Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Specifications
4 t ) /t,t S 7o2o.f -Ov '1(5-7 560 Ai e7 ct—fr • STRUCTURAL CALCULATION CEIVED FOR ;yfV 27 2012 ASPEN B CITY OFTIGARD LOT 13 @ WALNUT CREEK�UILDINGDIVISION LEGEND HOMES TIGARD, OR /A Alc.t -r C..,..f -'. HCl ;j, 1542 / �._./ /` 1Z V gA x`25 1 � EXPIRES: k2-1i/d,c1r3 THESE CALCULATIONS ARE VOID IF SEAL AND SIGNATURE ARE NOT ORIGINAL NOVEMBER 13, 2012 Jos NUMBER: 1 2-T226A ,,,,Nt 44 FROELICH ENGINEER S * * * LIMITATIONS * * * ENGINEER WAS RETAINED IN A LIMITED CAPACITY FOR THIS PROJECT. DESIGN IS BASED UPON INFORMATION PROVIDED BY THE CLIENT, WHO IS SOLELY RESPONSIBLE FOR ACCURACY OF SAME. NO RESPONSIBILITY AND I OR LIABILITY IS ASSUMED BY,OR IS TO BE ASSIGNED TO THE ENGINEER FOR ITEMS BEYOND THAT SHOWN ON THESE SHEETS. A Main Office A Central Oregon 6969 SW Hampton St. 745 NW Mt.Washington Dr.#205 Portland, Oregon 97223 Bend,Oregon 97701 503-624-7005 www.froelich-encineers.com 541-383-1828 Y Y 1 4r 111 FROELICH ENGINEERS€ Client: Legend Homes Project: Aspen B Project Number: 12-T226 Date November 13, 2012 By: YSP Scope of Work Froelich Engineers has provided full structural lateral and gravity design of the project per the 2010 OSSC with the exception of continuous footings that fall within the parameters set forth by the 2011 ORSC. The roof trusses are designed by others. Froelich Engineers has provided details only to the areas pertaining to our design. Froelich Engineers did not design or review the details for the entire project. e Y 2� • ASPI,'N B J .,-1-1---!lil a■ ! ■■ • I ®■■®II■ ',,1.._-..l1'_'._1__ i ■:11, ■i ■■■® ■ --, ■I 1 ■■i , ling ■■■ :2111 - MIR I.®■ i � J .1 r., , ,, J ......,,,_„ „ ;..,,...._, , , ; ■ ! i nl t 1 ! ;�I ■ ,rI_,_ , ,, , ,, ,,..: 1i ) I I II�■■■ I l 1 1 p_ J - =7 1 it I j(''I II 111 I —!I'�ii t 'I 3 Client: Legend Homes Project: Aspen B Proj.#: 12-T226 ` Date: ######## By: YSP FROELICH ENGINEERS € Design Criteria: General: Building Code(s): 2009 IBC 2010 OSSC 2011 ORSC Roof Live Load: Snow= 25 psf Deflection Criteria: L/240 Load Duration: 1.15 Floor Live Loads: Floor Live= 40 psf Deflection Criteria: L/360 Wind Load*: Speed: . 95 mph 3 sec Exposure: B Importance Factor: 1.0 Special Req's: no Seismic Load: Design Category D Site Class D Response Coeff 6.5 Importance Factor: 1.0 Soils Data: Allowable Bearing(assumed): 1500 psf Frost Depth: 18 in Special Soils Reqs: + t t FROELIC H ENG 1 N E E R E& Client: Legend Homes Project: Aspen B Project Number: 12-T226 Date: November 13, 2012 By: YSP DEAD LOAD TAKE OFF ROOF DEAD LOAD Framing(RFR) =5.0 PSF Sheathing 1A"(RPL) = 1.5 PSF Roofing(RRF) =3.0 PSF Mech/Electrical(RME) = 1.5 PSF Ceiling(RCG) =2.2 PSF Insulation(RIN) = 1.5 PSF Miscellaneous(MIS) =0.3 PSF ROOF DEAD LOAD RDL=RFR+RPL+RRF+RME+RCG+RIN+MIS RDL= 15 PSF FLOOR DEAD LOAD Framing(FFR) =3.0 PSF Sheathing/Floor(FPL) =3.5 PSF Mech/Electrical(FME) =2.0 PSF Lower Ceiling(FCG) =2.0 PSF Miscellaneous(FMS) = 1.5 PSF FLOOR DEAD LOAD FDL =FFR+FPL+FME+FCG+FMS FDL= 12 PSF WALL DEAD LOAD WDL= 10 PSF o y 5 1 Client: Legend Homes Project: Aspen B Proj.#: 12-T226 -111 r-- Date: 11/13/2012 By: YSP FROELICH ENG 1 N E R 5 8 Snow drift Calculations According to ASCE 7 D (psf) = 17.25 D=Density of Snow(pcf) Wb (ft) = 12 Wb=Width of Building(feet) Pg (psf) = 25 Pg=Ground Snow Load(psf) Pf(psf) = 25 Pf=Snow load on flat roofs(psf) W(ft)= 7 hd=Height of drifted snow(feet) Pm=Drifted snow pressure(psf) Wd=Width of drift(feet) Drift Snow Loads W=Eave to Ridge(feet) hd = 0.89 PSS=Sliding snow pressure(psf) Pm = 15 Wd = 3.58 hd=0.43 * 1„^1/3*(pg+10)14— 1.5 Pm=D *hd Sliding Snow Wd=4*hd Pss= 5 PSS=0.4*Pf* W/WS Wd = 15 W.=Width of lower roof(feet) I III l II � 1� II _I 1 I .i I €I . \ 11 \ 11 I n c . ', )L 1 [I xl1 • ;I 1? --- -7---1I -1, - ..LL, __.. 11 111 ,I II 1 1 ! 1 I I I;; I I 1� I IA I! IIl 5-5 L JI j I I, I � :1" — — -- ,'dI�� \ I5-5;r i}3J /9 Client: Legend Homes Project: Aspen B Proj.#: 12-T226 Date: 11/13/2012 By: YSP FROELICH ENGINEERS I Roof Framing Roof Dead Load= 15 psf Roof Snow Load= 25 psf Use Pre-Manuf Trusses @ 24" O.C. (U.N.O.) Roof Girder Truss (For Reaction Only) RG1: Span= 28'-0" W1 (From 0'-0" to 28'-0") DL= (4')(15 psf) = 60 plf SL= (4')(25 psf) = 100 plf Reaction @ DL= 850 lbs supports : SL= 1400 lbs f Roof HDR RH1: Span= 8'-0" W1 (From 0'-0" to 8'-0") DL= (3')(15 psf) = 45 plf SL= (3')(25 psf) = 75 plf RH2: Span= 5'-0" W1 (From 0'-0" to 5'-0") DL= (16')(15 psf) = 240 plf SL= (16')(25 psf) = 400 plf • 9 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN Nov.2,2012 10:04 RH1.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 45.0 No Load2 Snow Full UDL 75.0 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : L. a 0' 8' Dead 204 204 Live 300 300 Total 504 504 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 25 Fv' = 207 fv/Fv' = 0.12 Bending(+) fb = 395 Fb' = 1329 fb/Fb' = 0.30 Live Defl'n 0.04 = <L/999 0.27 = L/360 0.15 - Total Defl'n 0.07 = <L/999 0.40 = L/240 0.16 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.15 1.00 1.00 0.988 1.300 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+S, M = 1008 lbs-ft Shear : LC# 2 = D+S, V = 504, V design = 428 lbs Deflection: LC# 2 = D+S EI= 178e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. \t r 0 COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN • Oct.30,2012 14:10 RH2.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 240.0 No Load2 Snow Full UDL 400.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0 0 0' 5' Dead 615 615 Live 1000 1000 Total 1615 1615 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 72 Fv' = 207 fv/Fv' = 0.35 Bending(+) fb = 790 Fb' = 1335 fb/Fb' = 0.59 Live Defl'n 0.03 = <L/999 0.17 = L/360 0.19 Total Defl'n 0.05 = <L/999 0.25 = L/240 0.20 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.15 1.00 1.00 0.992 1.300 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+S, M = 2019 lbs-ft Shear : LC# 2 = D+S, V = 1615, V design = 1225 lbs Deflection: LC# 2 = D+S EI= 178e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. Lower Roof Beam LRB1: Span= 11'-6" W1 (From O'-O" to 11'-6") DL= (3)(15 psf) = 45p1f Drift+Sliding+ SL= (3')(25 psf+l5psf+5psf) = 135 plf to b COMPANY PROJECT - di WoodWorks® SOFTWARE FOR WOOD DESIGN Nov.2,2012 10:46 LRB1.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loads Dead Full UDL 45.0 No Load2 Live Full UDL 135.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A 0' 11'-6" Dead 303 303 Live 776 776 Total 1079 1079 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x10" Self Weight of 7.69 plf automatically included in loads; Lateral support:top=at supports, bottom=at supports; Load combinations:ICC-IBC; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 43 Fv' = 180 fv/Fv' = 0.24 Bending(+) fb = 746 Fb' = 1058 fb/Fb' = 0.70 Live Defl'n 0.14 = L/959 0.38 = L/360 0.38 Total Defl'n 0.20 = L/690 0.58 = L/240 0.35 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.00 1.00 1.00 0.980 1.200 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.00 1.00 1.00, - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+L, M = 3103 lbs-ft Shear : LC# 2 = D+L, V = 1079, V design = 935 lbs Deflection: LC# 2 = D+L EI= 369e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ANO N-7 ,jz4 I '4 „ I. ti; �I u-tj I. • 1 • 1 1 1 0 L 1 1 1 L 1 I j 'II // 1� I}j Li h. I: s +_� I ILI( '1: 6 ! I I I\i IIlq - 111 Z9g7 ! I k/..‘j1 fl --:.__--irir, Et I _ d, _ I,al A 9dZ 11 a • 1141 I k: 0 I Ici II' Y; __,r I I t , , 'TV;;2 ii, i i 12. ' Client: Legend Homes Project: Aspen B Proj.#: 12-T226 Date: 11/13/2012 By: YSP FROELICH E N S I N E E R S S 2nd Floor Framing Floor Dead Load= 12 psf Floor Live Load= 40 psf Wall Dead Load= 10 psf 2nd Floor Joist: Use Pre-Manuf. Trusses @ 24" O.C. (U.N.O.) 13 2nd Floor Beam 2FB1: Span= 7'-6" W1 (From 0'-0" to 7'-6") DL= (8)(12 psf) = 96 plf LL= (8')(40 psf) = 320 plf 2FB2: Span= 4'-0" W1 (From 0'-0" to 4'-0") DL= (3')(12 psf) = 36 plf LL= (3')(40 psf) = 120 plf 2FB3: Span= 6'-6" W1 (From 0'-0" to 6'-6") DL= (2)(12 psf) = 24 plf LL= (2')(40 psf) = 80 plf P @ 1'-6" (From 2FB1) DL= 380 lbs LL= 1200 lbs P @ 2' (From 2FB2) DL= 100 lbs LL= 250 lbs 2FB4: Span= 14'-6" W1 (From 0'-0" to 14'-6") DL= (2)(12 psf) = 24 plf LL= (2')(40 psf) = 80 plf P @ 5'-6" (From 2FB1) DL= 380 lbs LL= 1200 lbs 2FB5: Span= 18'-0" W1 (From 0'-0" to 18'-0") DL= (14.5)(12 psf) = 175 plf LL= (14.5')(40 psf) = 580 plf ILI 2FB6: Span= 16'-6" W1 (From 0'-0" to 16-6") DL= (3')(12 psf)+ (9')(10 psf)+(3')(15)= = 171 plf LL= (3')(40 psf) = 120 plf SL= (3')(25 psf) = 75 plf S COMPANY PROJECT 414 WoodWorks' SOFTWARE FOR WOOD DESIGN Oct. 10,2012 15:23 2FB1.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Load! Dead Full UDL 96.0 No Load2 Live Full UDL 320.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A 0' 7-6" Dead 368 368 Live 1200 1200 Total 1568 1568 Bearing: LC number 2 2 Length 1.12 1.12 LSL, 1.55E,2300Fb, 1-3/4x16" Self Weight of 2.24 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 54 Fv' = 310 fv/Fv' = 0.17 Bending(+) fb = 473 Fb' = 594 fb/Fb' = 0.80 Live Defl'n 0.02 = <L/999 0.25 = L/360 0.10 Total Defl'n 0.03 = <L/999 0.36 = L/240 0.09 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fb'+ 2325 1.00 - 1.00 0.255 1.00 - 1.00 1.00 - - 2 Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Bending(+) : LC# 2 = D+L, M = 2941 lbs-ft Shear : LC# 2 = D+L, V = 1568, V design = 1011 lbs Deflection: LC# 2 = D+L EI= 926e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only.For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. COMPANY PROJECT $141 WoodWorks® SOFTWARE FOR WOOD DESIGN Nov.2,2012 10:46 2FB2.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 36.0 No Load2 Live Full UDL 120.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0 0' 4' Dead 76 76 Live 240 240 Total 316 316 - Bearing: LC number 2 2 Length 1.00 1.00 LSL, 1.55E,2300Fb, 1-3/4x16" Self Weight of 2.24 plf automatically included in loads; Lateral support:top=at supports, bottom=at supports; Load combinations:ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 6 Fv' = 310 fv/Fv' = 0.02 Bending(+) fb = 51 Fb' = 1085 fb/Fb' = 0.05 Live Defl'n 0.00 = <L/999 0.13 = L/360 0.00 Total Defl'n 0.00 = <L/999 0.20 = L/240 0.00 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fb'+ 2325 1.00 - 1.00 0.467 1.00 - 1.00 1.00 - - 2 Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Bending(+) : LC# 2 = D+L, M = 316 lbs-ft Shear : LC# 2 = D+L, V = 316, V design = 105 lbs Deflection: LC# 2 = D+L EI= 926e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. V7 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN Nov.2,2012 10:47 2FB3.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) : Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loads Dead Full UDL 24.0 No Load2 Live Full UDL 80.0 No Load3 Dead Point 380 1.50 No Load4 Live Point 1200 1.50 No Load5 Dead Point 100 2.00 No Load6 Live Point 250 2.00 No MAXIMUM REACTIONS (lbs)and BEARING LENGTHS (in) : 0 0 0' 6-6" Dead 447 204 Live 1356 614 Total 1803 818 Bearing: _ LC number 2 2 Length 1.29 1.00 LSL, 1.55E, 2300Fb, 1-314x16" Self Weight of 2.24 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports; Load combinations: ICC-IBC; Analysis vs. Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 89 Fv' = 310 fv/Fv' = 0.29 Bending(+) fb = 418 Fb' = 663 fb/Fb' = 0.61 Live Defl'n 0.01 = <L/999 0.22 = L/360 0.06 Total Defl'n 0.02 = <L/999 0.32 = L/240 0.06 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fb'+ 2325 1.00 - 1.00 0.294 1.00 - 1.00 1.00 - - 2 Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Bending(+) : LC# 2 = D+L, M = 2603 lbs-ft Shear : LC# 2 = D+L, V = 1803, V design = 1661 lbs Deflection: LC# 2 = D+L EI= 926e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. " 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 9 . ,c3 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN Nov.2,2012 10:48 2FB4.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 24.0 No Load2 Live Full UDL 80.0 No Load3 Dead Point 380 5.50 No Load4 Live Point 1200 5.50 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A 0' 14'-6" Dead 442 351 Live 1325 1035 Total 1767 1386 Bearing: LC number 2 2 Length 1.00 1.00 LSL, 1.55E, 2300Fb, 3-112x16" Self Weight of 4.47 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Anal sis/Design Shear fv = 43 Fv' = 310 fv/Fv' = 0.14 Bending(+) fb = 649 Fb' = 1274 fb/Fb' = 0.51 Live Defl'n 0.11 = <L/999 0.48 = L/360 0.22 Total Defl'n 0.14 = <L/999 0.73 = L/240 0.20 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Ci Cn LC# Fb'+ 2325 1.00 - 1.00 0.548 1.00 - 1.00 1.00 - - 2 Fv' 310 1.00 - 1.00 - - - - 1.00 - 1.00 2 Fcp' 800 - - 1.00 - - - - 1.00 - - - E' 1.5 million - 1.00 - - - - 1.00 - - 2 Bending(+) : LC# 2 = D+L, M = 8078 lbs-ft Shear : LC# 2 = D+L, V = 1767, V design = 1622 lbs Deflection: LC# 2 = D+L EI= 1852e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.SCL-BEAMS(Structural Composite Lumber):the attached SCL selection is for preliminary design only. For final member design contact your local SCL manufacturer. 3.Size factors vary from one manufacturer to another for SCL materials.They can be changed in the database editor. 9 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN • Nov.2,2012 10:49 2FB5.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or pif) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 175.0 No Load2 Live Full UDL 580.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : n o 0' 18' Dead 1746 1746 Live 5220 5220 Total 6966 6966 Bearing: LC number 2 2 Length 1.95 1.95 Glulam-Unbal.,West Species,24F-1.8E WS, 5-112x15" Self Weight of 18.99 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports; Load combinations: ICC-IBC; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 109 Fv' = 240 fv/Fv' = 0.45 Bending(+) fb = 1824 Fb' = 2300 fb/Fb' = 0.79 Live Defl'n 0.49 = L/439 0.60 = L/360 0.82 - Total Defl'n 0.66 = L/328 0.90 = L/240 0.73 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.00 1.00 1.00 0.958 1.000 1.00 1.00 1.00 1.00 - '2 Fv' 240 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 2 Bending(+) : LC# 2 = D+L, M = 31347 lbs-ft Shear : LC# 2 = D+L, V = 6966, V design = 5998 lbs Deflection: LC# 2 = D+L EI= 2784e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). 20 COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN Nov.2,2012 10:50 2FB6.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 171.0 No Load2 Live Full UDL 120.0 No Load3 Snow Full UDL 75.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : A 0' 16'-6" Dead 1491 1491 Live 1207 1207 Total 2697 2697 Bearing: LC number 3 3 Length 1.19 1.19 Glulam-Unbal.,West Species, 24F-1.8E WS, 3-1/2x12" Self Weight of 9.67 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 78 Fv' = 240 fv/Fv' = 0.32 Bending(+) fb = 1569 Fb' = 2245 fb/Fb' = 0.71 Live Defl'n 0.27 = L/736 0.55 = L/360 0.49 Total Defl'n 0.60 = L/329 0.83 = L/240 0.73 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CV Cfu Cr Cfrt Notes Cn LC# Fb'+ 2400 1.15 1.00 1.00 0.813 1.000 1.00 1.00 1.00 1.00 - 3 Fv' 240 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 650 - 1.00 1.00 - - - - 1.00 - - - E' 1.8 million 1.00 1.00 - - - - 1.00 - - 3 Bending(+) : LC# 3 = D+.75(L+S), M = 11125 lbs-ft Shear : LC# 2 = D+L, V = 2481, V design = 2180 lbs Deflection: LC# 3 = D+.75(L+S) EI= 907e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Glulam design values are for materials conforming to AITC 117-2001 and manufactured in accordance with ANSI/AITC A190.1-1992 3.GLULAM:bxd=actual breadth x actual depth. 4.Glulam Beams shall be laterally supported according to the provisions of NDS Clause 3.3.3. 5. GLULAM:bearing length based on smaller of Fcp(tension),Fcp(comp'n). z1 2nd Floor HDR 2FH1: Span= 3'-0" W1 (From 0'-0" to 3'-0") DL= (14.5')(15 psf)+(9')(10 psf)+(7')(12 psf) = 395 plf LL= (7')(40 psf) = 280 plf SL= (14.5')(25 psf) = 365 plf P @ 2'-0" (From RG1) DL= 850 lbs SL= 1400 lbs 2FH2: Span= 6'-0" W1 (From 0'-0" to 6'-0") DL= (2')(12 psf)+(9')(10psf)+(4)(15psf) = 175 plf LL= (2')(40 psf) = 80 plf SL= (4)(25 psf) = 100 plf 2FH3: Span= 5'-0" W1 (From 5'-0" to 6'-0") DL= (7')(12 psf)= 84 plf LL= (7')(40 psf)= 280 plf Z2. COMPANY PROJECT fit WoodWorks° SOFTWARE FOR WOOD DESIGN Oct. 10,2012 15:58 2 FH 1.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loads Dead Full UDL 385.0 No Load2 Live Full UDL 280.0 No Load3 Snow Full UDL 365.0 No Load4 Dead Point 850 2.00 No Load5 Snow Point 1400 2.00 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0 0 0' 3' Dead 870 1153 Live 1076 1481 Total 1945 2634 Bearing: LC number 3 4 Length 1.00 1.20 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 129 Fv' = 207 fv/Fv' = 0.62 Bending(+) fb = 883 Fb' = 1339 fb/Fb' = 0.66 Live Defl'n 0.01 = <L/999 0.10 = L/360 0.10 Total Defl'n 0.02 = <L/999 0.15 = L/240 0.12 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.15 1.00 1.00 0.995 1.300 1.00 1.00 1.00 1.00 - 4 Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 4 Fop' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 4 Bending(+) : LC# 4 = D+S, M = 2256 lbs-ft Shear : LC# 4 = D+S, V = 2634, V design = 2177 lbs Deflection: LC# 4 = D+S EI= 178e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. s 23 COMPANY PROJECT - di WoodWorks® SOFTWARE FOR WOOD DESIGN ' Oct. 10,2012 16:01 2FH2.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 175.0 a No Load2 Live Full UDL 80.0 No Load3 Snow Full UDL 100.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : • A 0' 6' Dead 543 543 Live 405 405 Total 948 948 Bearing: LC number 3 3 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations:ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 45 Fv' = 207 fv/Fv' = 0.22 Bending(+) fb = 557 Fb' = 1333 fb/Fb' = 0.42 Live Defl'n 0.02 = <L/999 0.20 = L/360 0.11 Total Defl'n 0.05 = <L/999 0.30 = L/240 0.17 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.15 1.00 1.00 0.991 1.300 1.00 1.00 1.00 1.00 - 3 Fv' 180 1.15 1.00 1.00 - - - - 1.00 1.00 1.00 3 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 3 Bending(+) : LC# 3 = D+.75(L+S), M = 1422 lbs-ft Shear : LC# 3 = D+.75(L+S), V = 948, V design = 757 lbs Deflection: LC# 3 = D+.75(L+S) EI= 178e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. Zy COMPANY PROJECT di WoodWorks® SOFTWARE FOR WOOD DESIGN • Oct. 10,2012 16:05 2FH3.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or pif) : Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 84.0 No Load2 Live Full UDL 280.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : 0 0 0' 5' Dead 225 225 Live 700 700 Total 925 925 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports, bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 41 Fv' = 180 fv/Fv' = 0.23 Bending(+) fb = 453 Fb' = 1162 fb/Fb' = 0.39 Live Defl'n 0.02 = <L/999 0.17 = L/360 0.13 Total Defl'n 0.03 = <L/999 0.25 = L/240 0.12 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.00 1.00 1.00 0.993 1.300 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+L, M = 1156 lbs-ft Shear : LC# 2 = D+L, V = 925, V design = 702 lbs Deflection: LC# 2 = D+L EI= 178e06 lb-int Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. as COMPANY PROJECT i woodWorks° SOFTWARE FOR WOOD DESIGN • Oct.31,2005 08:24 (1)4x4 DF#2 Unbraced.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft) Pat- Start End Start End tern live Live Axial 5700 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber Post, D.Fir-L, No.2,4x4" Self Weight of 2.91 plf automatically included in loads; Pinned base;Loadface=width(b);Ke x Lb: 1.00 x 9.00=9.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 467 Fc' = 465 fc/Fc' = 1.00 Axial Bearing fc = 467 Fc* = 1552 fc/Fc* = 0.30 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1350 1.00 1.00 1.00 0.300 1.150 - - 1.00 1.00 2 Fc* 1350 1.00 1.00 1.00 - 1.150 - - 1.00 1.00 2 - Axial : LC# 2 = L, P = 5726 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) - DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 26 COMPANY PROJECT WoodWorks SOFTWARE FOR WOOD DESIGN • Jan. 19,2006 12:40 (1)2x6 DF Stud Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (Ibs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 5200 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, D.Fir-L, Stud, 2x6", 1-ply Self Weight of 1.96 plf automatically included in loads; Pinned base;Loadface=width(b); Built-up fastener:nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 632 Fc' = 654 fc/Fc' = 0.97 Axial Bearing fc = 632 Fc* = 850 fc/Fc* = 0.74 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 850 1.00 1.00 1.00 0.770 1.000 - - 1.00 1.00 2 - Fc* 850 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 5216 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. COMPANY PROJECT • i i WoodWorks® SOFTWARE FOR WOOD DESIGN • Oct.26,2005 15:44 (3)2x6 DF#2 Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 23028 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, D.Fir-L, No.2, 2x6", 3-Plys Self Weight of 5.88 plf automatically included in loads; Pinned base;Loadface=width(b);Built-up fastener: nails;Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft]; Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 933 Fc' = 932 fc/Fc' = 1.00 Axial Bearing fc = 933 Fc* = 1485 fc/Fc* = 0.63 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1350 1.00 1.00 1.00 0.628 1.100 - - 1.00 1.00 2 Fc* 1350 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 23081 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. r . 2 V COMPANY PROJECT 1 WoodWorks® SOFTWARE FOR WOOD DESIGN Jan. 19,2006 12:39 (3)2x4 DF Stud Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern • live Live Axial 6000 (Eccentricity = 0.00 in) MAXIMUM REACTIONS(lbs): 0' 9' Lumber n-ply, D.Fir-L, Stud, 2x4", 3-Plys Self Weight of 3.74 plf automatically included in loads; Pinned base;Loadface=width(b);Built-up fastener:nails; Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 383 Fc' = 384 fc/Fc' = 1.00 Axial Bearing fc = 383 Fc* = 892 fc/Fc* = 0.43 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 850 1.00 1.00 1.00 0.430 1.050 - - 1.00 1.00 2 Fc* 850 1.00 1.00 1.00 - 1.050 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 6034 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. a9 COMPANY PROJECT 1°1i WoodWorks® SOFTWARE FOR WOOD DESIGN Jan. 19,2006 12:41 (2)2x6 DF Stud Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 10400 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, D.Fir-L, Stud, 2x6", 2-Plys Self Weight of 3.92 plf automatically included in loads; Pinned base; Loadface=width(b);Built-up fastener: nails;Ke x Lb: 1.00 x 0.00=0.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft]; Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 632 Fc' = 654 fc/Fc' = 0.97 Axial Bearing fc = 632 Fc* = 850 fc/Fc* = 0.74 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 850 1.00 1.00 1.00 0.770 1.000 - - 1.00 1.00 2 _ Fc* 850 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial LC# 2 = L, P = 10435 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2. BUILT-UP COLUMNS: nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 30 • COMPANY PROJECT 1 1 WoodWorks® SOFTWARE FOR WOOD DESIGN Jan. 19,2006 12:37 (2)2x4 DF Stud Cripple Stud.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 4000 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber n-ply, D.Fir-L, Stud, 2x4", 2-Plys Self Weight of 2.49 plf automatically included in loads; Pinned base;Loadface=width(b);Built-up fastener:nails; Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 383 Fc' = 384 fc/Fc' = 1.00 Axial Bearing fc = 383 Fc* = 892 fc/Fc* = 0.43 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 850 1.00 1.00 1.00 0.430 1.050 - - 1.00 1.00 2 Fc* 850 1.00 1.00 1.00 - 1.050 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 4022 lbs Kf = 1.00 (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.BUILT-UP COLUMNS:nailed or bolted built-up columns shall conform to the provisions of NDS Clause 15.3. 3' COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN Oct.31,2005 08:29 (1)6x6 DF#2 Unbraced.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 15800 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): a - � 0' 9' Timber-soft, D.Fir-L, No.2, 6x6" Self Weight of 7.19 plf automatically included in loads; Pinned base; Loadface=width(b); Ke x Lb: 1.00 x 9.00=9.00[ft]; Ke x Ld: 1.00 x 9.00=9.00[ft];Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 524 Fc' = 561 fc/Fc' = 0.94 Axial Bearing fc = 524 Fc* = 700 fc/Fc* = 0.75 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 700 1.00 1.00 1.00 0.801 1.000 - - 1.00 1.00 2 Fc* 700 1.00 1.00 1.00 - 1.000 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 15865 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. . 32 COMPANY PROJECT II 1 WoodWorks® SOFTWARE FOR WOOD DESIGN • Oct.31,2005 08:26 (1)4x6 DF#2 Braced.wwc Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern live Live Axial 17900 (Eccentricity = 0.00 in) MAXIMUM REACTIONS (lbs): 0' 9' Lumber Post, D.Fir-L, No.2,4x6" Self Weight of 4.57 plf automatically included in loads; Pinned base;Loadface=width(b);Ke x Lb: 1.00 x 0.00=0.00[ft];Ke x Ld: 1.00 x 9.00=9.00[ft];Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Axial fc = 932 Fc' = 932 fc/Fc' = 1.00 Axial Bearing fc = 932 Fc* = 1485 fc/Fc* = 0.63 ADDITIONAL DATA: FACTORS: F CD CM Ct CL/CP CF Cfu Cr Cfrt Ci LC# Fc' 1350 1.00 1.00 1.00 0.628 1.100 - - 1.00 1.00 2 Fc* 1350 1.00 1.00 1.00 - 1.100 - - 1.00 1.00 2 Axial : LC# 2 = L, P = 17941 lbs (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. I.A\ Alir - - + `� Y- r `-, 1 1Lt T:.< .1-q`'' I,' I ) ) r-) rt--,) ro) rj t 1 -8' Ir. t , LJ I i; ) 1.) 1) 1.) (-\:._;,) 1) 1) 1) ,) , ._. ,I . T I. ��i 1,I kq 1 I =___ J CO rfL < Cr) O 00 n'J r . • • FROELICH CONSULTING ENGINEERS INC., Client: Project: Project#: By: Footings Maximum Allowable Required Required Dimensions Used Dimensions Footin Bearin Footing Size Load (PRA) %Dow g 9 Area w(ft) I L (ft) W(ft) I L(ft) I D (in) Weight Pressure 15"x cont x 7" 1750 1500 1 1.17 1.08 1.08 1.25 1 7 109 1488 15"x cont x 7"** 4350 1500 2.90 1.70 1.70 1.25 2.5 7 273 1480 15"x cont x 7"*** 2300 1500 1.53 1.24 1.24 1.25 1.33 7 145 1471 18"(I)x 8" 2450 1500 1.63 1.28 1.28 1.5 1.5 8 177 1486 24"(I)x 10" 4300 1500 2.87 1.69 1.69 2 2 10 393 1494 2'-0"x 2'-0"x 10" 5400 1500 _ 3.60 1.90 1.90 2 2 10 500 1475 2'-6"x 2'-6"x 10" 8500 1500 _ 5.67 2.38 2.38 2.5 2.5 10 781 1485 3'-0"x 3'-0"x 12" 12000 1500 _ 8.00 2.83 2.83 3 3 12 1350 1483 3'-6"x 3'-6"x 12" 16500 1500 11.00 3.32 3.32 3.5 3.5 12 1838 1497 4'-0"x 4'-0"x 12" 21000 1500 14.00 3.74 3.74 4 4 12 2400 1463 ** Indicate maximum load at header supports for continuous footing *** Indicates maximum pt load for beams on continuous footing Required Area: = (Ptot/gauow)o.5 Bearing Pressure = (Ptot+Wftg)/(W*L) = (Ptot+Wttg)/(W*L*3.1415/4) 04 • 35 COMPANY PROJECT i I WoodWorks® SOFTWARE FOR WOOD DESIGN Mar.22,2012 12:25 Main Floor Beam.wwb Design Check Calculation Sheet Sizer 2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 32.0 No Load2 Live Full UDL 107.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : o 0' 8' Dead 152 152 Live 428 428 Total 580 580 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress(psi)and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 29 Fv' = 180 fv/Fv' = 0.16 Bending(+) fb = 454 Fb' = 1158 fb/Fb' = 0.39 Live Defl'n 0.06 = <L/999 0.27 = L/360 0.21 Total Defl'n 0.08 = <L/999 0.40 = L/240 0.19 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.00 1.00 1.00 0.990 1.300 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+L, M = 1160 lbs-ft Shear : LC# 2 = D+L, V = 580, V design = 492 lbs Deflection: LC# 2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1. Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. COMPANY PROJECT i WoodWorks® SOFTWARE FOR WOOD DESIGN Oct.30,2012 17:03 FB2.wwb Design Check Calculation Sheet Sizer2004a LOADS (lbs,psf,or plf) Load Type Distribution Magnitude Location [ft] Pat- Start End Start End tern Loadl Dead Full UDL 218.0 No Load2 Live Full UDL 427.0 No MAXIMUM REACTIONS (lbs) and BEARING LENGTHS (in) : o _ o 0' 4' Dead 448 . 448 Live 854 854 Total 1302 1302 Bearing: LC number 2 2 Length 1.00 1.00 Lumber-soft, D.Fir-L, No.2,4x8" Self Weight of 6.03 plf automatically included in loads; Lateral support:top=at supports,bottom=at supports;Load combinations: ICC-IBC; Analysis vs.Allowable Stress (psi) and Deflection (in) using NDS 2001 : Criterion Analysis Value Design Value Analysis/Design Shear fv = 54 Fv' = 180 fv/Fv' = 0.30 Bending(+) fb = 510 Fb' = 1164 fb/Fb' = 0.44 Live Defl'n 0.01 = <L/999 0.13 = L/360 0.10 Total Defl'n 0.02 = <L/999 0.20 = L/240 0.11 ADDITIONAL DATA: FACTORS: F CD CM Ct CL CF Cfu Cr Cfrt Ci Cn LC# Fb'+ 900 1.00 1.00 1.00 0.995 1.300 1.00 1.00 1.00 1.00 - 2 Fv' 180 1.00 1.00 1.00 - - - - 1.00 1.00 1.00 2 Fcp' 625 - 1.00 1.00 - - - - 1.00 1.00 - - E' 1.6 million 1.00 1.00 - - - - 1.00 1.00 - 2 Bending(+) : LC# 2 = D+L, M = 1302 lbs-ft Shear : LC# 2 = D+L, V = 1302, V design = 909 lbs Deflection: LC# 2 = D+L EI= 178e06 lb-in2 Total Deflection = 1.00(Dead Load Deflection) + Live Load Deflection. (D=dead L=live S=snow W=wind I=impact C=construction CLd=concentrated) (All LC's are listed in the Analysis output) DESIGN NOTES: 1.Please verify that the default deflection limits are appropriate for your application. 2.Sawn lumber bending members shall be laterally supported according to the provisions of NDS Clause 4.4.1. ~ 40 Client: Legend Homes 14/4,, Project: Proj.#: /111 Date: By: FROELICH E N I3 I N E E R S E ASCE 7-02 Earthquake Load Cs Factor Importance Factor(Seismic) I= 1.0 Basic Seismic Force Resisting System Light Framed Wood Shear Wall R= 6.5 Maximum C nsidered Design Spectral Response Max Ground Motion Site Site Coefficients Earthquake Acceleration Acceleration Seismic Design Coefficient Development Latitude Longitude Ss I Si Classification Fa I', SMs SM! SDs SDI Category Cs Edgewater 45.406 -122.798 0.914 0.332 I D 1.135 1.74 1.037 0.576 0.692 0.384 D 0.1064 Maxfield 45.343 -122.664 0.902 0.324 D 1.139 1.75 1.027 0.567 0.685 0.378 D 0.1054 Legend at Taralon 45.445 -122.534 0.978 0.329 D 1.109 1.74 1.085 I 0.573 0.723 0.382 D 0.1112 Victoria Gardens 45.367 -122.769 0.904 0.329 D 1.138 1.742 1.029 0.573 0.686 0.382 D 0.1055 Village at Orenco 45.584 -122.955 0.956 0.363 D 1.118 1.674 1.069 0.608 0.713 0.405 D 0.1096 Legend at Villebois 45.308 -122.780 0.873 0.322 D 1.151 1.756 1.005 0.565 0.670 0.377 D 0.1031 Willamette Landing 44.500 -123.250 0.906 0.34 D 1.18 1.86 1.069 0.632 0.622 0.422 D 0.0957 Walnut Creek 45.445 -122.798 0.938 0.339 D 1.125 1.723 1.055 0.584 0.704 0.389 D 0.1082 -Information in table was found by USGS maps -Conservatively design all structures in all developments for the Cs design value specified below Controlling Cs Value= 0.1112 IUse Cs=0.12 for Design in all Developments Equations: SMs=Fa*Ss Maximum Considered Earthquake SME=Fv*Si Acceleration SDS=SMS*2/3 Design Sectral Acceleration SDI=SMI*2/3 P Cs=SDs*I/R Response Coefficient w 1-4 , D ' Client: Legend Homes Project: Aspen B Proj.#: 12-T226 b-- Date: 11/13/2012 1111 By: YSP FROELICH ENGINEERS E Lateral Design SEISMIC: R=6.5 I = 1.0 Site Classification= D Design Category= D Seismic Design Coefficient(Cs) = 0.12 Working Stress Design: 0.7E Cs= 0.084 Seismic Dead Loads diaph area Load Wall L Trib Wall Wall Wt Extra DL Total DL Level (ft ) (psf) (ft) height(ft) (psf) (lbs) (lbs) Roof 1350 15 148 4 10 26170 Upper Fir 1210 12 148 5 10 21920 Seismic Base Shear V= Cs(DLrt+DLflr) V= 4040 Vertical Distribuition Level Weight Height Wt* Ht Wt(Ht)/Total V JVi = (Wt(Ht)/Total)*V Roof26170 18 471060 0.705 4040 2847 =VI/Floor ! 21920 9 197280 0.295 4040 1192 =Vflr 1 Total = 668340 • Vrf= 2847 lbs Vflr._. 1192 lbs 39 Client: Legend Homes Project: Aspen Project#: 12-T226 ®- Date: 11/6/2012 By: YSP FROELICH ENGINEERS ! Reliability/Redundancy Factor p (per ASCE7-05 12.3.4.2) Seismic Base Shear(V) = 4040 Percent base shear taken by story: Upper Story 2847 70% Main Floor 4040 100% Calculation of#of bays per story resisting more than 35% of the base shear: Upper Story: Story height(H) = 9 Critical wall length (L) = 8 # Bays=2UH*= 1.78 *for light-framed construction I # Bays < 2, Therefore Calculate Rho using Table 12.3-3 Per Table 12.3-3: By observation, the removal of any single shear wall with a height-to-width ratio greater than 1.0 does not result in a 33% reduction in story strength for any story resisting more than 35%of the total base shear. The resulting system does not have an extreme torsional irreguarity. Therefore, p = 1.0 Lf C ' Client: Legend Homes Project: Aspen B Project#: 12-T226 Date: 11/13/2012 By: YSP FROELICH ENGINEERS e Front - Back Event WIND FORCE CALCULATION-MWFRS ASCE 7-05 SECTION 6.5 METHOD 2 -ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 95 mph Wind Directionality Factor Ka= 0.85 Table 6-4 (page 80) Wind Importance Factor IW= 1.00 Table 6-1 (page 77) Wind Exposure Category= B Building Parameters Longitudinal Dimension of Bldg B= 31 ft Transverse Dimension of Bldg L= 48 ft Mean Roof Height h= 25 ft Highest Roof Level hn= 30 ft Approximate Fundamental Period Ta= 0.26 sec Eq. 12.8-7(page 129) Output-Fundamental Frequency f= 3.9 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 6-4 Length of 1/2 hill height Lh= 0 ft Figure 6-4 Dist. From Crest to Bldg. x= 0 ft Figure 6-4 Height Above Local Grade z= 0 ft Figure 6-4 Horizontal Attenuation Factor m= 1 Figure 6-4 Height Attenuation Factor g= 1 Figure 6-4 Shape Factor K1/(H/Lh)= 1 Figure 6-4 Output-Topographic Multipliers K1 = 1.00 K2= 1.00 K3= 1.00 Topographic Factor Kt= 1.00 44 Gust Effects Input Integral Length Scale Factor 1= 320 ft Table 6-2 Integral Length Scale nominal height of boundary zg= 1200 Table 6-2 3-s gust exponent a= 7.00 Table 6-2 Turbulence Intensity Factor c= 0.30 Table 6-2 Power Law Exponent e= 0.33 Table 6-2 Minimum Height zmin= 30 ft Table 6-2 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.91 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.87 Pressure Coefficients Input Length to Width Ratio LB = 1.55 Height to Length Ratio h/L= 0.52 Roof Pitch= 8 : 12 = 33.69 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 6-3 (page 79) External Pressure Coefficients Cp (see below) Figure 6-6(page 49) Direction C, Height(ft) Kh qZ(psf) Velocity Windward 0.8 15 0.57 11.3 Pressure Leeward -0.4 20 0.62 12.3 Output qZ Roof Windward -0.20 25 0.67 13.1 Roof Leeward -0.6 30 0.70 13.8 40 0.76 14.9 50 0.81 15.9 60 0.85 16.8 70 0.89 17.5 80 0.93 18.2 90 0.96 18.8 100 0.99 19.4 120 1.04 20.4 h= 25 0.67 13.1 qh Design Wind Pressures p (psf)-GCp1=(-) 10 psf min per 6.1.4.1 Internal Pressure Coefficient GCp1= -0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 10.2 -2.2 12.4 ft 20 10.9 -2.2 13.1 25 11.4 -2.2 13.6 30 11.9 -2.2 14.1 40 12.8 -2.2 14.9 50 13.4 -2.2 15.6 60 14.0 -2.2 16.2 70 14.6 -2.2 16.8 80 15.0 -2.2 17.2 90 15.5 -2.2 17.7 100 15.9 -2.2 18.1 120 16.6 -2.2 18.8 25 11.4 -2.2 0.0 -2.5 13.6 5.55 Design Load Case 1 Controls-By Inspection Figure 6-9 (page 52) Design Wind Pressures p (psf)-GCpi=(+) 10 psf min per 6.1.4.1 Internal Pressure Coefficient GCp1= 0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 5.5 -6.9 12.4 ft 20 6.2 -6.9 13.1 25 6.7 -6.9 13.6 30 7.2 -6.9 14.1 40 8.1 -6.9 14.9 50 8.7 -6.9 15.6 60 9.3 -6.9 16.2 70 9.9 -6.9 16.8 80 10.3 -6.9 17.2 90 10.8 -6.9 17.7 100 11.2 -6.9 18.1 120 11.9 -6.9 18.8 25 6.7 -6.9 -2.6 -5.1 13.6 5.55 Design Load Case 1 Controls-By Inspection Figure 6-9(page 52) 1-43 Client: Legend Homes Project: Aspen B Project#: 12-T226 a — Date: 11/13/2012 By: YSP FROELICH ENSINEERSA Side - Side Event WIND FORCE CALCULATION-MWFRS ASCE 7-05 SECTION 6.5 METHOD 2 -ANALYTICAL PROCEDURE Basic Wind Speeds Input 3 Second Gust Vas= 94.5 mph Wind Directionality Factor Ka= 0.85 Table 6-4(page 80) Wind Importance Factor IW= 1.00 Table 6-1 (page 77) Wind Exposure Category= B Building Parameters Longitudinal Dimension of Bldg B= 48 ft Transverse Dimension of Bldg L= 31 ft Mean Roof Height h= 25 ft Highest Roof Level ha= 30 ft ' Approximate Fundamental Period Ta= 0.26 sec Eq. 12.8-7 (page 129) Output-Fundamental Frequency f= 3.9 Hz> 1 Hz Therefore Rigid Topographic Effects Input Hill Height H= 0 ft Figure 6-4 Length of 1/2 hill height Lh= 0 ft Figure 6-4 Dist.From Crest to Bldg.x= 0 ft Figure 6-4 Height Above Local Grade z= 0 ft Figure 6-4 Horizontal Attenuation Factor m= 1 Figure 6-4 Height Attenuation Factor g= 1 Figure 6-4 Shape Factor K1/(H/Lh)= 1 Figure 6-4 Output-Topographic Multipliers K1 = 1.00 K2= 1.00 K3= 1.00 Topographic Factor Kc= 1.00 Lig Gust Effects Input Integral Length Scale Factor I= 320 ft Table 6-2 Integral Length Scale nominal height of boundary zg= 1200 Table 6-2 3-s gust exponent a= 7.00 Table 6-2 Turbulence Intensity Factor c= 0.30 Table 6-2 Power Law Exponent e= 0.33 Table 6-2 Minimum Height zmin= 30 ft Table 6-2 Integral Length Scale of Turbulence LZ= 310 ft Output-Background Response Factor Q= 0.89 Intensity of Turbulence IZ= 0.30 Gust Effect Factor G= 0.86 Pressure Coefficients Input Length to Width Ratio L/B= 0.65 Height to Length Ratio h/L= 0.81 Roof Pitch= 8 : 12 = 33.69 deg Velocity Pressure Exposure Coefficients Kh (see below) Table 6-3 (page 79) External Pressure Coefficients Cp (see below) Figure 6-6(page 49) Direction Cp Height(ft) Kh qZ(psf) Velocity Windward 0.8 15 0.57 11.2 Pressure Leeward -0.5 20 0.62 12.1 Output qZ Roof Windward 0.20 25 0.66 12.8 Roof Leeward -0.6 30 0.70 13.6 40 0.76 14.8 50 0.81 15.8 60 0.85 16.6 70 0.89 17.3 80 0.93 18.0 90 0.96 18.6 100 0.99 19.2 120 1.04 20.2 h= 25 0.67 12.9 qh q5 Design Wind Pressures p (psf)- GCP;=(-) 10 psf min per 6.1.4.1 Internal Pressure Coefficient GCP;= -0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 10.0 -3.2 13.3 ft 20 10.7 -3.2 13.9 25 11.2 -3.2 14.4 30 11.7 -3.2 15.0 40 12.5 -3.2 15.8 50 13.2 -3.2 16.4 60 13.8 -3.2 17.0 70 14.3 -3.2 17.5 80 14.8 -3.2 18.0 90 15.2 -3.2 18.4 100 15.6 -3.2 18.8 120 16.3 -3.2 19.5 25 11.2 -3.2 2.5` -2.4 14.5 5.55 Design Load Case 1 Controls-By Inspection Figure 6-9(page 52) Design Wind Pressures p (psf)-GCP;=(+) 10 psf min per 6.1.4.1 Internal Pressure Coefficient GCP;= 0.18 Figure 6-5 (page 47) Wall Roof Horizontal Effects Horiz. Direction- Windward Leeward Roof WW Roof LW WW+LW RWW+RLW Height 15 5.4 -7.9 13.3 ft 20 6.0 -7.9 13.9 25 6.5 -7.9 14.4 30 7.1 -7.9 15.0 40 7.9 -7.9 15.8 50 8.5 -7.9 16.4 60 9.1 -7.9 17.0 70 9.6 -7.9 17.5 80 10.1 -7.9 18.0 90 10.5 -7.9 18.4 100 10.9 -7.9 18.8 120 11.6 -7.9 19.5 25 6.6 -7.9 -0.1 -5.0 14.5 5.55 Design Load Case 1 Controls-By Inspection Figure 6-9(page 52) Client: Legend Homes Project: Aspen B Proj.#: 12-T226 Date: 11/13/2012 By: YSP FROELICH ENINERS Lateral Distribution Front-Back Event: Roof Line Windward= (5')(3psf)+(5')(10.9psf)= 70 plf Leeward= (5`)(2.2psf)+(5')(2.5psf)= 24 plf A=B : Trib= 16 feet Total= 94 plf Wind= 1600 lbs Min. Wind= (10')(10 psf)= 100 plf EQ= 1425 lbs EQ= 2850 lbs 2nd Floor Line Windward= (9.5')(10.2psf)= 97 plf Leeward= (9.5')(2.2psf)= 21 plf A=B : Trib= 18 feet Total= 118 plf Wind= 2124 lbs EQ= 600 lbs EQ= 1200 lbs Li 7 Client: Legend Homes Project: Aspen B 44111 Proj.#: 12-T226 Date: 11/13/2012 By: YSP FROELICH ENGINEERS 8 Lateral Distribution Cont. Side-Side Event: Roof Line Windward= (5')(3.0psf)+(5')(11.2psf)= 71 plf Leeward= (5')(2.5psf)+(5')(3.2pfs)= 40 plf 1= Trib= 6 feet Total= 111 plf Wind= 720 lbs Min. Wind= (12')(10 psf)= 120 plf EQ= 360 lbs EQ= (2850 lbs) / (48') = 60 plf 2= Trib= 19.5 feet Wind= 2340 lbs EQ= 1170 lbs 3= Trib= 13.5 feet Wind= 1620 lbs EQ= 810 lbs 2nd Floor Line Windward= (9.5')(10.0 psf)= 96 plf Leeward= (9.5')(3.2 psf)= 31 plf 1= Wind= (7')(31 psf)+(10')(96psf) Total= 127 plf = 1175 lbs EQ= (8.5')(25psf)= 220 lbs EQ= (1200 lbs) /48') = 25 plf 2a=2b Trib= 19 feet Wind Ward Wind= 1824 lbs EQ= 475 lbs 3= Wind= (10')(31 psf)+(12')(96psf) = 1460 lbs EQ= (11')(25psf)= 275 lbs ASPI1N �9 1,096 SQ. FT. 31'-0" Wx51=6"D 4 0 I I I I 1 I I ! L ___ -JI lil T-L-' - 1 � M81 I 0 I (D. , 1 ! 1 , __ - G I I _ ��` I 1 I I R 13 ! J' 0 0 • , Z t Client: Legend Homes Hf+Hs L4 =Length of individual wall F Lr Project: Aspen B Lt=Total length of wall along gridline �, Proj.#: 12-T226 La=Length of moment arm in wall(if different than wall length) r' Date: 11/13/2012 hu=Height of upper wall .. hl=Height of lower wall By: YSP illy=pft(h1+hu+I)+Hfprgjx L �„," Hf=Horizontal force at gridline Li 41 Hs=Horizontal force at gridline from upper FROELICH level Mu=[Hs(h1)+Hf(MA x I. V=Unit shear in wall ENGINEERS! Ms=Overturning moment when upper wall is stacked above lower wall 2 L' Upper Level Shear Walls and Holdowns Mu=Overturning moment when upper wall is Mr=3�(RUibxRoofDL)(Ws ibxWa/!DL)(FtribxFloorDL)] 2 not stacked or does not exist Rtrib,Wtrib,Ftrib=Roof,wall,and floor Roof dl: 15 Sf tributary area,used for calculating dead load T r=Mu—Mr Ms—Mr Ts= Mr=Resisting moment due to dead load La L Wall dl: 10 psf Tu=Tension if walls not stacked Ts=Tension if walls stacked Floor dl: 12 psf Wall L Lt La hu Hf V Seismic Mu Rtrib Wtrib Ftrib Mr Tu Comments Holdowns Shearwall Grid (ft) (ft) (ft) (ft) (lb) (Plf) Factor (Ib*ft) (ft) (ft) (ft) (Ib'ft) (lb) Front-Back Event A 16 24 16 8 1600 67 8533 18 _ 8 0 26880 -1147 -- 6/12 W 8 24 8 8 1600 67 4267 18 8 0 6720 -307 -- 6/12 W B 15 29 22 8 1600 55 6621 18 8 0 23625 -773 -- 6/12 W 8 29 7 8 1600 55 3531 18 8 0 6720 -456 --- 6/12 W Side-Side Event 1 4 8 4 8 720 90 2880 7 8 0 888 498 --- 6/12 W 4 8 4 8 720 90 2880 7 8 0 888 498 -- 6/12 W 2 6 6 6 8 2340 390 18720 6 8 0 1836 2814 _ MST48 3/12 W 3 11.5 17.5 11.5 8 1620 93 8517 6 8 0 6745 154 --- 6/12 W 3 17.5 3 8 1620 93 2222 6 8 0 459 588 _ --- 6/12 W 3 17.5 3 8 1620 93 2222 6 8 0 459 588 --- 6/12 W W U1. 0 SP�,N 5/ A, 815 SQ. FT. 31'-0" Wx51'-6"D DONT.MHEAruED / O 9HEARWALL yy AXIANNAILING AROUND OPSNING f ® 5HEEARWALL OaCNV ihEs AROUND OPENING m m O - HTTIbf I �a 2111121 I 1 11 I I I II ® I I II II 0 HLi_ 7„ A SHJ PF ii ISO. L J (.) ® ® ) , rifli0 C=.0 .._.,W 7 i Ppoel 1r I 1 0 • , . , • . • .4 Client: Legend HomesHf+Hs L=Length of individual wall V LI Project: Aspen B Lt=Total length of wall along gridline ®�' Proj.#: 12-T226 La=Length of moment ann in wall(if different than wall length) m Date: 11/13/2012 hu=Height of upper wall Hs L li ht-Hglowr lMt= hl+hu+l+ff h By: YSP Hf=Hrizontalht force at gridline [ ( ) f(nlx— Ll Hs=Heioorizontalof forceewaat l gridline from upper I. FROELICH level Mu=[Hs(hl)+Hf(hl)]x— V=Unit shear in wall Lt ENGINEERSI Ms=Overturning moment when upper wall is Main Level Shear Walls and Holdowns stacked above lower wall ' Mu=Overturning moment when upper wall is Mr=31(Ririb x RoofDL)(Wtrib x WaIIDL)(Ftrib x FloorDL)�2 not stacked or does not exist Rtrib,Wtrib,Ftrib=Roof,wall,and floor Roof dl: 15 psf tributary area,used for calculating dead load _Mu-Mr Ms-Mr Wall dl: 10 psf Mr=Resisting moment due to dead load Tu La Ts L Tu=Tension if walls not stacked Floor dl: 12 psf Ts=Tension if walls stacked Wall Grid L Lt La hu hl Hf Hs V Seismic Ms Mu Rtrib Wtrib Ftrib Mr Tu Ts Comments Holdowns Shearwall (ft) (ft) (ft) (ft) (Ib) (Ib) (lb) (plf) Factor (1b*ft) (lb*ft) (ft) (ft) (ft) (Ib*ft) (lb) (Ib) Front-Back Event A 13 32.5 12.5 8 9 2124 1600 115 19166 13406 16 17 0 23097 -775 --- --- 6/12 W 8 32.5 7.5 8 9 2124 1600 115 11795 8250 16 17 6 10283 -271 --- --- 6/12 W 13 22 22 21.5 8 9 2124 1600 169 47916 33516 16 17 9 83571 -2328 --- --- 6/12 W Side-Side Event 1 3 3 2.5 8 9 1175 720 632 23535 17055 6 17 7 1032 6409 --- Shth(2)Sides HDQ8 4/12 W 2a 6 6 5.5 8 91824 2340 694 58536 37476 4 17 2 3048 6260 9074 Shth(2)Sides HDQ8 4/12 W 23 4 5 14=11 17 14 5{ 8 19 11460 1620 220 13596 8910 6 9 nu 1824 0 107 16416 16416 0 20 2403 1627 ---6 /12 W 4 14 3.5 8 9 1460 1620 220 12086 7920 6 17 8 1899 1720 --- W 4 14 3.5 8 9 1460 1620 220 12086 7920 6 17 8 1899 1720 --- Perforeted Shearwall W 4 14 3.5 8 9 1460 1620 220 12086 7920 6 17 8 1899 1720 --- W I I U-1, N 53 • • u CE Client: Legend Homes Project: Aspen B FROEIICHProj.#: 12-T226 CON UL11MG Byte: YSP November-12 ENGI1EEk 1INC Wall: Line 3 Upper Part I Perforated Shear Wall Design per 2009 IBC 2306.3&AF&PA SDPWS Section 4.3.3.5 V= Shear force in Perforated Shear Wall(lbs.) 1540 (lbs.) L= Perforated Shear wall Length(feet) 14.50 (feet) L1 = Width of perforated shear wall segment(feet) 4.50 (feet) L2= Width of perforated shear wall segment(feet) 4.00 (feet) L3= Width of perforated shear wall segment(feet) 0.00 (feet) L4= Width of perforated shear wall segment(feet) 0.00 (feet) H= Shear wall height(feet) 9 (feet) h= Opening height(feet) 6 (feet) EL;= Sum of widths of perforated shear wall segments(feet) Co= Shear resistance adjustment factor from Table 4.3.3.5 T= Tension Chord uplift force(lbs.) v= Unit Shear Force(plf) Unit Shear in Entire wall = V/L= 106 plf Unit Shear OK Perforated Shear Wall Height= 9 (feet) Perforated Shear Wall Height OK full Height Shth= EL;/L= 0.59 Max opening Height= h/H = 0.667 From AF&PA SDPWS Table 4.3.3.5 and Interpolating Max Opening Height % Full Ht. Shth 0.667 0.67 0.833 50 0.67 0.67 0.57 ICo= 0.70 59 0.7045 0.70 0.62 60 0.71 0.71 0.63 Eqn.23-3 Holdown Requirement T(lbs.) = VH/(Co*EL;) = 2314 See below Eqn. 23-4 Shear Wall Nailing v(plf) = V/(Co*EL;)= 257 6/12 Shth (1) Side psf ft Roof DL 15 Roof Trib 6 Wall DL 10 Wall Trib 17 Floor DL 12 Floor Trib 4 =>T(lbs) 974.24 Holdown Requirement • HTT16 54! • Client: Legend Homes Project: Aspen B jFROELICH Proj.#: 12-T226 CONSULTING DaYe:By: November-12 YSP ENGINEERS,INC Wall: Line 3 Upper Part II Perforated Shear Wall Design per 2009 IBC 2306.3&AF&PA SDPWS Section 4.3.3.5 V= Shear force in Perforated Shear Wall(lbs.) 1540 (lbs.) L= Perforated Shear wall Length(feet) 14.50 (feet) L1 = Width of perforated shear wall segment(feet) 4.25 (feet) L2= Width of perforated shear wall segment(feet) 4.25 (feet) L3= Width of perforated shear wall segment(feet) 0.00 (feet) L4= Width of perforated shear wall segment(feet) 0.00 (feet) H= Shear wall height(feet) 9 (feet) h= Opening height(feet) 8 (feet) EL= Sum of widths of perforated shear wall segments(feet) Co= Shear resistance adjustment factor from Table 4.3.3.5 T= Tension Chord uplift force(lbs.) v= Unit Shear Force(plf) Unit Shear in Entire wall = V/L= 106 plf Unit Shear OK Perforated Shear Wall Height= 9 (feet) Perforated Shear Wall Height OK %full Height Shth= ZL;/L= 0.59 Max opening Height= h/H = 0.889 From AF&PA SDPWS Table 4.3.3.5 and Interpolating Max Opening Height % Full Ht. Shth 0.833 0.89 1 50 0.57 0.55 0.5 IC,= 0.60 1 59 0.6217 0.60 0.55 60 0.63 0.61 0.56 Eqn.23-3 Holdown Requirement = VH/ Co L T(lbs.) ( � ;) = 2725 See below Eqn.23-4 Shear Wall Nailing v(plf) = V/(Co*EL;)= 303 4/12 Shth (1) Side psf ft Roof DL 15 Roof Trib 6 Wall DL 10 Wall Trib 17 Floor DL 12 Floor Trib 4 =>T(lbs) 1385.6 Holdown Requirement HTT16 SHEARWALL SCHEDULE O FASTENERS WALL INFORMATION RMATION RIM OIQ BLKG TO SILL PLATE TO RM DBL TOP PLATE MD 81LL/AB.1) COMMENTS v 1644 COMMON• LAP SHTG ONTO A I/2"APA RATED SHEATHING 16d COMMON 8 o.c.(TOENAIL) (I)SIDE WI 8d NAILS•6 o.c. •6 o.c. INTO 4 SIMP.LTP4 2x MUDSILL. EDGES 4 12"o.c.FIELD SOLID FRAMING •48 oc w/ I/2"DIA x 10"AB.• _— — 8d COMMON 48"o.c.(EMBED 1") 1/2"APA RATED SHEATHING 16d COMMON SIMPSON LTP4 LAP SHTG ONTO SEE NOTES B (I)SIDE w/8d NAILS•4 o.c. +4 o.c.INTO •18 oc w/ 2x MUDSILL. .9 •11 4•12 EDGES 1 12 o.c.FIELD SOLID FRAMING 8d COMMON I/2"DIA x 10"AB.• BELOW 36" o.c.(EMBED 1") 1/2"APA RATED 514EATHING SIMPSON LTP4 SIMPSON LTP4 LAP SHTG ONTO SEE NOTES C (I)SIDE w/8d NAILS•3 o.c. •I2 o.c. INTO •12 oc w/ 2x MUDSILL. *6 *II,t 412 EDGES 1 12"o.c.FIELD SOLID FRAMING Ed COMMON I/2"DIA x 10"AB.• BELOW -- 24"o.c.(EMBED 1") V2"APA RATED SHEATHING SIMPSON LTP4 SIMPSON LTP4 LAP 9HTG ONTO SEE NOTES D (2)SIDES w/Sd NAILS• •10"o.c. INTO •9 oc w/ 3x MUDSILL. 810,111,413,414 4 o.c.EDGES 1 12 o.c.FIELD SOLID FRAMING ed COMMON I/2"DIA.x 10"A B.• •15 4•I6 18"o.c.(EMBED V) BELOW 1/2"APA RATED SHEATHING SIMPSON LTP4 SIMPSON LTP4 LAP SHTG ONTO SEE NOTES E (2)SIDES w/8d NAILS• •6'o.c. INTO •6"oc w/ 3x MUDSILL. "10,1'11,•13,•14 3 o.c.EDGES t 12 o.c.FIELD SOLID FRAMING 8d COMMON I/2"DIA.x 10"AB. •15 4 0I6 12"o.c.(EMBED V) BELOW isgnES: I. IF ANCHOR BOLT SPACING IS GREATER THAN SHEARWALL LENGTH,INSTALL(I)AB.WITHIN 12'OF EA END 2. SHEARWALL FRAMING TO BE 16 oc U.N.O.OR DETAILED OTHERWISE. 3. SHEARWALLS TO BE BLOCKED AT ALL PANEL EDGES U.N.O.OR DETAILED OTHERWISE. 4. ALL NAILS TO BE COMMON NAILS U.N.O. 8d GALVANIZED BOX NAILS MAY BE SUBSTITUTED FOR 8d COMMONS. S. LTP4 PLATES SHALL BE INSTALLED WI(12)8d COMMONS. b. ONLY THE MUD SILL IN CONTACT w/CONCRETE SHALL BE P.T. 1. 3'x 3"x V4"PLATE WASHERS ARE TO BE USED AT ALL SHEARWALL ANCHOR BOLTS. 8. ALL HOLDOWNS,STRAPS 4 CONNECTORS TO BE SIMPSON OR EQUAL. SHEARWALL_SPECIFIC NQ.EA 9. FRAMING AT ADJOINING PANEL EDGES SHALL BE 3"NOMINAL OR GREATER 4 NAILS SHALL BE STAGGERED. (DBL 2x ARE ACCEPTABLE) 10. FRAMING AT ADJOINING PANEL EDGES,SOLE PLATE 4 SILL PLATE SHALL BE 3"NOMINAL OR GREATER 4 NAILS SHALL BE STAGGERED. (DBL 2x ARE ACCEPTABLE) II. SIMPSON LTP4 CLIPS•SOLE PLATE CONNECTION TO RIM JOIST ARE NOT REQUIRED IF UPPER WALL SHEATHING IS CONTINUOUS 4 DIRECTLY EDGE NAILED TO RIM JOIST. 12. SIMPSON LTP4 CLIPS•RIM JOIST CONNECTION TO DEL.TOP PLATE ARE NOT REQUIRED IF LOWER WALL SHEATHING IS CONTINUOUS 4 DIRECTLY EDGE NAILED TO RIM JOIST. 13. SIMPSON LTP4 CLIPS•RIM JOIST CONNECTION TO DBL.TOP PLATE SHALL BE PLACED•12'oc IF LOWER WALL SHEATHING IS CONTINUOUS 4 DIRECTLY EDGE NAILED TO RIM JOIST. 14. 4 I/2"x 4 V2'x V4'PLATE WASHERS ARE TO BE USED AT ALL ANCHOR BOLTS SHEARWALL TYPES'D'4'E". 15. AT GARAGE PIERS USE 3x MUDSILLS. 16. AT INTERIOR SHEARWALLS USE 3x SOLE PLATES(DBL.2x ARE ACCEPTABLE,STAGGER NAILING). 9HEARWALL 2012 r HOLDOWN SCHEDULE FOOTING SCHEDULE: FRAmING HOLDOWN ATTACHMENT rwieem — 612E aim NO.pip OTZE RlIFPOleGNei (II)-16d NAILS at TOP /� SIMP.MST31 (11)-16d NAILS at BOTTOM (2) WRAP 4 NAIL STRAP TO C>, 2yDUI x r CENTER STRAP ON FLOOR CAVITY. 2x STUDS BEAM/HEADER BELOW �/ (22)TOTAL NAILS. IF APPLICABLE. USP.HTTI6 USP.511324 INTO STEMWALL (2) PROVIDE•4 DOWEL w/ Q 24'x 24'x 1/' (3)M•EA WAY 4(18)-16d NAILS TO DBL.STUDS. 2x STUDS STANDARD HOOK•EA. © 3/'x 34r)4 w (3)a4i►EA WAY HOEDOWN LOCATION. SIMPSON SSTB28L INTO STEMWALL PROVIDE•5 DOWEL W/ 4 31'x36"x Y' (4)+44 E4.WAY SIMP.11008 4(20)SIMPSON SDS 1/4'x 4 I/2" (3) STANDARD HOOK•EA. WOOD SCREWS 2x STUDS HOLDOWN LOCATION. NOTEST L MULTIPLE STUDS SHALL BE LAMINATED TOGETHER WITH(2)ROWS Ibd NAILS at 10 oc FULL HEIGHT.(TYPICAL) 2. AT STUDS BELOW MST STRAPS.EDGE NAIL PLYWOOD TO STUDS. 3. ALL HOLDOWNS,STRAPS 4 CONNECTORS TO BE SIMPSON OR EQUAL.INSTALL PER MANUF.INSTRUCTIONS. 4. ADD 1'OFFSET FOR POOR LOCATIONS. ((� { 4 c , 56 Title: Job# Dsgnr: Date: 4:47PM, 7 NOV 12 Description: Scope: ii Rev: 580000 User.KW-0602304,Ver 5.8.0,1-Dec-2003 Combined Footing Design Page 1 (c)1983-2003 ENERCALC Engineering Software footing design.ecw:Calculations Description Line 1 General Information Code Ref:ACI 318-02, 1997 UBC,2003 IBC,2003 NFPA 5000 Allow Soil Bearing 1,500.0 psf fc 2,500.0 psi Seismic Zone 4 Fy 60,000.0 psi Concrete Wt 145.0 pcf Min As Pct 0.0014 Short Term Increase 1.33 Distance to CL of Rebar 3.50 in Overburden 0.00 psf Live&Short Term Load Combined LDimensions Footing Size... Column Support Pedestal Sizes Distance Left 5.00 ft #1 :Square Dimension 0.00 in Dist. Betwn Cols 3.00 ft ...Height 0.00 in Distance Right 5.00 ft #2:Square Dimension 0.00 in Footing Length 13.00 ft ...Height 0.00 in Width 1.33 ft Thickness 8.00 in Loads Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Vertical Loads... as Left Column a Right Column . Dead Load 3.000 k 3.000 k Live Load k k Short Term Load 6.500 k -6.500 k ' Summary I Footing Design OK Length=13.00ft, Width=1.33ft, Thickness=8.00in, Dist.Left=5.00ft, Btwn.=3.00ft,Dist. Right=5.00ft Maximum Soil Pressure 971.51 psf Allowable 1,995.00 psf Steel Req'd @ Left #F#.### in2/ft Max Shear Stress 163.07 psi Steel Req'd @ Center ###.### in2/ft Allowable 170.00 psi Steel Req'd @ Right 0.328 in2/ft Min. Overturning Stability 1.584:1 Soil Pressures Soil Pressure @ Left Actual Allowable ACI Factored Eccentricity Dead+Live 443.7 1,500.0 psf Eq.C-1 621.2 psf 0.000 ft Dead+Live+Short Term 971.5 1,995.0 psf Eq.C-2 1,360.1 psf 2.542 ft Soil Pressure @ Right End Eq.C-3 874.4 psf • Dead+Live 443.7 1,500.0 psf Eq.C-1 621.2 psf 0.000 ft Dead+Live+Short Term 0.0 1,995.0 psf Eq.C-2 0.0 psf -2.542 ft Stability Ratio 1.6 :1 Eq.C-3 0.0 psf .`[ Moment&Shear Summary (values for moment are given per unit width of footing) r l Moments... ACI C-1 ACI C-2 ACI C-3 Mu @ Col#1 6.07 k-ft/ft 12.92 k-ft/ft 8.31 k-ft/ft Mu Btwn Cols 6.07 k-ft/ft 12.92 k-ft/ft 8.31 k-ft/ft Mu @ Col#2 6.07 k-ft/ft -0.58 k-ft/ft -0.37 k-ft/ft One Way Shears... Vn:Allow*0.85 85.000 psi 85.000 psi 85.000 psi Vu @ Col#1 41.610 psi 82.213 psi 52.851 psi Vu Btwn Cols 10.256 psi 0.000 psi 0.000 psi Vu @ Col#2 41.610 psi 1.395 psi 0.897 psi Two Way Shears... Vn:Allow*0.85 170.000 psi 170.000 psi 170.000 psi Vu @ Col#1 51.008 psi 163.065 psi 148.666 psi Vu @ Col#2 51.008 psi 60.569 psi 79.061 psi • 51 Title: Job# Dsgnr: Date: 4:47PM, 7 NOV 12 Description : Scope: Rev: 580000 • —User.KW-0602304,Ver 5.8.0,1-Dec-2003 Combined Footing Design Page 2 (c)1983-2003 ENERCALC Engineering Software footing design.ecw:Calculations Description Line 1 Reinforcing (values given per unit width of footing) aa.Left Edge of Col#1 Between Columns A Right Edge of Col#2 Ru/Phi As Req'd Ru/Phi As Req'd Ru/Phi As Req'd ACI C-1 333.22 psi 0.328 in2/ft @ Bottom 333.22 psi 0.328 in2/ft @ Bottom 333.22 psi 0.328 in2/ft @ Bottom ACI C-2 709.10 psi ##.###in2/ft @ Bottom 709.10 psi ##.###in2/ft @ Bottom 31.91 psi -0.173 in2/ft @ Top ACI C-3 455.85 psi 0.467 in2/ft @ Bottom 455.85 psi 0.467 in2/ft @ Bottom 20.51 psi -0.173 in2/ft @ Top LACI Factors (per ACI,applied internally to entered loads) ACI C-1 &C-2 DL 1.400 ACI C-2 Group Factor 0.750 Additional Seismic"1.4"Factc 1.400 ACI C-1 &C-2 LL 1.700 ACI C-3 Dead Load Factor 0.900 Additional Seismic"0.9"Facto 0.900 ACI C-1 &C-2 ST 1.700 ACI C-3 Short Term Factor 1.300 ....seismic=ST*: 1.100 ., 5c Title: Job# Dsgnr: Date: 4:45PM, 7 NOV 12 Description : Scope: Rev: 580000 User:KW-0602304,Ver 5.8.0,1-Dec-2003 Combined Footing Design Page 1 _(c)1983-2003 ENERCALC Engineering Software footing design.ecw:Calculations Description Line 2a _General Information Code Ref:ACI 318-02, 1997 UBC,2003 IBC,2003 NFPA 5000 Allow Soil Bearing 1,500.0 psf fc 2,500.0 psi Seismic Zone 4 Fy 60,000.0 psi Concrete Wt 145.0 pcf Min As Pct 0.0014 Short Term Increase 1.33 Distance to CL of Rebar 3.50 in Overburden 0.00 psf Live&Short Term Load Combined Dimensions Footing Size... Column Support Pedestal Sizes Distance Left 2.00 ft #1 :Square Dimension 0.00 in Dist.Betwn Cols 5.50 ft ...Height 0.00 in Distance Right 7.00 ft #2:Square Dimension 0.00 in Footing Length 14.50 ft ...Height 0.00 in Width 3.50 ft Thickness 15.00 in Loads Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Vertical Loads... (at Left Column a Right Column Dead Load 4.000 k 2.000 k Live Load k k Short Term Load 9.200 k -9.200 k I Summary ' Footing Design OK Length=14.50ft, Width=3.50ft, Thickness= 15.00in, Dist. Left=2.00ft, Btwn.=5.50ft, Dist. Right=7.00ft Maximum Soil Pressure 1,125.61 psf Allowable 1,995.00 psf Steel Req'd @ Left 0.324 in2/ft Max Shear Stress 33.35 psi Steel Req'd @ Center 0.324 in2/ft Allowable 170.00 psi Steel Req'd @ Right 0.324 in2/ft Min. Overturning Stability 1.567:1 Soil Pressures _ Soil Pressure @ Left Actual Allowable ACI Factored Eccentricity Dead+Live 466.6 1,500.0 psf Eq. C-1 653.3 psf 1.349 ft Dead+Live+Short Term 1,125.6 1,995.0 psf Eq.C-2 1,575.9 psf 4.678 ft Soil Pressure @ Right End Eq.C-3 1,013.0 psf Dead+Live 132.3 1,500.0 psf Eq. C-1 185.3 psf -1.349 ft Dead+Live+Short Term 0.0 1;995.0 psf Eq.C-2 0.0 psf -4.678 ft Stability Ratio 1.6 :1 Eq.C-3 0.0 psf Moment&Shear Summary (values for moment are given per unit width of footing) J Moments... ACI C-1 ACI C-2 ACI C-3 Mu©Col#1 0.76 k-ft/ft 2.37 k-ft/ft 1.52 k-ft/ft Mu Btwn Cols 0.76 k-ft/ft -6.22 k-ft/ft -4.00 k-ft/ft Mu @ Col#2 0.17 k-ft/ft -6.22 k-ft/ft -4.00 k-ft/ft One Way Shears... Vn:Allow*0.85 85.000 psi 85.000 psi 85.000 psi • Vu @ Col#1 2.889 psi 9.177 psi 5.899 psi Vu Btwn Cols 2.372 psi 0.000 psi 0.000 psi Vu @ Col#2 1.270 psi 11.109 psi 7.142 psi Two Way Shears... Vn:Allow*0.85 . 170.000 psi 170.000 psi 170.000 psi Vu @ Col#1 10.004 psi 33.348 psi 30.891 psi Vu @ Col#2 5.189 psi 18.737 psi 20.741 psi 59 Title: Job# Dsgnr: Date: 4:45PM, 7 NOV 12 Description : Scope: Rev: 580000 Pae 2 User:KW-0602304,Ver 5.8.0,1-Dec-2003 Combined FootingDesign s )1983-2003 ENERCALC Engineering Software footing design.ecw:Calculations Description Line 2a Reinforcing (values given per unit width of footing) e Left Edge of Col#1 Between Columns (a?Right Edge of Col#2 Ru/Phi As Req'd Ru/Phi As Req'd Ru/Phi As Req'd ACI C-1 6.35 psi 0.324 in2/ft @ Bottom 6.35 psi 0.324 in2/ft @ Bottom 1.40 psi 0.324 in2/ft @ Bottom ACI C-2 19.93 psi 0.324 in2/ft @ Bottom 52.23 psi -0.324 in2/ft @ Top 52.23 psi -0.324 in2/ft @ Top ACI C-3 12.81 psi 0.324 in2/ft @ Bottom 33.58 psi -0.324 in2/ft @ Top 33.58 psi -0.324 in2/ft @ Top ACI Factors (per ACI,applied internally to entered loads) ACI C-1 &C-2 DL 1.400 ACI C-2 Group Factor 0.750 Additional Seismic"1.4"Factc 1.400 ACI C-1 &C-2 LL 1.700 AC1 C-3 Dead Load Factor 0.900 Additional Seismic"0.9"Facto 0.900 ACI C-1 &C-2 ST 1.700 ACI C-3 Short Term Factor 1.300 ....seismic=ST': 1.100 60 Client: • Project: Proj.#: 11111 Date: By: FROELICH ENGINEERS S ACI 318-05 Appendix D - Tension Failures (Page 1 of 3) Anchor description: 518"ASTM A36 Threaded Rod for Simpson HTT16/HTT22/HTT4/HTT5 1 Number of Anchors s, = 0 in. (see Fig. 0.625 Inch Diameter s2= 0 RD.5.2.1) 8 Inch Embed 2500 psi Concrete Footing NDesign = 5.250 (kips)Allowable Design Tension D.3 -General Requirements (ACI 318-02 Section D.3.3.3) Are seismic loads induced into the anchor? Y SF= 0.75 D.4-General Requirements for Anchor Strength (ACI 318-02 Section D.4.4) Strength reduction factor P for anchors using load combinations from ACI 318-05 section 9.2 Will anchor be governed by brittle steel failure? N Anchor = 0.75 Brittle failure: 0.65 (brittle defined by tensile test elongation less than 14%) Ductile failure: 0.75 - Is rebar present around anchor to resist blowout? N Reinforcing 4) = 0.70 If rebar is present around anchor: 0.75 Otherwise, 0.70 Summary 4>Nn Wind I ONn Seismic Summary From Below I oNn I SW= 1.0 I SF= 0.75 RNs= 9.83 9.83 7.37 kips cIDNcb= 19.01 19.01 14.26 kips clNpn= 121.71 121.71 91.28 kips cl)Nsb= 198.14 198.14 148.60 kips CDNsbg= 198.14 198.14 148.60 kips Minimum CONIn = 9.83 9.83 7.37 kips Converting To Allowable Stress Design Wind Seismic Conversion Factor 1.4 1.4 CANAllowable= 7.02 5.27 kips Ndesign < ONAllowable 5.250 < 5.27 Therefore, Anchor Design OK 6t Client: Project: • ® Proj.#: Date: By: FROELICH ENCa1N EERS€ ACI 318-05 Appendix D - Tension Failures Cont. (Page 2 of 3) Tension Design Calculations D.5.1 -Steel Strength for Anchor in Tension d (Anchor Diameter)) = 0.625 inches n = 1 #of anchors nt= 11 Number of Threads per inch Ase= 0.23 in.2- (effective cross-sectional area of anchor) futa= 58.00 ksi-(tensile strength of anchor material (not the yield strength) not exceed 1.9fy or 125 ksi) Nsa= 13.11 ksi -(Eqn. D-3) Anchor = 0.75 T �Nsa= 9.83 kips 1 Y sa nAse futa D.5.2 -Concrete Breakout Strength of Anchor in Tension s, = 0 inches (see Fig. RD.5.2.1) S2= 0 inches (see Fig. RD.5.2.1) Anc(for single anchor) = 576 in.2(see Figure RD.5.2.1) A,(for group anchor) = 782 in.2(see Figure RD.5.2.1) ANoo(for single anchor) = 576 in.2(see Figure RD.5.2.1) ANco(for group anchor) = 576 in.2 (see Figure RD.5.2.1) 4'eC,N = 1 Eqn. D-9 (Anchors not Eccentrically Loaded, 4)1 = 1.0) fed,N = 1.000 Eqn. D-10 & D-11 L-Pc,N= 1 (1.25 for cast anchors, 1.4 for post-installed) Section D.5.2.6 k�= 24 (24 for cast anchors, 17 for post-installed) Section D.5.2.2 fc= 2500 psi 1.5*hef= 12 he= 8 inches 0.7+0.3(cm;n/1.5hef) = 1.000 cm;r, = 12 in-distance to closest edge of concrete N eh = kc /f'c he 1.5 Nb = 27.15 kips-(Eqn. D-7) Ncb= 27.15 kips-(Eqn. D-4) r `4Nc ,. Ncb9= 0.00 kips- (Eqn. D-5) 1v cbg = A wec,Nti �ed,Ncp,Nrfb Reinforcing N= 0.70 Nco QNcbg = 19.01 kips (,2 62 Client: Project: Proj.#: Date: By: FROELICH ENGINEERS S ACI 318-05 Appendix D - Tension Failures Cont. (Page 3 of 3) D5.3 -Single Anchor Pullout- headed or embedded nut Use Plate Washer? Y Plate Washer Width = 3 inches Nut diameter= 0.985 inches Nut or Plate Washer Bearing Area = 9.000 in2 Abrg = 8.693 in2-bearing area of embedded anchors head or nut 1 For an anchor located in an area of concrete where not cracking at service loads is anticipated, otherwise use 1.0 value (ACI 318-05 • Section D.5.3.6) n = 1 *of anchors Np = 173.87 (kips) Eqn. D-15 Np —`e �Grg$f c Npn = 173.87 (kips) Eqn. D-14 N =Nur pn P Reinforcing 4) = 0.70 c0Npn= 121.71 kips D5.4-Anchor side-faced blowout-Headed Anchor (Required only if anchor is near an edge where ca; < 0.4hei, Anchor is not close to Edge of Concrete. Analysis below NOT Required. cat = 5 distance to perp edge of concrete from anchor cal = 12 in -distance to closest edge of concrete Nsb = 283.05 (kips) Eqn. D-15 Factored Nsb= 100.25 Reinforcing cp= 0.70 e'Nsb= 198.14 kips N sb = 160 Ca i ,J Abrg V f c s= 0 in -spacing of outer anchors in group Nsbg = 283.05 (kips) Eqn. D-16 Reinforcing cp= 0.70 Nsbg = 1 + S 1 N A WNsbg= 198.14 kips 6Cai I \ al V