strength = 1,830#*2 = 3,660
Allowable shear strength
0VN/1.6 =0.70*2,981#/1.6 = 1,304#
Shear load= 250/1,304 =0.19 s 0.2
Therefore interaction of shear and tension will not reduce allowable tension load:
Ma= 2,526#*4.375" = 11,053"#> 10,500"#
DEVELOPS FULL BASEPLATE MOUNTING STRENGTH.
ALLOWABLE SUBSTITUTIONS: Use same size anchor and embedment
Hilti Kwik Bolt TZ in accordance with ESR-1917
Powers Power Stud+ SD2 in accordance with ESR-2502
Powers Wedge-Bolt+ in accordance with ESR-2526
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329 •
253-858-0855/Fax 253-858-0856 etrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 17 of 72
Core Mounted Posts 2-3/8" SQ POST
(6005—T5 ALLOY)
Mounted in either 4"x4"x4" blockout, or 4" to BLOCKOUT OR
6" dia by 4" deep cored hole. CORED HOLE
Core mount okay for 6'post spacing.
Assumed concrete strength 2500 psi for �♦ ----- EXISTING CONCRETE
existing concrete0040 _ 10,000 Psi
NON—SHRINK GROUT
Max load—6'•50 plf= 300#
M = 300#•42" = 12,600"#
Check grout reactions
From EMIT=0 =
Pu= 12,600"#+ 300# • 3.33" = 5093#
2.67"
ID
fBmax = 5093#•2 • 1/0.85 = 2523 psi post to grout 4"
2"•2.375" P1 .15M RIM
fBconc = 2523 • 2"/4" = 1262 psi grout to concrete
Pryout strength based on ACI 318-08 Appendix D:
For concrete breakout strength:
Ncb= [ANcg/ANco]Wed,N(pc,N(pcp,NNb
ANcg= (3"+1.5*4)*(2*1.5*4"+2.375) = 129.375
ANco= 9*42= 144 in2
a,cmin- 3
Cac = 2.5*4" = 10"
Wed,N= 1.0
(pc,N = 1.0 cracked
(Pcp,N= max (3/10 or 1.5*3"/10) =0.45 (ca,,,in
Nb = 17*1.0*1.0*✓3000*4.01.5 = 7,449#
Ncb= 129.375/144*1.0*1.0*0.45*7,449 = 3,012
Pryout= 2*3,012 = 6,023#
Vb= [7(1e/da)02✓da]? /f'c(cai)ls = [7(4/2.375)°2\/2.375]1.0V3000(4.0)1.5 =5,246#
Vcb=1.0*1.4*1.0*1.0*5,246#= 7,345#
t Mn= 0.7*7,345*4" = 20,566"#>_ 1.6*12,600"#= 20,160"#
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 18 of 72
SIX SCREW POST—2-3/8" Square
Post Strength
6005-T5 or 6061-T6
'NN
Post
-Area 1.1482" 0.1000"
Ixx= 0.9971 in4
iyy =0.8890 in4 0.2130" 1.9500"
Sxx =0.8388 in3
I 0.9750"—1
Syy =0.7482 in3
rxx =0.9319 in
/
ryy =0.8799 in
J =0.986 in
k 1 for all applications
Allowable bending stress ADM Table 2-21
Ftb= 19 ksi
Si = LB Sc = LB • 0.726 = 1.551 LB
0.514 I,.1] 0.5*A0.889.0.986]
for LB LS 146 = 94.1" FCB= 21 ksi
1.551
for LB > 94.1"FCB= 2.39-0.24(1.551LB)1/2
Strong axis bending (typically perpendicular to rail)
Mall =0.8388 • 19"i = 15,937 #" = 1,328.14
Weak axis bending (typically parallel to rail)
Mall =0.7482 • 19ksi = 14,216#" = 1,184.654
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison4narrows corn
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 19 of 72
SIX SCREW CONNECTION TO BASE PLATE CP iTs
Screws /'\V
are the same as for the standard 4 screw
connection.
I.3125"
8125" k
Screw embedment length into the screw slots is
adequate to develop the full screw tension strength. _ , 11 i 1 ( j T1
Tb
Use same screw tension strength as used for the four V A
2 28" Cb
screw connection: ,
Ta= 2,293#per screw 4.375"
Va= 917#per screw
5"
Vdes = 6*917 = 5,502# -E
limiting shear load on post so that screw shear stress
doesn't reduce the allowable tension: �,
Vo.2=0.2*5,502#= 1,100#
Base plate thickness and strength same as for standard post.
Allowable moment on the posts based on screw tension strength:
Strong axis bending -
Mbase= 3 screws*2,293#*2.28" = 15,684"#< 15,937"#
Doesn't develop full post strength.
Weak axis bending -
Mbase= 2 screws*2,293#*2.28"+ 2 screws*0.5*2,293#*2.28"/2 = 13,070"#< 14,216"#
6 screw connection won't develop the full post strength for weak axis bending.
LIMITING POST MOMENTS FOR SIX SCREW CONNECTION:
STRONG AXIS BENDING MA= 15,684"#= 1,307'#
WEAK AXIS BENDING MA= 13,070"#= 1,089'#
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 20 of 72
FASCIA BRACKET
Allowable stresses
ADM Table 2-24 6063-T6 Aluminum
Ft= 15 ksi,uniform tension
Ft= 20 ksi, flat element bending
FB = 31ksi
Fc = 20 ksi,flat element bending
II I
Section Properties
Area: 2.78 sq in g t
Perim: 28.99 in
IXx: 3.913 in4
Iyy: 5.453 in4
CX,,: 1.975 in/1.353 in ; ;;
Cyy: 2.954 in
SXX: 1.981 in3 front 4,1;1
�
SXX: 2.892 in3
Sr,: 1.846 in3
I 11
2.7813
i
2.41 ` 1
0.1875
r
1
oo
1.75 2.41
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 21 of 72
Allowable moment on bracket:
Ma= Ft*S
Maxx = 15 ksi*1.981 in3 = 4.50
29,175"# - Outward moment 0.375
Mayy= 15 ksi*1.846 in3 =
trl
27,690"#- Sidewise moment
o
Flange bending strength
Determine maximum allowable bolt 0.50
load:
Tributary flange
bf= 8t= 8*0.1875 = 1.5" each side of o
hole
bt =1.5"+1"+0.5"+1.75" = 4.75"
S=4.75"*0.18752/6=0.0278 in3
Maf=0.0278 in3*20 ksi = 557"#
Allowable bolt tension o
O O
T= Maf/0.375 = 1,485# o
3/8"bolt standard washer
For Heavy washer
T=Maf/0.1875= 2,971#
Typical Installation—Post load =250#at 42"AFF—Top hole is 3" below finish floor
Tap = [250#*(42"+ 7")/5"]/2 bolts = 1,225#tension
Tbot= [250#(42"+3")/5"]/2 bolts = 1,125#tension
For centerline holes:
T= [250#*(42"+ 5")/3"]/2 bolts = 1,958#tension
For lag screws into beam face:
- 3/8" lag screw— withdrawal strength per NDS Table 11.2A
Wood species—G>_0.43 —W= 243#/in
Adjustments—Cd= 1.33,Cm=0.75 (where weather exposed)
No other adjustments required.
W' = 243#/in*1.33 = 323 #/in—where protected from weather
W' = 243#/in*1.33*0.75 = 243#/in—where weather exposed
For protected installations the minimum embedment is:
le = 1,225#/323#/in = 3.79" : +7/32" for tip =4.0"
For weather exposed installations the minimum embedment is:
le = 1,225#/243#/in = 5.04" : +7/32" for tip = 5.26" requires 5-1/2" screw
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 22 of 72
Fascia Brackets- Single Family Residence installations to wood deck:
2X FASCIA
BOARD
FNSHED
FLOOR �1
—7N--
4" SPHERE
SHALL NOT PASS
1i
STANDARD
1
IlFASCIA BRACKET
3/6 X 4" SS BLOCKING
LAG SCREW 4 O EACH
BRACKET LOCATION.
Typical Installation—Post load =200#at 36"AFF—Top hole is 3"below finish floor
T„p = [200#*(36"+ 7")/5"]/2 bolts = 860#tension
Tbot= [200#(36"+3")/5"]/2 bolts = 780#tension
For protected installations the minimum embedment is:
le= 860#/323#/in = 2.66" : +7/32" for tip= 2.88"
For weather exposed installations the minimum embedment is:
le= 860#/243#/in = 3.54" : +7/32" for tip = 3.76"
4" lag screws are acceptable for installation with 36" guard height on residential decks.
Backing may be either built-up 2x lumber or solid beams.
Typical Installation—Post load =200#at 42"AFF—Top hole is 3"below finish floor
T„p = [200#*(42"+ 7")/5"]/2 bolts = 980#tension
Tbot= [200#(42"+3")/5"]/2 bolts = 900#tension
For protected installations the minimum embedment is:
le = 980#/323#/in = 3.03" : +7/32" for tip = 3.25"
For weather exposed installations the minimum embedment is:
le= 980#/243#/in=4.03" : +7/32" for tip =4.25"
5" lag screws are required for installation with 42"guard height on residential decks.
Backing may be either built-up 2x lumber or solid beams.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 23 of 72
FASCIA MOUNTED POST
Commercial application—Load= 200# or 50 plf any direction on top rail
444 2-3/8" SQ POST
(6005—T5 ALLOY)
CAP WASHER, OPTIONAL
4 3/8" X 6" 55 LAG BOLT
OR 3/8" 5S WEDGE ANCHOR
(MIN 3 1/2" EMBED)
FOR CONCRETE COLOR MATCHED
MOUNTING VINYL CAP. OPTIONAL
rC
COLOR MATCHED
FOR WOOD + VINYL CAP
MOUNTING
HEX NUT
CAP WASHER
For 42"rail height and 4' on center post spacing:
P= 200#or 50plf*4= 200#
Mdeck=42"*200plf= 8,400"#
Load from glass infill lites:
Wind= 25 psf
Mdeck= 3.5'*25psf*42"/2*4'o.c. = 7,350"#
DL=4'*(3 psf*3'+3.5p1f)+10#= 60#each post(vertical load)
Typical anchor to wood: 3/8" lag screw. Withdrawal strength of the lags from National Design
Specification For Wood Construction (NDS) Table 11.2A.
For Doug-Fir Larch or equal,G=0.50
W= 305 #/in of thread penetration.
CD= 1.33 for guardrail live loads, = 1.6 for wind loads.
Cm= 1.0 for weather protected supports (lags into wood not subjected to wetting).
Tb=WCDCmJm=total withdrawal load in lbs per lag
W'=WCDCm=305#/"*1.33*1.0 =405#/in
Lag screw design strength—3/8"x 5" lag,lm = 5"-2.375"-7/32" = 2.4"
Tb =405*2.4" = 972#
Z11= 220#per lag, (horizontal load) NDS Table 11K
Z'n= 220#*1.33*1.0 = 295#
ZT= 140#per lag, (vertical load)
Zi= 140#*1.33*1.0 = 187#
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 24 of 72
Anchors to be minimum of 7" center to center and
post shall extend 1-1/2" below bottom anchor.
From EM about end
M = (8.5"*T+1.5"*l.5/8.5*T) = 8.76"T
Allowable post moment
Ma=972#*8.76" = 8,515"# _
For 3/8" lag screw okay for 36" rail height
For 3/8" carriage bolts:
rIum
Allowable load per bolt=0.11 in2*20 ksi =
2,200#
For bearing on 2" square bearing plate—area
= 3.8 int 0o z
Pb= 3.8 int*1.19*405*1.33 = 2,436#
Ma= 2,200#*8.76" = 19,272"#(exceeds post
strength)
For vertical load lag capacity is:
2 lags*187#= 374#/post for live load 1_
2 lags#140#= 280#
D + L= 200/374+60/280 = 0.75<1.0 okay
For corner posts:
For interior and exterior corners there is four lags,two each way. Two lags will act in
withdrawal and two will be in shear: Okay be inference from running posts.
POST STRENGTH AT BOLT HOLE:
Directly mounted posts require 7/16" diameter hole through post reducing the post strength at the
hole.
Sb=0.726-2*(7/16*0.125)*(2.255/2)2=0.588 in3
Mared = 19,000*0.588 = 11,172"#
Maximum moment calculated at the centerline of the top hole must not exceed 11,172"#= 931'#
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobisonCnarrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 25 of 72
STANCHION MOUNT
2"x1-1/2"x 1/8"A500 steel tube
Stanchion Strength
Fyc =45 ksi
Zyy = 0.543 in3
Mn=0.543 in3 * 45 ksi = 24,435#"
Ms = OMn/1.6 =0.9*24,435/1.6 = 13,745#" r�Equivalent post top load (me
42"42"post height �
V= 13,745"#/42" = 327# H CORE POCKET FILL
Post may be attached to stanchion with screws or by o WITH BONSAI,
grouting. `O ANCHOR CEMENT,
NON-SHRINK,
Grout bond strength to stanchion: NON-METALLIC
Asurface-✓f'c = 7"*4"*-✓8,000 psi = 2,500# GROUT
(ignores mechanical bond) z
for 200#maximum uplift the safety factor against
pulling out:
SF= 2,500#/200#= 12.5 > 3.0 therefore
4"
okay.
I I
Bearing strength on grout: M
From EM about base of stanchion=0
Pu =M+V*D = V
2/3D
For: M = 10,500"#,V= 2501b,D =4"
Pu = 10,500+250*4 =4,312#
2/3*4 ► :D
fBmax = Pu*2 = 4,312*2 = 1,691 psi Pl4"
D*1.5"*0.85 4"*1.5"*0.85 IM���
For: M = 12,600"#,V= 300lb,D =4"
P„= 12,600+300*4 = 5,175#
2/3*4
fBmax = Pu*2 = 2,029 psi
D*1.5"*0.85
Post bearing load on top of stanchion for M = 12,600#":
B = 12,600/6" = 2,100#
For 26 ksi allowable bearing pressure,A= 2.1/26 =0.081",b =0.081/1.5" = 0.054"
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 26 of 72
HSS 2"x1-1/2"x 1/8"powder coated A500 steel tube stanchion:
Stanchion Strength
Fy=46ksi
Zyy =0.475 in3
Mn = 0.475 in3 *46 ksi = 21,850#"
Ms = tMn/1.6 =0.9*21,850/1.6 = 12,291#"
Equivalent post top load
42"post height
V= 12,291"#/42" = 293#
May be welded to a steel base plate with fillet weld all around.
Aluminum Tube Stanchion
2" x 1.5" x 1/4" 6061-T6 Aluminum Tube
Fcb= 21 ksi From ADM Table 2-22
Syy =0.719 in3
Ma= 0.719 in3 *21 ksi = 15,099#"
Equivalent post top load
42"post height
V= 15,099"#/42" = 360#
Strength of weld affected aluminum stanchion when welded to base plate:
Fcbw= 9 ksi
Syy=0.719 in3
Ma=0.719 in3 *9 ksi = 6,471#"
Equivalent post top load
42" post height
V= 6,471"#/42" = 154#
Because of strength reduction from weld effected metal the aluminum stanchion welded to a base
plate typically requires a topping slab to be poured in place over the base plate with a minimum
thickness of 2" above the base plate so that the maximum bending moment occurs outside of the
weld effected zone.
When welded to base plate limit the maximum moment on the weld effected zone to 6,471"#.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobisonCa narrow s.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 27 of 72
STANCHION MOUNT—ON BASE PLATE
2"x1-1/2"x 1/8"A304 1/4 hard Stainless steel tube
or A500 steel tube powder coated GROUT FILLER
AROUND
STANCHION
Stanchion Strength
Fyn = 50 ksi
Zyy =0.543 in3
Reserve strength method from SEI ASCE8-02 section
3.3.1.1 procedure II. 1.1
WWI
where do/t= (2*2/3) /0.125 = 10.67 < k1 1/8
�1 = 1.1/�✓(Fyn/Eo) = 1.1/✓(50/28*103) = 26
M„ =0.543 in3 * 50 ksi = 27,148#" iiiammi v
Ms = OMn/1.6 =0.9*27,148/1.6 = 15,270#" 5"
Equivalent post top load 5"x5"x3/8" STEEL
42"post height BASE PLATE
V= 15,270"#/42" = 363#
Weld to base plate : 1/8" fillet weld all around—develops full wall thickness.
Check weld strength SEI/ASCE 8-02 section 5.2.2: transverse loaded fillet weld:
t Pn=otLFua,Use Z for tL
Pn=0.55*0.362*80 ksi
Pn = 15,928
Ps = 15,928/1.2 = 13,273#"
Grout bond strength to stanchion:
Asurface i✓f'c = 7"*6"*-✓10,000 psi =4,200# (ignores mechanical bond)
for 200#maximum uplift the safety factor against pulling out:
SF= 4,200#/200#= 21 >3.0 therefore okay.
Bond strength to post is similar.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 28 of 72
Series 100 Top Rail SERIES 100 TOP RAIL
Butts into post
2"
Alloy 6063 -T6 Aluminum
Allowable Stress Area:0.664908 sq in
Perim:20.97080 in
ADM Table 2-24 xC:7.310000 in
FT - 15 ksi yC:5.243178 in
lxx:0.339592 in^4
lyy:0.295081 inA4
Fc -' 6' span Kxx:0.714658 in
Kyy:0.666177 in
2 Lb Sc = 2•72" • 0.246 Cxx: 1.383137 in
Cyy:1.000000 in
(IyJ) (0.295*1.53)1/2 Sxx:0.245523 inA3
= 52.7<130 therefore Syy:0.295081 inA3
Fc = 15 ksi
Allowable Moments 4
Horiz.=0.295in3 .15 ksi =4,425#" = 368.75 #'
Vertical load=0.246in3 .15 ksi = 3,690#" = 307.5 #'
Maximum allowable load for 72" o.c.post spacing - vertical
W= 3,690"#*8/(69.625"2) = 6.09 pli = 73.1 plf
P= 3,690"#*4/69.625" = 212#
Maximum span without load sharing,P= 200#- vertical
S = 3,690"#*4/200#= 73.8" clear
Max post spacing =73.8"+2.375" =76.175"
For horizontal loading rail strength is greater and therefore okay by inference.
Maximum allowable load for 72" length horizontal load
W=4,425"#*8/722 = 6.8 pli = 81.9 plf
P=4,425"#*4/72" =245.8# •
Maximum span for P= 200# and W= 50 plf horizontal load
W=A✓(368.75#'*8/50) = 7.68' = 7' 8.5"
P= 368.75#'*4/200 = 7.375' =7'3.5" controls
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 29 of 72
SERIES 100 BOTTOM RAIL
Rail Properties:
6063-T6 Aluminum
Ixx =0.102 in4, SXX =0.101 in3
Iyy =0.164 in4, Syy =0.193 in3
rxx =0.476", ryy =0.603"
For 72" on center posts; L= 72"-2.375"-1"x2 = 67.625" ; Lb = 1/2L
= 33.81"
11411
Lb/ry = 33.81"/0.603 = 56 From ADM Table 2-24
Fbc= 16.7-0.073. 56 = 12.6 ksi
Allowable Moments 4 Horiz.=0.193in3 .12.6 ksi =2,432"#
Maximum allowable load for 72" o.c.post spacing
W= 2,432"#*8/(67.625"2) = 4.25 pli = 51 plf
P= 2,432"#*4/67.625" = 144#
Max span for 50 plf load = (8*2,432/(50/12))1/2 = 68.33" clear span
Rail fasteners -Bottom rail connection block to post#10x1.5" 55 PHP SMS Screw
Check shear @ post (6005-T5 or 6061-T6)
2x Fupostx dia screw x Post thickness x SF
V= 2.38 ksi 0.1697" .0.10" . 1 = •
3 (FS) RCB
V= 430#/screw RCB
SCREW
Since minimum of 2 screws used for each
Allowable load= 2. 430#= 860# 40
Rail Connection to RCB %It 11441411t
2 screws each end
#8 Tek screw to 6063-T6
V= 2.30 ksi 0.1309" .0.07" . 1 = 183#
3 (FS)
VAn= 2*183 = 366#
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 30 of 72
Intermediate post used to provide additional support to bottom rail.
1.4" square 0.1" wall thickness
Acts in compression only.
Secured to rail with two#8 tek screws
Shear strength of screws:
#8 Tek screw to 6063-T6
V= 230 ksi 0.1309" .0.07" . 1 = 183#
3 (FS)
VAR = 2*183 = 366#
Top rail connection to post face:
Use RCB attached to post with 2#10 screws same as bottom rail.
To 6061-T6 or 6005-T5
V= 238 ksi 0.1697" .0.10" . 1 = 430#/screw
3 (FS)
POST CAP
Since minimum of 2 screws
used for each rc,,,,,
Allowable load= / \
2' 430#= 860# i\ \ \ \ SERIES
100
CAP RAIL
The connection block can be
cut square uare for use in horizontal RAI(RCL)
L CONNECTING
rail applications or angled for 2 3/8 SQ BRACKET CUT FOR
BOTTOM ANGLED ATTACHMENT
use in sloped applications such POST
as along stairs or ramps.
Connection of rail to RCB is
with (2)#8 Tek screw to 6063-T6
V= 230 ksi 0.1309" .0.07" . 1 = 183#
3 (FS)
Vtot = 2*183#= 366#>_ 200# okay
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 31 of 72
Intermediate post fitting
Used for intermediate posts along stairways
Fitting locks into top of post using structural silicone.
Maximum load on fitting is 300#
6'post spacing * 50 plf= 300#
Shear resisted by direct bearing between fitting and post
area= 2.175"*0.1875 =0.408 in2
Bearing pressure = 300#/.408 = 736 psi
Moment of fitting to post:
This is an intermediate post with rotation of top rail restrained at rail ends.
Moment of fitting is created by eccentricity between bottom of top rail and top of post:
e=0.425"
M = 300# * (0.425") = 127.5#"
Moment on fitting is resisted by tearing in re,..
silicone OPTIONAL#8 TEK SCREW ', CAP RAIL
Silicone tear strength: From Dow Corning,
(silicone manufacturer),CRL 95C Silicone is the
same product as the Dow Corning 995 Silicone
Structural Glazing Sealant,from Dow Corning
product information sheet
SILICONE
ADHESIVE
Tear strength>_49 ppi ALL AROUND SRI
Peel strength>_40 ppi INTERMEDIATE
STAIR POST
Ult. tension adhesion>_ 170 psi ADAPTOR II
11111
Tensile strength>_48 psi @ 25% 1114r0
elongation
Tensile strength>_ 75 psi @ 50% OPTIONAL#8 TEK SCREW SILICONE
Ci. ADHESIVE
elongation 2 sis"SQ. ) L AROUND
INTERMEDIATE I it
POST
Moment capacity:
49*2.1752+ (49)/2 psi *2.175"2 = 348#" .tip
SF= 348#"/127.5#" = 2.73 >2.0 okay
Option#8 Tek screws:
Shear strength =V= 2.38 ksi 01309" . 0.07" . 1 = 232#
3 (FS)
Added moment capacity = 232#*2.375" = 551#"
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrow s.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 32 of 72
Series 200 Top rail
Area: 0.887 sq in 3 1/2*
IXX: 0.254 in4
Iyy: 1.529 in4
rxx: 0.536 in a
ryy: 1.313 in `�..
CXX: 1.194 in
Cyy: 1.750 in
SXX: 0.213 in3 bottom
SXX: 0.457 in3 top 'N' 2 1/2*
Syy: 0.874 in3
6063-T6 Aluminum alloy
For 72" on center posts; L= 72"-2.375"-1"x2 = 67.625" ; kLb = 1/2L= 33.81"
Fbc= 16.7-0.073. 33.81 = 14.82 ksi From ADM Table 2-24
1.313
Ft= 15 ksi
Allowable Moments 4 Horiz.=0.874in3 .14.82 ksi = 12,953#" = 1,079#'
Vertical load= 0.457in3 .14.82 ksi= 6,773#" top compression
or = 0.213in3 .15 ksi = 3,195#" controls vertical- bottom tension
Maximum allowable load for 72" o.c.post spacing - vertical
W= 3,195"#*8/(67.625"2) = 5.59 ph = 67 plf
P= 3,195"#*4/67.625" = 189# Load sharing with bottom rail required for 6 foot post
spacing. Spreader bar at mid span (3'maximum spacing) will subdivide top rail and provide
required additional support.
Maximum span without load sharing,P= 200#
S = 3,195#"*4/200#= 63.9" clear
Max post spacing =63.9"+2.375" = 66-1/4", 5' 6-1/4"
For horizontal load,maximum span for 50 plf load
L= (8Ma/50plf)1/2 = (8*1,079/50plf)1/2= 13.14'
for 200#concentrated load
L= (4M/200#) = (4*1,079/200p1f)= 21.58'
deflection limits will control.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@ narrow s.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 33 of 72
Series 200X Top rail
Area: 0.744 sq in
Perim: 18.466 in3.00
f
IXX: 0.154 in4 \�
In,: 1.012 in4
rXX: 0.455 in
ryy: 1.167 in
CXX: 0.960 in
Cyy: 1.500 in
SX.: 0.161 in3 bottom
SX.: 0.285 in3 top K-
Syy: 0.675 in3
6063-T6 Aluminum alloy
For 72" on center posts; L= 72"-2.375"-1"x2 = 67.625" ; kLb = 1/2L= 33.81"
Fbc= 16.7-0.073. 33.81 = 14.59 ksi From ADM Table 2-24
1.167
Ft= 15 ksi
Allowable Moments 4 Horiz.=0.675in3 14.59 ksi =9,845"#= 820.4#'
Vertical load=0.285in3 .14.59 ksi =4,158"#
or = 0.161in3 .15 ksi = 2,415"# controls vertical- bottom tension
Maximum allowable load for 72" o.c.post spacing - vertical
W= 2,415"#*8/(67.625"2) =4.22 pli = 50.7 plf
P= 2,415"#*4/67.625" = 143# Load sharing with bottom rail required for 6 foot post
spacing.
Ptotal=Ptop+Pbottom= 143#+174#= 317#> 200#okay.
Maximum span without load sharing single span,P= 200#
S = 2415"#*4/200#=48.3" clear
Max post spacing =48.3"+2.375" = 50.675"
Maximum span without load sharing and multiple spans, 3 minimum,P= 200#
S = 2,415"#*5/200#= 60 3/8" clear
For uniform load = 50 plf:
S =-✓[(8*2,415"#/12)/50plf] = 5.67'
Max post spacing =30 3/8"+2.375" = 62 3/4"
For horizontal load,maximum span for 50 plf load
L= (8Ma/50p1f)1/2= (8*820.4/50p1f)1/2 = 11.45'
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 34 of 72
Top rail 300
Area: 0.881 sq in 3.00
Perim: 21.29 in
Ixx: 0.603 in4
Iyy: 1.149 in4
Kxx: 0.828 in
Kyy: 1.142 in
Cxx: 1.599 in N
Cyy: 1.501 in
Sxx: 0.377 in3
Syy: 0.766 in3
Allowable stresses 6063-T6 ADM Table 2-24 2.482
Fcb --3 (Rb/t) = (1.5"/0.09") = 16.67 < 35; Fcb = 18ksi
Based on 72" max post spacing
Mall horiz= 18"i • (0.766) = 13,788"#
Vertical loads shared with bottom rail
For vertical load --3 bottom in tension top comp.
Fb= 18 ksi
Mall vert= (0.377in4) • 18 ksi = 6,786"#
Allowable loads
Horizontal --> uniform W= 13.788 • 8 = 21.28 #/in =W= 255 plf
722
PH =4 • 13,788 = 766#
72
Vertical --->W= 6,786 • 8 = 10.47 #/in = 125.7 plf (Top rail alone)
722
P= 6,786 • 4 = 377#
72
Rail to post connection: Direct bearing for downward forces and horizontal forces:
For uplift connected by (2)#10 Tek screws each post:
2x Fupostx dia screw x Post thickness/ SF (ADM 5.4.3)
V= 2.30 ksi 0.1379" .0.09" . 1 = 325#/screw
3 (FS)
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 35 of 72
Top rail 300X
3
Area:0.761 sq in
Perim: 17.924 in
Ixx: 0.347 in^4
Iyy: 0.984 in^4
Kxx:0.675 in
c>,
Kyy: 1.137 in
Cxx: 1.124 in
Cyy: 1.500 in
Sxx: 0.309 in^3
Syy: 0.656 inA3
Wall thickness t=0.09375"min.
Allowable stresses ADM Table 2-24
Fcb
—> L/ry = (72-2 3/8"-2.1") = 59.4 line 11
1.137
Based on 72" max post spacing
Fcb = 16.7 -0.073(59.4) = 12.36 ksi
Ma11 horiz= 12.36ksi • (0.656) = 8,111"#
Vertical loads shared with bottom rail
For vertical load --> bottom in tension top comp.
Fb= 18 ksi line 3
F, = 18 ksi line 16.1
Ma11 vert= (0.309in4) • 18 ksi = 5,562"#
Allowable loads
Horizontal -> uniform —> W= 8.111 • 8 = 12.5 #/in =W= 150 plf
722
PH=4 . 8.111 =451 #
72
Vertical - W= 5.562 • 8 = 5.6#/in= 103 plf (Top rail alone)
722
P= 5.562 . 4 = 309#
72
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 36 of 72
Insert channel for glass—6063-T6
Iyy =0.156 in4 IxX = 0.023 in4
Syy=0.125 in3 SXX = 0.049 in4
Insert compression locks into top rail
Horizontal forces transferred between insert and top rail by
direct bearing on locking tabs.
Bearing area= 1/8" width
Allowable bearing load will be controlled by spreading of top
rail • !
Check significance of circumferential stress:
R/t= 3"/0.09375 = 32> 5 therefore can assume plane
bending and error will be minimal INFILL LOAD !i
M = 2.08"*W RESTRAINED
Ma11 = S*Fb AT POSTS
Fb= 20 ksi for flat element bending in own plane,
ADM Table 2-24
S = 12"/ft*(0.094)2/6=0.0177 in3
Wan =Mau/2.08" _ (S* Fb)/2.08" = (0.0177 in3*20 ksi)/2.08" = 170 plf
For 36"panel height— 1/2 will be tributary to top rail:
Maximum live load = 170 plf/(3'/2) = 113 psf.
Check deflection:
A=WL3/(3EI)
I = 12"*0.093753/12 = .000824 in4
A= 170plf*2.08"3/(3*10.1 x 106*.000824) = 0.06"
The required deflection to cause the infill to disengage: 0.05"
Reduce allowable load to limit total deflection:
0.05/0.06*113 plf= 94 plf
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 37 of 72
Top rail connection to post:
TYPICAL TOP RAIL
(6063-T6 ALLOY)
For Vertical loads top rail is restrained by (2)
34
#10 tek screws each side. LEFT HAND MTG BRKT HEADXSCREWSS TRUSS
Connection of bracket to post is with (2) #14 (6063-T6 ALLOY) RIGHT HAND MTG BRKT
screws so is stronger. (6063-T6 ALLOY)
TOP RAIL INFILL
For horizontal loads the top rail directly bears (606346 ALLOY)
on side of post. 2-3/8" SQ POST ,,
(6005-15 ALLOY)
Tek screw strength: Check shear @ rail t
(6063-T6) 1 _ l0 x 3/4" SS SELF
DRIWNG TEK SCREW
2x Furaiix dia screw x Rail thickness x SF
V= 2.30 ksi 0.1379" ' 0.09" • 1 = 325#/screw
3 (FS)
Since minimum of 2 screws used for each
Allowable load = 2. 325#= 650#
2 3/4
Post bearing strength
Van =Abearing*FB oTO\
Abearing= 0.09"*2.25" =0.2025 in2 1.158
FB = 21 ksi 00
Van =0.2025 in2 * 21 ksi =4.25 k re)
Bracket tab bending strength I O°
Vertical uplift force
For 5052-H32 aluminum stamping 1/8" thick
Fb = 18 ksi—ADM Table 2-09 LHB
S =0.438"*(.125)3/12 =0.00007 in3
Ma= 18 ksi*0.00007 = 126"#
Pa=Ma/1 = 126"#/1.158" = 109#
Uplift limited by bracket strength:
Upan = 2*109 = 218#per bracket
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 38 of 72
RAIL SPLICES:
Splice plate strength:
Vertical load will be direct bearing from rail/plate to post no bending or shear in plate.
Horizontal load will be transferred by shear in the fasteners.
Rail to splice plates:
#8 Tek screw strength: Check shear @ rail (6063-T6)
2x Furaiix dia screw x rail thickness x SF
V= 2.30 ksi 0.1379" .0.09" . 1 = 325#/screw; for two screws = 650#
3 (FS)
or Furpiatex dia screw x plate thickness x SF
V= 38 ksi 0.1379" .0.125" . 1 = 218#/screw; for two screws = 436#
3 (FS)
Post to splice plate:
Screws into post screw chase so screw to post connection will not control.
splice plate screw shear strength
2x Fupiatex dia screw x plate thickness x SF
V= 238 ksi 0.1379" .0.125" . 1 = 416#/screw; for two screws = 832#
3 (FS)
Check moment from horizontal load:
M =P*0.75". For 200#maximum load from a single rail on to splice plates
M =0.75*200 = 150#"
S =0.125*(0.625)2/6 =0.008 in3
fb = 150#"/(0.008*2) = 9,216 psi
45 Degree 90 Degree
- t
(15.9 mm)
2"(50.8 mm)
518"
(15.9 mm)
1-3/4
x— (44.4 mm")
2.. 1-3/8" _ _/
(50.8 mm) (34.9 mm)
1-3/4" ._.._
(44.4 mm)
For corner brackets screw strength and bending strength will be the same.
Single full width bar may be used instead of the two %" bars.
May be used to create vertical miters and splice rail sections.
May be used with#10 tek screws.
:st 111/4
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 39 of 72
Insert channel for glass—6063-T6
Iyy =0.156 in4 IXX = 0.023 in4
Syy =0.125 in3 SXX =0.049 in4
Insert compression locks into top rail
Horizontal forces transferred between insert and top rail by direct bearing on locking tabs.
Bearing area= 1/8" width
Allowable bearing load will be controlled by spreading of top rail
M = 2.08"*W
Mall = S*Fb
Fb = 20 ksi for flat element bending in own plane,ADM Table 2-24
S = 12"/ft*(0.094)2/6=0.0177 in3
Watt =Mall/2.08" = (S* Fb)/2.08" = (0.0177 in3*20 ksi)/2.08" = 170 plf
For 36"panel height— 1/2 will be tributary to top rail:
Maximum wind load= 170 plf/(3'/2) = 113 psf.
Insert channel for picket infill—6063-T6
Iyy =0.144 in4 IXX =0.0013in4
Syy=0.115 in3 SXX =0.0057 in4 2.50000
ro•I ‘11111.1.111.1
Insert compression locks into top rail 0.86750 0.86750
Horizontal forces transferred between insert and top �
rail by direct bearing on locking tabs.
Bearing area= 1/8" width
Allowable bearing load will be controlled by spreading of top rail
M = 2.08"*W
Mall = S*Fb
Fb = 20 ksi for flat element bending in own plane,ADM Table 2-24
S = 12"/ft*(0.094)2/6 =0.0177 in3
Wall =Mall/2.08" = (S* Fb)/2.08" = (0.0177 in3*20 ksi)/2.08" = 170 plf
For 36"panel height— 1/2 will be tributary to top rail:
Maximum live load = 170 plf/(3'/2) = 113 psf.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 40 of 72
Top Rail Series 320
Ixx =0.118 in4
Iyy =0.7961n4
Sxx =0.129 in3
Syy=0.531 1n3
Allowable stresses ADM Table 2-24
6063-T6 Aluminum '"
Ft= 19ksi
Fa) — Rb/t= 1.5" = 15 line 16
0.1 '4
Based on 72" max post spacing
Fcb= 21 ksi
For horizontal loads:
NIa11 horiz= 19ksi • (0.531) = 10,089#"
Vertical loads shared with bottom rail or intermediate support
For vertical load -› bottom in tension top in compression.
Fb = 19 ksi
For top rail acting alone
bottom stress: Mall vert = (0.129in3) • 19 ksi = 2,451#" or
Allowable loads
Horizontal --> uniform WH= 10,089.8 = 15.6#/in =WH= 186.8 plf
722
PH=4 • 10,089 = 560#
72
Vertical -'W= 2,451 • 8 = 3.78 #/in = 45.4 plf (Top rail alone)
722
P= 2,451 • 4 = 136#
72
For glass infill the glass will brace top rail and prevent its deflection downward.
Glass will act as beam web and transfer shear from top rail to bottom rail close to the connection
to the post so that the load is almost pure shear in the end of the bottom rail.
Determine maximum span for top rail acting alone based on vertical loads:
L= 4*2,451#"/200#=49" for concentrated load
L= A[8*(2,451/12)/50] = 5.72' = 5'- 8 9/16"
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@ narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 41 of 72
Top Rail Series 350
3 3/4"
Area: 0.725 sq in
Perim: 21.338 in
co
Ixx: 0.263 inA4
Iyy: 1.398 inA4
rxx: 0.602 in
ryy: 1.389 in
Cxx: 1.128 in
Cyy: 1.875 in
Sxx: 0.233 inA3
Syy: 0.737 inA3
Allowable stresses ADM Table 2-24 6063-T6 Aluminum
Fcb — Rb/t= 1.875" = 15 line 16.1
0.125
Based on 72" max post spacing
Fcb = 18.5 —0.593(15)1/2= 16.20 ksi
Mall horiz= 16.20ksi • (0.737) = 11,942"#
Vertical loads shared with bottom rail
For vertical load —' bottom in tension top comp.
Fb= 18 ksi
For top rail acting alone
Man vert= (0.233in3) • 18 ksi =4,194"# or Controls
=(0.263in4/0.997")*16.20 ksi = 4,273"#
Allowable loads For 6'post spacing:
Horizontal —› uniform -- WH= 11,942.8 = 18.4#/in =WH = 221.1 plf
722
PH=4 • 11.942 = 663.4#
72
Vertical —>W=4,194 • 8 = 6.5 #/in= 78 plf (Top rail alone)
722
P=4,194 . 4 = 233 #
72
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 42 of 72
Series 400 Top rail
IXX: 0.611 in4
Iyy: 3.736 in4
rXX: 0.717 in
ryy: 1.774 in
CXX: 1.358 in
Cyy: 2.50 in
SXX: 0.450 in3 bottom 2 1/4"
SXX: 0.399 in3 top
Syy: 1.494 in3 c J
6063-T6 Aluminum alloy
For 72" on center posts; L= 1/2
72"-2.375"-1"x2 = 67.625" ; / 2 5/8"
kLb= 1/2L= 33.81"
Fbc = 16.7-0.073. 33.81 = 15.3 ksi From ADM Table 2-24
1.774
Ft= 15 ksi
Allowable Moments * Horiz.= 1.494 in3 .15.0 ksi =22,410"#= 1867.5#'
Vertical load=0.399in3 .15 ksi= 5,985"#=498.75#'
Maximum allowable load for 72" o.c.post spacing - vertical
W= 5,985"#*8/(67.625"2) = 10.47 pli = 125.6 plf
P= 5,985"#*4/67.625" = 354#
Maximum span without load sharing,P= 200#
S = 5,985"#*4/200#= 119.7" clear,
L= (8Ma/50plf)1/2= (8*498.75/50plf)1/2 = 8.93'
Max post spacing =8' 11"+2.375" = 9' 1-3/8"
For horizontal load,maximum span for 50 plf load
L= (8Ma/50plf)1/2= (8*1,867.5/50p1f)1/2 = 17.29'
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 43 of 72
SERIES 400 TOP RAIL WOOD CAP
COMPOSITE MATERIAL OR
Alloy 6063 —T6 Aluminum
Ixx: 0.0138 in4; Iyn: 0.265 in4 �
CXX: 0.573 in; Cyy: 1.344 in 1
SXX: 0.024 in3; Syy: 0.197 in3
Wood—varies G>_0.43 SERIES 400 CAP RAIL
2"x4" nominal
IXX: 0.984 in4; Inn: 5.359 in4 2 1 1/1 6"
CXX: 0.75 in; Cyn: 1.75 in x1, 1/16"
SXX: 1.313 in3; Sny: 3.063 in3 3/4
P•ST
Allowable Stress for aluminum:ADM Table 2-24
FT= 15 ksi
Fc —> 6' span
Rail is braced by wood At 16" o.c. and legs have stiffeners therefore
Fe = 15 ksi
For wood use allowable stress from NDS Table 4A for lowest strength wood that may be used: Fb
= 725 psi (mixed maple#1),CD =1.33,CF= 1.5
F'b= 725*1.33*1.5 = 1,445 psi
F'b = 725*1.33*1.5*1.1 = 1,590 psi for flat use (vertical loading)
Composite action between aluminum and wood:
n =Ea/Ew= 10.1/1.1 = 9.18
The limiting stress on the aluminum= 9.18*1,445 psi = 13,267 psi < 15 ksi
Allowable Moments 4
Horiz.=0.197in3 .13267 psi +3.063 in3*1445psi =7040"#
Vertical load =0.024in3 .13267 ksi +1.313*1,590= 2,405"#
Maximum allowable load for 72" o.c.post spacing - Horizontal load
W= 7,040"#*8/(69.625"2) = 11.6 pli = 139 plf
P= 7,040"#*4/69.625" =404#
Maximum span without load sharing,P= 200#or 50 if- Vertical load
S = 2,405"#*4/200#=48.1"clear
Max post spacing =48.1"+2.375" = 50.475"
COMPOSITES: Composite materials,plastic lumber or similar may be used provided that the
size and strength is comparable to the wood.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@ narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 44 of 72
Glass Infill Bottom Rail
6063-T6
Area:0.3923 sq in
Perim:11.648 in
Ixx:0.0869 in^4
Iyy:0.172 in^4
j Kxx:0.472 in
Kyy:0.662 in
Cxx: 1.0133 in
Cyy:0.8435 in
Sxx:0.0857 in^3 Bottom
Sxx:0.129 inA3 Top
Syy:0.204 in^3
For 72" on center posts; L= 72"-2.375"-1"x2 = 67.625" ; Lb = 1/2L= 33.81"
Lb/ry= 33.81"/0.662 = 51.07 From ADM Table 2-24
Fbc= 16.7-0.073. 51.07 = 12.97 ksi
Allowable Moments - Horiz.=0.204in3 .12.97 ksi =2,646"#
Maximum allowable load for 72" o.c.post spacing
W= 2,646"#*8/(67.625"2) =4.63 pli = 55.5 plf
P= 2,646"#*4/67.625" = 156.5#
Max span for 50 plf load = (8*2,646/(50/12))1/2 = RCB
71.28" clear span
Rail fasteners -Bottom rail connection block to post RCB
#10x1.5" 55 PHP SMS ScrewSCREW
Alp
Check shear @ post (6005-T5)
2x Fupostx dia screw x Post thickness x SF
V= 2.38 ksi 0.1697" .0.10" . 1 =
3 (FS)
V= 430#/screw
Since minimum of 2 screws used for each
Allowable load = 2. 430#= 860#
Rail Connection to RCB
a r
2 screws each en
#8 Tek screw to 6063-T6
2*30ksin0.1309"•0.07 1 = 232#/screw GLASS
3 TEK BOTTOM
RAIL
Allowable tension = 2*232 =464#
OK
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 45 of 72
Picket bottom rail
Bottom rail strength
6063-T6 Aluminum alloy Area:0.446 sin
Perim:9..9940 in
For 72" on center posts; L= 72"-2.375"-1"x2 =
67.625" ; Lb = 1/2L= 33.81" ixx:0.125 lett
lyy:0.193 lea
Fbc= 16.7-0.073. 33.81 = 12.95 ksi From Kxx: 0.529 in
0.658 Kyy:0.658 in
ADM Table 2-24 line 11 for compression Cxx: 1.151 in
or line 2 for tension Cyy:0.852 in
Sxx: 0.108 inA3
Ft= 15 ksi ..1? 4. Syy:0.227 in^3
Allowable Moments -i► Horiz.= 0.227in3 .12.95 ksi
=2,939"#
Maximum allowable load for 72" o.c.post spacing
W= 2,939"#*8/(67.625"2) = 5.14 pli = 62.7 pif
P= 2,939"#*4/67.625" = 173.8#
Rail fasteners -Bottom rail connection block to post
#10x1.5" 55 PHP SMS Screw RCB
RCB
• Check shear @ post (6005-T5) SCREW
141(44
2x Fupostx dia screw x Post thickness x SFS
Eq 5.4.3-2
V= 38ksi .0.19" • 0.1 1 =
3 (FS)
V= 240#/screw
Since minimum of 2 screws used for each
Allowable load =2. 240#=480#
Rail Connection to RCB
2 screws each end %OP
#8 Tek screw to 6063-T6 jlt BOTTOM
ADM Eq. 5.4.3-1 RAIL
2*30ksi.0.1248".0.07 1 = 175#/screw
3 TEK
Allowable shear= 2*175 = 350#
OK
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 46 of 72
MID RAIL
1.6875
Ixx =0.123 in4
Iyy = 0.177 in4 t =0.062
Sxx =0.115 in3
Syy=0.209 in3
rxx =0.579 in
ryy =0.695 in
Allowable stresses ADM Table 2-24 6063-T6 Aluminum —\
Ft= 18 ksi For vertical loads
Fcb —' Rb/t= 1.25" =0.33<_1.6 line 16.1 Fcb = 18 ksi
3.75
Ma11 vert= 18ksi • (0.115) = 2,070"#
For horizontal loads: T
1/2„
Ft= 15 ksi For vertical loads
Fcb -› Lb/ry = 35" = 50.4 line 11
0.695
Based on 72" max post spacing MID RAIL
Fcb= (16.7-0.073*50.4) ksi= 13.0 ksi INFILL
Ma11 horiz= 13ksi • (0.209) = 2,717"#
For intermediate rail acting alone
Allowable loads
Horizontal -- uniform —' WH= 2,717.8 =4.44#/in =WH = 53 plf
702
PH=4 • 2,717 = 155 It Not used for top rail 50#conc load appl.
70
Vertical W= 2070 • 8 = 3.38 #/in =40.6 plf (Top rail alone)
702
P= 2070 • 4 = 118#Not used for top rail 50#conc load appl.
70
Maximum wind load for 3'6" lite height, 1'9" tributary width
Wmax = 53/1.75 = 30.3 plf
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 47 of 72
WIND SCREEN MID RAIL STD GLASS
Standard bottom rail with infill BOTTOM RAIL
Refer to bottom rail calculations for rail properties.
MIDRAIL GLASS
Check bottom rail strength for span used in privacy screen. INFILL, BACKED
�� OFF AT EACH
END TO ALLOW
Midrail glass infill when installed in rail will stiffen the FOR RCB.
flanges (legs) continuously so that the flanges are equivalent
to flat elements supported on both edges:
From ADM Table 2-24 section 16.
b/t= 1.1"/0.07 = 15.7 < 23
Therefore Fca= 15 ksi
Strength of infill piece:
Ix.: 0.0162in4
Iyy: 0.0378 in4
SX.: 0.0422 in3
Syy: 0.0490 in3
Fca= 15 ksi
When inserted into bottom rail determine the effective strength:
ratio of load carried by infill:
Iyy infill/In,rail =0.0378/0.172 = 0.22
Syy infill <_0.22*0.204 = .045 <0.049
Allowable Moments -I Horiz.= (0.204in3+0.045) *15 ksi= 3,735"#
Maximum allowable load for 70" screen width L= 70"-1"*2-2.375*2 = 63.25"
W= 3,735"#*8/(63.25"2) = 7.5 pli = 90 plf
P= 3,735"#*4/63.25" = 236#
Maximum allowable load for 60" screen width L= 60"-1"*2-2.375*2 = 53.25"
W= 3,735"#*8/(53.25"2) = 10.5 pli = 126 plf
P= 3,735"#*4/53.25" = 280#
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 48 of 72
STANDARD POST RAIL CONNECTION BLOCK RCB
a, I RCB
SCREW
Can be used to connect top,mid and bottom rails to X.
standard or 4"x4" post face,walls or other end butt 4+
connection conditions.
Rail snaps over block and is secured with either silicone adhesive or#8 tek screws.
Connection strength to post or wall: (2) #10x1.5" 55 PHP SMS Screw
Check shear @ post (6005-T5)
Fupostx dia screw x Post thickness x SF
Eq 5.4.3-2
V= 38 ksi .0.19" . 0.1" . 1 = 240#/screw for standard post
3 (FS)
Since minimum of 2 screws used for each,Allowable load= 2. 240#=480#
For 4"x4" post:
V= 38 ksi .0.19" .0.15" . 1 = 360#/screw for standard post
3 (FS)
Since minimum of 2 screws used for each,Allowable load= 2. 360#=720#
Connections to walls and other surfaces is dependant on supporting material.
Alternative fasteners may be used for connections to steel,concrete or wood.
For connection to wood post:
(2) #10 x2-1/2" wood screws strength from NDS Table 11M,G >_0.43
Z' =#*CD*Z= 2 screws*1.33*140#= 372#
For connection to cold formed steel stud - 22 ga min based on CCFSS T.B. V2#1
Z= 2*175#= 350#
For connection to concrete or CMU- (2) 3/16" x 2"Tapcon screws
Z= 2*290 = 580#
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 49 of 72
WALL MOUNT END CAPS
End cap is fastened to the top rail with
2) #10x1" 55 PHP SMS Screws
2x Fupostx dia screw x Cap thickness x SF
Eq 5.4.3-2
V= 2*38 ksi .0.19" . 0.15" 1 =
3 (FS)
722#/screw , 1,444#per connection
Connection to wall shall use either: ,,, -- Wall Mounted
End Cap
,.— 200 Series
#14x1-1/2" wood screw to wood,minimum 1" Top Rail
penetration into solid wood.
Allowable load = 2*175#= 350# iiiMiimmummon
Wood shall have a G>_0.43
From NDS Table 11M .�,>-
For connection to steel studs or sheet metal blocking
Use#12 self drilling screws.
Minimum metal thickness is 18 gauge, 43 mil (0.0451")
- Allowable load= 280#/screw
Table 3: Suggested Capacity for Screws Connecting Steel to Steel(lbs.)
Steel 1/4-14 Screw 012.14 Screw 010-16 Screw' 08-18 Screw• 06 Screw'
Thickness- •
Thinnest Shear Pullout Shear Pullout Shear Pullout Shear Pullout Shear Pullout
Component
0.1017' 1000 320 890 280 780 245 675 210 560 175
0.0713' 600 225 555 195 520 170 470 145 395 125
0.0566` 420 180 390 155 370 135 340 115 310 95
0.0451' 300 140 280 120 260 105 240 90 220 75
0.034r 200 110 185 95 175 80 165 70 150 60
Notes:
1.Design values are based on CCFSS Technical Bulletin Vol 2,No.1 which outlines the proposed A1SI Specification provisions for
screw connections. For shear Connections the cold-famed steel section shaild be evaluated for tension.
2.Based on Fy=33ksi,Fu.45ks1 minimum. Adjust values for other steel strengths.
3.•.Refer to Table 1 for limits on recommended total steel thickness of connected parts.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 50 of 72
Wall Mounted End Caps—Cont.
For connection to masonry or concrete use 3/16 screw-in anchor-
Allowable shear load>_290#per Tapcon
- ESR-2202 I Most Widely Accepted and Trusted Page 5 of 5
TABLE 2—EXAMPLE ALLOWABLE STRESS DESIGN VALUES FOR ILLUSTRATIVE PURPOSES
FOR TAPCON WITH ADVANCED THREADFORM TECHNOLOGY ANCHOR1' 3.4.5.e.r.e
NOMINAL ANCHOR DIAMETER EFFECTIVE EMBEDMENT ALLOWABLE LOADS(pounds)
(inch) DEPTH
(inches) Tension Shear
2,500 psi 3,000 psi 4,000 psi 5,000 psi 2,500 psi
3iie 1.5 260 285 330 370 290
14 1.5 350 385 445 495 525
For SI:1 inch=25.4 mm,1 lbf=4.45 N,1 psi=0.006895 MPa.
'Single anchor with static tension load only.
'Concrete determined to remain uncracked for the life of the anchorage.
3Load combination 9-2 from ACI 318 Section 9.2(no seismic loading).
5 Thirty percent dead load and 70 percent live load,controlling load combination 1.2D+1.6L.
Calculation of weighted average for a=0.3.1.2+0.7'1.6=1.48.
°Normal weight concrete
'c„=ca>c,.
°h h,,,,.
°Condition B in accordance with ACI 318 Section D.4.4 applies.
300 and 350 Series end caps use same fasteners and have identical strengths
Wall Mounted
End Cap ... .Wall Mounted
350 Series ' End Cap
Top Rail - 300 Series
Top Rail
f OP
1
"..,,,4 -
1
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 51 of 72
Excerpts from National Design Specifications For Wood Construction
Table 11.2A Lag Screw Reference Withdrawal Design Values, W1
Tabulated withdrawal design values(W)are in pounds per inch of thread penetration into side grain of wood member.
Length of thread penetration in main member shall not include the length of the tapered tip(see 11.2.1.1).
Specific
Gravity, Lag Screw Diameter,D
G2 1/4" 5/16" 3/8" 7/16" 1/2" 5/8" 3/4" 7/8" 1" 1-1/8" 1-1/4"
0.73 397 469 538 604 668 789 905 1016 1123 1226 1327
0.71 381 450 516 579 640 757 868 974 1077 1176 1273
0.68 357 422 484 543 600 709 813 913 1009 1103 1193
0.67 349 413 473 531 587 694 796 893 987 1078 1167
0.58 281 332 381 428 473 559 641 719 795 869 940
0.55 260 307 352 395 437 516 592 664 734 802 868
0.51 232 274 314 353 390 461 528 593 656 716 775
0.50 225 266 305 342 378 447 513 576 636 695 752
0.49 218 258 296 332 367 434 498 559 617 674 730
0.47 205 242 278 312 345 408 467 525 580 634 686
0.46 199 235 269 302 334 395 453 508 562 613 664
0.44 186 220 252 283 312 369 423 475 525 574 621
0.43 179 212 243 273 302 357 409 459 508 554 600
0.42 173 205 235 264 291 344 395 443 490 535 579
0.41 167 198 226 254 281 332 381 428 473 516 559
0.40 161 190 218 245 271 320 367 412 455 497 538
0.39 155 183 210 236 261 308 353 397 438 479 518
0.38 149 176 202 227 251 296 340 381 422 461 498
0.37 143 169 194 218 241 285 326 367 405 443 479
0.36 137 163 186 209 231 273 313 352 389 425 460
0.35 132 156 179 200 222 262 300 337 373 407 441
0.31 110 130 149 167 185 218 250 281 311 339 367
1. Tabulated withdrawal design values.W,for lag screw connections shall be multiplied by all applicable adjustment factors(see Table 10.3.1).
2. Specific gravity,G,chall be determined in accordance with Table 11.3.3A.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobisonCnarrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 52 of 72
Table 11K LAG SCREWS: Reference Lateral Design Values, Z, for
Single Shear (two member) Connections1,2,3,* 1_,-1
for sawn lumber or SCL with ASTM A653,Grade 33 steel side plate(for t5,71/4")or
ASTM A36 steel side plate(for t5=1/41
(tabulated lateral design values are calculated based on an assumed length of lag
screw penetration,p,into the main member equal to 8D)
L L N y
1 41 li 1
§Sr ' 0 440 L � m aq Qmn -,t u- ad ° E �
$� . Bic 813 til i3 g? ill 8z i
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 53 of 72
Table 11M WOOD SCREWS: Reference Lateral Design Values, Z,
for Single Shear (two member) Connections ,3
for sawn lumber or SCL with ASTM 653,Grade 33 steel side plate
(tabulated lateral design values are calculated based on an assumed length of
•
wood screw penetration,p,into the main member equal to 100)
a 2
i
9 CO _ 1-111 ffi
e.
u. L T„ &
4 D
in. in. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs. lbs.
0.036 0.138 6 89 76 70 69 66 62 60 64 53 52
(20 gage) 0.151 7 99 84 78 76 72 68 67 60 59 57
0.164 8 113 97 89 87 83 78 77 69 67 66
0.048 0.138 8 90 77 71 70 67 83 61 65 54 53
(18 gage) 0.151 7 100 85 79 77 74 69 88 61 60 58
0.184 8 114 98 90 89 84 79 18 70 69 67
0.060 0.138 6 92 79 73 72 68 64 63 57 56 54
(16 gage) 0.161 7 101 87 81 79 75 71 70 63 61 60
0.164 8 116 100 92 90 86 81 79 71 70 68
0.177 9 136 116 107 105 100 94 93 83 82 79
0.190 10 148 125 116 114 108 102 100 90 88 88
0.075 0.138 6 96 82 76 75 71 87 66 69 58 ST
(14 gage) 0.151 7 105 90 84 82 78 74 72 65 64 62
0.164 8 119 103 96 93 89 84 82 74 73 71
0.177 9 139 119 110 108 103 97 95 86 84 82
0.190 10 160 128 119 117 111 105 103 92 91 88
0.216 12 186 159 147 145 138 130 127 114 112 109
0.242 14 204 175 162 158 151 142 139 125" 123 120
0.105 0.138 6 104 90 84 82 79 74 73 66 65 63
(12 gage) 0.151 7 114 99 92 90 86 81 80 72 71 69
0.164 8 129 111 103 102 97 92 90 81 80 77
0.177 9 148 128 119 116 111 105 103 93 91 89
0.190 10 160 138 128 125 120 113 111 100 98 96
0.216 12 196 168 158 153 146 138 135 122 120 116
0.242 14 213 183 170 167 159 150 147 132 130 126
0.120 0.138 6 110 95 89 87 83 79 77 70 68 67
- (11 gage) 0.151 7 120 104 97 96 91 86 84 76 75 73
0.164 8 135 117 109 107 102 96 94 85 84 82
0.177 9 154 133 124 121 116 110 107 97 95 93
0,190 10 166 144 133 131 125 118 116 104 103 100
0.216 12 202 174 162 159 152 143 140 126 124 121
0.242 14 219 189 175 172 164 155 152 137 134 131
0.134 0.138 6 116 100 93 92 88 83 81 73 72 70
(10 gage) 0.151 7 126' 110 102 100 98 91 89 80 79 77
0.184 8 141 122 114 112 107 101 99 89 88 86
0.177 9 ; 160 139 129 127 121 114 112 101 100 97
0.190 10 173 149 139 136 130 123 121 109 107 104
0.216 12 209 180 167 164 157 148 145 131 129 126
0242 14 226 195 181 177 169 160 157 141 139 135
0.179 . 0.138 6 126 107 90 97 92 86 84 76- 74- 72
(7 gage) 0.151 7 139 118 109 107 102 95 93 84 82 80
0.164 8 160 136 126 123 117 110 108 96 95 92
0.177 9 184 160 148 145 138 129 127 113 111 108
0.190 10 198 172 159 156 149 140 137 122 120 117
0.216 12 234 203 189 186 178 168 165 149 146 143
0.242 14 251 217 202 198 190 179 176 159 156 152
0.239 0.138 6 126 107 99 97 92 86 84 75 74 72
(3 gage) 0.151 7 139 118 109 107 102 95 93 84 82 80
0.164 8 160 136 126 123 117 110 108 96 95 92
0.177 9 188 160 148 145 138 129 127 113 111 108
0.190 10 204 173 159 156 149 140 137 122 120 117
0.216 12 256 218 201 197 187 176 172 154 151 147
- 0.242 14 283 241 222 217 207 194 190 170 167 162
I_Tabulated lateral design values.Z.shall be multiplied by all applicable adjustment factors(see Table 10.3.1).
2.Tabulated lateral design values.Z.are for rolled thread wood screws(see Appendix L)inserted in side grain with screw axis perpendicular to wood fibers;screw
penetration.p,into the main member equal to 10D;dowel bearing strength.F...of 61.850 psi for ASTM A653.Grade 33 steel and screw bending yield strengths.
- F,a.of 100.000 psi for 0099" D-•.0.142".90.000 psi for 0142" D 0.177".50.000 psi for 0.177" D 0.236'.70.000 psi far 0.236' D.-:0.273".
3 Where the wood screw penetration.p.is less than 1OD but not less than 6D.tabulated lateral design values,Z.shall be ntultiptied by p 10D or lateral design values
shall be calculated using the provisions of 11.3 for the reduced penetration.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@ narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 54 of 72
VERTICAL PICKET INSTALLATIONS
LOAD CASES:
Picket rail Dead load= 5 plf for 42" rail
height or less.
•
Loading: \200# or 50 plf
Horizontal load to top rail from in-fill:
25 psf*H/2 lio
I .
Post moments �I
M; = 25 psf*H/2*S*H=
= (25/2)*S*H2
For top rail loads:
M� = 200#*H WIND LOAD psf
M„= 50p1f*S*H on face area
LL=25 PSF entire area
For wind load surface area: including spaces
Pickets 3/4" wide by 4" on center
Top rail = 3" maximum
Post= 2.375"
Area for typical 5' section by 42" high: 'AI
42"*2.375"+3"*60"+1.7"*57.625"
+0.75*36*18 = 863.7 in2
% surface/area= 863.7/(60"*42") = 34.3%
Wind load for 25 psf equivalent load = 25/0.343 = 72.9 psf
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 55 of 72
Picket Railing ,i l
Series 100
Top rail loading
50 plf or 2001b conc. 1 111111110111111111111111
- 1T1
Infill: 25 psf
Bottom rail loading
50 Ib conc.
111•1111111 11111111111111111\
111
Picket infill panel is 6' O.C. max
X X
Loading 425 psf 44
1/2" O.0 4 25psf p.375=9.4 plf
M= 9.4/12 (42"-6")2 = 127 lb-in
8
For 5/8" Square pickets t=0.062" 4 S= 0.6253/6-0.53/6 =0.020 in3
fb= 127 lb-in = 6,350 psi
0.02in3
5/8"
For 50 lb conc load 4 1 SF - min 2 pickets
M= 50/236"= 225 lb-in n
4
fb= 225 lb-in = 11,250 psi 1/16"
0.02 in3 7r7r
6063-T6 Fb= 15 ksi—compression ADM Table 2-24 line 14
15 ksi—tension ADM Table 2-24 line 2
Maximum allowable moment on picket= 15 ksi *0.02 in3 = 300 in-lb
Maximum span = 300 in-lb*4/25 lb =48" —concentrated load or
(300in-lb*8/0.783 lb/in)1/2 =55.4 in
Connections
Pickets to top and bottom rails direct bearing—ok
Lap into top and bottom rail— 1" into bottom rail and 5/8" into top
rail. 6.3
(28.3 mm)
Allowable bearing pressure =21 ksi (ADM Table 2-24 line 6) ' 1/4"
Picket filler snaps between pickets to pressure lock pickets in place. (6.3 mm)
Bearing surface= 1.375"*.062" = 0.085 in2
Allowable bearing =0.085 in2*21 ksi = 1,785#
Withdrawal prevented by depth into rails.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 56 of 72
PICKETS 3/4"ROUND
Loading 425 psf 44 1/2" O.0 4 25psf..375=9.4 plf
0.75000
M= 9.4/12 (42"-6")2 = 127 lb-in
8
or concentrated= 50#on 1 sf
For 3/4"round pickets t=0.062" 4
Area: 0.170 sq in
IXX: 0.0093 in4 SXX: 0.022 in3
In,: 0.0083 in4 Syy: 0.022 in3
rxx: 0.234267 in
ryy: 0.221764 in
fb = 127 lb-in= 5,773 psi
0.022 in3
For 50 lb conc load 4 1 SF - min 2 pickets
M= 50/236"= 225 lb-in
4
fb= 225 lb-in = 10,227 psi
0.022 in3
6063-T6 Fb= 15 ksi—compression ADM Table 2-24 line 14
15 ksi—tension ADM Table 2-24 line 2
Maximum allowable moment on picket= 15 ksi *0.022 in3 = 330 in-lb
Maximum span = 330 in-lb*4/25 lb = 52.8"—concentrated load or
uniform load (330in-1b*8/0.783 lb/in)1/2= 58 in
Connections
#10 screw in to top and bottom infill pieces. Shear strength =
2x Fupostx dia screw x trail x SF ADM Eq 5.4.3-2
V= 38 ksi .0.19" . 0.1" ' 1 = 240#
3 (FS)
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 57 of 72
PICKETS 3/4" SQUARE Picket Snap-In Infill
Width —
Loading 425 psf 44 1/2" O.0 4 25psf .
375=9.4 plf
3/4
M= 9.4/12 (42"-6")2 = 127 lb-in (19 mm)
spare Height
8 .,°
Pickets
or concentrated = 50#on 1 sf
Aluminum Bottom Rail -
For 3/4 square pickets t=0.062" 4 Area: 0.288 sq in
S=0.05in3 Perim: 6.03 in 3/4
fb = 127 lb-in = 2,538 psi / /
0.05in3 hoc: 0.0196 in"4
lyy: 0.0190 in"4
Kxx: 0.261 in
For 50 lb conc load 4 1 SF - min 2 pickets Kyy: 0.257 in
r_QM= 50/236"= 225 lb-in Cxx: 0.392 in
Cyy: 0.376 in
4 Sxx: 0.050 in"3
fb= 225 lb-in =4,500 psi Syy: 0.051 in"3 PICKET
0.05 in3
Fb= 15 ksi —compression ADM Table 2-24 line 14
15 ksi—tension ADM Table 2-24 line 2
Maximum allowable moment on picket= 15 ksi *0.05 in3 = 750 in-lb
Maximum span =750 in-lb*4/25 lb = 120"—concentrated load or
(750inlb*8/0.783 lb/in)1'2= 87.5 in - controls
Connections
Pickets to top and bottom rails direct bearing for lateral loads —ok
#10 screw in to top and bottom infill pieces. Shear strength=
2x F„postx dia screw x trail x SF ADM Eq 5.4.3-2
V= 30 ksi .0.19" .0.1" . 1 = 190#
3 (FS)
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 58 of 72
GRAB RAIL BRACKET
Loading 200 lb concentrated load or
50 plf distributed load
- Grab rail bracket— 1-7/8" long A
Aluminum extrusion 6063-T6
_ Allowable load on bracket: p IIII 230
Vertical load: 11
Critical point @ 1.8" from rail to root of double
radius,t= 0.25"
M =P*1.8" or WS*1.8" ir \ § g
where P= 200#,W= 50 plf and \\
� \
S =tributary rail length to bracket.
Determine allowable Moment: \
5.0
FT= 20 ksi,Fc = 20 ksi
‘\\\.\ —:_...,--,j
From ADM Table 2-24
Sv = l.875"*0.252/6=0.0195 in3 / 1.80 '
Mvan =0.0195 in3*20 ksi = 390"# T \� —`!:i
Determine allowable loads: N" ""*'
For vertical load:
Pall = 390"#/1.8" = 217# -- -` Ct.
- Sa11 = 217#/50p1f=4'4"
Vertical loading will control bracket strength.
Allowable load may be increased proportionally by increasing the bracket length.
For 5'Post spacing: 5'/4.33'*1.875" = 2.165"—2-11/64"
Grab rail connection to the bracket:
Two countersunk self drilling#8 or#10 screws into 1/8" wall tube
Shear—Ft„Dt/3 = 30ksi*0.164"*0.125"/2.34*2 screws = 525# (ADM 5.4.3)
Tension— 1.2DtFty/3 = 1.2*.164"*0.125"*25ksi*2 screws/2.34 =525#
Safety Factor= 2.34 for guard rail application.
For residential installations only 200#concentrated load is applicable.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 59 of 72
Connection to support: 't
Maximum tension occurs for outward
Horizontal force = 200#:
Determine tension from E M about C C p 2.50
0= P*5"—T*0.875"
T= 200#*(5-1.25)"/1.25" = 600#
From E forces—no shear force in anchor \ I
occurs from horizontal load 1
ti
Vertical force = 200#+17# (DL): 1 �1
Determine tension from 1M about C
0= P*2.5"—T*1.25" `
T= 217#*2.5"/1.25" = 434#
From E forces—Z=P= 217#
Td .
�r'r dr0 -!i-r
CONNECTION TO STANDARD POST(0.1"
WALL)
For 200#bracket load:
For handrails mounted to 0.1" wall thickness
aluminum tube.
1/4" self drilling hex head screw at post screw slot - effective thickness = 0.125"
Safety Factor= 2.34 for guard rail application.
Shear—Ft„Dt/2.34 (ADM 5.4.3)
3 8ksi*0.2496"*0.125"/2.34= 507#
Tension—Pullout ADM 5.4.2.1
Pt=0.58AsaFt„(tc)]/2.34 =
0.58*0.682*38k5i(0.10)/2.34= 642#
Required attachment strength
T=434# and V= 217#or
T= 600#and V=0
For combined shear and tension (Vertical load case)
(T/Pt)2 + (V/Za)2 <_ 1
(434/642)2 + (217/508)2 =0.639 <_ 1
Or
(434/642) + (217/508) =1.10 s 1.2
Or
600 s 642#therefore okay
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 60 of 72
GRAB RAIL—1-1/2"x 1/8"WALL
6063-T6 Aluminum 125 (32 mmi
Pipe properties: (' Wall Tn#ckness
O.D. = 1.50" 1-1 2.
1.25", t=0.125" F38.1 mm
A=0.540 int
I = 0.129 in4
S =0.172 in3
Allowable stresses from ADM Table 2-24
Fbt= 18.0 ksi; Rb/t= 0.625/0.125 = 5 < 35; Fbc = 18.0 ksi
Ma= S*Fy=0.172*18 ksi = 3,096"#= 258.0'#
Allowable Span:
Check based on simple span and '' lg lc
cantilevered section. 0 O
M = w(lg)2/8 or= P(lg)/4 Solve for lg:
lg = (8M/w)112= [8*(258.0'#/50p1f)]1/2= 6.425' or
lg = (4M/P) =4*258.0'#/200#= 5.16'
Maximum allowable span for supports at both ends=5'-1 15/16"-Controlling span
• For cantilevered section
M = w(lc)2/2 or =P(1c) Solving for lc
lc = (2M/w)1/2 = (2*258.0'#/50p1f)1/2= 3.212' or
lc = M/P= 258'#/200#= 1.29' = 1' -3 1/2" Controlling span
Locate splice within lc of a support.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 61 of 72
GRAB RAIL–1-1/2"x 1/8"WALL
Stainless Steel
125Pipe properties: —/.f���,,f X3,2 mm7
Wan Thickness
O.D. = 1.50"
I.D. = 1.25", t=0.125" 1 112` i �; I
A=0.540 in2 X38.1
I = 0.129 in4 ��''�•��//�
S =0.172in3
Z. 0.236 in3 minimum
r=0.488 in,J =0.255 in4
Stainless steel tube in accordance with ASTM A554-10
Rail Service Loading:
Brushed stainless steel,Fy>_45 ksi,F„>91 ksi (Requires Mill Certification Tests)
OK=0.9*1.25*S*Fy=0.9*1.25*0.172*45 ksi
�Mn= 8,707.5"#
M1= OK/1.6= 5,442.2"#=453.52'#
Allowable Span:
Check based on simple span and lg lc
cantilevered section. 0 O
M= w(Ig)2/8 or= P(lg)/4 Solve for lg:
lg = (8M/w)1i2= [8*(453.52'#/50plf)]1/2= 8.518' or
lg = (4M/P) =4*453.52'#/200#= 9.07'
Maximum allowable span for supports at both ends = 8'-6 3/16"-Controlling span
For cantilevered section
M= w(lc)2/2 or = P(lc) Solving for lc
lc = (2M/w)1/2 = (2*453.52'#/50p1f)1/2 =4.259' or
lc = M/P=453.52'#/200#= 2.268'= 2' -3 3/16" Controlling span
Locate splice within lc of a support.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 62 of 72
STAINLESS STEEL CABLE IN-FILL:
S: MAX. 6 FT. O.C. SPACING POSTS
MAX. 3 FT. O.C. SPACING VERTICAL SPACER
/NOTE: SEE SEPARATE TOP RAIL CALCS
3 IN. U.C. I ,
;SPACNG cs( /KTF
H
IYP
\PM:ITU= —swivciimi-s+u-B-/
FITTING DECK / FLOOR NOTE: SEE FITTING
SURFACE SEPARATE BOTTOM TOTE: SEE SEPARATE
RAIL CALCS POST CALCULATIONS
Cable railing- Deflection/Preload/Loading relationship
Cable anc ored A 1 ( Cable anchored
1 1/2 I t I
Cable Strain = E= Cta • L
A•E
Ct= Ctl + Cta Ct; = installation tension
Cta= EEA= Cable tension increase from loading
L
From cable theory
Ct= for concentrated load
4A
To calculate allowable load for a given deflection:
Calculate E = [[(1/2)2 + A2]1/2 •2—l]
Then calculate Cta= EAE
L
Then calculate Ct= Cti + Cta
Then calculate load to give the assumed A for concentrated load
P= Ct4A
l
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobisonnarrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 63 of 72
For uniform load—idealize deflection as triangular applying cable theory
Ct=W/2
8A
Solving for W= Ct 8 A
12
See spreadsheet pages based on 36'maximum cable length and 3" clear cable spacing.
Cable rail loading requirements
UBC table 16-B Line 9
Guardrail components 25 psf over entire area
IBC 1607.7.1.2 Components
50 lbs Conc. load over 1 sf
Application to cables
Px= 8.33#
-Uniform load=25 psf•3" = 6.25 plf Py= -8.63#
12"
-Concentrated load 1 sf wcr
4"Diam Ball 2 ,
,
•
3 cables minimum 50#> _ N �1 S.7
50/3 = 16.7 lbs on 4" sphere �� M
Produces 8.63 lb upward and downward on 4" BALL LOAD = 50 = 16.7#
adjacent cables. 12/4
Px= 16.7/2 =8.33#
Py=tan46*8.38=8.63#
Deflection—since cables are 3" O.C. and
maximum opening width = 4"
for 1/8" cable Aan =4"—(3- 1/8) = 1 1/8"
for 3/16" cable Aan =4" — (3- 3/16) = 1 3/16"
Cable Strain:
= u/E and AL=L E
AL=L(T/A)/E=L(T/0.0276 in2)/26 x 106 psi
Maximum cable free span length = 60.5"/2-2.375" = 27.875"
Additionally cable should be able to safely support 200 lb point load such as someone standing
on a cable. This is not a code requirement but is recommended to assure a safe installation.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobisonca%narrows.com
1
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 64 of 72
Cable railing
Cable deflection calculations
Cable=1/8"dia(area in^2)= 0.0123
Modulus of elasticity(E,psi)= 26000000
- Cable strain=Ct/(A*E)*L(in)=additional strain from imposed loading
Cable installation load(lbs)= 150
Total Cable length (ft)= 36
Cable free span(inches)= 35
Calculate strain for a given displacement(one span) Imposed Cable load giving displ.
delta(in) strain(in) Ct net(lb) Ct tot(lbs) Conc.Load(lb) Uniform ld(plf)
0.25 0.00357 2.6 152.6 4.4 3.0
0.375 0.00803 5.9 155.9 6.7 4.6
0.55 0.01728 12.8 162.8 10.2 7.0
0.75 0.03213 23.7 173.7 14.9 10.2
1 0.05710 42.2 192.2 22.0 15.1
2 0.22783 168.3 318.3 72.7 49.9
2.5 0.35534 262.4 412.4 117.8 80.8
3.13 0.55542 410.2 560.2 200.4 137.4
Cable railing
Cable deflection calculations
Cable=1/8"dia(area in^2)= 0.0123
Modulus of elasticity(E,psi)= 26000000
Cable strain=Ct/(A*E)*L(in)=additional strain from imposed loading
Cable installation load(lbs)= 200
Total Cable length (ft)= 36
Cable free span(inches)= 35
Calculate strain for a given displacement(one span) Imposed Cable load giving displ.
delta(in) strain(in) Ct net(lb) Ct tot(lbs) Conc.Load(lb) Uniform ld(plf)
0.25 0.00357 2.6 202.6 5.8 4.0
0.375 0.00803 5.9 205.9 8.8 6.1
0.55 0.01728 12.8 212.8 13.4 9.2
0.75 0.03213 23.7 223.7 19.2 13.1
1 0.05710 42.2 242.2 27.7 19.0
2 0.22783 168.3 368.3 84.2 57.7
2.5 0.35534 262.4 462.4 132.1 90.6
3.02 0.51734 382.1 582.1 200.9 137.8
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
1
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 65 of 72
Cable induced forces on posts:
IL REACTIONS RAIL REACTION
RAIL REACTIO
a
�,--
> No cable tension forces
>C, on untermec,ate posts < "
> C< >St-
wIC
71. < '
} <
MilgiCrArATTerrAtTiO
RAIL REACTION
Cable tension forces occur where cables either change direction at the post or are terminated at a
post.
Top rail acts as a compression element to resist cable tension forces. The top rail infill piece
inserts tight between the posts so that the post reaction occurs by direct bearing.
For 400 Series top rail no infill is used. Top rail extrusion is attached to post with (6) #8 screws
in shear with total allowable shear load of 6*325#= 1,950#
Up to eight#8 screws may be used on a post if required to develop adequate shear transfer
between the post and the 400 series top rail.
Bottom rail when present will be in direct bearing to act as a compression element.
When no bottom rail is present the post anchorage shall be designed to accommodate a shear
load in line with the cables of 7*205#*1.25 = 1,784#
End post Cable loading
Cable tension - 200#/Cable no in-fill load
w = 200# = 66.67#/in MW = (39")2 • 66.67#/in= 12,676#"
3" 8
Typical post reactions for 200#installation tension :
11 cables*200#/2 = 1100#to top and bottom rails
For loaded Case
- 3 Cables @ center 220.7#ea based on 6'o.c.posts, 35"cable clear span
post deflection will reduce tension of other cables.
A = [Pa2b2/(3L)+2Pa(3L2-4a2)/24]/EI =
A _ [220.7*152*242/(3*39)+220.7*15(3*392-4*152)/24]/(10,100,000*0.863) =0.086"
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 66 of 72
Cable tension reduction for deflection will go from 200 at end cables to 271-220.7 at center,
linear reduction = (200-50.3)/(39/2) = 7.7 pli
Mconc = 220.7# • 15"/2 +220.7#•18" +(3*(200-7.7*3)) + (6*(200-7.7*6)) +
• (9*(200-7.7*9)) +12*(200-7.7*12)+15*(200-7.7*15)12
Mconc = 10,183#"
Typical post reactions for 200#installation tension with 50#infill load:
11 cables*200#/2+3*(221-200)/2 = 1132#to top and bottom rails.
Typical post reactions for 200#installation tension with 25 psf infill load:
11 cables*207.5#/2 = 1,141#to top and bottom rails.
For 200#Conc load on middle cable tension
599.2#tension,post deflection will reduce tension of other cables
A = [Pa2b2/(3LEI) = [599.2*182212/(3*39*10100000*0.863) = 0.084
Cable tension reduction for deflection will go from 200 at end cables to 52 at center
cables,linear reduction (200-52)/19.5" = 7.6 ph.
M200= 599.2#/2 • 18" +(3)•(200-7.6*3) +(6) (200-7.6*6) +(9) (200-7.6*9) + (12)
(200-7.6*12) +(15) (200-7.6*15) + (18) (200-7.6*18)/2 = 11,200#"
Post strength= 13,794"#
No reinforcement required.
• Standard Cable anchorage okay.
Typical post reactions for 200#installation tension with 200#infill load on center cable:
11 cables*200#/2+(600#-200)/2 = 1,300#to top and bottom rails.
Typical post reactions for 200#tension with 200#infill load on top or bottom cable:
11 cables*200#/2+(600#-200)*33/36= 1,467#to top and bottom rails.
Verify cable strength:
Fy = 110 ksi Minimum tension strength= 1,869#for%a" 1x19 cable
VTn =0.85*110 ksi* 0.0123 = 1,150#
Ts = HTn/1.6 = 1,150#/1.6 = 718#
Maximum cable pretension based on maximum service tension @ 200# cable load is
440#:
Conc. Load Uniform ld
A (in) strain (in) Ct net (lb) Ct tot (lbs) (lb) (plf)
0.19 0.00206 1.7 441.7 9.6 6.6
0.33 0.00622 5.1 445.1 16.8 11.5
2.437 0.33774 278.2 718.2 200.0 137.2
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 67 of 72
CABLE LENGTH/SPAN OPTIONS:
For a maximum cable free span of 42" (Maximum post spacing of 44-3/8" on center)
The Maximum allowable cable length is 36'.
Required minimum cable installation tension is 373#
• Cable railing
Cable deflection calculations
Cable=1/8"dia(area inA2)= 0.0123
Modulus of elasticity(E,psi)= 26000000
Cable strain=Ct/(A*E)*L(in)=additional strain from imposed loading
Cable installation load(lbs)= 373
Total Cable length (ft)= 36
Cable free span(inches)= 42
Calculate strain for a given displacement(one span) Imposed Cable load giving displ.
delta(in) strain(in) Ct net(lb) Ct tot(lbs) Conc.Load(lb) Uniform Id(plf)
0.25 0.00298 2.2 375.2 8.9 5.1
0.375 0.00670 4.9 377.9 13.5 7.7
0.55 0.01440 10.6 383.6 20.1 11.5
0.75 0.02678 19.8 392.8 28.1 16.0
1 0.04759 35.2 408.2 38.9 22.2
2 0.19005 140.4 513.4 97.8 55.9
2.5 0.29657 219.0 592.0 141.0 80.6
3.03 0.43493 321.2 694.2 200.3 114.5
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 68 of 72
For a maximum cable length of 60'.
Maximum cable free span is 35"
Required minimum cable installation tension is 349#.
Intermediate tensioning device is required (turnbuckle or similar device).
Cable railing
Cable deflection calculations
Cable=1/8"dia(area in^2)= 0.0123
Modulus of elasticity(E,psi)= 26000000
Cable strain=Ct/(A*E)*L(in)=additional strain from imposed loading
Cable installation load(lbs)= 349
Total Cable length (ft)= 60
Cable free span(inches)= 35
Calculate strain for a given displacement(one span) Imposed Cable load giving displ.
delta(in) strain(in) Ct net(lb) Ct tot(lbs) Conc.Load(lb) Uniform ld(plf)
0.25 0.00357 1.6 350.6 10.0 6.9
0.375 0.00803 3.6 352.6 15.1 10.4
0.55 0.01728 7.7 356.7 22.4 15.4
0.75 0.03213 14.2 363.2 31.1 21.3
1 0.05710 25.3 374.3 42.8 29.3
2 0.22783 101.0 450.0 102.8 70.5
2.5 0.35534 157.5 506.5 144.7 99.2
3.03 0.52075 230.8 579.8 200.8 137.7
NOTE: WHEN CABLE LENGTH EXCEEDS 36'AN ADDITIONAL TENSIONING DEVICE
IS REQUIRED TO TAKE UP CABLE STRAIN AND ASSURE ADEQUATE CABLE
PRETENSION,WHEN LENGTH EXCEEDS 72'THREE DEVICES ARE REQUIRED.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 69 of 72
For a maximum cable pretension of 440#.
Maximum allowable cable length is 98.4'.
Maximum cable free span is 35"
Two intermediate tensioning devices are required (turnbuckle or similar device).
Cable railing
Cable deflection calculations
Cable=1/8"dia(area inA2)= 0.0123
Modulus of elasticity(E,psi)= 26000000
Cable strain=Ct/(A*E)*L(in)=additional strain from imposed loading
Cable installation load(lbs)= 440
Total Cable length (ft)= 98.4
Cable free span(inches)= 35
Calculate strain for a given displacement(one span) Imposed Cable load giving displ.
delta(in) strain(in) Ct net(lb) Ct tot(lbs) Conc.Load(lb) Uniform Id(plf)
0.25 0.00357 1.0 441.0 12.6 8.6
0.375 0.00803 2.2 442.2 19.0 13.0
0.55 0.01728 4.7 444.7 28.0 19.2
0.75 0.03213 8.7 448.7 38.5 26.4
1 0.05710 15.4 455.4 52.0 35.7
2 0.22783 61.6 501.6 114.6 78.6
2.5 0.35534 96.0 536.0 153.1 105.0
3.02 0.51734 139.8 579.8 200.1 137.2
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 70 of 72
For a maximum cable pretension of 440#.
Maximum allowable cable length is 45.2'.
Maximum cable free span is 42"
Intermediate tensioning device is required (turnbuckle or similar device).
Cable railing
Cable deflection calculations
• Cable=1/8"dia(area inA2)= 0.0123
Modulus of elasticity(E,psi)= 26000000
Cable strain=Ct/(A*E)*L(in)=additional strain from imposed loading
Cable installation load(lbs)= 440
Total Cable length (ft)= 45.2
Cable free span(inches)= 42
Calculate strain for a given displacement(one span) Imposed Cable load giving displ.
delta(in) strain(in) Ct net(lb) Ct tot(lbs) Conc.Load(lb) Uniform Id(plf)
0.25 0.00298 1.8 441.8 10.5 6.0
0.375 0.00670 3.9 443.9 15.9 9.1
0.55 0.01440 8.5 448.5 23.5 13.4
0.75 0.02678 15.8 455.8 32.6 18.6
1 0.04759 28.0 468.0 44.6 25.5
2 0.19005 111.8 551.8 105.1 60.1
2.5 0.29657 174.5 614.5 146.3 83.6
3.03 0.43493 255.9 695.9 200.8 114.7
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 71 of 72
For a maximum post spacing of 60"on center with intermediate cable spreader.
Maximum allowable cable length is 144'. (1/8" cable may not exceed this length.)
Maximum cable free span is 27.625" (Posts @ 60" on center with center picket)
Required cable pretension is 354#
' Three intermediate tensioning devices are required (turnbuckle or similar device).
Cable railing
Cable deflection calculations
Cable=1/8"dia(area in^2)= 0.0123
Modulus of elasticity(E,psi)= 26000000
Cable strain=Ct/(A*E)*L(in)=additional strain from imposed loading
Cable installation load(lbs)= 354
Total Cable length (ft)= 144
Cable free span(inches)= 27.625
Calculate strain for a given displacement(one span) Imposed Cable load giving displ.
delta(in) strain(in) Ct net(lb) Ct tot(lbs) Conc.Load(lb) Uniform ld(plf)
0.25 0.00452 0.8 354.8 12.8 11.2
0.375 0.01018 1.9 355.9 19.3 16.8
0.55 0.02189 4.0 358.0 28.5 24.8
0.75 0.04069 7.5 361.5 39.3 34.1
1 0.07230 13.4 367.4 53.2 46.2
2 0.28809 53.2 407.2 117.9 102.4
2.5 0.44884 82.9 436.9 158.1 137.4
2.95 0.62302 115.0 469.0 200.3 174.1
For 1/8" diameter cable:
Cable pretension,free span and total length under no circumstance shall exceed the following
limits.
MAXIMUM CABLE PRETENSION SHALL NOT EXCEED 440#.
MAXIMUM CABLE FREE SPAN MAY NOT EXCEED 42".
MAXIMUM CABLE LENGTH SHALL NOT EXCEED 144'.
Cable installation parameters are dependent on each other and must be balanced for the specific
installation as shown in the examples herein. When cable length increases the allowable free
span decreases. When cable free span increases the allowable cable length decreases.
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
Hansen Architectural Systems ClearVue Railing System 2/19/15 Page 72 of 72
Cable installation instructions:
The desired cable installation tension is 200 lbs for all runs.
Cable tension is determined by the turn of the nut method:
'' Cables are pulled tight by hand when setting the quick connect bracket. The cable tension is
increased to 200 lbs minimum by straining the cable by 0.153" (31'length). This requires 8.5
turns of the threaded terminal from the snug condition which is attained when the cable is pulled
tight by hand. For every 5 feet of cable above 31'the nut shall be turned an additional 1/2 turn to
achieve the required pretension. For every 5 feet of cable less than 31'the nut shall be turned 1/2
turn less to achieve the required pretension.
When installing the cables start with the lowest
then go to the highest cable and alternate back Recommended Cable Tensioning Sequence
and forth until all cables are installed, installing c t
the center cable last, working from largest number 11 w
down to 1 as shown in illustration. 7;
S I
3+
1,
24
4
6,
10 4
12 4
t
EDWARD C.ROBISON,PE
10012 Creviston Dr NW
Gig Harbor,WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com
1 -