Loading...
Specifications (10) • /lA��-> f3 - 60014/ i 43 54) tat/ ��` RECEIVED FEB 2 0 2013 STRUCTURAL CALCULATIONS CITYOFTIGARD FOR BUILDING DIVISION ASPEN A LOT 2 @ WALNUT CREEK LEGEND HOMES TIGARD, OR S,t�U C T Umq r_r;0; - (C," :4) tor -c' GON V 1? 1''25 °� Qti /VIZ DEPv4 EXPIRES: j.2/ iJd 0 l THESE CALCULATIONS ARE VOID IF SEAL AND SIGNATURE ARE NOT ORIGINAL FEBRUARY 20,2013 JOB NUMBER: 12-T235C „1„„ FROELICH ENGINEERS ?, * * * LIMITATIONS * * * ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT, WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND/OR LIABILITY IS ASSUMED BY,OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS. A Main Office ♦Central Oregon 6969 SW Hampton St. 745 NW Mt.Washington Dr.#205 Portland,Oregon 97223 Bend,Oregon 97701 503-624-7005 www.froelich-engineers.com 541-383-1828 k f 4 , 4•1.- „ ,,, , _ „0,000 FROELICH ENGINEERS 6 Client: Legend Homes Project: Aspen A Project Number: 12-T235 Date November 26, 2012 By: YSP Scope of Work Froelich Engineers has provided full structural lateral and gravity design of the project per the 2010 OSSC with the exception of continuous footings that fall within the parameters set forth by the 2011 ORSC. The roof trusses are designed by others. Froelich Engineers has provided details only to the areas pertaining to our design. Froelich Engineers did not design or review the details for the entire project. FROELICH ENGINEERS: MAIN OFFICE € CENTRAL OREGON € 6969 SW Hampton Street 745 NW Mt.Washington Dr.Suite 205 Tigard,Oregon 97223 Bend,Oregon 97701 503.624-7005/503.624-9770 FAX 541.383-1828/541.383-7696 FAX -Statement of Code Compliance- All engineering calculations in this packet that reference outdated codes, including but not limited to: hand written calculations, computer outputs, and spreadsheets, have been reviewed by FCE and meet or exceed the minimum requirements for the following code standards; 2010 OSSC 2011 ORSC 2005 NDS 2008 AF&PA SDPWS ASCE 7-05 ACI 318-08 e • ASPEN A nim1. '1 ,. 1.,. A11111111 11111111►. d11I111M1N1■11111111111116. .g 111 11.,. Adds mah... m ■.r.nn 0 ® ®E1 � ® . mi,,, ,,,„.}. = -®® m ® S . = ,, - in _wow ,.. .o - _y I--- --7 H U U u u L ale L7 I Li . , -t , ., . .-_-: I Hum 1 1 1 � ` , _ : I I I II _' _.„. . 1 _ . J - ` _ ® ® 1 I 11 ir ;®�.,e�a- ,etre=. -�:a ��tr.ea', Hill III iffil I III J 4 Client: Legend Homes Project: Aspen A , 4111 Proj.#: 12-T235 Date: ######## By: YSP r FROELICH ENGINEERS€ Design Criteria: General: Building Code(s): 2009 IBC 2010 OSSC 2011 ORSC Roof Live Load: Snow= 25 psf Deflection Criteria: L/240 Load Duration: 1.15 Floor Live Loads: Floor Live= 40 psf Deflection Criteria: L/360 Wind Load*: Speed: 95 mph 3 sec Exposure: B Importance Factor: 1.0 Special Req's: no - Seismic Load: Design Category D Site Class D Response Coeff 6.5 Importance Factor: 1.0 Soils Data: Allowable Bearing(assumed): 1500 psf Frost Depth: 18 in Special Soils Req's: --- ®• , FROELICH ENGIN E E R S 8 Client: Legend Homes Project: Aspen A Project Number: 12-T235 Date: November 26, 2012 By: YSP DEAD LOAD TAKE OFF ROOF DEAD LOAD Framing(RFR) =5.0 PSF Sheathing''/z"(RPL) = 1.5 PSF Roofing(RRF) =3.0 PSF Mech/Electrical(RME) = 1.5 PSF Ceiling(RCG) =2.2 PSF Insulation(R1N) = 1.5 PSF Miscellaneous(MIS) =0.3 PSF ROOF DEAD LOAD RDL=RFR+RPL+RRF+RME+RCG+R1N+MIS RDL= 15 PSF FLOOR DEAD LOAD Framing(FFR) =3.0 PSF Sheathing/Floor(FPL) =3.5 PSF Mech/Electrical(FME) =2.0 PSF Lower Ceiling(FCG) =2.0 PSF Miscellaneous(FMS) = 1.5 PSF FLOOR DEAD LOAD FDL =FFR+FPL+FME+FCG+FMS FDL= 12 PSF WALL DEAD LOAD WDL= 10 PSF 5 . ' Client: Legend Homes Project: Aspen A Proj.#: 12-T235 .0.1' Date: 11/26/2012 By: YSP FROELICH_ ENGINEERS S Snow drift Calculations According to ASCE 7 D (psf) = 17.25 D=Density of Snow(pcf) Wb(ft)= 12 Wb=Width of Building(feet) Pg (psf)= 25 Pg=Ground Snow Load(psf) Pf(psf) = 25 Pf=Snow load on flat roofs(psf) W(ft) = 7 hd=Height of drifted snow(feet) Pm=Drifted snow pressure(psf) Wd=Width of drift(feet) Drift Snow Loads W=Eave to Ridge(feet) hd = 0.89 PSS=Sliding snow pressure(psf) Pm = 15 Wd = 3.58 hd=0.43 *1„^1/3*(pg+10)1/4— 1.5 Pm=D *ha Sliding Snow Wd=4 *hd Pss= 5 PSS=0.4 *Pf* W/WS Wd = 15 Ws=Width of lower roof(feet) 1 11 ❑I 1 _ -- -- (L R 1 I rk££Ef!££f1B--ffk£fflffff£f�i 01 Ill I , 1 0 IL —L-11, i I hII U � i1 II \\,, I I I I # - - - ( III 6-1 • kN� - ht= ; 1 il i, 11, ". � II ,�,,——JL �LI1_I_ �I lam= — n _ If _1 f / 1 ` !I � ; r1 (11 11 I _ � I 1 .' \\ i : I: I ` �' 'TS{ {fsfS" \—\\I �f 3}£4f cs /-Y1/1 i j 'fs {fffi�fl f{7II{{EL Ff£F us s1 sF 11 s ir 1 ' Client: Legend Homes o Project: Aspen A Proj.#: 12-T235 Date: 11/26/2012 }. By: YSP FROELICH ENGINEERS 1 Roof Framing Roof Dead Load= 15 psf Roof Snow Load= 25 psf Use Pre-Manuf Trusses @ 24" O.C. (U.N.O.) Roof Girder Truss (For Reaction Only) RG1: Span= 28'-0" W1 (From 0'-0" to 28'-0") DL= (4')(15 psf) = 60 plf SL= (4')(25 psf) = 100 plf - Reaction @ DL= 850 lbs supports : SL= 1400 lbs , Roof HDR RH1: Span= 8'-0" W1 (From 0'-0" to 8'-0") DL= (3')(15 psf) = 45 plf SL= (3')(25 psf) = 75 plf RH2: Span= 5'-0" W1 (From 0'-0" to 5'-0") DL= (16')(15 psf) = 240 plf SL= (16')(25 psf) = 400 plf A i 9 COMPANY PROJECT Ifl WoodWorks® SOFTWARE FOR WOOD DESIGN Nov.2,2012 10:04 RH1.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 45.0 No Load2 Snow Full UDL 75.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A 0' 8' Dead 204 204 Live 300 300 Total 504 504 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations:ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 25 Fv' = 207 fv/Fv' = 0.12 Bending(+) fb = 395 Fb' = 1329 fb/Fb' = 0.30 Live Defl'n 0.04 = <L/999 0.27 = L/360 0.15 Total Defl'n 0.07 = <L/999 0.40 = L/240 0.16 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.15 1.00 1.00 0.988 1.300 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+S, M = 1008 lbs-ft Shear : LC# 2 = D+S, V = 504, V design = 428 lbs Deflection: LC# 2 = D+S EI= 178e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. $ h • 1d COMPANY PROJECT lilt WoodWorks° SOFTWARE FOR WOOD DESIGN Oct.30,2012 14:10 RH2.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 240.0 No Load2 Snow Full UDL 400.0 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : 0' 0 Dead 615 615 Live 1000 1000 Total 1615 1615 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : • Criterion Analysis Value Design Value Analysis/Design Shear fv = 72 Fv' = 207 fv/Fv' = 0.35 Bending(+) fb = 790 Fb' = 1335 fb/Fb' = 0.59 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.19 Total Defl'n 0.05 = <L/999 0.25 = L/240 0.20 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.15 1.00 1.00 0.992 1.300 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+S, M = 2019 lbs-ft Shear : LC# 2 = D+S, V = 1615, V design = 1225 lbs Deflection: LC# 2 = D+S EI= 178e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. lack Lower Roof Beam LRB1: Span= 11'-6" W1 (From O'-0" to 11'-6") DL= (3)(15 psf) = 45p1f Drift+Sliding+ SL= (3')(25 psf+15psf+5psf) = 135 plf Ib b COMPANY PROJECT 41 Wood Wor SOFTWARE FOR WOOD DESIGN Nov.2,2012 10:46 LRB1.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft) Pat- Start End Start End tern Loadl Dead Full UDL 45.0 No Load2 Live Full UDL 135.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0' 11'-6" Dead 303 303 Live 776 776 Total 1079 1079 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x10" Self Weight of 7.69 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations:ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 43 Fv' = 180 fv/Fv' = 0.24 Bending(+) fb = 746 Fb' = 1058 fb/Fb' = 0.70 Live Defl'n 0.14 = L/959 0.38 = L/360 0.38 Total Defl'n 0.20 = L/690 0.58 = L/240 0.35 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.00 1.00 1.00 0.980 1.200 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+L, M = 3103 lbs-ft Shear : LC# 2 = D+L, V = 1079, V design = 935 lbs Deflection: LC# 2 = D+L EI= 369e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ` zg ? y g'.. z? 1 i I,—a . ,- . i L J - ri7 sg£am.FD • J • 1 • • _LI •I I' J • 1 J • Ii. W O c..2 2 l i7,1 I i; 3} ' - �11 I rTr r' • — w 1' lieviZ e 1 I I.I id SII 3333333;3 = 353 ,f 33333333 -F1333 3 333 33 3 3 33 334 'a „ , 4Client: Legend Homes Project: Aspen A ; 111( Proj.#: 12-T235 Date: 11/26/2012 By: YSP 9 r FROELICH ENGINEERS E 2nd Floor Framing Floor Dead Load= 12 psf Floor Live Load= 40 psf Wall Dead Load= 10 psf 2nd Floor Joist: Use Pre-Manuf. Trusses @ 2411 O.C. (U.N.O.) 2nd Floor Beam 2FB1: Span= 7'-6" W1 (From 0'-0" to 7'-6") DL= (8)(12 psf) = 96 plf LL= (8')(40 psf) = 320 plf 2FB2: Span= 4'-0" W1 (From 0'-0" to 4'-0") DL= (3')(12 psf) = 36 plf LL= (3')(40 psf) = 120 plf 2FB3: Span= 6'-6" W1 (From 0'-0" to 6'-6") DL= (2)(12 psf) = 24 plf LL= (2')(40 psf) = 80 plf P @ 1'-6" (From 2FB1) DL= 380 lbs LL= 1200 lbs P @ 2' (From 2FB2) DL= 100 lbs LL= 250 lbs 2FB4: Span= 14'-6" W1 (From 0'-0" to 14'-6") DL= (2)(12 psf) = 24 plf LL= (2')(40 psf) = 80 plf P @ 5'-6" (From 2FB1) DL= 380 lbs LL= 1200 lbs 2FB5: Span= 18'-0" W1 (From 0'-0" to 18'-0") DL= (14.5)(12 psf) = 175 plf LL= (14.5')(40 psf) = 580 plf • 2FB6: Span= 16'-6" W1 (From 0'-0" to 16-6") DL= (3')(12 psf)+ (9')(10 psf)+(3')(15)= = 171 plf LL= (3')(40 psf) = 120 plf SL= (3')(25 psf) = 75 plf 2FB7: Span= 13'-0" & 18'-0" W1 (From 0'-0" to 31-0") DL= (3')(12 psf)= 36 plf LL= (3')(40 psf) = 120 plf COMPANY PROJECT ffl WoodWorks® SOFTWARE FOR WOOD DESIGN Oct. 10,2012 15:23 2FB1.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 96.0 No Load2 Live Full UDL 320.0 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : 0 o' 7-6" Dead 368 368 Live 1200 1200 Total 1568 1568 Bearing: LC number 2 2 Length 1.12 1.12 LSL, 1.55E, 2300Fb, 1-314x16" Self Weight of 2.24 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations:ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 54 Fv' = 310 fv/Fv' = 0.17 Bending(+) fb = 473 Fb' = 594 fb/Fb' = 0.80 Live Defl'n 0.02 = <L/999 0.25 = L/360 0.10 Total Defl'n 0.03 = <L/999 0.38 = L/240 0.09 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fb'+ 2325 1.00 - 1.00 0.255 1.00 - 1.00 1.00 - - 2 Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Bending(+) : LC# 2 = D+L, M = 2941 lbs-ft Shear : LC# 2 = D+L, V = 1568, V design = 1011 lbs Deflection: LC# 2 = D+L EI= 926e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. Y 1 ‘,6 COMPANY PROJECT 44 ill WoodWorks° SOFTWARE FOR WOOD DESIGN Nov.2,2012 10:46 2FB2.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 36.0 No Load2 Live Full UDL 120.0 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : 0 0 0' 4' Dead 76 76 Live 240 240 Total 316 316 Bearing: LC number 2 2 Length 1.00 1.00 LSL, 1.55E,2300Fb, 1-314x16" Self Weight of 2.24 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 6 Fv' = 310 fv/Fv' = 0.02 Bending(+) fb = 51 Fb' = 1085 fb/Fb' = 0.05 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.00 Total Defl'n 0.00 = <L/999 0.20 = L/240 0.00 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fb'+ 2325 1.00 - 1.00 0.467 1.00 - 1.00 1.00 - - 2 Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Bending(+) : LC# 2 = D+L, M = 316 lbs-ft Shear : LC# 2 = D+L, V = 316, V design = 105 lbs Deflection: LC# 2 = D+L EI= 926e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT !` WoodWorks® SOFTWARE FOR WOOD DESIGN Nov.2,2012 10:47 2FB3.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 24.0 No Load2 Live Full UDL 80.0 No Load3 Dead Point 380 1.50 No Load4 Live Point 1200 1.50 No Load5 Dead Point 100 2.00 No Load6 Live Point 250 2.00 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : 0 0' 6'-6" Dead 447 204 Live 1356 614 Total 1803 818 Bearing: LC number 2 2 Length 1.29 1.00 • LSL, 1.55E, 2300Fb, 1-314x16" Self Weight of 2.24 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 310 fv/Fv' = 0.29 Bending(+) fb = 418 Fb' = 683 fb/Fb' = 0.61 Live Defl'n 0.01 = <L/999 0.22 = L/360 0.06 Total Defl'n 0.02 = <L/999 0.32 = L/240 0.06 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fb'+ 2325 1.00 - 1.00 0.294 1.00 - 1.00 1.00 - - 2 Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Bending(+) : LC# 2 = D+L, M = 2603 lbs-ft Shear : LC# 2 = D+L, V = 1803, V design = 1661 lbs Deflection: LC# 2 = D+L EI= 926e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. ♦ ' L V COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESJGR Nov.2,2012 10:48 2FB4.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 24.0 No Load2 Live Full UDL 80.0 No Load3 Dead Point 380 5.50 No Load4 Live Point 1200 5.50 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A A 0' 14'-6" Dead 442 351 Live 1325 1035 Total 1767 1386 Bearing: LC number 2 2 Length 1.00 1.00 LSL, 1.55E,2300Fb, 3-112x16" Self Weight of 4.47 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations:ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 43 Fv' = 310 fv/Fv' = 0.14 Bending(+) fb = 649 Fb' = 1274 fb/Fb' = 0.51 Live Defl'n 0.11 = <L/999 0.48 = L/360 0.22 Total Defl'n 0.14 = <L/999 0.73 = L/240 0.20 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fb'+ 2325 1.00 - 1.00 0.548 1.00 - 1.00 1.00 - - 2 Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Bending(+) : LC# 2 = D+L, M = 8078 lbs-ft Shear : LC# 2 = D+L, V = 1767, V design = 1622 lbs Deflection: LC# 2 = D+L EI= 1852e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 19 COMPANY PROJECT 1 1 Wood Works° SOF7WARE FOR WOOD DESIGN Nov.2,2012 10:49 2FB5.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft) Pat- Start End Start End tern Loadl Dead Full UDL 175.0 No Load2 Live Full UDL 580.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0' 18' Dead 1746 1746 Live 5220 5220 Total 6966 6966 Bearing: LC number 2 2 Length 1.95 1.95 Glulam-Unbal.,West Species, 24F-1.8E WS,5-1/2x15" Self Weight of 18.99 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations:ICC-IBC; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 109 Fv' = 240 fv/Fv' = 0.45 Bending(+) fb = 1824 Fb' = 2300 fb/Fb' = 0.79 Live Defl'n 0.49 = L/439 0.60 = L/360 0.82 . Total Defl'n 0.66 = L/328 0.90 = L/240 0.73 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.00 1.00 1.00 0.958 1.000 1.00 1.00 1.00 1.00 - 2 Fv' 240 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Bending(+) : LC# 2 = D+L, M = 31347 lbs-ft Shear : LC# 2 = D+L, V = 6966, V design = 5998 lbs Deflection: LC# 2 = D+L EI= 2784e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 0 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN Nov.2,2012 10:50 2FB6.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 171.0 No Load2 Live Full UDL 120.0 No Load3 Snow Full UDL 75.0 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : 0 0' 16'-6" Dead 1491 1491 Live 1207 1207 Total 2697 2697 Bearing: LC number 3 3 Length 1.19 1.19 Glulam-Unbal.,West Species, 24F-1.8E WS,3-112x12" Self Weight of 9.67 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 78 Fv' = 240 fv/Fv' = 0.32 Bending(+) fb = 1589 Fb' = 2245 fb/Fb' = 0.71 Live Defl'n 0.27 = L/736 0.55 = L/360 0.49 Total Defl'n 0.60 = L/329 0.83 = L/240 0.73 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.15 1.00 1.00 0.813 1.000 1.00 1.00 1.00 1.00 - 3 Fv' 240 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Bending(+) : LC# 3 = D+.75(L+S), M = 11125 lbs-ft Shear : LC# 2 = D+L, V = 2481, V design = 2180 lbs Deflection: LC# 3 = D+.75(L+S) EI= 907e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 2ac- COMPANY PROJECT l WoodWorks® SOFTWARE FOR WOOD DESIGN Feb.4,2013 14:45 2FB7.wwb Design Check Calculation Sheet Sizer2004a LOADS (lbs,psf,or plf Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 36.0 No Load2 Live Full UDL 120.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : d o 13' 31' Dead 178 880 320 Live 481 2375 864 Total 659 3255 1184 Bearing: LC number 2 2 2 Length 1.00 1.06 1.00 Cb 1.00 1.36 1.00 Glulam-Unbal.,West Species, 24F-1.8E WS, 3-1/2x10-1/2" Self Weight of 8.46 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 67 Fv' = 240 fv/Fv' = 0.28 Bending(+) fb = 796 Fb' = 2220 fb/Fb' = 0.36 Bending(-) fb = 993 Fb' = 1437 fb/Fb' = 0.69 Live Defl'n 0.24 = L/890 0.60 = L/360 0.40 Total Defl'n 0.33 = L/649 0.90 = L/240 0.37 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.00 1.00 1.00 0.925 1.000 1.00 1.00 1.00 1.00 - 2 Fb'- 1450 1.00 1.00 1.00 0.991 1.000 1.00 1.00 1.00 1.00 - 2 Fv' 240 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Bending(+) : LC# 2 = D+L, M = 4264 lbs-ft Bending(-) : LC# 2 = D+L, M = 5324 lbs-ft Shear : LC# 2 = D+L, V = 1776, V design = 1632 lbs Deflection: LC# 2 = D+L EI= 608e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.Grades with equal bending capacity in the top and bottom edges of the beam cross-section are recommended for continuous beams. 4.GLULAM:bxd=actual breadth x actual depth. 5.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 6.GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 2nd Floor HDR 2FH1: Span= 3'-0" W1 (From 0'-0" to 3'-0") DL= (14.5')(15 psf)+(9')(10 psf)+(7')(12 psf) = 395 plf LL= (7')(40 psf) = 280 plf SL= (14.5')(25 psf) = 365 plf P @ 2'-0" (From RG 1) DL= 850 lbs SL= 1400 lbs 2FH2: Span= 6'-0" W1 (From 0'-0" to 6'-0") DL= (2')(12 psf)+(9')(10psf)+(4)(15psf) = 175 plf LL= (2')(40 psf) = 80 plf SL= (4)(25 psf) = 100 plf 2FH3: Span= 5'-0" W1 (From 5'-0" to 6'-0") DL= (7')(12 psf)= 84 plf LL= (7')(40 psf)= 280 plf ZZ COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN Oct. 10,2012 15:58 2FH 1.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 385.0 No Load2 Live Full UDL 280.0 No Load3 Snow Full UDL 365.0 No Load4 Dead Point 850 2.00 No Load5 Snow Point 1400 2.00 No MAXIMUM REACTIONS(lbs) and BEARING LENGTHS (in) : 0' 3' Dead 870 1153 Lige 1076 1481 Total 1945 2634 Bearing: LC number 3 4 Length 1.00 1.20 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations:ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 129 Fv' = 207 fv/Fv' = 0.62 Bending(+) fb = 883 Fb' = 1339 fb/Fb' = 0.66 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.10 Total Defl'n 0.02 = <L/999 0.15 = L/240 0.12 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.15 1.00 1.00 0.995 1.300 1.00 1.00 1.00 1.00 - 4 Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - 1.00 1.00 - 4 Bending(+) : LC# 4 = D+S, M = 2256 lbs-ft Shear : LC# 4 = D+S, V = 2634, V design = 2177 lbs Deflection: LC# 4 = D+S EI= 178e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. Z3 COMPANY PROJECT fit WoodWorks® SOFTWARE fOR WOOD DESIGN Oct. 10,2012 16:01 2FH2.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 175.0 No Load2 Live Full UDL 80.0 No Load3 Snow Full UDL 100.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS(in) : - ----.----. __ ..•-.. f"....-- --4.'-', --;=.-- - --- •- - - - --- ' - - - - - ' ' ' --- __-_.. , _ _ .- -7?;r6.,,...1: 1•4=,,la_.. ______. ---- , : - • '.- .. , . . .: - -. .1----:, :-,•.:7- ..r. ., :-. ---.. ,.. *.:_...,:-.,__...-:,;'::, ...1--- A'.."- , - %- -, -. - -' . - ", _, ,. .. '-'._, .,.:..„.1:-. a a 0' 6' Dead 543 543 Live 405 405 Total 948 948 Bearing: LC number 33 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations:ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in)using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design I - Shear fv = 45 Fv' = 207 fv/Fv' = 0.22 Bending(+) fb = 557 Fb' = 1333 fb/Fb' = 0.42 Live Defl'n 0.02 = <L/999 0.20 = L/360 0.11 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.17 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.15 1.00 1.00 0.991 1.300 1.00 1.00 1.00 1.00 - 3 Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Bending(+) : LC# 3 = D+.75(L+S), M = 1422 lbs-ft Shear : LC# 3 = D+.75(L+S), V = 948, V design = 757 lbs Deflection: LC# 3 = D+.75(L+S) ET= 178e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=constrUCtion CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. • 2.4 COMPANY PROJECT 11% iii i VItoodWorks® SOFTWARE FOR WOOD DESIGN A Oct. 10,2012 16:05 2FH3.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 84.0 No Load2 Live Full UDL 280.0 No MAXIMUM REACTIONS(lbs)and BEARING LENGTHS (in) : r-- - - -. ,.!•, ••-•-,,,- -----_t-7 . r•,. ,,,_ • , .-_ • - -,.. . rrr , ‘ - b. 0' 5' Dead 225 225 Live 700 700 Total 925 925 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x4x8"l Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations.. ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 41 Fv' = 180 fv/Fv' = 0.23 Bending(+) fb = 453 Fb' = 1162 fb/Fb' = 0.39 Live Defl'n 0.02 = <L/999 0.17 = L/360 0.13 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.12 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn T Fbc+ 900 1.00 1.00 1.00 0.993 1.300 1.00 1.00 1.00 1.00 - Fv' 180 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(-f): LC# 2 = D+L, M = 1156 lbs-ft n = Shear : LC# 2 = D+L, V = 925, V e 702 lbs Deflection: LC# 2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=liveS=snow W=wind I7impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. r i Z 5 COMPANY PROJECT di t WoodWorks® SOFTWARE FOR WOOD DESIGN Oct.31,2005 08:24 (1)4x4 DF#2 Unbraced.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 5700 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): :, • .‘ : ' : ' '''..-, :::—.--77.27.---- — - ' -. - " ' ' = - - - --.-- w v Lumber Post, D.Fir-L, No.2,4x4" Self Weight of 2.91 plf automatically included in loads; Pinned base;Loadface=width(b); Ke x Lb:1.00 x 9.00=9.00[ft];Ke x Ld:1.00 x 9.00=9.00[ft];Load combinations:ICC-IBC; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 467 Fc' = 465 fc/Fc' = 1.00 Axial Bearing fc = 467 Fc* = 1552 fc/Fc* = 0.30 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1350 1.00 1.00 1.00 0.300 1.150 - - 1.00 1.00 2 Fc* 1350 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 ... Axial : LC# 2 = L, P = 5726 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. t 26 COMPANY PROJECT i 1 WoodWorks® SOFTWARE FOR WOOD DESIGN Jan.19,2006 12:40 (1)2x6 DF Stud Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 5200 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, D.Fir-L,Stud, 2x6", 1-ply Self Weight of 1.96 plf automatically included in loads; Pinned base;Loadface=width(b);Built-up fastener.nails;Ke x Lb:1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 632 Fc' = 654 fc/Fc' = 0.97 Axial Bearing fc = 632 Fc* = 850 fc/Fc* = 0.74 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 850 1.00 1.00 1.00 0.770 1.000 - - 1.00 1.00 2 Fc* 850 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 5218 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 1 1 z7 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN • Oct.26,2005 15:44 (3)2x6 DF#2 Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 23028 (Eccentricity = 0.00. in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, D.Fir-L, No.2, 2x6", 3-Plys Self Weight of 5.88 plf automatically included in loads; Pinned base;Loadface=width(b);Built-up fastener:nails;Ke x Lb:1.00 x 0.00=0.00[ft];Ke x Ld:1.00 x 9.00=9.00[ft];Load combinations: ICC-IBC; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 933 Fc' = 932 fc/Fc' = 1.00 Axial Bearing fc = 933 Fc* = 1485 fc/Fc* = 0.63 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1350 1.00 1.00 1.00 0.628 1.100 - - 1.00 1.00 2 Fc* 1350 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 23081 lbs Kf = 1.00 (D=dead L=live 5=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. Zed COMPANY PROJECT 1 WoodWorks' SOFTWARE FOR WOOD DESIGN Jan. 19,2006 12:39 (3)2x4 DF Stud Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern • live Live Axial 6000 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, D.Fir-L,Stud,2x4",3-Plys Self Weight of 3.74 plf automatically included in loads; Pinned base;Loadface=width(b);Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Load combinations: ICC-IBC; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 383 Fc' = 384 fc/Fc' = 1.00 Axial Bearing fc = 383 Fc* = 892 fc/Fc* = 0.43 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 850 1.00 1.00 1.00 0.430 1.050 - - 1.00 1.00 2 Fc* 850 1.00 1.00 1.00 - 1.050 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 6034 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 2_9 COMPANY PROJECT ill WoodWorks') SOFTWARE FOR WOOD DESIGN Jan. 19,2006 12:41 (2)2x6 DF Stud Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 10400 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, D.Fir-L, Stud, 2x6", 2-Plys Self Weight of 3.92 plf automatically included in loads; Pinned base;Loadface=width(b);Built-up fastener:nails;Ke x Lb:1.00 x 0.00=0.00[ft];Ke x Ld:1.00 x 9.00=9.00[ft];Load combinations: ICC-IBC; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 632 Fc' = 654 fc/Fc' = 0.97 Axial Bearing fc = 632 Fc* = 850 fc/Fc* = 0.74 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cf rt Ci LC# Fc' 650 1.00 1.00 1.00 0.770 1.000 - - 1.00 1.00 2 Fc* 850 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC4 2 = L, P = 10435 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT 11 l WoodWorks® SOFTWARE FOR WOOD DESIGN Jan. 19,2006 12:37 (2)2x4 DF Stud Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 4000 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0, 9' Lumber n-ply, D.Fir-L, Stud, 2x4",2-Plys Self Weight of 2.49 plf automatically included in loads; Pinned base;Loadface=width(b);Built-up fastener:nails;Ke x Lb:1.00 x 0.00=0.00[ft];Ke x Ld:1.00 x 9.00=9.00[ft]; Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 383 Fc' = 384 fc/Fc' = 1.00 Axial Bearing fc = 383 Fc* = 892 fc/Fc* = 0.43 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 850 1.00 1.00 1.00 0.430 1.050 - - 1.00 1.00 2 Fc* 850 1.00 1.00 1.00 - 1.050 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 4022 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. . 3 COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN Oct.31,2005 08:29 (1)6x6 DF#2 Unbraced.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 15800 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs): "" "'=." •�.-r-:::.. -'J- 0' 9' Timber-soft, D.Fir-L, No.2,6x6" Self Weight of 7.19 plf automatically included in loads; Pinned base;Loadface=width(b);Ke x Lb:1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 524 Fc' = 561 fc/Fc' = 0.94 Axial Bearing fc = 524 Fc* = 700 fc/Fc* = 0.75 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 700 1.00 1.00 1.00 0.801 1.000 - - 1.00 1.00 2 Fc* 700 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 15865 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 32. COMPANY PROJECT 1 1 WoodWorks® SOFTWARE FOR WOOD DESIGN Oct.31,2005 08:26 (1)4x6 DF#2 Braced.wwc Design Check Calculation Sheet Sizer 2004a • LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 17900 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber Post, D.Fir-L, No.2,4x6" Self Weight of 4.57 plf automatically included in loads; Pinned base;Loadface=width(b);Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Load combinations:ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 932 Fc' = 932 fc/Fc' = 1.00 Axial Bearing fc = 932 Fc* = 1485 fc/Fc* = 0.63 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1350 1.00 1.00 1.00 0.628 1.100 - - 1.00 1.00 2 Fc* 1350 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 17941 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. * tr • . . . . —1 • I .- ..,1 ...: ...... ...... ...._. ....... ..._. ...._. i• ',..•,1 • .-; I il 174 ti . I R . T.....415 1 ., ........ ........ . ....._ ,.._. ....... , LI .•1 _IF r-Fil :7•:::' I • I I • I = 1 fst 1 .I co) (-0) 1 ''''•... ) co) 13) . ... .....„..+_.,, ,,,, - /-v< 1 .., i • . • 11 I. • • • • • . . , FROELICH CONSULTING ENGINEERS INC., Client: Project: Project#: By: Footings Footing Size Maximum Allowable ga��ow Required Required Dimensions Used Dimensions Footing Bearing Load (Piot) Area W (ft) L(ft) W (ft) L(ft) D (in) Weight Pressure 15"x cont x 7" 1750 1500 1.17 1.08 1.08 1.25 1 7 109 1488 15"x cont x 7" ** 4350 1500 2.90 1.70 1.70 1.25 2.5 7 273 1480 15"x cont x 7"*** 2300 1500 1.53 1.24 1.24 1.25 1.33 7 145 1471 18"(I)x 8" 2450 1500 1.63 1.28 1.28 1.5 1.5 8 177 1486 24"(I3,x 10" 4300 1500 2.87 1.69 1.69 2 2 10 393 1494 2'-0"x 2'-0"x 10" 5400 1500 3.60 1.90 1.90 2 2 10 500 1475 2'-6"x 2'-6"x 10" 8500 1500 5.67 2.38 2.38 2.5 2.5 10 781 1485 3'-0"x 3'-0"x 12" 12000 1500 8.00 2.83 2.83 3 3 12 1350 1483 3'-6" x 3'-6"x 12" 16500 1500 11.00 3.32 3.32 3.5 3.5 12 1838 1497 4'-0"x 4'-0"x 12" 21000 1500 14.00 3.74 3.74 4 4 12 2400 1463 ** Indicate maximum load at header supports for continuous footing *** Indicates maximum pt load for beams on continuous footing Required Area: = (Piot/gauow)°'5 Bearing Pressure = (Prot+Wftg)/(W*L) = (Ptot+Wftg)/(W*L*3.1415/4) U4 35 COMPANY PROJECT fit WoodWorksR SOFTWARE FOR WOOD DESIGN Mar.22,2012 12:25 Main Floor Beam.wwb Design Check Calculation Sheet Sizer 2004a . LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl 'Dead Full UDL 32.0 No Load2 Live Full UDL 107.0 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS(in) : 0 8' Dead 152 152 Live 428 428 Total 580 580 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations:ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 29 Fv' = 180 fv/Fv' = 0.16 Bending(+) fb = 454 Fb' = 1158 fb/Fb' = 0.39 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.21 Total Defl'n 0.08 = <L/999 0.40 = L/240 0.19 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.00 1.00 1.00 0.990 1.300 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+L, M = 1160 lbs-ft Shear : LC# 2 = D+L, V = 580, V design = 492 lbs Deflection: LC# 2 = D+L EI= 178e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=constructiOn CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 3C COMPANY PROJECT 4 1 WoodWorks• ° SOFTWARE FOR WOOD DESIGN Oct.30,2012 17:03 FB2.wwb r Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 216.0 No Load2 Live Full UDL 427.0 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : f 0 4' 0' 448 854 Dead 448 Live 854 1302 Total 1302 Bearing: 2 LC number 2 1.00 Length 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 elft automatically included in loads; . Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress(psi) and Deflection (in) using NDS 20.01 : • Criterion Analysis Value Design Value Analysis/Design Shear fv = 54 Fv' = 180 fv/Fv' = 0.30 Bending(+) fb = 510 Fb' = 1164 fb/Fb' = 0.44 Live Defl'n 0.01 = <L/999 0.13 = L/360 0.10 Total Defl'n 0.02 = <L/999 0.20 = L/240 0.11 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.00 1.00 1.00 0.995 1.300 1.00 1.00 1.00 1.00 -. 2 Fv' 180 1.00 1.00 1.00 - - - 1.00 1.00 100 2 Fcp' 625 -, 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 millon 1.00 1.00 - - - - 1.00 1.00 2 Bending(+) : LC# 2 = D+L, M = 1302 lbs-ft Shear : LC# 2 = D+L, V = 1302, V design = 909 lbs Deflection: LC# 2 = D+L EI= 178e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind i=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. Client: Legend Homes > Project: //-%, Proj.#: Date: By: FROELICH ENGINEERS; ASCE 7-02 Earthquake Load Cs Factor Importance Factor(Seismic) I= 1.0 Basic Seismic Force Resisting System Light Framed Wood Shear Wall R= 6.5 Maximum Considered Design Spectral Response Max Ground Motion Site Site Coefficients Earthquake Acceleration Acceleration Seismic Design Coefficient Development Latitude Longitude Ss S1 Classification Fa F„ SMS SMI SDS SDI Category Cs Edgewater 45.406 -122.798 0.914 0.332 D 1.135 1.74 1.037 0.576 0.692 0.384 D 0.1064 Maxfield 45.343 -122.664 0.902 0.324 D 1.139 1.75 1.027 0.567 0.685 0.378 D 0.1054 Legend at Taralon 45.445 -122.534 0.978 0.329 D 1.109 1.74 1.085 0.573 0.723 0.382 D 0.1112 Victoria Gardens 45.367 -122.769 0.904 0.329 D 1.138 1.742 1.029 0.573 0.686 0.382 D 0.1055 Village at Orenco 45.584 -122.955 0.956 0.363 D 1.118 1.674 1.069 0.608 0.713 0.405 D 0.1096 _ Legend at Villebois 45.308 -122.780 0.873 0.322 D 1.151 1.756 1.005 0.565 0.670 0.377 D 0.1031 Willamette Landing 44.500 -123.250 0.906 0.34 D 1.18 1.86 1.069 0.632 0.622 0.422 D 0.0957 Walnut Creek 45.445 -122.798 0.938 0.339 D 1.125 1.723 1.055 0.584 0.704 0.389 D 0.1082 -Information in table was found by USGS maps -Conservatively design all structures in all developments for the Cs design value specified below Controlling Cs Value= 0.1112 I Use Cs=0.12 for Design in all Developments Equations: SMs=Fa*Ss Maximum Considered Earthquake SMI=F„*SI Acceleration SDs=SMS*2/3 Design Spectral Acceleration SDI=SMI 2/3 Cs=SDs* Response Coefficient w Client: Legend Homes Project: Aspen A 4, Proj.#: 12-T235 Date: 11/26/2012 By: YSP FROELI_CH ENGINEERS E Lateral Design SEISMIC: R=6.5 I = 1.0 Site Classification= D Design Category= D Seismic Design Coefficient(Cs) = 0.12 Working Stress Design: 0.7E C5= 0.084 Seismic Dead Loads diaph area Load Wall L Trib Wall Wall Wt Extra DL Total DL Level (ft`) (psf) (ft) height(ft) (psf) (Ibs) (Ibs) Roof 1350 15 148 4 10 26170 Upper Fir 1210 12 148 5 10 21920 Seismic Base Shear V=Cs(DLrf+DLflr) V= 4040 Vertical Distribuition Level Weight Height Wt*Ht Wt(Ht)/Total V lVi = (Wt(Ht)/Total)*V Roof 26170 .18 471060 0.705 4040 2847 =Vrf Floor 21920 9 197280 0.295 4040 1192 =Vflr Total= 668340 Vrf= 2847 lbs Vfl�= 1192 lbs 39 ' Client: Legend Homes Project: Aspen A Project#: 12-T235 V Date: 11/26/2012 By: YSP FROELIC H ENGINEERS 5 Reliability/Redundancy Factor p (per ASCE7-05 12.3.4.2) Seismic Base Shear(V) = 4040 Percent base shear taken by story: Upper Story 2847 70% Main Floor 4040 100% Calculation of#of bays per story resisting more than 35%of the base shear: Upper Story: Story height(H)= 9 Critical wall length (L) = 8 #Bays =2UH*= 1.78 "for light-framed construction # Bays < 2, Therefore Calculate Rho using Table 12.3-3 Per Table 12.3-3: By observation, the removal of any single shear wall with a height-to-width ratio greater than 1.0 does not result in a 33% reduction in story strength for any story resisting more than 35% of the total base shear. The resulting system does not have an extreme torsional irreguarity. Therefore, p = 1.0 90 '• Client: Legend Homes Project: Aspen A Project#: 12-T235 44111 . Date: 11/26/2012 By: YSP FROELICH ENGINEERS 1 Front - Back Event WIND FORCE CALCULATION-MWFRS ASCE 7-05 SECTION 6.5 METHOD 2-ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 95 mph Wind Directionality Factor Kd= 0.85 Table 6-4(page 80) Wind Importance Factor IW= 1.00 Table 6-1 (page 77) Wind Exposure Category= B Building Parameters Longitudinal Dimension of Bldg B= 31 ft Transverse Dimension of Bldg L= 48 ft Mean Roof Height h= 25 ft Highest Roof Level h„= 30 ft Approximate Fundamental Period Ta= 0.26 sec Eq. 12.8-7 (page 129) Output-Fundamental Frequency f= 3.9 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 6-4 Length of 1/2 hill height Lh= 0 ft Figure 6-4 Dist.From Crest to Bldg.x= 0 ft Figure 6-4 Height Above Local Grade z= 0 ft Figure 6-4 Horizontal Attenuation Factor m= 1 Figure 6-4 Height Attenuation Factor g= 1 Figure 6-4 Shape Factor K1/(H/Lh)= 1 Figure 6-4 Output-Topographic Multipliers K1 = 1.00 K2= 1.00 K3= 1.00 Topographic Factor Kzt= 1.00 Gust Effects Input Integral Length Scale Factor 1= 320 ft Table 6-2 Integral Length Scale nominal height of boundary zg= 1200 Table 6-2 3-s gust exponent a= 7.00 Table 6-2 Turbulence Intensity Factor c= 0.30 Table 6-2 Power Law Exponent e= 0.33 Table 6-2 Minimum Height;lin= 30 ft Table 6-2 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.91 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.87 Pressure Coefficients Input Length to Width Ratio L/B= 1.55 Height to Length Ratio h/L= 0.52 Roof Pitch= 8 : 12 = 33.69 deg Velocity Pressure Exposure Coefficients Kb (see below) Table 6-3 (page 79) External Pressure Coefficients Cp (see below) Figure 6-6(page 49) Direction Cp Height(ft) Kh qZ(psf) Velocity Windward 0.8 15 0.57 11.3 Pressure Leeward -0.4 20 0.62 12.3 Output qZ Roof Windward -0.20 25 0.67 13.1 Roof Leeward -0.6 30 0.70 13.8 40 0.76 14.9 50 0.81 15.9 60 0.85 16.8 70 0.89 17.5 80 0.93 18.2 90 0.96 18.8 100 0.99 19.4 120 1.04 20.4 h= 25 0.67 13.1 qh Design Wind Pressures p (psf)-GCr;=(-) 10 psf min per 6.1.4.1 Internal Pressure Coefficient GCpi= -0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 10.2 -2.2 12.4 ft 20 10.9 -2.2 13.1 25 11.4 -2.2 13.6 30 11.9 -2.2 14.1 40 12.8 -2.2 14.9 50 13.4 -2.2 15.6 60 14.0 -2.2 16.2 70 14.6 -2.2 16.8 80 15.0 -2.2 17.2 90 15.5 -2.2 17.7 100 15.9 -2.2 18.1 120 16.6 -2.2 18.8 25 11.4 -2.2 0.0 -2.5 13.6 5.55 Design Load Case 1 Controls-By Inspection Figure 6-9(page 52) Design Wind Pressures p (psf)-GCr;=(+) 10 psf min per 6.1.4.1 Internal Pressure Coefficient GCpi= 0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 5.5 -6.9 12.4 ft 20 6.2 -6.9 13.1 25 6.7 -6.9 13.6 30 7.2 -6.9 14.1 40 8.1 -6.9 14.9 50 8.7 -6.9 15.6 60 9.3 -6.9 16.2 70 9.9 -6.9 16.8 80 10.3 -6.9 17.2 90 10.8 -6.9 17.7 100 11.2 -6.9 18.1 120 11.9 -6.9 18.8 25 6.7 -6.9 -2.6 -5.1 13.6 5.55 Design Load Case 1 Controls-By Inspection Figure 6-9(page 52) . ({3 4Client: Legend Homes Project: Aspen A 4111iY Project#: 12-T235 Iv Date: 11/26/2012 4 By: YSP FROELICH ENGIN EERS1 Side - Side Event WIND FORCE CALCULATION-MWFRS ASCE 7-05 SECTION 6.5 METHOD 2-ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 94.5 mph Wind Directionality Factor Kd= 0.85 Table 6-4(page 80) Wind Importance Factor IW= 1.00 Table 6-1 (page 77) Wind Exposure Category= B Building Parameters Longitudinal Dimension of Bldg B= 48 ft Transverse Dimension of Bldg L= 31 ft Mean Roof Height h= 27 ft Highest Roof Level hn= 30 ft Approximate Fundamental Period Ta= 0.26 sec Eq. 12.8-7(page 129) Output-Fundamental Frequency f= 3.9 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 6-4 Length of 1/2 hill height Lh= 0 ft Figure 6-4 Dist.From Crest to Bldg.x= 0 ft Figure 6-4 Height Above Local Grade z= 0 ft Figure 6-4 Horizontal Attenuation Factor m= 1 Figure 6-4 Height Attenuation Factor g= 1 Figure 6-4 Shape Factor KI/(H/Lh)= 1 Figure 6-4 Output-Topographic Multipliers K1 = 1.00 K2= 1.00 K3= 1.00 Topographic Factor K2= 1.00 II I Gust Effects Input Integral Length Scale Factor 1= 320 ft Table 6-2 Integral Length Scale nominal height of boundary zg= 1200 Table 6-2 3-s gust exponent a= 7.00 Table 6-2 Turbulence Intensity Factor c= 0.30 Table 6-2 Power Law Exponent e= 0.33 Table 6-2 Minimum Height zmin= 30 ft Table 6-2 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.89 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.86 Pressure Coefficients Input Length to Width Ratio L/B= 0.65 Height to Length Ratio h/L= 0.87 Roof Pitch= 8 : 12 = 33.69 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 6-3 (page 79) External Pressure Coefficients Cp (see below) Figure 6-6(page 49) Direction C, Height(ft) Kh qz(psf) Velocity Windward 0.8 15 0.57 11.2 Pressure Leeward -0.5 20 0.62 12.1 Output qZ Roof Windward 0.20 25 0.66 12.8 Roof Leeward -0.6 30 0.70 13.6 40 0.76 14.8 50 0.81 15.8 60 0.85 16.6 70 0.89 17.3 80 0.93 18.0 90 0.96 18.6 100 0.99 19.2 120 1.04 20.2 h= 27 0.68 13.2 qh (As Design Wind Pressures p (psf)- GCr;=(-) 10 psf min per 6.1.4.1 Internal Pressure Coefficient GCp;= -0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 10.1 -3.3 13.4 ft 20 10.7 -3.3 14.0 25 11.2 -3.3 14.5 30 11.8 -3.3 15.1 40 12.6 -3.3 15.9 50 13.2 -3.3 16.5 60 13.8 -3.3 17.1 70 14.3 -3.3 17.6 80 14.8 -3.3 18.1 90 15.2 -3.3 18.5 100 15.6 -3.3 18.9 120 16.3 -3.3 19.6 27 11.5 -3.3 2.6 -2.5 14.8 5.55 Design Load Case 1 Controls-By Inspection Figure 6-9(page 52) Design Wind Pressures p (psf)- GCp;_(+) 10 psf min per 6.1.4.1 Internal Pressure Coefficient GCp;= 0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 5.3 -8.1 13.4 ft 20 6.0 -8.1 14.0 25 6.5 -8.1 14.5 30 7.0 -8.1 15.1 40 7.8 -8.1 15.9 50 8.5 -8.1 16.5 60 9.1 -8.1 17.1 70 9.6 -8.1 17.6 80 10.0 -8.1 18.1 90 10.5 -8.1 18.5 100 10.9 -8.1 18.9 120 11.6 -8.1 19.6 27 6.7 -8.1 -0.1 -5.1 14.8 5.55 Design Load Case 1 Controls-By Inspection Figure 6-9 (page 52) • ' Client: Legend Homes Project: Aspen A 441- Proj.#: 12-T235 Date: 11/26/2012 By: YSP FROELICH ENGINEERS€ • Lateral Distribution Front-Back Event: Roof Line Windward= (5')(11.4psf)+(5')(10.9psf)= 111 plf Leeward= (5')(2.2psf)+(5')(2.2ps0= 22 plf A=B : Trib= 16 feet Total= 133 plf Wind= 2130 lbs Min. Wind= (10')(10 psf)= 100 plf EQ= 1425 lbs EQ= 2850 lbs 2nd Floor Line Windward= (9.51)(10.2psf)= 97 plf Leeward= (9.5')(2.2psf)= 21 plf A=B : Trib= 18 feet Total= 118 plf Wind= 2124 lbs EQ= 600 lbs EQ= 1200 lbs q Client: Legend Homes 4 Project: Aspen A ®✓ Proj.#: 12-T235 Date: 11/26/2012 *-$ By: YSP FROELIC H ENGINEERS F Lateral Distribution Cont. Side-Side Event: Roof Line Windward= (7')(3.0psf)+(5')(10.7psf)= 75 plf Leeward= (7')(2.5psf)+(5')(3.2pfs)= 34 plf 1= Trib= 6 feet Total= 109 plf Wind= 720 lbs Min. Wind= (12')(10 psf)= 120 plf EQ= 360 lbs EQ= (2850 Ibs) / (48') = 60 plf 2= Trib= 19.5 feet Wind= 2340 lbs EQ= 1170 lbs 3= Trib= 13.5 feet Wind= 1620 lbs EQ= 810 lbs 2nd Floor Line Windward= (9.5')(10.0 psf)= 96 plf Leeward= (9.5')(3.2 psf)= 31 plf 1= Wind= (7')(31 psf)+(10')(96psf) Total= 127 plf = 1175 lbs EQ= (8.5')(25psf)= 220 lbs EQ= (1200 Ibs) /48') = 25 plf 2a=2b Trib= 19 feet Wind Ward Wind= 1824 lbs EQ= 475 lbs 3= Wind= (10')(31 psf)+(12')(96psf) = 1460 lbs EQ= (11')(25psf)= 275 lbs ASPEN 1,096 SQ. FT 31-0" Wx51=6"D \ /1 I <ssssssssssss „tst 58 o \ 3 F\ / 41$3.4Witss1511Q Q stssssR3sssstlsss, '\C- / \ / ra \`.\ I \`\\\Y// F I / I 1 If".', . / • k" Y 3 Ii t • T 0 i' 9 ci e") l'.\\\a___ . _ . ij .i , =MOM i sssssssssstss- ,:. 1___T __--1 i 0 I.�tssssstssl r MOMi T L____ i -J U : • a 4 Proec jLegend Homes L=Length of individual wall V' Li Hf Lt Proect: Aspen A Lt=Total length of wall along gridlinc La=Length of moment arm in wall(if 9 ®W Proj.#: 12-T235 different than wall length) At Date: 11/26/2012 hu=Height of upper wall hl=Height of lower wall Ms=Hs/tl+hu+l+H /t x By: YS? t-If=Ilorizontalforce atgridline [ ( ) f(nl Lf ,[Ls=Horizontal force at gridline from upper L 'level Mu=[Hs(h1)+Hf("01x- FROELICH v=Unit shear in wall Lt ENINEE R!3 A Ms=Overturning moment when upper wall is stacked above lower wall 2 LA Upper Level Shear Walls and Holdowns Mu=Overturning moment when upper wall in Mr=3�(RlribxRooJDL)(WtribxWa!!DL)(IrrlbxFloorDL)�— not stacked or does not exist 2 Rtrib,Wtrib,Ftrib=Roof,wall,and floor tributary area,used for calculating dead loadTu-Mir-Mr Ms-Mr Roof dl: 15 psf Mr=Resisting moment due to dead load La Ts= L Wall dl: 10 psf Tu-Tension if walls not stacked Floor dl: 12 psf Ts...Tension if walls stacked Wall L Lt La hu Hf V Seismic Mu Rtrib Wtrib Ftrib Mr Tu Comments Holdowns Shearwall ' Grid (ft) (ft) (ft) (ft) (Ib) (plf) Factor (Ibsft) (ft) (ft) (ft) (lb"ft) (lb) Front-Back Event A 16 24 16 8 2130 89 11360 18 8 0 26880 -970 -- 6/12 W 8 24 8 8 2130 89 5680 18 8 0 ' 6720 -130 -- 6/12 W B 15 29 22 8 2130 73 8814 18 8 0 _ 23625 -673 -- 6/12 W 6 29 7 8 2130 73 3526 18 8 0 3780 -36 -- 6/12 W Side-Side Event 1 3 11.5 3 8 720 63 1503 4 8 0 378 375 -- 6/12 W 3 11.5 3 8 720 63 1503 4 8 0 378 375 -- 6/12 W 2.75 11.5 2.75 8 720 63 1377 4 8 0 318 385 -- 6/12 W 2.75 11.5 2.75 8 720 63 1377 4 8 0 318 385 --- 6/12 W 2 5.5 5.5 5.5 8 2340 425 18720 6 8 0 1543 3123 MST60 3/12 W 3 11.5 19.5 11.5 8 1620 83 7643 6 8 0 6745 78 -- 6/12 W 4 19.5 4 8 1620 83 2658 6 8 0 816 461 -- 6/12 W 4 19.5 4 8 1620 83 2658 6 8 0 816 461 -- 6/12 W W 5V • ASPEN 815 SQ. FT 31'0" Wx51=6"D . CANT.SHEATHED / © ICNV NAIL CW AROUND OPENING'� CONT.SHEATHED / A O oPEi+I�W 1c/-HTTIoI Q9 iff SSSf44SlN1 eKffTftTTffffTTF�C --,,DIVSSTSffSTTT UTDT• 0 STfffSfffAff;ffRTSt I S J1 K 5 1 j JI crjail ft: Dfcustfff{ffifSCIDUffiffifcfffsTfLffssffffsLOSIDDffssf I] • 1 I I — J -- 1 I L-f-1 IF ri I I 1 „Ii Ii)\1I e I I I _ mF�. a,L1J HI-0011 j 11:- — —1-- 1 LI i 401 a.. Ij I 0 , , . * 4 Client: Legend Homes L=Length of individual wall V=Hf+Xs Project: Aspen A Lt=Total length of wall along gridline Lt Proj.#: 12-T235 La=Length of moment arm in wall(if different than wall length) I. Date: 11/26/2012 hu=Height of upper wall By: YSP hl=Height of lower wall Ms=[Hs(hl+hu+1)+Hj(hnlx L ^ ! Hf=Horizontal force at gridline U Hs=Horizontal force at gridline from upper F R O E L I C H level Mu=[Hs(hl)+Hf(hl))x L V=Unit shear in wall Li ENGINEERSI Ms=Overturning moment when upper wall is Main Level Shear Walls and Holdowns stacked above lower wall 3 2 L= Mu=Overturning moment when upper wall is Mr= [(Rrrib x RoojDL)(Wtrib x WaIIDL)(Frrib x FloorDL)] not stacked or does not exist 2 Rtrib,Wtrib,Ftrib=Roof,wall,and floor Roof dl: 15 psf Mu—Mr Ms—Mr tributary area,used for calculating dead load Tu= Wall dl: 10 psf Mr=Resisting moment due to dead load La Ts —L Tu=Tension if walls not stacked Floor dl: 12 psf Ts=Tension if walls stacked Wall Grid L Lt La hu hl Hf Hs V Seismic Ms Mu Rtrib Wtrib Ftrib Mr Tu Ts Comments Holdowns Shearwall (ft) (ft) (ft) (ft) (Ib) (lb) (lb) (plf) Factor (lb*ft) (1b*ft) (ft) (ft) (ft) (Ib*ft) (lb) (lb) Front-Back Event A 13 32.5 12.5 8 9 2124 2130 131 22982 15314 16 17 0 23097 -623 --- --- 6/12 W 8 32.5 7.5 8 9 2124 2130 131 14143 9424 16 17 6 10283 -114 --- --- 6/12 W B 22 22 21.5 8 9 2124 2130 193 57456 38286 16 17 9 83571 -2106 --- --- 6/12 W Side-Side Event 1 3 3 2.5 8 9 1175 720 632 ' 23535 17055 6 17 7 1032 6409 --- Shth(2)Sides HDQ8 4/12 W 2a 5.5 5.5 5 8 9 1824 2340 757 58536 37476 4 17 2 2561 6983 10106 Shth(2)Sides HHDQ11 4/12 W 21) 17 17 16.5 8 9 1824 0 107 16416 16416 0 9 20 31790 -932 --- --- 6/12 W 3 4.5 14 4 8 9 1460 1620 220 13596 8910 6 17 8 2403 1627 --- W 4 14 3.5 8 9 1460 1620 220 12086 7920 6 17 8 1899 1720 Perforated Shearwall W 4 14 3.5 8 9 1460 1620 220 12086 7920 6 17 8 1899 1720 --- W 4 14 3.5 8 9 1460 1620 220 12086 7920 6 17 8 1899 1720 --- W I I 01 5L T CE Client: Legend Homes 1 Project: Aspen A FROEIIC'H Proj.#: 12-T235 CONSOLING Byte: YSP tuber 12 ENGIEER ,INC Wall: Line 3 Upper Part I Perforated Shear Wall Design per 2009 IBC 2306.3 &AF&PA SDPWS Section 4.3.3.5 V= Shear force in Perforated Shear Wall(lbs.) 1540 (lbs.) L= Perforated Shear wall Length(feet) 14.50 (feet) = Width of perforated shear wall segment(feet) 5.00 (feet) L2= Width of perforated shear wall segment(feet) 5.00 (feet) L3= Width of perforated shear wall segment(feet) 0.00 (feet) L4= Width of perforated shear wall segment(feet) 0.00 (feet) H= Shear wall height(feet) 9 (feet) h= Opening height(feet) 6 (feet) Z1.4= Sum of widths of perforated shear wall segments(feet) Co= Shear resistance adjustment factor from Table 4.3.3.5 T= Tension Chord uplift force(lbs.) v= Unit Shear Force(plf) Unit Shear in Entire wall= V/L= 106 plf Unit Shear OK Perforated Shear Wall Height= 9 (feet) Perforated Shear Wall Height OK %full Height Shth= >L;/L= 0.69 • Max opening Height= h/H= 0.667 From AF&PA SDPWS Table 4.3.3.5 and Interpolating Max Opening Height % Full Ht.Shth 0.667 0.67 0.833 60 0.71 0.71 0.63 Co= 0.76 69 0.7638 0.76 0.68 70 0.77 0.77 0.69 Eqn. 23-3 Holdown Requirement = VH/(Co*IL,)= 1814 See below Eqn.23-4 Shear Wall Nailing v(plf)= V/(Co*ILi)= 202 6/12 Shth (1) Side psf ft Roof DL 15 Roof Trib 6 Wall DL 10 Wall Trib 17 Floor DL 12 Floor Trib 4 =>T(lbs) 474.45 Holdown Requirement Not Req'd 6 3 E CE Client: Legend Homes Project: Aspen A FR EIICH Proj.#: 12-T235 CONSULTING By: November-12 YSP DIGNEERS,INC Wall: Line 3 Upper Part II Perforated Shear Wall Design per 2009 IBC 2306.3&AF&PA SDPWS Section 4.3.3.5 V= Shear force in Perforated Shear Wall(lbs.) 1540 (lbs.) L= Perforated Shear wall Length(feet) 14.50 (feet) L� = Width of perforated shear wall segment(feet) 4.25 (feet) LZ= Width of perforated shear wall segment(feet) 4.25 (feet) L3= Width of perforated shear wall segment(feet) 0.00 (feet) L4= Width of perforated shear wall segment(feet) 0.00 (feet) H= Shear wall height(feet) 9 (feet) h= Opening height(feet) 8 (feet) = Sum of widths of perforated shear wall segments(feet) C,= Shear resistance adjustment factor from Table 4.3.3.5 T= Tension Chord uplift force(lbs.) v= Unit Shear Force(plf) Unit Shear in Entire wall= V/L= 106 plf Unit Shear OK Perforated Shear Wall Height= 9 (feet) Perforated Shear Wall Height OK %full Height Shth= IL;/L= 0.59 Max opening Height= h/H= 0.889 From AF&PA SDPWS Table 4.3.3.5 and Interpolating Max Opening Height % Full Ht.Shth 0.833 0.89 1 50 0.57 0.55 0.5 Co= 0.60 59 0.6217 0.60 0.55 60 0.63 0.61 0.56 Eqn. 23-3 Holdown Requirement T(lbs.)= VH/(Co*EL;) = 2725 See below Eqn. 23-4 Shear Wall Nailing v(plf) = V/(Co*IL;)= 303 4/12 Shth(1)Side psf ft Roof DL 15 Roof Trib 6 Wall DL 10 Wall Trib 17 Floor DL 12 Floor Trib 4 =>T(lbs) 1385.6 Holdown Requirement HTT16 • , 5 Li 514E4RW4ILL 5C1-IEDULE FAST O WALL*FORMATION SILL PLATE TO RIM RIM CR DLKYs TO MUD SILL/A4It UMW** A DOL.TOP PLATE 16d COMMON• LAP SHIM ONTO V2"APA RATED SHEATHING Ibd COMMON 8 o.c.(TOENAIL) A 2x MUDSILL. (I)SIDE w/Sd NAILS•6"o.c. •b o.c.INTO t SIMP.LTP4 V2"DIA.x I0"AB. • EDGES 4 I2 0.0.HELD SOLID FRAMING •48 oc w/ 48"o.c.(EMBED 1 3d COMMON V2"APA RATED SHEATHING 16d COMMON SIMPSON LTP4 LAP 51-ITS ONTO SEE NOTES B (I)SIDE w/84 NAILS•4"o.c. •4 o.c.INTO •!Vac w/ 2x MUDSILL. g.011 4 012 EDGES 4 I2 o.c.FIELD SOLID FRAMING Sd COMMONV2"DIA x 10"AB.• BELOW 36"o.c.(EMBED 1 V2"APA RATED SHEATHING SIMPSON LTP4 SIMPSON LTP4 LAP 51-IT I's ONTO SEE NOTES C (I)SIDE w/8d NAILS•3 o.c. 1 •12 o.c. INTO •12"°c w/ 2x MUDSILL. ,g,•11,t 012 EDGES 4 I2 o.c.FIELD SOLID FRAMING ad COMMON V2"DIA x 10"A.B.• BELOW 24"o.c.(EMBED 1") V2"APA RATED SHEATHING SIMPSON LTP4 SIMPSON LTP4 LAP SI-ITG ONTO SEE NOTES 14 D (2)SIDES w/8d NAILS• •10"o.c. INTO •'roc w/ 3x MUDSILL. •I0, 11, 13, 16 4 o.c.EDGES 4 12 o.c.FIELD SOLID FRAMING 8d COMMON Woo. x B.• IS t W 18 o.c.(EMBED 1) BELOW V2"APA RATED SHEATHING SIMPSON LTP4 SIMPSON LTP4 LAP S1-1T1 ONTO SEE NOTES E (2)SIDES w/3d NAILS• ' •6"o.c.INTO •6"oc w/ 3x MUDSILL. 010011,•13,014 3 o.c.EDGES 4 12 o.c.FIELD,SOLID FRAMING 3d COMMON I/2"DIA x 10"A B. 15 t Ib 12 o.c.(EMBED 1) BELOW NOTES: I. IF ANCHOR BOLT SPACING IS GREATER THAN SI-EARN/ALL LENGTH.INSTALL(I)AB.WITHIN 12"OF EA END 2. SHIEARWALL FRAMING TO BE 16 oc U.N.O.OR DETAILED OTHERWISE. 3. SHEARWALLS TO BE BLOCKED AT ALL PANEL EDGES U.N.O.OR DETAILED OTFERWISE. 4. ALL NAILS TO BE COMMON NAILS LER O. ad GALVANIZED BOX NAILS MAY BE SUBSTITUTED FOR 3d COMMONS. 5. LTP4 PLATES SHALL BE INSTALLED w/(12)ad COMMONS. 6. ONLY THE MUD SILL IN CONTACT w/CONCRETE SHALL BE P.T. 1. 3"x 3"x V4"PLATE WASHERS ARE TO BE USED AT ALL SHEARNALL ANCHOR BOLTS. S. ALL HOLDOWNS,STRAPS t CONNECTORS TO BE SIMPSON OR EQUAL. S,.',' ARW I L CIFIC NOTES, S. FRAMING AT ADJOINII PANEL EDGES SHALL BE 3"NOMINAL OR GREATER t NAILS SHALL BE STAGGEI.'ED. (DBL 2x ARE ACCEPTABLE) 10. FRAMING AT ADJOINING PANEL EDGES,SOLE PLATE 4 SILL PLATE SHALL BE 3"NOMINAL OR GREATER t NAILS SHALL BE STAGGERED. (DBL 2x ARE ACCEPTABLE) II. SIMPSON LTP4 CLIPS•SOLE PLATE CONNECTION TO RIM JOIST ARE NOT REQUIRED IF UPPER WALL SHEATHING IS CONTINUOUS t DIRECTLY EDGE NAILED TO RIM JOIST. 12. SIMPSON LTP4 CLIPS•RIM JOIST CONNECTION TO DBL.TOP PLATE ARE NOT REQUIRED IF LOWER WALL SHEATHING IS CONTINUOUS a DIRECTLY EDGE NAILED TO RIM JOIST. 13. SIMPSON L1P4 CLIPS•RIM JOIST CONNECTION TO DBL.TOP PLATE SHALL BE PLACED•12"oc IF LOWER WALL SHEATHING IS CONTINUOUS t DIRECTLY EDGE NAILED TO RIM JOIST. 14. 4 V2"x 4 V2"x V4"PLATE WASHERS ARE TO BE USED AT ALL ANCHOR BOLTS SHEARWALL TYPES 9"t'E' IS. AT GARAGE PIERS USE 3x MUDSILLS. 16. AT INTERIOR SHEARHALLS USE 3x SOLE PLATES(DBL 2x ARE ACCEPTABLE,STAGGER NAILING).N.EARwALL 2012 NOLDOWN SCHEDULE FRAMMG FOOTING SCHEDULE: NOLDOWN ATTACHMENT MSR COMMENTS SIZE(MIN)I NO: 1'!1� REN"CNlGMlO� 1(11)-16d NAILS at TOP WRAP 4 NAIL STRAP TO (I'I)-16d NAILS at BOTTOM (2) O 240p1A,x SIMP.MST48 CENTER STRAP ON FLOOR CAVITY 2x STUDS BEAM/HEADERAPPLICABLE.BELOW (34)TOTAL NAILS. IF APPLICABLE. i 1 I PROVIDE 04 DOWEL w/ O 24"x 24"x W (3)W E4 WAY USP.I-ITTI6 USP.ST824 INTO STEMWALL (2) STANDARD NOOK•EA. /� t(18)-164 NAILS TO DBL.STUDS. 2x STUDS I HOLDOWN LOCATION SIPx 311IPx W (3)Ma E4 WAY 1 SIMPSON SSTB28L INTO STEMWALLPROVIDE 5 DOWEL W/ SIMP.HDQB 4(20)SIMPSON WS V4"x 4 1/2" C3) G STANDARD HOOK•EA. O 36"x 36"x Ir (4)Mx EA.WAY }WOOD SCREWS 2x STUDS 1 HOLDOWN LOCATION. I I"DIA.ASTM A36 THREADED ROD EMBED I PROVIDE 5 DOWEL W/ SIMP.1-11-001110"INTO FTG w/I/4"x 3"x 3"PL WASHER 6x POST STANDARD HOOK•EA. BTVM DBL.NUT•BOT.OF ROD t HOLDOWN LOCATION. „ (24)SIMP.SDS V4"x 2 V2'WOOD SCREWS 1 I NOTES: L MULTIPLE STUDS SHALL BE LAMINATED TOGETHER WITH(2)ROWS Ibd NAILS at 10 oc FULL HEIGHT.(TYPICAL) 2. AT STUDS BELOW LIST STRAPS.EDGE NAIL PLYWOOD TO STUDS. 3. ALL HOLDOWNS,STRAPS t CONNECTORS TO BE SIMPSON OR EQUAL.INSTALL PER MANOR INSTRUCTIONS. 4. ADD Y OFFSET FOR DOOR LOCATIONS. Title: Job# 5 Dsgnr: Date: 4:47PM, 7 NOV 12 `1 Description: Scope: Rev: 580000 Page 1 - User.KW-0602304,Ver 5.8.0,1-Dec-2003 Combined FootingDesign (c)1983-2003 ENERCALC Engineering Software footing Page Description Line 1 General Information Code Ref:ACI 318-02,1997 UBC,2003 IBC,2003 NFPA 5000 il Allow Soil Bearing 1,500.0 psf fc 2,500.0 psi Seismic Zone 4 Fy 60,000.0 psi Concrete Wt 145.0 pcf Min As Pct 0.0014 Short Term Increase 1.33 Distance to CL of Rebar 3.50 in Overburden 0.00 psf Live&Short Term Load Combined _Dimensions r Footing Size... Column Support Pedestal Sizes Distance Left 5.00 ft #1 :Square Dimension 0.00 in Dist.Betwn Cols 3.00 ft ...Height 0.00 in Distance Right 5.00 ft #2:Square Dimension 0.00 in Footing Length 13.00 ft ...Height 0.00 in Width 1.33 ft 8.00 in Thickness [Loads Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Vertical Loads... (dI Left Column (a7 Right Column Dead Load 3.000 k 3.000 k Live Load k k Short Term Load 6.500 k -6.500 k I Summary ' Footing Design OK Length=13.00ft, Width=1.33ft, Thickness=8.00in,Dist.Left=5.00ft,Btwn.=3.00ft,Dist.Right=5.00ft Maximum Soil Pressure 971.51 psf Allowable 1,995.00 psf Steel Req'd @ Left 111111.111111 in2/ft Max Shear Stress 163.07 psi Steel Req'd @ Center ###./1111f in2/ft Allowable 170.00 psi Steel Req'd @ Right 0.328 in2/ft Min. Overturning Stability 1.584:1 Soil Pressures i Soil Pressure @ Left Actual Allowable ACI Factored Eccentricity Dead+Live 443.7 1,500.0 psf Eq.C-1 621.2 psf 0.000 ft Dead+Live+Short Term 971.5 1,995.0 psf Eq.C-2 1,360.1 psf 2.542 ft Soil Pressure @ Right End Eq.C-3 874.4 psf Dead+Live 443.7 1,500.0 psf Eq.C-1 621.2 psf 0.000 ft Dead+Live+Short Term 0.0 1,995.0 psf Eq.C-2 0.0 psf -2.542 ft Stability Ratio 1.6 :1 Eq.C-3 0.0 psf Moment&Shear Summary (values for moment are given per unit width of footing) 111 Moments... ACI C-1 ACI C-2 ACI C-3 Mu @ Col#1 6.07 k-ft/ft 12.92 k-ft/ft 8.31 k-ft/ft Mu Btwn Cols 6.07 k-ft/ft 12.92 k-ft/ft 8.31 k-ft/ft Mu @ Col#2 6.07 k-ft/ft -0.58 k-ft/ft -0.37 k-ft/ft One Way Shears... Vn:Allow`0.85 85.000 psi 85.000 psi 85.000 psi - Vu @ Col#1 41.610 psi 82.213 psi 52.851 psi Vu Btwn Cols 10.256 psi 0.000 psi 0.000 psi Vu @ Col#2 41.610 psi 1.395 psi 0.897 psi Two Way Shears... Vn:Allow*0.85 170.000 psi 170.000 psi 170.000 psi Vu @ Col#1 51.008 psi 163.065 psi 148.666 psi Vu @ Col#2 51.008 psi 60.569 psi 79.061 psi Title: Job# Dsgnr: Date: 4:47PM, 7 NOV 12 Description: Scope: Rev: 560000 Page 2 User.KW-0602304,Ver 5.8.0,1-Dec-2003 Combined FootingDesign (c)1983-2003 ENERCALC Engineering Software footing design.ecw:Calculations Description Line 1 Reinforcing (values given per unit width of footing) e Left Edge of Col#1 Between Columns e Right Edge of Col#2 Ru/Phi As Req'd Ru/Phi As Req'd Ru/Phi As Req'd ACI C-1 333.22 psi 0.328 in2/ft @ Bottom 333.22 psi 0.328 in2/ft @ Bottom 333.22 psi 0.328 in2/ft @ Bottom ACI C-2 709.10 psi ##.###in2/ft @ Bottom 709.10 psi ##.###in2/ft @ Bottom 31.91 psi -0.173 in2/ft @ Top ACI C-3 455.85 psi 0.467 in2/ft @ Bottom 455.85 psi 0.467 in2/ft @ Bottom 20.51 psi -0.173 in2/ft @ Top ACI Factors (per ACI,applied internally to entered loads) ACI C-1 &C-2 DL 1.400 ACI C-2 Group Factor 0.750 Additional Seismic"1.4"Factc 1.400 ACI C-1 &C-2 LL 1.700 ACI C-3 Dead Load Factor 0.900 Additional Seismic"0.9"Facto 0.900 ACI C-1 &C-2 ST 1.700 ACI C-3 Short Term Factor 1.300 ....seismic=ST*: 1.100 5 Title: Job# Dsgnr: Date: 10:48AM, 26 NOV 12 Description: Scope: Rev. 560000 Page 1 User.KW-0602304,Ver 5.8.0,,-Dec-2003 Combined FootingDesign (c)1983-2003 ENERCALC Engineering Software footing Page - - Description Line 2a I General Information Code Ref:ACI 318-02,1997 UBC,2003 IBC,2003 NFPA 5000 I ��� Allow Soil Bearing 1,500.0 psf fc 2,500.0 psi Seismic Zone 4 Fy 60,000.0 psi Concrete Wt 145.0 pcf Min As Pct 0.0014 Short Term Increase 1.33 Distance to CL of Rebar 3.50 in Overburden 0.00 psf Live&Short Term Load Combined Dimensions b Footing Size... Column Support Pedestal Sizes Distance Left 2.00 ft #1 :Square Dimension 0.00 in Dist.Betwn Cols 5.00 ft ...Height 0.00 in Distance Right 7.00 ft #2:Square Dimension 0.00 in Footing Length 14.00 ft ...Height 0.00 in Width 3.75 ft Thickness 15.00 in Loads r Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Vertical Loads... a Left Column a Right Column Dead Load 4.000 k 2.000 k Live Load k k Short Term Load 10.200 k -10.200 k Summary I Footing Design OK Length=14.00ft, Width=3.75ft, Thickness=15.00in, Dist.Left=2.00ft,Btwn.=5.00ft,Dist.Right=7.00ft Maximum Soil Pressure 1,137.94 psf Allowable 1,995.00 psf Steel Req'd @ Left 0.324 int/ft Max Shear Stress 36.02 psi Steel Req'd @ Center 0.324 in2/ft Allowable 170.00 psi Steel Req'd @ Right 0.324 in2/ft Min. Overturning Stability 1.527:1 _Soil Pressures M Soil Pressure @ Left Actual Allowable ACI Factored Eccentricity Dead+Live 458.8 1,500.0 psf Eq.C-1 642.3 psf 1.289 ft Dead+Live+Short Term 1,137.9 1,995.0 psf Eq.C-2 1,593.1 psf 4.576 ft Soil Pressure @ Right End Eq.C-3 1,024.1 psf Dead+Live 132.3 1,500.0 psf Eq.C-1 185.2 psf -1.289 ft Dead+Live+Short Term 0.0 1,995.0 psf Eq.C-2 0.0 psf -4.576 ft Stability Ratio 1.5 :1 Eq.C-3 0.0 psf _Moment&Shear Summary (values for moment are given per unit width of footing) r Moments... ACI C-1 ACI C-2 ACI C-3 Mu.@ Col#1 0.73 k-ft/ft 2.39 k-ft/ft 1.53 k-ft/ft Mu Btwn Cols 0.73 k-ft/ft -6.22 k-ft/ft -4.00 k-ft/ft Mu @ Col#2 0.19 k-ft/ft -6.22 k-ft/ft -4.00 k-ft/ft One Way Shears... Vn:Allow*0.85 85.000 psi 85.000 psi 85.000 psi Vu @ Col#1 2.805 psi 9.249 psi 5.946 psi Vu Btwn Cols 1.884 psi 0.000 psi 0.000 psi Vu @ Col#2 1.316 psi 11.109 psi 7.142 psi Two Way Shears... Vn:Allow*0.85 170.000 psi 170.000 psi 170.000 psi Vu @ Col#1 10.025 psi 36.016 psi 33.552 psi Vu @ Col#2 5.186 psi 21.404 psi 23.400 psi Q Title: Job# Dsgnr: Date: 10:48AM, 26 NOV 12 Description: Scope: Rev: 580000 Page 2 User.KW-0602304,Ver 5.8.0,1-Dec-2003 Combined FootingDesign (c)19B3-20D3 ENERCALC Engineering Software footing Page u Description Line 2a Reinforcing (values given per unit width of footing) (i Left Edge of Col#1 Between Columns A Right Edge of Col#2 Ru/Phi As Req'd Ru/Phi As Req'd Ru/Phi As Req'd ACI C-1 6.16 psi 0.324 in2/ft @ Bottom 6.16 psi 0.324 in2/ft @ Bottom 1.57 psi 0.324 int/ft @ Bottom ACI C-2 20.05 psi 0.324 in2/ft @ Bottom 52.23 psi -0.324 in2/ft @ Top 52.23 psi -0.324 in2/ft @ Top ACI C-3 12.89 psi 0.324 in2/ft @ Bottom 33.57 psi -0.324 in2/ft @ Top 33.57 psi -0.324 in2/ft @ Top ACI Factors (per ACI,applied internally to entered loads) ACI C-1 &C-2 DL 1.400 ACI C-2 Group Factor 0.750 Additional Seismic"1.4"Factc 1.400 ACI C-1 &C-2 LL 1.700 ACI C-3 Dead Load Factor 0.900 Additional Seismic"0.9"Facto 0.900 ACI C-1 &C-2 ST 1.700 ACI C-3 Short Term Factor 1.300 ....seismic=ST*: 1.100 ! h 59 Client: ,' Project: 4111` Proj.#: Date: By: FROELICH ENGIN EERSI ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 5/8"ASTM A36 Threaded Rod for Simpson HTT16 I HTT22 I HTT4/HTT5 1 Number of Anchors = 0 in. (see Fig. 0.625 Inch Diameter s2= 0 RD.5.2.1) 8 Inch Embed 2500 psi Concrete Footing NDesign= 5.250 (kips)Allowable Design Tension D.3-General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 D.4-General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factorl)for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor 43, = 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing ct = 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summary (DNn Wind ONn Seismic Summary From Below cDNn SW=1.0 SF=0.75 RNs= 9.83 9.83 7.37 kips clNcb= 19.01 19.01 14.26 kips cINpn= 121.71 121.71 91.28 kips cI Nsb= 198.14 198.14 148.60 kips cl)Nsbg= 198.14 198.14 148.60 kips Minimum cl)Nn= 9.83 9.83 7.37 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 CONAllowable= 7.02 5.27 kips Ndesign < ONAllowable 5.250 < 5.27 Therefore, Anchor Design OK Client: Project: Proj.#: Date: `4 f By: FROELICH ENGINEERS t ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations D.5.1 -Steel Strength for Anchor in Tension do(Anchor Diameter)= 0.625 inches n = 1 #of anchors nt= 11 Number of Threads per inch A5e= 0.23 in.2-(effective cross-sectional area of anchor) futa= 58.00 ksi-(tensile strength of anchor material (not the yield strength) not exceed 1.9fy or 125 ksi) Nsa= 13.11 ksi-(Eqn. D-3) f Anchor 1 7�r= 0.75 1 V sa nAse✓ uta QNsa= 9.83 kips D.5.2-Concrete Breakout Strength of Anchor in Tension s� = 0 inches(see Fig. RD.5.2.1) S2= 0 inches(see Fig. RD.5.2.1) A„c(for single anchor) = 576 in.2(see Figure RD.5.2.1) Anc(for group anchor)= 782 in.2(see Figure RD.5.2.1) ANoo(for single anchor) = 576 in.2 (see Figure RD.5.2.1) ANS(for group anchor) = 576 in.2(see Figure RD.5.2.1) Wes,N= 1 Eqn. D-9 (Anchors not Eccentrically Loaded, 4J1 = 1.0) Wed,N= 1.000 Eqn. D-10&D-11 N= 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 ke= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 fc= 2500 psi 1.5*hef= 12 hot= 8 inches 0.7+0.3(cmin11.5hef)= 1.000 cm;n= 12 in-distance to closest edge of concrete N cb = kc v/f I c h 4- 1.5 Nb= 27.15 kips-(Eqn. D-7) Ncb= 27.15 kips-(Eqn. D-4) N _ ANc N Ncbg= 0.00 kips-(Eqn. D-5) cbg — wec,NVed,NVcp,N b Reinforcing 4D= 0.70 `4Nco q>Ncbg= 19.01 kips Client: Project: 44/11' Proj.#: Date: By: FROELICH E N B I N E E R S S ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) D5.3 -Single Anchor Pullout-headed or embedded nut Use Plate Washer? Y Plate Washer Width = 3 inches Nut diameter= 0.985 inches Nut or Plate Washer Bearing Area= 9.000 in2 Abrg = 8.693 in2-bearing area of embedded anchors head or nut .Pc,P= 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value(ACI 318-05 Section D.5.3.6) n = 1 #of anchors Np= 173.87 (kips) Eqn. D-15 Np —Arg8 C Np„= 173.87 (kips) Eqn. D-14 AT ="T W p Reinforcing cl)= 0.70 cDNA„= 121.71 kips D5.4-Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where cal <0.4he0 Anchor is not close to Edge of Concrete. Analysis below NOT Required. Cat= 5 distance to perp edge of concrete from anchor cal = 12 in -distance to closest edge of concrete Nsb= 283.05 (kips) Eqn. D-15 Factored Nsb= 100.25 Reinforcing cl)= 0.70 ONsb= 198.14 kips N sb = 160 Cal i/A brg f C S= 0 in-spacing of outer anchors in group VV Nsbg= 283.05 (kips) Eqn. D-16 Reinforcing = 0.70 S ONsbg = 198.14 kips Nsbg = 1 + 6C Nsb at (rZ � ��� Client: Project: FkOELICH Proj.#: CONSULTING Date: EI VEERS INC ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 1"ASTM A36 Threaded Rod for Simpson HhDQ11 /HHDQ14/HD14A/HDU11 /HDU14 1 Number of Anchors s, = 0 in. (see Fig. 1.000 Inch Diameter s2= 0 RD.5.2.1) 12 Inch Embed 2500 psi Concrete Footing NDesign= 13.710 (kips)Allowable Design Tension D.3-General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 D.4-General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor c= 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing l= 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summary ONn Wind ONn Seismic Summary From Below ttNn SW= 1.0 SF=0.75 (Ms= 26.35 26.35 19.76 kips clNcb= 29.64 29.64 22.23 kips cl)Npn= 115.01 115.01 86.26 kips cNsb= 288.91 288.91 216.68 kips NNsbg= 288.91 288.91 216.68 kips Minimum cI Nn= 26.35 26.35 19.76 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 ONAOowabie= 18.82 14.12 kips Ndesign < ON/knowable 13.710 < 14.12 Therefore, Anchor Design OK (3 � IT E Client: J� Project: FROELICHProj.#: NSUERNG Byte: ENGINEERS INC ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations D.5.1 -Steel Strength for Anchor in Tension do(Anchor Diameter)= 1.000 inches n = 1 #of anchors n,= 8 Number of Threads per inch ASe= 0.61 in.2-(effective cross-sectional area of anchor) futa= 58.00 ksi-(tensile strength of anchor material(not the yield strength) not exceed 1.9fy or 125 ksi) Nsa= 35.13 ksi-(Eqn. D-3) 7� T {' Anchor 1 = 0.75 1 V sa nAseJ uta DNsa= 26.35 kips D.5.2 -Concrete Breakout Strength of Anchor in Tension • s1 = 0 inches (see Fig. RD.5.2.1) s2= 0 inches (see Fig. RD.5.2.1) Am(for single anchor)= 1100 in.2(see Figure RD.5.2.1) Ano(for group anchor) = NA in.2(see Figure RD.5.2.1) ANco (for single anchor) = 1296 in.2(see Figure RD.5.2.1) ANco (for group anchor) = 1296 in.2(see Figure RD.5.2.1) dee,N= 1 Eqn. D-9 (Anchors not Eccentrically Loaded, 1P1 = 1.0) Lijed,N= 1.000 Eqn. D-10&D-11 4jc,N= 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 kc= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 fc= 2500 psi 1.5*hef= 18 het= 12 inches 0.7+0.3(cm;n/1.5hef) = 1.000 cm;n= 18 in-distance to closest edge of concrete N ch = kc.v f'chi " Nb= 49.88 kips-(Eqn. D-7) Nib= 42.34 kips (Eqn. D-4) N _ ANc N Ncbg = 0.00 kips-(Eqn. D-5) Ncbg = A I ec,NV'ed,NV cp,N b Reinforcing 1 = 0.70 Nco QNcbg= 29.64 kips ■ � � Client: Project: FROaICH Proj.#: CONSULTING Byte: DIGNEERSINC ACI ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) D5.3-Single Anchor Pullout-headed or embedded nut Use Plate Washer? Y Plate Washer Width = 3 inches Nut diameter= 1.625 inches Nut or Plate Washer Bearing Area= 9.000 in2 Abrg = 8.22 in2-bearing area of embedded anchors head or nut y'c,P= 1 For an anchor located in an area of concrete where no cracking at service loads is anticipated, otherwise use 1.0 value(ACI 318-05 Section D.5.3.6) n = 1 #of anchors NP= 164.30 (kips) Eqn. D-15 Np =4vrg8f Npn= 164.30 (kips) Eqn. D-14 /V =I l i p Reinforcing fi= 0.70 QDNpn= 115.01 kips D5.4-Anchor side-faced blowout-Headed.Anchor (Required only if anchor is near ari edge where cal < 0.4he0 Anchor is not close to Edge of Concrete. Analysis below NOT Required. cat= - • 5 distance to perp edge of concrete from anchor • Cal = 18 in-distance to closest edge of concrete Nab= 412.73 (kips) Eqn. D-15 Factored Nsb=. 412.73 Reinforcing cA= 0.70 eoNsb= 288.91 kips N == 160 C a 1 A brg -J f C s= 0 in-spacing of outer anchors in group Nsbg = 412.73 (kips) Eqn. D-16 Reinforcing 4P= 0.70 S CDNsbg = 288.91 kips Ns6g = 1 + Nsb 6Ca1