Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications (9)
, . , //4,5-7-2 ,2__0s/6 1 1 (-1(33 5&) GJce/r3ECEIVED DEC 19 2012 lTYOFTIGARD STRUCTURAL CALCU LATI O I.DtNG DIVISION FOR LAUREL A LOT 14 @ WALNUT CREEK LEGEND HOMES TIGARD, OR .cRU CT U1 f.,..- c,, �`AGIN `sjD v-- cc' r y v ! Y: �V FROELICH ENGINEERS S Client: Legend Homes Project: Laurel A Project Number: 12-T241 Date December 4, 2012 By: YSP Scope of Work Froelich Engineers has provided full structural lateral and gravity design of the project per the 2010 OSSC with the exception of continuous footings that fall within the parameters set forth by the 2011 ORSC. The roof trusses are designed by others. Froelich Engineers has provided details only to the areas pertaining to our design. Froelich Engineers did not design or review the details for the entire project. .} x FROELICH ENGINEERSP. MAIN OFFICE € CENTRAL OREGON € 6969 SW Hampton Street 745 NW Mt.Washington Dr.Suite 205 Tigard,Oregon 97223 Bend,Oregon 97701 503.624-7005/503.624-9770 FAX 541.383-1828/541.383-7696 FAX -Statement of Code Compliance- All engineering calculations in this packet that reference outdated codes, including but not limited to: hand written calculations, computer outputs, and spreadsheets, have been reviewed by FCE and meet or exceed the minimum requirements for the following code standards; 2010 OSSC 2011 ORSC 2005 NDS 2008 AF&PA SDPWS ASCE 7-05 ACI 318-08 N\ . I rai 111%1 III 1 11 IS pAtimi .,...L.---- 4:4,,t1, ..-4 ;hi Ai ! . E l��� t E_ III 11111 ;' •� &to Elm III o i= = °'AIVIIE-i‘. 1 111111 49:1111:11 ' � G- -- ��is apiac == lag=e.-=� -- Hca•: -- GG.GGp __ _ CpC _ :.! _ — G� On E.---- ya 3171 F= — w 4 a l i .. 7 r .A Client: Legend Homes Project: Laurel A Proj.#: 12-T241 Date: 12/4/2012 By: YSP FROELICH ENGINEERS g Design Criteria: General: Building Code(s): 2009 IBC 2010 OSSC 2011 ORSC Roof Live Load: Snow= 25 psf Deflection Criteria: L/240 Load Duration: 1.15 Floor Live Loads: Floor Live= 40 psf Deflection Criteria: L/360 Wind Load*: Speed: 95 mph 3 sec Exposure: B Importance Factor: 1.0 Special Reqs: no Seismic Load: Design Category D Site Class D Response Coeff 6.5 Importance Factor: 1.0 Soils Data: Allowable Bearing(assumed): 1500 psf Frost Depth: 18 in Special Soils Req's: .--- p FROELICH ENGINEERS a Client: Legend Homes Project: Laurel A Project Number: 12-T241 Date: December 4, 2012 By: YSP DEAD LOAD TAKE OFF ROOF DEAD LOAD Framing(RFR) =5.0 PSF Sheathing '/2"(RPL) = 1.5 PSF Roofing(RRF) =3.0 PSF Mech/Electrical(RME) = 1.5 PSF Ceiling(RCG) =2.2 PSF Insulation(RIN) = 1.5 PSF Miscellaneous(MIS) =0.3 PSF ROOF DEAD LOAD RDL=RFR+RPL+RRF+RME+RCG+RIN+MIS RDL= 15PSF FLOOR DEAD LOAD Framing(FFR) =3.0 PSF Sheathing/Floor(FPL) =3.5 PSF Mech/Electrical(FME) =2.0 PSF Lower Ceiling(FCG) =2.0 PSF Miscellaneous(FMS) = 1.5 PSF FLOOR DEAD LOAD FDL =FFR+FPL+FME+FCG+FMS FDL= 12 PSF WALL DEAD LOAD WDL= 10 PSF ' Client: Legend Homes Project: Laurel A _.f. , Proj.#: 12-T241 I- Date:111 12/4/2012 By: YSP FROELICH ENGINEEft CRS Snow drialculations According to ASCE 7 D (psf) = 17.25 D=Density of Snow(pcf) Wb (ft) = 12 Wb=Width of Building(feet) Pg (psf) = 25 Pg=Ground Snow Load(psf) Pf(psf) = 25 Pf=Snow load on flat roofs(psf) W(ft) = 7 hd=Height of drifted snow(feet) Pm=Drifted snow pressure(psf) Wd=Width of drift(feet) Drift Snow Loads W=Eave to Ridge(feet) hd = 0.89 PSS=Sliding snow pressure(psf) Pm = 15 Wd = 3.58 hd=0.43 * 11,"1/3*(pg+10)ll4— 1.5 Pin=D *hd Sliding Snow Wd=4 *hd Pss = 5 PSS=0.4 *Pf* W/WS Wd = 15 Ws=Width of lower roof(feet) • • r [____� _ - I I I iss<sss<m«sssssssssss_____ 1 —1— II I I PIEIS :> 1, , ,\ u- \ 1 11 I \i, \\ II I 1 \ H. t I ii _.-_-_._II --- \ L H Aim II __ � II I - Alliiiiiir ii 1 I 1 \ STI- - _ I I I .r. AIIIEIIIIIIMMIIB I i 1 t L _Li // � - -IL - 1 ly. r 1 \\ �3 1 �. 1 EMIMilir -/ \ 1 ,1 I I r 1 / \\ 1 I 11 f I �/ fl II I I ',/ II ---- --- J,' 1 $ ££3 sss 1 4t�:ff[ f sA= —0, ss ;,s I - --_ 11 6969 SW Hampton Street CLIENT: PROJECT: PAGE F PortlandAX503.,624.977Oregon0 97223 FROELICH 503.624.7005 Kl 1\I 745 NW Mt.Washington Drive NUMBER: CONSULTING Suite 204 Bend,Oregon 97701 ENGINEERS,1NC 541.541. 96 DATE: 541.383.18281328 www.froelich-engineers.com ■ BY: ROOF FRA Hata Ai q , gOo F DEAD (LIPID s 15 F boor Lv& WAD s- 25 Use PRE ht.ANLIF T use e. 24 o. c (J. AJ- O RooFftE, R'vs u: c ! 1'iL R� DLS (5)( ) s) S 75 ( 5) ( 25) 5 izs PLF PF/Ar-_,T,U12004* SL.c- 19 oo 4 R F- D7e' RN I/ , SpA4,Us 90 PLL DLs (5 ) ( /5)-s- 17:, S ) ( : ) 2 F Lo ER, Pc of B AAA :'73 PAAJs 5 - f a COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN Dec.4,2012 16:08 RH 1.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Load1 Dead Full UDL 75.0 No Load2 Snow Full UDL 125.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0 0 0' 9' Dead 365 365 Live 562 562 Total 927 927 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 47 Fv' = 207 fv/Fv' = 0.23 Bending(+) fb = 816 Fb' = 1327 fb/Fb' = 0.62 Live Defl'n 0.10 = <L/999 0.30 = L/360 0.35 Total Defl'n 0.17 = L/631 0.45 = L/240 0.38 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.15 1.00 1.00 0.986 1.300 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+S, M = 2086 lbs-ft Shear : LC# 2 = D+S, V = 927, V design = 803 lbs Deflection: LC# 2 = D+S EI= 178e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 11 1 WoodWorks® SOFTWARE FOR WOOD DEVON Dec.4,2012 16:10 LRB1.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 90.0 No Load2 Live Full UDL 300.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0 0 0' 5' Dead 240 240 Live 750 750 Total 990 990 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports, bottom=at supports; Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 44 Fv' = 180 fv/Fv' = 0.25 Bending(+) fb = 484 Fb' = 1162 fb/Fb' = 0.42 Live Defl'n 0.02 = <L/999 0.17 = L/360 0.14 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.13 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.00 1.00 1.00 0.993 1.300 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+L, M = 1238 lbs-ft Shear : LC# 2 = D+L, V = 990, V design = 751 lbs Deflection: LC# 2 = D+L EI= 178e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. rf 1 i tau—• -•e :uz;.:j y . I b ca d Z--1' 'j i ; I ,' 1 V 1 1 I /., JL • .1L XJ \ 11 2.9d2 I --7-'41-vi-tz,i71: 1 1[ ` ILS Ii 1 1 I I�I� L I� .j l - �h ll i i �� 1. �.0 .-,r, .r' ..„1..7,m===.,,,,9_, H . II I 11 I il /l VaJz I €� I iti $,-,TmifTrig____—irsgrgTh-Tlistal— • —Will . --11— •,72H.2 111-i.2 5 O, d IgE 6969 SW Hampton Street CLIENT: PAGE / Ilj�(�' Portland,Oregon 97223 FAX 503.624.9770 PROJECT: FROELICH 503.624.7005 745 NW Mt.Washington Drive NUMBER: CONSULTING Suite 204 Bend,Oregon 97701 ENGINEERS INC FAX 541.383.7696 DATE: 541.383.1828 www.froelich-engineers.com • BY: 2ND F cc ,'',QAty\ifJG( FLOOR DER D LOAD 12 r F FLooR L t VE CUa D : qo PsF USE PRE-MAAJur.. 7 uSS e 2c4 H 2f 30 Fc cfo,z BAP�� .j: 2 -3r r f PA/vs f f_-cs FLF DLS ( 15..5 ) ft )s Ls ( 15.5 ) (r{O) s 620 PLt 2. DLs (2.S ) ( 12 ) 4904 (2 ( s 150 P!F LLS (7.5') (go) s- fco F r EL-c (z') ( ZS ) s o C-7—F. 2Fu3,: SPAtis 16`_6 DLc 30 5L S (Z`)C 25-r• IOO F PAiv 2- 0 f ' DLs (3 ) ( t2 ) -t ?at (Z )( i5 ) s f56 P!F LLS ( 3`} ( Let o }s 12© rcV 1 �r Ip ly {2. COMPANY PROJECT ffl WoodWorks® SOFTWARE FOR WOOD DESIGN Dec.4,2012 16:40 2FB1.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 186.0 No Load2 Live Full UDL 620.0 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : A 0' 17' Dead 1742 1742 Live 5270 5270 Total 7012 7012 Bearing: LC number 2 2 Length 1.96 1.96 Glulam-Unbal.,West Species, 24F-1.8E WS, 5-1/2x15" Self Weight of 18.99 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 109 Fv' = 240 fv/Fv' = 0.45 Bending(+) fb = 1734 Fb' = 2308 fb/Fb' = 0.75 Live Defl'n 0.42 = L/487 0.57 = L/360 0.74 Total Defl'n 0.56 = L/366 0.85 = L/240 0.66 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.00 1.00 1.00 0.962 1.000 1.00 1.00 1.00 1.00 - 2 Fv' 240 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Bending(+) : LC# 2 = D+L, M = 29803 lbs-ft Shear : LC# 2 = D+L, V = 7012, V design = 5981 lbs Deflection: LC# 2 = D+L EI= 2784e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). 13 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN Dec.4,2012 16:41 2FB2.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 150.0 No Load2 Live Full UDL 100.0 No Load3 Snow Full UDL 50.0 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : a iv Dead 1437 1437 Live 1012 1012 Total 2450 2450 Bearing: LC number 3 3 Length 1.08 1.08 Glulam-Unbal.,West Species, 24F-1.8E WS, 3-112x12" Self Weight of 9.67 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 74 Fv' = 240 fv/Fv' = 0.31 Bending(+) fb = 1502 Fb' = 2002 fb/Fb' = 0.75 Live Defl'n 0.29 = L/737 0.60 = L/360 0.49 Total Defl'n 0.71 = L/304 0.90 = L/240 0.79 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.00 1.00 1.00 0.834 1.000 1.00 1.00 1.00 1.00 - 2 Fv' 240 1.00 1.00 1.00 - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Bending(+) : LC# 2 = D+L, M = 10517 lbs-ft Shear : LC# 2 = D+L, V = 2337, V design = 2077 lbs Deflection: LC# 3 = D+.75(L+S) EI= 907e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). 14 t. COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN Dec.4,2012 16:42 2FB3.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 30.0 No Load2 Snow Full UDL 100.0 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : 16-6" Dead 307 307 Live 825 825 Total 1132 1132 Bearing: LC number 2 2 Length 1.00 1.00 Glulam-Unbal.,West Species, 24F-1.8E WS, 3-1/2x9" Self Weight of 7.25 plf automatically included in loads; Lateral support:top=at supports, bottom=at supports; Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 49 Fv' = 276 fv/Fv' = 0.18 Bending(+) fb = 1186 Fb' = 2491 fb/Fb' = 0.48 Live Defl'n 0.44 = L/454 0.55 = L/360 0.79 Total Defl'n 0.60 = L/331 0.83 = L/240 0.72 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.15 1.00 1.00 0.903 1.000 1.00 1.00 1.00 1.00 - 2 Fv' 240 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1:00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Bending(+) : LC# 2 = D+S, M = 4671 lbs-ft Shear : LC# 2 = D+S, V = 1132, V design = 1029 lbs Deflection: LC# 2 = D+S EI= 383e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). 5 COMPANY PROJECT WoodWorks° SOFTWARE FOR WOOD DESIGN Dec.4,2012 16:43 2FB4.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 156.0 No Load2 Live Full UDL 120.0 No Load3 Snow Full UDL 50.0 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : 0' 12' Dead 987 987 Live 765 765 Total 1752 1752 Bearing: LC number 3 3 Length 1.00 1.00 Glulam-Unbal.,West Species,24F-1.8E WS, 3-1/2x10-1I2" • Self Weight of 8.46 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; . Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 60 Fv' = 240 fv/Fv' = 0.25 Bending(+) fb = 955 Fb' = 2271 fb/Fb' = 0.42 Live Defl'n 0.10 = <L/999 0.40 = L/360 0.24 Total Defl'n 0.22 = L/642 0.60 = L/240 0.37 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.00 1.00 1.00 0.946 1.000 1.00 1.00 1.00 1.00 - 2 Fv' 240 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Bending(+) : LC# 2 = D+L, M = 5120 lbs-ft Shear : LC# 2 = D+L, V = 1707, V design = 1458 lbs Deflection: LC# 3 = D+.75(L+S) EI= 608e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5.GLULAM:bearing length based on smaller of Fcp(tension), Fcp(comp'n). 41: r�1�7 6969 SW Hampton Street CLIENT: PAGE 9 / I[1I y Portland,Oregon 97223 �lJ rj FAX 503.624.9770 PROJECT FROELI(H 503.624.7005 745 NW Mt.Washington Drive Suite 204 CONSULTING Bend,Oregon 97701 NUMBER: NGINEERS,INC 54X541.3837696 DATE: 541.383.1828 wwvv.froelich-engineers.com • BY: Z AID FC_c , IDR: 2H : P0z- LO � J DL s (5 )(IS} . 90 . 42s i70 LF L s )(? I Pir r w2 L o FLF 97-g P( F/tom /h ; ) 6-"L)21 DLs 9O -r (2s 1o2. PL CELS 365 * cr0I= SLs 57o 44:- 2 FH2,1 ' J DL, t{OP's St s t2s PL - L Ls ( F; 0R . LLS 36S COMPANY PROJECT WoodWorks° SOFTWARE FOR WOOD DESIGN Nov.2,2012 10:04 2FH1.wwb Design Check Calculation Sheet Sizer2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft) Pat- Start End Start End tern Loadl Dead Point 365 2.50 No Load2 Snow Point 570 2.50 No Load3 Dead Partial UDL 180.0 180.0 0.00 2.50 No Load4 Live Partial UDL 40.0 40.0 0.00 2.50 No Load5 Snow Partial UDL 125.0 125.0 0.00 2.50 No Load6 Dead Partial UDL 102.0 102.0 2.50 9.50 No Load7 Live Partial UDL 40.0 40.0 2.50 9.50 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : 0 0' 9'-6" Dead 951 635 Live 691 286 Total 1643 921 Bearing: LC number 4 3 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 86 Fv' = 207 fv/Fv' = 0.42 Bending(+) fb = 1227 Fb' = 1325 fb/Fb' = 0.93 Live Defl'n 0.10 = <L/999 0.32 = L/360 0.31 Total Defl'n 0.27 = L/424 0.48 = L/240 0.57 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.15 1.00 1.00 0.985 1.300 1.00 1.00 1.00 1.00 - 4 Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Bending(+) : LC# 4 = D+S, M = 3135 lbs-ft Shear : LC# 4 = D+S, V = 1643, V design = 1459 lbs Deflection: LC# 3 = D+.75(L+S) EI= 178e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT I 1 WoodWorks° SOFTWARE FOR WOOD DESIGN Nov.2,2012 10:04 2FH2.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs, psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 185.0 No Load2 Live Full UDL 40.0 No Load3 Snow Full UDL 125.0 No Load4 Dead Point 365 0.75 No Load5 Snow Point 570 0.75 No MAXIMUM REACTIONS(lbs) and BEARING LENGTHS (in) : O A 0' 6' Dead 892 619 Live 874 446 Total 1766 1065 Bearing: LC number 4 4 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports, bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 93 Fv' = 207 fv/Fv' = 0.45 Bending(+) fb = 702 Fb' = 1333 fb/Fb' = 0.53 Live Defl'n 0.03 = <L/999 0.20 = L/360 0.15 Total Defl'n 0.07 = <L/999 0.30 = L/240 0.22 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.15 1.00 1.00 0.991 1.300 1.00 1.00 1.00 1.00 - 4 Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Bending(+) : LC# 4 = D+S, M = 1794 lbs-ft Shear : LC# 4 = D+S, V = 1766, V design = 1575 lbs Deflection: LC# 4 = D+S EI= 178e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT 1 WoodWorks° SOFTWARE FOR WOOD DESIGN Jan. 19,2006 11:40 (1)2x6 DF Stud Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 5200 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, D.Fir-L, Stud, 2x6", 1-ply Self Weight of 1.96 plf automatically included in loads; Pinned base; Loadface=width(b); Built-up fastener:nails; Ke x Lb: 1.00 x 0.00=0.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft]; Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 632 Fc' = 654 fc/Fc' = 0.97 Axial Bearing fc = 632 Fc* = 850 fc/Fc* = 0.74 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 850 1.00 1.00 1.00 0.770 1.000 - - 1.00 1.00 2 Fc* 850 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 5218 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 4,, 20 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN Jan. 19,2006 11:37 (2)2x4 DF Stud Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 4000 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, D.Fir-L, Stud, 2x4", 2-Plys Self Weight of 2.49 plf automatically included in loads; Pinned base;Loadface=width(b); Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 383 Fc' = 384 fc/Fc' = 1.00 Axial Bearing fc = 383 Fc* = 892 fc/Fc* = 0.43 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 850 1.00 1.00 1.00 0.430 1.050 - - 1.00 1.00 2 _ Fc* 850 1.00 1.00 1.00 - 1.050 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 4022 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. it COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN Jan. 19,2006 11:41 (2)2x6 DF Stud Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 10400 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, D.Fir-L, Stud, 2x6", 2-Plys Self Weight of 3.92 plf automatically included in loads; Pinned base;Loadface=width(b);Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft]; Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 632 Fc' = 654 fc/Fc' = 0.97 Axial Bearing fc = 632 Fc* = 850 fc/Fc* = 0.74 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 850 1.00 1.00 1.00 0.770 1.000 - - 1.00 1.00 2 Fc* 850 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 10435 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 22 COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN Jan. 19,2006 11:39 (3)2x4 DF Stud Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 6000 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs): 0' 9' Lumber n-ply, D.Fir-L, Stud,2x4", 3-Plys Self Weight of 3.74 plf automatically included in loads; Pinned base; Loadface=width(b); Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft]; Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 383 Fc' = 384 fc/Fc' = 1.00 Axial Bearing fc = 383 Fc* = 892 fc/Fc* = 0.43 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 850 1.00 1.00 1.00 0.430 1.050 - - 1.00 1.00 2 . Fc* 850 1.00 1.00 1.00 - 1.050 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 6034 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 23 COMPANY PROJECT 1*4 I WoodWorks° SOFTWARE FOR WOOD DESIGN Oct.26,2005 14:44 (3)2x6 DF#2 Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 23028 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, D.Fir-L, No.2, 2x6", 3-Plys Self Weight of 5.88 plf automatically included in loads; Pinned base;Loadface=width(b);Built-up fastener: nails; Ke x Lb: 1.00 x 0.00=0.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft];Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 933 Fc' = 932 fc/Fc' = 1.00 Axial Bearing fc = 933 Fc* = 1485 fc/Fc* = 0.63 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1350 1.00 1.00 1.00 0.628 1.100 - - 1.00 1.00 2 Fc* 1350 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 23081 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 2y COMPANY PROJECT 1 Woodworks® SOFTWARE FOR WOOD DESIGN Oct.31,2005 07:24 (1)4x4 DF#2 Unbraced.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 5700 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber Post, D.Fir-L, No.2,4x4" Self Weight of 2.91 plf automatically included in loads; Pinned base;Loadface=width(b);Ke x Lb: 1.00 x 9.00=9.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft]; Load combinations:ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 467 Fc' = 465 fc/Fc' = 1.00 Axial Bearing fc = 467 Fc* = 1552 fc/Fc* = 0.30 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1350 1.00 1.00 1.00 0.300 1.150 - - 1.00 1.00 2 Fc* 1350 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 5726 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. Z5 COMPANY PROJECT di WoodWorks° SOFT WARE FOR WOOD DESIGN Oct.31,2005 07:26 (1)4x6 DF#2 Braced.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft) Pat- Start End Start End tern live Live Axial 17900 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber Post, D.Fir-L, No.2,4x6" Self Weight of 4.57 plf automatically included in loads; Pinned base;Loadface=width(b);Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 932 Fc' = 932 fc/Fc' = 1.00 Axial Bearing fc = 932 Fc* = 1485 fc/Fc* = 0.63 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1350 1.00 1.00 1.00 0.628 1.100 - - 1.00 1.00 2 Fc* 1350 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 17941 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. COMPANY PROJECT i WoodWorks SOFTWARE FOR WOOD DESIGN Oct.31,2005 07:29 (1)6x6 DF#2 Unbraced.wwc Design Check Calculation Sheet Sizer2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 15800 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): T - 0' 9' Timber-soft, D.Fir-L, No.2, 6x6" Self Weight of 7.19 plf automatically included in loads; Pinned base;Loadface=width(b);Ke x Lb: 1.00 x 9.00=9.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft]; Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 524 Fc' = 561 fc/Fc' = 0.94 Axial Bearing fc = 524 Fc* = 700 fc/Fc* = 0.75 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 700 1.00 1.00 1.00 0.801 1.000 - - 1.00 1.00 2 Fc* 700 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 15865 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. H. N \ — — - - - - - - r— - 1 I °°) III r I ' I 4 Ir I '.• cot® ) (o) moo) ) ca) cop; � L k 11 Ir 1 ., I r°) ) Io) ) c0) rob\I lel I II .0 I II - - - - k� FROELICH CONSULTING ENGINEERS INC., Client: Project: Project 4: By: Footings Footing Size Maximum Allowable Required Required Dimensions Used Dimensions Footing Bearing gall°"' Load (Prot) Area 15"x cont x 7" W(ft) L ft W ft) L (ft Din Weight Pressure 1750 1500 1.17 1.08 1.08 1.25 1 15"x cont x 7" ** 4350 1500 2.90 1.70 1.70 1.25 2 5 7 273 1488 15"x cont x 7"**,k2300 1500 1.53 1.24 1.24 1.25 1.33 7 2 145 147145 1480 18"4)x 8" _ 2450 1500 1.63 1.28 1.28 1.5 1.5 86 24" x 10" _ 4300 1500 2.87 1.69 1.69 2 177 1494 2 10 393 1494 2'-0"x 2'-0"x 10" 5400 1500 3.60 1.90 1.90 2 2 10 500 1475 2'-6"x 2'-6"x 10'_ 8500 1500 5.67 2.38 2.38 2.5 2.5 10 781 1485 3'-0"x 3'-0"x 12" 12000 1500 8.00 2.83 2.83 3 3 12 1350 1483 3'-6"x 3'-6"x 12" 16500 1500 11.00 3.32 3.32 3.5 3.5 12 1838 1497 4'-0"x 4'-0"x 12" 21000 1500 14.00 3.74 3.74 4 ** Indicate maximum load at header supports for continuous footing 4 12 2400 1463 *** Indicates maximum pt load for beams on continuous footing Required Area: = (Prot/gauow)°5 Bearing Pressure = (Ptot+Wftg)/(W*L) _ (Ptot+Wttg)/(W*L*3.1415/4) N 04 29• ill� COMPANY PROJECT WoodWorks® SOFTWARE FOR WOOD DESIGN • Oct.30,2012 17:03 FB2.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 218.0 No Load2 Live Full UDL 427.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0 0' 4' 4' Dead 448 Live 854 448 854 Total 1302 Bearing: 1302 LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 54 Fv' = 180 fv/Fv' = 0.30 Bending(+) fb = 510 Fb' = 1164 fb/Fb' = 0.44 Live Defl'n 0.01 = <L/999 0.13 = L/360 0.10 Total Defl'n 0.02 = <L/999 0.20 = L/240 0.11 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.00 1.00 1.00 0.995 1.300 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+L, M = 1302 lbs-ft Shear : LC# 2 = D+L, V = 1302, V design = 909 lbs Deflection: LC# 2 = D+L EI= 178206 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. 30 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN • Mar.22,2012 12:25 Main Floor Beam.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 32.0 No Load2 Live Full UDL 107.0 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : 0 LI 0' g' Dead 152 152 Live 428 428 Total 580 580 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in)using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 29 Fv' = 180 fv/Fv' = 0.16 Bending(+) fb = 454 Fb' = 1158 fb/Fb' = 0.39 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.21 Total Defl'n 0.08 = <L/999 0.40 = L/240 0.19 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.00 1.00 1.00 0.990 1.300 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+L, M = 1160 lbs-ft Shear : LC# 2 = D+L, V = 580, V design = 492 lbs Deflection: LC# 2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. , . . . . . AlClient: Legend Homes } ®r Project: Proj.#: Date: By: FROELICH ENGINEERS S ASCE 7-02 Earthquake Load Cs Factor Importance Factor(Seismic) I= 1.0 Basic Seismic Force Resisting System Light Framed Wood Shear Wall R= 6.5 Maximum Considered Design Spectral Response Max Ground Motion _ Site Site Coefficients Earthquake Acceleration Acceleration Seismic Design Coefficient Development Latitude Longitude Ss Si Classification Fa F� SMs SMI SDs SDI Category Cs ELIgewater 45.406 -122.798 0.914 0.332 D 1.135 1.74 1.037 0.576 0.692 0.384 D 0.1064 Maxfield 45.343 -122.664 0.902 0.324 D 1.139 1.75 1.027 0.567 0.685 0.378 D 0.1054 fend at Taralon 45.445 -122.534 0.978 0.329 D 1.109 1.74 1.085 0.573 0.723 0.382 D 0.1112 Victoria Gardens 45.367 -122.769 0.904 0.329 D 1.138 1.742 1.029 0.573 0.686 0.382 D 0.1055 Village at Orenco 45.584 -122.955 0.956 0.363 D 1.118 1.674 1.069 0.608 0.713 0.405 D 0.1096 fend at Villebois 45.308 -122.780 0.873 0.322 D 1.151 1.756 1.005 0.565 0.670 0.377 D 0.1031 Willamette Landing 44.500 -123.250 0.906 0.34 D 1.18 1.86 1.069 0.632 0.622 0.422 D 0.0957 Walnut Creek 45.445 -122.798 0.938 0.339 D 1.125 1.723 1.055 0.584 0.704 0.389 D 0.1082 -Information in table was found by USGS maps -Conservatively design all structures in all developments for the Cs design value specified below Controlling Cs Value= 0.1112 IUse Cs=0.12 for Design in all Developments Equations: SMs=Fa*Ss Maximum Considered Earthquake SM1=Fv*SI Acceleration SDS=SMS*2/3 Design Spectral Acceleration SDI=SMI*2/3 g Cs=SDs*I/R Response Coefficient oJ r► 37— Client: 2Client: Legend Homes Project: Laurel A Proj.#: 12-T241 Ir Date: 12/10/2012 By: YSP FROELICH ENGINEERS 3 Lateral Design SEISMIC: R=6.5 I = 1.0 Site Classification= D Design Category=D Seismic Design Coefficient(Cs) =0.12 Working Stress Design: 0.7E Cs= 0.084 Seismic Dead Loads diaph area Load Wall L Trib Wall Wall Wt Extra DL Total DL Level (ftp) (psf) (ft) height(ft) (psf) (lbs) (lbs) Roof 1320 15 140 4 10 25400 Upper Fir 1210 12 150 10 10 1350 30870 Seismic Base Shear V=Cs(DLrf+DLflr) V= 4727 Vertical Distribuition Level Weight Height Wt*Ht Wt(Ht)/Total V IVi= (Wt(Ht)/Total)*V Roof 25400 18 457200 0.622 4727 2940 =Vrf Floor 30870 I 9 277830 0.378 4727 1787 =Vflr !Total= 735030 Vrf= 2940 lbs Vflr= 1787 lbs �. 33 1 .. 4Client: Legend Homes Project: Laurel A Project#: 12-T241 Date: 12/10/2012 By: YSP FROELICH ENGINEERS a Reliability/Redundancy Factor p (per ASCE7-05 12.3.4.2) Seismic Base Shear(V)= 4727 Percent base shear taken by story: Upper Story 2940 62% Main Floor 4727 100% Calculation of#of bays per story resisting more than 35% of the base shear: Upper Story: Story height(H) = 9 Critical wall length (L) = 6 #Bays =2L/H*= 1.33 *for light-framed construction I # Bays < 2, Therefore Calculate Rho using Table 12.3-3 Per Table 12.3-3: By observation, the removal of any single shear wall with a height-to-width ratio greater than 1.0 does not result in a 33% reduction in story strength for any story resisting more than 35% of the total base shear. The resulting system does not have an extreme torsional irreguarity. !Therefore, p = 1.0 1 3-1 Client: Legend Homes Project: Laurel A Project#: 12-T241 Date: 12/10/2012 By: YSP FROELICH ENSINEERSI Front - Back Event WIND FORCE CALCULATION-MWFRS ASCE 7-05 SECTION 6.5 METHOD 2 -ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 95 mph Wind Directionality Factor Kd= 0.85 Table 6-4 (page 80) Wind Importance Factor IW= 1.00 Table 6-1 (page 77) Wind Exposure Category= B Building Parameters Longitudinal Dimension of Bldg B= 31 ft Transverse Dimension of Bldg L= 39 ft Mean Roof Height h= 25 ft Highest Roof Level hr,= 29 ft Approximate Fundamental Period Ta= 0.25 sec Eq. 12.8-7(page 129) Output-Fundamental Frequency f= 4.0 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 6-4 Length of 1/2 hill height Lh= 0 ft Figure 6-4 Dist.From Crest to Bldg. x= 0 ft Figure 6-4 Height Above Local Grade z= 0 ft Figure 6-4 Horizontal Attenuation Factor m= 1 Figure 6-4 Height Attenuation Factor g= 1 Figure 6-4 Shape Factor K1/(H/Lh)= 1 Figure 6-4 Output-Topographic Multipliers K1 = 1.00 K2= 1.00 K3= 1.00 Topographic Factor Kzt= 1.00 355 Gust Effects Input Integral Length Scale Factor I= 320 ft Table 6-2 Integral Length Scale nominal height of boundary zg= 1200 Table 6-2 3-s gust exponent a= 7.00 Table 6-2 Turbulence Intensity Factor c= 0.30 Table 6-2 Power Law Exponent e= 0.33 Table 6-2 Minimum Height zmin= 30 ft Table 6-2 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.91 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.87 Pressure Coefficients Input Length to Width Ratio LB = 1.26 Height to Length Ratio h/L= 0.64 Roof Pitch= 7 :.12 = 30.26 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 6-3 (page 79) External Pressure Coefficients Cp (see below) Figure 6-6(page 49) Direction Cp Height(ft) Kh qZ(psf) Velocity Windward 0.8 15 0.57 11.3 Pressure Leeward -0.45 20 0.62 12.3 Output qZ Roof Windward 0.20 25 0.67 13.1 Roof Leeward -0.6 30 0.70 13.8 40 0.76 14.9 50 0.81 15.9 60 0.85 16.8 70 0.89 17.5 80 0.93 18.2 90 0.96 18.8 100 0.99 19.4 120 1.04 20.4 1 h= 25 0.67 13.1 qh 36* Design Wind Pressures p (psf)- GCr;=(-) 10 psf min per 6.1.4.1 Internal Pressure Coefficient GCpi= -0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 10.2 -2.8 13.0 ft 20 10.9 -2.8 13.6 25 11.4 -2.8 14.2 30 11.9 -2.8 14.7 40 12.8 -2.8 15.5 50 13.4 -2.8 16.2 60 14.0 -2.8 16.8 70 14.6 -2.8 17.3 80 15.0 -2.8 17.8 90 15.5 -2.8 18.2 100 15.9 -2.8 18.6 120 16.6 -2.8 19.4 25 11.4 -2.8 2.3 -2.3 14.2 5.04 Design Load Case 1 Controls-By Inspection Figure 6-9(page 52) Design Wind Pressures p (psf)-GCr;_(+) 10 psf min per 6.1.4.1 Internal Pressure Coefficient GCpi= 0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 5.5 -7.5 13.0 ft 20 6.2 -7.5 13.6 25 6.7 -7.5 14.2 30 7.2 -7.5 14.7 40 8.1 -7.5 15.5 50 8.7 -7.5 16.2 60 9.3 -7.5 16.8 70 9.9 -7.5 17.3 80 10.3 -7.5 17.8 78 90 10.8 -7.5 18.2 100 11.2 -7.5 18.6 120 11.9 -7.5 19.4 25 6.7 -7.5 0.0 -4.6 14.2 5.04 Design Load Case 1 Controls-By Inspection Figure 6-9 (page 52) 3-* + r Client: Legend Homes • Project: Laurel A — Project#: 12-T241 Date: 12/10/2012 By: YSP FROELICH E N G E N E E R S e Side - Side Event WIND FORCE CALCULATION-MWFRS ASCE 7-05 SECTION 6.5 METHOD 2-ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 94.5 mph Wind Directionality Factor K= 0.85 Table 6-4(page 80) Wind Importance Factor IW= 1.00 Table 6-1 (page 77) Wind Exposure Category= B Building Parameters Longitudinal Dimension of Bldg B= 39 ft Transverse Dimension of Bldg L= 31 ft Mean Roof Height h= 27 ft Highest Roof Level ha= 29 ft Approximate Fundamental Period Ta= 0.25 sec Eq. 12.8-7(page 129) Output-Fundamental Frequency f= 4.0 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 6-4 Length of 1/2 hill height Lh= 0 ft Figure 6-4 Dist.From Crest to Bldg.x= 0 ft Figure 6-4 Height Above Local Grade z= 0 ft Figure 6-4 Horizontal Attenuation Factor m= 1 Figure 6-4 Height Attenuation Factor g= 1 Figure 6-4 Shape Factor Kl/(H/Lh)= 1 Figure 6-4 Output-Topographic Multipliers K1 = 1.00 K2= 1.00 K3= 1.00 Topographic Factor Tict= 1.00 ,, 3"$ Gust Effects Input r Integral Length Scale Factor I= 320 ft Table 6-2 Integral Length Scale nominal height of boundary zg= 1200 Table 6-2 3-s gust exponent a= 7.00 Table 6-2 Turbulence Intensity Factor c= 0.30 Table 6-2 Power Law Exponent e= 0.33 Table 6-2 Minimum Height zmi„= 30 ft Table 6-2 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.90 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.87 Pressure Coefficients Input Length to Width Ratio L/B = 0.79 Height to Length Ratio h/L= 0.87 Roof Pitch= 7 : 12 = 30.26 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 6-3 (page 79) External Pressure Coefficients Cp (see below) Figure 6-6(page 49) Direction Cp Height(ft) Kb Gly(psi) Velocity Windward 0.8 15 0.57 11.2 Pressure Leeward -0.5 20 0.62 12.1 Output qZ • Roof Windward 0.20 25 0.66 12.8 Roof Leeward -0.6 30 0.70 13.6 40 0.76 14.8 50 0.81 15.8 60 0.85 16.6 70 0.89 17.3 80 0.93 18.0 90 0.96 18.6 100 0.99 19.2 120 1.04 20.2 I h= 27 0.68 13.2 qh ti 9 Design Wind Pressures p (psf)-GCr;=(-) 10 psf min per 6.1.4.1 Internal Pressure Coefficient GCP;= -0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 10.1 -3.3 13.4 ft 20 10.8 -3.3 14.1 25 11.3 -3.3 14.6 30 11.8 -3.3 15.1 40 12.6 -3.3 15.9 50 13.3 -3.3 16.6 60 13.9 -3.3 17.2 70 14.4 -3.3 17.7 80 14.9 -3.3 18.2 90 15.3 -3.3 18.6 100 15.7 -3.3 19.0 120 16.4 -3.3 19.7 27 11.5 -3.3 2.4 -2.3 14.9 5.04 Design Load Case 1 Controls-By Inspection Figure 6-9(page 52) Design Wind Pressures p (psf)-GCr;=(+) 10 psf min per 6.1.4.1 Internal Pressure Coefficient GCP;= 0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 5.4 -8.1 13.4 • ft 20 6.0 -8.1 14.1 25 6.5 -8.1 14.6 30 7.0 -8.1 15.1 40 7.9 -8.1 15.9 50 8.5 -8.1 16.6 60 9.1 -8.1 17.2 70 9.6 -8.1 17.7 80 10.1 -8.1 18.2 90 10.5 -8.1 18.6 100 10.9 -8.1 19.0 120 11.6 -8.1 19.7 27 6.8 -8.1 0.0 I -4.7 14.9 .5.04 Design Load Case 1 Controls-By Inspection Figure 6-9(page 52) i Q 6969 SW Hampton Street CLIENT: PAGE / Portland,Oregon 97223 O FAX 503.624.9770 PROJECT: f ROELICH 745 NW4 Mt.Washington Drive CONSULTING Suite 204 Bend,Oregon 97701 NUMBER: ENGINEERS,INC F4FAX 38183. 696 DATE: vww.froelich-engineers.com • BY: LiATE/L i5TRI au,io N ; F'c iv!,. 3AGk EVEAJ A a : 1A-IIA-1 (S') ( 14/.2 ) -r(5)( i3.6, )s- rya Pc,F f J'AJD5 ( I5.S}(/qo ) c Z30,0 : 19go W E s (Z9�-to4-) ( ' a ) s !'-! 701P F�c,e ifA IZ.y PLF tit►A,..!p s5.5 I i ( 1 ) (( 1-2_.y ) s- 1930 NQS f'Soo* EQs ( [ 0.o ) ( I ) s- 9Qo- ) ( � � 1r1Pir cZ wpk.os (ZO } ( tw ) 2„00* EQ 5 ( 296/0 )( '/2 ) S ILr7-o EQ 2�uo 2` FLOOR. Z.1116-1 ZWrA.rp , ( 9. 3 ) ( [3.(4 ) 2_7l✓Lf` W;�vl�s (101) ( 127-) s- l2.7-01 Q s ( 144 ( kYoo) s 6/50*- &Q s lg OO 3 ' wp-c (?0 ) ( 12_7 25go* (`/z ) ( fTOoj s 900 K LA UREL A • �`% • 1,084 SQ. FT 31=0" W x 51-6"D • © - \-.-- 0 p i gSssssssssssnsYs3%cU easiasssssisss I t / 11 7 / \ / \ — / \ / \ / PI 1 \ / \ / I \ / \ / \ / //1 O 1 I q \ C f...J___. \ \ J I I I \\ i ® I I I I� \ E-----4d 0 ....,ui u t +.a o {q»> »S »Is»1» a I L - - - - -I— - - - cr 4 Client:Legend Homes Project: Laurel A L=Length of individual wall V—Hf+Hs t•- Lt=Total length of wall along gridline Lr Proj.N: 12-T241 La=Length of moment arm in wall(if Date: 12/10/2012 different than wap length) ,,. hu=Height of upper wall `" By:YSP hl=Height of lower wall f-If=I-Iorizontforce a[gridline Ms=1Th(/t/+hu+l)+Hf(h0]x L F R O E L I C H FIs=Horizontal force at gridline from upperLi level E N O I N E E R S t le=Unit shear in wall Mu=1Hs(hl)+Hf(MAx L Ms=Overturning moment when upper wall is LI Upper Level Shear Walls and Holdowns stacked above lower wall Mu=Overturning moment when upper wall is Mr=2](Rfrib x RoofDL)(Wlrib x Wa!/DL)(FU•iL x FloorDL)]L,2not stacked or does not exist ROOF dl: 15 Rtrib,Wtrib,Ftrib=Roof,wall,and floor 2 psf tributary area,used for calculating dead load Ma—Mr Wall dl: 10 psf Mr=Resisting moment due to dead load rt`= Ts—Ms—Mr Floor dl: Tu=Tension if walls not stacked La L 12 psf Ts=Tension if walls stacked Wall L Lt La hu Hf Seismic Mu Rtrib Wtrib Ftrib Grid (ft) (ft) (ft) (ft) (lb) Factor -----(lb*fl) T° Comments (Ib ft) (ft) (ft) Holdowns Shea rwall (ft) (Ib"ft) (Ib) Front-Back Event A 18 34 18 8 2300 68 16 34 16 8 2300 68 9741 —.T6-'--.—r--r 31104 -1187 6/12 W 8659 16 8 0 24576 -995 B 9.5 9.5 22 8 2300 68 42 18400 16 8 0 8664 443 --- 6/12 W Side-Side Event 6/12 W 1 5 16 5 8 2200 151----757---5-1— 5 16 5 8 2200 138 0 1163 868 5500 868 5 8 0 11636/12 W 6 16 6 8 2200 1386/12 W 5 17 5 8 2200 129 6600 5 8 0 1674 821 -- 5176 6 8 0 1275 780 6/12 W 2 -- 5 17 5 8 2200 129 5176 6 8 0 1275 780 --- 6/12 W 7 17 7 8 2200 129 7247 6 8 0 2499 678 --- 6/12 W --- 6/12 W W ..0 N LAUREL j4:: :,‘ y3 • 861 SO. FT. 3P-0" W 51'-6"D CONT.3NEATNED CCNT.W IXItNP NALING O AROUND OPENING I , 0 I t O I C il . 0 1 ` -1 r SS133SF flit E,555rs�51},4�str55ftysi>s.yyftS ss.fKjs�Ts,s,>S,tsss»�,{s O - 1 I T—I—I——— — • I I I I I MI p7 I-17\-1 ji I \ I �o ag I I 0II 1 I � er-n.... CONT.9NEATFEtD _ /NEItTit AROUND OPENING O , • I . . , . .„.., Y 1. A:._ 4 Client: Legend Homes I L=Length of individual wall V-Hf+Hs Project: Laurel A Lt=Total length of wall along gridline Li ` Proj.' #: 12-T241 La=Length of moment arm in wall(if 6.-- Date: 12/10/2012 different than wall length) hu-Height of upper wall By: YSP h1=Height of lower wall Ms=[Hs(hl+hu-f 1)+Hj(bn]x L '�- Hf=Horizontal force at gridline L/ F R O E L I C H Hs=Horizontal force at gridline from upper level v=Unit shear in wall Mu=[Hs(hl)+Hf(hl)]x ENGINEERSii Ms=Overturning moment when upper wall is Lr Main Level Shear Walls and Iioldowns stacked above lower wall Mu=Overturning moment when upper wall is Mr=2 i(Ririb x RoojDL)(Wrrib x WallDL Firib x FloorDL)1 Lz not stacked or does not exist 3 )( 2 Roof dl: 15 psf Rtrib,Wtrib,Ftrib=Roof,wall,and floor Wall dl: 1 tributary area,used for calculating dead load Mx-Mr Ms-Mr psf Mr=Resisting moment due to dead load T u La Ts= Tu=Tension if walls not stacked Floor dl: 12 psfL Ts=Tension if walls stacked Wall Grid L Lt La hu hl Hf Hs V Seismic Ms Mu Rtrib Wtrib Ftrib Mr Tu Ts Comments Holdowns Sheat-wall (ft) (ft) (ft) (ft) (Ib) (lb) (Ib) (plf)I Factor (lb*ft) (lb*ft) (ft) ($) (ft) (Ib*ft) (Ib) Front-Back Event (ib) _ A 26 32.5 25.5 8 9 1930 2300 130 47016 30456 16 17 8 114019 -3277 B 19 19 _18.5 8 9 1930 2300 223 58770 38070 16 17 8 60889 -1233 --" 6/12 W I -- Side-Side Event 6/12 W 1 6 6 5.5 8 9 1270 2200 578 51030 31230 6 17 7 4128 4928 2 4.5 14 4 8 9 1270 2200 248 --- Shth 2 Sides 4/12 W 16403 10038 6 17 8 2403 1909 3 14 2.5 8 9 1270 2200 248 10935 6692 6 17 8 1068 2250 __ Perforated Shearwall W - 3 18 18 17.5 8 9 2540 0 141 22860 22860 6 17 7 37152 -817 W --- 6/12 W ,, -‘ y5 ■ T CE Client: Legend Homes Project: Laurel A FROELICH Proj.#: 12-T241 CON U1IIHG By:Date: December-12sP YDIGEFERS,INC Wall: Line 2 Perforated Shear Wall Design per 2009 IBC 2306.3&AF&PA SDPWS Section 4.3.3.5 V= Shear force in Perforated Shear Wall(lbs.) 3270 (lbs.) L= Perforated Shear wall Length(feet) 11.50 (feet) L1 = Width of perforated shear wall segment(feet) 4.50 (feet) L2= Width of perforated shear wall segment(feet) 3.00 (feet) L3= Width of perforated shear wall segment(feet) 0.00 (feet) L4= Width of perforated shear wall segment(feet) 0.00 (feet) H= Shear wall height(feet) 9 (feet) h= Opening height(feet) 4 (feet) EL= Sum of widths of perforated shear wall segments(feet) Co= Shear resistance adjustment factor from Table 4.3.3.5 T= Tension Chord uplift force(lbs.) v= Unit Shear Force(plf) Unit Shear in Entire wall = V/L= 284 plf Unit Shear OK Perforated Shear Wall Height= 9 (feet) Perforated Shear Wall Height OK %full Height Shth= ILA= 0.65 Max opening Height= h/H = 0.444 ' From AF&PA SDPWS Table 4.3.3.5 and Interpolating Max Opening Height % Full Ht.Shth 0.3333 0.44 0.5 60 10.89 0.83 IC,= 0.90 65 11 0.901 0.85 70 1 0.91 0.87 Eqn.23-3 Holdown Requirement T(lbs.) = VH/(Co*1L;) = 4357 See below Eqn.23-4 Shear Wall Nailing I v(plf) = V/(Co*ZL)= 484 3/12 Shth (1) Side f psf ft Roof DL 15 Roof Trib 6 Wall DL 10 Wall Trib 17 Floor DL 12 Floor Trib 4 =>T(lbs) 3294.6 Holdown Requirement HTT16 SHEARWALL SCHEDULE O FASTERS WAU.I'FOR14TIONRIM OR ECMTO 81L1 PLATE TO RM DCL TOP PLATE 1W SILL/ASIti Cd t ENTS Ibd COMMON• LAP 54-ITG ONTO A 1/2"AMA RATED SHEATHING 1601 COMMON 8 o.c.(TOENAIL) (I)SIDE w/Sd NAILS o 6 o.c. 0 6 o.c. INTO 4 SIMP.LTP4 2x MUDSILL. EDGES 4 12 o.c,FIELD SOLID FRAMING o 48"oc WI 1/2"DIA.x 10"Am o ad COMMON 45"o.c.(EMBED 1") 1/2'APA RATED SHEATHING 1601 COMMON SIMPSON LTP4 LAP SHTG ONTO SEE NOTES B (I)SIDE w/Sd NAILS o 4 o.c. •4 o.c. INTO •Ig ac w/ 2x MUDSILL. *5,0114192 EDGES 4 I2 o.c.FIELD SOLID FRAMING Sd 36"o.c.(EMBED 1 COMMON 1/2"DIA x 10BB. ) ELOW E I/2"APA RATED SHEATHING SIMPSON LTP4 SIMPSON LTP4 LAP SHTG ONTO SEE NOTES C (I)SIDE w/Sd 3 NAILS o o.c. •I2 o.c. INTO •12 oc w/ 2x MUDSILL. "B •11 4•12 EDGES 4 12 o.c.FIELD SOLID FRAMING Sd COMMON I/2"DIA x I@"A.B.o BELOW 24"ex.(EMBED 7") 1/2'APA RATED SHEATHING SIMPSON LTP4 SIMPSON LTP4 LAP SHTG ONTO SEE NOTES D (2)SIDES w/Sd NAILS• o Ira c. INTO o roc w/ 2x MUDSILL. •10,•II,013,014 4 o.c. EDGES 4 12 o.c.FIELD SOLID FRAMING Sd COMMON i/2w DIA x 10'A.B,• 015 4 0I6 15 o.c.(EMBED 7) BELOW 1/2'APA RATED SHEATHING SIMPSON LTP4 SIMPSON LTP4 LAP SHTG ONTO SEE NOTES E (2)SIDES w/actNAILS o •6"o.c. INTO o 6 oc w/ 2x MUDSILL. •10,•II,013,014 3o.c.EDGES 4 12 o.c.FIELD SOLID FRAMING Sd COMMON 1/2"DIAx I@"A.B. 015 4 0I6 12"o.c.(EMBED 1) BELOW OTES: IF ANCHOR BOLT SPACING IS GREATER THAN EHEARWALL LENGTH,INSTALL CI)AB.WITHIN 12"OF EA END . SHEARWALL FRAMING TO BE I6 oc U.N.O.OR DETAILED OTHERWISE. . SIHEARWALLS TO BE BLOCKED AT ALL PANEL EDGES U.N.O.OR DETAILED OTHERWISE. ALL NAILS TO BE COMMON NAILS U.N.O. Sal GALVANIZED BOX NAILS MAY BE SUBSTITUTED FOR Sal COMMONS. LTP4 PLATES SHALL BE INSTALLED w/(12)SO COMMONS. . ONLY THE MUD SILL IN CONTACT WI CONCRETE SHALL BE P.T. . 3'x 3'x 1/4"PLATE WASHERS ARE TO BE USED AT ALL SHEARWALL ANCHOR BOLTS. 6 ALL HOLDOWNS,STRAPS 4 CONNECTORS TO BE SIMPSON OR EQUAL. HEARWALL SPECIFIC NOTES: . FRAMING AT ADJOINING PANEL EDGES SHALL BE 3'NOMINAL OR GREATER 4 NAILS SHALL BE STAGGERED. (DBL 2x ARE ACCEPTABLE) - 7.`FRAMING AT ADJONING PANEL EDGES,SOLE PLATE 4 SILL PLATE SHALL BE 3'NOMINAL OR GREATER 4 NAILS SHALL BE STAGGERED. (DBL 2x ARE ACCEPTABLE) SIMPSON LTP4 CLIPS•SOLE PLATE CONNECTION TO RIM JOIST ARE NOT REQUIRED IF UPPER WALL SHEATHING IS CONTINUOUS 4 DIRECTLY EDGE NAILED TO RIM JOIST. SIMPSON LTP4 CLIPS•RIM JOIST CONNECTION TO DBL.TOP PLATE ARE NOT REQUIRED IF LOWER WALL "SHEATHING IS CONTINUOUS 4 DIRECTLY EDGE NAILED TO RIM JOIST. SIMPSON LTP4 CLIPS•RIM JOIST CONNECTION TO DBL.TOP PLATE SHALL BE PLACED•12'oc IF LOWER WALL SHEATHING IS CONTINUOUS 4 DIRECTLY EDGE NAILED TO RIM JOIST. 4 I/2"x 4 V2'x V4'PLATE WASHERS ARE TO BE USED AT ALL ANCHOR BOLTS SHEARWALL TYPES'D'4'E' AT GARAGE PIERS USE 3x MUDSILLS. AT INTERIOR SHEARWALLS USE 3x SOLE PLATES(DBL.2x ARE ACCEPTABLE,STAGGER NAILNG2 yi,EA wAu_2011 HOEDOWN SCHEDULE FOOTING SCHEDULE: FNOLOOWN ATT T COMMENTS NO. UM REMORGNS SIZE(MIN) (11)-I5d NAILS at TOP SIMP.MST31 (11)-Ibd NAILS at BOTTOM (2) WRAP 4 NAIL STRAP TO O 249,6%.x r CENTER STRAP ON FLOOR CAVITY. 2x STUDS I BEAM/HEADER BELOW /� .(22)TOTAL NAILS. IF APPLICABLE. C 3 2e24 ?5)5f� ,WAYUSP.STB24 INTO STEMWALL 'STANDARD •4 DOWEL w/ V USP. HTTIb (2)4(13)-Ibd NAILS TO DBL.STUDS. 2x STUDS STANDARD HOOK a EA O 3/'x 3N/'x i/' (3)144§EA.WAY HOLDOWN LOCATION. SIMPSON SSTB2EL INTO STEMWALL PROVIDE'S DOWEL W/ O 36'x 3Ni•x 1/' (4)44s EA WAY SIMP.1-IDC/8 4(20)SIMPSON SDS 114"x 4 1/2" 2x STUDS STANDARD HOOK o EA WOOD SCREWS HOEDOWN LOCATION. ETES: MULTIPLE STUDS SHALL BE LAMINATED TOGETHER WITH(2)ROWS 1641 NAILS at'0'ac PDLL HEIGHT.(TYPICAL) AT STUDS BELOW MST STRAPS,EDGE NAIL PLYWOOD TO STUDS. II ALL HOLDOWNS,STRAPS 4 CONNECTORS TO BE SIMPSON OR EQUAL.INSTALL PER MANUF.INSTRUCTIONS. ADD I'OFFSET FOR DOOR LOCATIONS. '' -, '-'7 . 4 Client: Project: 5 ®Y Proj.#: e Date: By: FROELICH ENGINEERS E ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 5/8"ASTM A36 Threaded Rod for Simpson HTT16/HTT22/HTT4/HTT5 1 Number of Anchors Si = 0 in. (see Fig. 0.625 Inch Diameter s2= 0 RD.5.2.1) 8 Inch Embed 2500 psi Concrete Footing NDesign = 5.250 (kips)Allowable Design Tension D.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 D.4-General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor 1 = 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 Is rebar present around anchor to resist blowout? N Reinforcing = 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summary II I ONn Wind I Q>Nn Seismic I I Summary From Below I cDNn I Sw= 1.0 I SF= 0.75 I CONS = 9.83 9.83 7.37 kips clNcb= 19.01 19.01 14.26 kips cONpn = 121.71 121.71 91.28 kips ONsb= 198.14 198.14 148.60 kips cONsbg = 198.14 1 198.14 148.60 kips Minimum cONn = I 9.83 I 9.83 I 7.37 I kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 CDNAllowable= 7.02 5.27 kips Ndesign < ONAllowable 5.250 < 5.27 Therefore, Anchor Design OK Client: Project: � Proj.#: t " Date: " By: FROELIOH ENGINEERS d ACI 318-05 Appendix D - Tension Failures Conti__(Page 2 of 3) Tension Design Calculations D.5.1 -Steel Strength for Anchor in Tension do (Anchor Diameter) = 0.625 inches n = 1 #of anchors nt= 11 Number of Threads per inch ASe 0.23 in.2-(effective cross-sectional of anchor) futa= 58.00 ksi-(tensile strength of anchor material (not the yield strength) not exceed 1.9fy or 125 ksi) Nsa= 13.11 ksi-(Eqn. D-3) Anchor cp = 0.75 7� r _ ONsa= 9.83 kips 1 V sa nAsefuta D.5.2 -Concrete Breakout Strength of Anchor in Tension • s1 = 0 inches (see Fig. RD.5.2.1) s2= 0 inches (see Fig. RD.5.2.1) Anc(for single anchor) = 576 in.2(see Figure RD.5.2.1) A,,�(for group anchor) = 782 in,2(See Figure R.,5.2.1) ANco (for single anchor) = 576 in.2(see Figure RD.5.2.1) ANco (for group anchor) = 576 in.2(see Figure RD.5.2.1) N = 1 Eqn. D-9 (Anchors not Eccentrically Loaded, 4P1 = 1.0) (Ped,N= 1.000 Eqn. D-10& D-11 N= 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 kc= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 fc= 2500 psi 1.5*h = of= 12 hat 8 inches 0.7+0.3(cmin/1.5hef) = 1.000 Cmin = 12 in-distance to closest edge of concrete I N = k 'c h 1.5 Nb= 27.15 kips-(Eqn. D-7) `b C v f el Ncb= 27.15 kips-(Eqn. D-4) A I Ncbg= 0.00 kips-(Eqn. D-5) I/V = c - - - - a T Reinforcing 1 = 0.70 cbg A 111 ec,N�ed,N1 cp,NlV b Nco cNcbs= 19.01 kips 11.5 • Client: 4 Project: Proj.#: Date: By: FROELICH E N G I N E E R H d ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) D5.3 -Single Anchor Pullout-headed or embedded nut Use Plate Washer? y Plate Washer Width = 3 inches Nut diameter= 0.985 inches Nut or Plate Washer Bearing Area = 9.000 in2 Abrg = 8.693 in2- bearing area of embedded anchors head or nut 4'c.P= 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value(ACI 318-05 Section D.5.3.6) n = 1 #of anchors N = 173.87 (kips) Eqn. D-15 Np =Abrg$.f'C NP, = 173.87 (kips) Eqn. D-14 I1\T =NplV�,pl Reinforcing 4)= 0.70 criNgb = 121.71 kips D5.4 -Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where ca; < 0.4he0 Anchor is not close to Edge of Concrete. Analysis below NOT Required. cat= 5 distance to perp edge of concrete from anchor cal = 12 in -distance to closest edge of concrete Nsb = 283.05 (kips) Eqn. D-15 Factored Nab = 100.25 Reinforcing = 0.70 I ONsb= 198.14 kips Nsb = 160 Cal .�/ 1Qbrg s= 0 in -spacing of outer anchors in group VVV Nsbg = 283.05 (kips) Eqn. D-16 Reinforcing 0) = 0.70 S ON = 198.14 N„L = I 1 + 1 N_� I kips I ,meg ,�I 6ca1