Loading...
Specifications 41114( itiw FROELICH ENGINEERS A Scope of Work Client: Phil Juttelstad Project: Juttelstad Residence Project Number: 13-T026 Date: April 26, 2013 By: SPD Scope of Work: Froelich Engineers, Inc. (FE) has provided structural lateral design of the project per the 2011 • Oregon Residential Specialty Code (ORSC) and 2010 Oregon Structural Specialty Code (OSSC). Froelich Consulting Engineers, Inc. has provided details only to the areas pertaining to our design. Froelich Consulting Engineers, Inc. did not design or review the details for the entire project. Project Description: New addition to existing residence. Existing carport is to be in filled with new walls and attached to a new addition on the West side of the garage. A Main Office FROELICH ENGINEERS 6969 SW Hampton St. ♦Central Oregon Portland,69 Oregon n S23 745 NW Mt.Washington Dr.#205 503-624-7005 wvwv.froelich-engineers.com Bend,Oregon 541--38383--1182828 8 4/26/13 Design Maps Summary Report sumsDesign Maps Summary Report User-Specified Input Building Code Reference Document 2006/2009 International Building Code (which makes use of 2002 USGS hazard data) Site Coordinates 45.41591°N, 122.78296°W Site Soil Classification Site Class D - "Stiff Soil" Occupancy Category Occupancy Category I Bridge Park kA nor . rrwuaiv+,n h, Seitwrstut 2 Southwest mnrr,1.-1-iii r�r}r r s Neighborhoods incorporated Metzger N1iiviaakie Soulhg ,. old <itd Creek l .m Bull af (e :di •: Mountain Metzger g Oatfiald • _% King Clty Tulatin Rieger National I Wildlife Refuge ., ,1.,,p,° 73- Tualatin -.;m United States Sr-Inwood ',:,tth ` Sherwood USGS-Provided Output Mexico. Ss = 0.927g SMS = 1.047g S„ = 0.698 g Si = 0.335 g SMI = 0.580 g Sim 0.3868 MCE Response Spectrum Design Response Spectrum 1.10 0.49 0.70 0.63 0.88 0.56 0.77 lin-in- 0.66 1.71 0.42 11/ 0.55 r 0.44 a 0.35 i 0.33 0.29 0.21 0.22 0.14 0.11 0.07 0.00 0.00 0.20 0.40 0.60 0.90 1.00 1.20 1.40 1.60 1.20 2.00 0.00 0.00 0.20 0.40 0.50 0.90 1.00 1.20 1.40 1.60 1.80 2.00 Period. T(set) Period, T(set) Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein, This tool is not a substitute for technical subject-matter knowledge. g eohazards.usgs.g ovidesignmaps/us/sunmiary.php?template=minimal&latitude=45.4159128&longitude=-122.7829632&siteciass=3&riskeeteg ory=0&edition=ibc... 1/1 Client: Phil Juettelstad Project: Juettelstad Residence • I Project#: 13-T026 Date: 4/26/2013 By: SPD FROELICH EN Ci IN EERSI Lateral Design - Wood Walls Shear Walls SEISMIC: Site Classification: D Occupancy Category: II Occupancy Importance Factor 1 I= System Over-strength Factor: 1.0 Light Frame Walls with Shear Panels !Z= 3.0 Response Modifiaction Coefficient: Light Frame Walls with Shear Panels I R= ,If 6.5 MCE Short Period Pectal Response accei.: Ss= 0,927 MCE 1-second period spectral response accel.: 51= 0.335 5%damped short period spectral response accel.: Sos= 0.698 5%damped 1-second period spectral response accel.: Sc1= 0.386 Seismic Design Category(ASCE Table 11.6-1 &11.61...2)..: .6-2): D Seimic Response Coefficient(ASCE 7-05) : ' EQ 12.8-2 Cs=Sos/(R/I) Cs= 0.107 Controls Eq 12.8-3(max)-in addition to sections 12.8.2, 12.8.2.1, Table 12.8-1 Cs=SD1/(T(R/I)) Ta=C1h^x Ta= 0.256 C1= 0.02 Co= 1.491 from table 12.8-1 h0= 30 T= 0.382 per 12.8.2 x= 0.75 Cs= 0.232 Eq 12.8-5(min) Cs=0.01 Cs= 0.010 Eq 12.8-5(min) Cs=0.044Sosl Cs= 0.031 Cs= 0.107 Working Stress Design: 0.7E Cs= 0.075 Seismic Dead Loads Level diaph area Load 1 Wall L Trib Wall I Wall Wt I Mech U. Misc I Total DL (fe) (psf) (ft) height(ft) (psf) (lbs) (lbs) Roof 275 15 40 4.5 I 2nd Floor 550 12 70 8 0 0 5565 11 8 0 1 800 13560 Seismic Base Shear(Working stress Design) V=Cs(DL) V= 1438 lbs Vertical Distribuition Level [ Weight I Height [ Wt*Ht l "``""1Toaaa I V IV'=(Wt(Ht)(Total)*V Roof 5565 18 I 100170 0.402 1438 ( 578 I=1.1,f • 2nd Floor 13560 11 149160 0.598 1438 I 860' I=V2nd Total= 249330 Vrt= 578 lbs V2nd Floor= 860 Ibs Diaphragm Loads Level 1 wpx(Ibs) 1 Vi(Ibs) I F Vi(Ibs) f I wi(Ibs) I F Roof 5565 578px=((EV;)I(Fwl))*wp. 578 5565 578 Frt 2nd Floor 13560 860 1438 19125 1019 =F2nd Min Diaphragm Loads Sos= 0.7 Fpmin 0.2*So$*wpx*I`0.7 Level JFpmin Roof 544 F,r= 578 lbs 2nd Floor 1325 F2nd Floor= 1325 lbs 4114rClient: Phil Juettetstad Project: Juettetstad Residence Project#: 13-T026 Date: 4/26/2013 By: SPD FROELICH ENGINEERS ; Front - Back Event WIND FORCE CALCULATION-MWFRS ASCE 7-05 SECTION 63 METHOD 2-ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust V3,= 95 mph Wind Directionality Factor Kd= 0.85 Table 6-4(page 80) Wind importance Factor IW= 1.00 Table 6-1 (page 77) Wind Exposure Category= B Building Parameters Longitudinal Dimension of Bldg B= 74.5 ft Transverse Dimension of Bldg L= 44 ft Mean Roof Height h= 22 ft Highest Roof Level fin= 22 ft Approximate Fundamental Period Ta= 0.20 sec Eq. 12.8-7(page 129) Output-Fundamental Frequency f= 4.9 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 6-4 Length of 1/2 hill height Lb= 0 ft Figure 6-4 Dist. From Crest to Bldg.x= 0 ft Figure 6-4 Height Above Local Grade z= 0 ft Figure 6-4 Horizontal Attenuation Factor m= 1 Figure 6-4 Height Attenuation Factor g= 1 Figure 6-4 Shape Factor Kl/(H/Lh)= 1 Figure 6-4 Output-Topographic Multipliers K1 = 1.00 K2= 1.00 K3= 1.00 Topographic Factor Krt= 1.00 • Gus t Effects Input Integral Length Scale Factor 1= 320 ft Table 6-2 Integral Length Ste_ nominal height of boundary zg= 1200 Table 6-2 3-s gust exponent a= 7.00 Table 6-2 Turbulence Intensity Factor c= 0.30 Table 6-2 Power Law Exponent e= 0.33 Table 6-2 Minimum Height;min= 30 ft Table 6-2 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0,88 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.85 Pressure Coefficients Input Length to Width Ratio L/B= 0.59 Height to Length Ratio h/L= 0.50 Roof Pitch= 5 : 12 = 22.62 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 6-3 (page 79) External Pressure Coefficients Cp (see below) Figure 6-6(page 49) Direction Cp Height Windward g (ft) Kh q,(psf) Velocity 0.8 15 0.57 11.3 Pressure Leeward -0.5 20 0.62 12.3 Output q, Roof Windward -0.35 25 0.67 13.1 Roof Leeward -0.6 30 0.70 13.8 40 0.76 14.9 50 0.81 15.9 60 0.85 16.8 70 0.89 17.5 80 0.93 18.2 90 0.96 18.8 100 0.99 19.4 120 1.04 20.4 1 h= 22 0.64 12.6 qh Design Wind Pressures p (usf)- GCS,;=(-) Internal Pressure Coefficient GCp;= 10 psf min per 6.1.4.1 -0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 10.0 -3.1 ft 20 10.6 13.1 -3.1 13.7 25 11.2 -3.1 14.3 30 11.6 -3.1 14.7 40 12.4 -3.1 15.5 50 13.1 -3.1 16.2 60 13.7 -3.1 16.8 70 14.2 -3.1 80 14.7 17.3 -3.1 17.8 90 15.1 -3.1 18.2 100 15.5 -3.1 18.6 120 16.2 -3.1 19.3 22 10.8 -3.1 -0.6 -1.4 13.9 3.85 Design Load Case 1 Controls-By Inspection Figure 6-9(page g 52) Design Wind Pressures p (psi)-GCr;=(+) Internal Pressure Coefficient GCp;= 10 psf rnin per 6.1.4.1 0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 5.4 -7.6 ft 20 13.1 6.1 -7.6 13.7 25 6.6 -7.6 14.3 30 7.1 -7.6 14.7 40 7.9 -7.6 15.5 50 8.6 -7.6 16.2 60 9.2 -7.6 16.8 70 9.7 -7.6 17.3 80 10.1 -7.6 17.8 90 10.6 -7.6 18.2 100 11.0 -7.6 18.6 120 11.7 -7.6 19.3 22 6.3 -7.6 -2.3 -3.1 13.9 Design Load Case I Controls-ByInspection3.85 P Figure 6-9(page 52) Client: Phil Juettelstad Project: Juettelstad Residence Project#: 13-T026 Date: 4/26/2013 By: SPD FROELICH ENGINEERS E Side - Side Event WIND FORCE CALCULATION-MWFRS ASCE 7-05 SECTION 6.5 METHOD 2 -ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust V35= 95 mph Wind Directionality Factor Kd= 0.85 Table 6-4(page 80) Wind Importance Factor Iw.= 1.00 Table 6-1 (page 77) • Wind Exposure Category= B Building Parameters Longitudinal Dimension of Bldg B= 44 ft Transverse Dimension of Bldg L= 74 ft Mean Roof Height h= 22 ft Highest Roof Level h„= 22 ft Approximate Fundamental Period Ta= 0.20 sec Eq. 12.8-7 (page 129) Output-Fundamental Frequency f= 4.9 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 6-4 Length of 1/2 hill height Lh= 0 ft Figure 6-4 Dist. From Crest to BIdg. x= 0 ft Figure 6-4 Height Above Local Grade z= 0 ft Figure 6-4 Horizontal Attenuation Factor m= 1 Figure 6-4 Height Attenuation Factor g= 1 Figure 6-4 Shape Factor K1/(HILh)= 1 Figure 6-4 • Output-Topographic Multipliers K1 = 1.00 K2 = 1.00 K3= 1.00 Topographic Factor Kit= 1.00 Gust Effecputts In Integral.Length Scale Factor 1= 320 ft Integral Length Table 6-2 Scale nominal height of boundary zg= 1200 Table 6-2 3-s gust exponent a= 7.00 Table 6-2 Turbulence Intensity Factor c= 0.30 Table 6-2 Power Law Exponent e= 0.33 Table 6-2 Minimum Height;pip= 30 ft Table 6-2 Integral Length Scale of Turbulence L.,= 310 ft Output-Background Response Factor Q= 0.90 Intensity of Turbulence I,= 0.30 Gust Effect Factor G= 0.87 Pressure Coefficients Input Length to Width Ratio L/B= 1.68 Height to Length Ratio h/L= 0.30 Roof Pitch= 0 : 12 = 0.00 deg Velocity Pressure Exposure Coefficients Kb (see below) Table 6-3 (page 79) External Pressure Coefficients Cp (see below) Figure 6-6(page 49) Direction Cp Height Windward g (ft) CI CI,(psi) Velocity 0.8 15 0.57 11.3 Pressure Leeward -0.5 20 0.62 12.3 Out ut Roof Windward 0.20 p q' 25 0.66 13.0 Roof Leeward -0.6 30 0.70 13.8 40 0.76 14.9 50 0.81 15.9 60 0.85 16.8 70 0.89 17.5 80 0.93 18.2 90 0.96 18.8 100 0.99 19.4 120 1.04 20.4 h= 22 0.64 12.6 qh Desi n Wind Pressures s -GC •_ Internal Pressure Coefficient GC - -0.18 Figure 6-5 (page 47) Wall Horizontal Effects Roof Direction- Windward Leeward Roof WW Horiz. Roof LW WW+LW RWW+RLW Height 15 10.1 -3.2 ft 20 10.7 -3.2 13.3 25 11.2 -3.2 13.9 30 11.8 -3.2 14.4 40 12.6 -3.2 15.0 50 13.3 -12 15.8 60 13.9 -3.2 16.5 70 14.4 -3.2 17.1 80 14.9 -3.2 17.6 90 15.3 -3.2 18.1 100 15.7 -3.2 18.5 120 16.4 -3.2 18.9 22 11.0 -3.2 19.6 Design Load Case I Controls-By Inspection 0 0 0.0 14.20.00 52 Figure 6-9(page 52) Desi n Wind Pressures s -GC •_ + Internal Pressure Coefficient GC - 10 psf min per 6.1.4.1 P, - 0.18 Figure 6-5(page 47) Wall Horizontal Effects Roof Direction - Windward Leeward Horiz. Height 15 5.5 -7.7 Roof WW Roof LW WW+LW, RWW+RLW ft 20 6.2 -7.7 13.3 25 6.7 -7.7 13.9 30 7.3 -7.7 14.4 40 8.1 -7.7 15.0 50 8.8 -7.7 15.8 60 9.3 -7.7 16.5 70 9.9 -7.7 17.1 80 10.3 -7.7 17.6 90 10.8 -7.7 18.1 100 11.2 -7.7 18.5 120 11.9 -7.7 18.9 22 6.5 -7.7 19.6 Design Load Case 1 Controls-By Inspection 0 0 Figurr 00 1 0.00 52 e 6-9(page 52) 6969 SW Hampton St. CLIENT: Portland,Oregon 97223 41,40- 503-624-7005 PROJECT: Itfr NUMBER: 745 NW Mt.Washington Dr.#205 Bend,Oregon 97701 541-383-1828 DATE: FROELICH ENGINEERS; BY: I41-6 eif 4- C2 574 15eitvov i>tcc-r A =73, (//wP 1(1(- t 9(/(26 tvijo ) ;11 FLoo e 4- t/vi/vp tivvviA4.482f9erty, S60 5-117‘7-71— \ ) -2/1- Girvk cv4vep 1_,FA:2)1-07;1101,1(77 erril4k itc- tA,,,,t,p, 7,372! - eq )( floot? t )// A-4 to)) 32"' - , f;•; , j - (.0 EQ - tol-Ptintie7> cv/ t.r/fre_ - t4,74/v7 0/0) /4-5.04'1' aotr-- C4 LW tx7:ov-t:7 cArAPI7 c4,7 tree"- (ity) (6_9(1 6(1) L.7- 2oer.F- • Client: Phil Juettelstad Project: Juettelstad Residenc�ngth of individual wall -Nu Project#: 13-T026 la=Total length ofwall along gridline v=(Vrf+V4-FV3+V2)/Lt Date: 41390 to=Length of moment arm in wall(if B SPS different than wall length) Itif=Wall Height flrx to roof c h4=Height of wall flr3-flr4 Ms=[Vrf(hrf+h4+h3+h2+3)+V4(h4+h3+h2+2)+V3(h3+h2+1)+V2(h2)]x L F R O C I f C H h3=Height of wall flr2-flr3 E N G t N E E R s t h2=Height of wall flrl-flr2 Ll Vrf==Horizontal force at gridline from roof Shear Walls & Holdowns V4=Horizontal force at gridline from 4v'flr V3=Horizontal force at gridline from 3`d flr Roof to 2nd Floor V2=Horizontal force at gridline from tad flr Mu=[Vrf(hi)+V4(hl}+V3(hi)+V2(ht)}x L Roof DL: 15 psf t'=Unit shear in wall Lt Ms=Overturning moment when upper wall is Floor DL: 12 psf stacked above lower wall Wall DL; 8 psf Mu=Overtuming moment when upper wall is Mr=0.6[(Rtrib x RoofDL)+(Wtrib x WalIDL)+(Ftrib x FloorDL)}L2 2 not stacked or does not exist 2 Rtr h,Wtrib,Ftrib=Roof,wall,and floor tributary area,used for calculating dead load Tu=Mie-Mr Ts_ Ms-Mr Mr=Resistingsnoment due to dead load La L 10=Tension if walls not stacked Tension if walls stacked L `Lt L h '. .` Vrf Mu R ;b Wt� FlOb Mr, Tu Comments Motdowns Shearwall " Controlling Grid (ft) A(ft) (ft) ((t} (Ib) I Ib' f Front-Back Event Nailing Event A i 10.5 12.5 10 9 564 451 4264} 21 91- 01 33741 891 f B 564 -- I 6/12 w - Transfer to existing Side-Side Event 1 12.5 12.5 12 12 781 62 9372 2" 9 0 4781 383w 2A 12.5 12.5_ 12 12 781 62 9372 2 9 0 4781 383 - 6/12 w -- 6/12 Client: Phil Juettelstad Project: Juettelstad Residence Project#: 13-T026 L=Length of individual wall +'=(.'orf+-V4+i'3+i'2)ILr ,� Lt=Total length of wall along gridline Date: 41390 La=Length of moment arm in wall(if By: SPD different than wall length) hrf=Wall Height flrx to roof F R E L `H h4=Height of wall flr3-flr4 ys=iVrf(hrf--h4+h3+h2+3)+V4(h4+h3+h2+2)+V3(h3+h2+1)+Y2(h2)1z L h3=Height of wall flr2-flr3 E N t?I N E E 13 S 1 h2=Fletght of wall flrl-flr2VrLt Shear Walls & Holdowns V4f=Hor o tal'forceatforcetgridlinefrogridline m4'fir 2nd Floor to Foundation V3=Horizontal force at gridline from 3'aflr V2=Horizontal force at gridline from 2' flrMu=[Vr((hi)i V4(hi)+V3(hi)+V2(hi)1x L v=Unit shear in wall Lt Roof DL: 15 psf ms=Overturning moment when upper wall is Floor DL: 12 psf stacked above lower wall Wall DL: 8 psf m.=Overturning moment when upper wall is Mr=0.6[(Rtrtb x RoofDL}+(FYlrib aWal7 L)+(Ftribx Flaorl)L)If not stacked or does not exist 2 Rtrib,Wirth,Ftrib=Roof,wall,and floor tributary,area,used for calculating dead loadMs—Mr Mu—Mr 7b= Mr= La Resisting moment due to dead load is=----t------- Tu_Tension if walls not stacked Ps=Tension if walls stacked Wall L Lt La hd h2 V,t V2 v Ms Mu R W F . Mr Grid (ft) (ft) h (ft) (lbs) { 2) I v I (IMft I Im° tnb tnb [ Tu 1 Ts Comments Holdowns Shearwall Controlling Front-Back Event } {Ib'ft) (ft) (ft) I (ft) (Ib'ft} (lbs) Obs) Nailing event A 10..5 10.5 10.0 9 9 564 625 113 1 163411 107011 2.01 181 6.01 81361 256 1 I I I 6/12 w B I 625 Transfer to existing Side-Side Event 2B 12.5 12.5 12.0 9� 8 781 1432 177 ' 25514 17704 0.0 8 2.0 4125 1132 3 - M t { HTT16 161 50 6/12 w Transfer to existing I j 1 11 E I I I l I w